+

WO2008038365A1 - Variable-resistance element - Google Patents

Variable-resistance element Download PDF

Info

Publication number
WO2008038365A1
WO2008038365A1 PCT/JP2006/319289 JP2006319289W WO2008038365A1 WO 2008038365 A1 WO2008038365 A1 WO 2008038365A1 JP 2006319289 W JP2006319289 W JP 2006319289W WO 2008038365 A1 WO2008038365 A1 WO 2008038365A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen ion
layer
oxygen
electrode
resistance
Prior art date
Application number
PCT/JP2006/319289
Other languages
English (en)
French (fr)
Inventor
Hiroyasu Kawano
Keiji Shono
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2008536246A priority Critical patent/JP5007724B2/ja
Priority to PCT/JP2006/319289 priority patent/WO2008038365A1/ja
Publication of WO2008038365A1 publication Critical patent/WO2008038365A1/ja
Priority to US12/352,441 priority patent/US7764160B2/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0083Write to perform initialising, forming process, electro forming or conditioning
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/12Non-metal ion trapping, i.e. using memory material trapping non-metal ions given by the electrode or another layer during a write operation, e.g. trapping, doping
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/15Current-voltage curve
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/34Material includes an oxide or a nitride
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/55Structure including two electrodes, a memory active layer and at least two other layers which can be a passive or source or reservoir layer or a less doped memory active layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/56Structure including two electrodes, a memory active layer and a so called passive or source or reservoir layer which is NOT an electrode, wherein the passive or source or reservoir layer is a source of ions which migrate afterwards in the memory active layer to be only trapped there, to form conductive filaments there or to react with the material of the memory active layer in redox way

