WO2008149118A1 - Méthode de préparation d'un échantillon améliorant la sensibilité de la rmn - Google Patents
Méthode de préparation d'un échantillon améliorant la sensibilité de la rmn Download PDFInfo
- Publication number
- WO2008149118A1 WO2008149118A1 PCT/GB2008/001964 GB2008001964W WO2008149118A1 WO 2008149118 A1 WO2008149118 A1 WO 2008149118A1 GB 2008001964 W GB2008001964 W GB 2008001964W WO 2008149118 A1 WO2008149118 A1 WO 2008149118A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- polarisation
- spin
- agent
- nmr
- Prior art date
Links
- 230000035945 sensitivity Effects 0.000 title abstract description 13
- 238000005464 sample preparation method Methods 0.000 title description 2
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000005481 NMR spectroscopy Methods 0.000 claims abstract description 25
- 239000002904 solvent Substances 0.000 claims abstract description 8
- 230000005855 radiation Effects 0.000 claims abstract description 5
- 230000001678 irradiating effect Effects 0.000 claims abstract description 4
- 239000007787 solid Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 2
- 239000000523 sample Substances 0.000 description 44
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 29
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 20
- 238000001228 spectrum Methods 0.000 description 16
- 150000003254 radicals Chemical class 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 7
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 5
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 4
- CSCPPACGZOOCGX-LBPDFUHNSA-N acetone-2-13c Chemical compound C[13C](C)=O CSCPPACGZOOCGX-LBPDFUHNSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- MXJDQIWBHIXNRE-UHFFFAOYSA-B C(CC(O)(C(=O)[O-])CC(=O)[O-])(=O)[O-].[C+4].C(CC(O)(C(=O)[O-])CC(=O)[O-])(=O)[O-].C(CC(O)(C(=O)[O-])CC(=O)[O-])(=O)[O-].C(CC(O)(C(=O)[O-])CC(=O)[O-])(=O)[O-].[C+4].[C+4] Chemical group C(CC(O)(C(=O)[O-])CC(=O)[O-])(=O)[O-].[C+4].C(CC(O)(C(=O)[O-])CC(=O)[O-])(=O)[O-].C(CC(O)(C(=O)[O-])CC(=O)[O-])(=O)[O-].C(CC(O)(C(=O)[O-])CC(=O)[O-])(=O)[O-].[C+4].[C+4] MXJDQIWBHIXNRE-UHFFFAOYSA-B 0.000 description 1
- -1 J6-DMSO) Chemical compound 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- VILAVOFMIJHSJA-UHFFFAOYSA-N dicarbon monoxide Chemical class [C]=C=O VILAVOFMIJHSJA-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical compound COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- SYJRVVFAAIUVDH-UHFFFAOYSA-N ipa isopropanol Chemical compound CC(C)O.CC(C)O SYJRVVFAAIUVDH-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229940032007 methylethyl ketone Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/46—NMR spectroscopy
- G01R33/4608—RF excitation sequences for enhanced detection, e.g. NOE, polarisation transfer, selection of a coherence transfer pathway
Definitions
- the present invention is concerned with a method of preparing samples for analysis by nuclear magnetic resonance, to enhance the sensitivity of that analysis. More specifically, the present invention concerns the use of a co-polarisation agent to enhance the effectiveness of dynamic nuclear polarisation of the sample.
- Nuclear magnetic resonance (NMR) spectroscopy is widely used as an analytical tool in chemical and biochemical sciences, as well as in medical applications, where the technique is used for the more commonly known magnetic resonance imaging (MRI).
- the technique relies on the presence of atomic nuclei having a plurality of quantum spin states. By placing the nuclei in a strong magnetic field, the energy levels corresponding to those spin states are separated. Irradiation of the nuclei with electromagnetic radiation of the correct wavelength (i.e. having a radiofrequency with an energy corresponding to the energy gap between the spin states) allows some of the nuclei to transfer from one energy level to another. Resulting changes in precession of the magnetic moment of spin-active nuclei within the sample are detected and analysed to determine the chemical environment of those nuclei.
- NMR spectroscopy relates to the requirement for the nucleus to be spin-active, i.e. to have a plurality of spin states.
- spin-active isotopes such as for example 1 H and 19 F.
- the predominant isotopes 12 C and 14 N respectively
- the spin- active isotopes 13 C and 15 N occur naturally at only very low concentrations.
- only a small proportion of these nuclei in each chemical environment e.g.
- An alternative method of enhancing sensitivity involves the use of cryogenically-cooled probes in which the electronic components of the spectrometer (such as the receiver coil and preamplifiers) are cooled to temperatures below 30 K to reduce noise. These probes can provide a factor of 3-4 in increased sensitivity, and hence are now widely used in many applications of NMR, despite the relatively high cost.
