WO2008038780A1 - Glass composition and glass article using the same - Google Patents
Glass composition and glass article using the same Download PDFInfo
- Publication number
- WO2008038780A1 WO2008038780A1 PCT/JP2007/069001 JP2007069001W WO2008038780A1 WO 2008038780 A1 WO2008038780 A1 WO 2008038780A1 JP 2007069001 W JP2007069001 W JP 2007069001W WO 2008038780 A1 WO2008038780 A1 WO 2008038780A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- glass composition
- glass
- composition according
- bao
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 206
- 239000000203 mixture Substances 0.000 title claims abstract description 113
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 73
- 238000002834 transmittance Methods 0.000 claims abstract description 31
- 229910000410 antimony oxide Inorganic materials 0.000 claims abstract description 8
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 claims abstract description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 47
- 238000005286 illumination Methods 0.000 claims description 25
- 238000000465 moulding Methods 0.000 claims description 17
- 238000006124 Pilkington process Methods 0.000 claims description 8
- 239000011734 sodium Substances 0.000 abstract description 47
- 229910052708 sodium Inorganic materials 0.000 abstract description 14
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 13
- 230000009477 glass transition Effects 0.000 abstract description 13
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 abstract 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000004615 ingredient Substances 0.000 abstract 1
- 235000013980 iron oxide Nutrition 0.000 abstract 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 abstract 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 19
- 239000000758 substrate Substances 0.000 description 18
- 238000004031 devitrification Methods 0.000 description 15
- 229910052742 iron Inorganic materials 0.000 description 15
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 11
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000005361 soda-lime glass Substances 0.000 description 9
- 230000007704 transition Effects 0.000 description 9
- 229910018068 Li 2 O Inorganic materials 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 239000005357 flat glass Substances 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000005352 clarification Methods 0.000 description 3
- 239000006025 fining agent Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 239000005394 sealing glass Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- SEPPVOUBHWNCAW-FNORWQNLSA-N (E)-4-oxonon-2-enal Chemical compound CCCCCC(=O)\C=C\C=O SEPPVOUBHWNCAW-FNORWQNLSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- LLBZPESJRQGYMB-UHFFFAOYSA-N 4-one Natural products O1C(C(=O)CC)CC(C)C11C2(C)CCC(C3(C)C(C(C)(CO)C(OC4C(C(O)C(O)C(COC5C(C(O)C(O)CO5)OC5C(C(OC6C(C(O)C(O)C(CO)O6)O)C(O)C(CO)O5)OC5C(C(O)C(O)C(C)O5)O)O4)O)CC3)CC3)=C3C2(C)CC1 LLBZPESJRQGYMB-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 239000000156 glass melt Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/30—Vessels; Containers
- H01J61/302—Vessels; Containers characterised by the material of the vessel
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
Definitions
- the present invention relates to a glass composition and a glass article for illumination using the same. Specifically, the present invention relates to a glass composition suitable as a glass article, particularly a tubular or plate-like lighting glass, and a lighting glass article using the same.
- a soda-lime-based glass composition containing 10 to 20% by mass of sodium oxide has been used as a glass for illumination such as a fluorescent lamp.
- Mercury is sealed in the tube of the fluorescent lamp. From the glass for lighting made of a soda-lime-based glass composition, sodium may elute over time.
- the total of Na 0, K 2 and Li 2 O is 13% or less.
- soda-lime glass compositions inevitably contain iron due to industrial raw materials.
- Iron oxide contained in the glass acts as a colorant and exists in the form of Fe 2+ and Fe 3+ .
- Fe 2+ has an absorption peak near the wavelength l lOOnm
- Fe 3+ has an absorption near the wavelength 400nm.
- transmittance is an important characteristic. Therefore, not only the content of iron oxide contained in the glass but also the ratio of Fe 2+ to Fe 3+ is important for the transmittance.
- the glass composition disclosed in JP-A-11-224649 contains 1% by weight or more of SrO, and there is no description about SO. In addition, the inclusion of Sb 2 O and CeO is allowed.
- Na 2 O is limited to less than 0.1% by weight and SrO is contained by 4% by weight or more. Moreover, the content of CeO is allowed.
- the glass composition disclosed in Japanese Patent Application Laid-Open No. 2003-073142 does not substantially contain Na 2 O, and there is no description regarding SO. In addition, the inclusion of Sb 2 O and CeO is allowed.
- the glass composition disclosed in JP-A-2001-243914 contains CeO as an essential component and contains 2% by weight or more of SrO. In addition, the inclusion of Sb 2 O is allowed.
- the glass composition disclosed in JP-A-2003-171141 has SbO as an essential component.
- SrO is contained in 2% by mass or more.
- Fe In the glass composition disclosed in Japanese Patent Application Laid-Open No. 09-012332, there is no description about Fe. BaO is contained in a maximum of 3.5% by weight and SrO is contained in an amount of 1% by weight or more. In addition, it contains Sb 2 O and CeO.
- SbO is an essential component and SrO is contained at 2% by weight or more.
- the present invention provides a glass composition that can have an ultraviolet transmittance, a thermal expansion coefficient, a glass transition point, and a softening point, which is preferable as a glass for lighting while suppressing the sodium content in the glass composition.
- the purpose is to provide. Furthermore, the provision of a glass article using this glass composition will be provided.
- the present invention is a glass composition comprising SiO, Na 0, K 0, CaO, BaO and SO as essential components, particularly characterized by the content of Na 2 O and KO, Is 0.05% or more and 0.5% or less, and the total iron oxide in terms of Fe 2 O is 0.05% or more and 0.35% or less, and is substantially free of antimony oxide and CeO.
- a glass composition comprising SiO, Na 0, K 0, CaO, BaO and SO as essential components, particularly characterized by the content of Na 2 O and KO, Is 0.05% or more and 0.5% or less, and the total iron oxide in terms of Fe 2 O is 0.05% or more and 0.35% or less, and is substantially free of antimony oxide and CeO.
- the present invention is expressed in mass%
- MgO 0% or more, 10% or less
- the present invention suppresses the sodium content in the glass composition. Constructing a fluorescent lamp using this glass composition is effective in preventing blackening of the fluorescent lamp because it prevents elution of sodium.
- the present invention is a glass composition that is preferable as a glass for lighting because it has low ultraviolet light transmittance and substantially does not contain CeO, thereby suppressing solarization. is there.
- the present invention is a glass composition having a thermal expansion coefficient, a glass transition point, and a softening point, which is preferable as a lighting glass.
- FIG. 1 is a schematic cross-sectional view of a surface lighting device 1.
- FIG. 2 is a schematic sectional view of the surface illumination device 2.
- FIG. 3 is a partially enlarged perspective view of the surface illumination device 3.
- each component in glass is demonstrated.
- each content rate is a mass% display, and the ratio of a component is also a mass ratio.
- SiO is a main component forming a glass skeleton. If the SiO content is less than 65%, the durability of the glass decreases. If it exceeds 75%, it becomes difficult to melt the glass, and the softening point of the glass becomes too high.
- the lower limit of the SiO content is 65% or more, and more preferably 67% or more.
- the upper limit of the SiO content is 75% or less, more preferably 72% or less. The SiO range is selected from any combination of these upper and lower limits.
- Al O is an optional component that improves the durability of glass. If the content of Al O exceeds 5%, melting of the glass becomes difficult and the softening point of the glass becomes too high.
- the lower limit of the Al 2 O content is 0% or more, more than 0% is preferred, and 0.5% or more is more preferred.
- the upper limit of the content of Al 2 O is less than 5%, preferably less than 2%, more preferably 1.5% or less.
- the range of Al O is selected from any combination of these upper and lower limits.
- B 2 O is an optional component used to improve the durability of the glass or as a melting aid. Exceeding B 2 O force will cause inconvenience during molding due to volatilization of B 2 O, etc.
- the upper limit is 5%.
- B O also erodes bricks and shortens kiln life.
- Na 2 O is used as a glass melting accelerator. When Na 2 O is 3% or less, the melting promotion effect is poor. When Na O exceeds 12%, the durability of the glass decreases, and in particular, This is not preferable because sodium elution, which is a problem in glass for light lamps, increases.
- the lower limit of the Na 2 O content is over 3%, with 4% or more being preferred and 6% or more being more preferred.
- the upper limit of the Na 2 O content is less than 12%, preferably 9% or less. The range of Na 2 O is selected from any combination of these upper and lower limits.
- K 2 O is an essential component used as a glass melting accelerator in the present invention, like Na 2 O. If K 2 O is less than 2%, the effect of promoting melting is poor. Since K 2 O is more expensive than Na 2 O, it is not preferable to exceed 15%.
- the lower limit of the content of K 2 O is 2% or more, preferably 4% or more, more preferably 5% or more.
- the upper limit of the content of K 2 O is 15% or less, preferably less than 10%, and more preferably 9% or less.
- the range of K 2 O is selected from any combination of these upper and lower limits.
- Li 2 O is not an essential component, but it is used as a glass melting accelerator in the same way as Na 2 O and K 2 O. Further, it is an effective component for adjusting the thermal expansion coefficient and low temperature viscosity, and it is preferable to contain even a trace amount. On the other hand, Li O is more expensive than Na 2 O, so 5% or more is not preferable.
- the lower limit of the Li 2 O content is 0% or more, preferably more than 0%, more preferably 0.05% or more, and most preferably 0.1% or more.
- the upper limit of the content of Li 2 O is less than 5%, preferably 3% or less, more preferably 5% or less, and even more preferably less than 1.0%.
- the range of Li 2 O is selected from any combination of these upper and lower limits.
- the lower limit of the total of (Na 2 O + K 2 O + Li 2 O) is 6% or more, preferably 10% or more.
- the upper limit of the total of (Na 2 O + K 2 O + Li 2 O) is 20% or less, preferably 19.5% or less, more preferably 17.5% or less, and further preferably 15% or less.
- the range of (Na O + K O + Li O) is selected from any combination of these upper and lower limits.
- the ratio of Na 2 O to K ((Na ⁇ / ⁇ ⁇ ) is important.
- a large ratio of Na 2 O to ⁇ ⁇ is not preferable because sodium elution increases.
- a small ratio of Na 2 O to KO is not preferable because expensive KO increases.
- the lower limit of Na 2 O / K 2 O is preferably more than 0.2, more preferably 0.6 or more, and more preferably 0.9 or more.
- the upper limit of Na 2 O / K 2 O is less than 3, preferably S, more preferably 2.0 or less, and even more preferably 1.5 or less.
- the range of Na O / K O is selected from any combination of these upper and lower limits.
- MgO is not an essential component, but is used to improve the durability of the glass and adjust the devitrification temperature and viscosity during molding. When MgO exceeds 10%, the devitrification temperature rises.
- the lower limit of the content of MgO is 0% or more, more than 0% is preferably 2% or more, and more preferably 3% or more.
- the upper limit of the content of MgO is 10% or less, preferably 6% or less, and more preferably 5% or less.
- the range of MgO is selected from any combination of these upper and lower limits.
- CaO like MgO, is an essential component used to improve the durability of the glass and adjust the devitrification temperature and viscosity during molding. If CaO is 5% or less, the meltability deteriorates. If it exceeds 15%, the devitrification temperature rises.
- the lower limit of the CaO content is more than 5%, preferably 6% or more, more preferably more than 6%.
- the upper limit of the CaO content is 15% or less, preferably 12% or less, and more preferably 10% or less.
- the range of CaO is selected from any combination of these upper and lower limits.
- BaO is an essential component used in the present invention to adjust the devitrification temperature and viscosity during glass molding. If BaO is less than 4%, the effect is not sufficient. If BaO exceeds 9%, the density of the glass becomes too high, which is not preferable.
- the lower limit of the BaO content is 4% or more, and more preferably more than 4%.
- the upper limit of the BaO content is 9% or less, preferably 7% or less.
- the range of BaO is selected from any combination of these upper and lower limits.
- SrO is not an essential component, but it is used to adjust the devitrification temperature and viscosity when forming glass, just like MgO and CaO. Since the SrO raw material is expensive, the SrO content is less than 1% in the glass composition of the present invention.
- ZnO is not an essential component, but it is used to adjust the devitrification temperature and viscosity when forming glass, just like MgO and CaO. ZnO tends to be non-homogeneous because it tends to volatilize. When glass is formed by the float process, it tends to agglomerate in the low temperature part after volatilization in the float bath. Aggregation of ZnO may cause surface defects of the glass. Therefore, the content is 6% or less, preferably less than 6%, and it is more preferable that ZnO is not substantially contained.
- the lower limit of the content of (MgO + CaO + SrO + BaO + ZnO) is more than 9%, preferably 10% or more.
- the upper limit of the content of (MgO + CaO + SrO + BaO + ZnO) is 19% or less, preferably 18% or less, and more preferably 17% or less.
- the range of (MgO + CaO + SrO + BaO + ZnO) is selected from any combination of these upper and lower limits.
- the expansion coefficient becomes too large, so it is not preferable that the total exceeds 10%.
- the upper limit of the content of (SrO + BaO + ZnO) is 10% or less, preferably 7% or less.
- the lower limit of the content of (SrO + BaO + ZnO) is 4% or more.
- the range of (SrO + BaO + ZnO) is selected from any combination of these upper and lower limits.
- TiO is not an essential component, but can be added as long as the object of the present invention is not impaired. If too much TiO is added, the glass tends to be yellowish. For this reason, the inclusion of TiO
- the upper limit of the percentage is 0.5% or less, more preferably less than 0.1%, and even more preferably less than 0.05%.
- the lower limit of the content of TiO is 0% or more. The range of TiO is selected from any combination of these upper and lower limits.
- ZrO is not an essential component, but it is an effective component for improving the durability of the glass and adjusting the devitrification temperature during molding. 2. If it exceeds 5%, it tends to devitrify. ZrO is an expensive raw material and is preferably less than 0.5%. The lower limit of the ZrO content is 0% or more. The upper limit of the content of ZrO is 2.5% or less, preferably less than 0.5%, more preferably less than 0.2%. The ZrO range is selected from any combination of these upper and lower limits.
- SO is a component that promotes clarification of glass. If it is less than 0.05%, the clarification effect is insufficient with the normal melting method, and the desirable range is 0.1% or more. On the other hand, if it exceeds 0.5%, SO produced by the decomposition will remain in the glass as bubbles, or bubbles are likely to be generated by reboil.
- the lower limit of the SO content is 0.05% or more, and preferably 0.1% or more.
- the upper limit of the SO content is 0.5% or less. The range of SO is selected from any combination of these upper and lower limits.
- the content of iron oxide is 0.05% to 0.35% as total iron oxide (T Fe 2 O 3) in which all the iron contained is converted to Fe 2 O. If the total iron oxide is less than 0.05%, Fe 3+ that absorbs in the ultraviolet region becomes too small, and the ultraviolet transmittance increases. On the other hand, if the total iron oxide exceeds 0.35%, Fe 3+ , which absorbs light in the visible short wavelength region, and too much Fe 2+, which absorbs light on the visible long wavelength side, increase the visible light transmittance. Becomes low.