Definitions

  • the present invention relates to a resistance variable element capable of switching between a high resistance state in which current is relatively difficult to flow and a low resistance state in which current is relatively easy to flow.
  • the present invention relates to a resistance change storage element that can record or rewrite information.
  • ReRAM resistive RAM
  • a ReRAM is a resistance variable element, and generally a recording film capable of selectively switching between a high resistance state and a low resistance state according to a pair of electrodes and a voltage applied between the electrode pair. And have.
  • information can be recorded or rewritten using selective switching of the resistance state of the recording film.
  • ReRAM or resistance variable elements are described in, for example, Patent Documents 1 to 3 below.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-273615
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-281913
  • Patent Document 3 JP 2005-123361 A
  • ReRAM is broadly divided into bipolar and bipolar types in terms of electrical characteristics.
  • the voltage application direction for changing the recording film from the high resistance state force to the low resistance state and the electrode for changing the recording film from the low resistance state to the high resistance state. It is different from the voltage application direction between the pair.
  • bipolar ReRAM uses different polarity voltages for two types of resistance state changes or switching.
  • the bipolar type ReRAM in order to change the recording film from the high resistance state to the low resistance state, the voltage application direction between the electrode pair and the recording film to change from the low resistance state to the high resistance state. The direction of voltage application between the electrode pairs is the same.
  • a bipolar ReRAM uses the same polarity voltage for two types of resistance state changes.
  • a bipolar ReRAM is a voltage with the same polarity in two resistance state changes. Can be used (ie, it is not necessary to change the polarity of the applied voltage between two resistance state changes), so that the device circuit including ReRAM is less complicated than bipolar ReRAM. It has 1 ⁇ and ⁇ ⁇ advantages.
  • ReRAM As a dual-type ReRAM, a ReRAM having a recording film made of NiO, or TiO
  • ReRAM having a recording film of 3 is reported.
  • the fact that they can operate in a bipolar type is not specified for the known force-operation principle. If the operating principle is unknown, the material selection for each part of ReRAM will not provide optimization guidelines such as design dimensions, making it difficult to optimize ReRAM device design. Also, if the basic materials that make up the recording film are different, the operating principle of ReRAM is considered to differ greatly.
  • the present invention has been conceived under the circumstances as described above, and is capable of a bipolar operation on a predetermined operation principle and suitable for operation at a low voltage.
  • An object of the present invention is to provide a resistance variable element.
  • the resistance variable element provided by the first aspect of the present invention is located between the first electrode, the second electrode, and the first and second electrodes and moves oxygen ions therein.
  • a current limit is imposed between the first and second electrodes to set a predetermined maximum current that can be passed, and then the first and second electrodes are respectively connected to the negative electrodes.
  • the applied voltage between the electrode pair is increased to, for example, a predetermined voltage equal to or higher than 0 V force first threshold voltage, thereby forming a low resistance path in the oxygen ion moving layer and realizing a low resistance state. be able to.
  • oxygen ions can be generated at or near the interface between the oxygen ion generation promoting layer and the oxygen ion moving layer.
  • the generated oxygen ions with negative charges are moved in the oxygen ion moving layer toward the second electrode (positive electrode), and in the thickness direction of the oxygen ion moving layer as in the locus of oxygen ion movement. It is possible to create continuous oxygen vacancies in the oxygen ion transfer layer. (When oxygen ions move in the oxygen ion moving layer, oxygen vacancies are newly generated at the locations where oxygen ions pass, or the moving oxygen ions already exist in the vicinity of the oxygen ions. The oxygen vacancies that move are substantially pulled and replaced by the oxygen vacancies). Then, it is possible to form a row of oxygen vacancies in the oxygen ion migration layer that are substantially free of oxygen vacancies extending over the entire thickness of the oxygen ion migration layer.
  • This oxygen vacancy chain forms a low resistance path that penetrates in the thickness direction through the oxygen ion migration layer where the oxygen vacancy chain is formed in the oxygen ion migration layer and the resistance is lower than that of the location. .
  • the resistance between the first and second electrodes is smaller when such a low resistance path is generated than when the low resistance path is not generated.
  • the low resistance state can be realized in this way. Even when the applied voltage is decreased from a predetermined voltage equal to or higher than the first threshold voltage to, for example, OV that is lower than the first threshold voltage, the element maintains its low resistance state.
  • the first and second electrodes are used as a negative electrode and a positive electrode, respectively, without imposing a current limit between the first and second electrodes.
  • a predetermined current that increases gradually for example, a current that is finally larger than the maximum current that can be passed as described above
  • This current mainly passes through the low resistance path of the oxygen ion moving layer, and generates Julian heat.
  • the applied voltage When the applied voltage is equal to or higher than the second threshold voltage, sufficient Joule heat is generated in and near the low resistance path in the oxygen ion moving layer, and the low resistance path is configured in the low resistance state. Oxygen vacancies can be sufficiently thermally diffused. At this time, it is considered that the electric field formed between the electrode pairs may also contribute to the diffusion of oxygen vacancies. Thereby, the low resistance path is at least cut off. In this element, a high resistance state in which there is no low resistance path penetrating the oxygen ion migration layer in the thickness direction can be realized in this way. Even if the applied voltage is decreased from a predetermined voltage equal to or higher than the second threshold voltage to, for example, OV, which is less than the second threshold voltage, the element maintains its high resistance state.
  • the present element in such a high resistance state can be switched again to the low resistance state by the above-described low resistance state realization method.
  • the present element can appropriately switch between a high resistance state in which current is relatively less likely to flow and a low resistance state in which current is relatively liable to flow by a bipolar operation. Yes (the direction of voltage application between the electrode pair is the same in the high resistance layer and the low resistance layer).
  • information can be recorded or rewritten using selective switching of the resistance state. That is, this element can be used as a variable resistance nonvolatile memory element. This element can also be used as a switching element for selectively changing the resistance at a predetermined location in the circuit.
  • the device is suitable for operation at a low voltage.
  • This element has an oxygen ion generation promoting layer in contact with the first electrode (negative electrode) side of the oxygen ion moving layer, and this oxygen ion generation promoting layer generates oxygen ions that should move in the oxygen ion moving layer. This is for the purpose of facilitating the reduction of the voltage required to be applied between the electrode pair in order to generate oxygen ions.
  • the resistance variable element according to the first aspect of the present invention is capable of a bipolar operation and is suitable for operation at a low voltage.
  • the resistance variable element provided by the second aspect of the present invention is located between the first electrode, the second electrode, and the first and second electrodes, and moves oxygen ions therein. And a layered structure including an oxygen ion moving layer capable of generating a low resistance path composed of oxygen vacancies.
  • the variable resistance element has a plurality of oxygen ion generation promoting layers that are in contact with the oxygen ion moving layer and positioned between the oxygen ion moving layer and the first electrode.
  • variable resistance element according to the second aspect includes the configuration of the variable resistance element according to the first aspect, and therefore, as described above with respect to the variable resistance element according to the first aspect, -Polar type operation is possible and suitable for low voltage operation.
  • the resistance variable element In the resistance variable element according to the second aspect, so-called multivalue recording is possible.
  • This element has a plurality of oxygen ion generation promotion layers, and each oxygen ion generation promotion layer is located between the first electrode (negative electrode) and the second electrode (positive electrode) on the first electrode side of the oxygen ion migration layer. Touch. Therefore, in this element, it is possible to form a low resistance path that penetrates the oxygen ion moving layer in the thickness direction for each oxygen ion generation promoting layer. It is possible to realize a plurality of low resistance states having different resistance values according to the number of resistance paths.
  • the oxygen ion moving layer is made of a solid electrolyte.
  • the solid electrolyte the same material as that constituting the electrolyte layer of a solid oxide fuel cell (SOFC) may be employed.
  • the oxygen ion transfer layer or the solid electrolyte is made of a fluorite structure type oxide or a perovskite structure type oxide.
  • a fluorite structure type oxide ZrO (partially stable zirconium oxide), ZrO, and Y 2 O with addition of Y, Ca and Mg are adopted.
  • Perovskite structure type oxides include SrTiO
  • the oxygen ion migration layer is made of a crystalline material.
  • An oxygen ion transfer layer made of a crystalline material tends to have higher oxygen ion mobility than an oxygen ion transfer layer made of an amorphous material.
  • the oxygen ion generation promoting layer is made of a conductive oxide containing a noble metal.
  • the first electrode and the Z or second electrode are made of a noble metal.
  • the noble metal is preferably selected from the group consisting of Pt, Au, Pd, Ru, and Ir. These noble metals can function as a catalyst for the oxygen ion generation reaction. Also, the first and second electrodes made of noble metal are difficult to oxidize.
  • FIG. 1 is a cross-sectional view of a resistance variable element according to a first embodiment of the present invention.
  • FIG. 2 shows an operation principle according to the present invention.
  • FIG. 3 is a graph showing an example of current-voltage characteristics in the resistance variable element according to the present invention.
  • FIG. 4 is a graph showing an example of current-voltage characteristics in the variable resistance element according to the present invention, and corresponds to a part of the graph of FIG.
  • FIG. 5 is a cross-sectional view of a resistance variable element according to a second embodiment of the present invention.
  • FIG. 6 (a) of FIG. 6 represents a stacked configuration of sample element SI, and (b) represents a stacked configuration of sample element S6.
  • FIG. 7 (a) of FIG. 7 represents a stacked structure of sample element S2, and (b) represents a stacked structure of sample element S7.
  • FIG. 8 (a) of FIG. 8 represents a stacked structure of sample element S3, and (b) represents a stacked structure of sample element S8.
  • FIG. 9 (a) of FIG. 9 represents a stacked structure of sample element S4, and (b) represents a stacked structure of sample element S9.
  • FIG. 10 (a) of FIG. 10 represents a stacked structure of sample element S5, and (b) represents a stacked structure of sample element S10.
  • FIG. 11 is a table summarizing the results of oxygen concentration distribution survey in the sample elements S6 to S10.
  • FIG. 1 is a cross-sectional view of a resistance variable element XI according to the first embodiment of the present invention.
  • the resistance variable element XI has a laminated structure composed of a substrate S, a pair of electrodes 1 and 2, an oxygen ion migration layer 3 and an oxygen ion generation promotion layer 4, and has a high resistance in which a current hardly flows. It is possible to switch between a state and a low resistance state where current flows relatively easily.
  • the substrate S is, for example, a silicon substrate or an oxide substrate.
  • a thermal oxide film may be formed on the surface of the silicon substrate.
  • oxide substrates include MgO substrates and SrTiO groups.
  • the electrodes 1 and 2 are each made of a highly conductive material, for example, a noble metal or a highly conductive oxide.
  • a noble metal include Pt, Au, Pd, Ru, and Ir.
  • the highly conductive oxide include SrRuO, RuO, IrO, SnO, ZnO, and ITO.
  • Each of the poles 1 and 2 has a thickness of, for example, 30 to 200 nm.
  • the oxygen ion moving layer 3 is located between the electrodes 1 and 2, and is a portion that can selectively switch between a high resistance state and a low resistance state.
  • the oxygen ion moving layer 3 has oxygen inside. It consists of a solid electrolyte that can generate oxygen vacancies by the movement of ions.
  • a fluorite structure type oxide or a bottom bskite structure type oxide can be adopted.
  • fluorite-structure oxide examples include ZrO (partially stable) with Y, Ca, and Mg added.
  • SrTiO and CaTiO can be employed as the type oxide.
  • Oxygen for example, SrTiO and CaTiO can be employed.
  • the thickness of the ion transfer layer 3 is, for example, 10 to 50 nm.
  • the oxygen ion transfer layer 3 is made of a material that can exhibit sufficient insulation. Oxygen vacancies may exist inside the fluorite-structured oxide perovskite-structured oxide in a thermodynamically balanced state, but the viewpoint of ensuring sufficient insulation for the oxygen ion transfer layer 3 Therefore, it is preferable that excessive oxygen vacancies exist in the oxygen ion transfer layer 3! /.
  • the oxygen ion migration layer 3 is preferably made of a crystalline material.
  • a solid electrolyte made of a crystalline material has a higher oxygen ion mobility than a solid electrolyte made of an amorphous material.
  • the oxygen ion generation promoting layer 4 is a part for generating and scavenging oxygen ions to be moved in the oxygen ion moving layer 3, and is in contact with the oxygen ion moving layer 3 so as to contact the oxygen ion moving layer 3 or the electrode. Located between 2 and electrode 1.
  • the oxygen ion generation promoting layer 4 is made of a conductive oxide containing a noble metal that can function as a catalyst for the oxygen ion generation reaction. Examples of such noble metals include Pt, Au, Pd, Ru, and Ir.
  • the concentration of the noble metal in the conductive oxide constituting the oxygen ion generation promoting layer 4 is, for example, 10 to 50 at%.
  • the thickness of the oxygen ion generation promoting layer 4 is, for example, 1 to 1 Onm.
  • the electrode 1 is formed on the substrate S. Specifically, after a predetermined material is formed on the substrate S, the electrode 1 is patterned on the substrate S by etching the film using a predetermined resist pattern as a mask. You can do it.
  • a film forming method for example, a sputtering method, a vacuum evaporation method, a CVD method, or an LD (Laser Deposition) method can be employed.
  • the subsequent oxygen ion generation promoting layer 4, oxygen ion moving layer 3, and electrode 2 can also be formed through such material film formation and subsequent patterning by etching treatment.
  • Pt is adopted as a constituent material of the electrode 1, for example, in a sputtering method performed using a sputtering apparatus, Ar gas (0.5 Pa) is used as a sputtering gas, and a Pt target is used. A Pt film can be formed on the substrate S by DC discharge, input power of l.OkW, and temperature conditions of room temperature to 300 ° C.
  • Ar is used as a sputtering gas.
  • the SrRuO film can be formed on the substrate S by using DC discharge or RF discharge, input power of l.OkW, and temperature conditions of room temperature to 500 ° C.
  • the oxygen ion generation promoting layer 4 is formed on the electrode 1.
  • Ar is used as the sputtering gas.
  • Three films can be formed.
  • the oxygen ion moving layer 3 is formed on the oxygen ion generation promoting layer 4.
  • ZrO to which a predetermined minute amount (for example, 1 to: LOat%) of Y is added is used as a constituent material of the oxygen ion transfer layer 3, for example, sputtering
  • a Y-added ZrO film By adjusting the temperature to room temperature to 300 ° C, a Y-added ZrO film can be formed. This technique
  • a Y-doped ZrO film artificially containing a large number of 18 oxygen atoms can be formed. Also
  • an SrTiO film By setting the temperature condition to room temperature to 500 ° C., an SrTiO film can be formed.
  • the electrode 2 is formed on the oxygen ion moving layer 3. To do.
  • Pt is adopted as the constituent material of the electrode 2, for example, in sputtering, Ar gas (0.5 Pa) is used as a sputtering gas, a Pt target is used for DC discharge, and the input power is l.OkW.
  • the Pt film can be formed by setting the temperature condition to room temperature to 300 ° C.
  • SrRuO is used as the constituent material of electrode 2, for example,
  • the resistance variable element XI can be manufactured by sequentially forming the electrode 1, the oxygen ion generation promoting layer 4, the oxygen ion moving layer 3, and the electrode 2 on the substrate S. it can.
  • the oxygen ion migration layer 3 is in a state with a considerably high resistance. Therefore, the resistance variable element XI itself has a considerably high resistance. Is in a state.
  • a forming process is performed as a pre-process.
  • a current limit is imposed between the electrodes 1 and 2 to set a predetermined maximum allowable current A, and then the electrodes 1 and 2 are respectively connected to the negative electrode and the negative electrode.
  • the applied voltage between the electrodes 1 and 2 is, for example, 0 V or more, a predetermined threshold voltage V or more
  • FIG. 3 is a graph showing an example of current-voltage characteristics in the resistance variable element XI according to the present invention.
  • the horizontal axis of the graph in Fig. 3 shows the voltage applied between electrodes 1 and 2 of resistance variable element XI, and the vertical axis shows resistance variable element XI from electrode 1 (positive electrode) to electrode 2 (negative electrode).
  • the main carrier in this device is an electron).
  • the maximum current A that can pass is
  • Resistance variable element XI or oxygen ion moving layer 3 is set within the range where dielectric breakdown does not occur.
  • oxygen vacancy chains or row-like oxygen vacancies 6 extending substantially over the entire thickness of the oxygen ion migration layer 3 are formed in the oxygen ion migration layer 3. It is formed.
  • the oxygen ions 5 that have moved through the oxygen ion transfer layer 3 move in the form of oxygen molecules, move at the interface between the electrode 2 and the oxygen ion transfer layer 3, and are discharged out of the device.
  • the oxygen vacancy chain is formed in the oxygen ion transfer layer 3 so that the oxygen vacancy chain has a lower resistance than that of any other part and penetrates the oxygen ion transfer layer 3 in the thickness direction.
  • Make low resistance path 7. The resistance between the electrodes 1 and 2 is smaller when the low resistance path 7 is generated than when the low resistance path 7 is not generated.
  • the resistance variable element XI through the forming process as described above, a low resistance penetrating the oxygen ion migration layer 3 in the thickness direction from the above-described initial state having a considerably high resistance. A low resistance state in which the path 7 exists can be realized.
