+

WO2008032584A1 - Organic el display - Google Patents

Organic el display Download PDF

Info

Publication number
WO2008032584A1
WO2008032584A1 PCT/JP2007/066920 JP2007066920W WO2008032584A1 WO 2008032584 A1 WO2008032584 A1 WO 2008032584A1 JP 2007066920 W JP2007066920 W JP 2007066920W WO 2008032584 A1 WO2008032584 A1 WO 2008032584A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
metal
cathode
metal layer
Prior art date
Application number
PCT/JP2007/066920
Other languages
English (en)
French (fr)
Inventor
Shinji Ogino
Original Assignee
Fuji Electric Holdings Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Co., Ltd. filed Critical Fuji Electric Holdings Co., Ltd.
Publication of WO2008032584A1 publication Critical patent/WO2008032584A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80523Multilayers, e.g. opaque multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • the present invention relates to a configuration of an organic electroluminescence (hereinafter referred to as organic EL) display having high definition and excellent visibility and having a wide range of applicability such as display of a portable terminal or an industrial measuring instrument.
  • organic EL organic electroluminescence
  • An organic EL element is a self-luminous element that emits light from an organic EL layer by injecting holes and electrons from an anode and a cathode.
  • a display incorporating this element has a wider viewing angle and a faster response speed than liquid crystal displays, which are currently the mainstream of flat panel displays. Because of this advantage, development is progressing as a next-generation flat panel display for mobile phones and mobile PCs.
  • FIG. 2 shows a layer cross-sectional structure of a conventional bottom emission type organic EL element.
  • color conversion layers containing fluorescent materials that emit each color so as to absorb light in the light emitting region of the organic light emitting element and emit each light of RGB are patterned with high definition to form an RGB light emitting region.
  • a planarizing layer 3 and a gas barrier layer 4 are formed so as to cover the light emitting region, and an anode 5 made of a conductive transparent film, an organic EL layer 6 and a cathode 9 made of a metal electrode 21 such as aluminum are formed thereon. Laminate in this order.
  • RGB light is emitted, so that a full color light emitting display can be constructed.
  • a reverse bias voltage is applied between the anode line and the cathode line to cause a reverse current to flow through the leaked portion and to thermally burn out.
  • the electrode in the leaked part is pierced by the power to evaporate by heat and by melting and solidifying.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-200141, Claim 1, Claim 11, Paragraph 0019, etc. Disclosure of Invention
  • the functions required of the cathode in contact with the organic EL layer are as follows: (1) low electrical resistance and low power loss; (2) electrons to the organic EL layer; The injection barrier is small, (3) the destruction of the leak can be easily evaporated or melted and solidified easily, and (4) the process is easy, the adhesion to the substrate etc. is good and the dimensions can be secured. The mechanical strength can be ensured.
  • An object of the present invention is to provide an organic EL display that is excellent in leak repairability, has low electrical resistance, is excellent in reliability, and can be driven at a low voltage.
  • the organic EL display according to the present invention includes an anode, an organic EL layer including an organic light emitting layer, and a cathode in this order on a substrate, and a color conversion layer and a gas barrier layer between the substrate and the anode.
  • OLED An organic EL display including an element, wherein the cathode is reflective and has an electron injecting metal layer in contact with the organic EL layer, and is not in direct contact with the organic EL layer! /, A covering metal layer It is composed of power.
  • the organic EL display of the present invention has the cathode structure described above, thereby reducing the electrical resistance loss of the cathode, excellent in leak repairability, good adhesion to other materials, and low voltage driving. It becomes possible.
  • FIG. 1 is a schematic cross-sectional view of an element included in one embodiment of the organic EL display of the present invention.
  • FIG. 2 is a schematic cross-sectional view of elements included in a conventional organic EL display.
  • FIG. 3 is an explanatory diagram of a voltage drop of a scan line in the passive matrix method.
  • FIG. 1 shows an aspect (bottom emission type) of a cross-sectional structure of an organic EL element included in the organic EL display of the present invention.
  • the organic EL display of the present invention comprises an anode 5, an organic EL layer 6 including an organic light emitting layer 6, and a cathode 9 in this order on a substrate 1 described later, and a color between the substrate 1 and the anode 5.
  • An organic EL device having a conversion layer 2 and a gas barrier layer 4 is provided.
  • the cathode is reflective.
  • “reflectivity” means that the reflectance of visible light (400 nm to 700 nm) of a film formed on a glass substrate is 50% or more. A preferable range of light reflectance is 80% or more.
  • the resistivity is a value obtained by measurement by the four-terminal method, and the work function
  • the melting point and vapor pressure should be the values obtained from data books such as the chemical handbook (edited by the Chemical Society of Japan).
  • the cathode is composed of two or more metal layers.
  • the cathode is a laminate including an electron injecting metal layer in contact with the organic EL layer and a covering metal layer not in contact with the organic EL layer.
  • the electron injecting metal layer is formed of one kind of simple metal, simple alkali metal, simple alkaline earth metal, or an alloy thereof adjacent to the organic EL layer.
  • the coated metal layer may contain two or more kinds of single metals, or may contain an alloy containing two or more kinds of metal elements.
  • the metal contained in the electron injecting metal layer has a work function smaller than that of at least one metal contained in the covering metal layer not in direct contact with the organic EL layer.
  • the vapor pressure at 660 ° C and latm of at least one metal contained in the coated metal layer is preferably higher than that of the metal contained in the electron injecting metal layer! /.
  • the melting point of at least one metal contained in the coated metal layer is preferably lower than that of the metal contained in the electron injecting metal layer!
  • the electrical resistivity of at least one metal contained in the coated metal layer is preferably smaller than that of the metal contained in the electron injecting metal layer.
  • a method of laminating silver on an aluminum electrode can be adopted.