- the lower limit of the total iron oxide content is 0.05% or more, and preferably 0.1% or more.
- the upper limit of the content of total iron oxide is 0.35% or less, and preferably 0.25% or less. The range of total iron oxide is selected from any combination of these upper and lower limits.
- the iron ratio which is the ratio of FeO in terms of Fe O to the total iron oxide, is called the FeO ratio. There is. If the FeO ratio is less than 10%, too much Fe 3+ has an absorption in the visible short wavelength region, so the visible light transmittance is lowered and the yellow color of the glass becomes too strong. When the Fe 2 O ratio exceeds 40%, too much Fe 2+ is absorbed on the visible long wavelength side, so the visible light transmittance is lowered and the blue color of the glass becomes too strong.
- the lower limit of the iron ratio is preferably 10% or more, more preferably 15% or more.
- the upper limit of the iron ratio is preferably 40% or less, more preferably 35% or less. The range of the iron ratio is selected from any combination of these upper and lower limits.
- Antimony oxide is a component that promotes clarification of glass.
- glass containing antimony oxide is formed by the float process, for example, the glass is colored by the reducing atmosphere in the float bath. It is also a component that can be a burden on the environment. Therefore, in the present invention, antimony oxide is not substantially contained.
- CeO is an effective component for suppressing ultraviolet transmittance.
- solarization occurs due to ultraviolet irradiation, and the visible light transmittance of the glass is lowered. Therefore, CeO is not substantially contained in the present invention.
- substantially not containing means that the corresponding component is not actively added, and means that contamination as an unavoidable impurity is allowed. Even when the corresponding component is mixed as an unavoidable impurity, the content is preferably less than 0.1%.
- the glass composition of the present invention may contain components other than the above components and unavoidable impurities as long as the effects of the present invention are not impaired.
- P O is volatilized
- Po is not substantially contained.
- the visible light transmittance is high. Visible light is generated in a fluorescent lamp when the generated ultraviolet light is applied to the phosphor on the inner surface of the fluorescent lamp. The light emission is used. Thus, ultraviolet rays are generated inside the fluorescent lamp. Since it is necessary to reduce the leakage of ultraviolet rays, the transmittance of wavelengths in the ultraviolet region must be kept low. Ultraviolet rays include light with wavelengths such as 254 nm and 313 nm. In the case of soda-lime glass, light with a wavelength of 254 nm is hardly transmitted, and therefore need not be considered.
- the transmission of light having a wavelength of 313 nm needs to be controlled, and can be controlled mainly by the contents of Fe 2 O and titanium oxide in the total iron oxide.
- the transmittance of light with a wavelength of 313 nm (glass thickness: 0.7 mm) is preferably 60% or less, and more preferably 45% or less.
- This sealing glass is used for sealing an electrode inserted into the interior in the case of internal electrode type illumination, and is used for laminating sheet glass to form a glass container in the case of a surface illumination device. .
- the glass container for lighting When the glass container for lighting is tubular, it is directly formed into a tubular shape from molten glass, or once formed into a tubular shape, it is heated to a temperature at which it is softened again and reshaped into a U-shape.
- the plate-like glass in order to form a glass container for illumination, the plate-like glass may be heated to a temperature at which it is softened again and used for press molding or the like. Therefore, it is preferable that the softening point is low so that the work can be easily performed in the molding by heating and reheating. It is desirable that the softening point is not so high compared to that of the current soda-lime glass composition.
- the softening point is preferably 790 ° C or lower, about 50 ° C higher than the softening point of the soda-lime glass composition, and more preferably 750 ° C or lower, about 10 ° C higher. Furthermore, it is below the softening point of the current soda-lime glass composition. Most preferably below ° C.
- glass transition point In terms of glass transition point, less than 630 ° C is desirable, and less than 600 ° C is more desirable, with 565 ° C or less being most desirable.
- (softening point glass transition point) is a parameter serving as an index of the cooling rate after re-forming by reheating.
- the cooling rate is given as a value obtained by dividing (softening point glass transition point) by the time required for cooling from the softening point to the glass transition point.
- the (softening point glass transition point) of the glass composition of the present invention is larger than the (softening point-glass transition point) of the current soda-lime-based glass composition.
- (softening point-glass transition point) in Examples described later is a value exceeding 180 ° C.
- the value is 179 ° C or lower.
- the cooling rate can be increased as compared with the comparative example. That is, for the glass composition of the present invention, it is possible to increase the cooling rate during the reshaping process as compared with the conventional case.
- the glass composition of the present invention can be formed into tubular glass or sheet glass.
- the glass composition of the present invention which is desired to be a float method capable of being manufactured at low cost and in large quantities, can be applied to the float method as a method for forming a sheet glass.
- the specific molding method may be in accordance with a known method.
- the glass composition of the present invention for example, as described above, using a glass article formed into a plate shape by a float method or the like, or a glass article formed into a container shape, and an illumination device such as a fluorescent lamp according to a known method (example: , Surface lighting devices, tubular fluorescent lamps, and the like).
- an illumination device such as a fluorescent lamp according to a known method (example: , Surface lighting devices, tubular fluorescent lamps, and the like).
- Raw material batches (hereinafter sometimes referred to as batches) were prepared so that the glass compositions shown in Tables 1 to 3 were obtained.
- the raw materials used were those used for normal glass production.
- UV transmittance (313nm) 34.0 ⁇ ⁇ ⁇ ⁇ 36.0 ⁇ ⁇ Visible light transmittance W) 91.4 ⁇ ⁇ One ⁇ One ⁇ 91.4 ⁇ ⁇ 2]
- UV transmittance (313nm) 36.0 1— 1 — — 77.1 Visible light transmittance (%) 91.3 89.3 —— ——— —
- the formulated batch was melted and clarified in a platinum crucible.
- the crucible was held in an electric furnace set at 1500 ° C. for 4 hours to melt the batch.
- the glass melt was poured onto an iron plate to obtain a plate-like glass body.
- This glass body is set to another electric power set to 650 ° C.
- the transmittance of the obtained sample glass was measured with a spectrophotometer (manufactured by Hitachi, Ltd., U4100) using A light source.
- the thickness of the glass substrate was 0.7 mm.
- As a measure of the ultraviolet transmittance the transmittance of light having a wavelength of 313 nm was measured.
- the visible light transmittance is J
- composition of the obtained sample glass was quantitatively analyzed using fluorescent X-ray analysis and chemical analysis.
- the thermal expansion coefficient of some of the obtained sample glasses was measured with a differential thermal dilatometer (manufactured by Rigaku, TAS-100).
- the sample size is 5 mm in diameter and 17 mm in length.
- the sample is measured from room temperature to the yield temperature at a heating rate of 5 ° C / min, and the coefficient of thermal expansion is in the range of 50 ° C to 300 ° C. Calculated.
- the intrusion indenter of the obtained sample glass was lowered to a flat sample with a constant load, and the viscosity was calculated from the penetration speed of the indenter to obtain the softening point.
- the glass transition point was determined from the inflection point in the thermal expansion curve determined by the above-described measurement of the thermal expansion coefficient.
- the sample glass pulverized to a particle size of 1.0 to 2.8 mm is placed in a platinum boat and held in an electric furnace with a temperature gradient for 2 hours. From the maximum temperature at which the crystal appears, devitrification occurs. The temperature was determined.
- the viscosity of the glass was determined by the ordinary platinum ball pulling method, and the temperature (forming temperature) at which the viscosity of the glass reached 10000 dPas (10000 poise) was determined.
- Comparative Example 1 is a general soda-lime glass composition for sheet glass. It contains a large amount of Na 2 O as 13.1% and is outside the glass composition range of the present invention. Also, it contains almost no K 2 O and Na 2 O / K 2 O is 15.1.
- Comparative Example 2 is a soda-lime-based glass composition containing a large amount of iron for a general plate glass.
- Comparative Example 3 is a glass composition disclosed in Example 8 of JP-A-05-314169, and does not contain SO as a fining agent but contains Sbo.
- Comparative Example 4 is a glass composition shown in Example 7 of JP-A-11 224649, and is a glass composition having a small content of alkali metal oxide and a small content of CaO.
- Comparative Example 5 is a glass composition containing Sb 2 O as a fining agent and having a very small FeO ratio.
- Comparative Examples 3 and 4 are examples that do not contain SO! /. Comparative Examples 3 and 4 contain V as a fining agent, and both contain Sb 2 O, and Comparative Example 4 further contains CeO. When the glass compositions of Comparative Examples 3 and 4 are molded by the float process, they are colored brown by the reducing atmosphere in the float bath. Furthermore, in Comparative Example 4, it is colored yellow by irradiation with ultraviolet rays.
- Application Example 1 is a surface illumination device in which a casing is formed using the glass substrate described above.
- Figure 1 shows a schematic cross-sectional view of a surface illumination device according to Application Example 1.
- the surface lighting device 1 A flat first glass substrate 11 and a second glass substrate 12 press-molded in a U-shaped cross section are joined together by a glass frit 13 to form a casing, and the inside is a space S.
- a pair of discharge electrodes 14 and 14 are provided at both ends inside the housing.
- phosphors 15 and 15 are coated on the surfaces facing the space S in the first glass substrate 11 and the second glass substrate 12.
- mercury and an inert gas such as argon are sealed in the space S inside the housing.
- the glass substrate according to the present invention has a feature that the content of sodium is suppressed, so that the surface illumination device 1 configured using the glass substrate is less susceptible to blackening due to sodium elution.
- Application Example 2 uses the above-mentioned two glass substrates and provides a large number of partition walls between them to form a large number of cells to form a surface illumination device.
- Figure 2 shows a schematic cross-sectional view of a surface illumination device according to Application Example 2.
- the surface lighting device 2 holds two glass substrates 21 and 22 at a constant interval, and provides a large number of partition wall portions 23 ⁇ (where ⁇ ⁇ ⁇ represents a large number) between them, Cell S is constructed. Further, phosphors 25 and 25 are coated on the surfaces of the glass substrates 21 and 22 facing the cell S. Further, the cell S is sealed with mercury and an inert gas such as argon.
- the surface illumination device 2 is caused to discharge by applying voltage to an electrode (not shown) to function as a light source.
- Application Example 3 is a surface illumination device having a structure in which a large number of cells are provided as in Application Example 2.
- the force S provided with a large number of partition walls to separate a large number of cells
- one glass substrate is press-molded to form a large number of ridges, and the joining portion becomes the partition wall part. It is like that.
- FIG. 3 is a partially enlarged perspective view of the surface illumination device 3 according to the application example 3.
- the surface illumination device 3 is configured by first joining a flat plate-like first glass substrate 31 and a second glass substrate 32 formed by press molding into a shape in which a large number of ridges are arranged in parallel to constitute a large number of cells S. is there.
- the first gala A bonding portion 33 of the second glass substrate 32 bonded to the glass substrate 31 serves as a partition wall.
- phosphors 35 and 35 are coated on the surfaces of the glass substrates 31 and 32 facing the cell S.
- the cell S is filled with mercury and an inert gas such as argon.
- the surface illumination device 3 is discharged by applying a voltage to an electrode (not shown) to function as a light source.
- Glass articles obtained by molding the glass composition of the present invention are useful as lighting glasses such as phosphors.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
Abstract
Disclosed is a glass composition having a reduced sodium content and having a UV transmittance, a thermal expansion coefficient, a glass transition temperature and a softening point in levels suitable for use as an electrical glass. Specifically disclosed is a glass composition which comprises SiO2, Na2O, K2O, CaO, BaO and SO3 as essential ingredients, which is characteristic in the contents of Na2O and K2O, which contains SO3 in an amount of 0.05 to 0.5 mass% inclusive and iron oxides in the total amount of 0.05 to 0.35 mass% inclusive in terms of Fe2O3, and which contains substantially no antimony oxide or CeO2.
Description
明 細 書 Specification
ガラス組成物およびそれを用レ、たガラス物品 GLASS COMPOSITION AND GLASS ARTICLE USING THE SAME
技術分野 Technical field
[0001] 本発明は、ガラス組成物およびそれを用いた照明用ガラス物品に関する。具体的 には、ガラス物品として、特に管状や板状の照明用ガラスに好適なガラス組成物およ びそれを用レ、た照明用ガラス物品に関する。 [0001] The present invention relates to a glass composition and a glass article for illumination using the same. Specifically, the present invention relates to a glass composition suitable as a glass article, particularly a tubular or plate-like lighting glass, and a lighting glass article using the same.
背景技術 Background art
[0002] 蛍光灯などの照明用のガラスとしては、酸化ナトリウムを 10〜20質量%含むソーダ 石灰系ガラス組成物が用いられてきた。蛍光灯の管内には、水銀が封入されている。 ソーダ石灰系ガラス組成物からなる照明用のガラスからは、時間の経過と共に、ナトリ ゥムが溶出することがある。 As a glass for illumination such as a fluorescent lamp, a soda-lime-based glass composition containing 10 to 20% by mass of sodium oxide has been used. Mercury is sealed in the tube of the fluorescent lamp. From the glass for lighting made of a soda-lime-based glass composition, sodium may elute over time.
[0003] 蛍光灯の端部が黒化して、その寿命が短くなる現象は、溶出したナトリウムが上述 の水銀と結合して、蛍光灯の内側に付着することによって起こる。このため、ソーダ石 灰系ガラス組成物において、ナトリウムの含有率を下げることが提案されている。 [0003] The phenomenon in which the end of a fluorescent lamp is blackened and its life is shortened occurs when the eluted sodium is combined with the above-mentioned mercury and adheres to the inside of the fluorescent lamp. For this reason, it has been proposed to reduce the sodium content in the soda-lime glass composition.
[0004] 例えば、特開平 11― 224649号公報に開示された「ランプ用ガラス組成物」では、 Na 0、 K Οおよび Li Oの合計を 13%以下としている。 For example, in the “glass composition for lamp” disclosed in JP-A-11-224649, the total of Na 0, K 2 and Li 2 O is 13% or less.
[0005] また、特表平 11 509514号公報(W097/43223)に開示された「蛍光ランプの 使用に好適なガラス組成物」では、ナトリウムを少量 (重量%で Na O< 0. 1)に制限 している。 [0005] In addition, in the “glass composition suitable for use in fluorescent lamps” disclosed in Japanese Patent Publication No. 11 509514 (W097 / 43223), sodium is reduced in a small amount (Na O <0.1 by weight%). Restricted.
[0006] さらに、特開 2003 073142号公報に開示された「照明用ガラス組成物」では、実 質的にナトリウムを含有させて!/、なレ、。 [0006] Further, in the “illuminating glass composition” disclosed in Japanese Patent Application Laid-Open No. 2003 073142, sodium is substantially contained!