  • the resistance between the electrodes 1 and 2 of the resistance variable element XI in the low resistance state is, for example, 500 ⁇ or less. Even if the applied voltage is reduced to less than the threshold voltage V, for example, OV, the resistance variable element XI has its low resistance state.
  • the current is, for example,
  • the electrodes 1 and 2 are used as a negative electrode and a positive electrode, respectively, For example, by increasing the applied voltage to OV force to a predetermined threshold voltage V ( ⁇ V),
  • the threshold voltage V differs depending on the component materials and design dimensions of each element.
  • FIG. 4 is a graph showing an example of current-voltage characteristics in the resistance variable element XI according to the present invention, and corresponds to a part of the graph of FIG.
  • the horizontal axis of the graph in Fig. 4 shows the voltage applied between electrodes 1 and 2 of resistance variable element XI, and the vertical axis shows resistance variable element XI from electrode 1 (positive electrode) to electrode 2 (negative electrode). The current passing in the direction of.
  • This current A is the oxygen ion transfer layer 3
  • the low resistance path 7 Passes mainly through the low resistance path 7 and generates Joule heat.
  • sufficient Joule heat is generated in and near the low resistance path 7 in the oxygen ion moving layer 3, and the oxygen vacancies 6 constituting the low resistance path 7 in the low resistance state are generated.
  • the electric field formed between the electrodes 1 and 2 may also contribute to the diffusion of the oxygen vacancies 6.
  • the low resistance path 7 is cut at least.
  • the resistance variable element XI through the reset process as described above, the low resistance path 7 that penetrates the oxygen ion moving layer 3 in the thickness direction exists from the low resistance state.
  • a high resistance state in which the low resistance path 7 does not exist in the oxygen ion moving layer 3 can be realized.
  • the resistance between the electrodes 1 and 2 of the resistance variable element XI in the high resistance state is, for example, 100 k ⁇ or more. Even if the applied voltage is lower than the threshold voltage V, for example OV, the resistance change
  • the chemical element XI maintains its high resistance state.
  • a current limit is imposed between the electrodes 1 and 2 and, for example, the maximum current A that can be passed is set.
  • the generated oxygen ion 5 accompanied by a negative charge is directed toward the electrode 2 (positive electrode). Move in.
  • oxygen vacancies 6 that are continuous in the thickness direction of the oxygen ion migration layer 3 are generated in the oxygen ion migration layer 3 as in the locus of oxygen ion migration.
  • the moving oxygen ions 5 substantially attract the oxygen vacancies 6 already existing in the vicinity of the oxygen ions 5 and the oxygen vacancies 6 Move by replacing with.
  • a low-resistance path 7 consisting of oxygen vacancies or rows of oxygen vacancies 6 extending substantially over the entire thickness of the oxygen ion moving layer 3 is oxygen ions. It is formed again in the moving layer 3.
  • the oxygen ions 5 that have finished moving through the oxygen ion moving layer 3 move in the form of oxygen molecules, move at the interface between the electrode 2 and the oxygen ion moving layer 3, and are discharged out of the device.
  • the low resistance path 7 penetrating the oxygen ion moving layer 3 in the thickness direction is regenerated from the above-described high resistance state through the above setting process.
  • a resistance state can be realized. Apply voltage less than threshold voltage V, for example OV
  • the resistance change element XI maintains its low resistance state even when the resistance is lowered.
  • the current is shown, for example, by arrow D6 in FIGS. 3 and 4.
  • the resistance variable element XI that has reached the low resistance state through the setting process can be switched back to the high resistance state through the resetting process described above.
  • a current hardly flows and a relatively high current state easily flows. It is possible to selectively switch between. This switching is achieved by a bipolar operation.
  • the resistance variable element XI information can be appropriately recorded or rewritten using the selective switching of the resistance state.
  • the resistance variable element XI can be used as a resistance variable nonvolatile memory element.
  • the resistance variable element XI is a predetermined part in the circuit. It can also be used as a switching element for selectively changing the resistance.
  • the resistance variable element XI is suitable for operation at a low voltage.
  • the resistance variable element XI has an oxygen ion generation promoting layer 4 in contact with the electrode 1 (negative electrode) side of the oxygen ion moving layer 3, and this oxygen ion generation promoting layer 4 moves in the oxygen ion moving layer 3. This is to facilitate the generation of oxygen ions 5 to be generated, and to exhibit the function of reducing the voltage required to be applied between the electrodes 1 and 2 for generating the oxygen ions 5.
  • the resistance variable element XI according to the present invention is capable of a bipolar operation and is suitable for operation at a low voltage.
  • FIG. 5 is a cross-sectional view of a resistance variable element X2 according to the second embodiment of the present invention.
  • the resistance variable element X2 has a laminated structure including a substrate S, a pair of electrodes 1 and 2, and an oxygen ion migration layer 3, and further includes a plurality of oxygen ion generation promotion layers 4 ′.
  • the resistance variable element X2 is different from the resistance variable element XI according to the first embodiment in that it has a plurality of oxygen ion generation promotion layers 4 ′ instead of the oxygen ion generation promotion layer 4.
  • Each oxygen ion generation promoting layer 4 ' is a part for facilitating the generation of oxygen ions that should move in the oxygen ion moving layer 3, and is in contact with the oxygen ion moving layer 3 to be in contact with the oxygen ion moving layer 3. 3 or between electrode 2 and electrode 1.
  • the constituent material of the oxygen ion generation promoting layer 4 ′ the constituent materials described above with respect to the oxygen ion generation promoting layer 4 can be employed.
  • the thickness of each oxygen ion generation promoting layer 4 ′ is, for example, 1 to: LOnm.
  • the resistance variable element X2 substantially includes the configuration of the resistance variable element XI, and thus can operate in a bipolar manner on the same operating principle as described above with respect to the resistance variable element XI. And suitable for operating at a low voltage.
  • the resistance variable element X2 has a plurality of oxygen ion generation promotion layers 4 ′, and each oxygen ion generation promotion layer 4 ′ is provided between the electrode 1 (negative electrode) and the electrode 2 (positive electrode). Touch 3 electrode 1 side. Therefore, in the resistance variable element X2, the oxygen ion generation promoting layer 4 ′ It is possible to form the low resistance path 7 penetrating the on-moving layer 3 in the thickness direction, and to realize a plurality of low resistance states having different resistance values depending on the number of the low resistance paths 7 to be formed. Is possible.
  • the resistance variable element X2 From the high resistance state in which no low resistance path is formed in the oxygen ion moving layer 3 to the low resistance path corresponding to all the oxygen ion generation promoting layers 4 ′.
  • switching between a plurality of resistance states having different resistance values up to one low resistance state in which 7 is formed it is possible to multi-value information to be recorded or rewritten.
  • a sample element SI having the laminated configuration shown in FIG. 6 (a) was fabricated as a resistance variable element.
  • the facing area of the electrodes 1 and 2 in the sample element S1 is 31400 m 2 (the facing area of the electrode pair in the sample elements S2 to S10 described later is also 31400 m 2 ).
  • the sample element S1 was subjected to the forming process described above, and then the above-described reset to the high resistance state and the above-described set to the low resistance state were repeated a plurality of times.
  • a current limit is imposed between the electrodes 1 and 2 to set a maximum current that can be passed of 0.5 mA, and then the electrodes 1 and 2 are used as a negative electrode and a positive electrode, respectively.
  • a 15V forming DC voltage was applied between electrodes 1 and 2.
  • the electrodes 1 and 2 are set as a negative electrode and a positive electrode, respectively, without imposing a current limit between the electrodes 1 and 2, and the reset pulse between the electrodes 1 and 2 is set.
  • a voltage pulse intensity 1.8 V, pulse width lmsec
  • a relatively large reset current of about 10 mA flows through the sample element SI, and the low resistance is caused by the Joule heat generated in and near the low resistance path 7 in the oxygen ion moving layer 3 due to the reset current. Line 7 was disconnected and sample element S1 switched to a high resistance state.
  • a current limit is imposed between the electrodes 1 and 2 to set a maximum current of 0.5 mA, and the electrodes 1 and 2 are respectively connected to the negative electrode and the positive electrode.
  • the set pulse voltage between the electrodes 1 and 2 (pulse intensity 3.5V, pulse width 50nse c) was applied.
  • the low resistance path 7 was re-formed in the oxygen ion migration layer 3 of the sample element S1, and the sample element S1 was switched to the low resistance state.
  • sample element S1 Under the above conditions of forming DC voltage 15V, reset pulse voltage 1.8V, and set pulse voltage 3.5V, reset to high resistance state and subsequent set to low resistance state, It was possible to repeat 1 million times.
  • a sample element S2 having the laminated structure shown in FIG. 7 (a) was produced.
  • the forming DC voltage is set to 20V instead of 15V
  • the reset pulse voltage is set to 2.0V instead of 1.8V
  • the set pulse voltage is set to 5.5V instead of 3.5V.
  • the above-described reset to the high-resistance state and the above-described set to the low-resistance state were repeated a plurality of times.
  • sample element S2 has a Y 2 O layer which is a false oxygen ion generation promotion layer instead of oxygen ion generation promotion layer 4, in order to generate oxygen ions in sample element S2
  • a sample element S3 having the laminated structure shown in FIG. 8 (a) was produced. After performing the above forming process on sample element S3 in the same manner as sample element S1, except that the forming DC voltage is 18V instead of 15V and the set pulse voltage is 4.8V instead of 3.5V. The above reset to the high resistance state and the above set to the low resistance state were repeated several times.
  • sample element S3 does not have the oxygen ion generation promoting layer 4 and the oxygen ion transfer layer 3 and the electrode 1 are directly joined, oxygen ions are generated in the sample element S3.
  • a larger applied voltage forming DC voltage 18 V and set pulse voltage 4.8 V
  • sample element S3 resetting to the high resistance state and subsequent setting to the low resistance state under conditions of a forming DC voltage of 18 V, a reset pulse voltage of 1.8 V, and a set pulse voltage of 4.8 V I was able to repeat it, but I could't repeat it more than 500,000 times. Since a larger voltage is applied to the sample element S3 than to the sample element S1, the repeatable number of times of the sample element S3 is considered to be smaller than the repeatable number of times of the sample element S1.
  • a sample element S4 having the laminated structure shown in FIG. 9 (a) was produced.
  • the sampled DC voltage is 25V instead of 15V
  • the reset pulse voltage is 2.5V instead of 1.8V
  • the set pulse voltage is 6.3V instead of 3.5V.
  • the above-described reset to the high-resistance state and the above-described set to the low-resistance state were repeated a plurality of times.
  • the oxygen ion migration layer 3 of the sample element S4 is made of an amorphous material, the resistance to oxygen ion migration is higher than that of the oxygen ion migration layer 3 of the sample element S1 made of a crystalline material. Therefore, in order to move oxygen ions in the oxygen ion moving layer 3 of the sample element S4, a larger applied voltage (especially the forming DC voltage 25V and the set pulse voltage 6.3V) than that in the sample element S1 was required. .
  • sample element S4 resetting to the high resistance state and subsequent setting to the low resistance state under the conditions of forming DC voltage 25V, reset pulse voltage 2.5V, and set pulse voltage 6.3V The power that could be repeated once The power that could not be repeated more than 500,000 times. Since a larger voltage is applied to the sample element S4 than to the sample element S1, the repeatable number of times of the sample element S4 is considered to be smaller than the repeatable number of times of the sample element S1.
  • a sample element S 5 having the laminated configuration shown in FIG. 10 (a) was produced.
  • the forming DC voltage is set to 25 V instead of 15 V, and the reset pulse voltage is set to 1.8 V.
  • the reset pulse voltage is set to 1.8 V.
  • 4.3V and set pulse voltage to 13.5V instead of 3.5V
  • the set to state was repeated several times.
  • the reset to the high resistance state and the subsequent set to the low resistance state are repeated 30 times under the conditions of the forming DC voltage 25V, the reset pulse voltage 4.3V, and the set pulse voltage 13.5V. I was able to do it, but I could't repeat it more than 50 times.
  • the sample element S5 has a crystalline Al 2 O layer as a false oxygen ion transfer layer instead of the oxygen ion transfer layer 3.
  • Crystalline Al 2 O 3 is a corundum-type oxide, and its
  • Oxygen ions cannot move inside such AlO. Oxygen ions in the Al O layer
  • the resistance state is switched based on a principle different from the operation principle according to the present invention.
  • the resistance state of the oxygen ion transfer layer 3 or the element is not switched by the formation and cutting of the low resistance path 7 in the oxygen ion transfer layer 3
  • the number of repeatable times of the sample element S5 is that of the sample elements S1 to S4. It is extremely smaller than the number of repeatable times.
  • Sample elements S6 to S10 having the stacked configuration shown in FIGS. 6B, 7B, 8B, 9B, and 10B were fabricated.
  • Sample element S6 is composed of crystalline Y-doped ZrO having a thickness of 40 nm as oxygen ion transfer layer 3.
  • sample element SI has the same stacked structure as the sample element SI except that it has a film (oxygen is contained in its natural isotope composition).
  • Sample element S7 has a 40-nm-thick crystalline Y-doped ZrO as oxygen-ion transfer layer 3
  • Sample element S8 has a 40 nm-thick crystalline Y-added ZrO as oxygen ion transfer layer 3
  • sample element S3 Except for having a 2 2 film (oxygen is contained in a natural isotope composition), it has the same stacked structure as sample element S3.
  • Sample element S9 includes an amorphous Y-doped ZrO film having a thickness of 40 nm as oxygen ion transfer layer 3.
  • an amorphous Y-doped ZrO film with a thickness of 5 nm (artificially containing oxygen with a mass number of 18) and a thickness of 35 nm is contained in its natural isotope composition
  • an amorphous Y-doped ZrO film with a thickness of 5 nm (artificially containing oxygen with a mass number of 18) and a thickness of 35 nm is contained in its natural isotope composition
  • sample element S4 Except for having a 2 2 film (oxygen is contained in a natural isotope composition), it has the same stacked structure as sample element S4.
  • Sample element S10 has a 40 nm thick crystalline Al 2 O film (
  • the sample element S5 has the same stacked structure except that the sample element S5 is included.
  • the oxygen concentration distribution in the depth direction of the mass number 18 ( depth profile).
  • the interface between the electrode 2 and the layer immediately below it is the reference position
  • the distance from the reference position to the substrate side is the depth
  • the depth is 3 nm, 10 nm, 20 nm
  • the concentration of oxygen having a mass number of 18 at 30 nm and 37 nm was measured.
  • oxygen having a mass number of 18 was not detected except at a depth of 37 nm. It was confirmed that oxygen with a mass number of 18 migrated in the sample elements S6 to S10 in the initial state.
  • a current limit is imposed between the electrodes 1 and 2 to set a maximum passable current of 0.5 mA, and then the electrodes 1 and 2 are respectively connected to the negative electrode and the positive electrode.
  • a DC voltage was continuously applied between the electrodes 1 and 2 for 60 minutes.
  • the DC voltage applied to sample element S6 is 7.5V, which is 50% of the above-described forming DC voltage (15V) applied to sample element S1.
  • the DC voltage applied to sample element S7 is 10V, This is 50% of the above forming DC voltage (20V) applied to the sample element S2.
  • the DC voltage applied to sample element S8 is 9V, which is 50% of the above-described forming DC voltage (18V) applied to sample element S3.
  • the DC voltage applied to the sample element S9 is 12.5V, which is 50% of the above-described forming DC voltage (25V) applied to the sample element S4.
  • the DC voltage applied to sample element S10 is 12.5V, which is 50% of the above-described forming DC voltage (25V) applied to sample element S5.
  • sample elements S6 and S9 oxygen having a mass number of 18 was detected at all depths related to measurement (that is, over substantially the entire region in the thickness direction of oxygen ion moving layer 3). This suggests the following.
  • oxygen ions are generated at or near the interface between the oxygen ion generation promoting layer 4 and the oxygen ion moving layer 3, and the oxygen ions are generated by the action of the electric field. Moved in the oxygen ion transfer layer 3 toward the electrode 2 (positive electrode), and its mobility was high.
  • sample element S8 oxygen having a mass number of 18 was not detected at a force depth of 3 nm and lOnm detected at a depth of 20 nm and 30 ⁇ m in addition to a depth of 37 nm. This suggests that: In the sample element S8 during application of the DC voltage, oxygen ions are generated at or near the interface between the oxygen ion moving layer 3 and the electrode 1 (negative electrode), and the oxygen ions move due to the action of the electric field. Although it moved in the layer 3 toward the electrode 2 (positive electrode), its mobility was low.
  • the generation of oxygen ions in the sample element S8 is due to the catalytic action of Pt, which is a constituent material of the electrode 1 in contact with the oxygen ion moving layer 3.
  • Low mobility promotes oxygen ion production This is due to the low oxygen ion generation efficiency based on the absence of the advance layer 4.
  • the oxygen ion generation promoting layer 4 which is a conductive oxide containing a noble metal has a substantially large noble metal surface area, and therefore contains a large number of catalytic reaction sites. Does not have such an oxygen ion generation promoting layer 4.
  • sample element S7 oxygen having a mass number of 18 other than at a depth of 37 nm was not detected (ie, oxygen ion migration was confirmed in oxygen ion migration layer 3).
  • oxygen ion movement was not confirmed in the oxygen ion moving layer 3 where the oxygen ions can move by the action of the electric field is that oxygen ions were generated in the sample element S7 during application of the DC voltage described above. It suggests that it was powerful.
  • sample element S10 oxygen having a mass number of 18 was not detected except at a depth of 37 nm (that is, oxygen ion migration was confirmed in the pseudo oxygen ion migration layer).
  • oxygen ion generation promoting layer 4 showing a significant catalytic ability for the oxygen ion generation reaction, oxygen ion transfer was not confirmed in the AlO layer as the pseudo oxygen ion transfer layer.
  • the oxygen ion moving layer 3 in which oxygen ions can move by the action of an electric field, and the oxygen ion generation promoting layer in contact with the electrode 1 (negative electrode) side in such an oxygen ion moving layer 3 It can be understood that sufficient oxygen ion migration occurs due to the presence of 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Description