  • the layer structure of the metal layer including the electron injecting metal layer and the coating metal layer is, in order from the layer adjacent to the organic EL layer, Ca / Al, Mg / Two-layered composition of Al, In / Al, Ag / Al, Zn / Al, Al / Ag, etc., Zn / Al / Ag, Ca / Al / Ag, Mg / Al / Ag, In / Al / Ag A combination of three layers such as In the case of a three-layer structure, the leftmost metal is the metal that constitutes the electron injecting metal layer, and the remaining two layers on the right side are the coated metal layer.
  • the thickness of the electron injecting metal layer is preferably 10 nm or more in order to improve the work function. More preferably, it is 30 nm or more and lOOnm or less.
  • the electron injecting metal layer When calcium is used as the electron injecting metal layer, calcium is not suitable for extraction to the outside, so that it is formed only on the organic EL layer with a metal mask during vapor deposition. Similarly, when silver is used as the electron injecting metal layer, it is preferable that the metal barrier is formed only on the organic EL layer so that the gas barrier layer and the wiring of the glass substrate portion are in contact with aluminum. All of these materials have a lower melting point or higher vapor pressure than aluminum, so there is no problem in leak repairability (function (3))! /.
  • the thickness of the covering metal layer is preferably 30 nm or more. Moreover, in order to ensure the leak repair function, it is preferably 1 m or less. More preferably, it is lOOnm or more and 500nm or less.
  • Silver is laminated for the purpose of reducing electrical resistance, so the thickness should be 30nm or more! If it is too thick, there will be a problem with the leak repair function. More preferably, it is lOOnm or more and 500nm or less.
  • the thickness of aluminum is lOnm or more, adhesion to the substrate and gas barrier layer can be secured.
  • the thickness is 30 nm or more. Preferably, it is m or less.
  • a mask method, a cathode partition wall method, a laser ablation method, or the like can be employed as a method for forming the electron injecting metal layer and the covering metal layer.
  • the anode is a film made of a light-transmitting conductive material.
  • a light-transmitting conductive material For example, Indium-Tin oxide (ITO), Indium-Zinc oxide (IZO), or the like is used.
  • Power S can be.
  • ITO Indium-Tin oxide
  • IZO Indium-Zinc oxide
  • IZO is preferable because IZO does not require heating during film formation.
  • the anode can be formed, for example, by magnetron sputtering.
  • the preferred thickness of the anode is 50-;! OOOnm.
  • the organic EL display of the present invention does not exclude the case where the organic EL element is driven by an active matrix system, but has a particularly preferable configuration when driven by a passive matrix system.
  • anodes and cathodes are arranged in a grid pattern, one is assigned to the data line, the other is assigned to the scan line, and a bias voltage is applied from the transistor at the end of each line. This is a method of emitting sub-pixels.
  • n is the number of subpixels, r is the resistance, and I is the current flowing through the element
  • the organic EL display of the present invention in which the electrical resistance loss of the cathode is reduced can realize effective suppression of the voltage drop and reduction of the driving voltage particularly when it is driven by the passive matrix method.
  • the organic EL display of the present invention includes an organic EL layer sandwiched between the anode and the cathode.
  • the organic EL layer can be composed of a hole injection layer, a hole transport layer, an organic light emitting layer, an electron transport layer, and an electron injection layer.
  • the structure is not particularly limited as long as the structure includes at least an organic light emitting layer that emits light by recombination of holes and electrons generated by applying voltage to the anode and the cathode.
  • the organic EL layer has a structure as shown below, for example.
  • each layer in the organic EL layer is not particularly limited, and known materials can be used.
  • the material of the organic light emitting layer can be selected according to the desired color tone. For example, in order to obtain light emission from blue to blue-green, benzothiazonole, benzimidazole, benzoxazole, etc.
  • Optical brighteners, metal chelating oxoyuum compounds, styrylbenzene compounds, aromatic dimethylidin compounds, etc. Can be used.
  • Materials for the electron injection layer include: alkali metals such as Li, Na, K, or Cs; alkaline earth metals such as Ba and Sr; rare metals; or their fluorides and aluminum chelates (Alq)
  • alkali metals such as Li, Na, K, or Cs
  • alkaline earth metals such as Ba and Sr
  • rare metals or their fluorides and aluminum chelates (Alq)
  • Alq3 and benzazul as materials for the electron transport layer are not limited to these.
  • the hole injecting layer is not limited to force capable of using copper phthalocyanine.
  • As the hole transport layer 4, 4 ′ bis [N— (1 naphthyl) ⁇ phenylamino] biphenyl, triphenyldiamin (TPD), or the like can be used, but is not limited thereto.
  • the film formation method of the organic EL layer depends on whether the material is a high molecular or low molecular material, and for example, a vacuum vapor deposition method, an ionization vapor deposition method, a cocoon method, an ink jet method, etc. can be employed
  • a preferred thickness of the organic EL layer is 50 to 300 nm.
  • the organic EL display of the present invention is obtained by sequentially forming a color filter, a color conversion layer, a planarization layer, and a gas barrier layer that are used as desired on a substrate.
  • the substrate is not particularly limited as long as it is a transparent material with respect to the wavelength of light emitted from each light emitting unit.
  • a substrate such as SiO glass or a film-like transparent substrate can be employed.
  • the color filter used as desired is a filter having a function of improving the color purity of emitted light by selectively absorbing or transmitting the wavelength of emitted light. For example, in a full-color display using three primary colors, the color purity is increased by using a color filter that transmits wavelengths of 400 nm to 550 nm for blue, 500 nm to 600 nm for green, and 600 nm or more for red.
  • a method is generally used in which a pattern is formed by repeatedly applying, exposing, and developing a colored photosensitive material in which a dye or pigment is dispersed in a photosensitive resin layer.
  • color filters in which pigments are dispersed rather than dyes have become increasingly popular as reasons for resistance.
  • Typical pigments used as dispersing agents include azo lake, insoluble azo, condensed azo, phthalocyanine, quinacridone. , Di-xazine, isoindolinone, anthraquinone, verinone, chi-in, berylene, and mixtures thereof.