- DNP Dynamic Nuclear Polarisation
- DNP Differential nucleus spin transfer
- the polarisation is preferably earned out using a lower magnetic field strength, on low temperature, frozen glassy samples, in which electron spin relaxation is reduced.
- NMR spectra must therefore be recorded in the solid state at low temperature, or the sample must be rapidly melted before taking a liquid-state spectrum. If it is desired to record the NMR spectra at higher field strength (as is common), the sample must also be transferred to the appropriate NMR spectrometer without substantial loss of polarisation.
- a method of preparing for NMR analysis a sample containing at least one target molecule comprising adding to the sample a molar excess of a co-polarisation agent having at least one spin-active nucleus, and optionally one or more solvents, and irradiating the sample with microwave radiation and thereby causing polarisation of the spin-active nucleus of the co- polarisation agent.
- target molecule' is intended to mean a chemical compound for which it is desired to record an NMR spectrum.
- the phrase 'molar excess of a co-polarisation agent having at least one spin-active nucleus' is intended to mean that the number of molecules of the co-polarisation agent having at least one spin-active nucleus is in excess of the number of target molecules. This may be achieved, for example, by isotopically-enriching the co-polarisation agent, or by adding a significant excess of the co-polarisation agent having a natural abundance of the spin-active nucleus.
- the co-polarisation agent having at least one spin-active nucleus is present in at least a 10-fold molar excess, relative to the target molecule.
- the spin-active nucleus in the co-polarisation agent has a T 1 relaxation time (such as that measured in a field of 11.74 T, in solution at room temperature) of at least 5 seconds. In a further embodiment, the Tj relaxation time is at least 15 seconds, or at least 30 seconds.
- the factors affecting the Ti relaxation time are varied, and will be well understood by the man skilled in the art.
- the presence of hydrogen atoms attached to a carbon or nitrogen nucleus will reduce the relaxation time of that nucleus.
- quaternary carbon nuclei (those without any attached hydrogen atoms, such as ketone carbonyl atoms) have particularly long Ti relaxation times.
- the replacement of 1 H nuclei with deuterium ( 2 H) can increase Tj relaxation times and improve spin diffusion in the relaxation matrix.
- the co-polarisation agent may be partially or fully deuterated (i.e. have some or all of any H atoms present replaced with 2 H).
- the spin-active nucleus is 13 C or 15 N.
- the co-polarisation agent has been isotopically-enriched with 13 C or 15 N.
- other spin-active nuclei may be used, such as for example 31 P.
- the method includes the step of cooling the sample to below 100 K to produce a glassy solid before irradiation with microwaves, and maintaining the sample at that temperature during microwave irradiation.
- the sample is cooled to below 70 K.
- the sample is cooled to below 50 K, or to below 30 K.
- the long-lived spin-active nucleus must be able to transfer polarisation to at least one spin-active nucleus within the target molecule, such as for example by the nuclear Overhauser effect (n ⁇ e), the solid state effect, the cross effect or thermal mixing.
- the co-polarisation agent forms a non-covalent bond with the target molecule.
- the co-polarisation agent may form a hydrogen bond or other polar interaction with the target molecule.
- the co-polarisation agent does not react chemically with the target molecule to form a covalent bond.
- the spin-active nucleus in the co-polarisation agent is a quaternary carbon atom.
- the spin-active nucleus is a carbonyl carbon nucleus
- the co-polarisation agent conveniently being a ketone such as acetone, methyl ethylketone or diethyl ketone.
- the co-polarisation agent is acetone.
- the co-polarisation agent may serve as the solvent, or one of the solvents, for the sample.
- Alternative co-polarisation agents may include DMSO (particularly J 6 -DMSO), pyruvate, f-butanol (2-methylpropan-2-ol), isopropanol (propan-2-ol), CO 2 , and CO, any of which may also be isotopically enriched with 13 C.
- DMSO particularly J 6 -DMSO
- pyruvate particularly pyruvate
- f-butanol (2-methylpropan-2-ol
- CO 2 and CO, any of which may also be isotopically enriched with 13 C.
- CO 2 or CO including their 13 C-enriched forms
- the spin-active nucleus in the co-polarisation agent is a quaternary
- N-based co-polarisation agents include urea, pyridine, pyridazine, pyrimidine, pyrazine, and choline.
- the co-polarisation agent may be isotopically enriched with N in one position or (where applicable) in both positions.
- the co-polarisation agent may also be deuterated (have attached hydrogens replaced with deuterium ( 2 H) to increase T 1 ).
- Preferred embodiments may include 15 N 2 -urea and 15 N 2 ,£/ 4 -urea.
- the method may further include heating the sample following polarisation to melt the glassy solid and thereby obtain the sample in a liquid state. In a further embodiment, this heating takes less than 5 seconds. In a further embodiment still, this heating takes place in less than 3 seconds, or less than 1 second. Without wishing to be bound by theory, it is believed that polarisation transfer may continue after heating.