[0007] 蛍光ランプ用ガラス組成物では、紫外線の照射によって、ガラスの透過率が低下す る、ソーラリゼーシヨンを起こすことは好ましくない。蛍光ランプ用ガラス組成物でソー ラリゼ一シヨンに言及した公報のいくつかを以下に記す。 [0007] In a glass composition for a fluorescent lamp, it is not preferable to cause solarization that lowers the transmittance of the glass when irradiated with ultraviolet rays. Some of the publications referring to solarization in glass compositions for fluorescent lamps are described below.
*特開平 06— 092677号公報 * Japanese Patent Laid-Open No. 06-092677
*特開 2001— 243914号公報 * JP 2001-243914
*特開 2002— 137935号公報
*特開 2003— 171141号公報 * JP 2002-137935 * JP 2003-171141 A
[0008] 一般にソーダ石灰系ガラス組成物では、工業原料に起因して、鉄が不可避的に含 まれる。ガラス中に含まれる酸化鉄は、着色剤として作用し、 Fe2+と Fe3+の形で存在 する。 Fe2+は波長 l lOOnm付近に吸収のピークを有し、 Fe3+は波長 400nm付近に 吸収を有する。 [0008] Generally, soda-lime glass compositions inevitably contain iron due to industrial raw materials. Iron oxide contained in the glass acts as a colorant and exists in the form of Fe 2+ and Fe 3+ . Fe 2+ has an absorption peak near the wavelength l lOOnm, and Fe 3+ has an absorption near the wavelength 400nm.
[0009] 蛍光ランプ用ガラス組成物では、透過率が重要な特性である。そのため、ガラス中 に含まれる酸化鉄の含有率のみならず、 Fe2+と Fe3+との比率も、透過率にとって重要 である。 [0009] In a glass composition for a fluorescent lamp, transmittance is an important characteristic. Therefore, not only the content of iron oxide contained in the glass but also the ratio of Fe 2+ to Fe 3+ is important for the transmittance.
[0010] また、照明用のガラス組成物に関する公報のいくつかを以下に記す。 [0010] Some of the publications relating to glass compositions for lighting are described below.
'特開平 09— 012332号公幸 'Publication No. 09-012332
'特開平 10— 152340号公報 'JP-A-10-152340
*特開 2000— 290038号公報 * JP 2000-290038
*特開 2000— 315477号公報 * JP 2000-315477
*特開 2005— 314169号公報 * JP 2005-314169
[0011] 特開平 11— 224649号公報に開示されたガラス組成物では、 SrOを 1重量%以上 含有し、 SOに関する記述はない。また、 Sb Oや CeOの含有を許容する。 [0011] The glass composition disclosed in JP-A-11-224649 contains 1% by weight or more of SrO, and there is no description about SO. In addition, the inclusion of Sb 2 O and CeO is allowed.
特表平 11 509514号公報に開示されたガラス組成物では、 Na Oを 0. 1重量% 未満に制限し、 SrOを 4重量%以上含有する。また、 CeOの含有を許容する。 特開 2003— 073142号公報に開示されたガラス組成物では、実質的に Na Oを含 有せず、 SOに関する記述はない。また、 Sb Oや CeOの含有を許容する。 In the glass composition disclosed in JP-T-11 509514, Na 2 O is limited to less than 0.1% by weight and SrO is contained by 4% by weight or more. Moreover, the content of CeO is allowed. The glass composition disclosed in Japanese Patent Application Laid-Open No. 2003-073142 does not substantially contain Na 2 O, and there is no description regarding SO. In addition, the inclusion of Sb 2 O and CeO is allowed.
[0012] 特開平 06— 092677号公報に開示されたガラス組成物では、 Sb Oを必須成分と し、 SOに関する記述はない。また、 CeOの含有を許容する。 [0012] In the glass composition disclosed in Japanese Patent Application Laid-Open No. 06-092677, Sb 2 O is an essential component and there is no description regarding SO. Moreover, the content of CeO is allowed.
特開 2001— 243914号公報に開示されたガラス組成物では、 CeOを必須成分と し、 SrOを 2重量%以上含有する。また、 Sb Oの含有を許容する。 The glass composition disclosed in JP-A-2001-243914 contains CeO as an essential component and contains 2% by weight or more of SrO. In addition, the inclusion of Sb 2 O is allowed.
特開 2002— 137935号公報に開示されたガラス組成物では、 CeOを必須成分と する。また、 Sb Oの含有を許容する。 In the glass composition disclosed in JP-A-2002-137935, CeO is an essential component. In addition, the inclusion of Sb 2 O is allowed.
特開 2003— 171141号公報に開示されたガラス組成物は、 Sb Oを必須成分とし The glass composition disclosed in JP-A-2003-171141 has SbO as an essential component.
、 SrOを 2質量%以上含有する。
[0013] 特開平 09— 012332号公報に開示されたガラス組成物では、 Feに関する記述は なぐ BaOを最大で 3. 5重量%含有し、 SrOを 1重量%以上含有する。また、 Sb O や CeOの含有を許容している。 , SrO is contained in 2% by mass or more. [0013] In the glass composition disclosed in Japanese Patent Application Laid-Open No. 09-012332, there is no description about Fe. BaO is contained in a maximum of 3.5% by weight and SrO is contained in an amount of 1% by weight or more. In addition, it contains Sb 2 O and CeO.
特開平 10— 152340号公報に開示されたガラス組成物では、 SOやいわゆる鉄比 In the glass composition disclosed in JP-A-10-152340, SO or so-called iron ratio is used.
(例えば FeO/全酸化鉄)に関する記述はなぐ Sb Oの含有を許容する。実施例で 示されているガラス組成物は 1つだけで、 Sb〇を含有する。 The description of (eg FeO / total iron oxide) permits the inclusion of SbO. Only one glass composition is shown in the examples and contains SbO.
特開 2000— 290038号公報に開示されたガラス組成物では、 SOやいわゆる鉄 比(例えば FeO/全酸化鉄)に関する記述はない。 BaOを 0〜4重量%含有するとし ているが、実施例では、 BaOを含有していない。 In the glass composition disclosed in Japanese Patent Application Laid-Open No. 2000-290038, there is no description regarding SO or a so-called iron ratio (for example, FeO / total iron oxide). It is assumed that 0 to 4% by weight of BaO is contained, but in the examples, BaO is not contained.
特開 2000— 315477号公報に開示されたガラス組成物では、 Sb Oを必須成分と し、 SrOを 2重量%以上含有する。 In the glass composition disclosed in Japanese Patent Application Laid-Open No. 2000-315477, SbO is an essential component and SrO is contained at 2% by weight or more.
特開 2005— 314169号公報に開示されたガラス組成物では、 SOやいわゆる鉄 比(例えば FeO/全酸化鉄)に関する記述はない。また、 Sb Oや CeOの含有を許 容する。実施例では、 Sb O力、 CeOのいずれかを必ず含有し、 SrOが 0重量%の実 施例における BaOは、いずれも 4重量%未満の含有である。 In the glass composition disclosed in Japanese Patent Application Laid-Open No. 2005-314169, there is no description regarding SO or a so-called iron ratio (for example, FeO / total iron oxide). Also, the inclusion of SbO and CeO is allowed. In the examples, either Sb 2 O force or CeO is necessarily contained, and BaO in the examples in which SrO is 0% by weight is less than 4% by weight.
発明の開示 Disclosure of the invention
[0014] 本発明は、ガラス組成物において、ナトリウムの含有率を抑えつつ、照明用ガラスと して好ましい、紫外線の透過率と熱膨張係数、ガラス転移点、軟化点を有しうるガラス 組成物の提供を目的とする。さらに、このガラス組成物を用いたガラス物品の提供を 目白勺とする。 [0014] The present invention provides a glass composition that can have an ultraviolet transmittance, a thermal expansion coefficient, a glass transition point, and a softening point, which is preferable as a glass for lighting while suppressing the sodium content in the glass composition. The purpose is to provide. Furthermore, the provision of a glass article using this glass composition will be provided.
[0015] 本発明は、 SiO、 Na 0、 K 0、 CaO、 BaOおよび SOを必須成分として含んでな るガラス組成物であって、とりわけ Na Oと K Oとの含有率に特徴があり、 SOが 0. 05 %以上 0. 5%以下、 Fe Oに換算した全酸化鉄が 0. 05質量%以上 0. 35質量%以 下であり、酸化アンチモンや CeOを実質的に含有しないことを特徴とするガラス組成 物である。 [0015] The present invention is a glass composition comprising SiO, Na 0, K 0, CaO, BaO and SO as essential components, particularly characterized by the content of Na 2 O and KO, Is 0.05% or more and 0.5% or less, and the total iron oxide in terms of Fe 2 O is 0.05% or more and 0.35% or less, and is substantially free of antimony oxide and CeO. A glass composition.
[0016] すなわち、本発明は、質量%で表示して、 [0016] That is, the present invention is expressed in mass%,
SiO 65%以上、 75%以下、 SiO 65% or more, 75% or less,
Al O 0%以上、 5%未満、
B O 0%以上、 5%以下、 Al O 0% or more, less than 5%, BO 0% or more, 5% or less,
2 3 twenty three
Na O 3%超、 12%未満、 Na O> 3%, <12%,
2 2
K o 2%以上、 15%以下、 K o 2% or more, 15% or less,
2 2
Li O 0%以上、 5%未満、 Li O 0% or more, less than 5%,
2 2
Na 0 + K O 6%以上、 20%以下、 Na 0 + K O 6% or more, 20% or less,
2 2 o + Li 2 2 o + Li
2 2
MgO 0%以上、 10%以下、 MgO 0% or more, 10% or less,
CaO 5%超、 15%以下、 CaO over 5%, 15% or less,
BaO 4%以上、 9%以下、 BaO 4% or more, 9% or less,
SrO 0%以上、 1 %未満、 SrO 0% or more, less than 1%,
ZnO 0%以上、 6%以下、 ZnO 0% or more, 6% or less,
MgO + CaO + SrO + BaO + ZnO 9%超、 19%以 MgO + CaO + SrO + BaO + ZnO> 9%, 19% or more
SrO + BaO 4 -ZnO 4%以上、 10%以下、 SrO + BaO 4 -ZnO 4% or more, 10% or less,
TiO 0%以上、 0. 5%以下、 TiO 0% or more, 0.5% or less,
2 2
ZrO 0%以上、 2. 5%以下、 ZrO 0% or more, 2.5% or less,
2 2
SO 0. 05%以上、 0. 5%以下、および SO 0.05% or more, 0.5% or less, and
Fe Oに換算した全酸化鉄 0. 05%以上、 0. 35%以下、 Total iron oxide converted to Fe O 0.05% or more, 0.35% or less,
2 3 twenty three
を含んでなり、 Comprising
酸化アンチモンおよび CeOを実質的に含有しないことを特徴とするガラス組成物 である。 A glass composition characterized by being substantially free of antimony oxide and CeO.
[0017] 本発明は、ガラス組成物において、ナトリウムの含有率を抑えている。このガラス組 成物を用いて蛍光灯を構成すると、ナトリウムの溶出が抑えられるので、蛍光灯の黒 化防止に効果がある。 [0017] The present invention suppresses the sodium content in the glass composition. Constructing a fluorescent lamp using this glass composition is effective in preventing blackening of the fluorescent lamp because it prevents elution of sodium.
[0018] また本発明は、低い紫外線の透過率を有し、なおかつ CeOを実質的に含ませな いことで、ソーラリゼーシヨンを抑制しているので、照明用ガラスとして好ましいガラス 組成物である。 [0018] Further, the present invention is a glass composition that is preferable as a glass for lighting because it has low ultraviolet light transmittance and substantially does not contain CeO, thereby suppressing solarization. is there.
さらに本発明は、照明用ガラスとして好ましい、熱膨張係数やガラス転移点、軟化 点を有するガラス組成物である。 Furthermore, the present invention is a glass composition having a thermal expansion coefficient, a glass transition point, and a softening point, which is preferable as a lighting glass.
図面の簡単な説明
[0019] [図 1]面照明装置 1の断面模式図である。 Brief Description of Drawings FIG. 1 is a schematic cross-sectional view of a surface lighting device 1.
[図 2]面照明装置 2の断面模式図である。 FIG. 2 is a schematic sectional view of the surface illumination device 2.
[図 3]面照明装置 3の部分拡大斜視図である。 FIG. 3 is a partially enlarged perspective view of the surface illumination device 3.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0020] [ガラス組成] [0020] [Glass composition]
以下に、ガラスにおける各成分について説明する。なお、各含有率は、質量%表示 であり、成分の比も質量比である。 Below, each component in glass is demonstrated. In addition, each content rate is a mass% display, and the ratio of a component is also a mass ratio.
[0021] (SiO ) [0021] (SiO 2)
SiOはガラスの骨格を形成する主成分である。 SiOの含有率が、 65%未満ではガ ラスの耐久性が低下し、 75%を超えるとガラスの熔解が困難になると共に、ガラスの 軟化点が高くなり過ぎる。 SiOの含有率の下限値は、 65%以上であり、 67%以上が さらに好ましい。 SiOの含有率の上限値は、 75%以下であり、 72%以下がさらに好 ましい。 SiOの範囲は、これら上限値と下限値の任意の組み合わせから選ばれる。 SiO is a main component forming a glass skeleton. If the SiO content is less than 65%, the durability of the glass decreases. If it exceeds 75%, it becomes difficult to melt the glass, and the softening point of the glass becomes too high. The lower limit of the SiO content is 65% or more, and more preferably 67% or more. The upper limit of the SiO content is 75% or less, more preferably 72% or less. The SiO range is selected from any combination of these upper and lower limits.
[0022] (Al O ) [0022] (Al O)
Al Oはガラスの耐久性を向上させる任意成分である力 Al Oの含有率が 5%以 上となるとガラスの熔解が困難になると共に、ガラスの軟化点が高くなり過ぎる。 Al O の含有率の下限値は、 0%以上であり、 0%超が好ましぐ 0. 5%以上がさらに好まし い。 Al Oの含有率の上限値は、 5%未満であり、 2%未満が好ましぐ 1. 5%以下が さらに好ましい。 Al Oの範囲は、これら上限値と下限値の任意の組み合わせから選 Al O is an optional component that improves the durability of glass. If the content of Al O exceeds 5%, melting of the glass becomes difficult and the softening point of the glass becomes too high. The lower limit of the Al 2 O content is 0% or more, more than 0% is preferred, and 0.5% or more is more preferred. The upper limit of the content of Al 2 O is less than 5%, preferably less than 2%, more preferably 1.5% or less. The range of Al O is selected from any combination of these upper and lower limits.
^れる。 I can.
