+

WO2008032593A1 - Motif de grain d'une impression à motif de grain, procédé de création de motif de grain et programme, produit matériel de boîtier sur lequel le motif de grain est imprimé, composant interne d'automobile, appareil électroménager, et dispositif d'information - Google Patents

Motif de grain d'une impression à motif de grain, procédé de création de motif de grain et programme, produit matériel de boîtier sur lequel le motif de grain est imprimé, composant interne d'automobile, appareil électroménager, et dispositif d'information Download PDF

Info

Publication number
WO2008032593A1
WO2008032593A1 PCT/JP2007/067076 JP2007067076W WO2008032593A1 WO 2008032593 A1 WO2008032593 A1 WO 2008032593A1 JP 2007067076 W JP2007067076 W JP 2007067076W WO 2008032593 A1 WO2008032593 A1 WO 2008032593A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
wrinkle
basic structure
wrinkle pattern
printing
Prior art date
Application number
PCT/JP2007/067076
Other languages
English (en)
French (fr)
Inventor
Hideki Aoyama
Satoshi Nakatsuka
Hisayoshi Sato
Original Assignee
Chiyoda Gravure Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Gravure Corporation filed Critical Chiyoda Gravure Corporation
Priority to JP2008534292A priority Critical patent/JPWO2008032593A1/ja
Priority to US12/441,496 priority patent/US20090262376A1/en
Priority to EP07806549A priority patent/EP2077191A1/en
Publication of WO2008032593A1 publication Critical patent/WO2008032593A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F7/00Designs imitating three-dimensional effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F9/00Designs imitating natural patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F9/00Designs imitating natural patterns
    • B44F9/02Designs imitating natural patterns wood grain effects