  • the color conversion layer is a layer having a function of emitting different visible light when the fluorescent dye absorbs light in the near ultraviolet region or visible region emitted from the organic light emitting layer. This can emit fluorescence in various wavelength regions depending on the combination of the fluorescent dye and the incident light. Also, for example, a method of absorbing red light and emitting red region fluorescence is a color filter method that selectively transmits white light emitted by a red filter and emits red region light. It is also possible to output light! These are applied to color conversion organic EL devices.
  • a method is generally used in which a colored photosensitive material in which a fluorescent dye is dispersed in a photosensitive resin layer is used as a material, and this is repeatedly applied, exposed and developed to form a pattern.
  • fluorescent dyes that absorb light in the blue or blue-green region and emit fluorescence in the green region include 3— (2 ′ monobenzothiazolyl) 7 Jetylamino-coumarin (coumarin 6), 3— (2, monobenzimidazolyl) 7 Jetylamino Tamarin (Coumarin 7), 3— (2 'N Methylbenzimidazolyl) 7 Jetylamino Coumarin (Coumarin 30), 2, 3, 5, 6-1H, 4H Tetrahydro-8 9, 9a, 1-gh) Coumarin dyes such as coumarin (coumarin 153), or coumarin dye dyes such as basic yellow 51, and naphthalimide dyes such as solvent yellow 11 and solvent yellow 116 It is done.
  • various dyes can be used if they are fluorescent.
  • various dyes direct dyes, acid dyes, basic dyes, disperse dyes, etc.
  • various dyes can be used if they are fluorescent.
  • the flattening layer is disposed as desired for the purpose of smoothing the color conversion layer. Therefore, it is necessary to select a material and a process that are light transmissive and can be disposed without deteriorating the color conversion layer. Further, when an inorganic gas barrier film, a transparent conductive film, or the like is formed on the upper surface of the flattening layer, sputtering resistance is also required.
  • the planarization layer also has a purpose of smoothing, and thus is generally formed by a coating method.
  • photocurable or photothermal combination type curable resin was subjected to light and / or heat treatment to generate radical species and ionic species to be polymerized or crosslinked to be insoluble and infusible. Things are common. Further, it is desirable that the photocurable or photothermal combined type curable resin is soluble in an organic solvent or an alkali solution before curing to pattern the fluorescent color conversion film.
  • the photocurable or photothermal combination type curable resin is
  • composition film composed of an acrylic polyfunctional monomer and oligomer having a plurality of acryloyl groups and a methacryl group and light or a thermal polymerization initiator to generate a photo radical and generate heat radicals.
  • composition comprising a polyburcinnamic acid ester and a sensitizer, which is dimerized by light or heat treatment and crosslinked.
  • a composition film composed of chain or cyclic olefin and bisazide is generated by nitrene by light or heat treatment, and crosslinked with olefin.
  • a composition film composed of an epoxy group-containing monomer and a photoacid generator is generated by polymerization of an acid (cation) generated by light or heat treatment.
  • the photocurable or photothermal combination type curable resin (1) is highly fine and can be patterned, and is preferable in terms of reliability such as solvent resistance and heat resistance.
  • polycarbonate PC
  • PET polyethylene terephthalate
  • polyether sulfone polybutyral
  • polyphenylene ether polyamide
  • polyetherimide norbornene resin
  • methacrylic resin isobutylene maleic anhydride copolymer resin
  • cyclic Thermoplastic resins such as polyolefin resin, epoxy resin, phenol resin, urethane resin, acrylic resin, butyl ester resin, imide resin, urethane resin, urea resin, melamine resin, or the color of this application Silicone polymer, polystyrene, polyacrylonitrile, polycarbonate, which is also applied to the matrix of the conversion layer
  • a resin-modified silicone polymer containing tetrafunctional alkoxysilane can be used.
  • the thickness of the planarization layer may be 0.5 to 10 m.
  • a gas barrier layer may be stacked on the planarizing layer for the purpose of protecting the organic light emitting device from moisture generated from the color conversion layer.
  • the gas layer is required to be a transparent and dense pinhole film.
  • inorganic oxides such as SiOx, SiNx, SiNxOy, A10x, TiOx, TaOx, and ZnOx, inorganic nitrides, and the like can be used.
  • the method for forming the gas noble layer it can be formed by a conventional method such as a sputtering method, a CVD method, a vacuum deposition method, a dip method and the like, which are not particularly limited.
  • the thickness of the gas barrier layer may be 50 to 1000 nm.
  • the present invention was applied to an organic thin film light emitting display panel having 320 pixels x 240 pixels. Each pixel is made up of three RGB sub-pixels, and each sub-pixel is a pixel measuring 110 m by 330 ⁇ m.
  • a shadow mask for separating each subpixel was formed of a resist material.
  • the total thickness of the organic EL layer 6 in the following pressure substrate was placed 10- 6 Pa in the deposition apparatus is deposited so as to be LOOnm. Then transferred to a chamber one for a different metal deposition while maintaining the pressure, in vacuum of pressure in the vacuum chamber one is 10- 6 Pa or less, the following Comparative Examples Contact and examples;! Electrode shown in 1-3 Depending on the type and thickness, cathode materials were deposited.
  • Example 1 A cathode 9 was formed by vapor-depositing silver having a thickness of 300 nm on the aluminum electrode of the comparative example. This reduced R to 27 ⁇ and the voltage drop to 0.7V.
  • the driving voltage to obtain a luminance of 150 cd / m 2 can be reduced by 0.4V (equivalent to 0.4eV of energy per electron). It was.
  • the difference in work function between zinc and aluminum, which is smaller than 0.665 eV, is considered to be due to the pinning ef feet force S at the zinc / organic EL layer interface. . Also, the leak repairability was good.
  • a metal mask is used to deposit calcium on the organic EL layer 6 to a thickness of 30 nm, and then the coated metal layer 8 is made of aluminum with a thickness of 30 nm and then with silver.
  • the cathode 9 was formed by vapor deposition at 300 nm.
  • the voltage applied between the anode and cathode to obtain a luminance of 150 cd / m 2 can be reduced by 1.0 V compared to the comparative example by improving the work function, and the voltage at the subpixel farthest from the extraction electrode Since the voltage drop was reduced to 0.7V, the drive voltage was improved by 4.5V as a result.
  • the drive voltage of the subpixel farthest from the extraction electrode was 17.8V in the comparative example, but was improved to 13.3V, and power consumption was reduced by 25%.
  • the leak repairability was also good.

