WO2008020561A1 - Process for producing cured magnesia cement foam, cured foam obtained by the process, and molded object comprising the cured object - Google Patents
Process for producing cured magnesia cement foam, cured foam obtained by the process, and molded object comprising the cured object Download PDFInfo
- Publication number
- WO2008020561A1 WO2008020561A1 PCT/JP2007/065612 JP2007065612W WO2008020561A1 WO 2008020561 A1 WO2008020561 A1 WO 2008020561A1 JP 2007065612 W JP2007065612 W JP 2007065612W WO 2008020561 A1 WO2008020561 A1 WO 2008020561A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reducing agent
- magnesia cement
- cured
- magnesium chloride
- water reducing
- Prior art date
Links
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 title claims abstract description 107
- 239000000395 magnesium oxide Substances 0.000 title claims abstract description 61
- 239000004568 cement Substances 0.000 title claims abstract description 56
- 239000006260 foam Substances 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 10
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims abstract description 62
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 46
- 229910001629 magnesium chloride Inorganic materials 0.000 claims abstract description 31
- 239000002002 slurry Substances 0.000 claims abstract description 18
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims abstract description 17
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims abstract description 17
- 239000007864 aqueous solution Substances 0.000 claims abstract description 16
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 238000003756 stirring Methods 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 57
- 239000004566 building material Substances 0.000 claims description 23
- 238000004519 manufacturing process Methods 0.000 claims description 21
- 239000000047 product Substances 0.000 claims description 20
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 15
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 10
- -1 phosphoric acid compound Chemical class 0.000 claims description 9
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical group [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 8
- 239000004088 foaming agent Substances 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 5
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 4
- 235000019341 magnesium sulphate Nutrition 0.000 claims description 4
- 229910010293 ceramic material Inorganic materials 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 239000003381 stabilizer Substances 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 230000007423 decrease Effects 0.000 abstract description 2
- 239000004604 Blowing Agent Substances 0.000 abstract 1
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 229960002337 magnesium chloride Drugs 0.000 description 20
- 229910001220 stainless steel Inorganic materials 0.000 description 13
- 239000010935 stainless steel Substances 0.000 description 13
- 229910000831 Steel Inorganic materials 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 239000011490 mineral wool Substances 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 150000004687 hexahydrates Chemical class 0.000 description 3
- 229940050906 magnesium chloride hexahydrate Drugs 0.000 description 3
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000012783 reinforcing fiber Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 229940091250 magnesium supplement Drugs 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- FOGYNLXERPKEGN-UHFFFAOYSA-N 3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfopropyl)phenoxy]propane-1-sulfonic acid Chemical compound COC1=CC=CC(CC(CS(O)(=O)=O)OC=2C(=CC(CCCS(O)(=O)=O)=CC=2)OC)=C1O FOGYNLXERPKEGN-UHFFFAOYSA-N 0.000 description 1
- UKWUOTZGXIZAJC-UHFFFAOYSA-N 4-nitrosalicylic acid Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C=C1O UKWUOTZGXIZAJC-UHFFFAOYSA-N 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 239000004114 Ammonium polyphosphate Substances 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- QHCOZCIZCMGJBI-UHFFFAOYSA-N Cl.[O-2].[Mg+2] Chemical compound Cl.[O-2].[Mg+2] QHCOZCIZCMGJBI-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 235000019826 ammonium polyphosphate Nutrition 0.000 description 1
- 239000007798 antifreeze agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- AGXUVMPSUKZYDT-UHFFFAOYSA-L barium(2+);octadecanoate Chemical compound [Ba+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O AGXUVMPSUKZYDT-UHFFFAOYSA-L 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- HIAAVKYLDRCDFQ-UHFFFAOYSA-L calcium;dodecanoate Chemical compound [Ca+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O HIAAVKYLDRCDFQ-UHFFFAOYSA-L 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000004872 foam stabilizing agent Substances 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 229940005740 hexametaphosphate Drugs 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- HIEHAIZHJZLEPQ-UHFFFAOYSA-M sodium;naphthalene-1-sulfonate Chemical compound [Na+].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 HIEHAIZHJZLEPQ-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/02—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/30—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing magnesium cements or similar cements
- C04B28/32—Magnesium oxychloride cements, e.g. Sorel cement
Definitions
- the present invention relates to a method for producing a magnesia cement foam cured product, a foam cured product obtained by the production method, and a molded product including the cured product. More specifically, using a specific compounding ratio of magnesium chloride and magnesium oxide, and using a carboxylic acid-based water reducing agent and a sulfonic acid-based water reducing agent at a specific weight ratio as water reducing agents, the bubble size is uniform and small.
- a method for producing a magnesia cement foam cured product that can obtain a magnesia cement foam cured product having excellent dimensional stability, strength, water absorption, etc. even at low density, and a foam cured product obtained by the production method and
- the present invention relates to a molded product containing the cured body.
- magnesia cement also called magnesium oxide chloride cement
- Portland cement As such a cement, magnesia cement (also called magnesium oxide chloride cement) is known together with the most typical Portland cement. Compared with Portland cement, this magnesia cement has features such as higher strength and adhesion to other materials, and less dust generation. It is widely used for building materials such as flooring.
- various studies have been made so far, such as improvement of water resistance (Patent Document 1) and production of foam (Patent Document 2)!
- cement generally has higher strength such as bending strength than gypsum, wood and fiber materials, but has a drawback of high density.
- foam is used to reduce the density, there is a problem that it is brittle and easily broken. Furthermore, the foam has a problem that the amount of water absorption increases.
- Patent Document 1 JP-A-56-26755
- Patent Document 2 Japanese Patent No. 53-12927
- the object of the present invention is to produce a magnesia cement foamed cured product having a small decrease in strength and a small amount of water absorption even when the density of the foamed material is lowered, and foam curing obtained by the production method. It is providing the molded object containing a body and its hardening body.
- the present inventors have used magnesium chloride and magnesium oxide in a specific blending ratio, and specified a carboxylic acid-based water reducing agent and a sulfonic acid-based water reducing agent as water reducing agents.
- a weight ratio to produce a magnesia cement foam hardened body, it is possible to obtain a magnesia cement foam hardened body that is excellent in dimensional stability, strength, water absorption, etc. even if the cell size is uniform and the density is low and the density is low.
- the present invention was completed.
- the present invention is a method for producing a magnesia cement foam hardened body, in which an aqueous solution of magnesium chloride is prepared, a water reducing agent and magnesium oxide are mixed in the aqueous solution, and a foaming agent is added at the next stage. And stirring to prepare an aqueous slurry, and curing the resulting aqueous slurry to produce a magnesia cement foam cured product, using magnesium oxide and magnesium chloride in a molar ratio of 7 to 13: 1
- a water reducing agent use a carboxylic acid type water reducing agent and a sulfonic acid type water reducing agent in a weight ratio of 1: 5 to 2: 1 to obtain a uniform and small bubble size!
- the present invention relates to a method of producing a foamed cured magnesia cement.
- the present invention relates to a magnesia cement foam hardened body obtained by the above production method.
- the present invention relates to a molded product containing the magnesia cement foam cured body.
- a water reducing agent is used using magnesium chloride and magnesium oxide in a specific mixing ratio.
- a magnetic cement foam cured body using a specific weight ratio of a carboxylic acid-based water reducing agent and a sulfonic acid-based water reducing agent, even if the density of the cured body with a uniform and small bubble size is low, An excellent magnesia cement foam hardened body with low dimensional shrinkage, excellent dimensional stability, high strength and low water absorption is obtained.
- This magnesia cement foam hardened body can be widely used for building materials, etc. by forming it into a board shape, sheet shape, column shape, block shape or the like.
- Magnesium chloride (MgCl) used in the present invention magnesium chloride (MgCl) used in the present invention
- magnesium chloride hexahydrate is preferably magnesium chloride hexahydrate.
- Magnesium chloride may replace up to 50% by weight with magnesium sulfate.
- magnesium sulfate magnesium sulfate 7 hydrate is preferable.
- an aqueous solution of magnesium chloride is prepared.
- the concentration of the aqueous solution at this time is preferably 10% to 20% by weight of solid content concentration of magnesium chloride.
- a water reducing agent is mixed in this aqueous solution.
- a carboxylic acid type water reducing agent and a sulfonic acid type water reducing agent are used in a weight ratio of 1: 5 to 2: 1, and preferably in a ratio of 1: 4 to 3: 2.