[0023] (B O ) [0023] (B O)
B Oはガラスの耐久性向上のため、あるいは熔解助剤としても使用される任意成分 である。 B O力 を超えると、 B Oの揮発等による成形時の不都合が生じるので、 B 2 O is an optional component used to improve the durability of the glass or as a melting aid. Exceeding B 2 O force will cause inconvenience during molding due to volatilization of B 2 O, etc.
5%を上限とする。また B Oは、レンガを侵食して窯の寿命を短くすることがあるのでThe upper limit is 5%. B O also erodes bricks and shortens kiln life.
、実質的に含有させないことが望ましい。 , It is desirable not to contain substantially.
[0024] (Na O) [0024] (Na O)
Na Oはガラスの熔解促進剤として用いられる。 Na Oが 3%以下では、熔解促進効 果が乏しい。 Na Oが 12%以上となると、ガラスの耐久性が低下すると共に、特に蛍
光灯用ガラスにおいて問題となるナトリウムの溶出が多くなるので、好ましくない。 Na2 Oの含有率の下限値は、 3%超であり、 4%以上が好ましぐ 6%以上がさらに好まし い。 Na Oの含有率の上限値は、 12%未満であり、 9%以下が好ましい。 Na Oの範 囲は、これら上限値と下限値の任意の組み合わせから選ばれる。 Na 2 O is used as a glass melting accelerator. When Na 2 O is 3% or less, the melting promotion effect is poor. When Na O exceeds 12%, the durability of the glass decreases, and in particular, This is not preferable because sodium elution, which is a problem in glass for light lamps, increases. The lower limit of the Na 2 O content is over 3%, with 4% or more being preferred and 6% or more being more preferred. The upper limit of the Na 2 O content is less than 12%, preferably 9% or less. The range of Na 2 O is selected from any combination of these upper and lower limits.
[0025] (K O) [0025] (K O)
K Oは、本発明において、 Na Oと同様に、ガラスの熔解促進剤として用いられる必 須成分である。 K Oが 2%未満では、熔解促進効果が乏しい。 K Oは、 Na Oに比し て原料が高価であるため、 15%を超えるのは好ましくない。 K Oの含有率の下限値 は、 2%以上であり、 4%以上が好ましぐ 5%以上がさらに好ましい。 K Oの含有率の 上限値は、 15%以下であり、 10%未満が好ましぐ 9%以下がさらに好ましい。 K O の範囲は、これら上限値と下限値の任意の組み合わせから選ばれる。 K 2 O is an essential component used as a glass melting accelerator in the present invention, like Na 2 O. If K 2 O is less than 2%, the effect of promoting melting is poor. Since K 2 O is more expensive than Na 2 O, it is not preferable to exceed 15%. The lower limit of the content of K 2 O is 2% or more, preferably 4% or more, more preferably 5% or more. The upper limit of the content of K 2 O is 15% or less, preferably less than 10%, and more preferably 9% or less. The range of K 2 O is selected from any combination of these upper and lower limits.
[0026] (Li O) [0026] (Li O)
Li Oは、必須成分ではないが、 Na Oや K Oと同様にガラスの熔解促進剤として用 いられる。また、熱膨張係数や低温粘性を調整するのに有効な成分であり、微量でも 、含有させることが好ましい。一方、 Li Oは Na Oに比して原料が高価であるため、 5 %以上は好ましくない。 Li Oの含有率の下限値は、 0%以上であり、 0%超が好ましく 、 0. 05%以上がさらに好ましぐ 0. 1 %以上が最も好ましい。 Li Oの含有率の上限 値は、 5%未満であり、 3%以下が好ましぐ 1. 5%以下がより好ましぐ 1. 0%未満が さらに好ましい。 Li Oの範囲は、これら上限値と下限値の任意の組み合わせから選 ば'れる。 Li 2 O is not an essential component, but it is used as a glass melting accelerator in the same way as Na 2 O and K 2 O. Further, it is an effective component for adjusting the thermal expansion coefficient and low temperature viscosity, and it is preferable to contain even a trace amount. On the other hand, Li O is more expensive than Na 2 O, so 5% or more is not preferable. The lower limit of the Li 2 O content is 0% or more, preferably more than 0%, more preferably 0.05% or more, and most preferably 0.1% or more. The upper limit of the content of Li 2 O is less than 5%, preferably 3% or less, more preferably 5% or less, and even more preferably less than 1.0%. The range of Li 2 O is selected from any combination of these upper and lower limits.
[0027] (Na O + K O + Li O) [0027] (Na O + K O + Li O)
(Na O + K O + Li O)の合計力 S、 6%未満では熔解促進効果が乏しぐ 20%を超 えるとガラスの耐久性が低下する。 (Na O + K O + Li O)の合計の下限値は、 6%以 上であり、 10%以上が好ましい。 (Na O + K O + Li O)の合計の上限値は、 20%以 下であり、 19. 5%未満が好ましぐ 17. 5%以下がより好ましぐ 15%以下がさらに 好ましい。 (Na O + K O + Li O)の範囲は、これら上限値と下限値の任意の組み合 わせから選ばれる。 If the total force S of (Na 2 O + K 2 O + Li 2 O) is less than 6%, the durability of the glass decreases if it exceeds 20%, the effect of promoting melting. The lower limit of the total of (Na 2 O + K 2 O + Li 2 O) is 6% or more, preferably 10% or more. The upper limit of the total of (Na 2 O + K 2 O + Li 2 O) is 20% or less, preferably 19.5% or less, more preferably 17.5% or less, and further preferably 15% or less. The range of (Na O + K O + Li O) is selected from any combination of these upper and lower limits.
[0028] (Na O/K O)
本発明において、 Na Oと K Οの比(Na Ο/Κ Ο)は、重要である。 Na Oと Κ Οの 比が大きいと、ナトリウムの溶出が多くなるので、好ましくない。 Na Oと K Oの比が小 さいと、高価な K Oが多くなるので、好ましくない。 [0028] (Na O / KO) In the present invention, the ratio of Na 2 O to K ((Na Ο / Κ Ο) is important. A large ratio of Na 2 O to Κ Ο is not preferable because sodium elution increases. A small ratio of Na 2 O to KO is not preferable because expensive KO increases.
本発明において、 Na O/K Oの下限値は、 0. 2超であることが好ましぐ 0. 6以上 力はり好ましぐ 0. 9以上がさらに好ましい。 Na O/K Oの上限値は、 3未満であるこ と力 S好ましく、 2. 0以下がより好ましぐ 1. 5以下がさらに好ましい。 Na O/K Oの範 囲は、これら上限値と下限値の任意の組み合わせから選ばれる。 In the present invention, the lower limit of Na 2 O / K 2 O is preferably more than 0.2, more preferably 0.6 or more, and more preferably 0.9 or more. The upper limit of Na 2 O / K 2 O is less than 3, preferably S, more preferably 2.0 or less, and even more preferably 1.5 or less. The range of Na O / K O is selected from any combination of these upper and lower limits.
[0029] (MgO) [0029] (MgO)
MgOは、必須成分ではないが、ガラスの耐久性を向上させるとともに、成形時の失 透温度、粘度を調整するのに用いられる。 MgOが 10%を超えると、失透温度が上昇 する。 MgOの含有率の下限値は、 0%以上であり、 0%超が好ましぐ 2%以上がより 好ましぐ 3%以上がさらに好ましい。 MgOの含有率の上限値は、 10%以下であり、 6%以下が好ましぐ 5%以下がさらに好ましい。 MgOの範囲は、これら上限値と下限 値の任意の組み合わせから選ばれる。 MgO is not an essential component, but is used to improve the durability of the glass and adjust the devitrification temperature and viscosity during molding. When MgO exceeds 10%, the devitrification temperature rises. The lower limit of the content of MgO is 0% or more, more than 0% is preferably 2% or more, and more preferably 3% or more. The upper limit of the content of MgO is 10% or less, preferably 6% or less, and more preferably 5% or less. The range of MgO is selected from any combination of these upper and lower limits.
[0030] (CaO) [0030] (CaO)
CaOは、 MgOと同様に、ガラスの耐久性を向上させるとともに、成形時の失透温度 、粘度を調整するのに用いられる必須成分である。 CaOが 5%以下では熔解性が悪 化する。また、 15%を超えると失透温度が上昇する。 CaOの含有率の下限値は、 5 %超であり、 6%以上が好ましぐ 6%超がさらに好ましい。 CaOの含有率の上限値は 、 15%以下であり、 12%以下が好ましぐ 10%以下がさらに好ましい。 CaOの範囲 は、これら上限値と下限値の任意の組み合わせから選ばれる。 CaO, like MgO, is an essential component used to improve the durability of the glass and adjust the devitrification temperature and viscosity during molding. If CaO is 5% or less, the meltability deteriorates. If it exceeds 15%, the devitrification temperature rises. The lower limit of the CaO content is more than 5%, preferably 6% or more, more preferably more than 6%. The upper limit of the CaO content is 15% or less, preferably 12% or less, and more preferably 10% or less. The range of CaO is selected from any combination of these upper and lower limits.
[0031] (BaO) [0031] (BaO)
BaOは、本発明において、ガラスの成形時の失透温度、粘度を調整するのに用い られる必須成分である。 BaOが 4%未満であると、その効果が十分でない。 BaOが 9 %を超えると、ガラスの密度が高くなりすぎるので、好ましくない。 BaOの含有率の下 限値は、 4%以上であり、 4%超がより好ましい。 BaOの含有率の上限値は、 9%以下 であり、 7%以下が好ましい。 BaOの範囲は、これら上限値と下限値の任意の組み合 わせから選ばれる。
[0032] (SrO) BaO is an essential component used in the present invention to adjust the devitrification temperature and viscosity during glass molding. If BaO is less than 4%, the effect is not sufficient. If BaO exceeds 9%, the density of the glass becomes too high, which is not preferable. The lower limit of the BaO content is 4% or more, and more preferably more than 4%. The upper limit of the BaO content is 9% or less, preferably 7% or less. The range of BaO is selected from any combination of these upper and lower limits. [0032] (SrO)
SrOは必須成分ではないが、 MgOや CaOと同様にガラスの成形時の失透温度、 粘度を調整するのに用いられる。 SrO原料は高価なため、本発明のガラス組成物で は、 SrOを 1 %未満とする。 SrO is not an essential component, but it is used to adjust the devitrification temperature and viscosity when forming glass, just like MgO and CaO. Since the SrO raw material is expensive, the SrO content is less than 1% in the glass composition of the present invention.
[0033] (ZnO) [0033] (ZnO)
ZnOは必須成分ではないが、 MgOや CaOと同様にガラスの成形時の失透温度、 粘度を調整するのに用いられる。 ZnOは揮発し易ぐガラスが不均質になり易い。フ ロート法でガラスを成形する場合、フロートバス内で揮発した後、低温部で凝集するこ とが多くなる。 ZnOが凝集すると、ガラスの表面欠点の原因となることがあるため、そ の含有率は 6%以下とし、好ましくは 6%未満であり、 ZnOは実質的に含有させない ことがより好ましい。 ZnO is not an essential component, but it is used to adjust the devitrification temperature and viscosity when forming glass, just like MgO and CaO. ZnO tends to be non-homogeneous because it tends to volatilize. When glass is formed by the float process, it tends to agglomerate in the low temperature part after volatilization in the float bath. Aggregation of ZnO may cause surface defects of the glass. Therefore, the content is 6% or less, preferably less than 6%, and it is more preferable that ZnO is not substantially contained.
[0034] (MgO + CaO + SrO + BaO + ZnO) [0034] (MgO + CaO + SrO + BaO + ZnO)
(MgO + CaO + SrO + BaO + ZnO)の合計が、 9%以下ではガラスの耐久性が低 下する。一方、 19%を超えると失透温度が上昇したり、あるいは熱膨張係数が大きく なりすぎるたりする。 (MgO + CaO + SrO + BaO + ZnO)の含有率の下限値は、 9 %超であり、 10%以上が好ましい。 (MgO + CaO + SrO + BaO + ZnO)の含有率 の上限値は、 19%以下であり、 18%以下が好ましぐ 17%以下がさらに好ましい。 ( MgO + CaO + SrO + BaO + ZnO)の範囲は、これら上限値と下限値の任意の組み 合わせから選ばれる。 If the total of (MgO + CaO + SrO + BaO + ZnO) is 9% or less, the durability of the glass will decrease. On the other hand, if it exceeds 19%, the devitrification temperature rises or the coefficient of thermal expansion becomes too large. The lower limit of the content of (MgO + CaO + SrO + BaO + ZnO) is more than 9%, preferably 10% or more. The upper limit of the content of (MgO + CaO + SrO + BaO + ZnO) is 19% or less, preferably 18% or less, and more preferably 17% or less. The range of (MgO + CaO + SrO + BaO + ZnO) is selected from any combination of these upper and lower limits.
[0035] (SrO + BaO + ZnO) [0035] (SrO + BaO + ZnO)
(SrO + BaO + ZnO)が多くなると、膨張係数が大きくなりすぎるため、その合計が 10%を超えるのは好ましくない。このため、(SrO + BaO + ZnO)の含有率の上限値 は、 10%以下であり、 7%以下が好ましい。一方、(SrO + BaO + ZnO)の含有率の 下限値は、 4%以上である。 (SrO + BaO + ZnO)の範囲は、これら上限値と下限値 の任意の組み合わせから選ばれる。 If the amount of (SrO + BaO + ZnO) increases, the expansion coefficient becomes too large, so it is not preferable that the total exceeds 10%. For this reason, the upper limit of the content of (SrO + BaO + ZnO) is 10% or less, preferably 7% or less. On the other hand, the lower limit of the content of (SrO + BaO + ZnO) is 4% or more. The range of (SrO + BaO + ZnO) is selected from any combination of these upper and lower limits.
[0036] (TiO ) [0036] (TiO)
TiOは必須成分ではないが、本発明の目的を損なわない範囲で、加えることがで きる。 TiOが多くなり過ぎると、ガラスが黄色味を帯び易くなる。このため、 TiOの含
有率の上限値は、 0. 5%以下であり、 0. 1 %未満がより好ましぐ 0. 05%未満がさら に好ましい。一方、 TiOの含有率の下限値は、 0%以上である。 TiOの範囲は、これ ら上限値と下限値の任意の組み合わせから選ばれる。 TiO is not an essential component, but can be added as long as the object of the present invention is not impaired. If too much TiO is added, the glass tends to be yellowish. For this reason, the inclusion of TiO The upper limit of the percentage is 0.5% or less, more preferably less than 0.1%, and even more preferably less than 0.05%. On the other hand, the lower limit of the content of TiO is 0% or more. The range of TiO is selected from any combination of these upper and lower limits.