Definitions

  • a wrinkle pattern for wrinkle pattern printing a method and product for creating the wrinkle pattern, and residential building materials, automobile interior parts, home appliances, and information equipment printed with the wrinkle pattern
  • the present invention relates to a wrinkle pattern for wrinkle pattern printing, a wrinkle pattern creation method and a creation program, and a home building product, an automobile interior part, and a home appliance printed with the wrinkle pattern. And information equipment.
  • Wood products have been mainly used for building interior materials such as walls, ceilings and floors, and furniture covering materials such as shelves and doors.
  • buildings and doors have been mainly used for building interior materials such as walls, ceilings and floors, and furniture covering materials such as shelves and doors.
  • photographs of grain are taken for real wood, image processing is performed and printed on paper, film, etc., and this is laminated on plywood, giving it a high quality, high-quality, and valuable It is used as a building material (building material) based on the impression of decorativeness such as feeling and the use of warmth and actual wood.
  • offset printing which is lithographic printing
  • plate production is easy, inexpensive, plate replacement work, color matching, etc. are becoming more automated, and workability is significantly improved.
  • the price of the printing press is also lower than that of the Darabiya printing press.
  • it is easy to handle printing of small lots, and there is a situation where it has been spurred by S.
  • residential building materials are printed by different methods such as gravure printing and intaglio printing.
  • plate production requires a work process associated with the plate type, the printing machine is also expensive, manual work is also required for plate replacement, color development and adjustment require technology, and as a result, small lots are required.
  • There are disadvantages compared to the features of offset printing such as unsuitable for production.
  • offset printing uses four colors of yellow, red, indigo, and black, whereas printing of building materials, transfer foils, and the like is performed by mixing the above four colors or with these.
  • the intaglio which is a special feature of Darabiya printing, creates a cell on the plate surface using chemical and mechanical methods, and stores it in it.
  • the ink is transferred to the target surface, and printing with a sense of ink is possible, and this method is suitable in combination with the properties of the target paper, film, etc.
  • this method is also suitable because of the nature of the post-process, etc. Is an indispensable ray system! /, Ru (Non-Patent Document 1 Irradiation).
  • the traditional technique is to take a photograph of a wood grain and other objects that are excellent in decoration and suitable for building materials, and fix them to a film and use it as data for printing.
  • the data was analog.
  • the benefits of digital cameras Applications are normal, and images are acquired as digital data.
  • a scanner equipped with a digital camera can shoot long objects.
  • the image is acquired as digital data.
  • the acquired analog and digital data are the original pattern data to be printed, step S2 in Fig. 1. These have been done by block 1 operations.
  • embossing For printed products, the treatment of embossing makes it possible to give the impression of unevenness to the print even if there is no actual unevenness, resulting in a “feeling to touch” feel. This gives ordinary printing a high-grade decorative feel and a high sense of design, and increases added value.
  • the surface corresponding to the embossed part is treated separately, its mold is made, and the surface of the printed material bonded to the plywood with resin, or printed on a plastic material such as PVC
  • the above-mentioned mold is used to give the surface of the surface an uneven shape (emboss) to increase the added value of the product.
  • wrinkles are integrated with patterns such as wood grain. ing.
  • the original building material product started with a pattern printed on it, and in particular, it did not make use of the texture. Even if embossing can be applied, it is not always required to apply a concavo-convex shape that matches the printed pattern, and embossing that appears to match the printed pattern has been accepted.
  • step S3 in Fig. 1 in addition to the creator, a designer who examines the design of the design of the pattern has been added. From the original data acquired in step S2, whether or not repeatability of the part suitable for printing is possible, Sample data to be presented to the customer is created using the screen of the computer output display device for the emphasis level, shading, alignment and other textures and their modification, color assignment and determination, and fashionability of the pattern design.
  • the ink jet printer outputs the paper to the paper in step S4, and the suitability of the finish is confirmed in step S5.
  • the output of the ink jet printer in step S6 and the color of the 4th baby, which is the subsequent process are displayed. Check based on the correlation with this machine's printing. Although it is desirable that the number of repetitions by block 2 is small, it is the expected flow at present.
  • the present invention is intended to create a texture by building software in a computer and to use it as an alternative to a conventional texture.
  • the embossed pattern for embossed printing of the present invention that has advantageously solved the above-mentioned problems is created by a computer, and the basic structure generated by the geometric fractal is repeated, It is characterized by including a basic structure in which a repetitive aspect is changed.
  • the basic structure may be a branch structure, and the change of the repetitive form may be single replacement, reverse single replacement, or double replacement combining them.
  • the dead ends of the branch structure may be removed to create a corrugated shape.
  • 1 / f fluctuation may be given to the lattice point positions connecting the basic structures. Also, 1 / f fluctuations may be added to at least one of the wire length and the wire inclination angle of the basic structure. Sex may be given. [0020] Furthermore, it may have a thickness and a depth based on the number of overlapping times of the basic structure.
  • a basic structure generating step for generating a basic structure by a geometric fractal is generated. It is characterized by comprising a basic structure repeating step of repeating the basic structure and including the basic structure in which the repetition mode is changed in the repetition.
  • the basic structure may be a branch structure.
  • the repetitive mode change may be a single replacement, a reverse single replacement, or a combination thereof. It may be double replacement. It is also possible to create a wavy shape by removing the dead ends of the above branch structure!
  • 1 / f fluctuation may be given to the lattice point positions connecting the above basic structures, and at least one of the strand length and the strand inclination angle of the basic structure is 1 / f fluctuation. May be given.
  • the thickness and depth may be given based on the number of times the basic structure is overlaid.
  • a plurality of types of basic structures may be generated and presented in the basic structure generation step, and a basic structure selected from those basic structures may be used.
  • a plurality of types of changed basic structures may be generated and presented, and a basic structure selected from the changed basic structures may be used.
  • a power spectrum picture obtained by performing two-dimensional Fourier transform on the wrinkle pattern created by the creation method is presented, and the created wrinkle pattern is displayed based on the evaluation result of the power spectrum picture. It is also possible to present the embossed pattern generated by the above-described creation method, which is good to output, and the information entropy obtained, and output the created embossed pattern based on the evaluation result of the information entropy.
  • the embossing pattern creation program for embossing pattern printing of the present invention causes a computer to create an embossing pattern, and generates a basic structure by a geometric fractal. It is characterized by comprising a structure generation step and a basic structure repetition step for repeating the generated basic structure and including a basic structure in which the repetition mode is changed in the repetition.
  • a step of presenting a plurality of types of basic structures generated in the basic structure generating step and a basic selected from those basic structures A step of inputting a structure, and a step of presenting a plurality of types of basic structures generated by the above basic structure repetition step, in which the repetition mode is changed, and a change of the repetition mode. And a step of inputting a basic structure selected from the basic structure.
  • a step of obtaining a power spectrum picture by two-dimensional Fourier transform of the grain pattern created by the creation method described above, and the power obtained above may further include a step of presenting a spectrum picture and a step of inputting an evaluation result of the power spectrum picture, and the generated wrinkle pattern may be output based on the evaluation result.
  • the created wrinkle pattern may be output.
  • the residential building material product, the automobile interior part, the home appliance, and the information device of the present invention are characterized in that the wrinkle pattern is printed.
  • step S4 When the computer creates a texture based on the present invention, block 1 in FIG. 1 can be processed in step S4.
  • step S3 and S4 it means that designers are involved in the creation of creators in addition to creators, and the creation of a variety of textures with a completely new design sensation is based on natural materials. Will be in view The This is expected to lead to new customer demand as a building material using printing technology.
  • the computer when the computer creates a grain, the computer generates a plurality of types of basic structures and presents them on a screen display or the like. Or a designer selects a preferred basic structure from them and instructs (inputs) it to the computer so that the computer uses the selected basic structure, or the computer changes multiple repetitions in the basic structure repetition process. Kinds are generated and presented on a screen display, etc., and the creator and designer select the basic structure with the preferred, preferred, and repetitive modes in an interactive format and instruct (input) to the computer. Creators and designers will be more able to use the basic structure that has been selected and changed the repetition mode. Leave by force S to Waru about the easy-to and actively creation of grain.
  • a complex plane Fourier coefficient spectrum obtained by two-dimensional Fourier transform of the texture pattern created by the creation method is displayed on the screen.
  • the above creators and designers interactively evaluate the Fourier coefficient spectrum based on the feature patterns that are generally preferred and expected to be embossed, and instruct the computer ( If the computer outputs the wrinkle pattern created as described above, which is preferable based on the evaluation result, the computer can selectively output the wrinkle pattern that is considered preferable for humans. Can do.
  • FIG. 1 is a flowchart showing a flow of conventional pattern printing.
  • FIG. 2 is an explanatory diagram showing an example of embossing.
  • FIG. 6 is an explanatory diagram showing the Koch curve generator and fractal creation.
  • FIG. 7 is an explanatory diagram showing an example of a branch structure generator.
  • FIG. 8 is an explanatory diagram showing replacement growth of the branch structure generator.
  • FIG. 9 is an explanatory diagram showing a change of the generator for removing the branch wire.
  • FIG. 10 is an explanatory diagram showing an example of replacement by the change generator.
  • FIG. 11 is a flowchart showing a flow of creating a wrinkle element.
  • FIG. 12 is an explanatory diagram of the length and inclination angle of a strand.
  • FIG. 15 is an explanatory view showing an example of leather wrinkles.
  • FIG. 16 is a relationship diagram showing fluctuation characteristics according to a power spectral density function.
  • FIG. 17 is an explanatory diagram showing a fluctuation characteristic of wood grain (Tsunoki).
  • FIG. 18 is an explanatory diagram showing a fluctuation characteristic of wood grain (redwood).
  • FIG. 21 is a flowchart showing the flow of fluctuation characteristics.
  • FIG. 23 It is an explanatory diagram showing the wrinkle pattern when fluctuation is applied to the first grid point. 14] It is an explanatory diagram showing the above-mentioned grain pattern when the second grid point is introduced.
  • FIG. 25 It is an explanatory diagram showing the wrinkle pattern when fluctuation is also introduced into the generator.
  • FIG. 26 is a relationship diagram showing a verification result of “l / f fluctuation characteristics”.
  • FIG. 27 is a flowchart showing a flow of creating a wrinkle pattern.
  • FIG. 28 is an explanatory view showing a film production method corresponding to photoetching.
  • FIG. 29 is a flowchart showing a flow of creating a wrinkle element.
  • FIG. 30 is a flowchart showing another flow of imparting fluctuation to the generator.
  • FIG. 31 is an explanatory diagram showing the concept of a line segment rectangle model.
  • FIG. 32 is an explanatory diagram showing a smoothing method using a connecting portion deformation line segment.
  • FIG. 33 is an explanatory diagram showing a smoothing method using line segment movement.
  • FIG. 34 is a flowchart showing a program based on the interactive design method of grain design.
  • 37] is a perspective view of a surface pattern having characteristics that change in two directions.
  • Fig. 38 is a perspective view showing a region of a two-dimensional Fourier coefficient.
  • FIG. 39 is a perspective view showing the existence area of the two-dimensional Fourier coefficient and the surface pattern.
  • FIG. 40 is a perspective view showing a Fourier spectrum for the surface pattern of FIG. 39.
  • FIG. 40 is a perspective view showing a Fourier spectrum for the surface pattern of FIG. 39.
  • FIG. 41 is a perspective view showing a Fourier coefficient spectrum for the surface pattern of FIG. 35.
  • FIG. 42 is a perspective view showing the Fourier spectrum of FIG. 35 obtained from FIG. 41.
  • FIG. 43 is a flowchart of a method for evaluating the characteristics of a creation pattern.
  • FIG. 48 is a flowchart of evaluation use of principal component analysis and information entropy calculation. BEST MODE FOR CARRYING OUT THE INVENTION
  • Figure 3 is an example of a fractal structure that is observed naturally. Among fractals, it grows as a structure, and a stochastic phenomenon is involved in the growth process, generating a similar shape, and is classified as a probabilistic fractal (Asakura Shoten 1990, Tamas' Vichik, See “Flatal Growth Phenomenon”).
  • Figure 4 shows an example of classification as an algebraic fractal (Morikita Publishing Co., Ltd., 1993, Hiroshi Serizawa, “Fractal Travel”).
  • Z is represented by the point P (X, Y).
  • is ⁇ ⁇ ⁇ ⁇ ⁇ on the (X, ⁇ ) plane.
  • P (Z) force is also determined by P (Z), and after that, Z can be found n ⁇ 1 n ⁇ 1 n n n sequentially and recursively for all n.
  • the four behaviors are shown.
  • the behavior is determined by the shape of the recursion formula (2) and the initial value Z.
  • Figure 4 shows the recurrence formula as
  • a fractal the self-similarity, which is a feature of the fractal, is confirmed and a geometrical fractal using a line segment, which is simple as a figure, is created.
  • Figure 5 is an example of a geometric fractal called a Koch curve.
  • the geometrical fractal generation method defines a geometric shape consisting only of line segments called generators as a basic structure, and configures a generator! / The operation of replacing the space with the similar shape is repeated several times.
  • Figure 6 shows the process of creating the Koch curve.
  • N indicates the number of replacements.
  • a wrinkle generation system using a fractal having a branch structure as one of geometric fractals is configured. This assumes a leather texture structure as a typical texture structure.
  • the construction method based on the present invention can be developed in various ways using generators.
  • FIG. 7 and FIG. 8 show an example of the branch structure generator, and a division in the case of replacing and growing the branch structure generator.
  • the generator is a fractal with a branch structure.
  • Fig. 8 shows the case where each strand is replaced after ignoring one of the return paths and replacing only one.
  • Figure 8 (b) shows a double replacement in which the branching part is reciprocally replaced.
  • Figure 8 (c) shows a single replacement in which only the forward direction of the branching part is replaced.
  • Figure 8 (d) shows the case of reverse single replacement in which only the return path of the branching part is replaced.
  • Figures 9 and 10 present an example of a method of replacing at a certain replacement stage of the original generator using the generator branch line and the structure as a generator to control complexity and branching amount separately.
  • Figure 9 shows an example of a new generator with a wave shape by removing branch wires with a branch structure generator.
  • Figure 10 shows the first stage of the original branch structure, which is replaced by a modified generator and introduces undulations into the strands, adding complexity. From the next stage onward, we have succeeded in creating a branch structure that takes complexity into account by replacing the next and subsequent stages using the structure with undulations as a generator. When this is a branch structure filled between lattice points to be described later, it is referred to as a grain element.
  • FIG. 11 shows the flow of the embossing element creation up to the subsequent procedure, and the above-described procedure is represented by step S11 force and step S19.
  • the generators shown in FIGS. 7 and 9 can be created by operating a mouse by using a GUI (graphical user interface) on the screen of a computer display device.
  • Force S due to the characteristics of geometrical fractals S. With this operability, it is easy to understand the relationship between the generator and the embossed element, making it possible to create a design with good operability.
  • step S19 in Fig. 11 the generator start point, end point, and strand composition and the start point, end point, etc. are defined on the coordinates, and the length and inclination angle of the strands are given. Quantify. This makes it possible to embed elements between lattice points, which will be described later, so that the entire grain can be constructed.
  • FIG. 12 is a diagram showing the relationship between the length and the inclination angle when the wire coordinates are obtained.
  • the basic process for developing a wrinkle element pattern is to set lattice points and embed a wrinkle element between them to form a surface.
  • Figure 13 shows the flow of this related operation including the 1 / f fluctuation characteristic.
  • the figure (a) is a rectangle
  • the figure (b) is a brickwork
  • the figure (c) is a rhombus.
  • the initial setting of the grid points is regular as shown in Fig. 14. Therefore, the wrinkles that are formed by embedding the wrinkle elements in the meantime must be regular patterns.
  • FIG. 15 shows an example of leather texture.
  • the leopard pattern is not an orderly regular pattern. However, each has its own characteristics.
  • “1 / f fluctuation” property is considered as a property that gives such characteristics.
  • the fluctuation is given to the grid point position, the generator segment line length, and the tilt angle as the fluctuation width, giving a sense of complexity to the pattern pattern and bringing it closer to the actual texture pattern.
  • leather wrinkles appear to be irregular in shape, but the direction shown by the arrows that anyone can see in them is is there.
  • the force S that gives direction to the creation wrinkles is the long side of the rectangle, and the branch structure is the pattern that characterizes this as a result.
  • f is the reciprocal of the frequency or period. If the unit is time and length, the frequency is the frequency for the former, and the number of repetitions for a predetermined length for the latter.
  • Fourier analysis is a method for analyzing the frequency characteristics of natural phenomena. There is a general technique for grasping the characteristics to obtain the power spectrum density function for the energy density for each frequency over the target frequency range.
  • the characteristic of ⁇ 1 that is, 1 / f is a characteristic having a 45 ° gradient on the logarithmic coordinate axis.
  • the former has a uniform frequency characteristic, and the latter has the 1 / f 2 characteristic shown in Fig. 16.
  • the former is a case called white noise (white noise), which has a strong irregularity.
  • the latter shows a phenomenon that the spectral density is more suppressed at a high frequency and is difficult to see as a feature.
  • the observed data of the subject to be analyzed corresponds to the change in heart rate over time if it is a heart rate described later with respect to the time axis or length, and corresponds to the length if it is a grain.
  • FIG. 17 and FIG. 18 show examples of characteristics in the case of wood grain.
  • Figure 17 shows the power spectrum for the magnified photo of the wood grain of Tassel's wood and the intensity of the cross section in the transverse direction.
  • Figure 18 calls for the same characteristics of the native redwood grain itself. In both cases, the “l / f fluctuation” characteristic is shown for the noticeable frequency, in this case the period. It is shown that there is an existence that shows 1 / f characteristics, as it remains possible to point out this property across all types of wood.
  • “L / f fluctuation” is introduced with the intention of adding a sense of nature and diversity to the pattern, while adding complexity by disrupting regularity.
  • This “fluctuation” gives the lattice point a fluctuation width that defines “fluctuation”, and introduces the second lattice point in addition to the first lattice point that was originally introduced, and gives the same method to this.
  • Introducing “fluctuation” by cutting the wrinkle element between the first and second grid points and interrupting the force as a whole, making the wrinkle as a whole more diverse and complex. With the intention of increasing the complexity, we will give it by adding the same characteristic swing width to the length and inclination angle of the generator.
  • FIG. 19 is a conceptual diagram for giving “l / f fluctuation” to lattice points.
  • the grid points are assumed to embed embossed elements between them to create a wrinkled pattern as a whole.
  • the amount of fluctuation for a grid point is given by the fluctuation width with respect to the coordinate values of X and y.
  • FIG. 20 is a conceptual diagram when the second grid point is set and the touch width is given. Assuming that the minimum value of the amplitude is fmin, the maximum value is fmax, and the number of divisions that determines the increment of the amplitude is N, the amplitude is 0 for the natural number i such that 0 ⁇ i ⁇ N (6)
  • M be the total number of grid points, and number them.
  • M is obtained by Eq. (6) based on the process up to Eq. (10), and i is assigned to these.
  • a lattice point that can give a swing width is determined by a random number.
  • For the (X, y) coordinates of the grid points first set the random number for each force targeting the X coordinate and then the y coordinate. It is possible to target all grid points independently by giving a runout width. After this, fi is selected by random numbers in the same way, and this is placed at the already selected grid point. As a result, fluctuations are given to the lattice points as shown in FIG.
  • a texture pattern is created by embedding texture elements between the lattice points with directionality. Depending on the shape of the wrinkle element, the pattern has a pattern that gives an impression that the directionality remains strong.
  • a new grid point is set at the same position as the above grid point as shown in Fig. 20.
  • a lattice point is generated by giving the above-mentioned fluctuation fluctuation width to this.
  • the initial lattice point is referred to as the first lattice point
  • the newly generated lattice point is referred to as the second lattice point.
  • two lattice point groups with different fluctuation amounts are prepared.
  • the points assigned the same number are adjacent to each other.
  • the embossed element is embedded by using either the first or second point at the left start point and the first grid point group at the right point.
  • the selection of the left starting point in the grid point group depends on the probability value. It is also possible to select the probability value as constant. However, it is also possible to change the probability value according to the grid point numbering. Also, in the above, the selection is made at the start point on the left side! /, The force always starts with the first grid point group on the left side, and selects the first grid point group and the second grid point group with the same probability on the right side. Techniques are also possible. With this, it is possible to create an intermittent part of the wrinkle element in the pattern, and from the viewpoint of bringing it closer to nature, it is possible to add more diversity and complexity with the power S.
  • the length of the line segment and the inclination of the l / f fluctuations are applied to the strands of the grain generator. It can be granted.
  • the run-out width By assigning the run-out width to the strands, the fluctuation run-out width can be given in the same way as the lattice points.
  • the second grid point the power to apply all the fluctuations to the generator strands, and whether to provide an option in it!
  • the flow shown in By using the grid points and grain elements created in this way and embedding the latter between the grid points, the overall pattern of the grain can be created.
  • Figs. 22, 23, 24, and 25 show the wrinkle pattern for the continuous arrangement of wrinkle elements, the addition of fluctuations to grid points, the introduction of second grid points, and the introduction of fluctuations to the generator, respectively. It shows a pattern. Which of these should be selected depends on the required specifications for housing and building materials, customer preferences, and the sensibilities of creators and designers. [0066] Actually, as shown in the respective flowcharts so far, in the intermediate stage including the generator creation stage, it is possible to return to the initial stage and make corrections. Judgment and modification and improvement of the necessary parts can be made based on the practical experience so far, and the desired texture pattern can be achieved.