- the carboxylic acid-based water reducing agent include polycarboxylic acids (for example, polystreptonic acid ether-based compounds), oxycarboxylic acids (for example, sodium oxycarboxylate), and the like.
- sulfonic acid-based water reducing agent examples include lignin sulfonic acids (for example, calcium lignin sulfonate), aromatic sulfonic acids (for example, sodium naphthalene sulfonate monoformalin condensate), melamine sulfonic acids (for example, melamine resin). Sodium sulfonate monoformalin condensate etc.)
- magnesium oxide is mixed into the magnesium chloride aqueous solution.
- the magnesium oxide active magnesium having high activity obtained by baking magnesium hydroxide, magnesium carbonate or the like at a high temperature is preferable.
- magnesium oxide and magnesium chloride are used in a molar ratio of 7 to 13: 1, preferably 9 to 13: 1.
- a foam stabilizer may be mixed together with magnesium oxide. Examples of foam stabilizers include zinc stearate, calcium stearate, barium stearate, and aluminum stearate. , Magnesium stearate, calcium laurate, barium laurate and the like. Further, reinforcing fibers such as glass fiber, carbon fiber, and synthetic resin fiber, and fillers such as one microfiber may be mixed together.
- Phosphoric acid or a phosphoric acid compound may be further mixed into the magnesium chloride aqueous solution.
- Examples of the phosphoric acid compound include ammonium phosphate, polyphosphate, and hexametaphosphate. By using such phosphoric acid or a phosphoric acid compound, the wet strength of the aqueous slurry prepared before curing the magnetic cement can be improved and the viscosity can be increased.
- foaming agents include hydrogen peroxide (concentration 35% by weight is preferred! /), Sodium bicarbonate that generates carbon dioxide (reacts with acids such as hydrochloric acid during foaming), and metal aluminum powder. Can be mentioned.
- the aqueous slurry obtained by thoroughly stirring after mixing the foaming agent has a solid content strength S of 50 wt% to 65 wt%, with the remainder being water.
- the amount of each component in the solid content in the aqueous slurry is, for example, 90% to 95% by weight of the total amount of magnesium chloride and magnesium oxide, 0.5% to 5% by weight of the water reducing agent, It is preferable that the phosphoric acid or phosphoric acid compound is 0.1 to 5% by weight, and the foam stabilizer is 0.1 to 5% by weight.
- the foaming agent is preferably added in an amount of 1 to 3% by weight with respect to the magnesium chloride aqueous solution after mixing the components.
- the aqueous slurry is stirred well, poured into a suitable formwork, allowed to stand at room temperature or, if necessary, heated to about 30 ° C to 40 ° C, and dried. Use force S to obtain magnesia cement foam.
- Bubbles in the magnesia cement foam hardened material obtained by the production method of the present invention are uniform in size and usually have a long diameter of 0.2 to 2 mm, and the difference between the long diameter and the short diameter is small. Usually smaller than 0.3mm.
- the above-described reinforcing fiber is used.
- various additives can be mixed as necessary.
- inorganic lightening fillers such as glass, beads, lightweight aggregate, resin-based foam beads, silica vanolene, shirasu balloon, and expanded vermiculite can be mixed.
- latex for example, styrene butadiene rubber, polyacrylic acid ester, ethylene vinyl acetate, polyvinyl acetate and vinyl alcohol are used as long as the fire resistance of magnesia cement is not extremely reduced.
- Organic resins such as methenoresenololose, unsaturated polyester, epoxy resin, and urethane resin can also be added. It is also possible to mix commonly used flame retardants, colorants, mold release agents, antifungal agents, antifreeze agents, and cryogens.
- the aqueous slurry described above when the aqueous slurry described above is cured, it can be made into a cured body of various shapes depending on the use of the resulting cured body.
- examples of such shapes include a board shape, a sheet shape, a column shape, a cylinder shape, and a block shape.
- the resulting molded product can be used as it is for building materials such as boards, wall materials, interior materials, outer wall materials, and other building materials. May be used in combination.
- a glass cloth or the like can be arranged on a suitable plate, and the above aqueous slurry can be poured thereon to form a board for building materials.
- molded products having various shapes such as a columnar shape, a block shape, a spherical shape, or a shape obtained by combining them can be obtained by a molding method such as extrusion molding or cast molding.
- magnesia cement foam hardened body produced in the present invention as a board and use it for a building panel.
- a building material panel is, for example, a combination of a magnesia cement foam hardened board obtained by the production method of the present invention and at least one selected from ceramic materials, metal materials, plastic materials and wooden materials. Can be manufactured.
- ceramic materials such as rock wool plates, tile plates, stone plates, siding materials; metal materials such as stainless steel plates, plating steel plates, iron plates; urethane foam plates, thermoplastic resin plates, heat-resistant thermoplastic resins
- Plastic materials such as boards; particle boards, plywood, wooden materials such as MDF, etc., together with the magnesium cement foamed hardened board produced in the present invention, can be used for interiors or in the usual manner using adhesives, etc.
- An exterior building panel can be manufactured.
- Magnesium chloride hexahydrate 146. 3 g is dissolved in water 216. Og. Next, to this magnesium chloride aqueous solution, phosphoric acid 2. Og and a carboxylic acid-based water reducing agent (Rebuild SP8SB LL, manufactured by Emmenby Co., Ltd.) 4.7 g and a sulfonic acid-based water reducing agent (Cell Flow 110 manufactured by Daiichi Pharmaceutical Co., Ltd.) 37.4 g was mixed.
- a carboxylic acid-based water reducing agent Rebuild SP8SB LL, manufactured by Emmenby Co., Ltd.
- a sulfonic acid-based water reducing agent Cell Flow 110 manufactured by Daiichi Pharmaceutical Co., Ltd.
- a test specimen was obtained in the same manner as in Example 1 except that the carboxylic acid-based water reducing agent was Demol EP from Kao Corporation and the sulfonic acid-based water reducing agent was Demol N from Kao Corporation.
- this Table 2 shows the measurement results such as the compressive strength of the specimen.
- a test specimen was obtained in the same manner as in Example 2, except that the carboxylic acid-based water reducing agent was Demol EP from Kao Corporation and the sulfonic acid-based water reducing agent was Demol N from Kao Corporation. Table 2 shows the results of measurements such as compressive strength of this specimen.
- a test specimen was obtained in the same manner as in Comparative Example 1 except that the carboxylic acid-based water reducing agent was Demol EP from Kao Corporation and the sulfonic acid-based water reducing agent was Demol N from Kao Corporation. Table 2 shows the results of measurements such as compressive strength of this specimen.
- magnesia cement foam cured product obtained by the present invention has a small difference between the major axis and the minor axis where the bubble size is small, and the compressive strength is small even when the density is small. It is excellent in water absorption, and it is also excellent!
- a slurry was obtained in the same manner as in Example 1, and a magnesia cement board having a thickness of 20 mm was produced. Next, the produced magnesia cement board was cut and cut to a width of 80 mm to produce a magnesia cement board having a thickness of 20 mm and a width of 80 mm.
- a set of stainless steel plates that have been processed in advance to become the front and back materials of building material panels was prepared.
- One of the set of stainless steel plates (hereinafter referred to as stainless steel plate A) can be fitted after the flat plate force S, and the other (hereinafter referred to as stainless steel plate B) can be fitted after both sides in the length direction are used as building material panels.
- a fitting part is formed.
- the fitting part has a substantially convex shape in which one side of the lengthwise sides protrudes from the central part in the thickness direction of the building material panel, and the remaining side has a substantially concave shape with a groove into which a substantially convex protruding part can be fitted. is there.
- magnesia cement board cut so as to be in contact with the inside of both sides in the length direction of the stainless steel plate B was arranged so that the width direction of the magnesia cement board was the thickness direction of the building material panel.
- an adhesive was applied to a portion of the stainless steel plate B between the two magnesia cement boards arranged on the stainless steel plate B. Further, a rock wool plate (thickness 80 mm) was inserted between the two magnesia cement boards described above and bonded to the stainless steel plate B. The space formed between the stainless steel plate B fitting and the magnesia cement board was filled with rock wool granular cotton. Adhesive was applied to the inserted rock wool plate and adhered to stainless steel plate A to produce a building material panel.
- Figure 1 shows a cross-sectional view of the produced building material panel.
- a slurry was obtained in the same manner as in Example 1, and a 12 mm thick magnesia cement board was produced.