[0037] (ZrO ) [0037] (ZrO)
ZrOは、必須成分ではないが、ガラスの耐久性を向上させるとともに、成形時の失 透温度を調整するのに有効な成分である。 2. 5%を超えると、逆に失透しやすくなる 。また、 ZrOは原料が高価であり、 0. 5%未満とすることが望ましい。 ZrOの含有率 の下限値は、 0%以上である。 ZrOの含有率の上限値は、 2. 5%以下であり、 0. 5 %未満が好ましぐ 0. 2%未満がより好ましい。 ZrOの範囲は、これら上限値と下限 値の任意の組み合わせから選ばれる。 ZrO is not an essential component, but it is an effective component for improving the durability of the glass and adjusting the devitrification temperature during molding. 2. If it exceeds 5%, it tends to devitrify. ZrO is an expensive raw material and is preferably less than 0.5%. The lower limit of the ZrO content is 0% or more. The upper limit of the content of ZrO is 2.5% or less, preferably less than 0.5%, more preferably less than 0.2%. The ZrO range is selected from any combination of these upper and lower limits.
[0038] (SO ) [0038] (SO)
SOはガラスの清澄を促進する成分である。 0. 05%未満では通常の溶融方法で は清澄効果が不十分となり、その望ましい範囲は 0. 1 %以上である。一方、 0. 5%を 超えると、その分解により生成する SOが泡としてガラス中に残留したり、リボイルによ り泡を発生し易くなる。 SOの含有率の下限値は、 0. 05%以上であり、 0. 1 %以上 が好ましい。 SOの含有率の上限値は、 0. 5%以下である。 SOの範囲は、これら上 限値と下限値の任意の組み合わせから選ばれる。 SO is a component that promotes clarification of glass. If it is less than 0.05%, the clarification effect is insufficient with the normal melting method, and the desirable range is 0.1% or more. On the other hand, if it exceeds 0.5%, SO produced by the decomposition will remain in the glass as bubbles, or bubbles are likely to be generated by reboil. The lower limit of the SO content is 0.05% or more, and preferably 0.1% or more. The upper limit of the SO content is 0.5% or less. The range of SO is selected from any combination of these upper and lower limits.
[0039] (全酸化鉄 (T Fe O ) ) [0039] (Total iron oxide (T Fe O))
酸化鉄の含有率は、含まれるすべての鉄を Fe Oに換算した、全酸化鉄 (T Fe O )として、 0. 05%〜0. 35%である。全酸化鉄が 0. 05%未満では、紫外域に吸 収を持つ Fe3+が少なくなり過ぎるために、紫外線透過率が高くなつてしまう。一方、全 酸化鉄が 0. 35%を超えると、可視短波長域にも吸収を持つ Fe3+と共に、可視長波 長側に吸収を持つ Fe2+が多くなり過ぎるために、可視光透過率が低くなつてしまう。 全酸化鉄の含有率の下限値は、 0. 05%以上であり、 0. 1 %以上が好ましい。全酸 化鉄の含有率の上限値は、 0. 35%以下であり、 0. 25%以下が好ましい。全酸化鉄 の範囲は、これら上限値と下限値の任意の組み合わせから選ばれる。 The content of iron oxide is 0.05% to 0.35% as total iron oxide (T Fe 2 O 3) in which all the iron contained is converted to Fe 2 O. If the total iron oxide is less than 0.05%, Fe 3+ that absorbs in the ultraviolet region becomes too small, and the ultraviolet transmittance increases. On the other hand, if the total iron oxide exceeds 0.35%, Fe 3+ , which absorbs light in the visible short wavelength region, and too much Fe 2+, which absorbs light on the visible long wavelength side, increase the visible light transmittance. Becomes low. The lower limit of the total iron oxide content is 0.05% or more, and preferably 0.1% or more. The upper limit of the content of total iron oxide is 0.35% or less, and preferably 0.25% or less. The range of total iron oxide is selected from any combination of these upper and lower limits.
[0040] (鉄比) [0040] (iron ratio)
全酸化鉄に対する、 Fe Oに換算した FeOの割合である鉄比を、 FeO比ということ
がある。 FeO比が 10%未満では、可視短波長域に吸収を持つ Fe3+が多くなり過ぎる ため、可視光透過率が低くなると共に、ガラスの色調の黄色みが強くなり過ぎる。 Fe O比が 40%を超えると、可視長波長側に吸収を持つ Fe2+が多くなり過ぎるため、可視 光透過率が低くなると共に、ガラスの色調の青色が強くなり過ぎる。鉄比の下限値は 、 10%以上であることが好ましぐ 15%以上がより好ましい。鉄比の上限値は、 40% 以下であることが好ましぐ 35%以下がより好ましい。鉄比の範囲は、これら上限値と 下限値の任意の組み合わせから選ばれる。 The iron ratio, which is the ratio of FeO in terms of Fe O to the total iron oxide, is called the FeO ratio. There is. If the FeO ratio is less than 10%, too much Fe 3+ has an absorption in the visible short wavelength region, so the visible light transmittance is lowered and the yellow color of the glass becomes too strong. When the Fe 2 O ratio exceeds 40%, too much Fe 2+ is absorbed on the visible long wavelength side, so the visible light transmittance is lowered and the blue color of the glass becomes too strong. The lower limit of the iron ratio is preferably 10% or more, more preferably 15% or more. The upper limit of the iron ratio is preferably 40% or less, more preferably 35% or less. The range of the iron ratio is selected from any combination of these upper and lower limits.
[0041] (酸化アンチモン) [0041] (antimony oxide)
酸化アンチモンはガラスの清澄を促進する成分である力 S、例えばフロート法にて酸 化アンチモンを含有するガラスを成形した場合、フロートバス内の還元雰囲気によつ て、ガラスが着色してしまう。また、環境に対して負荷となり得る成分でもある。そのた め、本発明において、酸化アンチモンは実質的に含有させない。 Antimony oxide is a component that promotes clarification of glass. When glass containing antimony oxide is formed by the float process, for example, the glass is colored by the reducing atmosphere in the float bath. It is also a component that can be a burden on the environment. Therefore, in the present invention, antimony oxide is not substantially contained.
[0042] (CeO ) [0042] (CeO)
CeOは紫外線透過率の抑制に効果的な成分である。し力、しながら、紫外線の照射 によりソーラリゼーシヨンが起こり、ガラスの可視光透過率が低下してしまう。そのため 、本発明において、 CeOは実質的に含有させない。 CeO is an effective component for suppressing ultraviolet transmittance. However, solarization occurs due to ultraviolet irradiation, and the visible light transmittance of the glass is lowered. Therefore, CeO is not substantially contained in the present invention.
[0043] 本発明において、「実質的に含有しない」とは、該当する成分が積極的に添加され ていないことを意味し、不可避的不純物としての混入は許容することを意味する。該 当する成分が不可避的不純物として混入する場合でも、その含有率は 0. 1 %未満 であることが好ましい。 In the present invention, “substantially not containing” means that the corresponding component is not actively added, and means that contamination as an unavoidable impurity is allowed. Even when the corresponding component is mixed as an unavoidable impurity, the content is preferably less than 0.1%.
[0044] 本発明のガラス組成物には、本発明の効果を損なわない範囲において、上記の成 分以外の成分および不可避的不純物を含んでいてもよい。ただし、 P Oは、揮発し [0044] The glass composition of the present invention may contain components other than the above components and unavoidable impurities as long as the effects of the present invention are not impaired. However, P O is volatilized
2 5 やすい成分であり、 B Oおよび ZnOと同様の成形時の不具合を引き起こすおそれが 2 5 It is an easy-to-use component and may cause defects during molding similar to B 2 O and ZnO.
2 3 twenty three
あるために、本発明において、 P oは実質的に含有させないことが好ましい。 For this reason, in the present invention, it is preferable that Po is not substantially contained.
2 5 twenty five
[0045] [ガラス組成物の特性] [0045] [Characteristics of glass composition]
(透過率) (Transmittance)
照明用ガラスとして、可視光の透過率は高い方が望ましい。蛍光灯における可視光 の発生は、発生させた紫外線が、蛍光灯の内側表面にある蛍光体に照射された際
の発光を利用している。このように、蛍光灯内部では紫外線を発生させている。紫外 線の漏洩を低減する必要があるため、紫外域の波長の透過率は低く抑えなければな らない。紫外線には、 254nmや 313nmなどの波長の光が含まれる。波長 254nmの 光は、ソーダ石灰系ガラスの場合、ほとんど透過しないので、考慮しなくてよい。波長 313nmの光の透過は、制御する必要があり、主に全酸化鉄中の Fe Oおよび酸化 チタンの含有率にて制御することができる。波長 313nmの光の透過率(ガラス厚み: 0. 7mm)は、 60%以下とすることが望ましぐ 45%以下とすることがさらに望ましい。 As the glass for illumination, it is desirable that the visible light transmittance is high. Visible light is generated in a fluorescent lamp when the generated ultraviolet light is applied to the phosphor on the inner surface of the fluorescent lamp. The light emission is used. Thus, ultraviolet rays are generated inside the fluorescent lamp. Since it is necessary to reduce the leakage of ultraviolet rays, the transmittance of wavelengths in the ultraviolet region must be kept low. Ultraviolet rays include light with wavelengths such as 254 nm and 313 nm. In the case of soda-lime glass, light with a wavelength of 254 nm is hardly transmitted, and therefore need not be considered. The transmission of light having a wavelength of 313 nm needs to be controlled, and can be controlled mainly by the contents of Fe 2 O and titanium oxide in the total iron oxide. The transmittance of light with a wavelength of 313 nm (glass thickness: 0.7 mm) is preferably 60% or less, and more preferably 45% or less.
[0046] (熱膨張係数) [0046] (Coefficient of thermal expansion)
照明用ガラスとして用いる場合、ガラスの熱膨張係数は、用いられる封着ガラスの 熱膨張係数と釣り合つている必要がある。この封着ガラスは、内部電極型の照明の場 合、内部へ揷入する電極の封止に用いられ、面照明装置の場合、ガラス容器を形成 するために板状ガラスの貼り合わせに用いられる。 When used as lighting glass, the thermal expansion coefficient of the glass needs to be balanced with the thermal expansion coefficient of the sealing glass used. This sealing glass is used for sealing an electrode inserted into the interior in the case of internal electrode type illumination, and is used for laminating sheet glass to form a glass container in the case of a surface illumination device. .
[0047] よく用いられる封着ガラスでは、その熱膨張係数が、通常ソーダ石灰系ガラス組成 物の熱膨張係数の代表値である 89 X 10— 7/°Cと釣り合うように調整されている。した がって、照明用ガラスの熱膨張係数としても、この数値から余り離れないことが望まれ る。具体的には、(89 ± 5) X 10— 7/°Cの範囲にあることが望ましぐ(89 ±4) X 10 /°Cの範囲にあることがより望ましぐ(89 ± 2) X 10— 7/°Cの範囲にあることがさらに 望ましい。 The [0047] commonly used are sealing glass, the thermal expansion coefficient is adjusted normally to balance the representative value of the thermal expansion coefficient of 89 X 10- 7 / ° C of the soda-lime glass composition. Therefore, it is desirable that the coefficient of thermal expansion of the lighting glass not be far from this value. Specifically, (89 ± 5) X 10- 7 / ° it is desirable tool in the range of C (89 ± 4) X 10 / ° and more desirable tool in the range of C (89 ± 2 ) it is more preferably in the range of X 10- 7 / ° C.
[0048] (軟化点、ガラス転移点) [0048] (softening point, glass transition point)
照明用ガラス容器が管状の場合には、溶融されたガラスから、直接、管状に成形さ れたり、一旦管状に形成したものを再度軟化する温度まで加熱して、 U字状などに再 成形される。また面照明装置の場合には、照明用ガラス容器を形成するために、板 状のガラスを再度軟化する温度まで加熱して、プレス成形等に供される場合がある。 したがって、いずれも加熱'再加熱による成形の際に作業が容易なように、軟化点は 低い方が好ましい。軟化点は、現行のソーダ石灰系ガラス組成物のそれと比較して、 あまり高くないことが望ましい。具体的に軟化点は、ソーダ石灰系ガラス組成物の軟 化点から 50°C高い程度の 790°C以下が望ましぐ 10°C高い程度の 750°C以下がさ らに望ましい。さらに、現行のソーダ石灰系ガラス組成物の軟化点以下となる、 740
°C以下が最も望ましい。 When the glass container for lighting is tubular, it is directly formed into a tubular shape from molten glass, or once formed into a tubular shape, it is heated to a temperature at which it is softened again and reshaped into a U-shape. The In the case of a surface illumination device, in order to form a glass container for illumination, the plate-like glass may be heated to a temperature at which it is softened again and used for press molding or the like. Therefore, it is preferable that the softening point is low so that the work can be easily performed in the molding by heating and reheating. It is desirable that the softening point is not so high compared to that of the current soda-lime glass composition. Specifically, the softening point is preferably 790 ° C or lower, about 50 ° C higher than the softening point of the soda-lime glass composition, and more preferably 750 ° C or lower, about 10 ° C higher. Furthermore, it is below the softening point of the current soda-lime glass composition. Most preferably below ° C.
[0049] また、軟化点の測定は困難なことが多!/、ので、ガラス転移点でこれを代用する場合 がある。ガラス転移点でいうと、 630°C未満が望ましぐ 600°C未満がさらに望ましぐ 565°C以下が最も望ましい。 [0049] In addition, since the measurement of the softening point is often difficult! /, This may be substituted by the glass transition point. In terms of glass transition point, less than 630 ° C is desirable, and less than 600 ° C is more desirable, with 565 ° C or less being most desirable.
[0050] ここで、(軟化点 ガラス転移点)は、再加熱による再成形後の冷却速度の指標とな るパラメータである。 (軟化点 ガラス転移点)が大きいほど、再加熱による再成形後 の冷却時に、ガラスの冷却速度を速めることができる。したがって、再成型加工の生 産性が向上する。なお、冷却速度は、(軟化点 ガラス転移点)を、軟化点からガラス 転移点までの冷却に要する時間で除した数値として与えられる。 [0050] Here, (softening point glass transition point) is a parameter serving as an index of the cooling rate after re-forming by reheating. The larger the (softening point glass transition point), the faster the glass cooling rate during cooling after re-forming by reheating. Therefore, productivity of remolding is improved. The cooling rate is given as a value obtained by dividing (softening point glass transition point) by the time required for cooling from the softening point to the glass transition point.