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

明 細 書
有機 ELディスプレイ
技術分野
[0001] 本発明は、高精細で視認性に優れ、携帯端末機または産業用計測器の表示など 広範囲な応用可能性を有する有機エレクトロルミネセンス(以下有機 ELという)デイス プレイの構成に関する。
背景技術
[0002] 有機 EL素子は陽極および陰極より、ホールおよび電子を注入して有機 EL層より発 光させる自発光素子である。この素子を組み込んだディスプレイは、現在フラットパネ ルディスプレイの主流である液晶ディスプレイに比較して、視野角が広ぐ応答速度 が速い。この利点から携帯電話、携帯パソコン用次世代のフラットパネルディスプレイ として開発が進められている。
[0003] 図 2に従来のボトムェミッション型有機 EL素子の層断面構造を示す。まず、基板上 に、有機発光素子の発光域の光を吸収し RGB各光を発光するように各色を発する 蛍光材料を含む色変換層をそれぞれ高精細にパターユングし、 RGB発光領域を形 成する。この発光領域を覆うように、平坦化層 3およびガスバリア層 4を形成し、その 上に導電性透明膜からなる陽極 5、有機 EL層 6、およびアルミニウム等の金属電極 2 1からなる陰極 9をこの順に積層する。ここで陽極 5—陰極 9間に所定の電圧を印加 すると RGB発光するので、フルカラーの発光型ディスプレイを構築することができる。
[0004] かかる発光型ディスプレイにお!/、ては、ボトムェミッション型である力、トップエミッショ ン型であるかによらず、駆動電圧の低減が大きな課題となって!/、る。
[0005] 駆動電圧の低減の試みとして、例えば、トップェミッション型では、電子の注入障壁 が小さいアルカリ金属またはアルカリ土類金属から構成された層と、該層より電気抵 抗率が小さい Agを用いた被覆層とからなる陰極を有する有機 EL素子が開示されて いる(例えば、特許文献 1の請求項 11を参照)。し力もながら、この有機 EL素子では 、陰極側から光を取り出す都合、被覆層を極めて薄く形成する必要があり、配線抵抗 (電気抵抗)の低減に限度がある。 [0006] また、サブピクセルにプロセス上の不具合によりリーク等の欠陥が生じると発光をし なくなるだけでなぐ同じ陽極線上のサブピクセルにリーク電流が回り込むことにより 輝線が発生するという問題もある。
[0007] リーク箇所を修復するためには、一般に、当該の陽極線と陰極線との間に逆バイァ ス電圧を印加することによりリーク箇所に逆方向電流を流し、熱的に焼き切ることが行 われている。熱的に焼き切るためには、リーク箇所の電極を熱により蒸発させる力、、溶 融凝固させることにより穴を開けている。
特許文献 1 :特開 2004— 200141号公報、請求項 1、請求項 11、段落 0019等 発明の開示
発明が解決しょうとする課題
[0008] 以上に述べてきたことに基づけば、有機 EL層と接する陰極に求められる機能として は、(1)電気抵抗が小さく電力の損失が少ないこと、(2)有機 EL層への電子の注入 障壁が小さいこと、(3)リーク箇所の破壊が熱的な蒸発乃至溶融凝固が容易にでき ること、更に (4)プロセスが容易で、基板等との密着性が良好で寸法の確保や機械 的強度が確保できること等が挙げられる。
[0009] 例えば、従来アルミニウム力 陰極用材料として採用されている力 アルミニウムに 比べ電気抵抗率が小さい (機能(1) )銀は、仕事関数もアルミニウムよりも小さ 機能 (2) )、蒸気圧もアルミユウムより高!/、ので破壊孔を作りやす!/、 (機能(3) )。
[0010] しかしながら銀は、ガラス基板との密着性が不充分となる場合があり、機械的な信頼 性 (機能(4) )に欠ける。このように陰極に要求される機能の一部を改善しょうとしても 、他の機能が悪化してしまう。そこで、陰極に要求される機能の一部を劣化させること なぐ他の機能を改善できるようにする必要がある。
[0011] 本発明の目的は、上記現状に鑑み、リーク修復性に優れ、電気抵抗が小さぐ信頼 性に優れた、低電圧駆動が可能な有機 ELディスプレイを提供することにある。
課題を解決するための手段
[0012] 本発明は、上記課題を解決するためになされたものである。すなわち、本発明に係 る有機 ELディスプレイは、基板の上に、陽極、有機発光層を含む有機 EL層、陰極を 順に備え、上記基板と陽極との間に、色変換層およびガスバリア層を備えた有機 EL 素子を備えた有機 ELディスプレイであって、前記陰極が、反射性であって、前記有 機 EL層と接する電子注入性金属層と、前記有機 EL層と直接接しな!/、被覆金属層と 力、ら構成されるものである。
発明の効果
[0013] 本発明の有機 ELディスプレイは、上記陰極構造を有することにより、陰極の電気抵 抗損を低減し、リーク修復性に優れ、他材との接着性が良好で、かつ低電圧駆動が 可能となる。
図面の簡単な説明
[0014] [図 1]本発明の有機 ELディスプレイの一実施態様に含まれる素子の模式的断面図で ある。
[図 2]従来の有機 ELディスプレイに含まれる素子の模式的断面図である。
[図 3]パッシブマトリクス方式におけるスキャンラインの電圧降下の説明図である。 発明を実施するための最良の形態
[0015] 図 1に、本発明の有機 ELディスプレイに含まれる有機 EL素子の断面構造の一態 様(ボトムェミッション型)を示す。
[0016] 本発明の有機 ELディスプレイは、後述する基板 1の上に、陽極 5、有機発光層を含 む有機 EL層 6、陰極 9を順に備え、上記基板 1と陽極 5との間に色変換層 2およびガ スバリア層 4を備えた有機 EL素子を備えるものである。
[0017] まず、本発明の有機 ELディスプレイの陰極材料および層構成から説明する。
[0018] 本発明の有機 ELディスプレイにおいて、陰極は、反射性である。本明細書におい て、「反射性」とは、ガラス基板上に成膜した膜の可視光(400nm〜700nm)の反射 率が 50%以上であることをいう。光の反射率の好ましい範囲は、 80%以上である。
[0019] 陰極の材料としては、何種類かが候補として考えられる。従来陰極の材料として採 用されてきたアルミニウムを基準に各陰極候補材料の機能を比較した結果を表 1に 示す。
