+

WO2008035595A1 - Dispositifs électroluminescents organiques - Google Patents

Dispositifs électroluminescents organiques Download PDF

Info

Publication number
WO2008035595A1
WO2008035595A1 PCT/JP2007/067714 JP2007067714W WO2008035595A1 WO 2008035595 A1 WO2008035595 A1 WO 2008035595A1 JP 2007067714 W JP2007067714 W JP 2007067714W WO 2008035595 A1 WO2008035595 A1 WO 2008035595A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
dopant material
emitting layer
light emitting
Prior art date
Application number
PCT/JP2007/067714
Other languages
English (en)
French (fr)
Inventor
Mitsuyoshi Naito
Yoshiyuki Suzuri
Aki Nakata
Hiroshi Kita
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2008535328A priority Critical patent/JP5470849B2/ja
Publication of WO2008035595A1 publication Critical patent/WO2008035595A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/80Composition varying spatially, e.g. having a spatial gradient
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • the present invention relates to an organic electoluminescence element.
  • ELD components include inorganic-electric luminescence elements and organic-electric luminescence elements (hereinafter also referred to as organic EL elements! /).
  • Inorganic electoric luminescence elements require high alternating current voltage to drive the force light-emitting elements that have been used as planar light sources.
  • An organic EL device has a structure in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and electrons and holes are injected into the light emitting layer and recombined to generate excitons.
  • a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative is doped with a trace amount of a phosphor to improve emission luminance and extend the lifetime of the element.
  • an element having an organic light emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and a small amount of phosphor is doped to the host compound for example, JP-A 63-264692
  • an 8-hydroxyquinoline aluminum complex is used as a host.
  • an element having an organic light emitting layer doped with a quinacridone dye for example, Japanese Patent Publication No. 3-255190
  • the upper limit of the internal quantum efficiency is 100%, so that in principle the luminous efficiency is four times that of the excited singlet, and almost the same performance as a cold cathode tube is obtained. It is also attracting attention as a lighting application.
  • Japanese Patent Application Laid-Open No. 2001-247859 and the like also attempt to atomize using various iridium complexes.
  • the light emission brightness and the light emission efficiency in the case of the light emitting element are greatly improved as compared to the conventional element because the emitted light is derived from phosphorescence.
  • the light emission lifetime was lower than that of the conventional device.
  • phosphorescent high-efficiency light-emitting materials can sufficiently achieve performance that can withstand practical use where it is difficult to shorten the emission wavelength and improve the light emission lifetime of the device! Currently.
  • a metal complex in which a partial structure of rubazole is introduced into the mother nucleus of phenylrubiridine is known (see, for example, Patent Documents 1 and 2).
  • a metal complex in which a partial structure of rubazole is introduced into the mother nucleus of vinyl bilazole is known as a ligand (see, for example, Patent Document 3).
  • Patent Document 3 a metal complex in which a partial structure of rubazole is introduced into the mother nucleus of vinyl bilazole.
  • the light emitting region in the light emitting layer that is, the concentration of the content of the metal complex is controlled to control the light emitting position at the light emitting layer interface. Controlling and extending the life is performed (for example, see Patent Documents 6 and 7). [0020]
  • these technologies do not show a significant improvement in the light emission lifetime, and there remains room for improvement.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-67658
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-23070
  • Patent Document 3 International Publication No. 04/085450 Pamphlet
  • Patent Document 4 Pamphlet of International Publication No. 05/007767
  • Patent Document 5 Japanese Patent Laid-Open No. 2005_68110
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2003-229272
  • Patent Document 7 Japanese Patent Laid-Open No. 2005-108730
  • An object of the present invention is to provide an organic electoluminescence device having an excellent emission lifetime.
  • the dopant material is represented by the following general formula (1):
  • An organic electoluminescence device characterized in that the concentration of the dopant material decreases from the anode side to the cathode side in the thickness direction of the light emitting layer
  • R represents a substituent.
  • Z represents a group of nonmetallic atoms necessary to form a 5- to 7-membered ring.
  • nl represents an integer of 0 to 5.
  • B to B are carbon atom, nitrogen atom, oxygen atom or sulfur
  • M Represents a yellow atom and at least one represents a nitrogen atom.
  • M is 8 to 10 in the periodic table of elements; 10
  • X and X represent a carbon atom, a nitrogen atom or an oxygen atom, and L represents X
  • 1 2 1 1 represents an atomic group that forms a bidentate ligand together with X.
  • ml represents an integer of 1, 2 or 3
  • m2 represents a force S representing an integer of 0, 1 or 2
  • ml + m2 represents 2 or 3.
  • the ionization potential Iph of the host material and the ionization potential Ipd of the dopant material satisfy the following formula (1): Organic electoluminescence element.
  • a / B ⁇ l.5 is satisfied when the concentration of the dopant material contained on the anode side of the light emitting layer is 8% by mass and the concentration of the dopant material contained on the cathode side is 8% by mass.
  • the present invention relates to an organic electoluminescence device (hereinafter also referred to as an organic EL device) having at least a light emitting layer containing a host material and a dopant material between an opposing cathode and anode. It is represented by the general formula (1), and the concentration of the dopant material is reduced from the anode side to the cathode side in the thickness direction of the light emitting layer.
  • the stepwise decrease from the anode side to the cathode side means that the dopant content is constant in the range of 2 nm or more.
  • the deposition rate is controlled by the deposition temperature. To achieve a continuous decrease.
  • the light emitting region in the light emitting layer that is, the concentration of the dopant material content is controlled to control the light emitting position at the light emitting layer interface. Controlling and extending the service life are performed (for example, JP-A Nos. 2003-229272 and 2005-108730).
  • the generation ratio of singlet excitons and triplet excitons is 1: 3 compared to a fluorescent light emitting device using light emission from an excited singlet.
  • the upper limit of the internal quantum efficiency is 100%, and in principle the light emission efficiency is four times that of the excited singlet case, and highly efficient light emission can be obtained.
  • phosphorescent light-emitting elements are known to have a poor lifetime compared to fluorescent light-emitting elements, and in particular, blue phosphorescent light-emitting elements are still insufficient for practical use.
  • the dopant material represented by the general formula (1) As a result of intensive studies, we have found that the dopant material represented by the general formula (1) Thus, it was found that a long-lived phosphorescent light-emitting device can be obtained. As a result of further intensive studies, in the phosphorescent light emitting device using the dopant material represented by the general formula (1), a change in the dopant concentration in the light emitting layer, specifically, a concentration gradient (from the anode side to the cathode side) It has been found that the light emission life is further extended by attaching a high concentration on the anode side and a low concentration on the negative side, and the present invention has been completed.
  • Such a concentration gradient is confirmed by cutting the light emitting layer obliquely and measuring with TOF-SIMS.
  • an oblique cross section is prepared with Cycus NN04 (manufactured by Daipura Wintes).
  • the light emitting layer contains a plurality of dopants, they can be distinguished by the difference in molecular weight.
  • TOF— SIMS measurement can be performed using TRIFT2, a time-of-flight secondary ion mass spectrometer manufactured by Physical Electronics, with primary ions and In ions with an acceleration voltage of 25kV (beam current is 2nA).
  • the ionization potential is defined as the energy required to release an electron at the HOMO (highest occupied molecular orbital) level of a compound to the vacuum level.
  • the ionization potential is a film state (layer state). This is the energy required to extract electrons from the compound, and these are the photoelectron content. It can be measured directly by the optical method. For example, it can be measured with an ESCA 5600 UPS ultraviolet photoemission spectroscopy manufactured by ULVAC-FAI.
  • the concentration of the dopant material contained on the anode side of the light emitting layer is 8% by mass and the concentration of the dopant material contained on the cathode side is 8% by mass
  • the upper limit of satisfying 5 is 20, the upper limit is preferably 10, and the upper limit is more preferably 5.
  • the anode side concentration (8% by mass) refers to the dopant concentration contained within the light emitting layer thickness lnm from the interface between the light emitting layer and the layer adjacent to the anode side of the light emitting layer
  • the cathode side concentration (8% by mass) refers to the dopant concentration contained within the thickness of the light emitting layer within lnm from the interface between the light emitting layer and the layer adjacent to the cathode side of the light emitting layer.
  • an alkyl group for example, a methyl group, an ethyl group, a propyl group, an isopropylene group, a t-butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, etc.
  • a cycloalkyl group for example, cyclopentyl group, cyclohexyl group, etc.
  • an alkenyl group for example, bur group, allyl group, etc.
  • an alkynyl group for example, a methyl group, an ethyl group, a propyl group, an isopropylene group, a t-butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group,
  • aromatic hydrocarbon ring group aromatic hydrocarbon ring group
  • aromatic carbocyclic group aromatic carbocyclic group
  • aromatic heterocyclic group e.g., pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrajuryl group, triazolyl group (for example, 1, 2, 4 ⁇ lyso 'monore 1 inole group, 1, 2, 3 ⁇ lyso' mono o
  • Z represents a group of non-metallic atoms necessary for forming a 5- to 7-membered ring. Formed by Z 5 ⁇
  • Examples of the 7-membered ring include a benzene ring, naphthalene ring, pyridine ring, pyrimidine ring, pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring and thiazole ring. Of these, a benzene ring is preferred.
  • B to B represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of them
  • the aromatic nitrogen-containing heterocycle formed by these five atoms is preferably a monocycle.
  • Examples thereof include a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, a tetrazole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazol ring, an oxadiazole ring, and a thiadiazole ring.
  • a pyrazole ring and an imidazole ring are preferable, and an imidazole ring is more preferable.
  • These rings may be further substituted with the above substituents.
  • Preferable examples of the substituent are an alkyl group and an aryl group, and more preferable is an aryl group.
  • L represents an atomic group forming a bidentate ligand together with X and X.
  • X — L — 2 represented by X
  • 1 1 2 1 1 2dentate ligand examples include, for example, substituted or unsubstituted phenylpyrrolidine, phenylpyrazonole, phenylimidazonole, phenyltriazolene, phenyltetrazole, virazol ball, Examples include picolinic acid and acetylacetone.
  • ml represents an integer of 1, 2 or 3
  • m2 represents a force of 0, 1 or 2 ml + m2 is
  • m2 is preferably 0.
  • Examples of the metal represented by M include transition metal elements of groups 8 to 10 of the periodic table (simply transition gold).
  • iridium and platinum are preferable, and iridium is more preferable.
  • the dopant material represented by the general formula (1) of the present invention has a polymerizable group or a reactive group!
  • the nitrogen-containing heterocycle formed from 1 to B is 5
  • a dopant material represented by the following general formula (2) which is a midazole ring is preferred. [0059] [Chemical 2]
  • R, R, and R represent a substituent
  • R in the general formula (1) represents
  • R represents a substituent having a steric parameter value (Es value) of -0.5 or less.
  • the Es value is a steric parameter derived from chemical reactivity. The smaller this value is, the smaller the sterically bulky! /, The more sterically bulky! /, The substituent! it can.
  • the Es value will be described as! /.
  • the Es value is a quantification of the steric hindrance of substituents.
  • Es log (kX / kH)
  • the reaction rate decreases due to the steric hindrance of the substituent X, resulting in kX and kH, so the Es value is usually negative.
  • the above two reaction rate constants kX and kH are obtained and calculated by the above formula.
  • the Es value as defined in the present specification is a value obtained by setting a hydrogen atom to 0 instead of defining it as 0 for a methyl group. Es value from 1
  • the Es value is 1 or less 0.5. Preferably it is 17.0 or more and 10.6 or less. Most preferably, it is 17.0 or more and 11.0 or less.
  • the phosphorescence wavelength of a compound is the 0-0 band of the phosphorescence spectrum.
  • the 0-0 band of the phosphorescence spectrum can be obtained by the following measurement method.
  • the compound to be measured is dissolved in well-deoxygenated methylene chloride, put into a phosphorescence measurement cell, irradiated with excitation light at room temperature (25 ° C), and the emission spectrum is measured.
  • any solvent that cannot dissolve in the above-mentioned solvent system and / or that can dissolve the compound may be used.
  • force S which is a method for obtaining the 0-0 band
  • the emission maximum wavelength that appears on the shortest wavelength side in the phosphor spectrum chart obtained by the above measurement method is 0-0. It is defined as a band. If the phosphorescence spectrum is weak, noise and peaks can be separated and peak wavelengths can be read by smoothing. As smoothing processing, the Savitzky & Glay smoothing method can be applied.
  • the phosphorescence wavelength peak is preferably 480 nm or less.
  • the light emitting layer according to the present invention will be described.
  • the light emitting layer according to the present invention is injected from an electrode, an electron transport layer, a hole transport layer, or the like.
  • the light-emitting portion may be in the light-emitting layer or at the interface between the light-emitting layer and the adjacent layer.
  • the light emitting layer of the organic EL device of the present invention contains a dopant material and a host material.
  • a dopant material it is preferable to use the compound according to the present invention described above as a dopant material.
  • a plurality of known dopant materials may be used in combination.
  • a plurality of dopant materials it is possible to mix different light emission, and thus any light emission color can be obtained.
  • White light emission is possible by adjusting the kind of dopant material and the amount of doping, and it can also be applied to lighting and knock lights.
  • JP 2002-100476 JP 2002-173674, JP 2002-359082, JP 2002-175884, JP 2002-363552, JP 2002-184582 Publication, JP 2003-7469, JP 2002-525 808, JP 2003-7471, JP 2002-525833, JP 2003
  • the light emitting layer As a material used for the light emitting layer, there is a host material in addition to the above dopant material.
  • the host material refers to a room temperature (2
  • At 5 ° C) is defined as a compound having a phosphorescence quantum yield of phosphorescence of less than 0.01.
  • the host material used in the present invention is not particularly limited in terms of structure, but representative examples thereof include force rubazole derivatives and triarylamine derivatives.
  • the host material is preferably a compound that prevents the emission of light from becoming longer in wavelength and has a high Tg (glass transition temperature).
  • high Tg means 100 ° C or more.
  • the hole transport layer includes a material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • a single hole or multiple hole transport layers should be provided.
  • hole transport material there are no particular restrictions on the hole transport material. Conventionally, in photoconductive materials, it is commonly used as a hole charge injection and transport material, and used in the hole injection layer and hole transport layer of EL devices. Any known one can be selected and used.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazones Derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N-tetraphenenole 4, A'-diaminophenol, N, N-diphenylenole N, N'-bis (3-methylphenyl) 1 [1, 1'-biphenyl] 1, 4, 4'-diamin (TPD); 2, 2-bis (4-di-triarylaminophenyl) propane; 1, 1 —Bis (4-di-tritriaminophenenyl) cyclohexane; N, N, N ′, N ′ —Tetra-p-trinore 4, A′-diaminobiphenyl; 1, 1-bis (4-di 1 p triarylaminophenyl) 4-phenylsilk Bis (4-dimethylamino-2-methylphenenyl) phenylmethane; bis (4-di-p-tolylaminophenyl)
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can also be used.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as a hole injection material and a hole transport material.
  • the hole transport material preferably has a high Tg.
  • This hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. That power S.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. That power S.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. That power S.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. That power S.
  • An impurity-doped hole transporting layer having a high p property can also be used. Examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, 2001-102175, J. Appl. Phys., 95, 5773 (2004), etc. It is done.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer has a single layer or multiple layers.
  • an electron transport material also serving as a hole blocking material
  • the electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and any material can be selected from conventionally known compounds. .
  • electron transport materials examples include heterocyclic tetrafluoride derivatives, difluoroquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, and other heterocyclic tetra Examples thereof include carboxylic anhydrides, carpositimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dib mouth mode)
  • the central metal of these metal complexes is 8 quinolinol) anoreminium, tris (2 methinolay 8 -quinolinol) aluminum, tris (5-methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Zn q), etc.
  • Metal complexes replacing Mg, Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • metal free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylvirazine derivative exemplified as the material for the light-emitting layer can be used as an electron transport material, and, like the hole injection layer and the hole transport layer, such as n-type Si and n-type SiC.
  • Inorganic semiconductors can also be used as electron transport materials.
  • This electron transport layer is formed by using the above electron transport material, for example, a vacuum deposition method, a spin coating method, a key. It is possible to form a thin film by a known method such as a dust method, an ink jet method, or an LB method. Although there is no restriction
  • This electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an impurity-doped electron transport layer having a high n property can be used.
  • impurity-doped electron transport layer having a high n property examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, 2001-102175, J. Appl. Phys., 95, 5773 (2004), etc. It is done.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as Cul, indium tin oxide (ITO), SnO, and ZnO.
  • conductive transparent materials such as Cul, indium tin oxide (ITO), SnO, and ZnO.
  • ITO indium tin oxide
  • ZnO ZnO
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • the anode may be formed by forming a thin film by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or pattern accuracy is not required so much! / In some cases (about 100 ⁇ m or more), the pattern may be formed through a mask of the desired shape during the deposition or sputtering of the electrode material. In the case where light is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / mouth or less. Furthermore, the film thickness depends on the material, usually 10 to 1000 bells, preferably. It is selected in the range of ⁇ 200.
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy an electrically conductive compound
  • a mixture thereof a mixture thereof.
  • Specific examples of such electrode materials include sodium, sodium isotropic lithium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al O) mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, for example, magnesium / Silver mixtures, magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3) mixtures, lithium / aluminum mixtures, aluminum and the like are suitable.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / mouth or less, and the preferred film thickness is usually 10 to 1000 nm, preferably 50 to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • Substrate also referred to as substrate, substrate, support, etc.
  • the substrate of the organic EL device of the present invention is not particularly limited as long as it is transparent or transparent, and there are no particular restrictions on the type of glass, plastic, etc.
  • Examples of substrates that are preferably used include glass, Examples thereof include quartz and a light-transmitting resin film.
  • a particularly preferred substrate is a resin film that can give flexibility to the organic EL element.
  • Examples of the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC ), A film made of cellulose triacetate (TAC), cellulose acetate propionate (CAP) or the like.
  • the surface of the resin film is a high barrier film having a water vapor transmission rate of 0.01 g / m 2 'day or less, which may have an inorganic or organic coating or a hybrid coating of both. I prefer to be there.
  • the external extraction efficiency at room temperature of light emission of the organic electoluminescence device of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted outside the organic EL element / the number of electrons flowing through the organic EL element ⁇ 100.
  • a roughened film such as anti-glare phenol may be used in combination in order to reduce unevenness in light emission.
  • the sealing means used for sealing the organic EL element of the present invention includes, for example, a method in which a sealing member, an electrode, and a support base are bonded with an adhesive.
  • the sealing member may have a concave plate shape or a flat plate shape as long as it is arranged so as to cover the display area of the organic EL element. Further, transparency and electrical insulation are not particularly limited.
  • a glass plate, a polymer plate 'film, a metal plate' film and the like can be mentioned.
  • the glass plate include soda lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like.
  • Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the element can be thinned.
  • Examples of the adhesive include photocuring and thermosetting adhesives having a reactive bur group of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanacrylic acid esters. it can.
  • hot melt polyamides, polyesters, and polyolefins can be cited.
  • an organic EL element may be deteriorated by heat treatment, an element that can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant is dispersed in the adhesive. Let's go! / Use a commercially available dispenser to apply the adhesive to the sealing area, or print it like screen printing.
  • the electrode and the organic layer may be coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer may be formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing the intrusion of elements such as moisture and oxygen that cause deterioration of the element, such as silicon oxide, silicon dioxide, silicon nitride, and the like. Can be used.
  • a protective film or a protective plate may be provided on the outer side of the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween.
  • the sealing is the sealing film
  • the mechanical strength is not necessarily high, so it is preferable to provide such a protective film and protective plate.
  • the material that can be used for this is the same glass plate, polymer plate 'film, metal plate' film, etc. that can be used for the sealing. Therefore, it is preferable to use a polymer film.
  • a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode will be described.
  • a desired electrode material for example, a thin film made of an anode material is formed on a suitable support substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably 10 to 200 nm.
  • an organic EL thin film of an organic EL element material ie, a hole injection layer, a hole transport layer, an intermediate layer, and a light emitting layer, a hole blocking layer, and an electron transport layer
  • a method for thinning the organic compound thin film there are a vapor deposition method and a wet process (spin coating method, casting method, ink jet method, printing method) as described above. From the point of being difficult to form, a vacuum deposition method, a spin coating method, an ink jet method, and a printing method are particularly preferable. Further, different film forming methods may be applied for each layer.
  • Film in the case of employing an evaporation method different forces generally boat temperature 50 to 450 ° C such as the type of compound the deposition conditions used, the degree of vacuum 10- 6 to 10-2 Pa, the deposition rate 0.01 to 50 belly / second, substrate temperature—50 to 300. C, film thickness 0.1 to 5, preferably 5 to 200 nm.
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm.
  • a desired organic EL device can be obtained by providing a cathode.
  • the organic EL device may be manufactured from the hole injection layer to the cathode consistently by a single evacuation, or may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere. It is also possible to reverse the order of layers and reverse the layer order.
  • a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the anode as + and the cathode as one polarity.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • the organic electoluminescence element of the present invention can be used as a display device, a display, or various light sources.
  • Illumination devices that use the organic EL elements of the present invention as light-emitting sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, and electrophotographic copying.
  • the organic EL device of the present invention may be used as one kind of lamp for illumination or exposure light source, a projection device of a type for projecting an image, a still image or a moving image directly. It may be used as a visual display device (display).
  • the driving method for use as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full color display device can be manufactured by using three or more organic EL elements of the present invention having different emission colors.
  • a single emission color for example, white emission, can be made into a full color by extracting B, G, and R light using a color filter.
  • the emission color of the organic EL element can be converted to another color by using a color conversion filter, so that it can be fully colorized.
  • the max of organic EL emission should be 480 nm or less. Is preferred.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of CuPc was placed in a resistance heating boat made of molybdenum and 200 mg of a NPD was placed in another resistance heating boat made of molybdenum.
  • the hole-transporting layer was heated at a deposition rate of 0. Inm / second and 0.012 nm / second by energizing and heating the heated boat containing H-1 and the heated boat containing Compound 1 79. Co-deposition was started, and the heating boat containing Compound 1 79 was adjusted so that the concentration of Compound 1-79 contained in the light-emitting layer on the cathode side was 3% by mass. A light emitting layer was provided. At this time, the concentration of compound 1-79 in the light emitting layer is negative from the anode side. It changes continuously to the extreme side.
  • the heating boat containing BAlq was energized, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a thickness of 30 nm.
  • the substrate temperature during vapor deposition was room temperature.
  • a cathode was formed by vapor deposition of 110 nm to prepare an organic EL device 1-1.
  • the light emission lifetime of each element shown in Table 3 is the driving voltage (V) at which the front luminance of each organic EL element is 1000 cd / m 2
  • the time until the brightness was reduced to half was expressed as a relative directivity with the organic EL element 1-4 as 100.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of CuPc is put into a resistance heating boat made of molybdenum and 200 mg of a NPD is put into another resistance heating boat made of molybdenum.
  • the heating boat containing H 1 and the heating boat containing Compound 199 were energized and heated, and deposited on the hole transport layer at a deposition rate of 0. Inm / second and 0.012 nm / second. Co-evaporation was started, and the heating boat containing Compound 1 99 was adjusted to emit light with a thickness of 40 nm so that the concentration of Compound 1-99 contained in the light emitting layer on the cathode side was 3% by mass. A layer was provided. At this time, the concentration of compound 119 in the light emitting layer continuously changes from the anode side to the negative side.
  • An electron transport layer having a thickness of 30 nm was provided by vapor deposition on the light emitting layer.
  • the substrate temperature during vapor deposition was room temperature.
  • each organic EL element is driven with a driving voltage (V) at which the front luminance is lOOOcdZm 2 and the time until the luminance is halved is measured. It is expressed as a relative straightness where 100 is 100.
  • V driving voltage
  • This transparent support substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of CuPc was placed in a resistance heating boat made of molybdenum, and 200 mg of a NPD was placed in another resistance heating boat made of molybdenum.
  • the hole-transporting layer was heated at a deposition rate of 0. Inm / second and 0.009 nm / second by energizing and heating the heated boat containing H-1 and the heated boat containing Compound 199.
  • Co-deposition was started on top, 5 nm thick film was deposited, and the heating boat containing H-1 and the heating boat containing compound 1-9 were energized and heated, and the deposition rate was 0. Inm / sec.
  • Co-evaporation was started on the hole transport layer at 0.006 nm / second, and a 35 nm-thick film was deposited to provide a 40 nm thick light-emitting layer.
  • the concentration of Compound 199 in the light emitting layer changes stepwise from the anode side to the cathode side.
  • the heating boat containing BAlq was energized and deposited on the light emitting layer at a deposition rate of 0. Inm / sec to provide an electron transport layer having a thickness of 30 nm.
  • the substrate temperature during vapor deposition was room temperature.
  • organic EL element 2-1 In the production of organic EL element 2-1, except that the concentration of compound 1-99 on the anode side and the concentration of compound 1-99 on the cathode side are as shown in Table 6, organic EL element 3— Organic EL elements 3-2 to 3-4 were fabricated in the same manner as in 1.
  • the light emission lifetime was evaluated in the same manner as in Example 1. Relative values when the organic EL elements 3-4 are set to 100 are shown.
  • this ITO transparent electrode was provided.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • dilute poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate PEDOT / PSS: Bayer, Baytron P Al 4083
  • PEDOT / PSS Bayer, Baytron P Al 4083
  • This substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg ⁇ NPD dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. A two-hole transport layer was formed.
  • the compound 1-99 is dissolved from the first light-emitting layer by the toluene solvent and diffuses to the second light-emitting layer, so that the content of the compound 199 continuously changes, and in the anode-side light-emitting layer A light emitting layer was produced in which the content of compound 1-99 was greater than the content of compound 1-99 on the cathode side.
  • the total thickness of the light emitting layer including the first light emitting layer and the second light emitting layer was about 50 nm.
  • the content of compound 1-99 contained in the toluene solution at the time of forming the first light emitting layer was Omg
  • the toluene solution at the time of forming the second light emitting layer was Organic EL device 4-2 was produced in the same manner except that the content of compound 1-99 contained was 10 mg.
  • the concentration of the compound 199 on the anode side of the light emitting layer is smaller than the concentration of the compound 199 on the cathode side.
  • the content of compound 1-99 contained in the toluene solution at the time of forming the first light emitting layer was 5 mg, and the second light emitting layer was not formed.
  • an organic EL element 43 was produced.
  • the light emitting layer is uniform with the concentration of Compound 199 not changing from the anode side to the cathode side.
  • the light emission lifetime was evaluated in the same manner as in Example 1. The values are shown as relative values when the organic EL element 43 is 100.
  • the organic EL device of the present invention has a long lifetime even in the coating type organic EL device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Description

明 細 書
有機エレクト口ルミネッセンス素子
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子に関する。
背景技術
[0002] 従来、発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレ ィ(以下、 ELDという)がある。 ELDの構成要素としては、無機エレクト口ルミネッセン ス素子や有機エレクト口ルミネッセンス素子(以下、有機 EL素子とも!/、う)が挙げられ る。無機エレクト口ルミネッセンス素子は平面型光源として使用されてきた力 発光素 子を駆動させるためには交流の高電圧が必要である。有機 EL素子は発光する化合 物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を 注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが 失活する際の光の放出(蛍光'リン光)を利用して発光する素子であり、数 V〜数十 V 程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認 性が高ぐ薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注 目されている。
[0003] しかしながら、今後の実用化に向けた有機 EL素子においては、更に低消費電力で 効率よく高輝度に発光する有機 EL素子の開発が望まれている。
[0004] 特許第 3093796号公報では、スチルベン誘導体、ジスチリルァリーレン誘導体ま たはトリススチリルァリーレン誘導体に微量の蛍光体をドープし、発光輝度の向上、素 子の長寿命化を達成している。また、 8—ヒドロキシキノリンアルミニウム錯体をホスト 化合物として、これに微量の蛍光体をドープした有機発光層を有する素子(例えば、 特開昭 63— 264692号公報)、 8—ヒドロキシキノリンアルミユウム錯体をホスト化合物 として、これにキナクリドン系色素をドープした有機発光層を有する素子(例えば、特 開平 3— 255190号公報)等が知られている。
[0005] 以上のように、励起一重項からの発光を用いる場合、一重項励起子と三重項励起 子の生成比が 1 : 3であるため発光性励起種の生成確率が 25%であり、光の取り出し 効率が約 20%であるため、外部取り出し量子効率( ext)の限界は 5%とされている
[0006] ところ力 プリンストン大より励起三重項からのリン光発光を用いる有機 EL素子の報 告(M. A. Baldo et al. , Nature, 395巻、 151〜; 154頁(1998年))力 Sされて以 来、室温でリン光を示す材料の研究が活発になってきている。
[0007] 例えば、 M. A. Baldo et al. , Nature, 403巻、 17号、 750〜753頁(2000年
)、また米国特許第 6, 097, 147号明細書等にも開示されている。
[0008] 励起三重項を使用すると、内部量子効率の上限が 100%となるため励起一重項の 場合に比べて原理的に発光効率が 4倍となり、冷陰極管とほぼ同等の性能が得られ る可能性があることから照明用途としても注目されている。
[0009] 例えば、 S. Lamansky et al. , J. Am. Chem. Soc. , 123巻、 4304頁(2001 年)等においては、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検 討されている。
[0010] また、前述の M. A. Baldo et al. , Nature, 403巻、 17号、 750〜753頁(200 0年)においては、ドーパントとしてトリス(2—フエ二ルビリジン)イリジウムを用いた検 討がされている。
[0011] その他、 M. E. Tompson等は、 The 10th International Workshop on In organic and Organic Electroluminescence (EL' 00、浜松) ίこおレヽて、ドーノ ン卜として L Ir (acac)、例えば、 (ppy) Ir (acac)を、また Moon— Jae Youn. 0g、 T etsuo Tsutsui等 (まや (まり The 10th International Workshop on Inorgan ic and Organic Electroluminescence (EL, 00、浜松)において、ドーノ ントと してトリス(2— (p—トリル)ピリジン)イリジウム(Ir (ptpy) )、トリス(ベンゾ [h]キノリン) イリジウム(Ir (bzq) )等を用いた検討を行って!/、る(なおこれらの金属錯体は一般に オルトメタル化イリジウム錯体と呼ばれて!/、る。 )。
[0012] また、前記 S . Lamansky et al. , J. Am. Chem. Soc. , 123巻、 4304頁(20
01年)ゃ特開 2001— 247859号公報等においても、各種イリジウム錯体を用いて素 子化する試みがされている。
[0013] また、高い発光効率を得るために The 10th International Workshop on I norganic and Organic Electroluminescence (EL' 00、浜松)で (ま、 Ikai等 (ま ホール輸送性の化合物をリン光性化合物のホストとして用いている。また、 M. E. To mpson等は各種電子輸送性材料をリン光性化合物のホストとして、これらに新規なィ リジゥム錯体をドープして用いてレ、る。
[0014] 中心金属をイリジウムの代わりに白金としたオルトメタル化錯体も注目されている。こ の種の錯体に関しては、配位子に特徴を持たせた例が多数知られて!/、る。
[0015] V、ずれの場合も発光素子とした場合の発光輝度や発光効率は、その発光する光が リン光に由来することから従来の素子に比べ大幅に改良されるものであるが、素子の 発光寿命については従来の素子よりも低いという問題点があった。このように、リン光 性の高効率の発光材料は発光波長の短波化と素子の発光寿命の改善が難しぐ実 用に耐えうる性能を十分に達成できて!/、な!/、のが現状である。
[0016] また、波長の短波化に関してはこれまでフエニルピリジンにフッ素原子、トリフルォロ メチル基、シァノ基等の電子吸引性基を置換基として導入すること、配位子としてピコ リン酸やビラザボール系の配位子を導入することが知られている力 S、これらの配位子 では発光材料の発光波長が短波化して青色を達成し、高効率の素子を達成できる 一方、素子の発光寿命は大幅に劣化するため、そのトレードオフの改善が求められ ていた。
[0017] 配位子としてフエ二ルビリジンの母核に力ルバゾールの部分構造を導入した金属錯 体が知られている(例えば、特許文献 1、 2参照。)。また、配位子としてフエ二ルビラゾ 一ルの母核に力ルバゾールの部分構造を導入した金属錯体が知られてレ、る(例えば 、特許文献 3参照)。ここで開示されているように、金属錯体の配位子の構造にヘテロ 原子を含む三環以上の環力 なる縮環構造を導入することにより、発光の素子寿命 に改善が見られるが、まだ十分ではなく色度の点でも改良の余地が残っている。
[0018] 一方、配位子としてフエ二ルイミダゾールを基本骨格にして、種々の置換基を導入 した例が開示されている(例えば、特許文献 4、 5参照。)。
[0019] また、金属錯体を含有する発光層を有する有機 EL素子において、発光層内で発 光領域を、つまりは金属錯体の含有量の濃度を制御することで発光層界面での発光 位置を制御し、長寿命化することが行われている(例えば、特許文献 6、 7参照。)。 [0020] しかしながら、これら技術は発光寿命には大きな改善は見られず、改良の余地が残 つている。
特許文献 1:特開 2004— 67658号公報
特許文献 2:特開 2005— 23070号公報
特許文献 3:国際公開第 04/085450号パンフレット
特許文献 4:国際公開第 05/007767号パンフレット
特許文献 5:特開 2005 _ 68110号公報
特許文献 6:特開 2003— 229272号公報
特許文献 7:特開 2005— 108730号公報
発明の開示
発明が解決しょうとする課題
[0021] 本発明の目的は、発光寿命に優れた有機エレクト口ルミネッセンス素子を提供する ことにある。
課題を解決するための手段
[0022] 本発明の上記目的は、下記構成により達成される。
[0023] 1.対向した陰極と陽極の間にホスト材料とドーパント材料とを含有する発光層を少 なくとも有する有機エレクト口ルミネッセンス素子において、該ドーパント材料が下記 一般式(1)で表され、該ドーパント材料の含有濃度が発光層の厚さ方向において、 陽極側から陰極側に減少していることを特徴とする有機エレクト口ルミネッセンス素子
[0024] [化 1]
—殺武《1)
Figure imgf000005_0001
[0025] (式中、 Rは置換基を表す。 Zは 5〜7員環を形成するのに必要な非金属原子群を表
1
す。 nlは 0〜5の整数を表す。 B〜Bは炭素原子、窒素原子、酸素原子もしくは硫
1 5
黄原子を表し、少なくとも一つは窒素原子を表す。 Mは元素周期表における 8〜; 10
1
族の金属を表す。 X及び Xは炭素原子、窒素原子もしくは酸素原子を表し、 Lは X
1 2 1 1 及び Xと共に 2座の配位子を形成する原子群を表す。 mlは 1、 2または 3の整数を表 し、 m2は 0、 1または 2の整数を表す力 S、 ml +m2は 2または 3である。 )
2.前記ドーパント材料の含有濃度の陽極側から陰極側においての減少が段階的 であることを特徴とする前記 1に記載の有機エレクト口ルミネッセンス素子。
[0026] 3.前記ドーパント材料の含有濃度の陽極側から陰極側にお!/、ての減少が連続的 であることを特徴とする前記 1に記載の有機エレクト口ルミネッセンス素子。
[0027] 4.前記一般式(1)で表されるドーパント材料における、 m2が 0であることを特徴と する前記 1〜3のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子。
[0028] 5.前記一般式(1)で表されるドーパント材料における、 B〜Bで形成される含窒
1 5
素複素環がイミダゾール環であることを特徴とする前記 1〜4のいずれ力、 1項に記載 の有機エレクト口ルミネッセンス素子。
[0029] 6.前記発光層において、ホスト材料のイオン化ポテンシャル Iphとドーパント材料の イオン化ポテンシャル Ipdとが下式(1)を満たすことを特徴とする前記 1〜5のいずれ 力、 1項に記載の有機エレクト口ルミネッセンス素子。
[0030] 式(1) Iph-Ipd≥0. 7
7.前記発光層の陽極側に含まれるドーパント材料の濃度を八質量%、陰極側に含 まれるドーパント材料の濃度を 8質量%としたとき、 A/B≥l . 5を満たすことを特徴 とする前記 1〜6のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子。
[0031] 8.前記ドーパント材料のリン光波長ピークが 480nm以下であることを特徴とする前 記 1〜7のいずれ力、 1項に記載される有機エレクト口ルミネッセンス素子。
[0032] 9.更に他の発光層を有することを特徴とする前記;!〜 8のいずれか 1項に記載の有 機エレクト口ルミネッセンス素子。
[0033] 10.発光が白色であることを特徴とする前記 1〜9のいずれ力、 1項に記載の有機ェ レクト口ルミネッセンス素子。 発明の効果
[0034] 本発明により、発光寿命に優れた有機エレクト口ルミネッセンス素子を提供すること ができた。
発明を実施するための最良の形態
[0035] 以下、本発明につ!/、て詳述する。
[0036] 本発明は、対向した陰極と陽極の間にホスト材料とドーパント材料とを含有する発 光層を少なくとも有する有機エレクト口ルミネッセンス素子(以後、有機 EL素子ともい う)において、該ドーパント材料が前記一般式(1)で表され、該ドーパント材料の含有 濃度が発光層の厚さ方向において、陽極側から陰極側に減少していることを特徴と する。
[0037] 本発明にお!/、て、陽極側から陰極側に段階的に減少して!/、るとは、 2nm以上の範 囲においてドーパントの含有量が一定であることを言う。
[0038] 本発明において、ドーパント材料の含有濃度を発光層の厚さ方向において、陽極 側から陰極側に減少させるには、ホスト材料とドーパント材料の共蒸着において、蒸 着速度を蒸着温度の制御により変化させて連続的減少を達成することができる。また 、蒸着速度の変化と共に蒸着装置のシャッターの制御により、意図した段階的減少を 達成すること力でさる。
[0039] これまで、ドーパント材料を含有する発光層を有する有機 EL素子において、発光 層内で発光領域を、つまりはドーパント材料の含有量の濃度を制御することで発光 層界面での発光位置を制御し、長寿命化することが行われている(例えば、特開 200 3— 229272号、同 2005— 108730号の各公報)。
[0040] 励起三重項からの発光を用いるリン光発光素子の場合、励起一重項からの発光を 用いる蛍光発光素子に比べると、一重項励起子と三重項励起子の生成比が 1: 3で あるため内部量子効率の上限が 100%となるため、励起一重項の場合に比べて原 理的に発光効率が 4倍となり、高効率な発光を得ることができる。しかし、蛍光発光素 子と比較してリン光発光素子は、寿命が悪いことが知られており、特に青色のリン光 発光素子に関しては実用化を成すには未だ不十分である。
[0041] 我々は、鋭意検討を重ねた結果、前記一般式(1 )で示されるドーパント材料におい て、長寿命なリン光発光素子が得られることがわかった。更に鋭意検討を重ねた結果 、一般式(1)で示されるドーパント材料を用いたリン光発光素子で、発光層内にドー プ濃度の変化、具体的には陽極側から陰極側に濃度勾配(陽極側が濃度が高ぐ陰 極側が濃度が低い)をつけることにより、発光寿命が更に伸びることを見出し、本発明 を完成させるに至った。
[0042] かかる濃度勾配は、発光層を斜めに切削し、 TOF— SIMSにて測定することにより 確認される。なお、斜め切削は、その前処理として、サイカス NN04 (ダイプラウィンテ ス社製)で斜め断面の作製を行う。発光層に複数のドーパントが含まれる場合は、分 子量違いによって区別することができる。
[0043] TOF— SIMS測定は Physical Electronics社製の飛行時間型 2次イオン質量分 析計 TRIFT2を用い、 1次イオンとして加速電圧 25kVの Inイオン(ビーム電流は 2n A)で fiうことができる。
[0044] 本発明によるリン光発光素子が、驚くべき効果を得られた要因は詳細には明らかに されていないが、本発明者らはその要因を以下のように考えている。しかし、要因はこ れに限らない。
[0045] 発光層内にお!/、ては、ドーパント材料がホスト材料内に分散して!/、る状態で存在し ル Iphの差が大きいとき(例えば、 Iph— Ipd^ O. 7eV)には、ドーパント材料が正孔 に対して深いトラップとなると考えられる。このとき、発光層に含有されるドーパント材 料の濃度が低レ、とイオン化ポテンシャルの小さ!/、ドーパント材料にトラップされた正孔 力 発光層内に含有される隣のドーパント材料まで移動することができず、陰極側へ と移動することができずに、正孔をトラップした状態で!/、ることが多くなると考えられる 。そのため、発光層の陽極側界面の領域に発光が偏ってしまうと考えられることから、 発光層の陽極側界面領域での劣化が起こりやすいと考えられ、このことが有機 EL素 子の寿命が短!/、原因だと考えられる。
[0046] イオン化ポテンシャルとは、化合物の HOMO (最高被占分子軌道)レベルにある電 子を真空準位に放出するのに必要なエネルギーで定義され、具体的には膜状態(層 状態)の化合物から電子を取り出すのに必要なエネルギーであり、これらは光電子分 光法で直接測定することができる。例えば、アルバック—フアイ (株)製 ESCA 5600 UPS ultraviolet photoemission spectroscopy)に飞測疋 *することができ ·θ。
[0047] この課題を解決するため、陽極側界面領域のドーパント材料の濃度を高くすること で、陽極側のドーパント分子にトラップされた正孔を陰極側へと移動させ、陽極側界 面の領域のみでの劣化を抑制し、発光領域を陰極側にも広げることで、有機エレクト 口ルミネッセンス素子の長寿命化を検討したところ、前記一般式(1)で表される化合 物、特に青色発光ドーパント材料において、長寿命化の効果が驚くほど大きいことが わかった。
[0048] なお、発光層の陽極側に含まれるドーパント材料の濃度を八質量%、陰極側に含ま れるドーパント材料の濃度を 8質量%としたとき、本発明においては、 Α/Β≥1 · 5を 満たすことが好ましぐその上限値は 20であり、好ましくは上限値は 10、より好ましく は上限値は 5である。
[0049] ここで、陽極側濃度 (八質量%)とは、発光層の陽極側に隣接する層と、発光層との 界面から発光層膜厚 lnm以内に含まれるドーパント濃度のことを言い、陰極側濃度( 8質量%)とは、発光層の陰極側に隣接する層と、発光層との界面から発光層の膜厚 lnm以内に含まれるドーパント濃度のことを言う ル Iphの差が小さいときには(例えば、 Iph-Ipd< 0. 7)、ドーパント材料による正孔 のトラップが弱いため、陰極側へと正孔が移動することが可能であることから、この場 合における濃度勾配を設けた有機 EL素子においては長寿命化の効果が小さいと考 X_られる。
[0050] 《一般式(1)で表されるドーパント材料》
本発明の一般式(1)で表されるドーパント材料において、 Rで表される置換基とし
1
ては、例えば、アルキル基(例えば、メチル基、ェチル基、プロピル基、イソプロピノレ 基、 t ブチル基、ペンチル基、へキシル基、ォクチル基、ドデシル基、トリデシル基、 テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、 シクロへキシル基等)、アルケニル基(例えば、ビュル基、ァリル基等)、アルキニル基
(例えば、ェチュル基、プロパルギル基等)、芳香族炭化水素環基 (芳香族炭素環基 、ァリール基等ともいい、例えば、フエニル基、 p—クロ口フエ二ル基、メシチル基、トリ ル基、キシリノレ基、ナフチル基、アントリノレ基、ァズレニル基、ァセナフテュル基、フル ォレニル基、フエナントリル基、インデュル基、ピレニル基、ビフエ二リル基等)、芳香 族複素環基 (例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル 基、ベンゾイミダゾリル基、ピラゾリル基、ピラジュル基、トリァゾリル基(例えば、 1 , 2, 4 卜リ ゾ '一ノレ 1 イノレ基、 1 , 2, 3 卜リ ゾ '一ノレ 1 イノレ基等)、才キサゾ'リノレ 基、ベンゾォキサゾリル基、チアゾリル基、イソォキサゾリル基、イソチアゾリル基、フラ ザ二ノレ基、チェニル基、キノリノレ基、ベンゾフリル基、ジベンゾフリル基、ベンゾチェ二 ル基、ジベンゾチェニル基、インドリノレ基、カルバゾリル基、カノレポリニノレ基、ジァザ力 ノレバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素 原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基 、キナゾリニル基、フタラジュル基等)、複素環基 (例えば、ピロリジル基、イミダゾリジ ル基、モルホリル基、ォキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、ェトキ シ基、プロピルォキシ基、ペンチルォキシ基、へキシルォキシ基、ォクチルォキシ基、 ドデシルォキシ基等)、シクロアルコキシ基(例えば、シクロペンチルォキシ基、シクロ へキシルォキシ基等)、ァリールォキシ基(例えば、フエノキシ基、ナフチルォキシ基 等)、アルキルチオ基(例えば、メチルチオ基、ェチルチオ基、プロピルチオ基、ペン チルチオ基、へキシルチオ基、ォクチルチオ基、ドデシルチオ基等)、シクロアルキル チォ基(例えば、シクロペンチルチオ基、シクロへキシルチオ基等)、ァリールチオ基( 例えば、フエ二ルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メ チノレ才キシカノレポ二ノレ基、ェチノレ才キシカノレポ二ノレ基、ブチノレ才キシカノレポ二ノレ基、 ォクチルォキシカルボニル基、ドデシルォキシカルボニル基等)、ァリールォキシカル ボニル基(例えば、フエニルォキシカルボニル基、ナフチルォキシカルボニル基等)、 スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチル アミノスルホニル基、ブチルアミノスルホニル基、へキシルアミノスルホニル基、シクロ へキシルアミノスルホニル基、ォクチルアミノスルホニル基、ドデシルアミノスルホニル 基、フエニルアミノスルホニル基、ナフチルアミノスルホニル基、 2—ピリジルアミノスル ホニル基等)、ァシル基(例えば、ァセチル基、ェチルカルボニル基、プロピルカルボ 二ノレ基、ペンチノレカノレポニノレ基、シクロへキシノレカノレポニノレ基、ォクチノレカノレポニノレ 基、 2—ェチルへキシルカルボニル基、ドデシルカルボニル基、フエニルカルボニル 基、ナフチルカルボニル基、ピリジルカルボニル基等)、ァシルォキシ基(例えば、ァ セチルォキシ基、ェチルカルボニルォキシ基、ブチルカルボニルォキシ基、ォクチル カルボニルォキシ基、ドデシルカルボニルォキシ基、フエニルカルボ二ルォキシ基等 )、アミド基(例えば、メチルカルボニルァミノ基、ェチルカルボニルァミノ基、ジメチノレ カルボニルァミノ基、プロピルカルボニルァミノ基、ペンチルカルボニルァミノ基、シク 口へキシルカルボニルァミノ基、 2—ェチルへキシルカルボニルァミノ基、ォクチルカ ルポニルァミノ基、ドデシルカルポニルァミノ基、フエ二ルカルポニルァミノ基、ナフチ ルカルポニルァミノ基等)、力ルバモイル基(例えば、ァミノカルボニル基、メチルァミノ カルボニル基、ジメチルァミノカルボニル基、プロピルアミノカルボニル基、ペンチノレ ァミノカルボニル基、シクロへキシルァミノカルボニル基、ォクチルァミノカルボニル基 、 2—ェチルへキシルァミノカルボニル基、ドデシルァミノカルボニル基、フエニルアミ ノカルボニル基、ナフチルァミノカルボニル基、 2—ピリジルァミノカルボニル基等)、 ウレイド基(例えば、メチルウレイド基、ェチルウレイド基、ペンチルゥレイド基、シクロ へキシルウレイド基、ォクチルゥレイド基、ドデシノレウレイド基、フエニルウレイド基ナフ チルウレイド基、 2—ピリジルアミノウレイド基等)、スルフィエル基(例えば、メチルスル フィニノレ基、ェチノレスノレフィニノレ基、ブチノレスノレフィニノレ基、シクロへキシノレスノレフィ 二ノレ基、 2—ェチルへキシルスルフィニル基、ドデシルスルフィニル基、フエニルスノレ フィエル基、ナフチルスルフィエル基、 2—ピリジルスルフィエル基等)、アルキルスル ホニル基(例えば、メチルスルホニル基、ェチルスルホニル基、ブチルスルホニル基、 シクロへキシノレスノレホニノレ基、 2—ェチノレへキシノレスノレホニノレ基、ドデシノレスノレホニ ル基等)、ァリールスルホニル基またはへテロアリールスルホニル基(例えば、フエ二 ノレスルホニル基、ナフチルスルホニル基、 2—ピリジルスルホニル基等)、アミノ基(例 えば、アミノ基、ェチルァミノ基、ジメチルァミノ基、ブチルァミノ基、シクロペンチルァ ミノ基、 2—ュチノレへキシノレ ミノ基、ド、デシノレ ミノ基、 二リノ基、ナフチノレアミノ基、 2—ピリジルァミノ基等)、シァノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基 (例 えば、トリメチルシリル基、トリイソプロビルシリル基、トリフエニルシリル基、フエニルジ ェチルシリル基等)等が挙げられる。これらの置換基のうち、好ましいものはアルキル 基もしくはァリール基である。
[0051] Zは 5〜7員環を形成するのに必要な非金属原子群を表す。 Zにより形成される 5〜
7員環としては、例えば、ベンゼン環、ナフタレン環、ピリジン環、ピリミジン環、ピロ一 ル環、チォフェン環、ピラゾール環、イミダゾール環、ォキサゾール環及びチアゾール 環等が挙げられる。これらのうちで好ましいものは、ベンゼン環である。
[0052] B〜Bは炭素原子、窒素原子、酸素原子もしくは硫黄原子を表し、少なくとも一つ
1 5
は窒素原子を表す。これら 5つの原子により形成される芳香族含窒素複素環としては 単環が好ましい。例えば、ピロール環、ピラゾール環、イミダゾール環、トリァゾール環 、テトラゾール環、ォキサゾール環、イソォキサゾール環、チアゾール環、イソチアゾ ール環、ォキサジァゾール環及びチアジアゾ一環ル等が挙げられる。これらのうちで 好ましいのはピラゾール環、イミダゾール環であり、更に好ましくはイミダゾール環であ る。これらの環は上記の置換基によって更に置換されていてもよい。置換基として好 ましいものはアルキル基及びァリール基であり、更に好ましくは、ァリール基である。
[0053] Lは X 、 Xと共に 2座の配位子を形成する原子群を表す。 X— L —Xで表される 2
1 1 2 1 1 2 座の配位子の具体例としては、例えば、置換または無置換のフエ二ルビリジン、フエ ニルピラゾーノレ、フエ二ルイミダゾ一ノレ、フエニルトリァゾーノレ、フエ二ルテトラゾール、 ビラザボール、ピコリン酸及びァセチルアセトン等が挙げられる。
[0054] これらの基は上記の置換基によって更に置換されて!/、てもよ!/、。
[0055] mlは 1、 2または 3の整数を表し、 m2は 0、 1または 2の整数を表す力 ml + m2は
2または 3である。中でも、 m2は 0である場合が好ましい。
[0056] Mで表される金属としては、元素周期表の 8〜; 10族の遷移金属元素(単に遷移金
1
属ともいう)が用いられるが、中でもイリジウム、白金が好ましぐ更に好ましくはイリジ ゥムである。
[0057] なお、本発明の一般式(1 )で表されるドーパント材料は、重合性基または反応性基 を有して!/ヽても!/ヽなくてもよ!/、。
[0058] 一般式(1 )で表されるドーパント材料の内、 B
1〜Bで形成される含窒素複素環がィ 5
ミダゾール環である下記一般式(2)で表されるドーパント材料が好ましい。 [0059] [化 2]
'般.式 {2)
Figure imgf000013_0001
[0060] 一般式(2)において、 R、 R、 Rは置換基を表し、一般式(1)における Rが表す置
1 2 3 1 換基と同義である。 Z、 nl、 M、 X、 X、 L、 ml、 m2は一般式(1)におけるそれらと
1 1 2 1
同 ¾でめる。
[0061] 一般式(2)において、 Rが下記で表されるドーパント材料が更に好ましい。
[0062] [化 3]
Figure imgf000013_0002
[0063] Rは立体パラメーター値 (Es値)がー 0. 5以下の置換基を表す。
4
[0064] ここで、 Es値とは化学反応性より誘導された立体パラメーターであり、この値が小さ ければ小さ!/、ほど立体的に嵩高!/、置換基と!/、うこと力 Sできる。
[0065] 以下、 Es値につ!/、て説明する。一般に、酸性条件下でのエステルの加水分解反応 にお!/、ては、置換基が反応の進行に対して及ぼす影響は立体障害だけと考えてよ いことが知られており、この事を利用して置換基の立体障害を数値化したものが Es値 である。
[0066] 置換基 Xの Es値は、次の化学反応式
X-CH COORX + H 0→X-CH COOH + RXOH
で表される、酢酸のメチル基の水素原子 1つを置換基 Xで置換した α位モノ置換酢 酸から誘導される α位モノ置換酢酸エステルを酸性条件下で加水分解する際の反 応速度定数 kXと、次の化学反応式 CH COORY + H 0→CH COOH + RYOH
3 2 3
(RXは RYと同じである)で表される、上記の α位モノ置換酢酸エステルに対応する 酢酸エステルを酸性条件下で加水分解する際の反応速度定数 kHから次の式で求 められる。
[0067] Es = log (kX/kH)
置換基 Xの立体障害により反応速度は低下し、その結果 kXく kHとなるので Es値 は通常負となる。実際に Es値を求める場合には、上記の二つの反応速度定数 kXと k Hを求め、上記の式により算出する。
[0068] Esィ直の具体的な例は、 Unger, S. H. , Hansch, C. , Prog. Phys. Org. Che m. , 12, 91 (1976)に詳しく記載されている。また、『薬物の構造活性相関』 (化学 の領域増干|」122号、南江堂)、「八11^ &1 Chemical Society Professional Reference Book, ' Exploring QSAR' p. 81 Table 3— 3」にも、その具体的 な数値の記載がある。次にその一部を表 1に示す。
[0069] [表 1]
Figure imgf000015_0001
[0070] ここで、注意するのは本明細書で定義するところの Es値は、メチル基のそれを 0とし て定義したのではなぐ水素原子を 0としたものであり、メチル基を 0とした Es値から 1
. 24を差し引いたものである。
[0071] 本発明において Es値は一 0. 5以下である。好ましくは一 7· 0以上一 0. 6以下であ る。最も好ましくは一 7. 0以上一 1 · 0以下である。
[0072] 以下に、本発明に係る一般式(1)で表されるドーパント材料の具体的な例を挙げる 力 本発明はこれらに限定されるものではない。
[0073] [化 4] /v:/ O/-/-90/-00ifcl£ S6SSS800ZAV S
Figure imgf000016_0001
^s^o