- a pair of steel plates were prepared in advance so as to become the front and back materials of the building material panel.
- One of the pair of steel plates (hereinafter referred to as “Metsuki Steel Plate A”) is a flat plate, but the other (hereinafter referred to as “Metsuki Steel Plate B”) can be fitted after both sides in the length direction are used as building material panels.
- a fitting part is formed.
- the fitting part has a substantially convex shape with one of the two sides in the length direction protruding from the central part in the thickness direction of the building material panel, and the other side having a substantially concave shape with a groove into which a substantially convex protruding part can be fitted. It is.
- an adhesive was applied to the inside of the location excluding the fitting portion of the steel plate B.
- the cut composite plate was bonded to the portion of the steel plate B where the adhesive was applied.
- Rock wool granular cotton was filled into the space formed between the mating part of the steel plate B and the composite plate.
- Adhesive was applied to the inserted composite sheet, and it was bonded to Metsuki Steel Sheet A to produce a building material panel.
- Fig. 2 shows a cross-sectional view of the produced building material panel.
- the present invention even when the cell size is uniform and small, and the density of the cured body is low, an excellent magnetic cement having a small dimensional shrinkage ratio, excellent dimensional stability, high strength, and low water absorption.
- a foam hardened body is obtained.
- This magnesia cement foam hardened body can be widely used in building materials by forming it into a board, sheet, column, block, etc. In particular, it can be suitably used for producing a building material panel.
- FIG. 1 shows a cross-sectional view of a building material panel produced in Example 6.
- FIG. 2 shows a cross-sectional view of a building material panel produced in Example 7.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
A process for producing a cured magnesia cement foam which comprises preparing an aqueous solution of magnesium chloride, mixing this aqueous solution with a water-reducing agent and magnesium oxide, subsequently introducing a blowing agent thereinto, stirring them to prepare an aqueous slurry, and curing the aqueous slurry obtained, wherein the magnesium oxide and the magnesium chloride are used in a molar ratio of (7-13):1 and the water-reducing agent comprises a carboxylic acid type water-reducing agent and a sulfonic acid type water-reducing agent in a proportion of from 1:5 to 2:1 by weight. By the process, a cured magnesia cement foam can be produced which decreases only slightly in strength with decreasing density.
Description
明 細 書 Specification
マグネシアセメント発泡硬化体の製造法、その製造法によって得られる発 泡硬化体およびその硬化体を含む成形物 Method for producing magnesia cement foam cured product, foamed cured product obtained by the production method, and molded product containing the cured product
技術分野 Technical field
[0001] 本発明は、マグネシアセメント発泡硬化体の製造法、その製造法によって得られる 発泡硬化体およびその硬化体を含む成形物に関する。より詳しくは、塩化マグネシゥ ムと酸化マグネシウムとを特定配合比で用い、減水剤として、カルボン酸系減水剤と スルホン酸系減水剤とを特定重量比で用いて、気泡のサイズが均一で小さぐ密度 が低くても寸法安定性、強度、吸水量などにおいて優れたマグネシアセメント発泡硬 化体を得ることができるマグネシアセメント発泡硬化体の製造法、その製造法によつ て得られる発泡硬化体およびその硬化体を含む成形物に関する。 [0001] The present invention relates to a method for producing a magnesia cement foam cured product, a foam cured product obtained by the production method, and a molded product including the cured product. More specifically, using a specific compounding ratio of magnesium chloride and magnesium oxide, and using a carboxylic acid-based water reducing agent and a sulfonic acid-based water reducing agent at a specific weight ratio as water reducing agents, the bubble size is uniform and small. A method for producing a magnesia cement foam cured product that can obtain a magnesia cement foam cured product having excellent dimensional stability, strength, water absorption, etc. even at low density, and a foam cured product obtained by the production method and The present invention relates to a molded product containing the cured body.
背景技術 Background art
[0002] 従来より、土木建設業等において、コンクリートやモルタルの主原料としてセメントが 広く一般的に用いられており、現在ではその用途に応じて数多くの種類のセメントが 開発されている。そして、このようなセメントとしては、最も代表的なポルトランドセメント とともにマグネシアセメント(別名、マグネシウムォキシクロライドセメントとも呼ばれる) が知られている。このマグネシアセメントは、ポルトランドセメントと比較して、強度が強 ぐ他の物質との粘着性が強ぐさらに、発塵性が少ないなどの特徴を有しており、建 設用パネルやレンガ、壁材ゃ床材などの建築用に広く一般的に利用されている。 マグネシアセメントの用途を更に広げるために、これまで耐水性の向上や(特許文 献 1)、発泡体の製造 (特許文献 2)など種々の検討がなされてきて!/、る。 [0002] Conventionally, cement has been widely used as a main raw material for concrete and mortar in the civil engineering industry, and many types of cement have been developed according to their use. As such a cement, magnesia cement (also called magnesium oxide chloride cement) is known together with the most typical Portland cement. Compared with Portland cement, this magnesia cement has features such as higher strength and adhesion to other materials, and less dust generation. It is widely used for building materials such as flooring. In order to further expand the application of magnesia cement, various studies have been made so far, such as improvement of water resistance (Patent Document 1) and production of foam (Patent Document 2)!
マグネシアセメントに限らず、セメントは一般的に石膏や木、繊維系材料と比較して 、曲げ強度等の強度は高いが、密度が大きいという欠点があった。密度を小さくする ために発泡体とすると、脆く壊れやすくなるという問題点があった。さらに、発泡体と すると、吸水量が多くなるという問題点があった。 Not only magnesia cement, but cement generally has higher strength such as bending strength than gypsum, wood and fiber materials, but has a drawback of high density. When foam is used to reduce the density, there is a problem that it is brittle and easily broken. Furthermore, the foam has a problem that the amount of water absorption increases.
従って、発泡して密度を低くしても強度の低下が小さいマグネシアセメントの開発が 望まれていた。
特許文献 1 :特開昭 56— 26755号公報 Accordingly, it has been desired to develop a magnesia cement that is small in strength reduction even if the density is reduced by foaming. Patent Document 1: JP-A-56-26755
特許文献 2:特許昭 53— 12927号公報 Patent Document 2: Japanese Patent No. 53-12927
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0003] 従って、本発明の課題は、発泡体として密度を低くしても、強度の低下が小さぐ吸 水量の少ない、マグネシアセメント発泡硬化体の製造法、その製造法によって得られ る発泡硬化体およびその硬化体を含む成形物を提供することにある。 [0003] Accordingly, the object of the present invention is to produce a magnesia cement foamed cured product having a small decrease in strength and a small amount of water absorption even when the density of the foamed material is lowered, and foam curing obtained by the production method. It is providing the molded object containing a body and its hardening body.
課題を解決するための手段 Means for solving the problem
[0004] 本発明者等は前記課題を解決すべく鋭意研究した結果、塩化マグネシウムと酸化 マグネシウムとを特定配合比で用い、減水剤として、カルボン酸系減水剤とスルホン 酸系減水剤とを特定重量比で用いて、マグネシアセメント発泡硬化体を製造すること により、気泡のサイズが均一で小さぐ密度が低くても寸法安定性、強度、吸水量など において優れたマグネシアセメント発泡硬化体が得られることを見出し本発明を完成 させた。 [0004] As a result of diligent research to solve the above problems, the present inventors have used magnesium chloride and magnesium oxide in a specific blending ratio, and specified a carboxylic acid-based water reducing agent and a sulfonic acid-based water reducing agent as water reducing agents. By using a weight ratio to produce a magnesia cement foam hardened body, it is possible to obtain a magnesia cement foam hardened body that is excellent in dimensional stability, strength, water absorption, etc. even if the cell size is uniform and the density is low and the density is low. As a result, the present invention was completed.
[0005] すなわち、本発明は、マグネシアセメント発泡硬化体の製造法であって、塩化マグ ネシゥムの水溶液を調製し、この水溶液に減水剤および酸化マグネシウムを混合し、 次レ、で発泡剤を投入し撹拌して水性スラリーを調製し、得られる水性スラリーを硬化 して、マグネシアセメント発泡硬化体を製造するに際して、酸化マグネシウムと塩化マ グネシゥムとをモル比で 7〜; 13 : 1の割合で用い、減水剤として、カルボン酸系減水 剤とスルホン酸系減水剤とを重量比で 1: 5から 2 : 1の割合で用いて、気泡のサイズが 均一で小さ!/、硬化体を得ることを特徴とする、マグネシアセメント発泡硬化体の製造 法に関する。 [0005] That is, the present invention is a method for producing a magnesia cement foam hardened body, in which an aqueous solution of magnesium chloride is prepared, a water reducing agent and magnesium oxide are mixed in the aqueous solution, and a foaming agent is added at the next stage. And stirring to prepare an aqueous slurry, and curing the resulting aqueous slurry to produce a magnesia cement foam cured product, using magnesium oxide and magnesium chloride in a molar ratio of 7 to 13: 1 As a water reducing agent, use a carboxylic acid type water reducing agent and a sulfonic acid type water reducing agent in a weight ratio of 1: 5 to 2: 1 to obtain a uniform and small bubble size! The present invention relates to a method of producing a foamed cured magnesia cement.