  • Fluctuation fluctuation width is given to the lattice points, and the lattice points have moved from their original positions. Therefore, it extends and rotates from the first interstitial length.
  • the length and amount of rotation in the meantime can be obtained by equations (4) and (5).
  • the relational expression is the same as Eqs. (4) and (5).
  • the i-th strand, 1 is the length of the strand, ⁇ is the angle change, and d is the direction of replacement.
  • the wire parameters can be expressed as ⁇ , d).
  • d can be defined as (0: A ⁇ B, 1: B ⁇ A).
  • I and ⁇ are the position vector of the start point and end point of the wire. In this case, considering the fact that the initial length was set to 1 and that Eq. (4) is required, The rate of expansion and expansion is given.
  • the created wrinkle pattern is associated with depth information with respect to the thickness of the wire, and can be made into three-dimensional information as a pattern. It is also possible to add color information.
  • the branch structure wrinkle it is possible to increase the line width in the trunk structure and to deepen it as information perpendicular to the screen.
  • This can be developed as film information in mold production through a photo-etching method that has been widely used in the past. Recently, a method using laser scanning irradiation has also become possible.
  • this 3D information can be converted into machine tool tool drive information and directly linked to mold production. As a result, it is possible to shorten the delivery time of a wrinkle pattern mold production and a wrinkle pattern molding product using this.
  • the tool When using the 3D information of the texture as information to the machine tool, the tool is driven to create a mold shape on the work material and sent to the machine tool as CAM (Computer Aided Manufacturing) information to produce the female and male dies.
  • CAM Computer Aided Manufacturing
  • Figure 26 shows the fluctuation of the module that generates the "l / f fluctuation" as a "fluctuation random number" for the value taken in increments of 0.1 between 0.1 and 10.
  • the frequency for 5,000 outputs is calculated three times to confirm the 1 / f characteristics. From the characteristics obtained by the least-squares method, results that satisfy the approximate characteristics are required.
  • FIG. 27 also shows the process of combining the surface solid shape creation by mold processing and the product printed with the creation pattern in the overall flow. Synthesizing the texture pattern with the printed pattern that is the basis of this pattern is actually done for wood grain patterns.
  • the example of implementing a wrinkle pattern created in a computer can be combined with the creation of a wrinkled wrinkle pattern to produce products that add value to having unprecedented design and design. It has potential.
  • FIG. 27 shows the overall flow of the above-mentioned system for creating a texture pattern, while showing the mutual positioning of the functions shown in the process.
  • the software is composed of modules with functions such as generator and element setting, grid point setting, fluctuation generation and assignment, and wrinkle pattern creation to improve operability. Also, the output of the mold production can be converted to the next process input via the interface based on the created data.
  • the end branch is thinner and shallower as a three-dimensional shape, and the portion that hits the trunk is thicker. As the original shape, a deep shape may be generated.
  • FIGs. 9 and 10 illustrate the creation of a generator and a replacement based on the generator, the creation of a wave-shaped generator with branches, and the provision of diversity using the replacement.
  • the smaller the part the faster the part, that is, the earlier! /, The stage is replaced! /
  • the part that overlaps can be increased, and the thickness can be changed according to this number. It becomes.
  • the thickness is displayed in proportion to the number of overlaps, and the display is changed in proportion to the number of times.
  • the wrinkle pattern is typically generated in leather, and has a three-dimensional structure in which a concave portion is formed in the pattern pattern. It is also considered to create a mold based on the created wrinkle pattern and use it for making artificial leather.
  • the following method using a film can be cited as a method for producing a mold by a photo etching method. In other words, as shown in FIG. 28, the textures created as a pattern are sequentially output to the film for each of the first processing to the third processing, and used as a photoetching master.
  • a wrinkle having a branch portion is created by replacing the branch portion three times from the generator.
  • the primary-processed film corresponds to the third replacement and has the least overlap, so the wrinkled pattern is composed of the thinnest elements.
  • the number of replacements and the order of processing are reversed.
  • the order of the etching process starts with the finest pattern pattern, so the order of replacement is the opposite. It has become.
  • the order as secondary processing and tertiary processing It is drawn with thick line segments. Since the pattern itself is a structure in which the pattern is overlaid according to the order, as a wrinkle, the entire result is represented by the overlaid result.
  • FIG. 29 shows a flow of creating a wrinkle element in which the above thickness changes, and here, the rate of increase in thickness due to superposition by setting the number of replacements is set to ⁇ ! . It is possible to give naturalness and diversity to ⁇ by giving fluctuations according to the coordinates.
  • element generation may be performed in the flow shown in FIG. 30 instead of or in addition to the flow of element generation shown in the right end of FIG.
  • the force S that is used to represent the elements constituting the fractal, such as generators and elements, as a line segment increases the line width and corresponds to the middle of the line segment.
  • a line segment that forms a branch structure is defined as a rectangular area, and the line segment that forms the outline of the rectangular area is changed to an appropriate point.
  • Control points may be provided.
  • the control point functions as a change point of the waved bent shape, a length and / or a change point of 1 / f fluctuation, and gives diversity and a natural feeling. This makes it possible to increase the range of change in the diversity of line segments and the natural feeling.
  • the change in the height direction is basically based on an arc shape corresponding to the width, and the change in shape is introduced by placing control points on it.
  • the initial line segment is shifted in units of the control point section at the end in the right direction to change the thickness as shown in FIG.
  • the control point is moved to the width of the connection side at the end, and here the same as above
  • the above shift is performed. Therefore, in this example, it is possible to connect to the left end of a line segment with a narrowed width on the right side. Thereafter, it can be developed in the same manner as shown in FIGS. 31 and 32 (connection smoothing method by line segment movement).
  • FIG. 34 is a flowchart of a program that enables creation of the above-mentioned grain design interactively with a computer.
  • the features of this program are as follows.
  • the “generator shape definition”, “number of replacements”, “grid point arrangement rule”, “texture element arrangement rule to grid point”, “fluctuation function By interactively changing the parameters, parameters to prevent misalignment in continuous patterns, etc. on the computer, the wrinkle shape generated with each parameter change can be displayed in real time, and the shape can be displayed as a designer / creator. It is characterized by the fact that it can be repeated while confirming, etc., and that it can create a progressive design.
  • the generator shape can be set to a single configuration or a plurality of configurations, and a regular impression (unnaturalness) seen by the human eye can be prevented by performing a textured shape continuous process. A more natural design can be constructed.
  • a basic element figure can be obtained under the branch structure in real time by freely moving the breakpoints connecting the line segments of the branch structure by dragging the mouse.
  • Ce panel Lattice MODE is used to select the grid points from the 6 types of shapes (Line, Brick, Diamond) plus Box, Line-Phase, and Zigzag in the example shown in Fig. 14 and arrange them continuously and intermittently.
  • the basic shape of the texture (the same texture element is first formed at an equal interval).
  • the number of elements to be arranged is determined by the Lattice panere volume-X / Y, and the number of grid points is set in the X and Y directions.
  • Alternate Vector Arranges the elements so that the arrangement direction is alternately reversed with respect to the direction in which the elements are continuously arranged.
  • Random Vector The computer automatically determines the orientation of the element with a random probability.
  • Parameters 1 for “1 / f fluctuation” are the X and y coordinate positions of the end points of the line segment of the emboss element (movement of the x and y coordinate positions of the end points of the line segment), the width of the line segment (width Change amount), the depth of the line segment ⁇ the change amount of the depth, and is determined by the following equations (16) and (17).
  • the unit shapes do not coincide vertically or horizontally, and the unit shapes are somewhat parallel It is also possible to create a continuous pattern that moves and connects.
  • the texture pattern created as follows is further evaluated.
  • the grain creation method in a computer it is possible to create a pattern that can be said to be infinite, with the addition of stochastic characteristics to variable elements.
  • stochastic property 1 / mystery found in the result of the phenomenon analysis in nature is introduced, and it can be shown that the property is included in the creation result.
  • the current handling assumes dependence on experience and feeling in printing or product designer's pattern development.
  • the above-mentioned 1 / fluctuation characteristic is obtained by, for example, acquiring grain density in a direction perpendicular to the direction of flow of wood for a wood grain pattern used as an alternative building material, Fourier transforming a series of data, power The result of obtaining the spectrum was based on having the characteristic.
  • a similar evaluation was made for the wrinkles that were created to have 1 / fuzziness characteristics.
  • Conventional evaluation methods for features in the natural world or confirmation of the characteristics of the created results have been based on evaluations on one-way lines where features can be found as described above.
  • the result of the method that can grasp the features of the pattern pattern including irregularities such as grain, grain and so on is sufficient It depends on what happened. However, whether it is grained or grained, the characteristic pattern is developed in a flat shape, and evaluating the characteristics of the pattern as a plane will probably select a sensual “beauty” as “beauty”. It is possible to introduce a method that gives generality to evaluations related to design.
  • Figure 35 is an example of a two-dimensionally developed surface pattern that is not textured or grained, but shows a two-dimensional Fourier analysis method for this, and will promote understanding of the above evaluation method.
  • the surface of FIG. 35 has irregularities, and has a three-dimensional shape. If a contour line is drawn for this shape, the display in Fig. 36 is possible.
  • the height representing the surface shape is expressed as a function value for the two-dimensional position.
  • shading display instead of height and shape.
  • FIG. 37 abstracts the feature lines that can be read in FIG. This feature line has periodicity, 1 / wrinkles with irregularities symbolized by strangeness, force that is different from the surface pattern of wood to use the 2D Fourier analysis method for force evaluation For example.
  • the power spectrum is used according to the above equation (3), it will no longer be handled as a complex unit, and the phase relationship of the existence of components will not be visible. However, if this is expressed in terms of the visible form, it is shown that the wave number component is the same, but the shape is described quite differently. In other words, if there are components from A to E in Fig. 38, the components from B to E except A will be shown in the same expression in the power spectrum as shown in Fig. 40. . If the inverse transformation is performed from the notation shown in Fig. 4, a completely different shape will be obtained as shown in Fig. 39. In other words, for the shape shown in FIG. 39, in the power spectrum, it is evaluated as FIG. 40. That is, if it is a force figure 38 as an index, the characteristics of FIG. 39 are preserved and shown. .
  • FIG. 41 shows a Fourier coefficient spectrum obtained for the surface pattern of FIG. 35
  • FIG. 42 shows a Fourier power spectrum obtained based on this.
  • FIG. 41 corresponds to FIG. 38 and is a display including phase characteristics.
  • FIG. 42 corresponds to FIG. 40 and has a characteristic indicating only the location of the frequency component! /.
  • Fig. 43 shows a flow chart of the process of extracting the features of a practical pattern using two-dimensional Fourier transform and comparing the results of the same analysis of the created pattern and using the latter for evaluation and selection.
  • Figure 44 shows a flow chart of the process of extracting the features of a practical pattern using two-dimensional Fourier transform and comparing the results of the same analysis of the created pattern and using the latter for evaluation and selection.
  • an embossed pattern is added on the pattern, and the design is enhanced in cooperation with the pattern. That is, as a result of analyzing only the pattern, without considering the relationship between the color, embossing and pattern.
  • P SP power spectrum picture
  • This is a distribution of power spectrum as a luminance (intensity) in a two-dimensional frequency parameter, showing three-dimensional information as a single image, which is easy to use for evaluation but cannot be inversely transformed! /, There are also inconveniences!
  • N L X W, where L and W are the number of vertical and horizontal pixels in the image.
  • the former is subdivided into the case where the image information is converted to gray scale and the appearance probability of each color is obtained in 0 to 255 steps, and the case in which 0 to 255 are divided into 10 steps and the appearance probability is obtained.
  • the results are obtained in Table 3 with the division as the coarse division and the latter as the coarse division. In any case, the relative relationship of the obtained results is shown in the same trend! / The numerical value is large when a variety of colors with drastic color changes appear. When the tendency is read using a wrinkle as an example, the pattern becomes finer, and the larger the cloud area and the higher the brightness, the larger the value and the value!
  • Figure 48 shows a description of pattern characteristics in the real space based on the results of principal component analysis based on the results of Fourier analysis, and by calculating entropy from wrinkles, pattern patterns, or Fourier coefficient spectra. It is a flowchart which shows that. At present, it is not enough to verify the patterns that are in practical use. Also, the characteristics as a result of the analysis can be used to determine whether it is practical or not! ! / These are the challenges for the future. For the time being, it was a method at the analysis stage, but it was presented as an index technique related to sensibilities, with a view to the development of the integration stage.
  • Figures 45 to 47 show PSPs for patterned specimens that are assumed to be practical. This is the analysis result of the target on the premise of practicality, and the relationship with practicality can be seen as a dense result.
  • the main component force direction is first in the direction perpendicular to the grain flow. (In the case of 0, there is no feature indicating the flow, so it is considered that the pattern changes depending on the target pattern.
  • the vertical axis direction is the first result, which is how the cloud spreads. It corresponds to.
  • the entropy is small and large, and it sticks as an image, the bright line along the axis spreads strongly, and the clouds also spread (c), (j), coarse grain (g), the nodes are emphasized, and the clouds are spreading (i).
  • (k) and (l) have spectral characteristics that show the effect of overlapping periodic components.
  • the vertical axis becomes a bright line according to the stripe pattern, while the characteristic is indicated by the bright spot at the location according to the periodicity.
  • the characteristic appears along the horizontal axis! /, Which means that vertical stripes are visible in the original image, but there are some irregular stripes that are irregular. The power of seeing you is with S.
  • the presence of the periodic component is indicated as two bright lines in the frequency component on the vertical axis. ing.
  • the spectral features show three points, including the point where the bright spot of the second frequency on the vertical axis is visible on the vertical axis, while the second in the horizontal axis direction is second. There are two bright spots on the horizontal axis of frequency.
  • the original image has the same dot arrangement in the horizontal and vertical directions, and the latter has the above characteristics although it seems that the three points are appropriate. Looking at the dot sequence of the original image, the horizontal axis with light hitting from the top and shadowed in the lower half is asymmetrical, but the image is not subject to shadow in the left and right direction. Force It is thought that this result is produced.
  • the spectral characteristic for (n) is along the coordinate axis and becomes a broad orthogonal bright line! /.
  • the original image is a patterned pattern in which square shapes are regularly arranged. However, it is understood that these are expressed as bright lines that spread along the coordinate axis as a result of the lack of continuity in the horizontal and vertical axis directions.
  • the entropy is the same value except for the largest value for (k).
  • the power S which remains a problem in how to understand it, can be seen as a result of the fact that the stripes are vigorous and the pattern is dense.
  • the line direction is the vertical direction, which is represented as a bright line along the horizontal axis.
  • the irregularity of the line arrangement is shown as bright lines and spreads along the axis, and the irregularity of the base surface in the horizontal and vertical directions is shown as the spread of clouds near the origin.
  • the main component analysis determines the first direction depending on the emission line depending on the flow direction, The result of being in line with the axis is shown! /
  • the entropy appears to be a small value with fewer features that can be characterized compared to other patterns.
  • the principal component analysis shows that the direction of the axis is the same as that of the original axis because the direction is not clear for (q), and the first axis for (r) It can be understood that is rotated 90 degrees.
  • the entropy value is small compared to the former, and the latter is shown to be about the same as the large value in the case of wood! This difference is indicated by the spread of the clouds! /!
  • the horizontal line has the same feature of the bright line.
  • the vertical line has a fundamental line parallel to the vertical axis, and the cloud spread is the vertical axis and the horizontal axis has no fundamental frequency. It is characteristic that it is noticeable in the part surrounded by.
  • the bright line indicating the presence of the frequency component in the horizontal axis direction is markedly shown with respect to the characteristic frequency on the vertical axis. Spectral characteristics change depending on the detailed pattern of the fabric, and the pattern is always conspicuous! /, N !!, the property is easy to see in the spectrum! /, And the shape is shown! /.
  • the results can be predicted from the form of the spectrum.
  • the entrepreneur pea shows a value that falls within the largest area of the whole. From the form of the spectrum, it can be inferred that this result is due to the fact that the pattern is striped in the vertical and horizontal directions.
  • the way of spreading is not limited to the stone pattern, but can be considered to vary depending on the features of the pattern. However, in the case of stone as well as grain and pear, it seems that characteristics are displayed as how the clouds spread, and it is thought that the accumulation of data on patterns for practical use will make the evaluation more clear in the future. It is done.
  • the result of principal component analysis is the result obtained based on the relational expression, and the direction of the angle is not clear depending on the eye.
  • the force dispersion value is almost the same as the bright spot density (V), giving a point of view to understand the numerical value .
  • the entropy is small in (u), small in (V), and large.
  • the former is based on fineness and high brightness, and the latter is based on the spectrum. it is conceivable that.
  • (w) is a pattern with an abstract decorative pattern on one side
  • (X) is the original picture.
  • each of the lint or Japanese paper fine lump is slender, but the decorative body with irregular shape in length and thickness is evenly spread over the entire surface, and the force is random. It has a patterned pattern.
  • Each spectrum has a circular shape, showing a bright and bright central part! /.
  • the latter is characterized by the bright lines spreading radially!
  • (y) is a pattern that can be classified as a geometric pattern similar to (m).
  • This specimen shows a cylindrical image in a slightly thick transparent resin. This cylindrical image changes variously depending on the viewing angle. It has the characteristics of being shielded and functioning as a screen. The specimen is used because it has a distinctive appearance. However, the entire characteristics of the image cannot be grasped, and the image seen in the original image is acquired and the spectrum is obtained within the operating range of the scanner.
  • the original image in (w) has a clear decorative pattern when an image that has been processed with ease of shading is referred to.
  • the spectrum for this image also shows features that were not visible in the original transformation.
  • the cloud spread is uniform, the results of the analysis show a 21 degree rotation on the first axis.
  • the variance value the value of the largest region is shown for (y).
  • (w) and (x) show moderate values, and (y) shows the maximum value.
  • the spectrum shows bright lines in the direction of the horizontal axis perpendicular to the flow of the grain, and shows how the grain spreads according to the respective features on both sides of the bright line depending on the direction and direction of the grain.
  • patterns that have root nodes as the theme show the spread of clouds according to their characteristics.
  • the main component force direction is indicated by a simple characteristic in which the direction perpendicular to the wood grain flow is the first direction.
  • the main component dispersion value is the largest non-wood pattern that is characterized by a large root node when the cloud is spreading widely, and then the grain is fine, even if it is rough and rough. However, it appears that the pattern appears to be floating, followed by a small value for the color near white as the pattern.
  • the entropy value is also shown in the magnitude relation.
  • the direction of the main component force is determined depending on the direction and intensity of the bright line as well as how the cloud spreads. In many cases, it can be estimated by visual observation. However, in some cases it is shown for the first time by analysis, and results that cannot be seen in the original image are first obtained by analysis.
  • two-dimensional Fourier transform is used, and it is shown that it can be expressed as a characteristic of frequency space by applying it to a texture developed on a plane and other patterns. Furthermore, applying the principal component analysis method to this, eigenvalues and the corresponding axes are obtained, and it is shown that these are related to the direction characteristics of the pattern in the real space. In addition, information entropy is sought, and part of the relevance is inferred about the characteristics of the real space pattern.
  • Grid points can be developed into a brick-type, rhombus, etc. based on a rectangular arrangement. It cannot be denied that the whole pattern with the elements embedded in the rectangular grid points has a strong regularity.
  • the lattice point is given a fluctuation width with “l / f fluctuation” observed in natural phenomena and moved to the original position of the lattice point to set a new lattice point. Embed the elements in to create an overall wrinkle pattern.
  • Generators and elements can be constructed by giving depth information corresponding to the width to the corresponding strands of trunks and branches, which can be immediately output as film information. Depending on this, even if it is the same as the conventional process, it can be used as a material for mold production. Also, this can be converted into CAM information and used as an input to machine tools for mold creation. With recent advances in machine tool technology, the speed-up has been remarkable, which can shorten the delivery time of mold production.
  • the surface of the printed material is decorated with a texture so that it has a three-dimensional appearance according to the pattern.
  • the printing surface is made based on the original data obtained from natural materials, artificial materials, and the wrinkles created this time,
  • the plate is printed on a printing press.
  • the shape of the original data is deformed due to ink penetration, force on the base paper at the time of printing, tension applied, and so on. It is necessary to add deformation according to the printed pattern for the wrinkle production. Since the original data is created in the computer, the operation can be easily performed even when this transformation is applied.
  • the textured printed material according to the present invention can be used for housing building materials products, automotive interior parts, home appliances and information equipment exteriors, and can also be used for miscellaneous goods such as stationery.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Printing Methods (AREA)
  • Finishing Walls (AREA)
  • Image Generation (AREA)