[0020] [表 1] 材料 Ca Zn in Al Cu Au 蒸気圧 PvBpor(Pa) 0 6. 80E+00 〇 4. 90E+03 0 1- 20E-03 〇 6. ΟΟΕ-05 6. 60E-07 X 6. 60E-08 X 7. O0E-10 仕事関数 Φ (βν) 〇 2. 9 〇 3. 63 o 4. 09 〇 4. 26 4. 28 X 4. 65 X 5. 1 抵抗率 p ( Qcm) X 3. 91 X 5. 91 X 8. 37 〇 1. 59 2. 65 〇 1. 67 O 2. 35
融点 0C) X 850 〇 419 0 156 X 961 660 X 1083 X 1063
外部に取
ブ πセス性 X り出せな 〇 o Δ 密着性 〇 X 密着性
気圧
表 1によれば、電気抵抗 (機能(1) )の面からは、銀、銅、金がアルミニウムよりも優 れている。
[0021] 仕事関数 (機能(2) )の面からは、カルシウム、亜鉛、インジウム、銀が優れている。
[0022] リーク箇所の修復性能 (機能(3) )としては低融点もしくは高蒸気圧であるカルシゥ ム、亜鉛、インジウム、銀が優れている。
[0023] プロセス性や安定性 (機能(4) )の面からはアルミニウム、亜鉛、インジウム、銅等を 採用することカできる。上記亜鉛、インジウム、銅は、大気中で比較的安定で、大気と 触れる配線として外部に取り出すことができる。
[0024] また、ガラス基板やガスバリア層との密着性、信頼性の観点からは、亜鉛、インジゥ ム、アルミニウムまたは銅が好ましい。
[0025] 本明細書において、抵抗率は、 4端子法により測定し得られた値であり、仕事関数
、融点および蒸気圧は、化学便覧(日本化学会編)等のデータブックから得られた値 でめる。
[0026] 上記候補材料の各種性質に鑑み、陰極は、 2層以上の金属層で構成される。具体 的には、陰極は、上記有機 EL層と接する電子注入性金属層と、上記有機 EL層に接 しない被覆金属層とを含む積層体である。
[0027] 電子注入性金属層は、上記有機 EL層と隣接する 1種類の単体金属、単体アルカリ 金属、単体アルカリ土類金属、または、それらの合金から形成される。
[0028] 被覆金属層は、 2種以上の単体金属を含んでいてもよいし、 2種以上の金属元素を 含む合金を含んでレ、てもよレ、。
[0029] 電子注入性金属層に含まれる金属は、前記有機 EL層と直接接しない被覆金属層 に含まれる少なくとも 1つの金属に比べて仕事関数が小さいことが好ましい。 [0030] 被覆金属層に含まれる少なくとも 1つの金属の 660°C、 latmにおける蒸気圧は、 電子注入性金属層に含まれる金属に比べて、高!/、ことが好まし!/、。
[0031] 被覆金属層に含まれる少なくとも 1つの金属の融点は、前記電子注入性金属層に 含まれる金属に比べて低!/、ことが好まし!/、。
[0032] 被覆金属層に含まれる少なくとも 1つの金属の電気抵抗率は、電子注入性金属層 に含まれる金属に比べて小さいことが好ましい。電気抵抗を改善するためには例え ば、アルミニウムの電極上に銀を積層する方法を採用することができる。
[0033] 電子注入性金属層および被覆金属層を含む金属層の層構成は、上述の候補材料 の各種物性値の関係に鑑み、有機 EL層に隣接する層から順に、 Ca/Al、 Mg/Al 、 In/Al、 Ag/Al、 Zn/Al、 Al/Ag等の 2層構成の,袓合せ、 Zn/Al/Ag, Ca/ Al/Ag、 Mg/Al/Ag、 In/Al/Ag等の 3層構成の組合せが挙げられる。 3層構 成の場合、一番左が電子注入性金属層を構成する金属であって、残る右側の 2層が 被覆金属層である。
[0034] 電子注入性金属層の厚さは、仕事関数を改善するためには 10nm以上であること が好ましい。より好ましくは、 30nm以上、 lOOnm以下である。
[0035] なお、電子注入性金属層としてカルシウムを用いる場合、カルシウムは外部へ取り 出すことに適さないので、蒸着するときメタルマスクで有機 EL層上のみ形成するよう にする。また、電子注入性金属層として銀を用いる場合も同様にメタルマスクで有機 EL層上のみに形成するようにしてガスバリア層やガラス基板部の配線はアルミニウム が接するようにするとよい。これらの材料はいずれもアルミニウムに比べ、低融点もしく は高蒸気圧であるのでリーク修復性 (機能(3) )に問題は生じな!/、。
[0036] 被覆金属層の厚さは、 30nm以上であることが好ましい。またリーク修復機能を確保 するため、; 1 m以下であることが好ましい。より好ましくは、 lOOnm以上、 500nm以 下である。
[0037] 銀は電気抵抗を下げる目的で積層するので厚さは 30nm以上がよ!/、。また厚すぎ るとリーク修復機能に問題がでてくるので 1 m以下がよい。より好ましくは、 lOOnm 以上、 500nm以下である。
[0038] アルミニウムは厚さ lOnm以上あれば基板やガスバリア層との密着性が確保できる ヽ好ましくは 30nm以上の厚さがよい。好ましくは、; m以下である。
[0039] 電子注入性金属層および被覆金属層の形成方法としては、マスク法、陰極隔壁法 、レーザーアブレーシヨン法等を採用することができる。
[0040] 本発明の有機 ELディスプレイにおいて、陽極は、透光性導電性材料からなる膜で あり、例えば、 Indium— Tin酸化物(ITO)、 Indium— Zinc酸化物(IZO)等を用い ること力 Sできる。 ITOを成膜するときには 200°C以上の基板加熱が必要であり、加熱 による後述の色変換層やカラーフィルタの劣化が起こり易い。一方 IZOは成膜時に 加熱の必要がないので、 IZOの方が望ましい。
[0041] 陽極は、例えば、マグネトロンスパッタ法で形成することができる。
[0042] 陽極の好ましい厚さは、 50〜; !OOOnmである。
[0043] 本発明の有機 ELディスプレイは、前記有機 EL素子が、アクティブマトリクス方式に より駆動する場合を排除するものではないが、パッシブマトリクス方式により駆動する 場合に特に好適な構成である。
[0044] ノ /シブマトリクス方式とは、陽極、陰極をそれぞれ格子状に配置し、一方をデータ ライン、他方をスキャンラインに割り当て、各ラインの端にあるトランジスタからバイアス 電圧を印加し交叉点のサブピクセルを発光させる方式である。
[0045] スキャンラインには各サブピクセルに流れた電流が積算されるので、取り出し電極 に近くなるほど電流量が大きくなる。このため、スキャンラインの電気抵抗率が低いほ ど電圧降下が少なくなる。通常陽極がデータラインに、陰極がスキャンラインに選ば れる。この構成において、特にパッシブマトリクス方式では、図 3に示すように、陰極で 構成されるスキャンラインに、サブピクセルに流れる電流力 取り出し電極に近いほど 加算される。従って、下記式(2)に示すように、電圧降下 Vはスキャンライン方向のサ ブピクセル数 nの 2乗に比例して増大し、結果的に駆動電圧を高くする必要がある。