明 細 書
抵抗変化型素子
技術分野
[0001] 本発明は、相対的に電流が流れにくい高抵抗状態と相対的に電流が流れやすい 低抵抗状態との間を切り替わることが可能な抵抗変化型素子に関し、例えば、抵抗 状態の切り替わりを利用して情報の記録ないし書き換えを実行可能な抵抗変化型記 憶素子に関する。
背景技術
[0002] 不揮発性メモリの技術分野にぉ 、ては、 ReRAM (resistive RAM)が注目を集めて いる。 ReRAMは、抵抗変化型素子であり、一般に、一対の電極と、当該電極対間に 印加される電圧に応じて高抵抗状態および低抵抗状態の間を選択的に切り替わるこ とが可能な記録膜とを有する。 ReRAMでは、記録膜の抵抗状態の選択的な切り替 わりを利用して、情報の記録ないし書き換えが実行され得る。このような ReRAMない し抵抗変化型素子に関しては、例えば、下記の特許文献 1〜3に記載されている。
[0003] 特許文献 1 :特開 2004— 273615号公報
特許文献 2:特開 2004 - 281913号公報
特許文献 3 :特開 2005— 123361号公報
[0004] ReRAMは、電気的特性の観点力もバイポーラ型とュ-ポーラ型に大別される。バ ィポーラ型の ReRAMでは、記録膜を高抵抗状態力も低抵抗状態へ変化させるため の、電極対間の電圧印加方向と、記録膜を低抵抗状態から高抵抗状態へ変化させ るための、電極対間の電圧印加方向とは異なる。すなわち、バイポーラ型の ReRAM では、 2種類の抵抗状態変化ないし切り替わりにおいて、異なる極性の電圧が利用さ れる。一方、ュ-ポーラ型の ReRAMでは、記録膜を高抵抗状態から低抵抗状態へ 変化させるための、電極対間の電圧印加方向と、記録膜を低抵抗状態から高抵抗状 態へ変化させるための、電極対間の電圧印加方向とは同じである。すなわち、ュ-ポ ーラ型の ReRAMでは、 2種類の抵抗状態変化において、同じ極性の電圧が利用さ れる。ュ-ポーラ型の ReRAMは、 2種類の抵抗状態変化において同じ極性の電圧 を利用することができるため(即ち、 2種類の抵抗状態変化において印加電圧の極性 を変化させる必要がないため)、バイポーラ型 ReRAMと比較して、 ReRAMを含む デバイス回路が複雑化するのを回避しやす 1ヽと ヽぅ利点を有する。
[0005] ュ-ポーラ型 ReRAMとして、 NiOよりなる記録膜を具備する ReRAMや、 TiOより
3 なる記録膜を具備する ReRAMが報告されている。しかしながら、これら ReRAMに ついては、ュ-ポーラ型の動作が可能であるという事実は知られている力 動作原理 が特定されていない。動作原理が不明であると、 ReRAMの各部についての材料選 択ゃ設計寸法等の最適化の指針が定まらず、 ReRAMの素子設計における最適化 が困難である。また、記録膜を構成する基本材料が異なると、 ReRAMの動作原理 は大きく異なると考えられて 、る。
[0006] 本発明は、以上のような事情の下で考え出されたものであり、所定の動作原理にお いてュ-ポーラ型の動作が可能であり且つ低電圧で動作するのに適した、抵抗変化 型素子を提供することを目的とする。
発明の開示
[0007] 本発明の第 1の側面により提供される抵抗変化型素子は、第 1電極と、第 2電極と、 当該第 1および第 2電極の間に位置し、内部での酸素イオンの移動によって酸素空 孔よりなる低抵抗路が生じ得る酸素イオン移動層と、酸素イオン移動層に接して当該 酸素イオン移動層および第 1電極の間に位置する酸素イオン生成促進層と、を含む 積層構造を有する。
[0008] このような構成の抵抗変化型素子においては、第 1および第 2電極間に電流制限を 課して所定の通過可能最大電流を設定したうえで、第 1および第 2電極を各々負極 および正極として当該電極対間の印加電圧を例えば 0V力 第 1閾値電圧以上の所 定電圧にまで増大させることにより、酸素イオン移動層内に低抵抗路を形成して低抵 抗状態を実現することができる。第 1閾値電圧以上に印加電圧を増大させると、まず 、酸素イオン生成促進層と酸素イオン移動層の界面または界面近傍で酸素イオンを 発生させることができる。続いて、負電荷を伴う発生酸素イオンを第 2電極 (正極)に 向けて酸素イオン移動層内を移動させて、酸素イオン移動の軌跡のように、酸素ィォ ン移動層の厚さ方向に連なる酸素空孔を酸素イオン移動層内に生じさせることがで きる(酸素イオン移動層内を酸素イオンが移動する際には、酸素イオン通過箇所に酸 素空孔が逐次新たに生じたり、或は、移動中の酸素イオンが当該酸素イオンの近傍 に既に存在する酸素空孔を実質的に引き寄せ且つ当該酸素空孔と置換することに よって移動する)。そして、実質的に酸素イオン移動層の厚さ全体にわたって延びる 酸素空孔鎖な 、し列状の酸素空孔を酸素イオン移動層内に形成することができる。 この酸素空孔鎖は、酸素イオン移動層内にお 、て酸素空孔鎖が形成されて 、な 、 箇所よりも抵抗が低ぐ酸素イオン移動層を厚さ方向に貫通する低抵抗路をなす。第 1および第 2電極間の抵抗は、このような低抵抗路が生じている場合の方が、低抵抗 路が生じていない場合よりも、小さい。本素子においては、このようにして低抵抗状態 を実現することができる。印加電圧を、第 1閾値電圧以上の所定電圧から第 1閾値電 圧未満の例えば OVに低下させても、本素子はその低抵抗状態を維持する。
一方、上述のようにして実現された低抵抗状態にある本素子については、第 1およ び第 2電極間に電流制限を課さずに、第 1および第 2電極を各々負極および正極とし て当該電極対間の印加電圧を例えば OVから第 2閾値電圧(上述の第 1閾値電圧より 小さい)以上の所定電圧にまで増大させることにより、高抵抗状態に切り替えることが できる。この電圧増大過程においては、次第に増大する所定の電流 (例えば、上述 の通過可能最大電流よりも最終的には大きな電流)を、第 2電極から第 1電極への方 向に流すことができ、この電流は、酸素イオン移動層の低抵抗路を主に通り、ジユー ル熱を発生させる。そして、印加電圧が第 2閾値電圧以上である場合、酸素イオン移 動層内の低抵抗路およびその近傍に充分なジュール熱を発生させ、低抵抗状態に おいて低抵抗路を構成していた酸素空孔を充分に熱拡散させることができる。このと き、電極対間に形成される電界も、酸素空孔の拡散に寄与する場合があると考えら れる。これにより、低抵抗路は少なくとも切断される。本素子においては、このようにし て、酸素イオン移動層を厚さ方向に貫通する低抵抗路が存在しない高抵抗状態を実 現することができる。印加電圧を、第 2閾値電圧以上の所定電圧から第 2閾値電圧未 満の例えば OVに低下させても、本素子はその高抵抗状態を維持する。また、このよう な高抵抗状態にある本素子については、上述した低抵抗状態実現手法により、低抵 抗状態に再び切り替えることが可能である。 [0010] 以上のように、本素子は、相対的に電流が流れにくい高抵抗状態と相対的に電流 が流れやすい低抵抗状態との間を、ュ-ポーラ型の動作で適切に切り替わることが できる(高抵抗ィ匕と低抵抗ィ匕において電極対間の電圧印加方向は同じである)。この ような本素子によると、抵抗状態の選択的な切り替わりを利用して、情報の記録ない し書き換えを実行することが可能である。すなわち、本素子は、抵抗変化型の不揮発 性記憶素子として用いることが可能である。また、本素子は、回路内の所定箇所にて 抵抗を選択的に変化させるためのスイッチング素子としても、用いることが可能である
[0011] 力!]えて、本素子は低電圧で動作するのに適する。本素子は、酸素イオン移動層の 第 1電極 (負極)側に接する酸素イオン生成促進層を有するところ、この酸素イオン生 成促進層は、酸素イオン移動層内を移動すべき酸素イオンを発生しやすくするため のものであり、酸素イオンを発生させるうえで電極対間に印加することを要する電圧を 低減させる機能を発揮するからである。
[0012] 以上のように、本発明の第 1の側面に係る抵抗変化型素子は、ュ-ポーラ型の動 作が可能であり、且つ、低電圧で動作するのに適するのである。
[0013] 本発明の第 2の側面により提供される抵抗変化型素子は、第 1電極と、第 2電極と、 当該第 1および第 2電極の間に位置し、内部での酸素イオンの移動によって酸素空 孔よりなる低抵抗路が生じ得る酸素イオン移動層と、を含む積層構造を有する。また 、本抵抗変化型素子は、各々が酸素イオン移動層に接して当該酸素イオン移動層 および第 1電極の間に位置する、複数の酸素イオン生成促進層を有する。
[0014] 第 2の側面に係る抵抗変化型素子は、第 1の側面に係る抵抗変化型素子の構成を 含み、従って、第 1の側面の抵抗変化型素子に関して上述したのと同様に、ュ-ポー ラ型の動作が可能であり且つ低電圧で動作するのに適する。
[0015] 力!]えて、第 2の側面に係る抵抗変化型素子においては、いわゆる多値記録が可能 である。本素子は、複数の酸素イオン生成促進層を有し、各酸素イオン生成促進層 は、第 1電極 (負極)と第 2電極 (正極)の間において、酸素イオン移動層の第 1電極 側に接する。そのため、本素子においては、酸素イオン生成促進層ごとに酸素イオン 移動層を厚さ方向に貫通する低抵抗路を形成することが可能であり、形成される低 抵抗路の本数に応じて抵抗値の異なる複数の低抵抗状態を実現することが可能で ある。したがって、本素子によると、酸素イオン移動層内に低抵抗路が一本も形成さ れて 、な 、高抵抗状態から、全ての酸素イオン生成促進層に対応して低抵抗路が 形成された一の低抵抗状態までの、抵抗値の異なる複数の抵抗状態間の切り替わり を利用して、記録な 、し書き換えの対象である情報の多値ィ匕が可能なのである。
[0016] 本発明の第 1および第 2の側面において、好ましくは、酸素イオン移動層は固体電 解質よりなる。固体電解質としては、固体酸ィ匕物燃料電池(SOFC : Solid Oxide Fuel Cell)の電解質層を構成する材料と同様のものを採用することができる場合がある。
[0017] 好ましくは、酸素イオン移動層ないし上述の固体電解質は、蛍石構造型酸化物ま たはぺロブスカイト構造型酸化物よりなる。蛍石構造型酸化物としては、 Yや、 Ca、 M gが添加された ZrO (部分安定ィ匕ジルコユア)、 ZrO、および Y Oなどを採用するこ
2 2 2 3
とができる。ぺロブスカイト構造型酸ィ匕物としては、 SrTiO
3および CaTiO
3などを採用 することができる。
[0018] 好ましくは、酸素イオン移動層は結晶質材料よりなる。結晶質材料よりなる酸素ィォ ン移動層は、非晶質材料よりなる酸素イオン移動層よりも、酸素イオン移動性が高い 傾向にある。
[0019] 好ましくは、酸素イオン生成促進層は、貴金属を含有する導電性酸化物よりなる。
好ましくは、第 1電極および Zまたは第 2電極は貴金属よりなる。貴金属は、好ましく は、 Pt、 Au、 Pd、 Ru、および Irからなる群より選択される。これら貴金属は、酸素ィォ ン生成反応の触媒として機能しうる。また、貴金属よりなる第 1および第 2電極は、酸 化しにくい。
図面の簡単な説明
[0020] [図 1]図 1は、本発明の第 1の実施形態に係る抵抗変化型素子の断面図である。
[図 2]図 2は、本発明に係る動作原理を表す。
[図 3]図 3は、本発明に係る抵抗変化型素子における電流 電圧特性の一例を示す グラフである。
[図 4]図 4は、本発明に係る抵抗変化型素子における電流 電圧特性の一例を示す グラフであり、図 3のグラフの一部に相当する。 [図 5]図 5は、本発明の第 2の実施形態に係る抵抗変化型素子の断面図である。
[図 6]図 6の(a)はサンプル素子 SIの積層構成を表し、 (b)はサンプル素子 S6の積 層構成を表す。
[図 7]図 7の(a)はサンプル素子 S2の積層構成を表し、 (b)はサンプル素子 S7の積 層構成を表す。
[図 8]図 8の(a)はサンプル素子 S3の積層構成を表し、 (b)はサンプル素子 S8の積 層構成を表す。
[図 9]図 9の(a)はサンプル素子 S4の積層構成を表し、 (b)はサンプル素子 S 9の積 層構成を表す。
[図 10]図 10の(a)はサンプル素子 S5の積層構成を表し、 (b)はサンプル素子 S10の 積層構成を表す。
[図 11]図 11は、サンプル素子 S6〜S10における酸素の深さ方向濃度分布調査の結 果をまとめた表である。
発明を実施するための最良の形態
[0021] 図 1は、本発明の第 1の実施形態に係る抵抗変化型素子 XIの断面図である。抵抗 変化型素子 XIは、基板 Sと、一対の電極 1, 2と、酸素イオン移動層 3と、酸素イオン 生成促進層 4とからなる積層構造を有し、相対的に電流が流れにくい高抵抗状態と 相対的に電流が流れやすい低抵抗状態との間を切り替わることが可能に構成されて いる。
[0022] 基板 Sは、例えばシリコン基板や酸ィ匕物基板である。シリコン基板の表面には、熱 酸ィ匕膜が形成されていてもよい。酸ィ匕物基板としては、例えば MgO基板、 SrTiO基
3 板、 Al O基板、石英基板、およびガラス基板が挙げられる。
2 3
[0023] 電極 1, 2は、各々、良導電性材料よりなり、例えば貴金属や良導電性酸化物よりな る。貴金属としては、例えば Pt, Au, Pd, Ru, Irが挙げられる。良導電性酸化物とし ては、例えば SrRuO , RuO , IrO , SnO , ZnO, ITOが挙げられる。このような電
3 2 2 2
極 1, 2の厚さは、各々、例えば 30〜200nmである。
[0024] 酸素イオン移動層 3は、電極 1, 2間に位置し、高抵抗状態および低抵抗状態の間 を選択的に切り替わり得る部位である。また、酸素イオン移動層 3は、内部での酸素 イオンの移動によって酸素空孔が生じ得る固体電解質よりなる。固体電解質としては 、例えば、蛍石構造型酸化物やべ口ブスカイト構造型酸化物を採用することができる
。蛍石構造型酸化物としては、例えば、 Yや、 Ca、 Mgが添加された ZrO (部分安定
2 化ジルコユア)、 ZrO、および Y Oなどを採用することができる。ぺロブスカイト構造
2 2 3
型酸ィ匕物としては、例えば SrTiOおよび CaTiOなどを採用することができる。酸素
3 3
イオン移動層 3の厚さは、例えば 10〜50nmである。
[0025] また、酸素イオン移動層 3は、充分な絶縁性を示し得る材料よりなる。蛍石構造型 酸化物ゃぺロブスカイト構造型酸化物の内部には、熱力学的に平衡な状態で、酸素 空孔が存在し得るが、酸素イオン移動層 3について充分な絶縁性を確保する観点か らは、酸素イオン移動層 3内に過剰な酸素空孔が存在するのは好ましくな!/、。
[0026] 力!]えて、酸素イオン移動層 3は結晶質材料よりなるのが好ましい。結晶質材料よりな る固体電解質は、非晶質材料よりなる固体電解質よりも、酸素イオン移動性が高い傾 I口」にある。
[0027] 酸素イオン生成促進層 4は、酸素イオン移動層 3内を移動すべき酸素イオンを発生 しゃすくするための部位であり、酸素イオン移動層 3に接し、当該酸素イオン移動層 3 ないし電極 2と電極 1との間に位置する。酸素イオン生成促進層 4は、酸素イオンの 生成反応の触媒として機能し得る貴金属を含有する導電性酸化物よりなる。そのよう な貴金属としては、例えば Pt, Au, Pd, Ru, Irが挙げられる。酸素イオン生成促進 層 4を構成する導電性酸ィ匕物中の貴金属の濃度は、例えば 10〜50at%である。こ のような酸素イオン生成促進層 4の厚さは、例えば 1〜 1 Onmである。
[0028] このような構造を有する抵抗変化型素子 XIの製造にぉ 、ては、まず、基板 S上に 電極 1を形成する。具体的には、基板 S上に所定材料を成膜した後、所定のレジスト ノターンをマスクとして利用して当該膜に対してエッチング処理を施すことにより、基 板 S上にて電極 1をパターン形成することがでる。成膜手法としては、例えば、スパッ タリング法、真空蒸着法、 CVD法、または LD (Laser Deposition)法を採用することが できる。以降の酸素イオン生成促進層 4、酸素イオン移動層 3、および電極 2につい ても、このような材料成膜およびその後のエッチング処理によるパターユングを経て、 形成することができる。 [0029] 電極 1の構成材料として Ptを採用する場合には、例えば、スパッタリング装置を使 用して行うスパッタリング法において、スパッタガスとして Arガス(0.5Pa)を用い、 Ptタ 一ゲットを用い、 DC放電とし、投入電力を l.OkWとし、温度条件を室温〜 300°Cとす ることにより、基板 S上に Pt膜を形成することができる。電極 1の構成材料として SrRu Oを採用する場合には、例えば、スパッタリング法において、スパッタガスとして Arと