Description

明 細 書
シボ柄印刷用のシボ柄並びにそのシボ柄の創成方法および創成プロダラ ム、並びにそのシボ柄を印刷した住宅建材製品、 自動車用内装部品、家庭電化 製品および情報機器
技術分野
[0001] 本発明は、コンピュータにより創成される、シボ柄印刷用のシボ柄並びにそのシボ 柄の創成方法および創成プログラム、並びにそのシボ柄を印刷した住宅建材製品、 自動車用内装部品、家庭電化製品および情報機器に関するものである。
背景技術
[0002] 壁面、天井、床等の建築内装材、棚、扉等の家具類表装材は、主に木製品が用い られてきた。しかし、印刷技術の進展により、実際の木材を対象として、木目を写真撮 影し、画像処理を行って紙、フィルム等に印刷、これを合板に貼り合せて、高品質感 、高級感、貴重感等の装飾性を与え、あた力、も実際の木材を使用したかの印象のも とに、建築材料 (建材)として用いられている。
[0003] 現在では、居住性に一層の満足感、納得感を得られるよう、画像処理に積極的に 意匠性を持ち込み、印刷技術の上でも高度性、複雑性、装飾性を加えて付加価値を 高めた印刷が行われている。英語では、この分野の印刷はデコレーションプリンティ ング(decoration printing)と称され、世界的にも巿場が広がっている。最近では、水 溶性フィルムに印刷し、これを水に浸すことにより、柄模様膜のみを水に浮かべ、ブラ スチック製部品等をその浮いている柄模様膜に上方の空中から押し付けて、部品等 の表面に柄模様を付着させる水転写の手法等によって、 自動車用内装部品等の産 業製品の内装材にも利用の領域が広がっている。また、広く家庭電化製品、情報機 器等の民生品、産業資材への展開も視野に入りつつある。
[0004] 一方、環境の視点から木材を潤沢に使うことは許されなくなり、この点からも建築材 料への印刷技術の利用が展開される状況にある。この観点では、内装材に留まらず 、外装材でも代替が試みられており、技術的な重要性も増す一方である。これらの場 合、従来の材料と対比して、価格に合理性が求められることも言うまでもない。また、 単なる代替に留まらず、世界各地の特徴ある木材の木目等に、意匠デザインによる 特徴を付加し、装飾性を備えて、居住性の美的感覚、快適性の要求に応えることも 可能である。また、木目に留まらず、皮革、石目、布地、金属、幾何学抽象模様等、 多岐にわたる天然材、人工材の柄模様を対象とすることもできる。印刷技術の適用に よりこれらを内装材他とする工程は図 1のような流れ図で表される。ステップ S 1にはこ れらの対象を示している。
[0005] 現状、美麗な色印刷には平版印刷であるオフセット印刷の普及が目覚しい。オフセ ット印刷では、版の製作が容易、安価、版の交換作業、色合せ等も自動化が進み、 作業性の改善が顕著である、印刷機価格もダラビヤ印刷機に比べて安価である、そ の結果、小さいロットの印刷への対応も容易等が特徴であり、普及にも拍車力 Sかかつ てきていた状況がある。しかし、住宅建材の印刷はこれとは異なる方式であるグラビ ャ印刷、凹版を用いた方式によっている。この方式では、版の製作には版式に伴う作 業工程が必要であり、印刷機も高価格、版交換にも人手による作業が必要、発色、 調整には技術を要する、結果として小ロットの生産には不向き等、オフセット印刷の 特徴と比べて不利な点が並ぶ。
[0006] しかし、オフセット印刷では黄、赤、藍、墨の 4色のインキを用いているのに対し、建 材、転写箔等の印刷では、上記 4色のインキの混合によって、あるいはこれらとは色 調を違えて供給される「特色」とレ、われるインキで発色させること、ダラビヤ印刷の特 徴である凹版は、版面に化学的、機械的方法でセルを創成し、その中に溜めたイン キを対象面に移し替える方式であり、インキの量感を伴った印刷が可能であること、ま た、対象となる紙、フィルム等の性質と相俟ってこの方式が適していること、合板面、 金属面、プラスチック面への貼り合わせ、後述のシボ加工と印刷面への重畳の例に 見るように、後工程の性質上もこの方式が適していること等のため、ダラビヤ印刷が欠 かせなレゝ方式となって!/、る(非特許文献 1参照)。
[0007] [画像データの取得]
装飾性に優れ、建築材料に適した木目等の対象に対し、これを写真に撮影し、フィ ルムに固定化してデータとして、印刷に利用するのが伝統的な手法であった。その 環境下では、データはアナログ方式によっていた。最近では、ディジタルカメラの利 用が常態化しており、画像はディジタルデータとして取得されている。また、ディジタ ルカメラを備えたスキャナーによって長大な対象の撮影も可能となっている。この場 合にも、画像はディジタルデータとして取得される。取得されたアナログ、ディジタル 両データは印刷する柄模様の原データ、図 1のステップ S 2となる。これらはブロック 1 の操作で行われてきた。
[0008] 伝統的なカメラによる撮影では、カメラマンがその技法を駆使してこれを行っていた 。現在は、操作性のよいスキャナーによるデータ取得が主流となりつつあり、その場 合には、走査、撮像の際に、採光の方向を変えて、年輪筋、導管等の見え方を微妙 に変えて、それぞれに印刷を想定したデータとしている。このため、取得されたデー タをもとに、印刷柄とした時の所定領域内の柄模様としての繰返し性、色調、柄の連 続性等を検討するコンピュータグラフィックス(CG)処理担当者、さらに柄模様色調、 木目の質感等で品質を高める仕上げリタッチの担当者が機能する。現今、これらの 作業は同一者がクリエーターとして担当するようになってきており、データ取得作業も クリエーターが行ってレ、るのが実態である。
[0009] [シボ]
ここでシボについて説明する。シボは皺と書かれ、広辞苑では「織物の糸の撚り方 の具合で、織物の表面に現れた凹凸、また、革や紙に加工したしわのような凹凸」と されている。現在の印刷では、皮革、木目、布地、金属面、幾何学的柄の模様や線、 梨地模様の等に見られる凹凸全般について、シボと称されている。上記の流れで柄 模様が撮像されると、シボも柄原データの中に、同時に画像として取得されることとな る。図 2には各種のシボの例を示す ((株)棚沢八光社発行、 1-10参照)。印刷製品と しては、シボの扱いによって、実際に凹凸はなくても、印刷に凹凸感を与え、 "触って 見たくなる"感触の仕上がりとすることが可能となる。これによつて、通常の印刷に高 級装飾感、意匠性高度感を与え、付加価値を高めることができるようになつている。
[0010] 一方、凹凸感を強調する点では、シボ相当部を別に扱い、その型を作成し、樹脂加 ェして合板に接着した印刷物の表面や、塩ビ等のプラスチック材料に印刷した印刷 物の表面に上記の型により凹凸形状 (エンボス: emboss)をつけ、製品の付加価値を 高めることが行われている。 自然材では、シボは木目等の柄模様と一体の構成となつ ている。し力、し、当初の建材製品は、柄模様を印刷し、特にシボを生かすことはしな い状態から始まっていた。エンボスをつけることが可能となっても、印刷柄模様と合致 した凹凸形状のつけ方は必ずしも求められず、一見印刷の柄模様と合っているかに 見えるエンボスでも受け入れられてきていた。
[0011] しかし、木目等の基本柄模様に同調してエンボス凹凸をつける製品が提示されるよ うになつてきている。このようなエンボスは同調エンボスと呼ばれている。この方法で は、印刷と型押しを柄模様に合わせて行う必要があり、柄模様を印刷製品としてデザ インする時の複雑性、同調エンボスを実現するための印刷、仕上げ技術の高度性等 に、高い技術力が求められている。なお、皮革のシボをもとに型を作成、これを樹脂 材料表面に創成したもの力 自動車の車内装飾材料 (外装)として、ダッシュボード、 座席シート等の内装部品に利用されている。また、家庭電化製品や情報機器の外装 についても、このようなシボの利用が期待される。
[0012] [印刷における柄模様創成の工程]
図 1のステップ S3では、クリエーターの他に、柄模様のデザイン性を検討するデザ イナ一が加わり、ステップ S2で取得した原データの中から印刷に適当な部分の繰返 し性の可否、木目の強調度、濃淡、並び方等の質感とその改質、色彩付与と判定、 柄デザインのファッション性等について、計算機出力表示装置の画面を用いて、顧 客に提示する見本データを作成する。この経過の中では、ステップ S4でインキジエツ トプリンタ一により紙へ出力し、ステップ S5で仕上がりの適否を確認する一方、ステツ プ S6でインキジェットプリンターの出力と、後工程である四截ベビーの色だし、本機 の印刷との相関性に基づいた確認をする。ブロック 2による繰返しは少ないことが望ま しいが、現状では想定される流れである。
[0013] 印刷柄については、四截ベビーと称される小型回転印刷機で本機印刷に極力合 わせたインキを、本機スタンドで用いる色数に合わせて印刷し、これによつて顧客の 7¾認を得ることとなる。実際の内装を担当する顧客デザイナーの要望によっては、ブ ロック 3による流れによって、ステップ S8での本機印刷の前に検証が繰り返される。
[0014] 以上の流れには、シボに相当する柄模様が含まれたままの場合もある。しかし、後 工程のステップ S9でのシボ型製作が考えられる場合には、その工程が外部企業の 製作になるため、別工程とし、関連企業と密接な連携が求められる。特に、同調ェン ボスの場合には、印刷される紙他の材料の性質、インクの性質、印刷中の張力等に よって変形し、結果として印刷製品の柄模様は版に作成したものからは変形している 場合も生じる。したがって、これに同調してエンボスするには、型製作に予めこの変形 を考慮して柄模様を変化させることが必要となり、これには高度な技術性が求められ 非特許文献 1 :平成 11年、 日刊工業新聞社発行、「ものづくり進化論」第 1巻、第 84 〜87頁、「カラー印刷」
発明の開示
発明が解決しょうとする課題
[0015] 以上に説明したように、従来、シボは実際の天然材、あるいは人工材から写実的な 採取によってデータを取得し、これを印刷、加飾に用いてきた。これまでの経過の中 でもシボが技能者の技に依存して作られたりしていたものも全くないことではなかった 。しかし、この場合でも、一般的には上記の工程によって取得されていたと言える。
[0016] この一方、コンピュータの性能が向上し、その利用技術に対する要請が高まる中で 、意匠性に富む模様、パターンをコンピュータ支援のもとに創成する試みが始まって いる。本発明は、コンピュータ内にソフトウェアを構築してシボを創成し、これを従来の シボの代替として用いようとするものである。
課題を解決するための手段
[0017] 上記課題を有利に解決したこの発明のシボ柄印刷用のシボ柄は、コンピュータによ り創成されるもので、幾何学的フラクタルにより発生した基本構造を繰り返すとともに、 その繰り返しの中に繰り返し態様を変更した基本構造を含むことを特徴としている。
[0018] なお、上記基本構造は枝構造であっても良ぐ上記繰り返し態様の変更は単一置 き換えや逆単一置き換えやそれらを組み合わせた二重置き換えであっても良い。ま た、上記枝構造の行き止まり枝素線を除去して波打ち形状を創成するものでも良い。
[0019] さらに、上記基本構造を連結する格子点位置に 1/f揺らぎ性が与えられても良ぐ またその基本構造の素線長さと素線傾斜角との少なくとも一つに 1/f揺らぎ性が与 えられても良い。 [0020] さらに、上記基本構造の重ね合わせ回数に基づく太さおよび深さを持つものでも良 い。
[0021] また、この発明のシボ柄印刷用のシボ柄の創成方法は、コンピュータによりシボ柄 を創成するに際し、幾何学的フラクタルにより基本構造を発生させる基本構造発生ェ 程と、その発生させた基本構造を繰り返させるとともに、その繰り返しの中に繰り返し 態様を変更した基本構造を含ませる基本構造繰り返し工程とを具えることを特徴とし ている。
[0022] なお、この発明のシボ柄印刷用のシボ柄の創成方法においては、上記基本構造は 枝構造としても良ぐ上記繰り返し態様の変更は単一置き換えや逆単一置き換えや それらを組み合わせた二重置き換えとしても良い。また、上記枝構造の行き止まり枝 素線を除去して波打ち形状を創成しても良!/、。
[0023] さらに、上記基本構造を連結する格子点位置に 1/f揺らぎ性を与えても良ぐまた その基本構造の素線長さと素線傾斜角との少なくとも一つに 1/f揺らぎ性を与えても 良い。
[0024] さらに、上記基本構造の重ね合わせ回数に基づき太さおよび深さを持たせても良 い。
[0025] さらに、上記基本構造発生工程で基本構造を複数種類発生させて提示し、それら の基本構造から選択された基本構造を用いることとしても良ぐまた、上記基本構造 繰り返し工程で繰返し態様を変更した基本構造を複数種類発生させて提示し、それ らの繰返し態様を変更した基本構造から選択された基本構造を用いることとしても良 い。
[0026] さらに、上記創成方法で創生したシボ柄を 2次元フーリエ変換して求めたパワース ぺクトラムピクチャーを提示し、そのパワースペクトラムピクチャーの評価結果に基づ き、前記創生したシボ柄を出力することとしても良ぐ上記創成方法で創生したシボ柄 力、ら求めた情報エントロピーを提示し、その情報エントロピーの評価結果に基づき、 前記創生したシボ柄を出力することとしても良い。
[0027] さらに、この発明のシボ柄印刷用のシボ柄の創成プログラムは、コンピュータにシボ 柄を創成させるものであって、幾何学的フラクタルにより基本構造を発生させる基本 構造発生ステップと、その発生させた基本構造を繰り返させるとともに、その繰り返し の中に繰り返し態様を変更した基本構造を含ませる基本構造繰り返しステップと、を 具えることを特 ί毁としている。
[0028] なお、この発明のシボ柄印刷用のシボ柄の創成プログラムにおいては、上記基本 構造発生ステップで発生させた複数種類の基本構造を提示するステップと、それら の基本構造から選択された基本構造を入力するステップと、をさらに具えていても良 ぐまた、上記基本構造繰り返しステップで発生させた複数種類の、繰返し態様を変 更した基本構造を提示するステップと、それらの繰返し態様を変更した基本構造から 選択された基本構造を入力するステップと、をさらに具えていても良い。
[0029] さらに、この発明のシボ柄印刷用のシボ柄の創成プログラムにおいては、上記創成 方法で創生したシボ柄を 2次元フーリエ変換してパワースペクトラムピクチャーを求め るステップと、上記求めたパワースペクトラムピクチャーを提示するステップと、そのパ ヮースペクトラムピクチャーの評価結果を入力するステップと、をさらに具え、その評 価結果に基づき、上記創生したシボ柄を出力させることとしても良ぐまた上記創成方 法で創生したシボ柄から情報エントロピーを求めるステップと、上記求めた情報ェント 口ピーを提示するステップと、その情報エントロピーの評価結果を入力するステップと 、をさらに具え、その評価結果に基づき、上記創生したシボ柄を出力させることとして も良い。
[0030] そしてこの発明の住宅建材製品、自動車用内装部品、家庭電化製品および情報 機器は、前記シボ柄を印刷したことを特徴とするものである。
発明の効果
[0031] この発明に基づいてコンピュータがシボを創成することにより、図 1でブロック 1が関 テツプ S4の工程に組入れた処理とすることができる。これにより納期短縮の需要が強 まっている市場動向の中でこれに応える態勢の構築が可能となる。企業としてみれば 、これは競争優位に立てる方策でもある。また、ステップ S3, S4の工程で极うことは、 クリエーターの他にデザイナーがその創成に関われることを意味し、自然材に基本を 置きつつ、全く新しい意匠感覚のシボを多様に創成することが視野に入れらこととな る。これによつて、印刷技術を用いた建材材料として、新たな顧客需要を掘り起こしに もつながることが期待される。
[0032] そして、この発明に基づ!/、てコンピュータがシボを創成する際に、コンピュータが基 本構造を複数種類発生させてそれらを画面表示等で提示し、対話形式で上記クリエ イタ一やデザイナーがそれらから好ましい基本構造を選択してコンピュータに指示( 入力)し、コンピュータがその選択された基本構造を用いるようにしたり、コンピュータ が基本構造繰り返し工程で繰返し態様を変更した基本構造を複数種類発生させて それらを画面表示等で提示し、対話形式で上記クリエイタ一やデザイナーがそれら 力、ら好ましい、繰返し態様を変更した基本構造を選択してコンピュータに指示(入力) し、コンピュータがその選択された、繰返し態様を変更した基本構造を用いるようにし たりすれば、クリエイタ一やデザイナーは、より容易にかつ積極的にシボの創成に関 わること力 Sでさる。
[0033] さらに、この発明に基づいてコンピュータがシボを創成する際に、上記創成方法で 創生したシボ柄を 2次元フーリエ変換して求めた複素平面状のフーリエ係数スぺタト ルを画面表示等で提示し、対話形式で上記クリエーターやデザイナーがそれらから、 一般に好ましレ、シボ柄が予想される特徴パターンに基づ!/、てそのフーリエ係数スぺ タトルを評価してコンピュータに指示(入力)し、コンピュータがその評価結果に基づき 好ましいとされた、上記創生したシボ柄を出力するようにすれば、コンピュータが、人 にとつて好ましいと思われるシボ柄を選択的に出力することができる。
[0034] また、幾何学的フラクタルを用いたシボ創成の手法として、基本構造の繰り返し回 数に基づきシボの太さおよびそれに応じたシボの深さの情報すなわち 3次元情報を 与えることも可能である。これまでは、印刷表面に凹凸を型押しで生成するため、後 工程におけるシボの型製作は、主として、シボデータに基づくフォトエッチング手法に よっていた。しかし、シボのデータに当初から太さ、深さ等の形状データを付与するこ とで、そのデータを直ちに機械加工情報として利用できる。これにより、メス型、ォス型 作成の入力情報として NC工作機械へ転送、加工に入り、型製作のェ期短縮にも寄 与すること力 S可能となる。ちなみに、工作機械は近年主軸回転数の向上をはじめとす る加工性能向上が目覚しぐ工具の性能向上とも相俟って、その実現は容易となって いる。フォトエッチングは、蝕刻の可否をマスクによって行っていた力 最近はレーザ 一走査の照射によって行う方法も可能になっており、その適用が考慮される。
図面の簡単な説明
[図 1]従来の柄印刷の流れを示すフローチャートである。
[図 2]シボの例を示す説明図である。
園 3]自然界のフラクタル構造例を示す説明図である。
園 4]代数的フラクタルの例を示す説明図である。
園 5]幾何学的フラクタルの例(コッホ曲線)を示す説明図である。
[図 6]コッホ曲線のジェネレータとフラクタル創成を示す説明図である。
園 7]枝構造ジェネレータの例を示す説明図である。
園 8]枝構造ジェネレータの置換え成長を示す説明図である。
園 9]枝素線除去のジェネレータの変更を示す説明図である。
園 10]変更ジェネレータによる置換えの例を示す説明図である。
[図 11]シボエレメント創成の流れを示すフローチャートである。
[図 12]素線の長さと傾斜角の説明図である。
園 13]格子点構成と揺らぎ性の付与の流れを示すフローチャートである。
園 14]格子点の配置規則および連結規則の例を示す説明図である。
[図 15]皮革シボの例を示す説明図である。
[図 16]パワースペクトル密度関数によってゆらぎの特性を示す関係線図である。
[図 17]木目のゆらぎ特性(タスノキ)を示す説明図である。
[図 18]木目のゆらぎ特性(レッドウッド)を示す説明図である。
園 19]第 1格子点への「l/fゆらぎ」の付与の概念を示す説明図である。
園 20]第 2格子点への「l/fゆらぎ」の付与の概念を示す説明図である。
[図 21]ゆらぎ特性付与の流れを示すフローチャートである。
園 22]シボエレメントを連続配置したシボ柄模様の例を示す説明図である。
園 23]第 1格子点にゆらぎを付与した場合の上記シボ柄模様を示す説明図である。 園 24]第 2格子点を導入した場合の上記シボ柄模様を示す説明図である。
園 25]ジェネレータにもゆらぎを導入した場合の上記シボ柄模様を示す説明図であ [図 26]「l/fゆらぎ特性」の検証結果を示す関係線図である。
[図 27]シボ柄模様創成の流れを示すフローチャートである。
[図 28]フォトエッチングに対応したフィルムの生成方法を示す説明図である。
[図 29]シボエレメント創成の流れを示すフローチャートである。
[図 30]ジェネレータへの揺らぎ性付与の他の流れを示すフローチャートである。
[図 31]線分長方形化モデルの概念を示す説明図である。
[図 32]接続部変形線分による平滑化方法を示す説明図である。
[図 33]線分移動による平滑化方法を示す説明図である。
[図 34]シボデザインの対話型構成法に基づくプログラムを示すフロー図である。 園 35]2方向に変化する特性を持つ表面模様の斜視図である。
園 36]上記表面模様の等高線を示す説明図である。
園 37]上記表面模様の等高線から抽象される特徴線を示す説明図である。
園 38]2次元フーリエ係数の領域を示す斜視図である。
園 39]2次元フーリエ係数の存在域と表面模様とを示す斜視図である。
[図 40]図 39の表面模様に対するフーリエスペクトルを示す斜視図である。
[図 41]図 35の表面模様に対するフーリエ係数スペクトルを示す斜視図である。
[図 42]図 41から求められた図 35のフーリエスペクトルを示す斜視図である。
[図 43]創成柄の特性評価法のフロー図である。
園 44]2次元フーリエ解析による実用シボ、柄特徴抽出と変数調整による創成シポ、 柄の採否判断過程のフロー図である。
園 45]シボ画像とその 2次元フーリエ解析結果を対比して示す説明図である。
園 46]シボ画像とその 2次元フーリエ解析結果を対比して示す説明図である。
園 47]シボ画像とその 2次元フーリエ解析結果を対比して示す説明図である。
[図 48]主成分分析、情報エントロピー算出の評価利用のフローチャートである。 発明を実施するための最良の形態
以下、本発明の実施の形態を実施例によって、図面に基づき詳細に説明する。以 下の実施形態は、通常のコンピュータ内にあらかじめインストールされたプログラムま たはそのコンピュータ内に外部記憶媒体から供給されるプログラムにより実現されるも のである。図 3は、自然に観察されるフラクタル構造の例である。フラクタルの中では、 構造として成長し、成長過程に確率現象が関わり、相似的な形状を生成しており、確 率的フラクタルと分類されている(朝倉書店 1990年発行、タマス 'ヴイチエック著、「フ ラタタル成長現象」参照)。図 4は、代数的フラクタルに分類される例である(森北出版 (株) 1993発行、芹沢浩著、「フラクタル紀行」参照)。
[0037] 代数的フラクタルは複素平面上に生成される。複素数列 {Zn}を以下の式 (1)
[数 1コ
Z =X +Y · Ι (X, Υ は実数、 iは複素単位) · · ' (1)
n n n n n
で表すとすると、 Z は点 P (X , Y )によって表される。この時、 {Ζ }は(X, Υ)平面上の η η η η η
点列 Ρを生成する。複素数列の漸化式は以下の式 (2)
η
[数 2コ
Z =f(Z ) (n= l、 2、 3、 · · ·) " ' {2)
n n— 1
で表され、 P (Z )力も P (Z )が決まり、以降順次帰納的に全ての nに対し、 Zを求 n— 1 n— 1 n n n めることが可能となる。
[0038] ここで n→∞とした時、点列の動きは、
1. 1点に収束する。
2.有限個の点の間を周期的に振動する。
3.ある領域内で移動する。
4.発散する。
の 4通りの挙動を示す。挙動は、漸化式 (2)の数列の形と初期値 Z によって決定され
0
[0039] 図 4は、漸化式を以下の式 (3)
Z =Z 2 + Z · ' · (3)
n (n- 1) c
として、図内に示した関係を式 (3)を用い、定めた領域内の全ての点を初期値として、 発散する点を黒、しない点を白として、結果を示したものである。
[0040] 上述した代数的フラクタル、確率的フラクタルは、フラクタルの何たる力、を見るに代 表的なものである。しかし、シボの典型的な例として皮革の場合を想定して、結び付 けるには困難がある。また、デザインの視点からこれらを見るに、図 4で示された関係 式から、フラクタル形状を知ることはできないに等しレ、。
[0041] 以上の経過を考慮して、この発明ではフラクタルとして、その特徴である自己相似 性を確認しやすぐ図形としても単純である、線分を用いた幾何学的フラクタルがシ ボの創成には適切と判断し、これを用いることとしている。図 5は、コッホ曲線と呼ばれ る幾何学的フラクタルの例である。幾何学的フラクタルの生成手法は、基本構造とし て、ジェネレータと呼ばれる線分のみで構成される幾何学形状を定義し、ジエネレー タを構成して!/、る全ての線分(素線)の間をその相似形状で置換える操作を複数回 繰り返すものである。図 6は、コッホ曲線創成の過程を示している。ここで、 Nは置換 えの回数を示している。
[0042] [枝構造フラクタル]
この発明の一実施形態では、幾何学的フラクタルの一つとして、枝構造のフラクタ ルを用いたシボ創成システムを構成して!/、る。これは代表的なシボ構造として皮革の シボ構造を想定している。し力もながらこの発明に基づく構成法は、ジェネレータを用 V、た多様な展開をすることができる。
[0043] 代数的フラクタル、確率的フラクタルの場合、初期基本式とこれから創成される柄模 様に相当する絵柄との間の関係を推察することは不可能に近い。一方、幾何学的フ ラタタルでは、コンピュータと対話して、ジェネレータを如何様にも変化させることがで きる。さらに、これをもとにしたシボ形状を画面上で見ることが同様に可能であり、両者 の関係をデザイナーが把握しながら、操作を繰り返し、シボの意匠性、自然性、多様 性等を確認、判断して創成することが可能となる。この際、印刷柄との関係も考慮しな がら、シボ特性をデザインすること、シボ独自に、し力、も意匠性を高めてデザインする ことあ視野に人れられることとなる。
[0044] 図 7、図 8には、枝構造ジェネレータの例と、これを置換え、成長させるに際しての 場合の区分けを示している。枝構造フラクタルでジェネレータは、一筆書きができて いること力 S条件となる。図 7のジェネレータでは、枝分かれがある結果、枝部分では、 一筆書きができず、矢印で示すように往復となっている。この部分に対して、往路ある いは復路の一方を無視し、片方だけに置換えた後、各素線に対して置換えを実施し た場合を図 8に示している。図 8 (b)は、枝分かれ部に往復で置換えを行っている二 重置換えである。図 8 (c)は、枝分かれ部分の往路方向のみを置換えた単一置換え である。図 8 (d)は、枝分かれ部分の復路のみを置換えた逆単一置換えの場合を示 している。
[0045] 枝構造は、置換えとその回数によって枝分かれの量が増加し、複雑性が増加する。
図 9および図 10は、複雑性と枝分かれ量を別に制御するため、ジェネレータの枝素 線がなレ、構造をジェネレータとして、もとのジェネレータのある置換え段階で置換えを する手法の例を提示している。図 9は、枝構造ジェネレータで枝素線を除去して、波 打ち形状の新たなジェネレータとした例である。図 10は、もとの枝構造に対する第 1 段階で、変更したジェネレータによる置換えを行い、素線に波打ちを導入して複雑性 を与えている。その次の段階以降では、波打ちを導入した構造をジェネレータとして 、その次以降の置換えを行い、複雑性を加味した枝構造を創成することに成功して いる。これを、後述の格子点間に埋める枝構造とする際、シボエレメントと称している 。図 11は、この後の手順までを含めたシボエレメント創成の流れを示しており、上述 の手順はステップ S 11力もステップ S 19までによつて表されている。
[0046] 図 7、図 9のジェネレータは、コンピュータ表示装置の画面上で GUI (グラフィカル. ユーザーインターフェイス)の利用により、マウス操作で作成することができる。幾何学 的フラクタルの特性にもよる力 S、この操作性により、ジェネレータとシボエレメントとの 関係把握は容易であり、デザインに操作性のよい創成を可能としている。図 11のステ ップ S 19では、ジェネレータの始点、終点、素線構成の分割とその始点、終点等を座 標上で定義し、素線の長さ、傾斜角を与えて、シボエレメントの定量化を行う。これに よって、後述の格子点間にエレメントを埋込み、シボ全体を構成できるようにしている
[0047] 図 12は、素線座標が求められた時、その長さ、傾斜角の関係を示す図である。素 線の始点、終点が A(a, a )、 B(b, b )と与えられた時、素線長さ λ、その傾斜角 φは
1 2 1 2
、それぞれ以下の式 (4), (5)
[数 4] K (a— b )2 + (a— b )2 · ' · (4)
1 1 2 2
φ =arctan{(a— b )/(a— b )} · · ' (5)
2 2 1 1
で求められる。これは素線の特性と同時に、エレメントの始点終点についても用いる ことができる特性である。シボエレメントの埋込みに正逆 2方向を考えていることを考 慮すると、 A→Bとした時の傾斜角は Aを中心に φであるのに対し、 B→Aの場合の傾 斜角は Bを中心に φ—(兀/2)となる。
[0048] [シボ全体構成のための格子点]
シボエレメントの柄模様への展開には、格子点を設定して、その間にシボエレメント を埋込み、面を構成することが基本となる。格子点設定の配置には、矩形、煉瓦積、 菱形等が考えられる。これに 1/fゆらぎ特性を付与するまでを含めたこの関連の操 作の流れを図 13に示す。まずこれら格子点配置の例を図で示すと、図 14となる。同 図(a)は矩形、同図(b)は煉瓦積、同図(c)は菱形である。格子点の当初の設定は、 図 14のように規則的である。したがって、この間にシボエレメントを埋込んだとして構 成されるシボは、柄模様として規則的であることを免れなレ、。
[0049] 図 15は、皮革シボの例である。この例に見るように、皺模様は、整然とした規則性 の柄模様とはなっていない。しかし、それぞれに独自の特徴を示している。このような 特徴を与える性質として、この発明の実施形態では「 1/fゆらぎ」性を考慮した。そし て、ゆらぎを振れ幅として格子点位置、ジェネレータ素線の線分長さ、傾斜角に与え て、柄模様に複雑感を出すようにし、実際のシボ柄模様に近づけている。なお、図 15 (a)、 (b)にそれぞれ示す例に見られるように、皮革シボは一見不規則な形状となつ ているが、その中に誰が見ても見える矢印に示した方向性がある。創成シボにもこれ がでるよう方向性を与えているの力 S、長方形の長辺であり、枝構造も結果として、これ を特徴付ける柄模様であると言える。
[0050] [1/fゆらぎの特性]
自然界の諸現象は基本的な周期性の中にも不規則性をもった性質を示すことが一 般的である。ここで、 fは周波数、あるいは周期の逆数である。単位を時間、長さにと れば、前者に対して周波数は振動数であるし、後者に対しては、所定長さ間の繰返 し数となる。 自然現象の周波数に対する特徴を分析する手法としては、フーリエ解析 があり、各周波数に対するエネルギー密度を対象周波数領域にわたってパワースぺ タトル密度関数を求める特徴の把握が一般的な手法である。
[0051] 電気導体に電流を流した際、抵抗出力は波形が不規則に変動する雑音電流が観 察される。この場合の電圧値の変化にフーリエ解析の手法を適用、パワースペクトル 密度関数を求め、対数軸として、周波数を横軸に、パワースペクトル密度関数を縦軸 として両対数軸により示した結果、 1/fの傾向を示す特性が得られたとされている( 武者利光、北原和夫著、「l/fゆらぎの物理」、応用物理、 Vol.58、No. l2、 1989年、 16 88〜1695頁参照)。図 16は、パワースペクトル密度関数と本件で言う「l/fゆらぎ」の 関係を概念的に示したものである。 fの冪指数によって特徴が区分けされている。
[0052] Γ1、すなわち 1/fの特性は、両対数座標軸上で 45° の勾配を有する特性であ る。これに対し、指数が 0, — 2の場合、前者は周波数に対して一様の特性であり、後 者は図 16に示す 1/f 2の特性となる。前者は白色雑音 (ホワイトノイズ)と称される場 合であり、不規則性が強い特性となる。一方、後者は高い周波数でスペクトル密度が より抑制される、特徴としては見にくい特性の現象が示される。
[0053] 分析を行う対象の観察されるデータは、時間軸、あるいは長さに対して、後述の心 拍数であれば、時間経過に対する心拍数の変化、木目であれば、長さに対応する濃 淡の変化である(講談社 1987年発行、武者利光著、「ゆらぎの世界」、ゆらぎ利用、陶 磁器ひび割れ再現の手法参照)。これを波形としてみれば、不規則振動現象として みること力 Sできるものである。波形を見ている限り、不規則振動現象では、振幅は変 化し、これを特定することは難しく、周波数も読み取ることが難しいのが一般的である 。 「ゆらぎ」の定義の由来は 1/fを称されていることとの関連では不明である力 不規 則振動が上記の特性を備えていることにたいし、振幅が確定せず、周波数も一定し なレ、との性質を「ゆらぎ」と表現してレ、る。
[0054] 1/fゆらぎの特性は、上記の雑音電圧をはじめ、心拍数、木目年輪等に観察され ている。また、この特性が自然感、安らぎ感、快適感を与えている可能性が示唆され 、さらにこれらを介して美麗感にも通じていることも言及されている。これらの中では、 伝統工芸である陶磁器のひび割れを、基本パターンにゆらぎを導入しての模擬、再 現の可能性が提示されている(高木友和、世良京平、蔡東生著、「陶磁器における貫 入模様の CG」、情報処理学会研究報告、 2000-35、 2000年、 25〜28頁参照)。
[0055] ここでは、木目の場合について特性の例を図 17および図 18に示す。図 17は、タス ノキの木目の顕微鏡拡大写真と、その横方向断面の濃淡強さについて、パワースぺ タトルを求めている。図 18は、米国原産レッドウッドの木目そのものについて、同様特 性を求めている。何れも注目可能な周波数、この場合は周期に対し、「l/fゆらぎ」 特性が示されている。各種木材全てにわたって、この性質が指摘できることの可否は 残るとして、 1/f特性を示す存在があることは示されて!/、る。
[0056] [「l/fゆらぎ」特性の発生]
「l/fゆらぎ」は、規則性を乱して複雑性を付与する一方、柄模様に自然感、多様 性を付与することを意図して導入する。この「ゆらぎ」は、格子点に「ゆらぎ」を規定す る振れ幅を与えること、当初に導入した第 1格子点の他に第 2格子点を導入して、こ れにも同様の与え方により「ゆらぎ」を導入すること、第 1格子点と第 2格子点の間で シボエレメントを切断し、し力も全体としては断続するようにして、シボ全体として多様 性、複雑性に富む性質を与えるようにすること、さらに複雑性を増すよう意図して、ジ エネレータの素線長さ、傾斜角に同様特性の振れ幅を付与することで与えて!/、る。
[0057] 図 19は、格子点に「l/fゆらぎ」を付与するについての概念図である。格子点はそ の間にシボエレメントを埋込みこみ、全体としてシボ柄模様の創成につなげることを 想定してのものである。格子点に対してゆらぎ量は X, yの座標値に対する振れ幅に より与える。図 20は、第 2格子点を設定して触れ幅を与えた時の概念図である。振れ 幅の最小値を fmin、最大値を fmax、この間の振れの刻みを決める分割数を Nとすると 、振れ幅の値は、 0≤i≤Nなる自然数 iに対して以下の式 (6)
[数 5]
fi = fmin + {(fmax― fmin)/N} · · ' (6)
で与えられる。この値と発生の頻度の関係として 1/fの特性を考慮しているため、頻 度を yとして以下の式 (7)
[数 6]
log y=— log fi · · ' (7)
10 10
すなわち、以下の式 (8) [数 7]
y= l/fi · ' · (8)
なる関係によって示される。
[0058] 頻度の総数 Sは、
[数 8コ
Figure imgf000019_0001
であり、 i = nに対する発生確率 piは
[数 9コ
pi = fn/S * · · (10)
と求められる。
[0059] 格子点を決めた後では、 fmin = 0とすれば元の位置からの振れ幅が式 (6)によって 与えられる。ここで fmin = 0とした時の fmaxに与える量は、実用化の過程で探索する 必要があるが、格子点間の長さよりも小さい範囲で、適切な長さを見出すことが求め られる。図 21には、この過程の流れを示す。ゆらぎは、大きな付ら幅は発生の頻度が 小さぐ小さレ、振れ幅は発生の頻度が多レ、特性で与えられて!/、る。
[0060] [1/fゆらぎ特性の格子点、ジェネレータ素線への配置]
格子点の総数を Mとし、これらに付番をしておく。これに対し、式 (10)までの過程を ふまえた fiを式 (6)によって M個求め、これらに iを付番しておく。ここで、乱数によって 、まず振れ幅を与ええる格子点を決定する。格子点の (X, y)座標に対しては、まず、 X座標を対象とし、その後に y座標を対象としている力 それぞれに対する乱数の設 定を独立とすることにより、(X, y)に振れ幅を与えて、相互に独立に、全格子点を対 象とすることが可能である。この後に、 fiについても同様に乱数によって選択し、これ を既に選択されている格子点に配置する。これによつて、図 19に示すように格子点 にゆらぎが付与される。
[0061] 上記のように格子点にゆらぎを与えた結果では、方向性を持たせて格子点間にシ ボエレメントを埋込んでシボ柄模様が創成される。し力、し、シボエレメントの形状によつ ては、方向性を強く残している印象を与える柄模様となっている場合を生じていた。こ れを改善するため、図 20に示す如ぐ上記格子点と同じ位置に新たに格子点を定め 、これに上述のゆらぎ振れ幅を与えて格子点を生成する。ここで、当初の格子点を第 1格子点、新たに生成したものを第 2格子点と称することとする。これによつて、ゆらぎ 量の異なる二つの格子点群が準備される。
[0062] 第 1格子点群と第 2格子点群で、同じ付番を与えられた点は、相互に隣接している 。左側の始点では第 1か第 2かの何れかを、右側の点では第 1格子点群を用いること として、シボエレメントを埋込んでいる。格子点群における左側始点の選択は、確率 値によっている。確率値を一定として選択することもできる。しかし、格子点付番によ つて確率値を変動させることも可能である。また、上記では、左側の始点で選択をし て!/、る力 左側では必ず第 1格子点群を始点とし、右側で第 1格子点群と第 2格子点 群とを同様確率によって選択する手法も可能である。これによつて、シボエレメントが 柄模様の中で断続する部分を作り出せ、自然に近づける視点で、多様性、複雑性を さらに付カロすること力 Sでさる。
[0063] 柄模様に自然感覚、多様性を付与するために、格子点に加えて、シボジェネレータ の素線を対象にその線分長さおよび傾斜角に「l/fゆらぎ」の振れ幅を付与できるよ うにしている。振れ幅の付与は、素線に付番しておくことにより、格子点と同様にゆら ぎ振れ幅を付与できる。また、ゆらぎの振れ幅の与え方により、ジェネレータの種類を 限定してその後の操作を続けることが可能である。なお、格子点ごとに異なるジエネ レータを付与できるような創成も可能である。
[0064] 第 2格子点、ジェネレータ素線へのゆらぎの付与を全て実施するの力、、その中で選 択肢を設けるのかにつ!/、ての選択は、それまでに至る手法との組合せの可能性とも 関連しているが、揺らぎの付与の対象とするパラメータを増やすことによって、複雑性 、多様性等をもととする柄模様の自然感により近づけることが可能と考えられ、図 21 に示す流れとしている。このように作成した格子点およびシボエレメントを用い、後者 を格子点間に埋込むことで、シボの全体柄を作成することができる。
[0065] 図 22、図 23、図 24、図 25は、それぞれ、シボエレメントの連続配置、格子点への ゆらぎ付与、第 2格子点の導入、ジェネレータにもゆらぎ導入をした場合についての シボ柄模様を示したものである。これらの何れを選択するかは、求められる住宅建材 製品等の仕様や顧客の嗜好、クリエーターやデザイナーの感性等による。 [0066] 実際には、これまでのそれぞれの流れ図に示したように、ジェネレータ作成の段階 をはじめとする中間の段階で、初期の段階に戻って修正をすること、また、最後の結 果から判断して、必要な箇所を修正、改善することを、これまでの実務経験を踏まえ て行い、望ましいシボ柄模様とできる。
[0067] [シボエレメント埋込みの関係式]
格子点にはゆらぎ振れ幅が与えられ、当初の位置より移動している。したがって当 初の格子間長さから伸長、回転している。その間の長さ、回転量は式 (4), (5)によつ て求められる。シボエレメントをこの間に埋込むには、その始点と終点との間で、拡大 、縮小、回転できるようにする必要が生じる。関係式は、式 (4), (5)と同様になるが、 [数 10]
l = ^(x -x )2 + (y -y f · ' · (11)
φ =arctan{( y— y )八 x— χ·— )} · ' · (12)
と表される。ここで、(χ, y ),(χ, y ), · · ' (χ, y )等は、各素線の始点、終点の座標で
0 0 1 1 n n
あり、(χ, y ),(χ, y )はエレメントの始点、終点の座標である。また、 iはジェネレータの
0 0 n n
i番目の素線、 1は素線の長さ、 φは角度変化量、 dは置換え時の方向である。これら を用いると素線のパラメータを φ, d )と表せる。ここで dは(0 : A→B, 1 : B→A)と 定義できる。
[0068] (以下関係式で、 nは iと読替え)
シボエレメントの始点、終点を (1, 0)、すなわち長さを 1として与えて構成することが 可能である。その場合、各素線の特性は、以下の式 (13)
[数 11] 入 (13)
Figure imgf000021_0001
で表すことができる。ここで、 は、移動、回転、拡大、縮小の処理をした後の素線 に関する緒量となる。ここで、 I、 Γ は素線の始点、終点の位置ベクトルである。この 際、当初の長さを 1としていたのに対し、式 (4)でえが求められていることを考慮して、 拡大、伸長の率が与えられる。
[0069] 埋込みに当たって、 A→Bの方向に対して、拡大'縮小後の位置は、
[数 12]
/λΐ. λΐ' \
ALn = λ(ΐ_ ΐ ) = (λ!„ λ\'η ) - ;
とできる。次に Φだけ回転する。移動した にそれぞれ回転行列をかけると、 [数 13] cos ? d
sin 9? AT
Figure imgf000022_0001
最後に原点位置を点 Aに平行移動し、
[数 14]
Figure imgf000022_0002
が得られる。
[0070] Β→Αとする場合には、同様にして、拡大縮小および回転に対し、
[数 15]
Figure imgf000023_0001
となる。最後にこれを点 Bが中心になるように移動してやり、
[数 16]
s
n
cos <P -
L' =
. ( ^ \ j ( JT n Λ J t . ( π \ (
, sin φ + n cos 一一 " sin Ψ + y cos φ一
o
s
b2 b
2 s
Figure imgf000023_0002
と与免られる。
[0071] [シボの重ね合わせ]
図 15の皮革シボの実例を観察すると、枝構造エレメントによる模擬の可能性が見ら れる一方、点群のシボが重畳していると見られる柄模様ともなつている。これは点群 力、らなる別のシボ柄模様が枝構造による柄模様に重なった形態とも考えられる。どの ような構造のシボを重ねることによりこれが実現できるかは検討課題である力 ジエネ レータ構造を考慮することにより、本発明の手法の一部、あるいは全部を適用するこ とにより、新たなシボ柄模様を創成することが可能と考えられ、これを枝構造シボ柄模 様に重ね合わせて、より自然感をますシボ柄模様の創成を期待できる。
[0072] [シボ柄模様の型加工への展開]
シボの柄模様に応じて、凹凸形状を持つ型を作成し、印刷製品に対応して、非同 調、同調の柄模様として、印刷製品上にコート、あるいは重ねた樹脂等の材料に凹 凸形状を型打ちし、建築材料他の印刷製品の付加価値を高めることが行われており 、近年その需要は高まる一方である。