[0046] [数 1] V,= ilr ( 1 )
Figure imgf000009_0001
nl ■ . . ( 3 )
(«+ l) ( 4 )
2
(上記式中、 n :サブピクセル数、 r :抵抗、 I:素子を流れる電流値)
したがって、陰極の電気抵抗損が軽減された本発明の有機 ELディスプレイは、パ ッシブマトリクス方式により駆動するものである場合に特に効果的な電圧降下の抑制 、駆動電圧の低減を実現できると考えられる。
[0047] 本発明の有機 ELディスプレイは、上記陽極および陰極に挟まれる有機 EL層を備 えたものである。
[0048] 有機 EL層は、正孔注入層、正孔輸送層、有機発光層、電子輸送層、電子注入層 力、ら構成すること力できる。しかし、該構成には特に限定されず、陽極および陰極に 電圧が印加されることによって生じる正孔および電子が再結合することで発光する有 機発光層を少なくとも含む構造であればよい。具体的には、有機 EL層は、例えば、 以下に示すような構造が挙げられる。
(1)陽極/有機発光体層/陰極
(2)陽極/正孔注入層/有機発光体層/陰極
(3)陽極/有機発光体層/電子注入層/陰極
(4)陽極/正孔注入層/正孔輸送層/有機発光体層/陰極
(5)陽極/正孔注入層/正孔輸送層/有機発光体層/電子輸送層/陰極
(6)陽極/正孔注入層/正孔輸送層/有機発光体層/電子輸送層/電子注入層 /陰極
有機 EL層における各層の材料としては、特に限定されるものではなく公知のものを 使用することが可能である。有機発光層の材料は、所望する色調に応じて選択する ことが可能であり、例えば青色から青緑色の発光を得るためには、ベンゾチアゾーノレ 系、ベンゾイミダゾール系、ベンゾォキサゾール系等の蛍光増白剤、金属キレート化 ォキソユウム化合物、スチリルベンゼン系化合物、芳香族ジメチリディン系化合物等 を使用することが可能である。
[0049] 電子注入層の材料としては、 Li、 Na、 K、または Cs等のアルカリ金属; Ba、 Sr等の アルカリ土類金属;希士類金属;あるいはそれらのフッ化物、アルミキレート (Alq)等 を使用することが可能である力 これらに限定するものではない。さらに、電子輸送層 の材料としては、 Alq3、ベンズァズールを使用することが可能である力 これらに限 定するものではない。
[0050] 正孔注入層としては、銅フタロシアニンを使用することが可能である力 これに限定 するものではない。正孔輸送層としては、 4, 4' ビス [N—(1 ナフチル) Ν フエ ニルァミノ]ビフエニル、トリフエ二ルジァミン (TPD)等を使用することが可能であるが 、これらに限定するものではない。
[0051] 有機 EL層の成膜方法としては、材料が高分子系か低分子系かにもよるが、例えば 、真空蒸着法、イオン化蒸着法、 ΜΒΕ法、インクジェット法等を採用することができる
[0052] 有機 EL層の好ましい厚さは、 50〜300nmである。
[0053] 本発明の有機 ELディスプレイは、基板上に、所望により用いるカラーフィルタと、色 変換層と、平坦化層と、ガスバリア層とを順次形成したものである。
[0054] 基板としては、各発光単位からの出射光波長について透明な材質であれば特に限 定されず、例えば、 SiOガラス等の基板ないしフィルム状の透明基板を採用すること ができる。
[0055] 所望により用いるカラーフィルタは、発光された光の波長を選択的に吸収又は透過 させることによって出射される光の色純度を向上させる機能を有するフィルタである。 例えば 3原色を用いたフルカラーディスプレイでは、青色用には 400nm〜550nm、 緑色用には 500nm〜600nm、赤色用には 600nm以上の波長を透過させるカラー フィルタを用いて色純度を高めている。製法としては、感光性樹脂層に染料や顔料を 分散させた着色感材を材料として、これを塗布、露光、現像と繰り返してパターンを 形成させる方法が一般的である。特に最近では耐性の理由として染料よりも顔料を 分散させたカラーフィルタが多くなつている。分散材として用いられる代表的な顔料と しては、ァゾレーキ系、不溶性ァゾ系、縮合ァゾ系、フタロシアニン系、キナクリドン系 、ジ才キサジン系、イソインドリノン系、アントラキノン系、ベリノン系、チ才イン系、ベリ レン系、これらの混合系等がある。
色変換層は、有機発光層から発光された近紫外領域ないし可視領域の光を蛍光 色素が吸収して異なる可視光を発する機能を有する層である。これは蛍光色素と入 射させる光の組み合わせによって、様々な波長領域の蛍光を発することができる。ま た、例えば、青色に発光された光を吸収して赤色領域の蛍光を発する方式は、赤色 フィルタにより白色に発光された光を選択的に透過させて赤色領域の光を出射する カラーフィルタ方式よりも強!/、光を出力することも可能である。これらは色変換方式の 有機 EL素子に応用されている。製法としては、感光性樹脂層に蛍光色素を分散さ せた着色感材を材料として、これを塗布、露光、現像と繰り返してパターンを形成さ せる方法が一般的である。青色ないし青緑色領域の光を吸収して、緑色領域の蛍光 を発する蛍光色素としては、例えば 3— (2'一べンゾチアゾリル) 7 ジェチルァミノ —クマリン(クマリン 6)、 3— (2,一ベンゾイミダゾリル) 7 ジェチルァミノ一タマリン (クマリン 7)、 3— (2' N メチルベンゾイミダゾリル) 7 ジェチルアミノークマリン (クマリン 30)、 2, 3, 5, 6 - 1H, 4H テトラヒドロー 8 トリフノレ才ロメチノレキノリジン (9, 9a, 1—gh)クマリン(クマリン 153)等のクマリン系色素、あるいはクマリン色素系 染料である、ベーシックイェロー 51、さらにはソルベントイェロー 11、ソルベントイエロ 一 116等のナフタルイミド系色素等が挙げられる。さらに、各種染料(直接染料、酸性 染料、塩基性染料、分散染料等)も蛍光性があれば使用することができる。また青色 から青緑色領域の光を吸収して、赤色領域の蛍光を発する蛍光色素としては、例え ばローダミン B、ローダミン 6G、ローダミン 3B、ローダミン皿、ローダミン 110、スノレ ホローダミン、ベーシックバイオレット 11、ベーシックレッド 2等のローダミン系色素、シ ァニン系色素、 1ーェチルー 2— [4— (p ジメチルァミノフエニル) 1 , 3 ブタジェ ニル] ピリジニゥムパーク口レート(ピリジン 1)等のピリジン系色素、あるいはォキサ ジン系色素等が挙げられる。さらに、各種染料 (直接染料、酸性染料、塩基性染料、 分散染料等)も蛍光性があれば使用することができる。