更に本発明は、上記製造法によって得られる、マグネシアセメント発泡硬化体に関 する。 Furthermore, the present invention relates to a magnesia cement foam hardened body obtained by the above production method.
更に本発明は、上記マグネシアセメント発泡硬化体を含む成形物に関する。 Furthermore, the present invention relates to a molded product containing the magnesia cement foam cured body.
発明の効果 The invention's effect
[0006] 本発明では、塩化マグネシウムと酸化マグネシウムとを特定配合比で用い、減水剤
として、カルボン酸系減水剤とスルホン酸系減水剤とを特定重量比で用いて、マグネ シァセメント発泡硬化体を製造することにより、気泡のサイズが均一で小さぐ硬化体 の密度が低くても、寸法収縮率が小さく寸法安定性に優れ、また強度が高ぐさらに 吸水量の少ない、優れたマグネシアセメント発泡硬化体が得られる。このマグネシア セメント発泡硬化体は、ボード状、シート状、柱状、ブロック状などに成形することによ り、建築材料などに広く用いることができる。 [0006] In the present invention, a water reducing agent is used using magnesium chloride and magnesium oxide in a specific mixing ratio. As described above, by producing a magnetic cement foam cured body using a specific weight ratio of a carboxylic acid-based water reducing agent and a sulfonic acid-based water reducing agent, even if the density of the cured body with a uniform and small bubble size is low, An excellent magnesia cement foam hardened body with low dimensional shrinkage, excellent dimensional stability, high strength and low water absorption is obtained. This magnesia cement foam hardened body can be widely used for building materials, etc. by forming it into a board shape, sheet shape, column shape, block shape or the like.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0007] 本発明で用いる、塩化マグネシウム(MgCl [0007] Magnesium chloride (MgCl) used in the present invention
2 )としては、塩化マグネシウム · 6水和物 が好ましい。塩化マグネシウムは、その 50重量%までを、硫酸マグネシウムで置換し てもよい。硫酸マグネシウムとしては、硫酸マグネシウム · 7水和物が好ましい。本発明 の製造法では、先ず、塩化マグネシウムの水溶液を調製する。この時の水溶液の濃 度は、塩化マグネシウムの固形分濃度力 10重量%〜20重量%であるのが好まし い。 2) is preferably magnesium chloride hexahydrate. Magnesium chloride may replace up to 50% by weight with magnesium sulfate. As magnesium sulfate, magnesium sulfate 7 hydrate is preferable. In the production method of the present invention, first, an aqueous solution of magnesium chloride is prepared. The concentration of the aqueous solution at this time is preferably 10% to 20% by weight of solid content concentration of magnesium chloride.
[0008] この水溶液に、減水剤を混合する。減水剤としては、カルボン酸系減水剤とスルホ ン酸系減水剤とを重量比で 1 : 5から 2 : 1の割合で、好ましくは、 1 : 4から 3 : 2の割合 で用いる。カルボン酸系減水剤としては、例えば、ポリカルボン酸類(例えば、ポリ力 ルボン酸エーテル系化合物など)、ォキシカルボン酸類(例えば、ォキシカルボン酸 ナトリウムなど)などが挙げられる。スルホン酸系減水剤としては、例えば、リグニンス ルホン酸類(例えば、リグニンスルホン酸カルシウムなど)、芳香族スルホン酸類(例え ば、ナフタレンスルホン酸ナトリウム一ホルマリン縮合物など)、メラミンスルホン酸類( 例えば、メラミン樹脂スルホン酸ナトリウム一ホルマリン縮合物など)などが挙げられる [0008] A water reducing agent is mixed in this aqueous solution. As the water reducing agent, a carboxylic acid type water reducing agent and a sulfonic acid type water reducing agent are used in a weight ratio of 1: 5 to 2: 1, and preferably in a ratio of 1: 4 to 3: 2. Examples of the carboxylic acid-based water reducing agent include polycarboxylic acids (for example, polystreptonic acid ether-based compounds), oxycarboxylic acids (for example, sodium oxycarboxylate), and the like. Examples of the sulfonic acid-based water reducing agent include lignin sulfonic acids (for example, calcium lignin sulfonate), aromatic sulfonic acids (for example, sodium naphthalene sulfonate monoformalin condensate), melamine sulfonic acids (for example, melamine resin). Sodium sulfonate monoformalin condensate etc.)
〇 Yes
[0009] 更に、塩化マグネシウム水溶液に、酸化マグネシウムを混合する。酸化マグネシゥ ムとしては、水酸化マグネシウム、炭酸マグネシウムなどを高温で焼成して得られる、 活性度の高い活性マグネシウムが好ましい。本発明では、酸化マグネシウムと塩化マ グネシゥムとをモル比で 7〜; 13 : 1の割合で、好ましくは、 9〜; 13 : 1の割合で用いる。 酸化マグネシウムとともに、整泡剤を混合してもよい。整泡剤としては、例えば、ステア リン酸亜鉛、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸アルミニウム
、ステアリン酸マグネシウム、ラウリル酸カルシウム、ラウリル酸バリウムなどが挙げられ る。また、ガラス繊維、炭素繊維、合成樹脂繊維などの補強繊維や、マイクロファイバ 一などの充填剤などを一緒に混合してもよい。 [0009] Further, magnesium oxide is mixed into the magnesium chloride aqueous solution. As the magnesium oxide, active magnesium having high activity obtained by baking magnesium hydroxide, magnesium carbonate or the like at a high temperature is preferable. In the present invention, magnesium oxide and magnesium chloride are used in a molar ratio of 7 to 13: 1, preferably 9 to 13: 1. A foam stabilizer may be mixed together with magnesium oxide. Examples of foam stabilizers include zinc stearate, calcium stearate, barium stearate, and aluminum stearate. , Magnesium stearate, calcium laurate, barium laurate and the like. Further, reinforcing fibers such as glass fiber, carbon fiber, and synthetic resin fiber, and fillers such as one microfiber may be mixed together.
[0010] 塩化マグネシウム水溶液には、更に、リン酸またはリン酸化合物を混合してもよい。 [0010] Phosphoric acid or a phosphoric acid compound may be further mixed into the magnesium chloride aqueous solution.
リン酸化合物としては、例えば、リン酸アンモニゥム、ポリリン酸塩、へキサメタリン酸塩 などが挙げられる。このようなリン酸またはリン酸化合物を用いることにより、マグネシ ァセメント硬化前に調製される水性スラリーの湿潤強度を向上させ、粘度を上げること ができる。 Examples of the phosphoric acid compound include ammonium phosphate, polyphosphate, and hexametaphosphate. By using such phosphoric acid or a phosphoric acid compound, the wet strength of the aqueous slurry prepared before curing the magnetic cement can be improved and the viscosity can be increased.
[0011] 本発明では、上記した各種成分を、塩化マグネシウム水溶液に混合後によく攪拌し 、次いで、発泡剤を添加する。発泡剤としては、過酸化水素水(濃度 35重量%が好 まし!/、)、炭酸ガスを発生する炭酸水素ナトリウム(発泡時に塩酸などの酸と反応させ る)などや、金属アルミニウム粉などが挙げられる。 In the present invention, the above-mentioned various components are mixed well in an aqueous magnesium chloride solution and then stirred well, and then a foaming agent is added. Examples of foaming agents include hydrogen peroxide (concentration 35% by weight is preferred! /), Sodium bicarbonate that generates carbon dioxide (reacts with acids such as hydrochloric acid during foaming), and metal aluminum powder. Can be mentioned.