[0051] 本発明のガラス組成物の(軟化点 ガラス転移点)は、現行のソーダ石灰系ガラス 組成物の(軟化点-ガラス転移点)よりも大きい。本発明において、後述の実施例に おける(軟化点—ガラス転移点)は、 180°Cを超えた値である。一方、比較例では、 1 79°C以下の値となっている。このため、いずれの実施例においても、比較例と比べて 、冷却速度を大きくすることが可能である。すなわち、本発明のガラス組成物につい ては、再成形加工時の冷却速度を、従来よりも大きくすることが可能である。 [0051] The (softening point glass transition point) of the glass composition of the present invention is larger than the (softening point-glass transition point) of the current soda-lime-based glass composition. In the present invention, (softening point-glass transition point) in Examples described later is a value exceeding 180 ° C. On the other hand, in the comparative example, the value is 179 ° C or lower. For this reason, in any of the examples, the cooling rate can be increased as compared with the comparative example. That is, for the glass composition of the present invention, it is possible to increase the cooling rate during the reshaping process as compared with the conventional case.
[0052] (ガラスの成形方法) [0052] (Glass forming method)
本発明のガラス組成物は、管状ガラスや板状ガラスに成形することができる。特に、 板状ガラスに成形する方法としては、安価で大量の製造が可能なフロート法が望まし ぐ本発明のガラス組成物は、フロート法に適用可能である。具体的な成形の手法に ついては、公知方法に準じればよい。 The glass composition of the present invention can be formed into tubular glass or sheet glass. In particular, the glass composition of the present invention, which is desired to be a float method capable of being manufactured at low cost and in large quantities, can be applied to the float method as a method for forming a sheet glass. The specific molding method may be in accordance with a known method.
[0053] (ガラス組成物の用途) [0053] (Use of glass composition)
本発明のガラス組成物を、例えば上記のように、フロート法等により板状に成形した ガラス物品や容器状に成形したガラス物品を用いて、公知方法に準じて蛍光灯等の 照明装置 (例、面照明装置、管状蛍光灯等)を構成することができる。 The glass composition of the present invention, for example, as described above, using a glass article formed into a plate shape by a float method or the like, or a glass article formed into a container shape, and an illumination device such as a fluorescent lamp according to a known method (example: , Surface lighting devices, tubular fluorescent lamps, and the like).
[0054] 以下に、実施例 ·比較例を示して、本発明を詳しく説明する。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.
表 1〜3に示したガラス組成となるように、原料バッチ(以下、バッチと呼ぶ場合があ る)をそれぞれ調合した。原料は、通常のガラス製造に用いられるものを使用した。 Raw material batches (hereinafter sometimes referred to as batches) were prepared so that the glass compositions shown in Tables 1 to 3 were obtained. The raw materials used were those used for normal glass production.
[0055] [表 1]
組成 (質量%) 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6 実施例 7[0055] [Table 1] Composition (mass%) Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7
Si02 70.15 70.52 70.04 70.47 69.84 69.75 69.70Si0 2 70.15 70.52 70.04 70.47 69.84 69.75 69.70
Al203 0.80 0.81 0.80 0.81 0.80 0.80 0.80Al 2 0 3 0.80 0.81 0.80 0.81 0.80 0.80 0.80
Li20 0.74 0.99 0.74 0.99 0.54 0.54 0.74Li 2 0 0.74 0.99 0.74 0.99 0.54 0.54 0.74
Na20 8.01 8.05 8.00 8.04 7.98 7.97 6.95Na 2 0 8.01 8.05 8.00 8.04 7.98 7.97 6.95
K20 3.57 2.81 3.57 2.81 4.17 4.17 5.09K 2 0 3.57 2.81 3.57 2.81 4.17 4.17 5.09
R20 12.32 1 1.85 12.31 1 1.84 12.69 12.68 12.78R 2 0 12.32 1 1.85 12.31 1 1.84 12.69 12.68 12.78
MgO 4.28 4.31 4.00 4.02 4.26 3.98 3.98MgO 4.28 4.31 4.00 4.02 4.26 3.98 3.98
CaO 7.55 7.59 7.93 7.97 7.52 7.90 7.89CaO 7.55 7.59 7.93 7.97 7.52 7.90 7.89
SrO SrO
BaO 4.53 4.56 4.53 4.55 4.51 4.51 4.50 O-1 16.36 16.46 16.46 16.54 16.29 16.39 16.37 BaO 4.53 4.56 4.53 4.55 4.51 4.51 4.50 O-1 16.36 16.46 16.46 16.54 16.29 16.39 16.37
RO-2 4.53 4.56 4.53 4.55 4.51 4.51 4.50RO-2 4.53 4.56 4.53 4.55 4.51 4.51 4.50
Ti02 0.02 0.02 0.02 0.02 0.02 0.02 0.02Ti0 2 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Zr02 Zr0 2
Fe203 0.13 0.13 0.13 0.13 0.13 0.13 0.13Fe 2 0 3 0.13 0.13 0.13 0.13 0.13 0.13 0.13
S03 0.22 0.21 0.24 0.19 0.23 0.23 0.20S0 3 0.22 0.21 0.24 0.19 0.23 0.23 0.20
Sb203 Sb 2 0 3
Na20/K20 2.24 2.86 2.24 2.86 1.91 1.91 1.37Na 2 0 / K 2 0 2.24 2.86 2.24 2.86 1.91 1.91 1.37
FeO比(%) 19.6 20.3 FeO ratio (%) 19.6 20.3
失透温度 (°c) 1025 1041 1022 1045 101 1 1027 1032 成形温度 (°c) 1029 1023 1025 1014 1038 1033 1031 成形温度一失透温度 (°c) 4 -18 3 -31 27 6 -1 熱膨張係数 (x 10—7 °C) 82.9 82.3 86.4 84.6 88.8 88.2 87.6 転移点 (¾) 532 529 537 528 539 538 538 軟化点 (°c) 723 716 723 716 729 729 726 軟化点一転移点 (°c) 191 187 186 188 190 191 188Devitrification temperature (° c) 1025 1041 1022 1045 101 1 1027 1032 Molding temperature (° c) 1029 1023 1025 1014 1038 1033 1031 Molding temperature vs. devitrification temperature (° c) 4 -18 3 -31 27 6 -1 Thermal expansion coefficient (x 10- 7 ° C) 82.9 82.3 86.4 84.6 88.8 88.2 87.6 transition point (¾) 532 529 537 528 539 538 538 softening point (° c) 723 716 723 716 729 729 726 softening point one transition point (° c) 191 187 186 188 190 191 188
UV透過率 (313nm) 34.0 ― -— ― 36.0 ― ― 可視光透過率 W) 91.4 ―— 一— 一— 91.4 ― ― 2]
UV transmittance (313nm) 34.0 ― ― ― ― 36.0 ― ― Visible light transmittance W) 91.4 ― ― One ― One ― 91.4 ― ― 2]
組成 (質量%) 実施例 8 実施例 9実施例 10実施例 1 1実施例 12実施例 13Composition (mass%) Example 8 Example 9 Example 10 Example 1 1 Example 12 Example 13
Si02 69.39 69.66 69.55 69.25 69.22 68.92Si0 2 69.39 69.66 69.55 69.25 69.22 68.92
Al203 0.80 0.80 0.80 0.79 0.79 0.79Al 2 0 3 0.80 0.80 0.80 0.79 0.79 0.79
Li20 0.54 0.54 0.73 0.54 0.73 0.54Li 2 0 0.54 0.54 0.73 0.54 0.73 0.54
Na20 6.92 7.96 7.94 7.91 6.90 6.87Na 2 0 6.92 7.96 7.94 7.91 6.90 6.87
K20 5.68 4.16 5.08 5.67 6.58 7.16K 2 0 5.68 4.16 5.08 5.67 6.58 7.16
R20 13.14 12.66 13.76 14.12 14.21 14.56R 2 0 13.14 12.66 13.76 14.12 14.21 14.56
MgO 3.96 3.65 3.70 3.69 3.68 3.67MgO 3.96 3.65 3.70 3.69 3.68 3.67
CaO 7.86 8.34 7.33 7.30 7.30 7.27CaO 7.86 8.34 7.33 7.30 7.30 7.27
SrO SrO
BaO 4.49 4.50 4.49 4.48 4.47 4.45 BaO 4.49 4.50 4.49 4.48 4.47 4.45
RO-1 16.31 16.49 15.53 15.47 15.45 15.39RO-1 16.31 16.49 15.53 15.47 15.45 15.39
RO-2 4.49 4.50 4.49 4.48 4.47 4.45RO-2 4.49 4.50 4.49 4.48 4.47 4.45
Ti02 0.02 0.02 0.02 0.02 0.02 0.02Ti0 2 0.02 0.02 0.02 0.02 0.02 0.02
Zr02 Zr0 2
Fe203 0.12 0.13 0.12 0.12 0.12 0.12Fe 2 0 3 0.12 0.13 0.12 0.12 0.12 0.12
S03 0.22 0.24 0.22 0.23 0.19 0.20S0 3 0.22 0.24 0.22 0.23 0.19 0.20
Sb203 Sb 2 0 3
Na20/K20 1 .22 1.91 1.56 1 .40 1.05 0.96Na 2 0 / K 2 0 1.22 1.91 1.56 1.40 1.05 0.96
FeO比(%) 23.1 24.7 失透温度 (°c) 1035 1053 986 989 993 993 成形温度 (°c) 1039 1032 1020 1028 1026 1034 成形温度一失透温度 ( ) 4 -21 34 39 33 41 熱膨張係数 (X 1 0_7Z°C) 88.2 86.8 90.0 91.4 91.6 91.2 転移点 (°c) 545 541 528 532 530 535 軟化点 (°c) 734 731 714 721 719 726 軟化点一転移点 (°c) 189 190 186 189 189 191FeO ratio (%) 23.1 24.7 Devitrification temperature (° c) 1035 1053 986 989 993 993 Molding temperature (° c) 1039 1032 1020 1028 1026 1034 Molding temperature one devitrification temperature () 4 -21 34 39 33 41 Thermal expansion coefficient (X 1 0_ 7 Z ° C) 88.2 86.8 90.0 91.4 91.6 91.2 Transition point (° c) 545 541 528 532 530 535 Softening point (° c) 734 731 714 721 719 726 One softening point transition point (° c) 189 190 186 189 189 191
UV透過率 (313nm) 一 一 37.5 —― —― 38.8 可視光透過率 (%) 一一 一一 91.4 一 —― 91.4 3]
組成 (質量%) 比較例 1 比較例 2 比較例 3 比較例 4 比較例 5 UV transmittance (313nm) 1 37.5 —— —— 38.8 Visible light transmittance (%) 1 1 1 1 91.4 1 —— 91.4 3] Composition (mass%) Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5
Si02 72.63 71.0 69.8 71.0 69.2Si0 2 72.63 71.0 69.8 71.0 69.2
Al203 1.40 1.7 1.0 1.5 0.1Al 2 0 3 1.40 1.7 1.0 1.5 0.1
Li20 —― ―— 1.6 —一 一—Li 2 0 —— —— 1.6 —One One—
Na20 13.1 13.6 7.4 5.5 8.0Na 2 0 13.1 13.6 7.4 5.5 8.0
K20 0.9 1.0 7.5 4.0 8.1K 2 0 0.9 1.0 7.5 4.0 8.1
R20 14.0 14.6 16.5 9.5 16.2R 2 0 14.0 14.6 16.5 9.5 16.2
MgO 4.0 4.0 2.2 1.0 0.04MgO 4.0 4.0 2.2 1.0 0.04
CaO 7.91 8.0 6.5 3.0 6.85CaO 7.91 8.0 6.5 3.0 6.85
SrO 一— ― 1.0 6.0 一一SrO 1--1.0 6.0 1
BaO —- ― 2.5 6.0 2.01BaO ----2.5 6.0 2.01
ZnO 4.2ZnO 4.2
RO-1 1 1.9 12.0 12.2 16.0 13.1RO-1 1 1.9 12.0 12.2 16.0 13.1
RO-2 0.0 0.0 3.5 12.0 6.2RO-2 0.0 0.0 3.5 12.0 6.2
Ti02 0.02 0.03 ― —― 0.4Ti0 2 0.02 0.03 ― ―― 0.4
Zr02 Zr0 2
Fe203 0.1 1 0.53 ―— ―— 0.01Fe 2 0 3 0.1 1 0.53 --- --- 0.01
S03 0.2 0.17 一一 一一 0.35S0 3 0.2 0.17 1 1 1 1 0.35
Ce02 ― ― ― 0.5 —― Ce0 2 ― ― ― 0.5
Sb203 ― ― 0.5 0.5 0.36Sb 2 0 3 ― ― 0.5 0.5 0.36
B203 —― ― —一 1.0 —―B 2 0 3 —— — —One 1.0 ——
Na20/K20 15.1 13.6 1.0 1.4 1.0Na 2 0 / K 2 0 15.1 13.6 1.0 1.4 1.0
FeO比(9ύ) 22.0 24.5 一一 —― 3.6 熱膨張係数 (X 10_7/°C) 90.9 —― 94.0 94.0 95.0 FeO ratio (9ύ) 22.0 24.5 1 —— 3.6 Thermal expansion coefficient (X 10_ 7 / ° C) 90.9 —— 94.0 94.0 95.0
転移点 (°c) 563 ― 一— 501 570 軟化点 (°c) 740 一一 一一 680 一一 軟化点一転移点 (°C) 177 ― ― 179 ― Transition point (° c) 563 ― 1 ― 501 570 Softening point (° c) 740 1 1 1 1 680 1 1 Softening point 1 transition point (° C) 177 ― ― 179 ―
UV透過率 (313nm) 36.0 一— 一一 —― 77.1 可視光透過率 (%) 91.3 89.3 —― ―— ― UV transmittance (313nm) 36.0 1— 1 — — 77.1 Visible light transmittance (%) 91.3 89.3 —— —— —
[0058] (表;!〜 3において、 R Oは、 Na O + K O + Li Oを、 RO— 1は、 MgO + CaO + Sr O + BaO + ZnOを、 RO— 2は、 SrO + BaO + ZnOを示す。) [0058] (Table;! To 3, in which RO is Na O + KO + Li O, RO-1 is MgO + CaO + SrO + BaO + ZnO, RO-2 is SrO + BaO + ZnO Is shown.)
[0059] 調合したバッチは、白金ルツボの中で熔融および清澄した。まず、このルツボを 15 00°Cに設定した電気炉で、 4時間保持してバッチを熔融した。その後、ガラス融液を 鉄板上に流し出し、板状のガラス体を得た。このガラス体を 650°Cに設定した別の電
気炉の中で 1時間保持した後、 2°C毎分の冷却速度で、室温まで冷却することによつ て行なった。この徐冷したガラス体を試料ガラスとした。 [0059] The formulated batch was melted and clarified in a platinum crucible. First, the crucible was held in an electric furnace set at 1500 ° C. for 4 hours to melt the batch. Thereafter, the glass melt was poured onto an iron plate to obtain a plate-like glass body. This glass body is set to another electric power set to 650 ° C. After holding for 1 hour in the furnace, it was cooled to room temperature at a cooling rate of 2 ° C per minute. This slowly cooled glass body was used as a sample glass.