3
Oの混合ガス(0.5Pa,酸素濃度 10〜30vol%)を用い、 SrRuOターゲットを用い、
2 3
DC放電または RF放電とし、投入電力を l.OkWとし、温度条件を室温〜 500°Cとす ることにより、基板 S上に SrRuO膜を形成することができる。
3
[0030] 抵抗変化型素子 XIの製造においては、次に、電極 1上に酸素イオン生成促進層 4 を形成する。酸素イオン生成促進層 4の構成材料として、 20at%の Ptを含有する Y
2
Oを採用する場合には、例えば、スパッタリング法において、スパッタガスとして Arと
3
Oの混合ガス (0.5Pa,酸素濃度 20vol%以下)を用い、表面の所定箇所に 5枚の Pt
2
チップ(lOmmX 10mm X 1mm)を配置した Y Oターゲットを用い、 RF放電とし、投
2 3
入電力を l.OkWとし、温度条件を室温〜 150°Cとすることにより、 20at%Pt含有 Y O
2
3膜を形成することができる。
[0031] 抵抗変化型素子 XIの製造にお!、ては、次に、酸素イオン生成促進層 4上に酸素ィ オン移動層 3を形成する。酸素イオン移動層 3の構成材料として、所定微少量 (例え ば 1〜: LOat%)の Yが添加された ZrOを採用する場合には、例えば、スパッタリング
2
法において、スパッタガスとして Arと Oの混合ガス(0.5Pa,酸素濃度 20
2 〜40vol%) を用い、 Y添加 ZrOターゲットを用い、 RF放電とし、投入電力を l.OkWとし、温度条
2
件を室温〜 300°Cとすることにより、 Y添加 ZrO膜を形成することができる。この手法
2
において、混合ガス中の Oとして、質量数 18の酸素よりなる Oを用いることにより、質
2 2
量数 18の酸素原子を人工的に多く含む Y添加 ZrO膜を形成することができる。また
2
、酸素イオン移動層 3の構成材料として SrTiOを採用する場合には、例えば、スパッ
3
タリング法において、スパッタガスとして Arと Oの混合ガス(0.5Pa,酸素濃度 20
2 〜4
Ovol%)を用い、 SrTiOターゲットを用い、 RF放電とし、投入電力を l.OkWとし、温
3
度条件を室温〜 500°Cとすることにより、 SrTiO膜を形成することができる。
3
[0032] 抵抗変化型素子 XIの製造においては、次に、酸素イオン移動層 3上に電極 2を形 成する。電極 2の構成材料として Ptを採用する場合には、例えば、スパッタリング法に おいて、スパッタガスとして Arガス(0.5Pa)を用い、 Ptターゲットを用い、 DC放電とし 、投入電力を l.OkWとし、温度条件を室温〜 300°Cとすることにより、 Pt膜を形成す ることができる。電極 2の構成材料として SrRuOを採用する場合には、例えば、スパ
3
ッタリング法において、スパッタガスとして Arと Oの混合ガス(0.5Pa,酸素濃度 10〜
2
30vol%)を用い、 SrRuOターゲットを用い、 DC放電または RF放電とし、投入電力
3
を l.OkWとし、温度条件を室温〜 500°Cとすることにより、 SrRuO膜を形成すること
3
ができる。
[0033] 以上のようにして、電極 1、酸素イオン生成促進層 4、酸素イオン移動層 3、および 電極 2を、基板 S上に順次形成することにより、抵抗変化型素子 XIを製造することが できる。
[0034] 製造された抵抗変化型素子 XIの初期の状態では、酸素イオン移動層 3が、抵抗の 相当程度に高い状態にあり、従って、抵抗変化型素子 XI自体も、抵抗が相当程度 に高い状態にある。このような初期状態にある抵抗変化型素子 XIに対しては、前処 理としてフォーミング処理を施す。
[0035] 抵抗変化型素子 XIに対するフォーミング処理においては、電極 1, 2間に電流制 限を課して所定の通過可能最大電流 Aを設定したうえで、電極 1, 2を各々負極およ
1
び正極として、当該電極 1, 2間の印加電圧を例えば 0Vカゝら所定の閾値電圧 V以上
1 まで増大させる(閾値電圧 Vは、素子各部の構成材料や設計寸法によって異なる)。
1
これにより、例えば図 3の矢印 D1で示される急峻な電流値上昇に顕れているように、 抵抗変化型素子 XIは低抵抗状態力ゝら高抵抗状態へと切り替わる。図 3は、本発明 に係る抵抗変化型素子 XIにおける電流 電圧特性の一例を示すグラフである。図 3 のグラフの横軸は、抵抗変化型素子 XIの電極 1, 2間に印加される電圧を示し、縦 軸は、抵抗変化型素子 XIを電極 1 (正極)から電極 2 (負極)への方向に通過する電 流を示す (本素子における主キャリアは電子である)。通過可能最大電流 Aの値は、
1 抵抗変化型素子 XIないし酸素イオン移動層 3にて絶縁破壊が生じない範囲で設定 される。
[0036] このフォーミング過程においては、まず、酸素イオン生成促進層 4中の貴金属の触 媒作用により、当該酸素イオン生成促進層 4と酸素イオン移動層 3の界面または界面 近傍にて、図 2 (a)に示すように酸素イオン 5が発生する。
[0037] フォーミング過程においては、続いて、図 2 (b)および図 2 (c)に示すように、負電荷 を伴う発生酸素イオン 5が、電極 2 (正極)に向けて酸素イオン移動層 3内を移動する 。これにより、酸素イオン移動の軌跡のように、酸素イオン移動層 3の厚さ方向に連な る酸素空孔 6が酸素イオン移動層 3内に生じる。酸素イオン移動層 3内を酸素イオン 5が移動する際には、酸素イオン通過箇所に酸素空孔 6が逐次新たに生じる。
[0038] そして、図 2 (d)に示すように、実質的に酸素イオン移動層 3の厚さ全体にわたって 延びる酸素空孔鎖ないし列状の酸素空孔 6が、酸素イオン移動層 3内に形成される。 酸素イオン移動層 3を移動し終えた酸素イオン 5は、酸素分子の形態で、電極 2と酸 素イオン移動層 3の界面を移動して素子外に排出される。酸素空孔鎖は、酸素ィォ ン移動層 3内にお ヽて酸素空孔鎖が形成されて!ヽな ヽ箇所よりも抵抗が低く、酸素ィ オン移動層 3を厚さ方向に貫通する低抵抗路 7をなす。電極 1, 2間の抵抗は、このよ うな低抵抗路 7が生じている場合の方が、低抵抗路 7が生じていない場合よりも、小さ い。
[0039] 抵抗変化型素子 XIにおいては、以上のようなフォーミング過程を経ることにより、抵 抗が相当程度に高い上述の初期状態から、酸素イオン移動層 3を厚さ方向に貫通す る低抵抗路 7が存在する低抵抗状態を実現することができる。低抵抗状態にある抵 抗変化型素子 XIの電極 1, 2間の抵抗は、例えば 500 Ω以下である。印加電圧を閾 値電圧 Vより小さい例えば OVに低下させても、抵抗変化型素子 XIはその低抵抗状
1
態を維持する。印加電圧を閾値電圧 Vから OVに低下させると、電流は、例えば図 3
1
の矢印 D2に示すように、変化する。
[0040] このような低抵抗状態にある抵抗変化型素子 XIについては、電極 1, 2間に電流制 限を課さずに、電極 1, 2を各々負極および正極として、当該電極 1, 2間の印加電圧 を例えば OV力 所定の閾値電圧 V (<V )に増大させることにより、高抵抗状態にリ
2 1
セットすることができる(閾値電圧 Vは、素子各部の構成材料や設計寸法によって異
2
なる)。印加電圧を OVから次第に増大させると、まず、例えば図 3および図 4の矢印 D 3で示すように、抵抗変化型素子 XIを通過する電流は、相対的に大きな変化率で次 第に増大する。そして、印加電圧が増大して閾値電圧 Vに至ると、例えば図 3および
2
図 4の矢印 D4で示される急峻な電流値降下に顕れて 、るように、抵抗変化型素子 X 1は低抵抗状態力ゝら高抵抗状態へと切り替わる。図 4は、本発明に係る抵抗変化型 素子 XIにおける電流 電圧特性の一例を示すグラフであり、図 3のグラフの一部に 相当する。図 4のグラフの横軸は、抵抗変化型素子 XIの電極 1, 2間に印加される電 圧を示し、縦軸は、抵抗変化型素子 XIを電極 1 (正極)から電極 2 (負極)への方向 に通過する電流を示す。
[0041] この印加電圧増大過程ないしリセット過程においては、図 3および図 4に示すように 、上述の通過可能最大電流 Aよりも最終的には大きな電流 Aを、電極 2 (正極)から
1 2
電極 1 (負極)への方向に流すことが可能である。この電流 Aは、酸素イオン移動層 3
2
の低抵抗路 7を主に通り、ジュール熱を発生させる。そして、当該リセット過程におい ては、酸素イオン移動層 3内の低抵抗路 7およびその近傍に充分なジュール熱を発 生させ、低抵抗状態において低抵抗路 7を構成していた酸素空孔 6を、図 2 (e)に示 すように熱拡散させることができる。このとき、電極 1, 2間に形成される電界も、酸素 空孔 6の拡散に寄与する場合があると考えられる。これにより、低抵抗路 7は少なくと も切断される。
[0042] 抵抗変化型素子 XIにおいては、以上のようなリセット過程を経ることにより、酸素ィ オン移動層 3を厚さ方向に貫通する低抵抗路 7が存在する低抵抗状態から、そのよう な低抵抗路 7が酸素イオン移動層 3内に存在しない高抵抗状態を実現することがで きる。高抵抗状態にある抵抗変化型素子 XIの電極 1, 2間の抵抗は、例えば 100k Ω以上である。印加電圧を閾値電圧 Vより小さい例えば OVに低下させても、抵抗変
2
化型素子 XIはその高抵抗状態を維持する。
[0043] リセット過程を経て高抵抗状態に至った抵抗変化型素子 XIについては、電極 1, 2 間に電流制限を課して例えばの通過可能最大電流 Aを設定したうえで、電極 1, 2を
1
各々負極および正極として、当該電極 1, 2間の印加電圧を例えば OVから所定の閾 値電圧 V (V <Vく V )以上まで増大させることにより、例えば図 3および図 4の矢印
3 2 3 1
D5で示される急峻な電流値上昇に顕れているように、低抵抗状態にセットすることが できる(閾値電圧 Vは、素子各部の構成材料や設計寸法によって異なる)。 [0044] このセット過程においては、まず、酸素イオン生成促進層 4中の貴金属の触媒作用 により、当該酸素イオン生成促進層 4と酸素イオン移動層 3の界面または界面近傍に て、図 2 (f)に示すように酸素イオン 5が発生する。
[0045] セット過程にぉ 、ては、続、て、図 2 (g)に示すように、負電荷を伴う発生酸素ィォ ン 5が、電極 2 (正極)に向けて酸素イオン移動層 3内を移動する。これにより、酸素ィ オン移動の軌跡のように、酸素イオン移動層 3の厚さ方向に連なる酸素空孔 6が酸素 イオン移動層 3内に生じる。酸素イオン移動層 3内を酸素イオン 5が移動する際には 、移動中の酸素イオン 5が当該酸素イオン 5の近傍に既に存在する酸素空孔 6を実 質的に引き寄せ且つ当該酸素空孔 6と置換することによって移動する。
[0046] そして、図 2 (h)に示すように、実質的に酸素イオン移動層 3の厚さ全体にわたって 延びる酸素空孔鎖ないし列状の酸素空孔 6からなる低抵抗路 7が酸素イオン移動層 3内に再び形成される。酸素イオン移動層 3を移動し終えた酸素イオン 5は、酸素分 子の形態で、電極 2と酸素イオン移動層 3の界面を移動して素子外に排出される。
[0047] 抵抗変化型素子 XIにおいては、以上のようなセット過程を経ることにより、上述の 高抵抗状態から、酸素イオン移動層 3を厚さ方向に貫通する低抵抗路 7が再生され た低抵抗状態を実現することができる。印加電圧を閾値電圧 Vより小さい例えば OV
3
に低下させても、抵抗変化型素子 XIはその低抵抗状態を維持する。印加電圧を閾 値電圧 V力 OVに低下させると、電流は、例えば図 3および図 4の矢印 D6に示すよ
3
うに、変化する。
[0048] セット過程を経て低抵抗状態に至った抵抗変化型素子 XIについては、上述したリ セット過程を経ることにより、高抵抗状態に再び切り替えることが可能である。すなわ ち、抵抗変化型素子 XIにおいては、上述のセット過程およびリセット過程を適宜経る ことにより、相対的に電流が流れにく 、高抵抗状態と相対的に電流が流れやす ヽ低 抵抗状態との間を選択的に切り替えることが可能なのである。また、この切り替わりは 、ュ-ポーラ型の動作により達成される。このような抵抗変化型素子 XIによると、抵 抗状態の選択的な切り替わりを利用して、情報の記録ないし書き換えを適切に実行 することができる。すなわち、抵抗変化型素子 XIは、抵抗変化型の不揮発性記憶素 子として用いることが可能である。また、抵抗変化型素子 XIは、回路内の所定箇所 にて抵抗を選択的に変化させるためのスイッチング素子としても、用いることが可能で ある。
[0049] 加えて、抵抗変化型素子 XIは低電圧で動作するのに適する。抵抗変化型素子 XI は、酸素イオン移動層 3の電極 1 (負極)側に接する酸素イオン生成促進層 4を有す るところ、この酸素イオン生成促進層 4は、酸素イオン移動層 3内を移動すべき酸素ィ オン 5を発生しやすくするためのものであり、酸素イオン 5を発生させるうえで電極 1, 2間に印加することを要する電圧を低減させる機能を発揮するからである。
[0050] 以上のように、本発明に係る抵抗変化型素子 XIは、ュ-ポーラ型の動作が可能で あり、且つ、低電圧で動作するのに適する。
[0051] 図 5は、本発明の第 2の実施形態に係る抵抗変化型素子 X2の断面図である。抵抗 変化型素子 X2は、基板 Sと、一対の電極 1, 2と、酸素イオン移動層 3とからなる積層 構造を有し、更に複数の酸素イオン生成促進層 4'を有する。抵抗変化型素子 X2は 、酸素イオン生成促進層 4に代えて複数の酸素イオン生成促進層 4'を有する点にお いて、第 1の実施形態に係る抵抗変化型素子 XIと異なる。
[0052] 各酸素イオン生成促進層 4'は、酸素イオン移動層 3内を移動すべき酸素イオンを 発生しやすくするための部位であり、酸素イオン移動層 3に接し、当該酸素イオン移 動層 3ないし電極 2と電極 1との間に位置する。酸素イオン生成促進層 4'の構成材料 としては、酸素イオン生成促進層 4に関して上述した構成材料を採用することができ る。このような各酸素イオン生成促進層 4'の厚さは、例えば 1〜: LOnmである。
[0053] 基板 S、一対の電極 1, 2、および酸素イオン移動層 3の構成については、抵抗変化 型素子 XIに関して上述したのと同様である。
[0054] 抵抗変化型素子 X2は、抵抗変化型素子 XIの構成を実質的に含み、従って、抵抗 変化型素子 XIに関して上述したのと同様の動作原理でュ-ポーラ型の動作が可能 であり、且つ、低電圧で動作するのに適する。
[0055] 力!]えて、抵抗変化型素子 X2においては、いわゆる多値記録が可能である。抵抗変 化型素子 X2は、複数の酸素イオン生成促進層 4'を有し、各酸素イオン生成促進層 4'は、電極 1 (負極)と電極 2 (正極)の間において、酸素イオン移動層 3の電極 1側に 接する。そのため、抵抗変化型素子 X2では、酸素イオン生成促進層 4'ごとに酸素ィ オン移動層 3を厚さ方向に貫通する低抵抗路 7を形成することが可能であり、形成さ れる低抵抗路 7の本数に応じて抵抗値の異なる複数の低抵抗状態を実現することが 可能である。したがって、抵抗変化型素子 X2によると、酸素イオン移動層 3内に低抵 抗路がー本も形成されていない高抵抗状態から、全ての酸素イオン生成促進層 4' に対応して低抵抗路 7が形成された一の低抵抗状態までの、抵抗値の異なる複数の 抵抗状態間の切り替わりを利用して、記録ないし書き換えの対象である情報の多値 化が可能なのである。
実施例
[0056] 〔サンプル素子 Sl〕