[0012] 発泡剤を混合後に、よく撹拌することにより得られる水性スラリーは、その固形分濃 度力 S、 50重量%〜65重量%で、残りが水分であるのが好ましい。また、水性スラリー 中における固形分中の各成分の量は、例えば、塩化マグネシウムと酸化マグネシゥ ムとの合計量が 90重量%〜95重量%、減水剤が 0. 5重量%〜5重量%、リン酸また はリン酸化合物が 0. 1重量%〜5重量%、整泡剤が 0. 1重量%から 5重量%である のが好ましい。また、発泡剤は、各成分を混合後の塩化マグネシウム水溶液に対して 、 1重量%〜3重量%の量で加えるのが好ましい。その後、水性スラリーをよく攪拌し 、適当な型枠に流し込んで、室温で、あるいは必要に応じて、 30°C〜40°C程度に加 温して放置し、乾燥することによって、 目的とするマグネシアセメント発泡硬化体を得 ること力 Sでさる。 [0012] It is preferable that the aqueous slurry obtained by thoroughly stirring after mixing the foaming agent has a solid content strength S of 50 wt% to 65 wt%, with the remainder being water. The amount of each component in the solid content in the aqueous slurry is, for example, 90% to 95% by weight of the total amount of magnesium chloride and magnesium oxide, 0.5% to 5% by weight of the water reducing agent, It is preferable that the phosphoric acid or phosphoric acid compound is 0.1 to 5% by weight, and the foam stabilizer is 0.1 to 5% by weight. The foaming agent is preferably added in an amount of 1 to 3% by weight with respect to the magnesium chloride aqueous solution after mixing the components. Then, the aqueous slurry is stirred well, poured into a suitable formwork, allowed to stand at room temperature or, if necessary, heated to about 30 ° C to 40 ° C, and dried. Use force S to obtain magnesia cement foam.
[0013] 本発明の製造法によって得られるマグネシアセメント発泡硬化体中の気泡は、その サイズが均一であり小さぐ通常、気泡の長径が 0. 2mm〜2mmであって、長径と短 径の差が小さぐ通常、 0. 3mm以下である。このような気泡が硬化体中に形成され ることにより、硬化体の密度が低くても、寸法収縮率が小さく寸法安定性に優れ、また 強度が高ぐ吸水量の少ない、優れたマグネシアセメント発泡硬化体が得られる。 [0013] Bubbles in the magnesia cement foam hardened material obtained by the production method of the present invention are uniform in size and usually have a long diameter of 0.2 to 2 mm, and the difference between the long diameter and the short diameter is small. Usually smaller than 0.3mm. By forming such bubbles in the cured body, even if the density of the cured body is low, excellent magnesia cement foaming with low dimensional shrinkage, excellent dimensional stability, high strength and low water absorption. A cured product is obtained.
[0014] 本発明のマグネシアセメント発泡硬化体の製造法においては、上記した補強繊維
や充填剤以外にも、必要に応じて、各種の添加剤を混合することができる。例えば、 断熱性を増すために、ガラス、ビーズ類、軽量骨材、樹脂系発泡ビーズ、シリカバノレ ーン、シラスバルーン、膨張バーミキユライト等の無機軽量化フイラ一類を混合するこ ともできる。更に、可撓性や耐水性を増すために、マグネシアセメントの防火性を極 度に低下しない範囲でラテックスや、例えば、スチレンブタジエンゴム、ポリアクリル酸 エステノレ、エチレン酢酸ビニノレ、ポリビニノレアノレコーノレ、メチノレセノレロース、不飽和ポ リエステル、エポキシ樹脂、ウレタン樹脂などの有機系樹脂を添加することもできる。 また、通常使用される難燃剤、着色剤、離型剤、防鯖剤、凍結防止剤、耐寒剤などを 混合することあでさる。 [0014] In the method for producing a magnesia cement foam cured body of the present invention, the above-described reinforcing fiber is used. In addition to fillers and fillers, various additives can be mixed as necessary. For example, in order to increase heat insulation, inorganic lightening fillers such as glass, beads, lightweight aggregate, resin-based foam beads, silica vanolene, shirasu balloon, and expanded vermiculite can be mixed. Further, in order to increase flexibility and water resistance, latex, for example, styrene butadiene rubber, polyacrylic acid ester, ethylene vinyl acetate, polyvinyl acetate and vinyl alcohol are used as long as the fire resistance of magnesia cement is not extremely reduced. Organic resins such as methenoresenololose, unsaturated polyester, epoxy resin, and urethane resin can also be added. It is also possible to mix commonly used flame retardants, colorants, mold release agents, antifungal agents, antifreeze agents, and cryogens.
本発明においては、上記した水性スラリーを硬化するに際に、得られる硬化体の用 途に応じて、各種の形状の硬化体とすることができる。そのような形状としては、例え ば、ボード状、シート状、柱状、筒状、ブロック状などが挙げられる。また、硬化体をそ のような形状に成形することにより、得られる成形物をボード、壁材、内装材、外壁材 などの建築材料等にそのまま使用することができ、また、他の建築材料と組み合わせ て用いてもよい。例えば、適当な板の上にガラスクロスなどを引き揃え、その上に、上 記の水性スラリーを流して、建築材料などのボードとすることもできる。また、押し出し 成型や注型成型などの成型方法で柱状、ブロック状、球状、あるいはそれらを組み合 わせた形状など種々の形状の成形物を得ることが出来る。 In the present invention, when the aqueous slurry described above is cured, it can be made into a cured body of various shapes depending on the use of the resulting cured body. Examples of such shapes include a board shape, a sheet shape, a column shape, a cylinder shape, and a block shape. In addition, by molding the cured body into such a shape, the resulting molded product can be used as it is for building materials such as boards, wall materials, interior materials, outer wall materials, and other building materials. May be used in combination. For example, a glass cloth or the like can be arranged on a suitable plate, and the above aqueous slurry can be poured thereon to form a board for building materials. In addition, molded products having various shapes such as a columnar shape, a block shape, a spherical shape, or a shape obtained by combining them can be obtained by a molding method such as extrusion molding or cast molding.
特に、本発明で製造されるマグネシアセメント発泡硬化体をボードとして、それを建 材用パネルに使用するのが好適である。そのような建材用パネルは、例えば、本発 明の製造法により得られたマグネシアセメント発泡硬化体のボードと、窯業材料、金 属材料、プラスチック材料および木製材料から選ばれる少なくとも 1種とを組み合せ て製造すること力できる。具体的には、例えば、ロックウール板、タイル板、石材板、 サイディング材などの窯業材料;ステンレス鋼板、メツキ鋼板、鉄板などの金属材料; ウレタン発泡板、熱可塑性樹脂板、耐熱性熱可塑性樹脂板などのプラスチック材料; パーティクルボード、合板、 MDFなどの木製材料などともに、本発明で製造されるマ グネシァセメント発泡硬化体のボードとを用いて、接着剤などを用いた通常の方法で 内装用あるいは外装用の建材用パネルを製造することができる。
[0016] 以下に、本発明を実施例および比較例により更に詳細に説明する力 本発明はこ れらによって何ら制限されるものではない。 In particular, it is preferable to use the magnesia cement foam hardened body produced in the present invention as a board and use it for a building panel. Such a building material panel is, for example, a combination of a magnesia cement foam hardened board obtained by the production method of the present invention and at least one selected from ceramic materials, metal materials, plastic materials and wooden materials. Can be manufactured. Specifically, for example, ceramic materials such as rock wool plates, tile plates, stone plates, siding materials; metal materials such as stainless steel plates, plating steel plates, iron plates; urethane foam plates, thermoplastic resin plates, heat-resistant thermoplastic resins Plastic materials such as boards; particle boards, plywood, wooden materials such as MDF, etc., together with the magnesium cement foamed hardened board produced in the present invention, can be used for interiors or in the usual manner using adhesives, etc. An exterior building panel can be manufactured. [0016] Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. The present invention is not limited to these examples.