- an organic radical in the sample mixture for DNP processing.
- the sample includes delicate metabolite products, the presence of a free radical may lead to uncontrolled chemical reaction. Therefore, whereas some embodiments contemplate the addition of a free radical to the sample, other embodiments of the present invention include methods in which no radical is added to the sample before microwave irradiation.
- the co- polarisation agent includes methyl groups (such as for example acetone), it may be possible to achieve DNP excitation without the requirement for a radical.
- the sample may be transferred to an NMR spectrometer for NMR analysis.
- the sample may be injected into a living creature for in vivo MRI or MRS analysis (if the sample has previously been cooled, this will usually be after a heating step).
- the sample may undergo further processing before analysis, such as for example to remove solvent from the sample.
- Figure 1 shows a series of 13 C NMR spectra of niethoxyphenol, using standard prior art DNP techniques, and polarisation in the presence of natural abundance and 13 C-enriched acetone;
- Figure 2 shows 13 C NMR spectra of citrate after polarisation in the presence of natural abundance and C-enriched acetone
- Figure 3 shows 13 C NMR spectra of oxaloacetate after polarisation in a variety of conditions
- Figure 4 shows 13 C NMR spectra of glucose after polarisation in a variety of conditions.
- IM citrate was dissolved in a mixture of acetone (natural C abundance) or [2- 13 C]-acetone (33 ⁇ l), together with 33 ⁇ l DMSO, 33 ml water and 0X63 radical (as supplied by Oxfords Instruments Molecular Biotools Ltd, Abingdon UK) (15 mM).
- the mixture was irradiated with microwaves (94 GHz) at 1.5 K for 1.5 hours, as above, and subsequently melted with 4ml of water (containing EDTA).
- the sample was then subjected to a temperature of 200 0 C (to give a sample temperature of approximately 30 °C) and transferred to a 500 MHz (11.75 T) NMR magnet. Melting and transfer were completed in 4 seconds.
- IM oxaloacetate was dissolved in 100 ⁇ l of the following solvents: for spectra A and B, equal amounts of natural abundance acetone and DMSO; for spectra C and D, equal amounts of deuterated (d 6 ) acetone and DMSO; and for spectra E and F, equal amounts of [2- 13 C]-acetone and deuterated DMSO.
- 0X63 ' radical (as supplied by Oxford Instruments Molecular Biotools Limited, Abingdon UK) (15 mM) was added to the samples.
- the sample was then melted with 4 ml of water subjected to a temperature of 200 °C (to give a sample temperature of approximately 30 0 C) (containing EDTA) and transferred to a 500 MHz (11.75 T) NMR magnet, where the 13 C spectra were recorded. It can be seen that significant benefit could be obtained from using deuterated DMSO.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- High Energy & Nuclear Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
L'invention porte sur une méthode de préparation d'un échantillon pour une analyse par RMN consistant: à ajouter à l'échantillon un agent de co-polarisation et facultativement un ou plusieurs solvants. L'agent de co-polarisation devrait avoir au moins un noyau à spin actif et être ajouté avec un excès molaire par rapport à une molécule cible de l'échantillon. La méthode consiste en outre à irradier l'échantillon par des micro-ondes pour provoquer la polarisation du noyau à spin actif de l'agent de co-polarisation. L'agent de co-polarisation peut alors transférer sa polarisation à la molécule cible, ce qui améliore la sensibilité de l'analyse par RMN.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08762305A EP2156205A1 (fr) | 2007-06-08 | 2008-06-06 | Méthode de préparation d'un échantillon améliorant la sensibilité de la rmn |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0711048 | 2007-06-08 | ||
GB0711048.9 | 2007-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008149118A1 true WO2008149118A1 (fr) | 2008-12-11 |
Family
ID=39713919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2008/001964 WO2008149118A1 (fr) | 2007-06-08 | 2008-06-06 | Méthode de préparation d'un échantillon améliorant la sensibilité de la rmn |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2156205A1 (fr) |
WO (1) | WO2008149118A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2348327A1 (fr) * | 2010-01-18 | 2011-07-27 | Bruker BioSpin AG | Procédé de mesure par RMN utilisant la polarisation nucléaire dynamique de dissolution avec élimination des radicaux libres |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006079702A2 (fr) * | 2005-01-27 | 2006-08-03 | Commissariat A L'energie Atomique | Procede pour accoitre le signal rmn d ' une solution liquide en utilisant le champ dipolaire longue distance |