[0073] 創成したシボ柄模様は、素線の太さに対して深さ情報と関連付け、柄模様として 3 次元情報とすることを可能としている。また、色彩情報を付加することも可能である。 枝構造シボでは、幹構造で線幅を太ぐまた画面に垂直方向の情報として深くするこ とが可能である。これはフィルム情報として、従来広く利用されてきているフォトエッチ ング方式を介した型製作に展開することができる。最近では、レーザー走査の照射に よって行う方法も可能となっている。一方、この 3次元情報は工作機械の工具駆動情 報に変換して、型製作に直結することが可能である。その結果、シボ柄模様の型製 作、これを用いたシボ柄模様成型製品等の納期短縮が図れる。シボの 3次元情報を 工作機械への情報とする場合、工具を駆動して被削材に型形状を創成する CAM ( Computer Aided Manufacturing)情報として工作機械に送り、メス型、ォス型の製作に つなげること力 Sできる。フォトエッチングの工程では、印刷製品と重ね合わせるための ォス型の作成には一旦メス型を介する必要がある。しかし、工作機械による製作では 、直接ォス型の作成をすることも可能である。
[0074] 図 26は、「l/fゆらぎ」発生のモジュールの機能を検証するため、 0. 1から 10まで の間で 0. 1刻みにとった値に対して「ゆらぎ乱数」として求め、 5, 000個の出力に対 する頻度を求めることを 3回行い、 1/f特性を確認している。最小二乗法で求めた特 性から、大約特性を満たす結果が求められている。
[0075] 図 27には、全体の流れの中で、型加工による表面立体形状創成と創成柄模様を 印刷した製品を合わせる工程についても示している。シボ柄模様とこれのもとになる 柄模様の印刷柄模様とを同調させて、重ねて製品とすることは、木目柄等では実際 に行われている。しかし、コンピュータ内に創成したシボ柄模様についてこれを実施 している例はなぐシボ柄模様の創成と合わせて、これまでにないデザイン性、意匠 性を持つことに付加価値を見出す製品を生産できる可能性を秘めている。
[0076] [全体の流れ]
図 27には、上記のシボ柄模様創成のシステムに関し、全体の流れを示す一方、途 中の過程で示した機能について、相互の位置付けを示している。コンピュータに与え たソフトウェアで、ジェネレータとエレメント設定、格子点設定、ゆらぎ発生と付与、シ ボ柄模様創成等の各機能を持つモジュールを構成して、操作性をよくしている。また 、型製作の出力に関しては、創成したデータをもとに、インターフェースを介して、次 工程入力に変換できるようにしてレ、る。
[0077] 自然観を持たせたシボとするために、ジェネレータから成長させたシボ柄では、末 端の枝ほど細ぐかつ 3次元形状としては浅くし、また、幹に当たる部分は太ぐ 3次 元形状としては深ぐ形状生成しても良い。
[0078] 図 9、図 10では、ジェネレータとこれをもとにした置換えによる創成、枝を取った波う ち形状としたジェネレータの創成と、これを用いた置換えによる多様性の付与につい て説明した。図 10は、 N' = 1から N' = 3までの置換えで、幹から小枝までの展開をし たエレメント創成を示している。いま、 N' = 1の柄模様に N' = 2の柄模様と N' = 3の 柄模様とを重ねると、幹、枝、小枝の順次に重なる回数が少なくなる。これは、 が 小さレ、場合の部分ほど、すなわち早!/、段階に置換えて!/、る部分ほど重なり回数を多 くできており、この回数に応じて太さを変えて描くことが可能となる。太さは、重なりの 回数に比例した表示としてもょレ、し、回数による割合を変化させた表示としてもょレ、。
[0079] シボ柄模様は、皮革に典型的に生じているものであり、そこでは柄模様のところで 凹部となる 3次元の構成となっている。創成したシボ柄模様についても、それをもとに して金型を製作し、擬似皮革作成に利用することが考慮される。その際、フォトエッチ ング方式による金型の製作法として、フィルムを用いた以下の方式が挙げられる。す なわち図 28に示すように、柄模様として創成されたシボにっき、 1次加工から 3次加 ェまでのそれぞれについて順次フィルムに出力して、フォトエッチングの原版とするも のである。
[0080] この例では、枝部を取り払ったジェネレータから 3回の置換えによって、枝部を有す るシボが作成されている。 1次加工のフィルムは、 3回目の置換えに対応している部 分で、重なり方は最も少ないため、シボ柄模様は最も細い要素によって構成されてい る。置換えの回数と加工の次数は逆の数え方となっている力 エッチング加工に際し ては、最も細レヽシボ柄模様構成から始めるのがエッチング工程としての順序であるた め、置換えの順序とは逆となっている。 2次加工、 3次加工となるに従い、次数に応じ た太い線分で描画されている。柄模様自体は、次数に応じて柄模様が重ねられた構 成であるから、シボとしては、重ねられた結果で全体が表されることとなる。
[0081] 図 29には、上記の太さが変化するシボエレメント創成の流れを示し、ここでは、置 換え回数の設定による重ね合わせによる太さの増加率を αと設定して!/、る。この αに 対しても、座標に応じた揺らぎを与えることにより、自然性、多様性を与えることが可 能である。
[0082] さらに、図 13の右端に示すエレメント生成の流れに代えて、または加えて、図 30に 示す流れでエレメント生成を行っても良い。
[0083] 上述した実施態様は、ジェネレータ、エレメント等、フラクタルを構成する要素を線 分として表すこととしていた力 S、この発明では、線幅を太くし、かつ線分中間に対応す る点で太さが変化する要素を加えるために、図 31に示すように、例えば枝構造を構 成する線分を長方形の領域として定義し、その長方形領域の外郭をなす線分の然る べき点に制御点を設けても良い。制御点は、波打ち折れ曲り形状の変化点、 1/fゆ らぎ付与による長さ、および/または幅の変化点として機能させ、多様性、自然感を 与えるようにする。これによつて線分幅の多様性、自然感に変化の幅を大きく取ること 力できる。高さ方向変化は、幅に応じた円弧形状とすることを基本とし、これに制御点 を置レ、て形状変化を導入する。
[0084] 図 31に示すように線分を定義した場合には、接続部で線分の太さの急激な変化を 生じる。このため、滑らかな接続をするための方策を講じる必要がある。一つの方策と しては、図 32に示すように、隣り合う太さの異なる長方形の接続部をまたいで、隣接 する制御点を端部とする台形で表す線分を考慮し、少なくとも、端部と、もともとの接 続部に当たる長手方向中間部に制御点を想定し、これに上記と同様、波打ち折れ曲 り形状の変化点、 1/fゆらぎ付与による長さ、および/または幅の変化点としての機 能を与えることにより、多様性、 自然感を持たせることができる (接続部変形線分によ る平滑化法)。
[0085] 接続部を構成するいま一つの方策として、当初の線分を、図 33に示すように、太さ を変更する右方向に端部の制御点区間を単位としてずらして行う。端部では滑らか に接続するために、端部で接続する側の幅に制御点を動かしておき、ここに上記と同 様にしてゆらぎを導入し、多様性と変化を与える。その後に、上記のずらしを行う。そ れにより、この例では、右側の幅を狭くした線分の左端につなげることが可能となる。 以降は、図 31 , 32に示す方法と同様に展開することができる (線分移動による接続部 平滑化法)。
[0086] 図 31、図 32、図 33は線分を直線としている力 これらの線分にゆらぎを与えれば 折れ曲りを生じさせることができる。
[0087] 図 34は、上述したシボデザインの創成をコンピュータとの対話型で行い得るように したプログラムのフローチャートである。このプログラムの特徴は以下の点にある。
A.対話型
マウス、パネル記述によるジェネレータ構築を対話型とし、その後に申請済みの内 容に基づくエレメント構築、シボ創成を行うこと。
B.多様なシボ構成
上記 A.に始まる操作により、多様なシボを画面上で創成可能としていること。
[0088] 本システムでは、シボ形状に最も影響する「ジェネレータ形状の定義」、「その置き 換え回数」、「格子点の配列規則」、「格子点へのシボエレメント配列規則」、「ゆらぎ 関数のパラメーター」、「連続模様の際のずれ対策パラメーター」等をコンピュータ上 で対話型で変更する事により、各パラメーターの変更に伴って生成されるシボ形状を リアルタイムで表示し、形状をデザイナー、クリエイタ一等が確認しながら繰返しがで き、発展的なデザインを創成できることを特徴としている。
[0089] 「ジェネレータ形状の定義」、「その置き換え回数」、「格子点の配列規則」、「格子点 へのシボエレメント配列規則」、「ゆらぎ関数のパラメーター」、「連続模様の際のずれ 対策パラメーター」は、デザイナー、クリエイタ一の意志により自由に設定する事がで き、コンピューターシステム上で対話形式のデザイン構築をする事ができる。
[0090] ジェネレータ形状の設定を単一構成又は複数構成とすることができ、シボ形状の連 続化処理を実施することにより人の眼で見る規則的な印象(不自然さ)を防止し、より 自然なデザインの構築ができる。
[0091] ·シボ形状の生成において自然界に存在する"フラクタル"、 "1/fゆらぎ"を複合的に 用いることでシボ形状を多様に獲得し、又その形状の印象を制御することを可能とし たことを特徴とし、幾何学的なデザインからナチュラルなデザインまでを構築すること ができる。
[0092] [システムの概要]
(シボデザインの基本方法)
•幾何学的フラクタルの生成法に基づ!/、てシボエレメントを生成。
•シボエレメントの組合せによってシボ形状を構築。
•シボエレメントの組合せ配置位置に対して" 1/fゆらぎ'を与え自然な印象を付与。 •"1/fゆらぎ"の程度を数値指定することにより印象を定量的に制御することが可能
[0093] 以下、図 34に基づき説明する。但し、図中の丸付き数字は明細書では文字入力の 制約上から括弧書き数字とする。
[シボ形状の生成方法]
(1)描画サイズの設定
X、 Y方向のサイズ入力→エレメント設定領域を Texture Sizeパネルを用いて決定す
(2)幾何学的フラクタルの形成
2 - 1.ジェネレータ (線分で構成される幾何学形状)を自由に定義し、構成する各線分 をジェネレータ自身の形状で置き換え、図 6のような幾何学的フラクタルを形成する。
2- 2.ジェネレータ自身で置き換える回数 Nをシボ形状の「複雑さ」を制御するパラメ 一ターとして用いる。 (N= lで相似、 N数増加に伴い形状は複雑さを増す。 )
[0094] (3)シボ形状の生成(フラクタル図形シボエレメントの導入)
3 - 1.ジェネレータの形状、置き換え回数を画面上で自由に変化させる事ができる事 によりデザイナー 'クリエイタ一が画面上でリアルタイムに最終の図形の形状を判断す る事ができる。
3 - 2.枝構造の線分と線分を繋ぐ折れ点をマウスドラッグにより自由に移動させる事で 、リアルタイムでその枝構造の下に基本エレメント図形が得られる。
(4)シボエレメントの配列規則
4- 1.人工皮革の模様に認められる「方向性」を生成するためにシボエレメントを Latti ceパネル Lattice MODEを用いて格子点を図 14の例(Line, Brick, Diamond)に Box, Line-Phase, Zigzagの 3種を加えた 6種の形状より選択して連続的 ·断続的に配置し、 シボの基本形状とする(同一のシボエレメントをまず等間隔配置で形成させる)。また 、エレメントの配置数を Latticeパネノレ volume-X/Yで決定し、格子点の個数を X、 Y方 向で設定する。
4 - 2.位置については Fix Modeパネルを適宜チェックする事で、格子点をデザイナー 、クリエイタ一の自由意志でマウスドラッグを用いて任意に変更する事が可能である。
4 - 3.画面上に複数のジェネレータを定義創成し導入する事により、格子点相互間の エレメントの描写に変化をつける事ができる。
[0095] (5)エレメント配置方向
5 - 1. Elementパネルで決定
Same Vector :フラクタル図形をそのままの方向で配置。
Alternate Vector :エレメントを連続的に配置する方向に対して、配置向きが交互に 逆転して配置する。
Random Vector :コンピュータがランダムな確率で自動的にエレメントの向きを決定。
5 - 2. Fix MODEパネルを適宜チェックする事で、マウスクリックによりエレメントの向き を任意に変更する事が可能。「格子点の配置の規則」、「格子点間へのシボエレメント をはめ込む規貝 IJ」をマウスポインターによって自由に設定が可能(格子点の自由移動 )とすることで、デザイナーの意志により対話的に多様な基本形状の生成を可能とし ている。
(6)描画領域内にシボを DRAW Siboボタンで表示
DRAW Siboボタンを押して描画領域((1)のエレメント設定領域)内にシボを表示させ る。この時デザイナー、クリエイタ一の判断で各種パラメーターを変更する事で、リア ルタイムで描画領域内のシボが反映される為、デザイナー、クリエイタ一等複数人で 画面上を確認しながら自由に反映する事が可能である。
[0096] (7)l/fゆらぎ付与
•(6)で形成された規則的な印象シボ基本形状に対して、描画領域内の全ての線分に 対して" 1/fゆらぎ"の性質を自動的に付与して自然な印象を形成させる。 'パラメーターの付与:「NOISE Check」にチェック。→描画領域(エレメント設定領域) に表示された可視化された格子状のマス目を参考に「X方向(X Way)、 Y方向(Y Wa y)、線分の幅方向" Width (Line) "」でパラメーターを決定する。
•" 1/fゆらぎ"のパラメータ一は、シボエレメントの構成線分の両端点の X、 y座標位 置 (線分両端点の x、 y座標位置の移動)、線分の幅(幅の変化量)、線分の深さ→深 さの変化量とし、次式(16)、 (17)で決定する。
[0097] [数 17]
z ( , y ) = " Sin ( " ' / ( , )) + Sin (n ''1 f ( y , x , i )) (〗6) ft
[0098] [数 18] f(x, y,i) = Sin(X + aSin(^) + (i - ϊ)γ) · - (π)
[0099] ノ ラメーター εの値を 1前後で任意に変化させることによってシボ形状の印象の制 御を可能としている(パラメーター ε = 1の時ゆらぎの程度が" 1 /f"で、 ε〉1の時単 調な印象のシボ形状となり 1〉 ε〉0とすることで刺激の強い印象を発するシボ形状 となる。 )
•シボエレメントの構成線分の両端点の x、y座標位置→「FIELD Noise On」をチェック する。
'線分の幅→「Field Noise On」と「MODE Line to BoxJにチェックした上で「FIELD Wi dth Noise OnJにチェックを入れる。
[0100] (8)多様な連続シボ形状の創成
シボ形状を広!/、面積に対して生成する場合、(6)または (7)で形成されたシボ形状を 連続的に配置して全体のシボ形状を構築する手法を採用した。
8 - 1.基本形状構築における連続化処理
•格子点の概念を導入したことを利用し、同一規則で格子点が続く基本形状の面積 外部の左右上下に新たに連続させるためのシボエレメントを配置できるようにし、生 成された形状を連続模様における単位形状とする。これによつて同一模様の繰り返し 、規則的といった印象を認識させ難くするものであり、より自然なシボ形状、実用に供 し得る対象が選択できる。
操作方法:
•シボ形状を上下左右の連続的、広範囲に接続→Render Textureパネル中の" Seaml ess,にチェックを入れる。
•左右の接続における接続位置を縦方向の格子点の個数だけ平行移動→Slipへの 数値入力を行う。
8 - 2.ゆらぎ付与における連続化処理
•それぞれの単位形状に" 1/fゆらぎ"を単純に与えた場合に生じる接続部不連続性 を防止するために、接続される単位形状の境界間において式(16)により決定される 変化量が等しい値となるようにするために、式(16)が X方向、 y方向に関してそれぞれ 単位形状の横幅、縦幅を周期とするような周期関数となる条件を与えた。
8 - 3.高度な連続化処理
•横方向に向かう同一模様の繰返し形状に対する人の眼で見る規則的な印象 (不自 然さ)を防止するために、単位形状の頂点位置が縦もしくは横でも一致しない、単位 形状をいくらか平行移動して接続する連続模様化も可能とした。
•この処理を行う事により、自由な格子点配列、複数のジェネレータを用いても不自然 さを生じない。
本発明ではさらに、以下の如くして創生したシボ柄の評価を行う。
1.柄模様の意匠性選択
コンピュータ内のシボ創成法によれば、変数要素に対する確率的特性の付与もあ つて、無限と言ってもよい柄模様の作成が可能となっている。確率的特性は、自然界 の現象分析の結果に見られる、 1 /妙らぎを導入しており、創成の結果にその特性が 含まれていることも示すことができている。しかし、これらの柄模様が実用に供しえる か否かについては、現在の取扱では、印刷、或いは、製品のデザイナーの柄開発に おける経験と感覚への依存が想定されている。
一方、これまでのシボの利用では、基本的に自然界の柄模様がそのまま利用され ている実情がある。この際、特定の柄模様が選択は、デザイナーや、関係者によって 「美」と受止められたことが基本である。し力、し、「美」が如何に評価された結果である かにつ!/、ては、論理的な理由は明確でな!/、ままである。
[0102] 2. 2次元フーリエ変換の適用
以下では、上記の評価手法として、 2次元フーリエ変換による手法を提示する。上 述の 1 /妙らぎ特性は、例えば、代替建築材料として用いられる木目柄に対し、木目 が流れる方向に直交する方向に木目の濃淡をデータ取得し、一連のデータをフーリ ェ変換、パワースペクトルを求めた結果がその特性を有していることに基づいていた 。創成されたシボが 1 /妙らぎ特性を有することについても同様な評価によっていた。 これまでの自然界の特徴に関する評価法、或いは創成された結果の特性確認につ いては、上述のように特徴を見出せる一方向線上における評価によっていた。これは 、一方向上でフーリエ変換してパワースペクトルを取得する、現下の計算機環境では 、比較的容易に、木目、シボ他の不規則性を含む柄模様の特徴が把握できる手法の 結果で十分としていたことによる。しかし、シボにしても、木目にしても、特徴柄は平面 状に展開しており、柄模様の特性を平面として評価することが、多分に感覚的な「美」 を「美」として選択する意匠デザイン性に関わる評価に、一般性を持たせる手法の導 入を可能とする。
[0103] 3.柄模様と対比した 2次元フーリエ変換の適用例
図 35はシボ、木目ではないが、これに類する 2次元的に展開された表面模様の例 であり、これを対象に 2次元フーリエ解析法を示し、これによる上記評価法の理解を 進める。図 35の表面は凹凸を有しており、立体的な形状ともなつている。この形状に ついて等高線を描けば、図 36の表示が可能となる。図 35では表面の形状を現す高 さが 2次元位置に対する関数値として表現される。しかし、シボ、木目等の柄模様で は、高さ、形状に代わって、濃淡による表示を用いることが可能である。
図 37は図 36で読取れる特徴線を抽象化して示している。この特徴線は周期性を 持っており、 1 /妙らぎに象徴される不規則性を備えているシボ、木目の表面模様とは 異なっている力 評価に 2次元フーリエ解析手法を用いるための例示とする。
1/fゆらぎの分析にも見るように、フーリエ解析自体は、特に一次元の特性把握に は一般的であり、多方面に利用されている。しかし、これを 2次元に展開、対象の特 性把握に利用することは全くと言えるほど例を見ない。一つには、 2次元に展開する と言いながら、図 38の特徴線に見るように、多くの場合にそれぞれの軸方向に対す る 1次元の特性を見れば、その特徴が把握できてしまう場合が少なくないため力、とも 思われ o〇
[0104] 4. 2次元フーリエ変換の関係式記述
しかし、シボの柄模様をはじめとして、柄模様が計算機内で創成されるようになった 場合、これが実用に採択される際の特性とこれまでに用いられてきている特性との相 違、実用に供されている対象の共通の特性、創成された柄模様の持つべき特性等を 評価する指標としてフーリエ係数スペクトル、フーリエ (パワー)スペクトルの利用が可 能である。 2変数 X, yの関数 ί(χ, y)のフーリエ変換 F(u, v)は
[0105] [数 19]
Figure imgf000033_0001
ex t—j2K( x- vy)'] (h dy ( 1 )
また、この逆変換は
[0106] [数 20]
Figure imgf000033_0002
と示される。ここで、 jは複素単位である。 F(u, v)の実部、虚部を R(u, v)、 I(u, v)とする と、エネルギー (パワー)スぺクトノレ P(u, V)とフーリエスぺクトノレ Q(u, V)はそれぞれ
[0107] [数 21]
P( t v) ^R2{u, v) + P( t v) * "…( 3 )
Q{ ztf v) -VP{ui v) ■ ( 4 ) と表される。 [0108] 上記式 (1)が実行された後のフーリエ係数は、二つの変数 u, Vに対し、実部、虚部 を持った図 38に示す領域で表される。ここで Nは一変数に対するデータの個数であり 、かつデータを取得した区間内の波数を意味している。図 37に示す特徴線を対象と すれば、含まれる波数の成分が分析、表示される。
[0109] 5.関係式適用の実例
上記式 (3)によりパワースペクトルを用いると、複素単位の扱いではなくなるため、成 分存在の位相関係は見えなくなる。しかし、これを見える形の表現で极うと、波数の 成分としては同じであっても、形状としては全く異なって記述されることが示される。す なわち、図 38で Aから Eに成分が存在しているとすると、図 40に示すようにパワースぺ タトルでは、 Aを除く Bから Eまでの成分は同じ表現の中に示されてしまう。し力、し、図 4 の表記から逆変換をすると、図 39に示すように全く異なった形状が求められることと なる。換言すれば、図 39に示す形状に対して、パワースペクトルでは、図 40と評価さ れてしまい、それはそれで一つの指標である力 図 38とすれば、図 39の特徴が保存 されて示される。
2次元解析をシボ、木目等に適用した時、図 38他に示す解析により明らかにされる 内容については、解明できていない点が少なくない。それだけに手法としての適用に は可能性を秘めている。
[0110] 図 41は図 35の表面模様に対して求められたフーリエ係数スペクトルであり、図 42 はこれをもとに求めたフーリエパワースペクトルである。図 41は図 38に対応して、位 相特性を含んだ表示とできている。しかし、図 42は図 40に対応し、周波数成分の所 在のみを示す特性となって!/、る。
既に実用に供されているシボに対して本方法を適用してその特性を把握する一方
、計算機内で創成されたシボに適用、実用に供しえるシボ柄模様について、デザィ ン意匠性の「美」の一端を把握し選択の一手段とする。
[0111] 図 43には、 2次元フーリエ変換を用いた実用柄の特徴抽出とこれを創成柄の同様 解析結果を対比し、後者の評価、選択に利用する過程のフロー図を示した。図 44は
、 2次元フーリエ解析によって得られる実用シボ、柄特徴抽出と変数調整による創成 シボ、柄の採否判断過程をフロー図としている。 [0112] 本発明の以下の例では、木目、幾何的柄模様、ヘアライン、皮シボ、布目、石目、 梨地、その他等についての実用標本柄模様を対象に解析を行った。これらの柄模様 は色彩を含めた標本となっている。しかし、現段階では色彩については評価せず、 柄模様を単色の階調で表し、解析している。色彩を加味し、柄模様との組合せで評 価する手法は今後の課題である。
また、柄模様上にはエンボス模様が加えられ、柄模様と協調してデザイン性を高め ているが、これを考慮した評価も今回は行っていない。すなわち、色彩、エンボスと柄 模様相互の関係を考慮せず、柄模様にっレ、てのみ解析した結果として!/、る。
以下の解析では、フーリエ係数スペクトルの代りにパワースペクトラムピクチャー(P SP)を用いて!/、る。これは 2次元の周波数パラメーターにパワースペクトルを輝度(強 度)として分布させて、三次元情報を一枚の画像で示したものであり、評価には用い 易いが逆変換はできな!/、と!/、う不都合もある。
解析を進めた結果では、実用標本採用の過程で、採択されな力、つた柄については 不明で解析がなぐその間の比較がない。その点で、実用標本柄として求められた 2 次元フーリエ係数スペクトルの特徴が的確に把握できてレ、るとは言レ、難レ、。しかし、 少なくとも実用標本柄が持つ特性のあり様を示すことを可能としており、その視点から の特徴の記述を可能として!/、る。
[0113] [情報エントロピーによる評価]
美的表現の評価には、フーリエ解析の他、情報エントロピーが用いられるとする主 張がある。情報エントロピー Hは
H = -^ Pi \ogPi · ' · (22)
と情報出現確率 piを用いて表される。ここで piはそれぞれの色の出現確率である。 ここで Nは画像の縦、横のピクセル数を L, Wとして、 N = L X Wと求められる。
以下では、画像情報をグレースケールに変換、 0〜255段階として、各色の出現確 率を求めた場合と、 0〜255を 10段階に分け、出現確率を求めた場合とについて、前 者を細分割、後者を粗分割として表 3に結果を求めている。 何れの場合によっても、求められた結果の相対的な関係は同じ傾向で示されて!/、 る。数値としては、色の変化が激しぐ多彩な色が現れる場合に大きくなつている。シ ボを例にその傾向を読取ると、柄模様が細かくなり、雲の面積が大きぐ輝度が強い 場合ほど大きレ、値となって!/、ると見られる。
図 48は、フーリエ解析の結果に基づき主成分分析の結果により、また、シボ、柄模 様から、或いは、フーリエ係数スペクトルからエントロピーを算出することにより、実空 間における柄模様特性の記述が可能なことを示すフロー図である。現状、実用に供 されている柄模様についての検証が十分でなぐまた、分析の結果としての特性で、 この特性から実用の可否が判断できる綜合する使!/、方は示せて!/、な!/、。これらは今 後の課題である。当面は分析段階の手法ではあるが、綜合段階への発展を視野に、 感性に関わる指標の手法として提示を行った。
上記のように、柄模様についてある種の特性を見ることはできるとして、現状では、 この数値によってシボ、柄模様の良否が判断できる特性を見ることは難しい。し力、し、 実用に供されて!/、る各種意匠柄につ!/、ての定量化、主成分分析との関連性等につ いて詳細を分析、評価の可能性を探索することが求められる。
2.特徴記述
図 45〜図 47は、実用を前提とした柄模様標本に対する PSPである。実用性を前提 とした対象の解析結果であり、実用性との関係が濃密な結果と見ることが可能である
2.1木目
(a)〜(h)は木目が縦方向に走るものであり、 (j)は横方向とした事例である。 (0は根の 部分で節模様が多様に出てレ、るものであり、これ以外の!/、わゆる木目とされて!/、る場 合とは異なった柄模様の例である。
(a)〜(h)は横軸に沿った輝線を軸に、輝線自体の広がり方、輝線周辺の雲の広がり 方にそれぞれ特徴を有したスペクトルとなっている。色彩、エンボスについては考慮 していないため、実用性の採否への影響は不明のままであるが、少なくとも実用性を 考慮した木目柄の特徴は示されて!/、ると言える。
現状、全ての特徴を網羅して木目柄を見ることはできていない。しかし、今回解析で きたものから特徴概要を記述すると、
(1)横軸沿いの単調な輝線で表される場合 (d),(f),(g)
(2)横軸沿いの輝線を基本とし、高周波成分で広がりを示してぃる場合( ズ(:),(6),01) )
(3)濃淡、広がり方の別はあるが、原点を中心として、雲が広がっている場合 (b),(c),(e) ズ g)ズ j)
(4)雲の広がりに斜め模様が入る独特のスペクトルを示す場合 (i)
とでさる。
木目の場合、主分力方向はまず、木目の流れの直角方向が第 1である。 (0の場合 は流れを示す特徴がないため、対象とした柄模様によって変化すると考えられる。対 象とした場合は、垂直軸方向が第 1の結果となっており、これは雲の広がり方に対応 している。
エントロピ一は木目が明瞭でない場合に小さぐ大きくなつているのは、画像としてく つきりし、軸沿いの輝線が強ぐ広がり、雲も広がっている (c),(j)、木目の粗い (g)、節が 強調され、雲が広がっている (i)が挙げられる。
上記記述の中で、(i),(h),(i)等では、原画像が見え難い状態となっていた。そのため 、 2次元フーリエ変換したフーリエ係数スペクトルとの関係は置くこととして、画像を加 ェして柄模様を見やすくした結果を別に示した。加工した画像データを用いたスぺク トル図も求めたが、中に、スペクトル図として見難くなつているものも生じているため、 以下では、スペクトル図は当初に求めた結果について注目し、当初の図で原画像が 見えていな力、つたものを確認する手段として考慮した。
上記の結果、 (i)では根の節が持つ特徴から柄模様が構成されている状態がよく示 されており、スペクトルの形態との関連もより理解しやすいこととできている。
2.2幾何的柄模様
柄模様としては、(k),(l)は、周期成分が重畳している効果が示されたスペクトル特 性となっている。(k)では縞模様に応じて縦軸が輝線となる一方、周期性に応じた箇 所で輝点で特性が示されてレ、る。雲状であるが横軸沿いに特性が出て!/、るのは、原 画像で縦縞は見えなレ、ものの、不規則ではあるがある種の縞模様の存在が示されて いると見ること力 Sでさる。
(1)では、縦軸沿いの輝線と周期性を示す箇所の輝点により特徴が示されることに 加え、周期的成分の存在は、縦軸当該周波数成分に 2本の輝線として特徴が示され ている。
(m)に対しては、スペクトルの特徴を見るに、垂直軸上第 2周波数の輝点が垂直軸上 に見えている点を含め 3点が見えているのに対し、水平軸方向第 2周波数の水平軸 上には輝点がなぐ 2点となっている。原画像は水平方向、垂直方向に同様の点配 列になっており、後者も 3点が見えて然るべき関係と思われるのに、上記の特性であ る。原画像の点列を見るに、光が上方から当たって下半に陰影がついている水平軸 には非対称の画像であるのに対し、左右方向には陰影がなく対象の画像となってい ること力 この結果を生じていると考えられる。
(n)に対するスペクトル特性は座標軸に沿!/、広がりを持った直交輝線となって!/、る。 原画像は四角形状が規則的に並ぶ柄模様である。しかし、これらは水平、垂直軸方 向には連続性がなぐ結果として座標軸に沿ってはいるが広がりを示す輝線として表 されていると理解される。
主分力分析は、 (k),(l),(m)に対してはスペクトルの特徴と合致する結果が求められ ている。 (n)の場合は、スペクトルの形態からは軸を回転しない角度としてよい結果と も見える。しかし、第 1の方向に対して 26度の回転が求められている。これは軸方向 に沿った輝線からは方向が決まらず、中心近傍の雲の広がりの僅かの偏りからこの 結果が求められているかと推定される。
エントロピ一は (k)に対する値が最も大きぐ他は同じ程度の値となっている。如何 に理解するかについては課題を残しながらである力 S、一つの見方は、縞が細力べなつ ていること、濃度が濃い柄であることによる結果と見られる。
2.3ヘアライン
(ο),(ρ)ともライン方向は縦方向であり、これは水平軸に沿う輝線として表されている 。ライン並び方の不規則性が軸に沿う輝線と広がりとして示され、横軸方向、縦軸方 向の基面の不規則性が原点近傍の雲の広がりとして示されている。
主分力分析は、流れの方向による輝線に依存して第 1の方向が決まり、これが基の 軸と一致してレ、るとの結果が示されて!/、る。
エントロピ一は他の柄模様と比較して特徴とできる点が少なぐ小さい値として示さ れていると見られる。
2.4皮シボ
(r)は、流れ方向に特徴的な雲を分割する暗部はくつきりとし、雲の広がりは明確な 扇状となっている。また、(q)のスペクトル形状は、雲の中心部が暗ぐ広がりが円形 に見える特徴を示している。
主分力分析は、 (q)に対しては方向性が明確でないが故にもとの軸と同じ軸方向と 見られ、(r)に対しては、雲の広がり方から、第 1の軸が 90度回転しているのが理解で きる結果である。
エントロピーの値は前者に対して小さぐ後者は木目の場合の大きい値と同程度と 示されて!/、る。雲の広がりによってこの違!/、が示されて!/、る。
なお、画像の詳細を見やすくするために、原画像を加工した結果では、 (q)の場合 、スペクトルの特徴が消えてしまっている。データ採取の手法の問題は残るとして、当 初に示したスペクトルの形状を対比の対象とし、当面の結果としておく。
[0117] 2.5布目
布目 (s)の場合には、横軸に輝線がでる特徴は同じとして、先の場合では、縦軸に 平行な基本周波数の輝線、雲の広がりが縦軸、横軸の基本周波数ないの四角に囲 まれた部分で顕著というのが特徴的である。これに対し、今回の場合には、縦軸の特 徴的な周波数に対して、横軸方向に周波数成分の存在を示す輝線が顕著に示され ている。布目の詳細な模様によってスペクトル特性が変るとして、柄模様では必ずし も目立って!/、な!/、性質がスペクトルでは見やす!/、形で示されて!/、る。
主分力分析では、スペクトルの形態から予測できる結果となっている。一方、ェント 口ピーは全体の中でも最も大きい領域に入る値を示している。スペクトルの形態から すると、布目の特徴である、縦横方向に縞模様が入っていることとの関係でこの結果 となっていると推量できる。
[0118] 2.6石目
図 9では (a)がコンクリート面として特性が求められている。しかし、原画像で見る柄 模様は全く異なって!/、る。スペクトルが雲の広がりで示されて!/、ること力 S特徴である。 今回の対象では、原画像の柄模様は垂直方向に流れがあると見え、これは縦軸方 向にやや左に傾いて雲の切れ目が生じている広がりである。一方、広がり方として、 左下隅、右上隅がやや丸みを帯びた形を示している。
広がり方は石目に限らず、柄模様の特徴により多様と考えられる。しかし、シボ、梨 地等と共に石目の場合も雲の広がり方として特性が表示されると見られ、実用対象の 柄について、今後もデータを蓄積することが評価の位置付けをより明確にすると考え られる。
主分力分析は、雲の広がりから推認できる軸方向となっている。エントロピーはやは り大きい領域に入る数値である。対象として細かい変化の特徴がある一方、石目とし ての大きな変化を示してレ、ることがこの結果につながって!/、ると見られる。
[0119] 2.7梨地
(u),(v)に示す梨地では、スペクトルは雲の広がりとして示されている。今回の例では 原画像が見難くなつているため、これも今後に測定事例を蓄積する必要はある。しか し、今回の柄では、前者は寄り細かく濃淡画像としては表現し難ぐ一方、後者は大 柄の模様の事例となっている。後者では、これまでの事例の中では雲の広がりが対 象領域内で最も広く一様となっている。
主分力分析の結果は関係式に基づいて求められた結果であり、角度の方向は目 視によっては明確とは言えない。雲の光り方は (u)で希薄である力 分散値としては、 輝点の濃度としては濃く見える (V)とほぼ同程度となっており、数値を理解するのに視 点を与えている。
エントロピ一は (u)で小さぐ(V)で大きい値を示している。原画像を参照する時、前 者では、細かく明度が高いことによっており、後者はスペクトルで雲の輝点が強ぐ大 きく広がって!/、ること力 それぞれの結果につながって!/、ると考えられる。
なお (V)の原画像が当初のものでは見難くなつており、濃淡を加工して見やすくした 画像ではより明瞭に見ることができる。
[0120] 2.8その他
対象とした 2例の中で、 (w)は抽象装飾模様を一面に配置した柄模様、(X)は原画 像に見るように、糸くずか和紙微細塊様のそれぞれ自体が細長に、しかし、長さ、太 さに不規則な形態をもつ装飾体を面全体に一様に、し力も不規則に蒔いて柄模様と している。
スペクトルは何れも円形状に広がる形態となっており、広がりを持った輝度の高い 中心部を示して!/、る。後者は放射状に輝線が広がって!/、るのが他に見な!/、特徴とな つている。
(y)は (m)に類似する幾何学模様と分類できる柄模様で、スペクトルも対応して形態 と言える。この標本はやや分厚な透明樹脂の中に円柱状像が見えるもので、この円 柱状像が視角によって多様に変化し、衝立等に用いれば、装飾性を有しながら、衝 立越しの存在を遮蔽し、衝立の機能を果たせる特徴を示している。見え方に特徴が あるため標本としている。しかし、画像としては、その特性全体を把握はできず、スキ ャナ一の動作範囲内で、原画像に見る画像が取得され、そのスペクトルを求めている ものである。
(w)の原画像は、濃淡を加工して見やすくした画像を参照すると、装飾模様が明瞭 である。この画像に対するスペクトルでは、当初の変換で見えていなかった特徴も示 されている。雲の広がりが一様であるが、分析の結果では、第 1の軸に 21度の回転が 示されている。分散値としては、 (y)に対して、最も大きい領域の値が示されている。 エントロピ一は (w),(x)で中程度の値が示され、 (y)では最大の値を示す結果となつ ている。
情報ェントロピ- - (粗分割)
(a)木目 01 1.51
(b)木目 02 に 98
(c)木目 03 2.14
( 木目 04 1.84
(e)木目 05 1.9
(f)木目 06 0.0355
(g)木目 07 2.07
(h)木目 08 1.86
(i)木目 09 2.04
("木目 10 2.06
(k)幾何学 01 2.27
(1)幾何学 02 1.86
On)幾何学 03 1.81
(n)幾何学 04 1.88
(0)ヘアライ ン 01 1.2
(P)ヘアライ ン 02 1.13
(q)皮シボ 01 1.44
(Γ)皮シボ 02 2.02
(s)布目 01 2.26
U)石目 01 2.06
(U)梨地 01 1.3
(V)梨地 02 2
(w)その他 01 1.78
(X)その他 02 1.7
(y)その他 03 2.47
3.まとめ
実用標本柄を対象とした代表的な柄模様について、 2次元フーリエ変換、 PSP、変 換で示されたフーリエ係数スペクトルに対する主分力分析、柄模様の情報エントロピ 一算出を行った。その結果、実用可能な柄模様に対する十分条件としての諸特性を 明示するには至っていないものの、実用可能な柄模様が持つ必要条件である諸特 性の一端を明らかにし得た。これらの概要は以下のように示される。
(1)スペクトルは木目の流れに直交する水平軸方向に輝線を示し、木目の広がり方を 並び方、方向性等によって輝線の両側にそれぞれの特長による広がり方を示す。木 目柄のうちでも根の節を主題にしたような柄では、その特徴に応じた雲の広がりを示 す。
通常の木目であれば、主分力方向は木目の流れと直交する方向が第 1方向となる 簡潔な特性で示される。 主分力分散値は雲が大きく広がっている場合に大きぐ根の節を特徴としたような 通常の木目ではない柄模様で最も大きぐ次に木目が細力、くても、また粗くても、柄と して浮き立って見える場合がそれに続き、柄面として白に近い色調では、小さい値が 示されている。エントロピーの値もこれに準じて大小関係が示されている。
[0123] (2)輝線の強さ、雲の広がりと分散値、エントロピーについて (1)に示された関係は、他 の柄模様について示されたスペクトルとの関係でも同様に求められる。
主分力の方向は、輝線の方向、強さと共に、雲の広がり方に依存して決められ、多 くの場合、 目視によっても推量が可能である。しかし、解析によって始めて示される場 合もあり、原画像では見えない結果が分析によって初めて求められる。
(3)特徴的な柄模様に対してはスペクトル図を分類して推定することが可能である。し かし、シボ、梨地、抽象装飾模様等については柄模様からスペクトル図を推定するこ とは必ずしも容易ではなぐそれだけにスペクトル図が特徴的になっている場合が見 られる。
原理的には、スペクトル図からもとの柄模様に逆変換することが可能であり、その特 性に基づけば、スペクトル図で特徴的な形態を与え、これを逆変換して柄模様を創 成することも想定される。これは全く試みられたことがない手法であり、今後の課題で ある。
[0124] 建築材料に用いられる印刷柄を計算機内で創成する手法に関わり、創成された柄 の実用可能性はデザイン担当者の感性により判断されるのが従来の流れである。本 申請では、評価判断に技術的手法の導入を提示している。
技術的手法には 2次元フーリエ変換を用いることを例とし、平面に展開するシボ、そ の他の柄模様にこれを適用、周波数空間の特性として表せることを示している。さら にこれに主成分分析の手法を適用、固有値とこれに対応する軸が求められ、これら が実空間の柄模様について方向性の特徴と関連付けられることを提示している。さら に、情報エントロピーを求め、実空間柄模様の特徴について関連性の一端を推察し ている。
[0125] 上述のようにコンピュータ内にデータとして創成したシボ柄模様を印刷製品とするこ とは、全く新たな試みであり、これまでにない意匠柄模様の創成も期待される。近隣 諸国が生産技術に力を付けつるある中、知的資産の創出が求められている。実用技 術に経験のある組織体力 研究組織で創案された発明をもとに、相互に連携して実 用技術までに高める試みは、わが国を囲む社会情勢力、らも時宜に適している。
[0126] なお、上記実用標本柄は、各種会社より提供された実サンプルのものであることを 記しておくとともに、これらの実サンプルの提供会社に謝意を表する。
産業上の利用可能性
[0127] 本発明の実施形態について纏めると、以下の如くである。
(1)印刷工程における自然材、人工材をもととしたシボデータを創成論理に基づいた コンピュータ支援作成のシボで代替し、住宅建材製品とする。これにより、全く新たな シボの創成が可能となる一方、工程内納期短縮が可能となる。
(2)シボは、幾何学的フラクタルの 1種である枝構造を用いて創成する。コンピュータ 画面で対話的にジェネレータを作り出して、これをもとに枝部に置換えを繰り返して、 面に展開するもととなるエレメントを構成する。ジェネレータが最終柄模様として適切 性を具備していることの可否は、下記項目の操作をして最終柄模様を作成、操作者 であるデザイナーが顧客需要を考慮しつつ判断する。
(3)枝構造置換えの際に、当初のジェネレータで分岐を外す波型他のジェネレータ 相当構造を作成し、これによる置換えを行い、ジェネレータの基本構造として素線に 波形状が導入されたジェネレータの作成が可能になる。これによつて、シボ本来の複 雑性、 自然性を与えることが可能となる。
(4)上記実施例では枝構造を用いているが、本発明は多様な構造に展開の可能性 力 sある。
(5)エレメントをその間に埋込む格子点を設定する。格子点は長方形の配置を基本 とする力 煉瓦積型、菱形等に展開が可能である。長方形に配置した格子点にエレ メントを埋込んだ全体柄模様では、規則性が強いことが否めない。これに対して、格 子点に自然現象に観察される「l/fゆらぎ」性を持つ振れ幅を付与し、格子点のもと の位置力 移動させて新たな格子点を設定し、その間にエレメントを埋込み、全体シ ボ柄模様を創成する。
(6)「l/fゆらぎ」性を与える手法の提示している。 (7)当初の格子点へのゆらぎに加えて、さらに多様性、複雑性、自然感を付与するた め、第 2格子点を設定してこれに同様ゆらぎを付与し、第 1格子点との間で、断続す る箇所を生じさせて、全体柄模様を創成する。
(8)多様性、複雑性、自然感の一層の付与のため、ジェネレータの素線長さ、傾斜角 に同様の 1/fゆらぎを付与してエレメントとし、ゆらぎを付与した第 1 ,第 2格子点間 に埋込み、全体柄模様としての可能性を提示して!/、る。
(9)ジェネレータ、エレメントには、幹、枝の相当する素線に幅に応じた深さ情報を与 えて構成が可能であり、これは直ちにフィルム情報としての出力が可能である。これ によっては、従来プロセスと同様であっても、型作成の素材として用いることを可能と している。また、これを CAM情報に変換し、工作機械への入力として、型作成に用い ること力 Sできる。最近の工作機械技術の進歩により、高速化が著しぐこれによつて型 製作の納期の短縮が可能である。
(10)印刷物の表面に柄模様に合わせて立体感を持つようシボを加飾することが行 われている。その際に、印刷柄模様と同調して加飾のための型を作成する力 印刷 面は、自然材、人工材、今回の作成シボ等から得られる原データをもとにして製版さ れ、版が印刷機に掛けられて印刷される。その際、印刷では、インキの浸透、印刷時 の原紙に力、かる張力等によって、原データとは変形した形状となり、原データに基づ いた型製作では、印刷柄と同調した加飾が難しぐ型製作のシボ原データは、印刷 柄模様に合わせた変形を加える必要がある。原データがコンピュータ内で創成され ているため、この変形を加える際にも操作が容易にできる。
(11 )本発明に基づくシボ柄の印刷物は、住宅建材製品、 自動車用内装部品、家庭 電化製品および情報機器の外装に用い得る他、文房具等の雑貨にも用いることがで きる。