実施例 1 Example 1
塩化マグネシウム · 6水和物 146. 3gを水 216. Ogに溶解させる。次に、この塩化マ グネシゥム水溶液にリン酸 2. Ogとカルボン酸系減水剤(株式会社ェムェヌビー製レ オビルド SP8SB LL) 4. 7gとスルホン酸系減水剤(第一製薬工業株式会社製セル フロー 110) 37. 4gを混合した。次いで、予め酸ィ匕マグネシウム 341. 5gとステアリン 酸亜鉛 4. 4gと補強繊維(日本電気硝子株式会社製耐アルカリガラス繊維) 3. 3gを 混合した混合物を上述の塩化マグネシウム水溶液に投入 ·攪拌しスラリーを得た。更 に得られたスラリーに過酸化水素 20. 9gを投入攪拌し、該スラリーを型 (長さ 220m m X幅 220mm X 40mm)に流し込んだ。 Magnesium chloride hexahydrate 146. 3 g is dissolved in water 216. Og. Next, to this magnesium chloride aqueous solution, phosphoric acid 2. Og and a carboxylic acid-based water reducing agent (Rebuild SP8SB LL, manufactured by Emmenby Co., Ltd.) 4.7 g and a sulfonic acid-based water reducing agent (Cell Flow 110 manufactured by Daiichi Pharmaceutical Co., Ltd.) 37.4 g was mixed. Next, a mixture prepared by previously mixing 341.5 g of acid magnesium carbonate, 4.4 g of zinc stearate, and 3.3 g of reinforcing fiber (alkali-resistant glass fiber manufactured by Nippon Electric Glass Co., Ltd.) is added to the above magnesium chloride aqueous solution and stirred. A slurry was obtained. Further, 29.9 g of hydrogen peroxide was added to the obtained slurry and stirred, and the slurry was poured into a mold (length 220 mm × width 220 mm × 40 mm).
これを常温にて一昼夜放置し、さらに 40°Cの雰囲気中で 12時間乾燥した後、型か ら抜き出し試験体を得た。 This was left at room temperature for a whole day and night, and further dried for 12 hours in an atmosphere of 40 ° C., and then extracted from the mold to obtain a test specimen.
得られた試験体を用い、 JIS A9511により圧縮強度、吸水量を測定した。測定結 果などは表 1に示した。 Using the obtained specimen, the compressive strength and water absorption were measured according to JIS A9511. The measurement results are shown in Table 1.
[0017] 実施例 2 [0017] Example 2
塩化マグネシウム · 6水和物を溶解させる水を 221. 0g、カルボン酸系減水剤(株式 会社ェムェヌビー製レオビルド SP8SB LL) 9. 4gとスルホン酸系減水剤(第一製薬 工業株式会社製セルフロー 110) 28. 2gとする以外は実施例 1と同じようにして、試 験体を得た。この試験体の圧縮強度等の測定結果などは表 1に示した。 221.0 g of water to dissolve magnesium chloride hexahydrate, carboxylic acid-based water-reducing agent (Leobuild SP8SB LL, manufactured by Emmenby Corporation) 9.4 g and sulfonic acid-based water-reducing agent (Cell Flow 110, manufactured by Daiichi Pharmaceutical Co., Ltd.) 28. A specimen was obtained in the same manner as in Example 1 except that the amount was 2 g. Table 1 shows the results of measurements such as the compressive strength of this specimen.
[0018] 実施例 3 [0018] Example 3
塩化マグネシウム · 6水和物を溶解させる水を 225. 0g、カルボン酸系減水剤(株式 会社ェムェヌビー製レオビルド SP8SB LL) 14. Ogとスルホン酸系減水剤(第一製 薬工業株式会社製セルフロー 110) 18. 7gとする以外は実施例 1と同じようにして、 試験体を得た。この試験体の圧縮強度等の測定結果などは表 1に示した。 Magnesium chloride · 225.0 g of water to dissolve hexahydrate, carboxylic acid-based water reducing agent (Leobuild SP8SB LL manufactured by Emmenby Co., Ltd.) 14. Og and sulfonic acid-based water reducing agent (Cell Flow 110 manufactured by Daiichi Pharmaceutical Co., Ltd.) ) A specimen was obtained in the same manner as in Example 1 except that the amount was 18.7 g. Table 1 shows the results of measurements such as the compressive strength of this specimen.
[0019] 実施例 4 [0019] Example 4
カルボン酸系減水剤を花王株式会社製デモール EP、スルホン酸系減水剤を花王 株式会社製デモール Nとする以外は実施例 1と同じようにして、試験体を得た。この
試験体の圧縮強度等の測定結果などは表 2に示した。 A test specimen was obtained in the same manner as in Example 1 except that the carboxylic acid-based water reducing agent was Demol EP from Kao Corporation and the sulfonic acid-based water reducing agent was Demol N from Kao Corporation. this Table 2 shows the measurement results such as the compressive strength of the specimen.
[0020] 実施例 5 [0020] Example 5
カルボン酸系減水剤を花王株式会社製デモール EP、スルホン酸系減水剤を花王 株式会社製デモール Nとする以外は実施例 2と同じようにして、試験体を得た。この 試験体の圧縮強度等の測定結果などは表 2に示した。 A test specimen was obtained in the same manner as in Example 2, except that the carboxylic acid-based water reducing agent was Demol EP from Kao Corporation and the sulfonic acid-based water reducing agent was Demol N from Kao Corporation. Table 2 shows the results of measurements such as compressive strength of this specimen.
[0021] 比較例 1 [0021] Comparative Example 1
塩化マグネシウム · 6水和物を溶解させる水を 211. 0g、カルボン酸系減水剤(株式 会社ェムェヌビー製レオビルド SP8SB LL)は使用せず、スルホン酸系減水剤(第 一製薬工業株式会社製セルフロー 110) 47. Ogとする以外は実施例 1と同じようにし て、試験体を得た。この試験体の圧縮強度等の測定結果などは表 1に示した。 Magnesium chloride · 211.0 g of water to dissolve hexahydrate, without using carboxylic acid-based water reducing agent (Lemu build SP8SB LL manufactured by Emmenby Co., Ltd.), sulfonic acid-based water reducing agent (Cell Flow 110 manufactured by Daiichi Pharmaceutical Industry Co., Ltd.) 47. A specimen was obtained in the same manner as in Example 1 except that Og was used. Table 1 shows the results of measurements such as the compressive strength of this specimen.
[0022] 比較例 2 [0022] Comparative Example 2
塩化マグネシウム · 6水和物を溶解させる水を 230. 0g、カルボン酸系減水剤(株式 会社ェムェヌビー製レオビルド SP8SB LL) 18. 8gとスルホン酸系減水剤(第一製 薬工業株式会社製セルフロー 110) 9. 4gとする以外は実施例 1と同じようにして、試 験体を得た。この試験体の圧縮強度等の測定結果などは表 1に示した。 Magnesium chloride · 300.0 g of water to dissolve hexahydrate, carboxylic acid-based water reducing agent (Rheobuild SP8SB LL, manufactured by Emmenby Co., Ltd.) 18.8 g and sulfonic acid-based water reducing agent (Cell Flow 110, manufactured by Daiichi Pharmaceutical Co., Ltd.) ) A specimen was obtained in the same manner as in Example 1 except that the amount was 4 g. Table 1 shows the results of measurements such as the compressive strength of this specimen.
[0023] 比較例 3 [0023] Comparative Example 3
カルボン酸系減水剤を花王株式会社製デモール EP、スルホン酸系減水剤を花王 株式会社製デモール Nとする以外は比較例 1と同じようにして、試験体を得た。この 試験体の圧縮強度等の測定結果などは表 2に示した。 A test specimen was obtained in the same manner as in Comparative Example 1 except that the carboxylic acid-based water reducing agent was Demol EP from Kao Corporation and the sulfonic acid-based water reducing agent was Demol N from Kao Corporation. Table 2 shows the results of measurements such as compressive strength of this specimen.
[0024] [表 1]
[0024] [Table 1]
〔〕0052 [] 0052
[0026] 表 1、表 2から明らかなように、本発明により得られるマグネシアセメント発泡硬化体 は、気泡のサイズが小さぐ長径と短径の差が小さぐまた、密度が小さくとも圧縮強 度に優れており、吸水量にぉレ、ても優れて!/、る。 [0026] As is apparent from Tables 1 and 2, the magnesia cement foam cured product obtained by the present invention has a small difference between the major axis and the minor axis where the bubble size is small, and the compressive strength is small even when the density is small. It is excellent in water absorption, and it is also excellent!
[0027] 実施例 6 [0027] Example 6
実施例 1と同様にしてスラリーを得て、厚さ 20mmのマグネシアセメントボードを作 製した。次いで、作製したマグネシアセメントボードを幅 80mmとなるように切断カロェ して、厚さ 20mm、幅 80mmのマグネシアセメントボードを作製した。 A slurry was obtained in the same manner as in Example 1, and a magnesia cement board having a thickness of 20 mm was produced. Next, the produced magnesia cement board was cut and cut to a width of 80 mm to produce a magnesia cement board having a thickness of 20 mm and a width of 80 mm.