US7205764B1 (en) * | 2006-04-11 | 2007-04-17 | Varian, Inc. | Method and apparatus for increasing the detection sensitivity in a high resolution NMR analysis |
WO2007136439A2 (fr) * | 2006-02-21 | 2007-11-29 | Avrum Belzer | Procédés, systèmes et compositions d'hyperporalisation |
-
2008
- 2008-06-06 WO PCT/GB2008/001964 patent/WO2008149118A1/fr active Application Filing
- 2008-06-06 EP EP08762305A patent/EP2156205A1/fr not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006079702A2 (fr) * | 2005-01-27 | 2006-08-03 | Commissariat A L'energie Atomique | Procede pour accoitre le signal rmn d ' une solution liquide en utilisant le champ dipolaire longue distance |
WO2007136439A2 (fr) * | 2006-02-21 | 2007-11-29 | Avrum Belzer | Procédés, systèmes et compositions d'hyperporalisation |
US7205764B1 (en) * | 2006-04-11 | 2007-04-17 | Varian, Inc. | Method and apparatus for increasing the detection sensitivity in a high resolution NMR analysis |
Non-Patent Citations (3)
Title |
---|
A.CHERUBINI ET AL.: "Hyperpolarising 13C for NMR studies using laser-polarised 129Xe: SPINOE vs thermal mixing", CHEMICAL PHYSICS LETTERS, vol. 371, 2003, pages 640 - 644, XP002494330 * |
C.-G. JOO ET AL.: "In Situ Temperature Jump High-Frequency Dynamic Nuclear Polarization Experiments: Enhanced Sensitivity in Liquid-State NMR Spectroscopy", J.AM.CHEM.SOC., vol. 128, 2006, pages 9428 - 9432, XP002494329 * |
HALL D A ET AL: "POLARIZATION-ENHANCED NMR SPECTROSCOPY OF BIOMOLECULES IN FROZEN SOLUTION", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, WASHINGTON, DC, vol. 276, no. 5314, 9 May 1997 (1997-05-09), pages 930 - 932, XP000882848, ISSN: 0036-8075 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2348327A1 (fr) * | 2010-01-18 | 2011-07-27 | Bruker BioSpin AG | Procédé de mesure par RMN utilisant la polarisation nucléaire dynamique de dissolution avec élimination des radicaux libres |
US8564288B2 (en) | 2010-01-18 | 2013-10-22 | Bruker Biospin Ag | Method for NMR spectroscopy or MRI measurements using dissolution dynamic nuclear polarization (DNP) with scavenging of free radicals |
Also Published As
Publication number | Publication date |
---|---|
EP2156205A1 (fr) | 2010-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Favier et al. | Recovering lost magnetization: polarization enhancement in biomolecular NMR | |
Ardenkjaer‐Larsen et al. | Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy | |
Akbey et al. | Dynamic nuclear polarization of deuterated proteins | |
Möbius et al. | High-field EPR spectroscopy on proteins and their model systems: characterization of transient paramagnetic states | |
Frydman et al. | Ultrafast two-dimensional nuclear magnetic resonance spectroscopy of hyperpolarized solutions | |
Orlando et al. | Dynamic nuclear polarization of 13C nuclei in the liquid state over a 10 Tesla field range | |
Kupče | NMR with multiple receivers | |
Harris et al. | Rapid Acquisition of 14N Solid‐State NMR Spectra with Broadband Cross Polarization | |
Lane et al. | Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1 H TOCSY | |
Singh et al. | Ultrafast 2D 1 H–1 H NMR spectroscopy of DNP-hyperpolarised substrates for the analysis of mixtures | |
Sheppard et al. | Experimental approaches for NMR studies of side-chain dynamics in high-molecular-weight proteins | |
US7351402B2 (en) | Polarizing agents for dynamic nuclear polarization | |
Schiavina et al. | Taking simultaneous snapshots of intrinsically disordered proteins in action | |
Dalvit et al. | 19F NMR transverse and longitudinal relaxation filter experiments for screening: a theoretical and experimental analysis | |
Kulik et al. | Electron-nuclear double resonance | |
Cavadini et al. | Coherence transfer between spy nuclei and nitrogen-14 in solids | |
Taylor et al. | SABRE‐enhanced real‐time pure shift NMR spectroscopy | |
JP2006522924A (ja) | Nmrスペクトロスコピーの方法及び構成 | |
De Biasi et al. | Optically enhanced solid-state 1H NMR spectroscopy | |
Gierth et al. | Fast experiments for structure elucidation of small molecules: Hadamard NMR with multiple receivers | |
Janovick et al. | Nuclear magnetic resonance | |
Léonce et al. | syn-Cryptophanes: macrocyclic compounds with optimized characteristics for the design of 129 Xe NMR-based biosensors | |
Dumez | Perspectives on hyperpolarised solution‐state magnetic resonance in chemistry | |
Edison et al. | Practical guidelines for 13 C-based NMR metabolomics | |
EP2156205A1 (fr) | Méthode de préparation d'un échantillon améliorant la sensibilité de la rmn |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08762305 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008762305 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |