WO2008032618A1 - Nanoparticule semi-conductrice et procédé de production correspondant - Google Patents
Nanoparticule semi-conductrice et procédé de production correspondant Download PDFInfo
- Publication number
- WO2008032618A1 WO2008032618A1 PCT/JP2007/067279 JP2007067279W WO2008032618A1 WO 2008032618 A1 WO2008032618 A1 WO 2008032618A1 JP 2007067279 W JP2007067279 W JP 2007067279W WO 2008032618 A1 WO2008032618 A1 WO 2008032618A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor
- nanoparticles
- semiconductor nanoparticles
- core
- nanoparticle
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 107
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 95
- 238000000034 method Methods 0.000 title abstract description 21
- 239000013078 crystal Substances 0.000 claims abstract description 29
- 239000002245 particle Substances 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 239000000126 substance Substances 0.000 claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 241000652704 Balta Species 0.000 claims description 14
- 239000012298 atmosphere Substances 0.000 claims description 9
- 229910052732 germanium Inorganic materials 0.000 claims description 6
- 238000004381 surface treatment Methods 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 230000007704 transition Effects 0.000 abstract description 20
- 239000000463 material Substances 0.000 abstract description 13
- 238000006862 quantum yield reaction Methods 0.000 abstract description 11
- 230000003287 optical effect Effects 0.000 abstract description 10
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 36
- 239000011257 shell material Substances 0.000 description 29
- 229910052757 nitrogen Inorganic materials 0.000 description 18
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 16
- 239000005543 nano-size silicon particle Substances 0.000 description 15
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 229910052786 argon Inorganic materials 0.000 description 8
- 150000002431 hydrogen Chemical class 0.000 description 8
- 238000002835 absorbance Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- QBVXKDJEZKEASM-UHFFFAOYSA-M tetraoctylammonium bromide Chemical compound [Br-].CCCCCCCC[N+](CCCCCCCC)(CCCCCCCC)CCCCCCCC QBVXKDJEZKEASM-UHFFFAOYSA-M 0.000 description 5
- 239000007771 core particle Substances 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000010421 standard material Substances 0.000 description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910004613 CdTe Inorganic materials 0.000 description 2
- 229910005540 GaP Inorganic materials 0.000 description 2
- 229910005542 GaSb Inorganic materials 0.000 description 2
- 229910007709 ZnTe Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 2
- 230000005476 size effect Effects 0.000 description 2
- 238000005118 spray pyrolysis Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- 229910017115 AlSb Inorganic materials 0.000 description 1
- -1 BaS Inorganic materials 0.000 description 1
- 229910015808 BaTe Inorganic materials 0.000 description 1
- 229910004813 CaTe Inorganic materials 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229910017680 MgTe Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910004411 SrTe Inorganic materials 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2054—Light-sensitive devices comprising a semiconductor electrode comprising AII-BVI compounds, e.g. CdTe, CdSe, ZnTe, ZnSe, with or without impurities, e.g. doping materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to semiconductor nanoparticles and a method for producing the same. More specifically, the present invention relates to a semiconductor nanoparticle having optical properties converted from an indirect transition type to a direct transition type and an increased quantum yield as a light emitting device, and a method for producing the same.
- nanostructure crystals have attracted attention in II-VI group semiconductors such as ultrafine particles such as Si and Ge, and porous silicon.
- the nanostructure crystal refers to a crystal grain having a nano-order particle size of about! ⁇ LOOnm, and is generally abbreviated as “nanoparticle” or “nanocrystal”.
- semiconductors can be classified into two types according to the bandgap format.
- the direct transition type (direct type: gallium arsenide, etc.) with simple light absorption and emission
- the indirect transition type indirect type: silicon, etc.
- crystalline silicon is an indirect transition type semiconductor with a band gap of 1. leV, and hydrogenated amorphous silicon varies depending on the hydrogen content, from 1.5 to 1.5; 1.7 eV! It is a direct transition type semiconductor with a band gap of /.
- Solar cells made of amorphous silicon show an output voltage about 0.2-0.3% higher than crystalline silicon because of the deep band gap, whereas crystalline silicon is an indirect transition type.
- the optical characteristics are poor and there are disadvantageous aspects in the manufacture of light emitting elements and the like.
- nano-semiconductor particles are used as a light-emitting element, it is preferable to use Si, Ge, etc., which are low in raw material cost and have no concern about toxicity, as a semiconductor material component.
- Si, Ge, etc. which are low in raw material cost and have no concern about toxicity, as a semiconductor material component.
- semiconductors consisting of components are often indirect transition type, and the quantum yield is extremely low as a light emitting device material! It becomes a problem in practical use.
- Patent Document 1 JP-A-5-82837
- Patent Document 2 Japanese Patent Laid-Open No. 7-79050
- Patent Document 3 Japanese Patent Laid-Open No. 2003-303983
- the present invention has been made in view of the above problems, and a solution to the problem is to convert the optical properties of semiconductor nanoparticles as a light emitting device material into an indirect transition type force direct transition type, and to obtain a quantum yield. It is providing the semiconductor nanoparticle which improved, and its manufacturing method.
- a semiconductor nanoparticle and a method for producing the same in which the optical property of the semiconductor nanoparticle as a light emitting device material is converted from an indirect transition type to a direct transition type and the quantum yield is improved. Can be provided.
- the semiconductor nanoparticles of the present invention are surface-modified semiconductor nanoparticles having an average particle diameter of 2 to 50 nm, and a tangential gradient force obtained by Tauc plot for the semiconductor nanoparticles. It is characterized in that it is 2 to 5 times the inclination of the tangent for Balta having the same chemical composition as the core of the particle.
- the core part of the semiconductor nanoparticles of the present invention referred to herein means the center part of the nanoparticles whose surface has been modified, and is in agreement with the semiconductor nanoparticles before modification.
- One semiconductor nanoparticle of the present invention is made of a semiconductor material and has an average particle diameter of 2 to 50 nm.
- the tangential tilt force obtained by the Tauc plot for the semiconductor nanoparticles is a surface modified semiconductor nanoparticle of the same chemical composition as the core (semiconductor nanoparticle before modification) of the semiconductor nanoparticle. It is characterized by being 2 to 5 times the slope of the tangent to the crystal.
- One of the preferred embodiments of the semiconductor nanoparticles of the present invention has a core / shell structure in which the semiconductor nanoparticles are composed of a core portion made of a semiconductor material and a shell portion (shell layer) covering the core portion.
- So-called core / shell type semiconductor nanoparticles having an average particle diameter of 2 to 50 nm and a tangential gradient force obtained by Tauc plot for core / shell type semiconductor nanoparticles having a modified surface
- the semiconductor nanoparticles It is characterized in that it is 2 to 5 times the inclination of the tangent line for a Balta crystal having the same chemical composition as the core part.
- the "Tauc plot” is a method for obtaining an optical band gap from an electron spectrum generally used for amorphous semiconductors.
- the relationship between absorbance and photon energy is expressed by the following equation.
- ⁇ is the absorbance
- ⁇ is the photon energy
- ⁇ is the optical band gap
- the horizontal axis represents photon energy
- the vertical axis represents the square root of the product of absorbance and photon energy
- a tangent line is drawn. The intersection of this tangent and the horizontal axis is the optical band gap (written by Tatsuo Shimizu “Amorphous Semiconductor”, Baifukan (1994) ⁇ ⁇ 201).
- the "Balta crystal” here refers to a collection of particle crystals having a particle size of 1 Hm or more.
- Average particle size refers to the cumulative 50% volume particle size measured by the laser scattering method.
- the difference in slope between the tangent line obtained by Tauc plot and the linear approximation line is 5% for Balta crystals having the same composition as the core part of the semiconductor nanoparticles. Is preferably within.
- the “linear approximation straight line” is the straight line obtained when linear approximation is performed for values in the range lower than the contact point between the Tauc plot and the obtained tangent line.
- the Tauc plot of the indirect transition Balta crystal is almost straight, so the difference in slope between the tangent and the linear approximation line is within 5%.
- the Balta crystal having the same composition as the core part of the semiconductor nanoparticles is used.
- the core part of the core / shell type semiconductor nanoparticles is used.
- the band gap is 0.2 to 1.5 eV higher than the band gap obtained by Tauc plot.
- the core part of the semiconductor nanoparticle of the present invention or the semiconductor nanoparticle having a core / shell structure can be formed using various known semiconductor materials.
- Examples of semiconductor materials used for the core include MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaTe, ZnS, ZnSe, ZnTe, CdS, CdSe,
- a particularly preferable semiconductor material is Si or Ge.
- the average particle size of the core part according to the present invention is preferably 1 to 40 nm in order to achieve the effect of the invention! More preferred! / ⁇ is 2-30nm.
- the "average particle size" of the core according to the present invention refers to an accumulated 50% volume particle size measured by a laser scattering method.
- the shell portion according to the present invention is a core / shell type semiconductor nanoparticle according to the present invention!
- the shell portion according to the present invention may not completely cover the entire surface of the core particle as long as the core particle is not partially exposed to cause a harmful effect.
- the semiconductor material used for the shell portion various known semiconductor materials can be used.
- the column include ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MgS, MgSe, GaS, GaN, GaP, GaAs, GaSb, In As, InN, InP, InSb, AlAs, A1N, A1P, AlSb, or a mixture thereof can be used.
- the semiconductor material is SiO or ZnS.
- the production method of the liquid phase method includes a precipitation method such as a coprecipitation method, a sol-gel method, a uniform precipitation method, and a reduction method.
- a precipitation method such as a coprecipitation method, a sol-gel method, a uniform precipitation method, and a reduction method.
- the reverse micelle method, the supercritical hydrothermal synthesis method, and the like are also excellent methods for producing nanoparticles (for example, JP 2002-322468, JP 2005-239775, JP 10-10). (See 310770, JP 2000-104058, etc.).
- the manufacturing method of the vapor phase method includes (1) a second high temperature generated by electrodeless discharge in a reduced-pressure atmosphere by evaporating the opposing raw material semiconductor by the first high-temperature plasma generated between the electrodes.
- a laser ablation method for example, see Japanese Patent Application Laid-Open No. 2004-356163.
- a method of synthesizing powder containing particles by reacting a raw material gas in a gas phase in a low pressure state is also preferably used.
- the method for producing semiconductor nanoparticles or core / shell type semiconductor nanoparticles according to the present invention is preferably a production method in which core particles are produced by a liquid phase method, and then the particles are coated with a shell material.
- the surface treatment of the semiconductor nanoparticles is performed in a gas atmosphere such as an oxygen atmosphere, an argon atmosphere, a nitrogen atmosphere, or a nitrogen + hydrogen atmosphere. It is necessary to optimize the conditions in order to satisfy the conditions of the tangential slope obtained by the Tauc plot.
- TOAB tetraoctyl ammonium bromide
- the particle size of the silicon nanoparticles can be adjusted by the ratio of SiCl and TOAB.
- SiCl TOAB average particle size
- Si nanoparticles d 1 100 2nm
- the Si nanoparticles a to d are dispersed in a colloidal silica containing silicon dioxide (PL-3 manufactured by Fuso Chemical Industry Co., Ltd.) and potassium hydroxide mixed with pure water to adjust the liquid volume to 1500 ml.
- a colloidal silica containing silicon dioxide PL-3 manufactured by Fuso Chemical Industry Co., Ltd.
- potassium hydroxide mixed with pure water to adjust the liquid volume to 1500 ml.
- the dispersion was allowed to stay at 200 ° C for 5 minutes using a spray pyrolysis apparatus to cover the SiO shell layer, and powders of Si / SiO core / shell nanoparticles A to D were obtained. .
- the obtained Si nanoparticles a to d and Si / SiO core / shell nanoparticles A to D coated with a shell layer on each were subjected to the following conditions: oxygen atmosphere, argon atmosphere, nitrogen atmosphere, nitrogen + 1% hydrogen atmosphere. Instead, the surface of the nanoparticles was modified at 900 ° C. for 10 minutes in a spray pyrolysis apparatus.
- FIG. 1 shows an example of a Tauc plot. 1 is a Tauc plot of a Si Balta crystal, and 2 is a Tauc plot of a sample whose surface was modified by heat-treating Si nanoparticle c in a nitrogen atmosphere, each showing its tangent line.
- Fluorescence quantum yield A fluorescence spectrum generated by irradiating the obtained sample with excitation light having a wavelength of 350 nm was measured. The quantum yield is obtained by comparing the molar absorption coefficient obtained from the absorption spectrum of the sample, the wavenumber integral value of the fluorescence spectrum, and the refractive index of the solvent with a standard substance (rhodamine B, anthracene, etc.) with a known quantum yield. It was.
- ⁇ ⁇ is the refractive index of the solvent of the standard material
- ⁇ cd is the absorbance of the sample
- F is the integral of the wave number of the standard material
- n is the refractive index of the solvent of the standard material
- ⁇ cd is This is the absorbance of the standard substance.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Power Engineering (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Luminescent Compositions (AREA)
- Silicon Compounds (AREA)
Abstract
Cette invention concerne une nanoparticule semi-conductrice qui permet non seulement de modifier les propriétés optiques d'une nanoparticule semi-conductrice, telle qu'un matériau pour dispositif électroluminescent, d'un type de transition indirecte vers un type de transition directe, mais aussi d'obtenir un rendement quantique. Cette invention concerne également un procédé permettant de produire une telle nanoparticule. La nanoparticule semi-conductrice consiste en une nanoparticule dont le diamètre moyen est compris entre 2 et 50 nm et dont la surface est modifiée, cette nanoparticule se caractérise par un gradient tangentiel obtenu par un schéma Tauc par rapport à la nanoparticule semi-conductrice comprise entre 2 et 5 fois le gradient tangentiel du cristal en vrac de la même composition chimique que celle de la portion noyau de la nanoparticule semi-conductrice.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008534301A JP5131195B2 (ja) | 2006-09-15 | 2007-09-05 | 半導体ナノ粒子とその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006250712 | 2006-09-15 | ||
JP2006-250712 | 2006-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008032618A1 true WO2008032618A1 (fr) | 2008-03-20 |
Family
ID=39183679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/067279 WO2008032618A1 (fr) | 2006-09-15 | 2007-09-05 | Nanoparticule semi-conductrice et procédé de production correspondant |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5131195B2 (fr) |
WO (1) | WO2008032618A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009280766A (ja) * | 2008-05-26 | 2009-12-03 | Sharp Corp | インク組成物 |
JP2014135405A (ja) * | 2013-01-11 | 2014-07-24 | Shimadzu Corp | 半導体物質の光学的バンドギャップの算出方法及び算出装置 |
JP5686096B2 (ja) * | 2009-05-08 | 2015-03-18 | コニカミノルタ株式会社 | 量子ドット内包シリカナノ粒子、その製造方法、およびそれを用いた生体物質標識剤 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05224261A (ja) * | 1992-02-10 | 1993-09-03 | Canon Inc | 非線形光学材料及びその製造方法 |
JP2005101601A (ja) * | 2003-09-09 | 2005-04-14 | Samsung Electronics Co Ltd | 半導体ナノ結晶の表面処理による量子効率の向上 |
JP2006508012A (ja) * | 2002-08-13 | 2006-03-09 | マサチューセッツ・インスティテュート・オブ・テクノロジー | 半導体ナノクリスタルヘテロ構造体 |
JP2006176859A (ja) * | 2004-12-24 | 2006-07-06 | Canon Anelva Corp | シリコンナノ結晶構造体の作製方法 |
WO2007034657A1 (fr) * | 2005-09-22 | 2007-03-29 | Konica Minolta Medical & Graphic, Inc. | Matériau fluorescent finement particulaire et son procédé de production |
JP2007106832A (ja) * | 2005-10-12 | 2007-04-26 | Konica Minolta Medical & Graphic Inc | 蛍光体の製造方法及びその方法によって製造された蛍光体 |
WO2007086267A1 (fr) * | 2006-01-27 | 2007-08-02 | Konica Minolta Medical & Graphic, Inc. | Nanoparticule semi-conductrice présentant une structure noyau/enveloppe et son procédé de fabrication |
-
2007
- 2007-09-05 WO PCT/JP2007/067279 patent/WO2008032618A1/fr active Application Filing
- 2007-09-05 JP JP2008534301A patent/JP5131195B2/ja not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05224261A (ja) * | 1992-02-10 | 1993-09-03 | Canon Inc | 非線形光学材料及びその製造方法 |
JP2006508012A (ja) * | 2002-08-13 | 2006-03-09 | マサチューセッツ・インスティテュート・オブ・テクノロジー | 半導体ナノクリスタルヘテロ構造体 |
JP2005101601A (ja) * | 2003-09-09 | 2005-04-14 | Samsung Electronics Co Ltd | 半導体ナノ結晶の表面処理による量子効率の向上 |
JP2006176859A (ja) * | 2004-12-24 | 2006-07-06 | Canon Anelva Corp | シリコンナノ結晶構造体の作製方法 |
WO2007034657A1 (fr) * | 2005-09-22 | 2007-03-29 | Konica Minolta Medical & Graphic, Inc. | Matériau fluorescent finement particulaire et son procédé de production |
JP2007106832A (ja) * | 2005-10-12 | 2007-04-26 | Konica Minolta Medical & Graphic Inc | 蛍光体の製造方法及びその方法によって製造された蛍光体 |
WO2007086267A1 (fr) * | 2006-01-27 | 2007-08-02 | Konica Minolta Medical & Graphic, Inc. | Nanoparticule semi-conductrice présentant une structure noyau/enveloppe et son procédé de fabrication |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009280766A (ja) * | 2008-05-26 | 2009-12-03 | Sharp Corp | インク組成物 |
JP5686096B2 (ja) * | 2009-05-08 | 2015-03-18 | コニカミノルタ株式会社 | 量子ドット内包シリカナノ粒子、その製造方法、およびそれを用いた生体物質標識剤 |
US9023659B2 (en) | 2009-05-08 | 2015-05-05 | Konica Minolta Medical & Graphic, Inc. | Silica nanoparticle embedding quantum dots, preparation method thereof and biosubstance labeling agent by use thereof |
JP2014135405A (ja) * | 2013-01-11 | 2014-07-24 | Shimadzu Corp | 半導体物質の光学的バンドギャップの算出方法及び算出装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008032618A1 (ja) | 2010-01-21 |
JP5131195B2 (ja) | 2013-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5151993B2 (ja) | コア/シェル型半導体ナノ粒子とその製造方法 | |
US8313972B2 (en) | Photodetector using nanoparticles | |
EP1978072A1 (fr) | Nanoparticule semi-conductrice présentant une structure noyau/enveloppe et son procédé de fabrication | |
JP2004051863A (ja) | 半導体ナノ粒子、その製造方法、及び半導体ナノ粒子蛍光試薬 | |
EP3135745B1 (fr) | Ensemble de nanoparticules semi-conductrices et leur procédé de production | |
KR101576043B1 (ko) | 양자점 나노입자 표면에 비정질 TiO2가 코팅된 광촉매 및 이의 제조방법 | |
Chashchikhin et al. | Photoactivation, photobleaching and photoetching of CdS quantum dots− Role of oxygen and solvent | |
WO2008032618A1 (fr) | Nanoparticule semi-conductrice et procédé de production correspondant | |
JP5233673B2 (ja) | 半導体ナノ粒子とその製造方法 | |
Yadav et al. | Cu-doped Cd 1− x Zn x S alloy: synthesis and structural investigations | |
Yang et al. | Photoluminescence of Ge nanoparticles embedded in SiO 2 glasses fabricated by a sol–gel method | |
Fu et al. | Preparation and characterization of CdS/Si coaxial nanowires | |
Iso et al. | Fabrication and characterization of transparent monolithic nanocomposites between YVO4: Bi3+, Eu3+ nanophosphor and TMAS-derived silica | |
Vincent et al. | Effect of water and UV passivation on the luminescence of suspensions of silicon quantum dots | |
Hullavarad et al. | Optical properties of organic and inorganic capped CdS nanoparticles and the effects of x-ray irradiation on organic capped CdS nanoparticles | |
Koç et al. | Preparation and Characterization of Self‐Assembled Thin Film of MPS‐Capped ZnS Quantum Dots for Optical Applications | |
Sun et al. | Nanoseparation-inspired manipulation of the synthesis of CdS nanorods | |
CN107267142B (zh) | 具有高紫外摩尔吸光系数的硫化锌量子点及其制备方法 | |
Yang et al. | Near-infrared emitting CdTe 0.5 Se 0.5/Cd 0.5 Zn 0.5 S quantum dots: synthesis and bright luminescence | |
Yang et al. | Facile synthesis of highly luminescent CdSe/CdxZn1− xS quantum dots with widely tunable emission spectra | |
Das et al. | A facile chemical route synthesis and characterization of CdSe/ZnO nanocomposite | |
Ray et al. | Two-Dimensional Material-Based quantum dots for Wavelength-Selective, tunable, and broadband photodetector devices | |
Lu et al. | Highly luminescent CdSe nanoparticles embedded in silica thin films | |
Nayak et al. | Passivation of CdTe nanoparticles by silane coupling agent assisted silica encapsulation | |
Dai et al. | Effects of L-Cysteine on the Photoluminescence Properties of ZnO: S Quantum Dots |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07806722 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008534301 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07806722 Country of ref document: EP Kind code of ref document: A1 |