Figure imgf000017_0001
[0075] [化 6]
Figure imgf000018_0001
[0076] [化 7]
Figure imgf000019_0001
[0077] [化 8]
Figure imgf000020_0001
Figure imgf000021_0001
[0079] [化 10]
Figure imgf000022_0001
[0080] [化 11]
Figure imgf000023_0001
Figure imgf000023_0002
[ετ¾] [Ζ800]
Figure imgf000024_0001
lLL90/L00ZdT/13d 83 S6SSC0/800Z OAV
Figure imgf000025_0001
[0083] [化 14]
Figure imgf000026_0001
]
Figure imgf000027_0001
[0085] [化 16]
Figure imgf000028_0001
[0086] [化 17]
Figure imgf000029_0001
[0087] [化 18] 0088 I
Figure imgf000030_0001
Figure imgf000031_0001
[0089] [化 20]
Figure imgf000032_0001
Figure imgf000032_0002
これらの金属錯体は、例えば、 Organic Letter誌、 vol3、 No. 16、 2579〜258 1頁(2001)、 Inorganic Chemistry,第 30巻、第 8号、 1685〜; 1687頁(1991年 )、 J. Am. Chem. Soc. , 123巻、 4304頁(2001年)、 Inorganic Chemistry, 第 40巻、第 7号、 1704〜1711頁(2001年)、 Inorganic Chemistry,第 41巻、 第 12号、 3055〜3066頁(2002年)、 New Journal of Chemistry. ,第 26巻、 1171頁 (2002年)、 European Journal of Organic Chemistry,第 4巻、 695 〜709頁(2004年)、更にこれらの文献中に記載の参考文献等の方法を適用するこ とにより合成できる。
[0091] 本発明において化合物のリン光波長とは、リン光スペクトルの 0— 0バンドのことであ る。リン光スペクトルの 0— 0バンドは以下の測定方法により求めることができる。
[0092] 測定する化合物をよく脱酸素された塩化メチレン中に溶かし、リン光測定用セルに 入れた後、常温 (25°C)で励起光を照射し、発光スペクトルを測定する。また、上記溶 剤系で溶解できな!/、化合物につ!/、ては、その化合物を溶解しうる任意の溶剤を使用 してもよい。
[0093] 次に 0— 0バンドの求め方である力 S、本発明においては、上記測定法で得られたリ ン光スペクトルチャートのなかで最も短波長側に現れる発光極大波長をもって 0— 0 バンドと定義する。また、リン光スペクトルが弱い場合には、スムージング処理すること でノイズとピークを分離しピーク波長を読み取ることもできる。なお、スムージング処理 としては、 Savitzky&Glayの平滑化法等を適用することができる。
[0094] 本発明においては、リン光波長ピークが 480nm以下であることが好ましい。
[0095] 次に、本発明の有機 EL素子の構成層について詳細に説明する。
[0096] 本発明において、有機 EL素子の層構成の好ましい具体例を以下に示す力 本発 明はこれらに限定されない。
[0097] (i)陽極/発光層/陰極
(ii)陽極/正孔輸送層/発光層/陰極
(iii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(V)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰 極バッファー層/陰極
(vi)陽極/正孔注入層/正孔輸送層/正孔輸送層 A/発光層/電子輸送層/ 陰極バッファー層/陰極。
[0098] 《発光層》
本発明に係る発光層につ!/、て説明する。
[0099] 本発明に係る発光層は、電極または電子輸送層、正孔輸送層等から注入されてく る電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であ つても発光層と隣接層との界面であってもよい。
[0100] (ドーパント材料)
本発明の有機 EL素子の発光層には、ドーパント材料とホスト材料が含有される。本 発明にお!/、ては、ドーパント材料として前述した本発明に係る化合物を用いることが 好ましい。
[0101] 更に公知のドーパント材料を複数種併用してもよい。ドーパント材料を複数種用い ることで異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることがで きる。ドーパント材料の種類、ドープ量を調整することで白色発光が可能であり、照明 、ノ ックライトへの応用もできる。
[0102] 公知のドーパント材料の具体例としては、以下の文献に記載されている化合物が挙 げられる。
[0103] 国際公開第 00/70655号パンフレット、特開 2002— 280178号公報、特開 2001 —18皿 6号公報、特開 2002— 280179号公報、特開 2001— 18皿 7号公報、 特開 2002— 280180号公報、特開 2001— 247859号公報、特開 2002— 299060 号公報、特開 2001— 313178号公報、特開 2002— 302671号公報、特開 2001— 345183号公報、特開 2002— 324679号公報、国際公開第 02/15645号パンフ レツ K特開 2002— 332291号公報、特開 2002— 50484号公報、特開 2002— 33 2292号公報、特開 2002— 83684号公報、特表 2002— 540572号公報、特開 20 02— 117978号公報、特開 2002— 338588号公報、特開 2002— 170684号公報 、特開 2002— 352960号公報、国際公開第 01/93642号パンフレット、特開 2002
— 50483号公報、特開 2002— 100476号公報、特開 2002— 173674号公報、特 開 2002— 359082号公報、特開 2002— 175884号公報、特開 2002— 363552号 公報、特開 2002— 184582号公報、特開 2003— 7469号公報、特表 2002— 525 808号公報、特開 2003— 7471号公報、特表 2002— 525833号公報、特開 2003
— 31366号公報、特開 2002— 226495号公報、特開 2002— 234894号公報、特 開 2002— 235076号公報、特開 2002— 241751号公報、特開 2001— 319779号 公報、特開 2001— 319780号公報、特開 2002— 62824号公報、特開 2002— 10 0474号公報、特開 2002— 203679号公報、特開 2002— 343572号公報、特開 2
002— 203678号公報等。
[0104] (ホスト材料)
発光層に使用される材料としては、上記のドーパント材料の他にホスト材料がある。
[0105] ここで本発明においてホスト材料とは、発光層に含有される化合物のうちで室温(2
5°C)において、リン光発光のリン光量子収率が 0. 01未満の化合物と定義される。
[0106] 本発明に用いられるとしてホスト材料は構造的には特に制限はないが、代表的に は力ルバゾール誘導体、トリアリールァミン誘導体等が挙げられる。
[0107] 以下に力ルバゾール誘導体、トリアリールァミン誘導体等の具体例を挙げる力 本 発明はこれらに限定されない。
[0108] [化 21]
Figure imgf000036_0001
[0109] [化 22]
Figure imgf000037_0001
[0110] [化 23]
Figure imgf000038_0001
[0111] [化 24]
Figure imgf000039_0001
[0112] [化 25] [9 [επο]
Figure imgf000040_0001
lLL90/LOOZdT/13d 6ε S6SSC0/800Z OAV
Figure imgf000041_0001
Figure imgf000041_0002
[0114] ホスト材料としては発光の長波長化を防ぎ、なお且つ高 Tg (ガラス転移温度)であ る化合物が好ましい。ここで、高 Tgとは 100°C以上を言う。
[0115] ホスト材料の具体例としては、以下の文献に記載されている化合物が好適である。
例えば、特開 2001— 257076号公報、同 2001— 313179号公報、同 2002— 319 491号公報、同 2001— 357977号公報、同 2002— 334786号公報、同 2002— 8 860号公報、同 2002— 334787号公報、同 2002— 15871号公報、同 2002— 33 4788号公報、同 2002— 43056号公報、同 2002— 334789号公報、同 2002— 7 5645号公報、同 2002— 105445号公報、同 2002— 343568号公報、同 2002— 141 173号公報、同 2002— 203683号公報、同 2002— 363227号公報、同 2003
— 3165号公報、同 2002— 234888号公報、同 2003— 27048号公報、同 2002— 255934号公報、同 2002— 260861号公報、同 2002— 280183号公報、同 2002
— 302516号公報、同 2002— 308837号公報、同 2000— 21572号公報、同 200 4— 288381号公報等。
[0116] 《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する材料を含み、広い意味で正孔注入 層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層もしくは複数層設ける こと力 Sでさる。
[0117] 正孔輸送材料としては特に制限はなぐ従来、光導伝材料において、正孔の電荷 注入輸送材料として慣用されているものや EL素子の正孔注入層、正孔輸送層に使 用される公知のものの中から任意のものを選択して用いることができる。
[0118] 正孔輸送材料は正孔の注入もしくは輸送、電子の障壁性のいずれかを有するもの であり、有機物、無機物のいずれであってもよい。例えば、トリァゾール誘導体、ォキ サジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン 誘導体及びピラゾロン誘導体、フエ二レンジァミン誘導体、ァリールァミン誘導体、アミ ノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、フルォレ ノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリン系共重 合体、また導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げられる。
[0119] 正孔輸送材料としては上記のものを使用することができる力 ポルフィリン化合物、 芳香族第三級ァミン化合物及びスチリルアミン化合物、特に芳香族第三級ァミン化 合物を用いることが好ましい。
[0120] 芳香族第三級ァミン化合物及びスチリルァミン化合物の代表例としては、 N, N, N ' , N ーテトラフエニノレー 4, A' ージァミノフエ二ノレ; N, N ージフエニノレー N, N ' —ビス(3—メチルフエ二ル)一〔1 , 1' —ビフエ二ル〕一 4, 4' —ジァミン(TPD) ; 2, 2—ビス(4—ジ一 p トリルァミノフエニル)プロパン; 1 , 1—ビス(4—ジ一 p トリ ノレアミノフエ二ノレ)シクロへキサン; N, N, N' , N' —テトラ一 p トリノレ一 4, A' - ジアミノビフエニル; 1 , 1—ビス(4—ジ一 p トリルァミノフエニル) 4—フエ二ルシク 口へキサン;ビス(4 -ジメチルァミノ一 2 メチルフエ二ノレ)フエニルメタン;ビス(4 -ジ —p トリルァミノフエ二ノレ)フエニルメタン; N, N' —ジフエ二ノレ一 N, N' —ジ(4— メトキシフエ二ル)一 4, 一ジアミノビフエ二ノレ; N, N, N' , N' —テトラフエ二ノレ 4, 4' ージアミノジフエニルエーテル; 4, 4' ビス(ジフエニルァミノ)クオ一ドリフ ェニル; N, N, N—トリ(p—トリル)ァミン; 4—(ジ—p—トリルァミノ)ー 一〔4—(ジ —p—トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエニルアミノー(2 ジフエ二 ノレビニノレ)ベンゼン; 3—メトキシ一 4' — N, N ジフエ二ルアミノスチルベンゼン; N フエ二ルカルバゾール、更には米国特許第 5, 061 , 569号明細書に記載されて いる 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' —ビス〔N— ( 1—ナ フチル) N フエニルァミノ〕ビフヱニル(NPD)、特開平 4 308688号公報に記 載されているトリフエニルァミンユニットが 3つスターバースト型に連結された 4, 4' , A" —トリス〔N— (3—メチルフエニル) N フエニルァミノ〕トリフエニルァミン(MTD ATA)等が挙げられる。
[0121] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。
[0122] また、 p型 Si、 p型 SiC等の無機化合物も正孔注入材料、正孔輸送材料として 使用すること力できる。また、正孔輸送材料は、高 Tgであることが好ましい。
[0123] この正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ること力 Sできる。正孔輸送層の膜厚については特に制限はないが、通常は 5〜5000 nm程度である。この正孔輸送層は上記材料の 1種または 2種以上からなる 1層構造 であってもよい。
[0124] また、不純物ドープした p性の高い正孔輸送層を用いることもできる。その例として は、特開平 4— 297076号、特開 2000— 196140号、同 2001— 102175号の各公 報、 J. Appl. Phys. , 95, 5773 (2004)などに記載されたものが挙げられる。
[0125] 《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層もしくは複数層を設け ること力 Sでさる。