[平坦化層]
平坦化層は、その名の通り、色変換層の平滑化を目的として所望により配設される ものであり、光透過性に富み、且つ、色変換層を劣化させることなく配設できる材料 およびプロセスを選択する必要がある。また、平坦化層の上面に、無機ガスバリア膜 や透明導電膜等を形成する場合、更に、スパッタ耐性も要求されることとなる。
[0057] 前述の通り、平坦化層は平滑化の目的も併せ持つので、一般的には塗布法で形 成される。その際、適用可能な材料としては、光硬化性または光熱併用型硬化性樹 脂を、光および/または熱処理して、ラジカル種やイオン種を発生させて重合または 架橋させ、不溶不融化させたものが一般的である。また、該光硬化性または光熱併 用型硬化性樹脂は、蛍光色変換膜のパターユングを行うために硬化をする前は有機 溶媒またはアルカリ溶液に可溶性であることが望ましい。
[0058] 具体的に光硬化性または光熱併用型硬化性樹脂とは、
(1)ァクロイル基ゃメタクロィル基を複数有するアクリル系多官能モノマーおよびオリ ゴマーと、光または熱重合開始剤からなる組成物膜を光または熱処理して、光ラジカ ルゃ熱ラジカルを発生させて重合させたもの、
(2)ポリビュル桂皮酸エステルと増感剤からなる組成物を光または熱処理により二量 化させて架橋したもの、
(3)鎖状または環状ォレフィンとビスアジドからなる組成物膜を光または熱処理により ナイトレンを発生させ、ォレフィンと架橋させたもの、
(4)エポキシ基を有するモノマーと光酸発生剤からなる組成物膜を光または熱処理 により、酸 (カチオン)を発生させて重合させたもの等が挙げられる。特に(1)の光硬 化性又は光熱併用型硬化性樹脂が高精細でパターユングが可能であり、耐溶剤性 、耐熱性等の信頼性の面でも好ましい。
[0059] その他、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエーテル サルホン、ポリビュルブチラール、ポリフエ二レンエーテル、ポリアミド、ポリエーテルィ ミド、ノルボルネン系樹脂、メタクリル樹脂、イソブチレン無水マレイン酸共重合樹脂、 環状ォレフィン系等の熱可塑性樹脂や、エポキシ樹脂、フエノール樹脂、ウレタン樹 脂、アクリル樹脂、ビュルエステル樹脂、イミド系樹脂、ウレタン系樹脂、ユリア樹脂、 メラミン樹脂等の熱硬化性樹脂、あるいは本願の色変換層のマトリクスにも適用して いる、シリコーンポリマー、或いはポリスチレン、ポリアクリロニトリル、ポリカーボネート 等と 3官能性、ある!/、は 4官能性のアルコキシシランを含む樹脂変性型シリコーンポリ マー等も利用することができる。
[0060] 平坦化層の厚さは、 0. 5〜10 mとすることができる。
[ガスノ リア層]
上記色変換層を積層した基板を、有機発光素子と組み合わせる場合、色変換層か ら発生する水分から有機発光素子を守る目的で、平坦化層上面にガスバリア層を積 層してもよい。ガスノ リア層は透明且つピンホールのない緻密な膜が求められ、例え ば、 SiOx、 SiNx、 SiNxOy、 A10x、 TiOx、 TaOx、 ZnOx等の無機酸化物、無機 窒化物等が使用できる。該ガスノ リア層の形成方法としては特に制約はなぐスパッ タ法、 CVD法、真空蒸着法、ディップ法等の慣用の手法により形成できる。
[0061] ガスバリア層の厚さは、 50〜1000nmとすることができる。
実施例
[0062] 画素数 320ピクセル X 240ピクセル、の有機薄膜発光ディスプレイパネルに本発明 を適用した。各ピクセルは RGBの 3つのサブピクセルからできており、各サブピクセル は 110 m X 330 μ mの寸法の画素である。
[0063] 第 1図に示すようにガラス基板 1上に図示しない R、 G, Bのカラーフィルタ及び色変 換層 2 (CCM層)を形成した後、透明な感光性のアクリル系樹脂を塗布して平坦化層 3とした。その後、 SiNxからなるガスバリア層 4を CVD法にて厚さ 300nm形成した。
[0064] 次いで、各サブピクセルを分離するためのシャドーマスクをレジスト材料で形成した 。蒸着装置に基板を設置し 10— 6Pa以下の圧力において有機 EL層 6を全体の厚さが lOOnmになるよう蒸着した。次いで、圧力を維持しつつ別の金属蒸着用のチャンバ 一に移送し、真空チャンバ一の圧力が 10— 6Pa以下という真空度で、下記、比較例お よび実施例;!〜 3に示す電極種類および厚さにより、陰極用材料を蒸着した。
[比較例]
有機 EL層 6上に、アルミニウムのみを蒸着で厚さが lOOnmとなるよう形成した。こ のとき、上述の式(4)の R は約 160 Ωで、取り出し電極から最も遠いサブピクセル の電圧降下は、 4. 2Vであった。
[実施例 1] 上記、比較例のアルミ電極の上に厚さ 300nmの銀を蒸着して陰極 9を形成した。こ れにより R は 27 Ωに低減し、電圧降下は 0. 7Vになった。
total
[実施例 2]
有機 EL層 6上に、電子注入性金属層 7として亜鉛を厚さが 30nmになるよう蒸着で 形成した後、被覆金属層 8としてアルミニウムを厚さが lOOnmになるよう蒸着で形成 し陰極 9とした。配線抵抗は比較例と変わらなかった力 仕事関数の改善により、 150 cd/m2の輝度を得るための駆動電圧を 0. 4V (1電子あたりのエネルギー 0. 4eVに 相当)低減することができた。亜鉛とアルミニウムとの仕事関数の差である 0. 65eVよ りも改善効果が少なかったのは、亜鉛/有機 EL層界面でのピユング効果 (pinning ef feet)力 S影響しているものと考えられる。また、リーク修復性も良好であった。
[実施例 3]
電子注入性金属層 7として、メタルマスクを使用し有機 EL層 6の上にのみカルシゥ ムを 30nmの厚さで蒸着した後、被覆金属層 8として、アルミニウムを厚さ 30nm、次 いで銀を厚さ 300nm蒸着により形成し、陰極 9とした。 150cd/m2の輝度を得るため に陽極一陰極間に印加する電圧は、仕事関数の改善により比較例に対し 1. 0V低 減すること力 Sでき、更に取り出し電極から最も遠いサブピクセルにおける電圧降下を 0 . 7Vに低減できたので、結果的に駆動電圧として 4. 5Vの改善をすることができた。 即ち、取り出し電極から最も遠いサブピクセルの駆動電圧が比較例では 17. 8Vで あったものを 13. 3Vに改善でき、消費電力を 25%低減することができた。また、リー ク修復性も良好であった。