図 6 (a)に示す積層構成を有するサンプル素子 SIを、抵抗変化型素子として作製 した。サンプル素子 S1における電極 1, 2の対向面積は 31400 m2である(後出の サンプル素子 S2〜S10における電極対の対向面積も 31400 m2である)。このサン プル素子 S1に対し、上述のフォーミング処理を施した後、高抵抗状態への上述のリ セットと、これに続く低抵抗状態への上述のセットとを、複数回繰り返した。
[0057] サンプル素子 S1のフォーミング処理においては、電極 1, 2間に電流制限を課して 0.5mAの通過可能最大電流を設定したうえで、電極 1, 2を各々負極および正極とし て、当該電極 1, 2間に 15Vのフォーミング DC電圧を印加した。このフォーミング処理 により、サンプル素子 S 1の酸素イオン移動層 3内には上述の低抵抗路 7が形成され 、サンプル素子 S1は所定の低抵抗状態に至った。
[0058] サンプル素子 S1を高抵抗状態にリセットするに際しては、電極 1, 2間に電流制限 を課さずに、電極 1, 2を各々負極および正極として、当該電極 1, 2間にリセットパル ス電圧(パルス強度 1.8 V,パルス幅 lmsec)を印加した。このリセット過程では、 10m A程度の比較的に大きなリセット電流がサンプル素子 SIを流れ、リセット電流に起因 して酸素イオン移動層 3内の低抵抗路 7およびその近傍に発生したジュール熱により 低抵抗路 7が絶たれ、サンプル素子 S1は高抵抗状態に切り替わった。
[0059] サンプル素子 S1を低抵抗状態にセットするに際しては、電極 1, 2間に電流制限を 課して 0.5mAの通過可能最大電流を設定したうえで、電極 1, 2を各々負極および 正極として、当該電極 1, 2間にセットパルス電圧(パルス強度 3.5V,パルス幅 50nse c)を印加した。このセット過程により、サンプル素子 S1の酸素イオン移動層 3内には 低抵抗路 7が再形成され、サンプル素子 S1は低抵抗状態に切り替わった。
[0060] サンプル素子 S1では、フォーミング DC電圧 15V、リセットパルス電圧 1.8V、セット パルス電圧 3.5Vの上述の条件において、高抵抗状態へのリセットと、これに続く低 抵抗状態へのセットとを、 100万回繰り返すことができた。
[0061] 〔サンプル素子 S2〕
図 7 (a)に示す積層構成を有するサンプル素子 S2を作製した。このサンプル素子 S 2に対し、フォーミング DC電圧を 15Vに代えて 20Vとし、リセットパルス電圧を 1.8V に代えて 2.0Vとし、セットパルス電圧を 3.5Vに代えて 5.5Vとした以外はサンプル素 子 S1と同様にして、上述のフォーミング処理を施した後、高抵抗状態への上述のリセ ットと、これに続く低抵抗状態への上述のセットとを、複数回繰り返した。
[0062] サンプル素子 S2は、酸素イオン生成促進層 4の代わりに偽の酸素イオン生成促進 層たる Y O層を有するので、サンプル素子 S2において酸素イオンを発生させるため
2 3
には、サンプル素子 S1におけるよりも大きな印加電圧(フォーミング DC電圧 20Vとセ ットパルス電圧 5.5V)が必要であった。また、サンプル素子 S2では、フォーミング DC 電圧 20V、リセットパルス電圧 2.0V、セットパルス電圧 5.5Vの条件において、高抵 抗状態へのリセットと、これに続く低抵抗状態へのセットとを、 10万回繰り返すことは できたが、 30万回以上繰り返すことはできなかった。サンプル素子 S1に対するよりも 大きな電圧がサンプル素子 S2に対しては印加されるために、サンプル素子 S2の繰り 返し可能回数は、サンプル素子 S1の繰り返し可能回数よりも小さいと考えられる。
[0063] 〔サンプル素子 S3〕
図 8 (a)に示す積層構成を有するサンプル素子 S3を作製した。このサンプル素子 S 3に対し、フォーミング DC電圧を 15Vに代えて 18Vとし、セットパルス電圧を 3.5Vに 代えて 4.8Vとした以外はサンプル素子 S1と同様にして、上述のフォーミング処理を 施した後、高抵抗状態への上述のリセットと、これに続く低抵抗状態への上述のセット とを、複数回繰り返した。
[0064] サンプル素子 S3は、酸素イオン生成促進層 4を有さずに酸素イオン移動層 3と電 極 1とが直接に接合しているので、サンプル素子 S3において酸素イオンを発生させ るためには、サンプル素子 SIにおけるよりも大きな印加電圧 (フォーミング DC電圧 1 8Vとセットパルス電圧 4.8V)が必要であった。また、サンプル素子 S3では、フォーミ ング DC電圧 18V、リセットパルス電圧 1.8 V、セットパルス電圧 4.8Vの条件において 、高抵抗状態へのリセットと、これに続く低抵抗状態へのセットとを、 30万回繰り返す ことはできたが、 50万回以上繰り返すことはできな力つた。サンプル素子 S1に対する よりも大きな電圧がサンプル素子 S3に対しては印加されるために、サンプル素子 S3 の繰り返し可能回数は、サンプル素子 S1の繰り返し可能回数よりも小さいと考えられ る。
[0065] 〔サンプル素子 S4〕
図 9 (a)に示す積層構成を有するサンプル素子 S4を作製した。このサンプル素子 S 4に対し、フォーミング DC電圧を 15Vに代えて 25Vとし、リセットパルス電圧を 1.8V に代えて 2.5Vとし、セットパルス電圧を 3.5Vに代えて 6.3Vとした以外はサンプル素 子 S1と同様にして、上述のフォーミング処理を施した後、高抵抗状態への上述のリセ ットと、これに続く低抵抗状態への上述のセットとを、複数回繰り返した。
[0066] サンプル素子 S4の酸素イオン移動層 3は、非晶質材料よりなるので、結晶質材料よ りなるサンプル素子 S 1の酸素イオン移動層 3よりも、酸素イオンの移動に対する抵抗 が大きい。そのため、サンプル素子 S4の酸素イオン移動層 3内において酸素イオン を移動させるためには、サンプル素子 S1におけるよりも大きな印加電圧 (特にフォー ミング DC電圧 25Vとセットパルス電圧 6.3V)が必要であった。また、サンプル素子 S 4では、フォーミング DC電圧 25V、リセットパルス電圧 2.5V、セットパルス電圧 6.3V の条件において、高抵抗状態へのリセットと、これに続く低抵抗状態へのセットとを、 30万回繰り返すことはできた力 50万回以上繰り返すことはできな力つた。サンプル 素子 S 1に対するよりも大きな電圧がサンプル素子 S4に対しては印加されるために、 サンプル素子 S4の繰り返し可能回数は、サンプル素子 S1の繰り返し可能回数よりも 小さいと考えられる。
[0067] 〔サンプル素子 S5〕
図 10 (a)に示す積層構成を有するサンプル素子 S 5を作製した。このサンプル素子 S5に対し、フォーミング DC電圧を 15Vに代えて 25Vとし、リセットパルス電圧を 1.8 V に代えて 4.3Vとし、セットパルス電圧を 3.5Vに代えて 13.5Vとした以外はサンプル 素子 S1と同様にして、フォーミング処理を施した後、高抵抗状態へのリセットと、これ に続く低抵抗状態へのセットとを、複数回繰り返した。サンプル素子 S5では、フォーミ ング DC電圧 25V、リセットパルス電圧 4.3V、セットパルス電圧 13.5Vの条件におい て、高抵抗状態へのリセットと、これに続く低抵抗状態へのセットとを、 30回繰り返す ことはできたが、 50回以上繰り返すことはできな力つた。
[0068] サンプル素子 S5は、酸素イオン移動層 3の代わりに偽の酸素イオン移動層たる結 晶質な Al O層を有する。結晶質な Al Oはコランダム型構造の酸ィ匕物であり、その
2 3 2 3
ような Al Oの内部を酸素イオンが移動することはできない。 Al O層内を酸素イオン
2 3 2 3 が移動することができないために当該 Al O層内に上述の低抵抗路 7が形成されな
2 3
いので、サンプル素子 S5では、本発明に係る動作原理とは異なる原理に基づき、抵 抗状態が切り替わる。酸素イオン移動層 3内の低抵抗路 7の形成および切断によつ て当該酸素イオン移動層 3ないし素子の抵抗状態が切り替わるのではないサンプル 素子 S5の繰り返し可能回数は、サンプル素子 S1〜S4の繰り返し可能回数よりも極 めて小さい。
[0069] 〔サンプル素子 S6〜S10〕
図 6 (b)、図 7 (b)、図 8 (b)、図 9 (b)、および図 10 (b)に示す積層構成を有するサ ンプル素子 S6〜S 10を作製した。
[0070] サンプル素子 S6は、酸素イオン移動層 3として厚さ 40nmの結晶質な Y添加 ZrO
2 膜 (酸素は自然の同位体組成で含まれる)の代わりに、厚さ 5nmの結晶質な Y添加 Z rO膜 (質量数 18の酸素を人工的に多く含む)と、厚さ 35nmの結晶質な Y添加 ZrO
2 2 膜 (酸素は自然の同位体組成で含まれる)とを有する以外は、サンプル素子 SIと同 じ積層構成を有する。
[0071] サンプル素子 S7は、酸素イオン移動層 3として厚さ 40nmの結晶質な Y添加 ZrO
2 膜 (酸素は自然の同位体組成で含まれる)の代わりに、厚さ 5nmの結晶質な Y添加 Z rO膜 (質量数 18の酸素を人工的に多く含む)と、厚さ 35nmの結晶質な Y添加 ZrO
2 2 膜 (酸素は自然の同位体組成で含まれる)とを有する以外は、サンプル素子 S2と同 じ積層構成を有する。 [0072] サンプル素子 S8は、酸素イオン移動層 3として厚さ 40nmの結晶質な Y添加 ZrO
2 膜 (酸素は自然の同位体組成で含まれる)の代わりに、厚さ 5nmの結晶質な Y添加 Z rO膜 (質量数 18の酸素を人工的に多く含む)と、厚さ 35nmの結晶質な Y添加 ZrO
2 2 膜 (酸素は自然の同位体組成で含まれる)とを有する以外は、サンプル素子 S3と同 じ積層構成を有する。
[0073] サンプル素子 S9は、酸素イオン移動層 3として厚さ 40nmの非晶質な Y添加 ZrO
2 膜 (酸素は自然の同位体組成で含まれる)の代わりに、厚さ 5nmの非晶質な Y添加 Z rO膜 (質量数 18の酸素を人工的に多く含む)と、厚さ 35nmの非晶質な Y添加 ZrO
2 2 膜 (酸素は自然の同位体組成で含まれる)とを有する以外は、サンプル素子 S4と同 じ積層構成を有する。
[0074] サンプル素子 S 10は、偽酸素イオン移動層として厚さ 40nmの結晶質な Al O膜(
2 3 酸素は自然の同位体組成で含まれる)の代わりに、厚さ 5nmの結晶質な Al O膜 (質
2 3 量数 18の酸素を人工的に多く含む)と、厚さ 35nmの結晶質な Al O膜 (酸素は自然
2 3
の同位体組成で含まれる)とを有する以外は、サンプル素子 S5と同じ積層構成を有 する。
[0075] サンプル素子 S6〜S10の各々について、まず、なんらの電圧も印加する前に、 SI MS (2次イオン質量分析装置)を使用して、質量数 18の酸素の深さ方向濃度分布( depth profile)を調べた。この深さ方向濃度分布においては、電極 2とその直下の層と の界面を基準位とし且つこの基準位カゝら基板側への距離を深さとし、そして、深さ 3n m、 10nm、 20nm、 30nm、 37nmの各々における質量数 18の酸素の濃度を測定し た。初期状態にあるサンプル素子 S6〜S10のいずれにおいても、深さ 37nm以外で 質量数 18の酸素は検出されなかった。初期状態のサンプル素子 S6〜S10では質 量数 18の酸素が移動して 、な 、ことが確認された。
[0076] 次に、サンプル素子 S6〜S10の各々について、電極 1, 2間に電流制限を課して 0 .5mAの通過可能最大電流を設定したうえで、電極 1, 2を各々負極および正極とし て、当該電極 1, 2間に DC電圧を 60分間印加し続けた。サンプル素子 S6に印加し た DC電圧は、 7.5Vであり、サンプル素子 S1に対して印加した上述のフォーミング D C電圧(15V)の 50%である。サンプル素子 S7に印加した DC電圧は、 10Vであり、 サンプル素子 S2に対して印加した上述のフォーミング DC電圧(20V)の 50%である 。サンプル素子 S8に印加した DC電圧は、 9Vであり、サンプル素子 S3に対して印加 した上述のフォーミング DC電圧(18V)の 50%である。サンプル素子 S9に印加した DC電圧は、 12.5Vであり、サンプル素子 S4に対して印加した上述のフォーミング D C電圧(25V)の 50%である。サンプル素子 S10に印加した DC電圧は、 12.5Vであ り、サンプル素子 S5に対して印加した上述のフォーミング DC電圧(25V)の 50%で ある。
[0077] このような弱電圧印加の後、サンプル素子 S6〜S10の各々について、 SIMSを使 用して、質量数 18の酸素の深さ方向濃度分布を再び調べた。この深さ方向濃度分 布においても、電極 2とその直下の層との界面を基準位とし且つこの基準位カゝら基板 側への距離を深さとし、そして、深さ 3nm、 10nm、 20nm、 30nm、 37nmの各々に おける質量数 18の酸素の濃度を測定した。その結果を、図 11の表に掲げる。図 11 の表における〇は質量数 18の酸素が検出された場合を表し、 Xは質量数 18の酸素 が検出されなカゝつた場合を表す。
[0078] サンプル素子 S6, S9では、測定に係る全ての深さにて(即ち、酸素イオン移動層 3 の厚さ方向の略全域にわたって)質量数 18の酸素が検出された。これは、次のことを 示唆するものである。上述の DC電圧の印加中のサンプル素子 S6, S9では、酸素ィ オン生成促進層 4と酸素イオン移動層 3の界面または界面近傍にて酸素イオンが発 生し、電界の作用により、当該酸素イオンが酸素イオン移動層 3内を電極 2 (正極)に 向って移動し且つその移動性は高力つた。
[0079] サンプル素子 S8では、質量数 18の酸素は、深さ 37nmに加えて深さ 20nmと 30η mにて検出された力 深さ 3nmと lOnmにて検出されなかった。これは、次のことを示 唆するものである。上述の DC電圧の印加中のサンプル素子 S8では、酸素イオン移 動層 3と電極 1 (負極)の界面または界面近傍にて酸素イオンが発生し、電界の作用 により、当該酸素イオンが酸素イオン移動層 3内を電極 2 (正極)に向って移動したが 、その移動性は低力つた。
[0080] サンプル素子 S8での酸素イオンの発生は、酸素イオン移動層 3と接する電極 1の 構成材料たる Ptの触媒作用によるものである。移動性の低さは、酸素イオン生成促 進層 4が存在しないことに基づく酸素イオン発生効率の低さに起因する。貴金属を含 有する導電性酸化物たる酸素イオン生成促進層 4は、実質的に、相当程度に大きな 貴金属表面積を有し、従って、相当程度に多くの触媒反応サイトを内包するが、サン プル素子 S8は、このような酸素イオン生成促進層 4を具備しないのである。
[0081] サンプル素子 S7では、深さ 37nm以外で質量数 18の酸素は検出されな力つた(即 ち、酸素イオン移動層 3内にて酸素イオン移動が確認されな力つた)。電界の作用に より酸素イオンが移動可能な酸素イオン移動層 3内にて酸素イオン移動が確認され な力つたことは、上述の DC電圧の印加中のサンプル素子 S7では、酸素イオンが発 生しな力つたことを示唆する。
[0082] サンプル素子 S10でも、深さ 37nm以外で質量数 18の酸素は検出されなかった( 即ち、偽酸素イオン移動層内にて酸素イオン移動が確認されな力つた)。酸素イオン の生成反応につき有意な触媒能を示す酸素イオン生成促進層 4を有するのにもかか わらず、偽酸素イオン移動層たる Al O層内にて酸素イオン移動が確認されなカゝつた
2 3
ことは、サンプル素子 S10では、上述の DC電圧の印加中に Al O層内を酸素イオン
2 3
が移動しな力つたことを示唆する。
[0083] 以上の結果から、電界の作用により酸素イオンが内部を移動可能な酸素イオン移 動層 3と、このような酸素イオン移動層 3における電極 1 (負極)側に接する酸素イオン 生成促進層 4とが存在することに起因して、充分な酸素イオン移動が生ずることが理 解できょう。