[0126] 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して、陰極側に隣 接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)としては、下 記の材料が知られている。更に、電子輸送層は陰極より注入された電子を発光層に 伝達する機能を有していればよぐその材料としては従来公知の化合物の中から任 意のものを選択して用いることができる。
[0127] この電子輸送層に用いられる材料 (以下、電子輸送材料という)の例としては、ニト 口置換フルオレン誘導体、ジフヱ二ルキノン誘導体、チォピランジオキシド誘導体、ナ フタレンペリレンなどの複素環テトラカルボン酸無水物、カルポジイミド、フレオレニリ デンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ォキサジァゾール誘導 体などが挙げられる。更に、上記ォキサジァゾール誘導体において、ォキサジァゾ一 ル環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知 られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いる こと力 Sでさる。
[0128] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。
[0129] また、 8 キノリノール誘導体の金属錯体、例えば、トリス(8 キノリノール)アルミ二 ゥム(Alq )、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ 口モー 8 キノリノール)ァノレミニゥム、トリス(2 メチノレー 8 -キノリノール)アルミユウ ム、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Zn q)など、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに 置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフ リー若しくはメタルフタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基 などで置換されているものも、電子輸送材料として好ましく用いることができる。また、 発光層の材料として例示したジスチリルビラジン誘導体も、電子輸送材料として用い ること力 Sできるし、正孔注入層、正孔輸送層と同様に、 n型 Si、 n型 SiCなどの無 機半導体も電子輸送材料として用いることができる。
[0130] この電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ること力 Sできる。電子輸送層の膜厚については特に制限はないが、通常は 5〜5000 nm程度である。この電子輸送層は上記材料の 1種または 2種以上からなる 1層構造 であってもよい。
[0131] また、不純物ドープした n性の高い電子輸送層を用いることもできる。その例として は、特開平 4— 297076号、特開 2000— 196140号、同 2001— 102175号の各公 報、 J. Appl. Phys. , 95, 5773 (2004)などに記載されたものが挙げられる。
[0132] 《陽極》
本発明の有機 EL素子に係る陽極としては、仕事関数の大きい (4eV以上)金属、 合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用い られる。このような電極物質の具体例としては、 Au等の金属、 Cul、インジウムチンォ キシド(ITO)、 SnO 、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O — ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
[0133] 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、 フォトリソグラフィ一法で所望の形状のパターンを形成してもよぐあるいはパターン精 度をあまり必要としな!/、場合は(100 μ m以上程度)、上記電極物質の蒸着やスパッ タリング時に所望の形状のマスクを介してパターンを形成してもよレ、。この陽極より発 光を取り出す場合には、透過率を 10%より大きくすることが望ましぐまた陽極として のシート抵抗は数百 Ω /口以下が好ましい。更に膜厚は材料にもよる力 通常 10〜 1000腹、好ましくは 。〜 200應の範囲で選ばれる。
[0134] 《陰極》
一方、本発明に係る陰極としては、仕事関数の小さい (4eV以下)金属(電子注入 性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするも のが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム一力リウ ム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物 、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム /酸化アルミニウム (Al O )混合物、インジウム、リチウム/アルミニウム混合物、希 土類金属等が挙げられる。 [0135] これらの中で電子注入性及び酸化等に対する耐久性の点から、電子注入性金属と これより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグ ネシゥム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム 混合物、アルミニウム/酸化アルミニウム (Al O )混合物、リチウム/アルミニウム混 合物、アルミニウム等が好適である。
[0136] 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ ることにより、作製すること力 Sできる。また、陰極としてのシート抵抗は数百 Ω /口以下 が好ましぐ膜厚は通常 10〜1000nm、好ましくは 50〜200nmの範囲で選ばれる。 なお、発光を透過させるため、有機 EL素子の陽極または陰極のいずれか一方が透 明または半透明であれば、発光輝度が向上し好都合である。
[0137] 《基体 (基板、基材、支持体等ともいう)》
本発明の有機 EL素子に係る基体としては、ガラス、プラスチック等の種類には特に 限定はなぐまた透明のものであれば特に制限はないが、好ましく用いられる基板と しては、例えば、ガラス、石英、光透過性樹脂フィルムを挙げることができる。特に好 ましい基体は、有機 EL素子にフレキシブル性を与えることが可能な樹脂フィルムであ
[0138] 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナ フタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテノレ エーテルケトン、ポリフエ二レンスルフイド、ポリアリレート、ポリイミド、ポリカーボネート (PC) ,セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP )等からなるフィルム等が挙げられる。
[0139] 樹脂フィルムの表面には、無機物もしくは有機物の被膜またはその両者のハイブリ ッド被膜が形成されていてもよぐ水蒸気透過率が 0. 01g/m2' day以下の高バリア 性フィルムであることが好ましレ、。
[0140] 本発明の有機エレクト口ルミネッセンス素子の発光の室温における外部取り出し効 率は 1 %以上であることが好ましぐより好ましくは 5%以上である。ここに、外部取り出 し量子効率(%) =有機 EL素子外部に発光した光子数/有機 EL素子に流した電子 数 X 100である。 [0141] 照明用途で用いる場合には、発光ムラを低減させるために粗面加工したフィルム( アンチグレアフイノレム等)を併用することもできる。
[0142] 《封止》
本発明の有機 EL素子の封止に用いられる封止手段は、例えば、封止部材と電極、 支持基盤とを接着剤で接着する方法がある。封止部材としては有機 EL素子の表示 領域を覆うように配置されておればよぐ凹板状でも、平板状でもよい。また、透明性 、電気絶縁性は特に限定されない。
[0143] 具体的にはガラス板、ポリマー板'フィルム、金属板'フィルム等が挙げられる。ガラ ス板は特にソーダ石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノ ケィ酸ガラス、ホウケィ酸ガラス、ノ リウムホウケィ酸ガラス、石英等を挙げることができ
[0144] また、ポリマー板はポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエー テルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレ ス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、 シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または 合金からなるものが挙げられる。本発明は素子を薄膜化できるということからポリマー フィルム、金属フィルムを好ましく使用することができる。
[0145] 更にポリマーフィルムは酸素透過度が 10— 3ml/m2' 24hr'MPa以下、水蒸気透過 度(25°C、相対湿度 90%RH)が 10— 5g/m2' 24hr以下のものであることが好ましい。 封止部材を凹状に加工するのはサンドブラスト加工、化学エッチング加工等が使わ れる。
[0146] 接着剤はアクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビュル基を有 する光硬化及び熱硬化型接着剤、 2—シァノアクリル酸エステルなどの湿気硬化型 等の接着剤を挙げることができる。また、エポキシ系などの熱及び化学硬化型(二液 混合)がある。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフインを挙げるこ と力 Sできる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げる こと力 Sできる。なお、有機 EL素子が熱処理により劣化する場合があるので、室温から 80°Cまでに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散さ せてお!/、てもよ!/、。封止部分への接着剤の塗布は市販のディスペンサーを使っても ょレ、し、スクリーン印刷のように印刷してもよレ、。
[0147] また、有機層を挟み支持基盤と対向する側の電極の外側に該電極と有機層を被覆 し、支持基盤と接する形で無機物、有機物の層を形成し封止膜とすることも好ましい 。この場合、該膜を形成する材料としては、水分や酸素など素子の劣化をもたらすも のの浸入を抑制する機能を有する材料であればよぐ例えば、酸化珪素、二酸化珪 素、窒化珪素などを用いることができる。更に該膜の脆弱性を改良するために、これ ら無機層と有機材料からなる層の積層構造を持たせることが好ましい。
[0148] 《保護膜、保護板》
有機層を挟み支持基盤と対向する側の前記封止膜、あるいは前記封止用フィルム の外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよ い。特に封止が前記封止膜の場合にはその機械的強度は必ずしも高くないため、こ のような保護膜、保護板を設けることが好ましい。これに使用することができる材料は 、前記封止に用いたのと同様なガラス板、ポリマー板'フィルム、金属板'フィルム等を 用いることができる力 S、軽量且つ薄膜化と!/、うことからポリマーフィルムを用いることが 好ましい。
[0149] 《有機 EL素子の作製方法》
本発明の有機 EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層 /発光層/正孔阻止層/電子輸送層/陰極からなる有機 EL素子の作製法につい て説明する。まず適当な支持基盤上に所望の電極物質、例えば、陽極用物質からな る薄膜を 1 μ m以下、好ましくは 10〜200nmの膜厚になるように蒸着やスパッタリン グ等の方法により形成させて陽極を作製する。
[0150] 次にこの上に、有機 EL素子材料である正孔注入層、正孔輸送層、中間層、また発 光層、正孔阻止層、電子輸送層の有機化合物薄膜を形成させる。この有機化合物 薄膜の薄膜化の方法としては、前記の如く蒸着法、ウエットプロセス (スピンコート法、 キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすぐ且つピ ンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、 印刷法が特に好ましい。更に層毎に異なる製膜法を適用してもよい。 [0151] 製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異 なる力 一般にボート加熱温度 50〜450°C、真空度 10— 6〜10— 2Pa、蒸着速度 0. 01 〜50腹/秒、基板温度— 50〜300。C、膜厚 0. 1應〜 5 、好ましくは 5〜200 nmの範囲で適宜選ぶことが望ましい。これらの層を形成後、その上に陰極用物質か らなる薄膜を 1 μ m以下、好ましくは 50〜200nmの範囲の膜厚になるように、例えば 、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機 EL素子が得られる。
[0152] この有機 EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで 作製してもよく、途中で取り出して異なる製膜法を施してもよい。その際、作業を乾燥 不活性ガス雰囲気下で行う等の配慮が必要となる。また、作製順序を逆にして層順 を逆に作製することも可能である。このようにして得られた多色の表示装置に直流電 圧を印加する場合には、陽極を +、陰極を一の極性として電圧 2〜40V程度を印加 すると発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の 波形は任意でよい。
[0153] 《用途》
本発明の有機エレクト口ルミネッセンス素子は、表示デバイス、ディスプレイ、各種発 光光源として用いることができる。
[0154] 発光光源として、本発明の有機 EL素子を用いる照明装置としては、家庭用照明、 車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電 子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが これに限定するものではなレ、。
[0155] また、本発明の有機 EL素子は照明用や露光光源のような 1種のランプとして使用し てもよいし、画像を投影するタイプのプロジェクシヨン装置や、静止画像や動画像を 直接視認するタイプの表示装置 (ディスプレイ)として使用してもよい。