Claims

請求の範囲
[1] 基板の上に、陽極、有機発光層を含む有機 EL層、陰極を順に備え、前記基板と陽 極との間に、色変換層およびガスバリア層を備えた有機 EL素子を備えた有機 ELデ イスプレイであって、
前記陰極が、反射性であって、前記有機 EL層と接する電子注入性金属層と、前記 有機 EL層と直接接しない被覆金属層とから構成される
有機 ELディスプレイ。
[2] 前記有機 EL素子が、パッシブマトリクス方式により駆動することを特徴とする請求項
1に記載の有機 ELディスプレイ。
[3] 前記金属層のうち、前記有機 EL層と接する電子注入性金属層に含まれる金属が、 前記有機 EL層と直接接しな!/、被覆金属層に含まれる少なくとも 1つの金属に比べて 仕事関数が小さレ、ことを特徴とする請求項 1に記載の有機 ELディスプレイ。
[4] 前記電子注入性金属層に含まれる金属に比べて、前記被覆金属層に含まれる少 なくとも 1つの金属の、 660°C、 latmにおける蒸気圧が高いことを特徴とする請求項
1に記載の有機 ELディスプレイ。
[5] 前記電子注入性金属層に含まれる金属に比べて、前記被覆金属層に含まれる少 なくとも 1つの金属の融点が低いことを特徴とする請求項 1に記載の有機 ELディスプ レイ。
[6] 前記電子注入性金属層に含まれる金属に比べて、前記被覆金属層に含まれる少 なくとも 1つの金属の電気抵抗率が小さいことを特徴とする請求項 1に記載の有機 EL ディスプレイ。
[7] 前記被覆金属層の厚さが、 30nm以上 1 μ m以下であることを特徴とする請求項 1 に記載の有機 ELディスプレイ。
PCT/JP2007/066920 2006-09-11 2007-08-30 Organic el display WO2008032584A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-245280 2006-09-11
JP2006245280 2006-09-11

Publications (1)

Publication Number Publication Date
WO2008032584A1 true WO2008032584A1 (en) 2008-03-20

Family

ID=39183646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066920 WO2008032584A1 (en) 2006-09-11 2007-08-30 Organic el display

Country Status (1)

Country Link
WO (1) WO2008032584A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050552A (ja) * 2003-07-29 2005-02-24 Dainippon Printing Co Ltd 有機el表示装置
JP2005197210A (ja) * 1996-09-04 2005-07-21 Cambridge Display Technol Ltd 有機発光デバイス及びその製造方法
JP2005259679A (ja) * 2004-03-11 2005-09-22 Samsung Sdi Co Ltd 有機電界発光素子及びそれを具備する有機電界発光ディスプレイ装置
JP2006041003A (ja) * 2004-07-23 2006-02-09 Seiko Epson Corp 表示装置、電子機器
JP2006163241A (ja) * 2004-12-10 2006-06-22 Dainippon Printing Co Ltd 有機エレクトロルミネッセント素子用カラーフィルタ基板
JP2006216466A (ja) * 2005-02-04 2006-08-17 Fuji Electric Holdings Co Ltd 有機elディスプレイパネルおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197210A (ja) * 1996-09-04 2005-07-21 Cambridge Display Technol Ltd 有機発光デバイス及びその製造方法
JP2005050552A (ja) * 2003-07-29 2005-02-24 Dainippon Printing Co Ltd 有機el表示装置
JP2005259679A (ja) * 2004-03-11 2005-09-22 Samsung Sdi Co Ltd 有機電界発光素子及びそれを具備する有機電界発光ディスプレイ装置
JP2006041003A (ja) * 2004-07-23 2006-02-09 Seiko Epson Corp 表示装置、電子機器
JP2006163241A (ja) * 2004-12-10 2006-06-22 Dainippon Printing Co Ltd 有機エレクトロルミネッセント素子用カラーフィルタ基板
JP2006216466A (ja) * 2005-02-04 2006-08-17 Fuji Electric Holdings Co Ltd 有機elディスプレイパネルおよびその製造方法

Similar Documents

Publication Publication Date Title
US9716246B2 (en) Display apparatus
US7456570B2 (en) Organic EL display having color converting filters
TWI362128B (en) Light emitting device and method of manufacturing the same
US7728516B2 (en) Organic EL display
KR101288687B1 (ko) 유기 전계발광 소자용 컬러 필터 기판
JP4651916B2 (ja) 発光装置の作製方法
CN101743782A (zh) 色变换滤光片、以及色变换滤光片和有机el显示器的制造方法
CN1953237A (zh) 有机发光器件
JP3501148B2 (ja) 有機elディスプレイ
TW201332179A (zh) 有機電激發光顯示面板及其製造方法
JPWO2006028089A1 (ja) 発光デバイスおよびその製造方法
JP3775325B2 (ja) 有機elディスプレイ
JP2009129586A (ja) 有機el素子
JP2008159321A (ja) 有機elディスプレイパネル及びその製造方法
JP2009205929A (ja) フルカラー有機elディスプレイパネル
JP2020035713A (ja) 有機el表示パネル
JP2006107836A (ja) 色変換フィルタ、その製造方法およびそれを用いた有機elディスプレイ
CN100527467C (zh) 有机el面板
JP5334341B2 (ja) 有機elデバイス
WO2008032584A1 (en) Organic el display
JP2004241247A (ja) 有機elディスプレイパネルおよびその製造方法
JP2002093578A (ja) 色変換フィルタ基板、並びに色変換フィルタ基板を具備する色変換方式有機発光素子およびカラーディスプレイ
JP2007280791A (ja) 有機エレクトロルミネッセンス素子用カラーフィルタ
JP2007234426A (ja) 有機elディスプレイの製造方法
JP2006269227A (ja) 多色発光デバイス及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载