[0060] (透過率の測定) [0060] (Measurement of transmittance)
得られた試料ガラスの!/、くつかにつ!/、て、 A光源を用いて分光光度計(日立製作所 製、 U4100)にて透過率を測定した。ガラス基板の厚みは 0. 7mmとした。紫外線透 過率の尺度として、波長 313nmの光の透過率を測定した。また、可視光透過率は、 J The transmittance of the obtained sample glass was measured with a spectrophotometer (manufactured by Hitachi, Ltd., U4100) using A light source. The thickness of the glass substrate was 0.7 mm. As a measure of the ultraviolet transmittance, the transmittance of light having a wavelength of 313 nm was measured. The visible light transmittance is J
IS R 3106の可視光透過率の測定法に準じて、測定した。 It was measured according to the measuring method of visible light transmittance of IS R 3106.
[0061] (組成分析) [0061] (Composition analysis)
蛍光 X線分析及び化学分析法を用いて、得られた試料ガラスの組成を定量分析し た。 The composition of the obtained sample glass was quantitatively analyzed using fluorescent X-ray analysis and chemical analysis.
[0062] (熱膨張係数の測定) [0062] (Measurement of thermal expansion coefficient)
得られた試料ガラスのいくつかについて、示差式熱膨張計(リガク製、 TAS— 100) にて熱膨張係数を測定した。試料の大きさは、直径 5mm,長さ 17mmとし、 5°C/分 の昇温速度で室温から降伏温度までの範囲で測定を行い、 50°C〜300°Cの範囲の 熱膨張係数を算出した。 The thermal expansion coefficient of some of the obtained sample glasses was measured with a differential thermal dilatometer (manufactured by Rigaku, TAS-100). The sample size is 5 mm in diameter and 17 mm in length. The sample is measured from room temperature to the yield temperature at a heating rate of 5 ° C / min, and the coefficient of thermal expansion is in the range of 50 ° C to 300 ° C. Calculated.
[0063] (軟化点とガラス転移点との測定) [0063] (Measurement of softening point and glass transition point)
得られた試料ガラスの!/、くつかにつ!/、て、平板状試料に貫入圧子を一定荷重で降 下させ、その圧子の貫入速度から粘度を算出して、軟化点を求めた。 The intrusion indenter of the obtained sample glass was lowered to a flat sample with a constant load, and the viscosity was calculated from the penetration speed of the indenter to obtain the softening point.
またガラス転移点は、上述の熱膨張係数の測定で求めた熱膨張曲線における変曲 点から求めた。 The glass transition point was determined from the inflection point in the thermal expansion curve determined by the above-described measurement of the thermal expansion coefficient.
[0064] (失透温度の測定) [0064] (Measurement of devitrification temperature)
前記試料ガラスを、粒径 1. 0〜2. 8mmに粉砕したものを白金ボートに入れ、温度 勾配のついた電気炉内に 2時間保持し、結晶が出現する位置の最高温度から、失透 温度を求めた。 The sample glass pulverized to a particle size of 1.0 to 2.8 mm is placed in a platinum boat and held in an electric furnace with a temperature gradient for 2 hours. From the maximum temperature at which the crystal appears, devitrification occurs. The temperature was determined.
[0065] (成形温度の測定) [0065] (Measurement of molding temperature)
通常の白金球引き上げ法によりガラスの粘性を求め、ガラスの粘性が 10000dPas ( 10000 poise)となる温度(成形温度)を求めた。 The viscosity of the glass was determined by the ordinary platinum ball pulling method, and the temperature (forming temperature) at which the viscosity of the glass reached 10000 dPas (10000 poise) was determined.
[0066] 上記の測定結果も表;!〜 3に示す。
[0067] 実施例;!〜 13では、バッチをそれぞれ調合した。これら実施例;!〜 13は、 BaOを約 4. 5%含むガラス組成であり、 Na O含有率が 6. 87%〜8. 05%、 Na O/K Οが 0 . 96-2. 86であり、熱 S彭張係数力 (82. 3-91. 6) X 10— 7/。C、転移 ^(力 528。C〜 545°Cである。つまり、現行のソーダ石灰ガラスより少ない Na O含有率で、それに比 較的近い物性を有しており、管球用ガラス組成物として、適した特性を有している。 [0066] The above measurement results are also shown in Tables !! to 3. [0067] In Examples;! -13, each batch was formulated. These examples ;! to 13 have a glass composition containing about 4.5% BaO, a Na 2 O content of 6.87% to 8.05%, and a Na 2 O / K 0 of 0.996-2.86. , and the thermal S彭張coefficient force (82. 3-91. 6) X 10- 7 /. C, transition ^ (force 528. C ~ 545 ° C. In other words, it has less Na 2 O content than the current soda-lime glass, and has relatively close physical properties, and as a glass composition for tube bulbs. Have suitable properties.
[0068] 比較例 1は、一般的な板ガラス用のソーダ石灰系ガラス組成物である。 Na Oを 13 . 1 %と多く含み、本発明のガラス組成範囲外である。また、 K Oをほとんど含まず、 Na O/K Oは 15· 1である。 [0068] Comparative Example 1 is a general soda-lime glass composition for sheet glass. It contains a large amount of Na 2 O as 13.1% and is outside the glass composition range of the present invention. Also, it contains almost no K 2 O and Na 2 O / K 2 O is 15.1.
[0069] 比較例 2は、一般的な板ガラス用の、多くの鉄分を含むソーダ石灰系ガラス組成物 である。 [0069] Comparative Example 2 is a soda-lime-based glass composition containing a large amount of iron for a general plate glass.
[0070] 比較例 3は、特開平 05— 314169号公報の実施例 8に示されたガラス組成物であ り、清澄剤として SOを含まず、 Sb oを含有している。 [0070] Comparative Example 3 is a glass composition disclosed in Example 8 of JP-A-05-314169, and does not contain SO as a fining agent but contains Sbo.
[0071] 比較例 4は、特開平 11 224649号公報の実施例 7に示されたガラス組成物であ り、アルカリ金属酸化物の含有率が小さぐ CaOの含有率も小さいガラス組成物であ る。さらに清澄剤として、 SOを含まず、 CeOや Sb Oを含有している。 Comparative Example 4 is a glass composition shown in Example 7 of JP-A-11 224649, and is a glass composition having a small content of alkali metal oxide and a small content of CaO. The Furthermore, as a clarifier, it does not contain SO but contains CeO and SbO.
[0072] 比較例 5は、清澄剤として Sb Oを含み、その関係で FeO比が非常に小さいガラス 組成物である。 [0072] Comparative Example 5 is a glass composition containing Sb 2 O as a fining agent and having a very small FeO ratio.
[0073] 比較例 3と 4とは、 SOを含まな!/、例である。比較例 3と 4とは、清澄剤として、 V、ずれ も Sb Oを含有しており、比較例 4はさらに、 CeOを含有している。比較例 3と 4とのガ ラス組成物をフロート法にて成形すると、フロートバス内の還元雰囲気によって、茶色 に着色してしまう。さらに比較例 4では、紫外線の照射により、黄色に着色してしまう。 [0073] Comparative Examples 3 and 4 are examples that do not contain SO! /. Comparative Examples 3 and 4 contain V as a fining agent, and both contain Sb 2 O, and Comparative Example 4 further contains CeO. When the glass compositions of Comparative Examples 3 and 4 are molded by the float process, they are colored brown by the reducing atmosphere in the float bath. Furthermore, in Comparative Example 4, it is colored yellow by irradiation with ultraviolet rays.
[0074] また、比較例 2では、含まれる鉄分が多いので、可視光透過率が 89. 3%と、実施 例 1、 5、 10および 13に比べて低くなる。 [0074] Further, in Comparative Example 2, since the iron content is large, the visible light transmittance is 89.3%, which is lower than those in Examples 1, 5, 10 and 13.
[0075] 以下に、本発明によるガラス組成物をフロート法により板状に成形し、そのガラス基 板を用いて、面照明装置を構成した例につ!、て説明する。 [0075] Hereinafter, an example in which a glass composition according to the present invention is formed into a plate shape by a float process and a surface illumination device is configured using the glass substrate will be described.
[0076] (応用例 1) [0076] (Application 1)
応用例 1は、上述のガラス基板を用いて筐体を構成し、面照明装置としたものであ る。図 1に、応用例 1による面照明装置の断面模式図を示す。面照明装置 1は、まず
平板状の第 1ガラス基板 11と、断面が U字形にプレス成形された第 2ガラス基板 12と を、ガラスフリット 13によって接合して筐体を構成し、その内部は空間 Sとなっている。 筐体内部の両端には、対をなす放電電極 14, 14が設けられている。また、第 1ガラス 基板 11と第 2ガラス基板 12とにおいて、空間部 Sを臨む面には蛍光体 15, 15が塗 布されている。さらに、筐体内部の空間 Sには、水銀とアルゴンなどの不活性ガスとが 封入されている。 Application Example 1 is a surface illumination device in which a casing is formed using the glass substrate described above. Figure 1 shows a schematic cross-sectional view of a surface illumination device according to Application Example 1. The surface lighting device 1 A flat first glass substrate 11 and a second glass substrate 12 press-molded in a U-shaped cross section are joined together by a glass frit 13 to form a casing, and the inside is a space S. A pair of discharge electrodes 14 and 14 are provided at both ends inside the housing. Further, phosphors 15 and 15 are coated on the surfaces facing the space S in the first glass substrate 11 and the second glass substrate 12. Furthermore, mercury and an inert gas such as argon are sealed in the space S inside the housing.
[0077] 放電電極 14, 14に電圧をかけて放電させると、紫外線が発生する。この紫外線が 蛍光体 15, 15に入射し、可視光線が発せられて、光源として機能する。 [0077] When a voltage is applied to the discharge electrodes 14 and 14, the ultraviolet rays are generated. This ultraviolet light enters the phosphors 15 and 15 and emits visible light, which functions as a light source.
[0078] 本発明によるガラス基板では、ナトリウムの含有率を抑えてあるので、これを用いて 構成した面照明装置 1では、ナトリウム溶出による黒化現象が起こりにくいという特徴 を有する。 [0078] The glass substrate according to the present invention has a feature that the content of sodium is suppressed, so that the surface illumination device 1 configured using the glass substrate is less susceptible to blackening due to sodium elution.
[0079] (応用例 2) [0079] (Application 2)
応用例 2は、上述のガラス基板 2枚を用い、その間に多数の隔壁部を設けて、多数 のセルを構成し、面照明装置としたものである。図 2に、応用例 2による面照明装置の 断面模式図を示す。面照明装置 2は、 2枚のガラス基板 21 , 22とを一定の間隔を保 つて保持し、その間に多数の隔壁部 23 · · · ( · · ·は多数を表す)を設けて、多数のセ ル Sを構成したものである。また、ガラス基板 21 , 22のセル Sを臨む面には蛍光体 25 , 25が塗布されている。さらに、セル Sには、水銀とアルゴンなどの不活性ガスとが封 入されている。面照明装置 2に、図示しない電極に電圧をかけて放電させて、光源と して機能させる。 Application Example 2 uses the above-mentioned two glass substrates and provides a large number of partition walls between them to form a large number of cells to form a surface illumination device. Figure 2 shows a schematic cross-sectional view of a surface illumination device according to Application Example 2. The surface lighting device 2 holds two glass substrates 21 and 22 at a constant interval, and provides a large number of partition wall portions 23 ··· (where · · · represents a large number) between them, Cell S is constructed. Further, phosphors 25 and 25 are coated on the surfaces of the glass substrates 21 and 22 facing the cell S. Further, the cell S is sealed with mercury and an inert gas such as argon. The surface illumination device 2 is caused to discharge by applying voltage to an electrode (not shown) to function as a light source.
[0080] (応用例 3) [0080] (Application 3)
応用例 3は、応用例 2と同様に多数のセルを設けた構造の面照明装置である。応用 例 2では、多数のセルを隔てるために多数の隔壁部を設けた力 S、応用例 3では一方 のガラス基板をプレス成形して多数の樋を形成して、接合部分が隔壁部となるように したものである。 Application Example 3 is a surface illumination device having a structure in which a large number of cells are provided as in Application Example 2. In application example 2, the force S provided with a large number of partition walls to separate a large number of cells, and in application example 3, one glass substrate is press-molded to form a large number of ridges, and the joining portion becomes the partition wall part. It is like that.
[0081] 図 3に、応用例 3による面照明装置 3の部分拡大斜視図を示す。面照明装置 3は、 まず平板状の第 1ガラス基板 31と、プレス成形にて多数の樋が並列した形状とした第 2ガラス基板 32とを接合して、多数のセル Sを構成したものである。このとき、第 1ガラ
ス基板 31に接合された、第 2ガラス基板 32の接合部分 33が、隔壁部となっている。 また、ガラス基板 31 , 32のセル Sを臨む面には蛍光体 35, 35が塗布されている。さ らに、セル Sには、水銀とアルゴンなどの不活性ガスとが封入されている。面照明装 置 3に、図示しない電極に電圧をかけて放電させて、光源として機能させる。 FIG. 3 is a partially enlarged perspective view of the surface illumination device 3 according to the application example 3. The surface illumination device 3 is configured by first joining a flat plate-like first glass substrate 31 and a second glass substrate 32 formed by press molding into a shape in which a large number of ridges are arranged in parallel to constitute a large number of cells S. is there. At this time, the first gala A bonding portion 33 of the second glass substrate 32 bonded to the glass substrate 31 serves as a partition wall. Further, phosphors 35 and 35 are coated on the surfaces of the glass substrates 31 and 32 facing the cell S. Further, the cell S is filled with mercury and an inert gas such as argon. The surface illumination device 3 is discharged by applying a voltage to an electrode (not shown) to function as a light source.
産業上の利用可能性 Industrial applicability
本発明のガラス組成物を成形して得たガラス物品は、蛍光体等の照明用ガラスとし て有用である。
Glass articles obtained by molding the glass composition of the present invention are useful as lighting glasses such as phosphors.