[0156] 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス (パッシ ブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
[0157] また、異なる発光色を有する本発明の有機 EL素子を 3種以上使用することにより、 フルカラー表示装置を作製することが可能である。 [0158] または、一色の発光色、例えば、白色発光をカラーフィルターを用いて B、 G、 R光 を取り出し、フルカラー化することも可能である。
[0159] 更に、有機 EL素子の発光色を色変換フィルターを用いて他色に変換し、フルカラ 一化することも可能であるカ、その場合、有機 EL発光の maxは 480nm以下であ ることが好ましい。
実施例
[0160] 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるも のではない。
[0161] 実施例 1
《有機 EL素子 1一;!〜 1 4の作製》
陽極として l OOmm X l OOmm X l . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を l OOnm製膜した基板(NHテクノグラス社製 NA45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。
[0162] この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブ デン製抵抗加熱ボートに CuPcを 200mg入れ、別のモリブデン製抵抗加熱ボートに a NPDを 200mg入れ、別のモリブデン製抵抗加熱ボートに H— 1を l OOmg入れ 、別のモリブデン製抵抗加熱ボートに化合物 1 79を l OOmg入れ、更に別のモリブ デン製抵抗加熱ボートに BAlqを 200mg入れ、真空蒸着装置に取付けた。
[0163] 次いで、真空槽を 4 X 10— 4Paまで減圧した後、 CuPcの入った前記加熱ボートに通 電して加熱し、蒸着速度 0. Inm/秒で透明支持基板に蒸着し 20nmの正孔注入層 を設けた。更に、 α NPDの入った前記加熱ボートに通電して加熱し、蒸着速度 0. Inm/秒、前記正孔注入層上に蒸着して 20nmの正孔輸送層を設けた。
[0164] 次いで、 H— 1の入った前記加熱ボートと化合物 1 79の入った前記加熱ボートに 通電して加熱し、蒸着速度 0. Inm/秒、 0. 012nm/秒で前記正孔輸送層上に共 蒸着を開始し、化合物 1 79の入った前記加熱ボートを調節し、陰極側での発光層 に含まれる化合物 1— 79の含有濃度が 3質量%となるように前記膜厚 40nmの発光 層を設けた。このとき、前記発光層内での化合物 1— 79の含有濃度は陽極側から陰 極側へと連続的に変化してレ、る。
[0165] また、次いで BAlqの入った前記加熱ボートに通電し、蒸着速度 0. lnm/秒で前 記発光層上に蒸着して、膜厚 30nmの電子輸送層を設けた。なお、蒸着時の基板温 度は室温であった。
[0166] 引き続き陰極バッファ一層としてフッ化リチウム 0. 5nmを蒸着し、更にアルミニウム
110nmを蒸着して陰極を形成し、有機 EL素子 1— 1を作製した。
[0167] 有機 EL素子 1 1の作製において、陽極側の化合物 1 79の含有濃度と陰極側 の化合物 1 79の含有濃度を表 2に示すようにした以外は、有機 EL素子 1 1と同 じ方法で有機 EL素子 1 2 1 4を作製した。
[0168] H- 1 (ホスト材料)のイオン化ポテンシャル: 5. 45eV (計算)
化合物 1 79 (ドーパント材料)のイオン化ポテンシャル : 4· 33eV (計算)。
[0169] [化 27]
Figure imgf000051_0001
[0170] [表 2]
Figure imgf000051_0002
[0171] 《有機 EL素子 1 1 4の評価》
有機 EL素子 1 1 1 4の評価を行い、その結果を表 3に示す。表 3に示した各 素子の発光寿命は、各有機 EL素子を正面輝度が 1000cd/m2となる駆動電圧 (V) で駆動し、輝度が半減するまでの時間をとつて、有機 EL素子 1—4を 100とする相対 ィ直で表した。
[0172] [表 3]
Figure imgf000052_0001
[0173] 表 3から、本発明の有機 EL素子は長寿命であることがわかる。
[0174] 実施例 2
《有機 EL素子 2— ;!〜 2— 4の作製》
陽極として l OOmm X l OOmm X l . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を l OOnm製膜した基板(NHテクノグラス社製 NA45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。
[0175] この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブ デン製抵抗加熱ボートに CuPcを 200mg入れ、別のモリブデン製抵抗加熱ボートに a NPDを 200mg入れ、別のモリブデン製抵抗加熱ボートに H— 1を l OOmg入れ 、別のモリブデン製抵抗加熱ボートに化合物 1 99を l OOmg入れ、更に別のモリブ デン製抵抗加熱ボートに BAlqを 200mg入れ、真空蒸着装置に取付けた。
[0176] 次いで、真空槽を 4 X 10— 4Paまで減圧した後、 CuPcの入った前記加熱ボートに通 電して加熱し、蒸着速度 0. Inm/秒で透明支持基板に蒸着し 20nmの正孔注入層 を設けた。更に、 α NPDの入った前記加熱ボートに通電して加熱し、蒸着速度 0. Inm/秒、前記正孔注入層上に蒸着して 20nmの正孔輸送層を設けた。
[0177] 次いで、 H 1の入った前記加熱ボートと化合物 1 99の入った前記加熱ボートに 通電して加熱し、蒸着速度 0. Inm/秒、 0. 012nm/秒で前記正孔輸送層上に共 蒸着を開始し、化合物 1 99の入った前記加熱ボートを調節し、陰極側での発光層 に含まれる化合物 1— 99の含有濃度が 3質量%となるように前記膜厚 40nmの発光 層を設けた。このとき、前記発光層内での化合物 1一 99の含有濃度は陽極側から陰 極側へと連続的に変化している。
[0178] また、次いで BAlqの入った前記加熱ボートに通電し、蒸着速度 0. lnm/秒で前
1
記発光層上に蒸着して、膜厚 30nmの電子輸送層を設けた。なお、蒸着時の基板温 度は室温であった。
[0179] 引き続き陰極バッファ一層としてフッ化リチウム 0· 5nmを蒸着し、更にアルミニウム l lOnmを蒸着して陰極を形成し、有機 EL素子 2—1を作製した。
[0180] 有機 EL素子 2— 1の作製において、陽極側の化合物 1一 99の含有濃度と陰極側 の化合物 1一 99の含有濃度を表 4に示すようにした以外は、有機 EL素子 2— 1と同 じ方法で有機 EL素子 2— 2〜2— 4を作製した。
[0181] H—l (ホスト材料)のイオン化ポテンシャル: 5· 45eV (計算)
化合物 1— 99 (ドーパント材料)のイオン化ポテンシャル : 4· 36eV (計算)。
[0182] [表 4]
Figure imgf000053_0001
[0183] 《有機 EL素子 2— ;!〜 2— 4の評価》
有機 EL素子 2—:!〜 2— 4の評価を行い、その結果を表 5に示す。表 5に示した各 素子の発光寿命は、各有機 EL素子を正面輝度が lOOOcdZm2となる駆動電圧 (V) で駆動し、輝度が半減するまでの時間をとつて、有機 EL素子 2— 4を 100とする相対 ィ直で表した。
[0184] [表 5] 有機 E L素子 発光 5 卩 備 ¾
2 一 1 300 本発明
350 本発明
2 - 3 400 本発明
2 - 4 100 比 較 [0185] 表 5から、本発明の有機 EL素子は長寿命であることがわかる。
[0186] 実施例 3
《有機 EL素子 3— ;!〜 3— 4の作製》
陽極として l OOmm X l OOmm X l . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を l OOnm製膜した基板(NHテクノグラス社製 NA45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。
[0187] この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブ デン製抵抗加熱ボートに CuPcを 200mg入れ、別のモリブデン製抵抗加熱ボートに a NPDを 200mg入れ、別のモリブデン製抵抗加熱ボートに H— 1を l OOmg入れ 、別のモリブデン製抵抗加熱ボートに化合物 1 99を l OOmg入れ、更に別のモリブ デン製抵抗加熱ボートに BAlqを 200mg入れ、真空蒸着装置に取付けた。
[0188] 次いで、真空槽を 4 X 10— 4Paまで減圧した後、 CuPcの入った前記加熱ボートに通 電して加熱し、蒸着速度 0. Inm/秒で透明支持基板に蒸着し 20nmの正孔注入層 を設けた。更に、 α NPDの入った前記加熱ボートに通電して加熱し、蒸着速度 0. Inm/秒、前記正孔注入層上に蒸着して 20nmの正孔輸送層を設けた。
[0189] 次いで、 H— 1の入った前記加熱ボートと化合物 1 99の入った前記加熱ボートに 通電して加熱し、蒸着速度 0. Inm/秒、 0. 009nm/秒で前記正孔輸送層上に共 蒸着を開始し、膜厚 5nm蒸着し、更に H—1の入った前記加熱ボートと化合物 1—9 9の入った前記加熱ボートに通電して加熱し、蒸着速度 0. Inm/秒、 0. 006nm/ 秒で前記正孔輸送層上に共蒸着を開始し、膜厚 35nm蒸着し、膜厚 40nmの発光 層を設けた。前記発光層内での化合物 1 99の含有濃度は、陽極側から陰極側へ と段階的に変化している。
[0190] また、次いで BAlqの入った前記加熱ボートに通電し、蒸着速度 0. Inm/秒で前 記発光層上に蒸着して、膜厚 30nmの電子輸送層を設けた。なお、蒸着時の基板温 度は室温であった。
[0191] 引き続き陰極バッファ一層としてフッ化リチウム 0· 5nmを蒸着し、更にアルミニウム l l Onmを蒸着して陰極を形成し、有機 EL素子 3—1を作製した。 [0192] 有機 EL素子 2— 1の作製において、陽極側の化合物 1一 99の含有濃度と陰極側 の化合物 1— 99の含有濃度を表 6に示すようにした以外は、有機 EL素子 3—1と同 じ方法で有機 EL素子 3— 2から 3— 4を作製した。
[0193] [表 6]
Figure imgf000055_0001
[0194] 《有機 EL素子 3—;!〜 3— 4の評価》
実施例 1と同様に発光寿命の評価を行った。有機 EL素子 3— 4を 100としたときの 相対値で示した。
[0195] [表 7]
Figure imgf000055_0002
[0196] 表 7から、本発明の有機 EL素子は長寿命であることがわかる。
[0197] 実施例 4
《有機 EL素子 4一:!〜 4一 3の作製》
陽極として lOOmm X lOOmm X 1. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板(NHテクノグラス社製 NA— 45)にパターニングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。
[0198] この透明支持基板上に、ポリ(3, 4一エチレンジォキシチォフェン)一ポリスチレンス ルホネート(PEDOT/PSS、: Bayer社製、 Baytron P Al 4083)を純水で 70% に希釈した溶液を 3000rpm、 30秒でスピンコート法により製膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの第 1正孔輸送層を設けた。
[0199] この基板を窒素雰囲気下に移し、第 1正孔輸送層上に 50mgの α NPDを 10ml のトルエンに溶解した溶液を 1000rpm、 30秒の条件下、スピンコート法により製膜し 、第 2正孔輸送層とした。
[0200] この第 2正孔輸送層上に、 lOOmgの H— 1と 10mgの化合物 1 99を 10mlのトル ェンに溶解した溶液を 1000rpm、 30秒の条件下、スピンコート法により製膜し、膜厚 約 20nmの第 1発光層とした。更に、前記発光層上に lOOmgの H— 1を 10mlのトノレ ェンに溶解した溶液を滴下し、 1000rpm、 30秒の条件下、スピンコート法により第 2 の発光層を製膜した。このとき、第 1発光層から化合物 1— 99がトルエン溶媒により溶 解し、第 2の発光層へと拡散することで化合物 1 99の含有量が連続的に変化し、 陽極側の発光層における化合物 1— 99の含有量が陰極側の化合物 1— 99の含有 量よりも大きい発光層を作製した。第 1発光層と第 2発光層を合わせた発光層の膜厚 は、約 50nmであった。
[0201] 次に、この発光層上に 50mgの(tBu) PBDを 10mlのトルエンに溶解した溶液を 10 00rpm、 30秒の条件下、スピンコート法により製膜し、 60°Cで 1時間真空乾燥し、膜 厚約 25nmの電子輸送層とした。
[0202] これを真空蒸着装置に取付け、次いで真空槽を 4 X 10— 4Paまで減圧し、陰極バッフ ァ一層としてフッ化リチウム 1. Onm及び陰極としてアルミニウム l lOnmを蒸着して陰 極を形成し、有機 EL素子 4 1を作製した。
[0203] 比較例として、有機 EL素子 4 1において、第 1発光層製膜時のトルエン溶液に含 まれる化合物 1— 99の含有量を Omgとし、第 2発光層製膜時のトルエン溶液に含ま れる化合物 1— 99の含有量を 10mgとした以外は、同様にして有機 EL素子 4— 2を 作製した。このときの発光層は、陽極側の化合物 1 99の含有濃度は陰極側の化合 物 1 99の含有濃度よりも小さい。
[0204] 更に比較例として、有機 EL素子 4 1において、第 1発光層製膜時のトルエン溶液 に含まれる化合物 1— 99の含有量を 5mgとし、第 2発光層を製膜しない以外は同様 にして有機 EL素子 4 3を作製した。このときの発光層は、化合物 1 99の含有濃 度が陽極側から陰極側まで変化せず、均一である。 [0205] [化 28]
Figure imgf000057_0001
[0206] 《有機 EL素子 4 4 3の評価》
実施例 1と同様に発光寿命の評価を行った。有機 EL素子 4 3を 100としたときの 相対値で示した。
[0207] [表 8]
Figure imgf000057_0002
[0208] 表 8から、本発明の有機 EL素子は、塗布型の有機 EL素子においても長寿命化さ れていることがわかる。