Claims

請求の範囲
[1] 第 1電極と、
第 2電極と、
前記第 1電極および前記第 2電極の間に位置し、内部での酸素イオンの移動によ つて酸素空孔よりなる低抵抗路が生じ得る酸素イオン移動層と、
前記酸素イオン移動層に接して当該酸素イオン移動層および前記第 1電極の間に 位置する酸素イオン生成促進層と、を含む積層構造を有する、抵抗変化型素子。
[2] 第 1電極と、
第 2電極と、
前記第 1電極および前記第 2電極の間に位置し、内部での酸素イオンの移動によ つて酸素空孔よりなる低抵抗路が生じ得る酸素イオン移動層と、を含む積層構造を 有し、
各々が前記酸素イオン移動層に接して当該酸素イオン移動層および前記第 1電極 の間に位置する、複数の酸素イオン生成促進層を有する、抵抗変化型素子。
[3] 前記酸素イオン移動層は、当該層の厚さ方向に当該層を低抵抗路が貫通する低 抵抗状態と、当該層の厚さ方向に当該層を低抵抗路が貫通しない高抵抗状態との 間を、変化可能である、請求項 1または 2に記載の抵抗変化型素子。
[4] 前記酸素イオン移動層は固体電解質よりなる、請求項 1から 3のいずれか一つに記 載の抵抗変化型素子。
[5] 前記酸素イオン移動層は、蛍石構造型酸化物またはべ口ブスカイト構造型酸化物 よりなる、請求項 1から 4のいずれか一つに記載の抵抗変化型素子。
[6] 前記蛍石構造型酸ィ匕物は部分安定ィ匕ジルコユアである、請求項 5に記載の抵抗変 化型素子。
[7] 前記酸素イオン移動層は、 Y、 Ca、または Mgが添加された ZrO、 ZrO、 Y O、 Sr
2 2 2 3
TiO、または CaTiOよりなる、請求項 5に記載の抵抗変化型素子。
3 3
[8] 前記酸素イオン移動層は結晶質材料よりなる、請求項 1から 7のいずれか一つに記 載の抵抗変化型素子。
[9] 前記酸素イオン生成促進層は、貴金属を含有する導電性酸化物よりなる、請求項 1 から 8の ヽずれか一つに記載の抵抗変化型素子。
前記第 1電極および Zまたは前記第 2電極は貴金属よりなる、 ずれか一つに記載の抵抗変化型素子。
PCT/JP2006/319289 2006-09-28 2006-09-28 Variable-resistance element WO2008038365A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008536246A JP5007724B2 (ja) 2006-09-28 2006-09-28 抵抗変化型素子
PCT/JP2006/319289 WO2008038365A1 (en) 2006-09-28 2006-09-28 Variable-resistance element
US12/352,441 US7764160B2 (en) 2006-09-28 2009-01-12 Variable-resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/319289 WO2008038365A1 (en) 2006-09-28 2006-09-28 Variable-resistance element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/352,441 Continuation US7764160B2 (en) 2006-09-28 2009-01-12 Variable-resistance element

Publications (1)

Publication Number Publication Date
WO2008038365A1 true WO2008038365A1 (en) 2008-04-03

Family

ID=39229813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319289 WO2008038365A1 (en) 2006-09-28 2006-09-28 Variable-resistance element

Country Status (3)