予め建材用パネルの表面材と裏面材となるように加工された一組のステンレス鋼板
(厚さ 0. 5mm)を準備した。この一組のステンレス鋼板のうち一方(以降、ステンレス 鋼板 Aという)は平板である力 S、残る一方(以降、ステンレス鋼板 Bという)は長さ方向 の両辺が建材用パネルとした後に嵌合可能な嵌合部が形成されている。嵌合部は、 長さ方向の両辺のうち一辺は建材用パネルの厚さ方向中央部が突き出た略凸形状 、残る一辺は略凸形の突出部を嵌め込み可能な溝を持つ略凹形状である。 A set of stainless steel plates that have been processed in advance to become the front and back materials of building material panels (Thickness 0.5 mm) was prepared. One of the set of stainless steel plates (hereinafter referred to as stainless steel plate A) can be fitted after the flat plate force S, and the other (hereinafter referred to as stainless steel plate B) can be fitted after both sides in the length direction are used as building material panels. A fitting part is formed. The fitting part has a substantially convex shape in which one side of the lengthwise sides protrudes from the central part in the thickness direction of the building material panel, and the remaining side has a substantially concave shape with a groove into which a substantially convex protruding part can be fitted. is there.
ステンレス鋼板 Bの長さ方向の両辺の内側に接するように、切断加工した上記マグ ネシァセメントボードを、マグネシアセメントボードの幅方向が建材用パネル厚さ方向 とになるように配置した。 The above-mentioned magnesia cement board cut so as to be in contact with the inside of both sides in the length direction of the stainless steel plate B was arranged so that the width direction of the magnesia cement board was the thickness direction of the building material panel.
次に、ステンレス鋼板 Bの、ステンレス鋼板 Bに配置された 2枚のマグネシアセメント ボード間の部分に接着剤を塗付した。さらに、前記した 2枚のマグネシアセメントボー ド間にロックウール板(厚さ 80mm)を揷入し、ステンレス鋼板 Bに接着した。ステンレ ス鋼板 Bの嵌合部とマグネシアセメントボードとの間にできる空間には、ロックウール 粒状綿を充填した。揷入したロックウール板に接着剤を塗付し、ステンレス鋼板 Aと接 着して、建材用パネルを作製した。 Next, an adhesive was applied to a portion of the stainless steel plate B between the two magnesia cement boards arranged on the stainless steel plate B. Further, a rock wool plate (thickness 80 mm) was inserted between the two magnesia cement boards described above and bonded to the stainless steel plate B. The space formed between the stainless steel plate B fitting and the magnesia cement board was filled with rock wool granular cotton. Adhesive was applied to the inserted rock wool plate and adhered to stainless steel plate A to produce a building material panel.
作製した建材用パネルの断面図を図 1に示した。 Figure 1 shows a cross-sectional view of the produced building material panel.
実施例 7 Example 7
実施例 1と同様にしてスラリーを得て、厚さ 12mmのマグネシアセメントボードを製 した。 A slurry was obtained in the same manner as in Example 1, and a 12 mm thick magnesia cement board was produced.
ウレタン発泡板 (厚さ 63mm)の表面および裏面に接着剤を塗布し、さらに上記マグ ネシァセメントボードを貼り合わせて複合板を作製した。次いで、この複合板を後述 のメツキ鋼板の嵌合部を除いた大きさに切断した。 An adhesive was applied to the front and back surfaces of a urethane foam board (thickness 63 mm), and the above-mentioned magnetic cement board was bonded together to produce a composite board. Next, this composite plate was cut into a size excluding the fitting portion of a later-described Meki steel plate.
予め建材用パネルの表面材と裏面材となるよう加工された一組のメツキ鋼板 (厚さ 0 . 4mm)を準備した。この一組のメツキ鋼板のうち一方(以降、メツキ鋼板 Aという)は 平板であるが、残る一方(以降、メツキ鋼板 Bという)は長さ方向の両辺が建材用パネ ルとした後に嵌合可能な嵌合部が形成されている。嵌合部は、長さ方向の両辺のう ち一辺は建材用パネルの厚さ方向中央部が突き出た略凸形状、残る一辺は略凸形 の突出部を嵌め込み可能な溝を持つ略凹形状である。 A pair of steel plates (thickness 0.4 mm) were prepared in advance so as to become the front and back materials of the building material panel. One of the pair of steel plates (hereinafter referred to as “Metsuki Steel Plate A”) is a flat plate, but the other (hereinafter referred to as “Metsuki Steel Plate B”) can be fitted after both sides in the length direction are used as building material panels. A fitting part is formed. The fitting part has a substantially convex shape with one of the two sides in the length direction protruding from the central part in the thickness direction of the building material panel, and the other side having a substantially concave shape with a groove into which a substantially convex protruding part can be fitted. It is.
次に、メツキ鋼板 Bの嵌合部を除いた箇所の内側に接着剤を塗付した。さらに、切
断した複合板を、メツキ鋼板 Bの接着剤を塗付した部分に接着した。メツキ鋼板 Bの嵌 合部と複合板との間にできる空間には、ロックウール粒状綿を充填した。揷入した複 合板に接着剤を塗付し、メツキ鋼板 Aと接着して、建材用パネルを作製した。 Next, an adhesive was applied to the inside of the location excluding the fitting portion of the steel plate B. In addition, turn off The cut composite plate was bonded to the portion of the steel plate B where the adhesive was applied. Rock wool granular cotton was filled into the space formed between the mating part of the steel plate B and the composite plate. Adhesive was applied to the inserted composite sheet, and it was bonded to Metsuki Steel Sheet A to produce a building material panel.
作製した建材用パネルの断面図を図 2に示した。 Fig. 2 shows a cross-sectional view of the produced building material panel.
産業上の利用可能性 Industrial applicability
[0029] 本発明により、気泡のサイズが均一で小さぐ硬化体の密度が低くても、寸法収縮 率が小さく寸法安定性に優れ、また強度が高ぐさらに吸水量の少ない、優れたマグ ネシァセメント発泡硬化体が得られる。このマグネシアセメント発泡硬化体は、ボード 状、シート状、柱状、ブロック状などに成形することにより、建築材料などに広く用いる こと力 Sできる。特に、建材用パネルの作製に好適に用いることができる。 [0029] According to the present invention, even when the cell size is uniform and small, and the density of the cured body is low, an excellent magnetic cement having a small dimensional shrinkage ratio, excellent dimensional stability, high strength, and low water absorption. A foam hardened body is obtained. This magnesia cement foam hardened body can be widely used in building materials by forming it into a board, sheet, column, block, etc. In particular, it can be suitably used for producing a building material panel.
図面の簡単な説明 Brief Description of Drawings
[0030] [図 1]実施例 6で作製した建材用パネルの断面図を示す。 FIG. 1 shows a cross-sectional view of a building material panel produced in Example 6.
[図 2]実施例 7で作製した建材用パネルの断面図を示す。 FIG. 2 shows a cross-sectional view of a building material panel produced in Example 7.
符号の説明 Explanation of symbols
[0031] 1 ステンレス鋼板 A [0031] 1 Stainless steel sheet A
2 ステンレスま岡板 B 2 Stainless steel plate B
3 嵌合部の略凸形状 3 Approximate convex shape of mating part
4 嵌合部の略凹形状 4 Approximate concave shape of mating part
6 ロックウーノレ板 6 Rock unole plate
7 ロックウール粒状綿 7 Rock wool granular cotton
8 ウレタン発泡体 8 Urethane foam
9 メツキ鋼板 A 9 Metsuki steel plate A
10 メツキ鋼板 B
10 Metsuki Steel B
Claims
請求の範囲 The scope of the claims
[I] マグネシアセメント発泡硬化体の製造法であって、塩化マグネシウムの水溶液を調 製し、この水溶液に減水剤および酸化マグネシウムを混合し、次いで発泡剤を投入 し撹拌して水性スラリーを調製し、得られる水性スラリーを硬化して、マグネシアセメン ト発泡硬化体を製造するに際して、酸化マグネシウムと塩化マグネシウムとをモル比 で 7〜; 13 : 1の割合で用い、減水剤として、カルボン酸系減水剤とスルホン酸系減水 剤とを重量比で 1: 5から 2 : 1の割合で用いて、気泡のサイズが均一で小さい硬化体 を得ることを特徴とする、マグネシアセメント発泡硬化体の製造法。 [I] A method for producing a foamed cured magnesia cement, which is prepared by preparing an aqueous solution of magnesium chloride, mixing a water reducing agent and magnesium oxide into the aqueous solution, then adding the foaming agent and stirring to prepare an aqueous slurry. When the resulting aqueous slurry is cured to produce a magnesia cement foamed cured product, magnesium oxide and magnesium chloride are used in a molar ratio of 7 to 13: 1; and a carboxylic acid-based water reducing agent as a water reducing agent. Method for producing foamed cured magnesia cement, characterized in that a hardened body having a uniform cell size is obtained by using an agent and a sulfonic acid-based water reducing agent in a weight ratio of 1: 5 to 2: 1. .