Claims

請求の範囲 [1] 対向した陰極と陽極の間にホスト材料とドーパント材料とを含有する発光層を少なくと も有する有機エレクト口ルミネッセンス素子において、該ドーパント材料が下記一般式
(1)で表され、該ドーパント材料の含有濃度が発光層の厚さ方向において、陽極側 力も陰極側に減少していることを特徴とする有機エレクト口ルミネッセンス素子。
[化 1コ 一般式 {1》
Figure imgf000058_0001
(式中、 Rは置換基を表す。 Zは 5〜7員環を形成するのに必要な非金属原子群を表
1
す。 nlは 0〜5の整数を表す。 B〜Bは炭素原子、窒素原子、酸素原子もしくは硫
1 5
黄原子を表し、少なくとも一つは窒素原子を表す。 Mは元素周期表における 8〜; 10
1
族の金属を表す。 X及び Xは炭素原子、窒素原子もしくは酸素原子を表し、 Lは X
1 2 1 1 及び Xと共に 2座の配位子を形成する原子群を表す。 mlは 1、 2または 3の整数を表 し、 m2は 0、 1または 2の整数を表す力 S、 ml +m2は 2または 3である。 )
[2] 前記ドーパント材料の含有濃度の陽極側から陰極側においての減少が段階的であ ることを特徴とする請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。
[3] 前記ドーパント材料の含有濃度の陽極側から陰極側においての減少が連続的であ ることを特徴とする請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。
[4] 前記一般式(1)で表されるドーパント材料における、 m2が 0であることを特徴とする 請求の範囲第 1項乃至第 3項のいずれか 1項に記載の有機エレクト口ルミネッセンス 素子。
[5] 前記一般式(1)で表されるドーパント材料における、 B〜Bで形成される含窒素複
1 5
素環がイミダゾール環であることを特徴とする請求の範囲第 1項乃至第 4項のいずれ 力、 1項に記載の有機エレクト口ルミネッセンス素子。
[6] 前記発光層にお!/、て、ホスト材料のイオン化ポテンシャル Iphとドーパント材料のィォ ン化ポテンシャル Ipdとが下式(1)を満たすことを特徴とする請求の範囲第 1項乃至 第 5項のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子。
式(1) Iph-Ipd≥0. 7
[7] 前記発光層の陽極側に含まれるドーパント材料の濃度を八質量%、陰極側に含まれ るドーパント材料の濃度を 8質量%としたとき、 A/B≥l . 5を満たすことを特徴とす る請求の範囲第 1項乃至第 6項のいずれ力、 1項に記載の有機エレクト口ルミネッセン ス素子。
[8] 前記ドーパント材料のリン光波長ピークが 480nm以下であることを特徴とする請求の 範囲第 1項乃至第 7項のいずれ力、 1項に記載される有機エレクト口ルミネッセンス素子
[9] 更に他の発光層を有することを特徴とする請求の範囲第 1項乃至第 8項のいずれか
1項に記載の有機エレクト口ルミネッセンス素子。
[10] 発光が白色であることを特徴とする請求の範囲第 1項乃至第 9項のいずれ力、 1項に 記載の有機エレクト口ルミネッセンス素子。
PCT/JP2007/067714 2006-09-19 2007-09-12 Dispositifs électroluminescents organiques WO2008035595A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008535328A JP5470849B2 (ja) 2006-09-19 2007-09-12 有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006252441 2006-09-19
JP2006-252441 2006-09-19

Publications (1)

Publication Number Publication Date
WO2008035595A1 true WO2008035595A1 (fr) 2008-03-27

Family

ID=39200422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067714 WO2008035595A1 (fr) 2006-09-19 2007-09-12 Dispositifs électroluminescents organiques

Country Status (2)

Country Link
JP (1) JP5470849B2 (ja)
WO (1) WO2008035595A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008035571A1 (ja) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JPWO2008035664A1 (ja) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2011009517A (ja) * 2009-06-26 2011-01-13 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
WO2011096465A1 (ja) * 2010-02-04 2011-08-11 ケミプロ化成株式会社 発光効率を高める新規な有機el素子
WO2011132550A1 (ja) * 2010-04-20 2011-10-27 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2012084415A (ja) * 2010-10-13 2012-04-26 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法および有機エレクトロルミネッセンス素子
WO2012077431A1 (ja) * 2010-12-08 2012-06-14 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子の製造方法
WO2012077714A1 (ja) * 2010-12-09 2012-06-14 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び照明装置
JP2012124360A (ja) * 2010-12-09 2012-06-28 Konica Minolta Holdings Inc 多色燐光発光有機エレクトロルミネッセンス素子及び照明装置
JP2012124359A (ja) * 2010-12-09 2012-06-28 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
WO2012098944A1 (ja) * 2011-01-19 2012-07-26 コニカミノルタホールディングス株式会社 多色燐光発光有機エレクトロルミネッセンス素子、その製造方法及び照明装置
JPWO2010095564A1 (ja) * 2009-02-18 2012-08-23 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
WO2012137640A1 (ja) * 2011-04-07 2012-10-11 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び照明装置
WO2012153603A1 (ja) * 2011-05-10 2012-11-15 コニカミノルタホールディングス株式会社 燐光発光有機エレクトロルミネッセンス素子及び照明装置
JP5099013B2 (ja) * 2006-10-13 2012-12-12 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2012096241A1 (ja) * 2011-01-12 2014-06-09 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2015119182A (ja) * 2013-12-17 2015-06-25 ザ レジェンツ オブ ザ ユニバーシティ オブ ミシガン リン光ドーパントプロファイル操作によるoled動作寿命の延長
WO2018100907A1 (ja) * 2016-11-29 2018-06-07 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
EP2562229B1 (en) * 2011-08-25 2018-10-10 Konica Minolta Holdings, Inc. Organic electroluminescence element, lighting device and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041512A1 (en) * 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
JP2003229272A (ja) * 2002-01-31 2003-08-15 Toyota Industries Corp 有機el素子
JP2004006102A (ja) * 2002-05-31 2004-01-08 Canon Inc エレクトロルミネッセンス素子
WO2005007767A2 (ja) * 2003-07-22 2005-01-27 Idemitsu Kosan Co 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2005108730A (ja) * 2003-09-30 2005-04-21 Tdk Corp 有機el素子及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041512A1 (en) * 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
JP2003229272A (ja) * 2002-01-31 2003-08-15 Toyota Industries Corp 有機el素子
JP2004006102A (ja) * 2002-05-31 2004-01-08 Canon Inc エレクトロルミネッセンス素子
WO2005007767A2 (ja) * 2003-07-22 2005-01-27 Idemitsu Kosan Co 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2005108730A (ja) * 2003-09-30 2005-04-21 Tdk Corp 有機el素子及びその製造方法

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008035664A1 (ja) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5556014B2 (ja) * 2006-09-20 2014-07-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JP5644050B2 (ja) * 2006-09-20 2014-12-24 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料
JPWO2008035571A1 (ja) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP5099013B2 (ja) * 2006-10-13 2012-12-12 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5765223B2 (ja) * 2009-02-18 2015-08-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法、並びに有機エレクトロルミネッセンス素子を備えた照明装置及び表示装置
JPWO2010095564A1 (ja) * 2009-02-18 2012-08-23 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
JP2011009517A (ja) * 2009-06-26 2011-01-13 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
WO2011096465A1 (ja) * 2010-02-04 2011-08-11 ケミプロ化成株式会社 発光効率を高める新規な有機el素子
WO2011132550A1 (ja) * 2010-04-20 2011-10-27 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2011132550A1 (ja) * 2010-04-20 2013-07-18 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2012084415A (ja) * 2010-10-13 2012-04-26 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法および有機エレクトロルミネッセンス素子
WO2012077431A1 (ja) * 2010-12-08 2012-06-14 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子の製造方法
JP5831459B2 (ja) * 2010-12-09 2015-12-09 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び照明装置
JP2012124359A (ja) * 2010-12-09 2012-06-28 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
WO2012077714A1 (ja) * 2010-12-09 2012-06-14 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び照明装置
JP2012124360A (ja) * 2010-12-09 2012-06-28 Konica Minolta Holdings Inc 多色燐光発光有機エレクトロルミネッセンス素子及び照明装置
JPWO2012077714A1 (ja) * 2010-12-09 2014-05-22 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び照明装置
JPWO2012096241A1 (ja) * 2011-01-12 2014-06-09 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6015451B2 (ja) * 2011-01-12 2016-10-26 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JPWO2012098944A1 (ja) * 2011-01-19 2014-06-09 コニカミノルタ株式会社 多色燐光発光有機エレクトロルミネッセンス素子、その製造方法及び照明装置
WO2012098944A1 (ja) * 2011-01-19 2012-07-26 コニカミノルタホールディングス株式会社 多色燐光発光有機エレクトロルミネッセンス素子、その製造方法及び照明装置
JP5772835B2 (ja) * 2011-01-19 2015-09-02 コニカミノルタ株式会社 多色燐光発光有機エレクトロルミネッセンス素子、その製造方法及び照明装置
WO2012137640A1 (ja) * 2011-04-07 2012-10-11 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び照明装置
JPWO2012153603A1 (ja) * 2011-05-10 2014-07-31 コニカミノルタ株式会社 燐光発光有機エレクトロルミネッセンス素子及び照明装置
EP2709182A4 (en) * 2011-05-10 2014-11-26 Konica Minolta Inc PHOSPHORESCENT ORGANIC ELECTROLUMINESCENE ELEMENT AND LIGHTING DEVICE THEREWITH
WO2012153603A1 (ja) * 2011-05-10 2012-11-15 コニカミノルタホールディングス株式会社 燐光発光有機エレクトロルミネッセンス素子及び照明装置
US20140103321A1 (en) * 2011-05-10 2014-04-17 Konica Minolta, Inc. Phosphorescent organic electroluminescent element and lighting device
EP2562229B1 (en) * 2011-08-25 2018-10-10 Konica Minolta Holdings, Inc. Organic electroluminescence element, lighting device and display device
JP2015119182A (ja) * 2013-12-17 2015-06-25 ザ レジェンツ オブ ザ ユニバーシティ オブ ミシガン リン光ドーパントプロファイル操作によるoled動作寿命の延長
WO2018100907A1 (ja) * 2016-11-29 2018-06-07 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
CN109983597A (zh) * 2016-11-29 2019-07-05 柯尼卡美能达株式会社 有机电致发光元件
JPWO2018100907A1 (ja) * 2016-11-29 2019-10-17 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
CN109983597B (zh) * 2016-11-29 2021-09-07 默克专利有限公司 有机电致发光元件
JP7053487B2 (ja) 2016-11-29 2022-04-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機エレクトロルミネッセンス素子
US11444251B2 (en) 2016-11-29 2022-09-13 Merck Patent Gmbh Organic electroluminescent element

Also Published As

Publication number Publication date
JP5470849B2 (ja) 2014-04-16
JPWO2008035595A1 (ja) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5556014B2 (ja) 有機エレクトロルミネッセンス素子
JP5470849B2 (ja) 有機エレクトロルミネッセンス素子
JP5011908B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP4972938B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US8247089B2 (en) Organic electroluminescence element material, organic electroluminescence element, display device and lighting apparatus
JP5522053B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP5577650B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP5601036B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
US20110168990A1 (en) Organic electroluminescent device, display, and illuminating device
WO2012098996A1 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP2009114369A (ja) 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008035664A1 (fr) Matériau de dispositif électroluminescent organique, dispositif électroluminescent organique, dispositif d&#39;affichage et d&#39;éclairage
JP2008311607A (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP2011222650A (ja) 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP6094480B2 (ja) 有機エレクトロルミネッセンス素子、照明装置、表示装置及び有機エレクトロルミネッセンス素子の製造方法
JPWO2008140069A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP5353006B2 (ja) 有機エレクトロルミネッセンス素子、液晶表示装置及び照明装置
JP2007180148A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009157477A1 (ja) 有機エレクトロルミネッセンス素子の製造方法及び白色発光有機エレクトロルミネッセンス素子
JP5463897B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP5600884B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP2007059310A (ja) 有機エレクトロルミネッセンス素子、照明装置
JP2007251096A (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンスディスプレイ
JP6197650B2 (ja) 有機el素子
JP4923651B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008535328

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807122

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载