Claims
請求の範囲 The scope of the claims
質量%で表示して、 Display in mass%,
SiO 65%以上、 75%以下、 SiO 65% or more, 75% or less,
Al O 0%以上、 5%未満、 Al O 0% or more, less than 5%,
B O 0%以上、 5%以下、 B O 0% or more, 5% or less,
Na O 3%超、 12%未満、 Na O> 3%, <12%,
K O 2%以上、 15%以下、 K O 2% or more, 15% or less,
Li O 0%以上、 5%未満、 Li O 0% or more, less than 5%,
Na O + K O + Li O 6%以上、 20%以下、 Na O + K O + Li O 6% or more, 20% or less,
MgO 0%以上、 10%以下、 MgO 0% or more, 10% or less,
CaO 5%超、 15%以下、 CaO over 5%, 15% or less,
BaO 4%以上、 9%以下、 BaO 4% or more, 9% or less,
SrO 0%以上、 1 %未満、 SrO 0% or more, less than 1%,
ZnO 0%以上、 6%以下、 ZnO 0% or more, 6% or less,
MgO + CaO + SrO + BaO + ZnO 9%超、 19%以下、 MgO + CaO + SrO + BaO + ZnO over 9%, up to 19%,
SrO + BaO + ZnO 4%以上、 10%以下、 SrO + BaO + ZnO 4% or more, 10% or less,
TiO 0%以上、 0. 5%以下、 TiO 0% or more, 0.5% or less,
ZrO 0%以上、 2. 5%以下、 ZrO 0% or more, 2.5% or less,
SO 0. 05%以上、 0. 5%以下、および SO 0.05% or more, 0.5% or less, and
Fe Oに換算した全酸化鉄 0. 05%以上、 0. 35%以下、 Total iron oxide converted to Fe O 0.05% or more, 0.35% or less,
を含んでなり、 Comprising
酸化アンチモンおよび CeOを実質的に含有しないことを特徴とするガラス組成 請求項 1に記載のガラス組成物にお!/、て、 A glass composition characterized by substantially not containing antimony oxide and CeO! In the glass composition according to claim 1,! /,
前記ガラス組成物が、質量%で表示して、 The glass composition is expressed in mass%,
SiO 65%以上、 75%以下、 SiO 65% or more, 75% or less,
Al O 0%超、 2%未満、 Al O> 0%, <2%,
B O 0%以上、 5%以下、 B O 0% or more, 5% or less,
Na〇 4%以上、 9%以下、
K O 2%以上、 10%未満、 Na〇 4% or more, 9% or less, KO 2% or more, less than 10%,
Li O 0%以上、 5%未満、 Li O 0% or more, less than 5%,
Na O + K O + Li O 10%以上、 19. 5%未満、 Na O + K O + Li O 10% or more, 19.
MgO 0%以上、 6%以下、 MgO 0% or more, 6% or less,
CaO 5%超、 12%以下、 CaO over 5%, up to 12%,
BaO 4%以上、 9%以下、 BaO 4% or more, 9% or less,
SrO 0%以上、 1 %未満、 SrO 0% or more, less than 1%,
ZnO 0%以上、 6%以下、 ZnO 0% or more, 6% or less,
MgO + CaO + SrO + BaO + ZnO 10%以上、 19%以下、 SrO + BaO + ZnO 4%以上、 10%以下、 MgO + CaO + SrO + BaO + ZnO 10% or more, 19% or less, SrO + BaO + ZnO 4% or more, 10% or less,
TiO 0%以上、 0. 5%以下、 TiO 0% or more, 0.5% or less,
ZrO 0%以上、 2. 5%以下、 ZrO 0% or more, 2.5% or less,
SO 0. 05%以上、 0. 5%以下、および SO 0.05% or more, 0.5% or less, and
Fe Oに換算した全酸化鉄 0. 05%以上、 0. 35%以下、 を含んでなるガラス組成物。 A glass composition comprising 0.05% or more and 0.35% or less of total iron oxide converted to Fe 2 O.
請求項 2に記載のガラス組成物において、 The glass composition according to claim 2,
前記 SiO力 S67%以上、 72%以下、 SiO force S67% or more, 72% or less,
前記 Li Oが 0%超、 3%以下、 Li O is more than 0%, 3% or less,
前記 MgOが 0%超、 6%以下、および MgO above 0%, below 6%, and
前記 CaOが 5%超、 10%以下、 CaO is more than 5%, 10% or less,
であるガラス組成物。 A glass composition.
請求項 3に記載のガラス組成物において、 The glass composition according to claim 3,
前記 Al Oが 0. 5%以上、 2%未満、 Al O is 0.5% or more, less than 2%,
前記 Na Oが 6%以上、 9%以下、 Na O is 6% or more, 9% or less,
前記 Oが 2%以上、 9%以下、 O is 2% or more, 9% or less,
前記 Li Oが 0. 1 %以上、 1. 5%以下、 Li O is 0.1% or more, 1.5% or less,
前記 MgOが 2%以上、 6%以下、 MgO is 2% or more, 6% or less,
前記 CaOが 6%以上、 10%以下、
前記 BaOが 4%超、 7%以下、 CaO is 6% or more, 10% or less, BaO is more than 4%, 7% or less,
前記 ZnOが 0%以上、 6%未満、 ZnO is 0% or more, less than 6%,
前記 TiO力 S0%以上、 0. 05%未満、および The TiO force S0% or more, less than 0.05%, and
前記 ZrO力 SO %以上、 0. 5%未満、 ZrO force SO% or more, less than 0.5%,
であるガラス組成物。 A glass composition.
[5] 請求項 1に記載のガラス組成物にお!/、て、 [5] In the glass composition according to claim 1,! /
前記全酸化鉄が 0. 1 %以上 0. 25%以下であるガラス組成物。 A glass composition in which the total iron oxide is 0.1% or more and 0.25% or less.
[6] 請求項 1に記載のガラス組成物にお!/、て、 [6] The glass composition according to claim 1! /,
前記全酸化鉄のうち Fe Oに換算した FeOの割合力 S、前記全酸化鉄の 10%〜40 Of the total iron oxide, the proportion force S of FeO converted to Fe O, 10% to 40% of the total iron oxide
%であるガラス組成物。 % Glass composition.
[7] 請求項 6に記載のガラス組成物において、 [7] The glass composition according to claim 6,
前記全酸化鉄のうち Fe Oに換算した FeOの割合力 S、前記全酸化鉄の 15%〜35 FeO percentage force S converted to Fe 2 O in the total iron oxide, 15% to 35% of the total iron oxide
%であるガラス組成物。 % Glass composition.
[8] 請求項 1に記載のガラス組成物にお!/、て、 [8] In the glass composition according to claim 1,! /,
前記 ZrO力 SO %以上、 0. 2%未満である、ガラス組成物。 The glass composition having a ZrO force SO% or more and less than 0.2%.
[9] 請求項 1に記載のガラス組成物にお!/、て、 [9] The glass composition according to claim 1! /,
前記ガラス組成物が、実質的に B Oを含有しない、ガラス組成物。 The glass composition, wherein the glass composition does not substantially contain B 2 O.
[10] 請求項 1に記載のガラス組成物にお!/、て、 [10] The glass composition according to claim 1! /,
前記ガラス組成物が、実質的に ZnOを含有しない、ガラス組成物。 The glass composition, wherein the glass composition does not substantially contain ZnO.
[11] 請求項 1に記載のガラス組成物にお!/、て、 [11] The glass composition according to claim 1! /,
前記ガラス組成物を厚み 0. 7mmとしたとき、波長 313nmの光の透過率が 60%以 下である、ガラス組成物。 A glass composition having a light transmittance of 313 nm or less of light of 60% or less when the glass composition has a thickness of 0.7 mm.
[12] 請求項 11に記載のガラス組成物にお!/、て、 [12] The glass composition according to claim 11! /,
前記ガラス組成物を厚み 0. 7mmとしたとき、波長 313nmの光の透過率が 45%以 下である、ガラス組成物。 A glass composition having a transmittance of light of a wavelength of 313 nm of 45% or less when the glass composition has a thickness of 0.7 mm.
[13] 請求項 1に記載のガラス組成物にお!/、て、 [13] In the glass composition according to claim 1,! /,
熱膨張係数が、(89 ± 5) X 10— 7/°Cの範囲にある、ガラス組成物。 Thermal expansion coefficient in the range of (89 ± 5) X 10- 7 / ° C, the glass composition.
[14] 請求項 13に記載のガラス組成物において、
熱膨張係数が、(89 ± 2) X 10— 7/°Cの範囲にある、ガラス組成物。 [14] The glass composition according to claim 13, Thermal expansion coefficient in the range of (89 ± 2) X 10- 7 / ° C, the glass composition.
[15] 請求項 1に記載のガラス組成物にお!/、て、 [15] The glass composition according to claim 1! /,
軟化点が 790°C以下である、ガラス組成物。 A glass composition having a softening point of 790 ° C or lower.
[16] 請求項 15に記載のガラス組成物において、 [16] The glass composition according to claim 15,
前記軟化点が 750°C以下である、ガラス組成物。 The glass composition whose softening point is 750 degrees C or less.
[17] 請求項 16に記載のガラス組成物において、 [17] The glass composition according to claim 16,
前記軟化点が 740°C以下である、ガラス組成物。 A glass composition having a softening point of 740 ° C or lower.
[18] 請求項 1に記載のガラス組成物からなり、板状に成形された、ガラス物品。 [18] A glass article comprising the glass composition according to claim 1 and formed into a plate shape.
[19] 前記成形がフロート法により行われた、請求項 18に記載のガラス物品。 19. The glass article according to claim 18, wherein the molding is performed by a float process.
[20] 請求項 18に記載のガラス物品であって、照明用ガラス容器に用いられる、ガラス物 [20] The glass article according to claim 18, which is used for a glass container for lighting.
P P
P o P o
[21] 請求項 20に記載の照明用ガラス物品であって、前記照明が蛍光灯である、ガラス 物品。 21. The glass article for illumination according to claim 20, wherein the illumination is a fluorescent lamp.
[22] 請求項 1に記載のガラス組成物からなり、照明用ガラス容器に用いられる、ガラス物 [22] A glass article comprising the glass composition according to claim 1 and used for a glass container for lighting.
P P
PP o PP o
[23] 請求項 22に記載の照明用ガラス物品であって、前記照明が蛍光灯である、ガラス 物品。
23. The glass article for illumination according to claim 22, wherein the illumination is a fluorescent lamp.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008536455A JP5456317B2 (en) | 2006-09-28 | 2007-09-28 | Glass composition and glass article using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006266065 | 2006-09-28 | ||
JP2006-266065 | 2006-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008038780A1 true WO2008038780A1 (en) | 2008-04-03 |
Family
ID=39230212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/069001 WO2008038780A1 (en) | 2006-09-28 | 2007-09-28 | Glass composition and glass article using the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5456317B2 (en) |
WO (1) | WO2008038780A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03290335A (en) * | 1990-04-04 | 1991-12-20 | Nippon Sheet Glass Co Ltd | Glass panel |
US5977001A (en) * | 1996-12-17 | 1999-11-02 | General Electric Company | Glass composition |
JP2000203873A (en) * | 1998-02-10 | 2000-07-25 | Matsushita Electronics Industry Corp | Glass composition for lamp, stem for lamp and bulb for lamp |
JP2002293547A (en) * | 2001-03-28 | 2002-10-09 | Asahi Glass Co Ltd | Method for producing glass for cathode ray tube |
JP2002308644A (en) * | 2001-04-04 | 2002-10-23 | Nippon Electric Glass Co Ltd | Lighting glass |
JP2004035389A (en) * | 2002-01-10 | 2004-02-05 | L Electric Glass Co Ltd | Glass containing substantially no lead and glass tube fabricated from the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10152339A (en) * | 1996-09-27 | 1998-06-09 | Nippon Sheet Glass Co Ltd | Heat-resistant class composition |
JP3957348B2 (en) * | 1996-11-21 | 2007-08-15 | 日本板硝子株式会社 | Fire glass |
JPH11233033A (en) * | 1997-11-17 | 1999-08-27 | Nippon Electric Glass Co Ltd | Substrate glass for plasma display |
JP2000290038A (en) * | 1999-02-01 | 2000-10-17 | Nippon Electric Glass Co Ltd | Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp |
JP2003178712A (en) * | 2002-09-09 | 2003-06-27 | Matsushita Electric Ind Co Ltd | Fluorescent lamp |
FR2876094B1 (en) * | 2004-10-04 | 2009-01-09 | Saint Gobain | GLASS SUBSTRATE FOR DISPLAY SCREEN. |
-
2007
- 2007-09-28 JP JP2008536455A patent/JP5456317B2/en not_active Expired - Fee Related
- 2007-09-28 WO PCT/JP2007/069001 patent/WO2008038780A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03290335A (en) * | 1990-04-04 | 1991-12-20 | Nippon Sheet Glass Co Ltd | Glass panel |
US5977001A (en) * | 1996-12-17 | 1999-11-02 | General Electric Company | Glass composition |
JP2000203873A (en) * | 1998-02-10 | 2000-07-25 | Matsushita Electronics Industry Corp | Glass composition for lamp, stem for lamp and bulb for lamp |
JP2002293547A (en) * | 2001-03-28 | 2002-10-09 | Asahi Glass Co Ltd | Method for producing glass for cathode ray tube |
JP2002308644A (en) * | 2001-04-04 | 2002-10-23 | Nippon Electric Glass Co Ltd | Lighting glass |
JP2004035389A (en) * | 2002-01-10 | 2004-02-05 | L Electric Glass Co Ltd | Glass containing substantially no lead and glass tube fabricated from the same |
Also Published As
Publication number | Publication date |
---|---|
JP5456317B2 (en) | 2014-03-26 |
JPWO2008038780A1 (en) | 2010-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7036168B2 (en) | Non-alkali glass substrate | |
EP0795522B1 (en) | Glass composition for a substrate | |
US7968380B2 (en) | Semiconductor encapsulation material and method for encapsulating semiconductor using the same | |
US6162750A (en) | Substrate glass and plasma display made by using the same | |
EP1653499B1 (en) | Glass tube for external electrode fluorescent lamp | |
WO2001049621A1 (en) | Copper alumino-silicate glasses | |
JPH0340933A (en) | Glass composition for substrate | |
JP2007238398A (en) | Soda-lime based glass composition | |
CN101428966A (en) | Borosilicate glass suitable for electric light source | |
US5459109A (en) | Substrate glasses for plasma displays | |
JP2012031048A (en) | Lead-free glass for semiconductor | |
JP2002137935A (en) | Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp | |
JPWO2006106660A1 (en) | Lamp glass composition, lamp, backlight unit, and method for producing lamp glass composition | |
JPWO2007086441A1 (en) | Method for producing glass composition for lamp, glass composition for lamp and lamp | |
JP5762515B2 (en) | Glass composition and glass article using the same | |
JP3748533B2 (en) | Low melting glass and method for producing the same | |
JP2010100440A (en) | Soda lime-based glass composition | |
JPH08290939A (en) | Glass for substrate | |
JP2008305711A (en) | Manufacturing method of glass substrate for plasma display panel and glass substrate for plasma display panel | |
JPH1025129A (en) | Glass for substrate | |
JPH1025130A (en) | Glass for substrate | |
JPH1025128A (en) | Glass for substrate | |
JP5456317B2 (en) | Glass composition and glass article using the same | |
JPH11322358A (en) | Heat resistant glass composition | |
WO2006013680A1 (en) | Lead-free glass for coating fluorescent flat lamp electrode and fluorescent flat lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07828742 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008536455 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07828742 Country of ref document: EP Kind code of ref document: A1 |