Country Link
US (1) US7764160B2 (ja)
JP (1) JP5007724B2 (ja)
WO (1) WO2008038365A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016381A (ja) * 2008-07-03 2010-01-21 Gwangju Inst Of Science & Technology 酸化物膜と固体電解質膜を備える抵抗変化メモリ素子およびこれの動作方法
WO2010056428A1 (en) * 2008-11-12 2010-05-20 Sandisk 3D Llc Metal oxide materials and electrodes for re-ram
WO2010090002A1 (ja) * 2009-02-04 2010-08-12 パナソニック株式会社 不揮発性記憶素子
JP2010192899A (ja) * 2009-02-16 2010-09-02 Samsung Electronics Co Ltd 抵抗体を利用したマルチレベル不揮発性メモリ装置
JP2011520265A (ja) * 2008-05-01 2011-07-14 インターモレキュラー,インク. 不揮発性抵抗スイッチングメモリ
US8179713B2 (en) 2008-06-03 2012-05-15 Panasonic Corporation Nonvolatile memory element, nonvolatile memory device, and nonvolatile semiconductor device
US8391051B2 (en) 2009-04-10 2013-03-05 Panasonic Corporation Method of programming nonvolatile memory element
JP2013207131A (ja) * 2012-03-29 2013-10-07 Ulvac Japan Ltd 抵抗変化素子及びその製造方法
US8767439B2 (en) 2011-09-14 2014-07-01 Renesas Electronics Corporation Resistance change nonvolatile memory device, semiconductor device, and method of operating resistance change nonvolatile memory device
CN103972386A (zh) * 2014-05-23 2014-08-06 中国科学院微电子研究所 一种制备高存储密度多值纳米晶存储器的方法
CN104409630A (zh) * 2014-11-27 2015-03-11 浙江理工大学 一种基于氧化镓薄膜的单极型阻变存储器及其制备方法
KR20150047562A (ko) * 2012-08-21 2015-05-04 마이크론 테크놀로지, 인크. 단극성 메모리 디바이스들
KR20180079137A (ko) * 2016-12-31 2018-07-10 에스케이하이닉스 주식회사 저항성 메모리 소자 및 이의 제조 방법

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130082232A1 (en) 2011-09-30 2013-04-04 Unity Semiconductor Corporation Multi Layered Conductive Metal Oxide Structures And Methods For Facilitating Enhanced Performance Characteristics Of Two Terminal Memory Cells
US8565003B2 (en) 2011-06-28 2013-10-22 Unity Semiconductor Corporation Multilayer cross-point memory array having reduced disturb susceptibility
US8445885B2 (en) * 2008-12-04 2013-05-21 Panasonic Corporation Nonvolatile memory element having a thin platinum containing electrode
US8390100B2 (en) * 2008-12-19 2013-03-05 Unity Semiconductor Corporation Conductive oxide electrodes
WO2011043448A1 (ja) * 2009-10-09 2011-04-14 日本電気株式会社 半導体装置及びその製造方法
US8901527B2 (en) * 2010-07-02 2014-12-02 Nanya Technology Corp. Resistive random access memory structure with tri-layer resistive stack
WO2013012423A1 (en) 2011-07-20 2013-01-24 Hewlett-Packard Development Company, L.P. Memristor structure with a dopant source
US8581224B2 (en) 2012-01-20 2013-11-12 Micron Technology, Inc. Memory cells
US9224945B2 (en) 2012-08-30 2015-12-29 Micron Technology, Inc. Resistive memory devices
CN116631716A (zh) * 2023-07-18 2023-08-22 合肥矽迈微电子科技有限公司 一种可变电阻器件的制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281913A (ja) * 2003-03-18 2004-10-07 Sharp Corp 抵抗変化機能体およびその製造方法
JP2005317976A (ja) * 2004-04-28 2005-11-10 Samsung Electronics Co Ltd 段階的な抵抗値を有する多層構造を利用したメモリ素子
JP2006173267A (ja) * 2004-12-14 2006-06-29 Sony Corp 記憶素子及び記憶装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE28792E (en) * 1966-03-15 1976-04-27 Westinghouse Electric Corporation Electrochemical method for separating O2 from a gas; generating electricity; measuring O2 partial pressure; and fuel cell
US4490843A (en) * 1982-06-14 1984-12-25 Bose Corporation Dynamic equalizing
DE3578216D1 (de) * 1985-10-01 1990-07-19 Honda Motor Co Ltd Verfahren und vorrichtung fuer die bestimmung von sauerstoff in gasen.
KR960024356A (ko) * 1994-12-26 1996-07-20 이형도 광역공연비 센서 및 이의 구동방법
DE19500235A1 (de) * 1995-01-05 1996-07-11 Roth Technik Gmbh Abdeckschicht für elektrische Leiter oder Halbleiter
EP1501124B1 (en) 2002-04-30 2011-06-08 Japan Science and Technology Agency Solid electrolyte switching devices, fpga and memory devices using the same, and method of manufacturing the same
JP2004273615A (ja) 2003-03-06 2004-09-30 Matsushita Electric Ind Co Ltd 抵抗変化型メモリ
US6972238B2 (en) * 2003-05-21 2005-12-06 Sharp Laboratories Of America, Inc. Oxygen content system and method for controlling memory resistance properties
JP2005123361A (ja) 2003-10-16 2005-05-12 Sony Corp 抵抗変化型不揮発性メモリおよびその製造方法ならびに抵抗変化層の形成方法
JP2005203463A (ja) 2004-01-14 2005-07-28 Sharp Corp 不揮発性半導体記憶装置
US20060171200A1 (en) * 2004-02-06 2006-08-03 Unity Semiconductor Corporation Memory using mixed valence conductive oxides
US7060586B2 (en) 2004-04-30 2006-06-13 Sharp Laboratories Of America, Inc. PCMO thin film with resistance random access memory (RRAM) characteristics
WO2006028117A1 (ja) * 2004-09-09 2006-03-16 Matsushita Electric Industrial Co., Ltd. 抵抗変化素子とその製造方法
TWI268030B (en) 2004-12-15 2006-12-01 Truelight Corp Semiconductor laser with dual-platform structure
JP2008060091A (ja) * 2005-01-14 2008-03-13 Matsushita Electric Ind Co Ltd 抵抗変化素子
JP2007088349A (ja) * 2005-09-26 2007-04-05 Fujitsu Ltd 不揮発性半導体記憶装置及びその書き込み方法
JP5049491B2 (ja) * 2005-12-22 2012-10-17 パナソニック株式会社 電気素子,メモリ装置,および半導体集積回路
KR100718155B1 (ko) 2006-02-27 2007-05-14 삼성전자주식회사 두 개의 산화층을 이용한 비휘발성 메모리 소자
US7692178B2 (en) * 2006-03-08 2010-04-06 Panasonic Corporation Nonvolatile memory element, nonvolatile memory apparatus, and method of manufacture thereof
JP4699932B2 (ja) * 2006-04-13 2011-06-15 パナソニック株式会社 抵抗変化素子とそれを用いた抵抗変化型メモリならびにその製造方法
JP5010891B2 (ja) 2006-10-16 2012-08-29 富士通株式会社 抵抗変化型素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281913A (ja) * 2003-03-18 2004-10-07 Sharp Corp 抵抗変化機能体およびその製造方法
JP2005317976A (ja) * 2004-04-28 2005-11-10 Samsung Electronics Co Ltd 段階的な抵抗値を有する多層構造を利用したメモリ素子
JP2006173267A (ja) * 2004-12-14 2006-06-29 Sony Corp 記憶素子及び記憶装置

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520265A (ja) * 2008-05-01 2011-07-14 インターモレキュラー,インク. 不揮発性抵抗スイッチングメモリ
US8179713B2 (en) 2008-06-03 2012-05-15 Panasonic Corporation Nonvolatile memory element, nonvolatile memory device, and nonvolatile semiconductor device
JP2010016381A (ja) * 2008-07-03 2010-01-21 Gwangju Inst Of Science & Technology 酸化物膜と固体電解質膜を備える抵抗変化メモリ素子およびこれの動作方法
US8263420B2 (en) 2008-11-12 2012-09-11 Sandisk 3D Llc Optimized electrodes for Re-RAM
WO2010056428A1 (en) * 2008-11-12 2010-05-20 Sandisk 3D Llc Metal oxide materials and electrodes for re-ram
US8637845B2 (en) 2008-11-12 2014-01-28 Sandisk 3D Llc Optimized electrodes for Re-RAM
US8304754B2 (en) 2008-11-12 2012-11-06 Sandisk 3D Llc Metal oxide materials and electrodes for Re-RAM
US8405076B2 (en) 2009-02-04 2013-03-26 Panasonic Corporation Nonvolatile memory element
JP4592828B2 (ja) * 2009-02-04 2010-12-08 パナソニック株式会社 不揮発性記憶素子
CN101960595B (zh) * 2009-02-04 2012-11-14 松下电器产业株式会社 非易失性存储元件
WO2010090002A1 (ja) * 2009-02-04 2010-08-12 パナソニック株式会社 不揮発性記憶素子
JPWO2010090002A1 (ja) * 2009-02-04 2012-08-09 パナソニック株式会社 不揮発性記憶素子
JP2010192899A (ja) * 2009-02-16 2010-09-02 Samsung Electronics Co Ltd 抵抗体を利用したマルチレベル不揮発性メモリ装置
US8391051B2 (en) 2009-04-10 2013-03-05 Panasonic Corporation Method of programming nonvolatile memory element
US8767439B2 (en) 2011-09-14 2014-07-01 Renesas Electronics Corporation Resistance change nonvolatile memory device, semiconductor device, and method of operating resistance change nonvolatile memory device
JP2013207131A (ja) * 2012-03-29 2013-10-07 Ulvac Japan Ltd 抵抗変化素子及びその製造方法
JP2015534259A (ja) * 2012-08-21 2015-11-26 マイクロン テクノロジー, インク. 単極メモリデバイス
KR102165139B1 (ko) * 2012-08-21 2020-10-15 마이크론 테크놀로지, 인크. 단극성 메모리 디바이스들
KR20150047562A (ko) * 2012-08-21 2015-05-04 마이크론 테크놀로지, 인크. 단극성 메모리 디바이스들
CN103972386A (zh) * 2014-05-23 2014-08-06 中国科学院微电子研究所 一种制备高存储密度多值纳米晶存储器的方法
CN103972386B (zh) * 2014-05-23 2017-02-08 中国科学院微电子研究所 一种制备高存储密度多值纳米晶存储器的方法
CN104409630A (zh) * 2014-11-27 2015-03-11 浙江理工大学 一种基于氧化镓薄膜的单极型阻变存储器及其制备方法
KR20180079137A (ko) * 2016-12-31 2018-07-10 에스케이하이닉스 주식회사 저항성 메모리 소자 및 이의 제조 방법
KR102578854B1 (ko) * 2016-12-31 2023-09-19 에스케이하이닉스 주식회사 저항성 메모리 소자 및 이의 제조 방법

Also Published As

Publication number Publication date
JPWO2008038365A1 (ja) 2010-01-28
JP5007724B2 (ja) 2012-08-22
US20090121823A1 (en) 2009-05-14
US7764160B2 (en) 2010-07-27

Similar Documents

Publication Publication Date Title
WO2008038365A1 (en) Variable-resistance element
JP5010891B2 (ja) 抵抗変化型素子
CN1953230B (zh) 包括纳米点的非易失性存储器件及其制造方法
KR100962221B1 (ko) 스위칭 소자
KR101257365B1 (ko) 문턱 스위칭 동작을 가지는 저항 변화 메모리 및 이의 제조방법
CN102484127B (zh) 基于混合金属价键化合物的记忆电阻
JP2008177469A (ja) 抵抗変化型素子および抵抗変化型素子製造方法
CN102347443B (zh) 非易失性存储元件和包括其的存储装置
TWI515726B (zh) 摻雜氮之氧化鎂內的電阻開關
US8987699B2 (en) Conductive bridge resistive memory device and method of manufacturing the same
JP2009218260A (ja) 抵抗変化型素子
EP3602561B1 (en) A switching resistor and method of making such a device
KR20060067841A (ko) 기억소자 및 기억장치
WO2014003396A1 (ko) 수직형 저항 변화 메모리 소자 및 그 제조방법
CN102683583A (zh) 单极阻变存储器及其制造方法
US8907314B2 (en) MoOx-based resistance switching materials
Rupp et al. Threshold switching in amorphous Cr-doped vanadium oxide for new crossbar selector
US11925129B2 (en) Multi-layer selector device and method of fabricating the same
JP5476686B2 (ja) 抵抗変化型素子および抵抗変化型素子製造方法
KR101776858B1 (ko) 가변 저항 메모리 장치 및 그 제조 방법
Liu et al. Interfacial resistive switching properties in Ti/La0. 7Ca0. 3MnO3/Pt sandwich structures
JP5251349B2 (ja) 抵抗変化型素子および抵抗変化型素子製造方法
KR20150128930A (ko) 도펀트 보상형 스위칭을 갖는 멤리스터
JP5690635B2 (ja) 不揮発性半導体記憶装置および同装置の製造方法
KR101781002B1 (ko) 저항 변화 메모리 소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06810736

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008536246

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810736

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载