Claims

請求の範囲
[1] コンピュータにより創成されるもので、
幾何学的フラクタルにより発生した基本構造を繰り返すとともに、その繰り返しの中 に繰り返し態様を変更した基本構造を含むことを特徴とする、シボ柄印刷用のシボ柄
[2] 前記基本構造は、枝構造であり、
前記繰り返し態様の変更は、単一置き換えと逆単一置き換えとそれらを組み合わせ た二重置き換えとの少なくとも一つによるものであることを特徴とする、請求項 1記載 のシボ柄印刷用のシボ柄。
[3] 前記枝構造の行き止まり枝素線を除去して波打ち形状を創成したものであることを 特徴とする、請求項 1または 2記載のシボ柄印刷用のシボ柄。
[4] 前記基本構造を連結する格子点位置に 1/f揺らぎ性が与えられて!/、ることを特徴 とする、請求項 1から 3までの何れか記載のシボ柄印刷用のシボ柄。
[5] 前記基本構造の素線長さと素線傾斜角との少なくとも一つに 1/f揺らぎ性が与えら れていることを特徴とする、請求項 1から 4までの何れか記載のシボ柄印刷用のシボ 柄。
[6] 前記基本構造の重ね合わせ回数に基づく太さおよび深さを持つことを特徴とする、 請求項 1から 5までの何れか記載のシボ柄印刷用のシボ柄。
[7] コンピュータによりシボ柄を創成するに際し、
幾何学的フラクタルにより基本構造を発生させる基本構造発生工程と、 その発生させた基本構造を繰り返させるとともに、その繰り返しの中に繰り返し態様 を変更した基本構造を含ませる基本構造繰り返し工程と、
を具えることを特徴とするシボ柄印刷用のシボ柄の創成方法。
[8] 前記基本構造は、枝構造とし、
前記繰り返し態様の変更は、単一置き換えと逆単一置き換えとそれらを組み合わせ た二重置き換えとの少なくとも一つによることを特徴とする、請求項 7記載のシボ柄印 刷用のシボ柄の創成方法。
[9] 前記枝構造の行き止まり枝素線を除去して波打ち形状を創成することを特徴とする 、請求項 7または 8記載のシボ柄印刷用のシボ柄の創成方法。
[10] 前記基本構造を連結する格子点位置に 1/f揺らぎ性を与えることを特徴とする、請 求項 7から 9までの何れか記載のシボ柄印刷用のシボ柄の創成方法。
[11] 前記基本構造の素線長さと素線傾斜角との少なくとも一つに 1/f揺らぎ性を与える ことを特徴とする、請求項 7から 10までの何れか記載のシボ柄印刷用のシボ柄の創 成方法。
[12] 前記基本構造の重ね合わせ回数に基づき太さおよび深さを持たせることを特徴と する、請求項 7から 11までの何れか記載のシボ柄印刷用のシボ柄の創成方法。
[13] 前記基本構造発生工程で基本構造を複数種類発生させて提示し、それらの基本 構造から選択された基本構造を用いることを特徴とする、請求項 7から 12までの何れ か記載のシボ柄印刷用のシボ柄の創成方法。
[14] 前記基本構造繰り返し工程で繰返し態様を変更した基本構造を複数種類発生させ て提示し、それらの繰返し態様を変更した基本構造から選択された基本構造を用い ることを特徴とする、請求項 7から 13までの何れか記載のシボ柄印刷用のシボ柄の 創成方法。
[15] 前記創成方法で創生したシボ柄を 2次元フーリエ変換して求めたパワースぺクトラ ムピクチャーを提示し、そのパワースペクトラムピクチャーの評価結果に基づき、前記 創生したシボ柄を出力することを特徴とする、請求項 7から 14までの何れか記載のシ ボ柄印刷用のシボ柄の創成方法。
[16] 前記創成方法で創生したシボ柄から求めた情報エントロピーを提示し、その情報ェ ントロピーの評価結果に基づき、前記創生したシボ柄を出力することを特徴とする、 請求項 7から 15までの何れか記載のシボ柄印刷用のシボ柄の創成方法。
[17] コンピュータにシボ柄を創成させて出力させるものであって、
幾何学的フラクタルにより基本構造を発生させる基本構造発生ステップと、 その発生させた基本構造を繰り返させるとともに、その繰り返しの中に繰り返し態様 を変更した基本構造を含ませる基本構造繰り返しステップと、
を具えることを特徴とするシボ柄印刷用のシボ柄の創成プログラム。
[18] 前記基本構造発生ステップで発生させた複数種類の基本構造を提示するステップ と、
それらの基本構造から選択された基本構造を入力するステップと、
をさらに具えることを特徴とする、請求項 17記載のシボ柄印刷用のシボ柄の創成プロ グラム。
[19] 前記基本構造繰り返しステップで発生させた複数種類の、繰返し態様を変更した 基本構造を提示するステップと、
それらの繰返し態様を変更した基本構造から選択された基本構造を入力するステ をさらに具えることを特徴とする、請求項 17または 18記載のシボ柄印刷用のシボ柄 の創成プログラム。
[20] 前記創成方法で創生したシボ柄を 2次元フーリエ変換してパワースペクトラムピクチ ヤーを求めるスァップと、
前記求めたパワースペクトラムピクチャーを提示するステップと、
そのパワースペクトラムピクチャーの評価結果を入力するステップと、
をさらに具え、
その評価結果に基づき、前記創生したシボ柄を出力させることを特徴とする、請求 項 17から 19までの何れか記載のシボ柄印刷用のシボ柄の創成プログラム。
[21] 前記創成方法で創生したシボ柄から情報エントロピーを求めるステップと、
前記求めた情報エントロピーを提示するステップと、
その情報エントロピーの評価結果を入力するステップと、
をさらに具え、
その評価結果に基づき、前記創生したシボ柄を出力させることを特徴とする、請求 項 17から 20までの何れか記載のシボ柄印刷用のシボ柄の創成プログラム。
[22] 請求項 1から 6までの何れか記載のシボ柄を印刷したことを特徴とする住宅建材製
P
P o
[23] 請求項 1から 6までの何れか記載のシボ柄を外装に印刷したことを特徴とする自動 車用内装部品。
[24] 請求項 1から 6までの何れか記載のシボ柄を外装に印刷したことを特徴とする家庭 電化製品。
請求項 1から 6までの何れか記載のシボ柄を外装に印刷したことを特徴とする情報 機器。
PCT/JP2007/067076 2006-09-15 2007-08-31 Motif de grain d'une impression à motif de grain, procédé de création de motif de grain et programme, produit matériel de boîtier sur lequel le motif de grain est imprimé, composant interne d'automobile, appareil électroménager, et dispositif d'information WO2008032593A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008534292A JPWO2008032593A1 (ja) 2006-09-15 2007-08-31 シボ柄印刷用のシボ柄並びにそのシボ柄の創成方法および創成プログラム、並びにそのシボ柄を印刷した住宅建材製品、自動車用内装部品、家庭電化製品および情報機器
US12/441,496 US20090262376A1 (en) 2006-09-15 2007-08-31 Grain pattern for grain pattern printing, method and program for creating grain pattern, and housing building material product, automotive interior part, electric home appliance, and information equipment with grain pattern printed thereon
EP07806549A EP2077191A1 (en) 2006-09-15 2007-08-31 Grain pattern for grain pattern printing, its grain pattern creating method and program, housing material product on which grain pattern is printed, automobile interior component, home electric appliance, and information device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006251125 2006-09-15
JP2006-251125 2006-09-15

Publications (1)

Publication Number Publication Date
WO2008032593A1 true WO2008032593A1 (fr) 2008-03-20

Family

ID=39183654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067076 WO2008032593A1 (fr) 2006-09-15 2007-08-31 Motif de grain d'une impression à motif de grain, procédé de création de motif de grain et programme, produit matériel de boîtier sur lequel le motif de grain est imprimé, composant interne d'automobile, appareil électroménager, et dispositif d'information

Country Status (4)

Country Link
US (1) US20090262376A1 (ja)
EP (1) EP2077191A1 (ja)
JP (1) JPWO2008032593A1 (ja)
WO (1) WO2008032593A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061410A (ja) * 2008-09-03 2010-03-18 Chiyoda Gravure Corp 自然由来柄の定量的評価方法、並びにその印象制御による自然由来柄の創成方法および創成システム
JP7349546B1 (ja) 2022-03-25 2023-09-22 Solize株式会社 革シボを有する樹脂成形品の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2730429T (pt) * 2012-11-07 2018-03-12 Akzenta Paneele Profile Gmbh Método para fabricação de painel de parede ou de piso decorado
USD889140S1 (en) * 2018-10-05 2020-07-07 Kathleen Kirkwood Carpet pad
CN110489850A (zh) * 2019-08-13 2019-11-22 东莞市纮萦服饰有限公司 一种花型编译方法
GB2624382B (en) * 2022-11-14 2025-04-02 Edwards Cheshire Company Ltd A method of creating virtual texture

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241574A (ja) * 1988-08-02 1990-02-09 Toshimitsu Musha 人工木目の作成方法
JPH05294100A (ja) * 1992-04-20 1993-11-09 Dainippon Printing Co Ltd 化粧材
JPH0816794A (ja) * 1994-06-24 1996-01-19 Dainippon Printing Co Ltd 繰り返し模様をもった印刷物ならびにその作成方法および作成装置
JPH0816772A (ja) * 1994-06-24 1996-01-19 Dainippon Printing Co Ltd フラクタル格子を用いた画像情報変換方法
JPH0822538A (ja) * 1994-07-07 1996-01-23 Dainippon Printing Co Ltd 木目柄パターンをもった印刷物ならびに木目柄パターンの作成方法および作成装置
JPH08272851A (ja) * 1995-03-31 1996-10-18 Dainippon Printing Co Ltd 導管断面を有する木目柄パタ−ンの作成方法および作成装置
JPH09207423A (ja) * 1996-02-07 1997-08-12 Dainippon Printing Co Ltd 木目柄の印刷物ならびに木目柄画像データの生成方法および生成装置
JPH11268500A (ja) * 1998-03-19 1999-10-05 Dainippon Printing Co Ltd 万線状凹凸模様を有する化粧材
JP2003001998A (ja) * 2001-06-22 2003-01-08 Dainippon Printing Co Ltd エンボスパターンの作成方法、エンボスパターン作成装置、化粧シート作成方法及び化粧シート
JP2004209890A (ja) * 2003-01-07 2004-07-29 World Etching:Kk 微細凹凸模様付試作品及びその作製方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2775158B2 (ja) * 1988-08-02 1998-07-16 利光 武者 三次元壁紙
US6359695B1 (en) * 1992-02-26 2002-03-19 Canon Kabushiki Kaisha Repeated image forming apparatus with neighboring image boundary gradiation correction
JP2736598B2 (ja) * 1992-09-14 1998-04-02 大日本スクリーン製造株式会社 エンドレスパターン製版方法及び装置
JP3335618B2 (ja) * 1994-08-24 2002-10-21 日本電信電話株式会社 フラクタル模様生成方法及びその装置
JPH09114992A (ja) * 1995-10-17 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> フラクタル模様生成方法および装置
JP3892526B2 (ja) * 1997-04-02 2007-03-14 大日本印刷株式会社 マーブリング模様の作成方法および作成装置
JPH1125254A (ja) * 1997-06-27 1999-01-29 Misawa Homes Co Ltd 画像解析方法および画像編集方法
JPH11346580A (ja) * 1998-06-09 1999-12-21 Yuragi Kenkyusho:Kk 植樹方法
JP2000057356A (ja) * 1998-08-05 2000-02-25 Sony Corp 画像生成装置及び画像生成方法
US6789054B1 (en) * 1999-04-25 2004-09-07 Mahmoud A. Makhlouf Geometric display tools and methods for the visual specification, design automation, and control of adaptive real systems
AU2002243903A1 (en) * 2001-02-08 2002-08-19 Sciperio, Inc. Genetically configured antenna and/or frequency selection surface
US20030020767A1 (en) * 2001-07-24 2003-01-30 Saksa Thomas A. Grain forming ink jet printer for printing a grain on a workpiece and method of assembling the printer
CN1655944B (zh) * 2002-04-03 2011-12-14 麦森尼特公司 用于在物品上形成图像的方法和装置以及被印刷的物品
KR100442503B1 (ko) * 2002-05-18 2004-07-30 엘지.필립스 엘시디 주식회사 프랙탈 차원을 이용한 디스플레이 장치의 화질 분석 방법및 시스템
AU2003901237A0 (en) * 2003-03-14 2003-04-03 The Australian National University Fractal Image Data and Image Generator
TWI275041B (en) * 2003-12-10 2007-03-01 Univ Nat Chiao Tung System and method for constructing large-scaled drawings of similar objects
TWI260511B (en) * 2004-03-26 2006-08-21 Arcadyan Technology Corp Method and apparatus for displaying multimedia information
JP4464258B2 (ja) * 2004-11-22 2010-05-19 独立行政法人科学技術振興機構 模様作成処理装置
US7733961B2 (en) * 2005-04-15 2010-06-08 Mississippi State University Research And Technology Corporation Remote sensing imagery accuracy analysis method and apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241574A (ja) * 1988-08-02 1990-02-09 Toshimitsu Musha 人工木目の作成方法
JPH05294100A (ja) * 1992-04-20 1993-11-09 Dainippon Printing Co Ltd 化粧材
JPH0816794A (ja) * 1994-06-24 1996-01-19 Dainippon Printing Co Ltd 繰り返し模様をもった印刷物ならびにその作成方法および作成装置
JPH0816772A (ja) * 1994-06-24 1996-01-19 Dainippon Printing Co Ltd フラクタル格子を用いた画像情報変換方法
JPH0822538A (ja) * 1994-07-07 1996-01-23 Dainippon Printing Co Ltd 木目柄パターンをもった印刷物ならびに木目柄パターンの作成方法および作成装置
JPH08272851A (ja) * 1995-03-31 1996-10-18 Dainippon Printing Co Ltd 導管断面を有する木目柄パタ−ンの作成方法および作成装置
JPH09207423A (ja) * 1996-02-07 1997-08-12 Dainippon Printing Co Ltd 木目柄の印刷物ならびに木目柄画像データの生成方法および生成装置
JPH11268500A (ja) * 1998-03-19 1999-10-05 Dainippon Printing Co Ltd 万線状凹凸模様を有する化粧材
JP2003001998A (ja) * 2001-06-22 2003-01-08 Dainippon Printing Co Ltd エンボスパターンの作成方法、エンボスパターン作成装置、化粧シート作成方法及び化粧シート
JP2004209890A (ja) * 2003-01-07 2004-07-29 World Etching:Kk 微細凹凸模様付試作品及びその作製方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"CG of Penetration Pattern in China", JOURNAL OF INFORMATION PROCESSING SOCIETY OF JAPAN, vol. 2000-35, 2000, pages 25 - 28
"Color Printing" in "Production Evolution Theory", vol. 1, 2001, NIKKAN KOGYO SHINBUN, LTD, pages: 84 - 87
HIROSHI SERIZAWA: "Travels among Fractals", 1993, MORIKITA PUBLISHING CO., LTD.
JOURNAL OF APPLIED PHYSICS, vol. 58, no. 12, 1989, pages 1688 - 1695
T. VICSEK: "Fractal Growth Phenomenon", 1990, ASAKURA PUBLISHING CO., LTD
TOSHIMITSU MUSHA: "World of Fluctuation", 1987, KODANSHA
TOSHIMITSU MUSHA; KAZUO KITAHARA, PHYSICS OF 1/F FLUCTUATION

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061410A (ja) * 2008-09-03 2010-03-18 Chiyoda Gravure Corp 自然由来柄の定量的評価方法、並びにその印象制御による自然由来柄の創成方法および創成システム
JP7349546B1 (ja) 2022-03-25 2023-09-22 Solize株式会社 革シボを有する樹脂成形品の製造方法
JP2023143643A (ja) * 2022-03-25 2023-10-06 Solize株式会社 革シボを有する樹脂成形品の製造方法

Also Published As

Publication number Publication date
EP2077191A1 (en) 2009-07-08
JPWO2008032593A1 (ja) 2010-01-21
US20090262376A1 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
WO2008032593A1 (fr) Motif de grain d&#39;une impression à motif de grain, procédé de création de motif de grain et programme, produit matériel de boîtier sur lequel le motif de grain est imprimé, composant interne d&#39;automobile, appareil électroménager, et dispositif d&#39;information
Takayama et al. Lapped solid textures: filling a model with anisotropic textures
CN111563951B (zh) 贴图生成方法、装置、电子设备及存储介质
Chen et al. Synthesis of filigrees for digital fabrication
Anastacio et al. Modeling plant structures using concept sketches
CN107045551A (zh) 一种湘绣图像基因构建以及湘绣图像数字化处理方法
JP4402224B2 (ja) 立体模様を有するシートおよびその製造方法
Du et al. Semiregular solid texturing from 2d image exemplars
Wu et al. A novel haptic texture display based on image processing
Ji et al. ReliefNet: Fast bas-relief generation from 3D scenes
Sourin Functionally based virtual embossing
WO2004051519A1 (ja) 撚り糸画像のシミュレーション方法および装置
CN109308380B (zh) 基于非真实感的刺绣艺术风格模拟方法
WO2015102014A1 (en) Texturing of 3d-models using photographs and/or video for use in user-controlled interactions implementation
Kerber et al. Real-time generation of digital bas-reliefs
Tang et al. An improved algorithm for simulating wax-printing patterns
JP4229270B2 (ja) 2次元データを用いて印刷物をシミュレーションする方法及びその装置
JP3100691B2 (ja) 人工革調表皮材の製造方法
Seo et al. Color juxtaposition for pointillism based on an artistic color model and a statistical analysis
CN103198520A (zh) 基于控制点和控制线邻域变形的个性化人像产品设计方法
Shen et al. Completion-based texture design using deformation
JP4531155B2 (ja) 万線データの作成方法および装置
Wang et al. A review of digital relief generation techniques
Nie An algorithm for the rapid generation of bas-reliefs based on point clouds
JP4416058B2 (ja) エンボスシートの作成方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007806549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12441496

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008534292

Country of ref document: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载