[2] 気泡の長径が 0. 2mm〜 2mmであって、長径と短径の差が 0. 3mm以下である、 請求項 1の製造法。 [2] The process according to claim 1, wherein the major axis of the bubble is 0.2 mm to 2 mm, and the difference between the major axis and the minor axis is 0.3 mm or less.
[3] 酸化マグネシウムと塩化マグネシウムとをモル比で 9〜; 13 : 1の割合で用いる、請求 項 1または 2の製造法。 [3] The method according to claim 1 or 2, wherein magnesium oxide and magnesium chloride are used in a molar ratio of 9 to 13: 1.
[4] カルボン酸系減水剤とスルホン酸系減水剤とを重量比で 1: 4力、ら 3: 2の割合で用 [4] Carboxylic acid-based water reducing agent and sulfonic acid-based water reducing agent are used at a weight ratio of 1: 4, et al., 3: 2.
V、る、請求項 1から 3の!/、ずれかに記載の製造法。 The manufacturing method according to any one of claims 1 to 3, which is V.
[5] 塩化マグネシウムの水溶液にリン酸またはリン酸化合物を混合する、請求項 1から 4 の!/、ずれかに記載の製造法。 [5] The production method according to any one of claims 1 to 4, wherein phosphoric acid or a phosphoric acid compound is mixed in an aqueous solution of magnesium chloride.
[6] 発泡剤とともに整泡剤を用いる、請求項 1から 5のいずれかに記載の製造法。 [6] The production method according to any one of claims 1 to 5, wherein a foam stabilizer is used together with the foaming agent.
[7] 塩化マグネシウムの水溶液を調製するに際して、塩化マグネシウムの固形分濃度 力 S、 10重量%〜20重量%である、請求項 1から 6のいずれかの製造法。 [7] The process according to any one of claims 1 to 6, wherein when preparing the aqueous solution of magnesium chloride, the solid content concentration of magnesium chloride is S, and is 10 wt% to 20 wt%.
[8] 水性スラリーの固形分濃度が、 50重量%〜65重量%である、請求項 1から 7のい ずれかの製造法。 [8] The production method according to any one of claims 1 to 7, wherein the solid content concentration of the aqueous slurry is 50 wt% to 65 wt%.
[9] 塩化マグネシウムの 50重量%までが硫酸マグネシウムで置換された塩化マグネシ ゥムを用いる、請求項 1から 8のいずれかの製造法。 [9] The method according to any one of [1] to [8], wherein magnesium chloride in which up to 50% by weight of magnesium chloride is substituted with magnesium sulfate is used.
[10] 請求項 1から 9のいずれかの製造法によって得られる、マグネシアセメント発泡硬化 体。 [10] A magnesia cement foam hardened body obtained by the production method according to any one of claims 1 to 9.
[I I] 請求項 10のマグネシアセメント発泡硬化体を含む成形物。 [I I] A molded article comprising the magnesia cement foam hardened body according to claim 10.
[12] 成形物がボードである、請求項 11の成形物。 12. The molded article according to claim 11, wherein the molded article is a board.
[13] 成形物が建材用パネルである請求項 12の成形物。
[14] 請求項 10のマグネシアセメント発泡硬化体とともに、窯業材料、金属材料、プラス チック材料および木製材料から選ばれる少なくとも 1種とを組み合せて製造される建 材パネルである請求項 13の成形物。
13. The molded article according to claim 12, wherein the molded article is a building material panel. [14] The molded article according to claim 13, which is a building material panel manufactured by combining at least one selected from ceramic materials, metal materials, plastic materials and wooden materials together with the magnesia cement foam cured body according to claim 10. .
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-221750 | 2006-08-16 | ||
JP2006221750 | 2006-08-16 | ||
JP2006271619A JP2009256112A (en) | 2006-08-16 | 2006-10-03 | Method for producing cured magnesia cement foam, cured foam obtained by the method, and molded object comprising the cured object |
JP2006-271619 | 2006-10-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008020561A1 true WO2008020561A1 (en) | 2008-02-21 |
Family
ID=39082086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/065612 WO2008020561A1 (en) | 2006-08-16 | 2007-08-09 | Process for producing cured magnesia cement foam, cured foam obtained by the process, and molded object comprising the cured object |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2009256112A (en) |
TW (1) | TW200829532A (en) |
WO (1) | WO2008020561A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100031593A1 (en) * | 2007-01-12 | 2010-02-11 | Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg | Sloping roof system and insulating board for sloping roof systems |
JP2011520753A (en) * | 2008-05-20 | 2011-07-21 | プロマト リサーチ アンド テクノロジー センター ナムローゼ フェンノートシャップ | Durable magnesium oxychloride cement and method therefor |
CN104446323A (en) * | 2014-12-11 | 2015-03-25 | 云南省化工研究院 | Method for spraying protective agent on surface of mining tunnel of soluble solid leopoldite for fast setting |
CN106854087A (en) * | 2016-11-10 | 2017-06-16 | 安徽新盾消防设备有限公司 | Inorganic fireproof heat insulating board for exterior walls |
CN108793911A (en) * | 2018-06-19 | 2018-11-13 | 辽宁科技大学 | A method of preparing magnesia aglite using foaming |
CN113443882A (en) * | 2021-07-20 | 2021-09-28 | 吉林省优瑞佳新型建筑材料有限公司 | Light-weight aerogel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101314741B1 (en) * | 2011-10-13 | 2013-10-08 | 이동희 | Manufacture method of inorganic foam using magnesia and its hardner at room temperature |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56149360A (en) * | 1980-03-25 | 1981-11-19 | Betsukuriiku Fuiritsupu | Manufacture of molded goods from hydraulic mineral composite material |
JPH02133381A (en) * | 1988-11-14 | 1990-05-22 | Miyazaki Mokuzai Kogyo Kk | Production of lightweight noncombustible material |
JPH02208248A (en) * | 1989-02-07 | 1990-08-17 | Centre Scient Tech Batiment | Magnesium cement and magnesium binder |
-
2006
- 2006-10-03 JP JP2006271619A patent/JP2009256112A/en active Pending
-
2007
- 2007-08-09 WO PCT/JP2007/065612 patent/WO2008020561A1/en active Application Filing
- 2007-08-15 TW TW96130181A patent/TW200829532A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56149360A (en) * | 1980-03-25 | 1981-11-19 | Betsukuriiku Fuiritsupu | Manufacture of molded goods from hydraulic mineral composite material |
JPH02133381A (en) * | 1988-11-14 | 1990-05-22 | Miyazaki Mokuzai Kogyo Kk | Production of lightweight noncombustible material |
JPH02208248A (en) * | 1989-02-07 | 1990-08-17 | Centre Scient Tech Batiment | Magnesium cement and magnesium binder |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100031593A1 (en) * | 2007-01-12 | 2010-02-11 | Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg | Sloping roof system and insulating board for sloping roof systems |
JP2011520753A (en) * | 2008-05-20 | 2011-07-21 | プロマト リサーチ アンド テクノロジー センター ナムローゼ フェンノートシャップ | Durable magnesium oxychloride cement and method therefor |
CN104446323A (en) * | 2014-12-11 | 2015-03-25 | 云南省化工研究院 | Method for spraying protective agent on surface of mining tunnel of soluble solid leopoldite for fast setting |
CN106854087A (en) * | 2016-11-10 | 2017-06-16 | 安徽新盾消防设备有限公司 | Inorganic fireproof heat insulating board for exterior walls |
CN108793911A (en) * | 2018-06-19 | 2018-11-13 | 辽宁科技大学 | A method of preparing magnesia aglite using foaming |
CN108793911B (en) * | 2018-06-19 | 2020-08-07 | 辽宁科技大学 | A method for preparing magnesium lightweight aggregate by foaming method |
CN113443882A (en) * | 2021-07-20 | 2021-09-28 | 吉林省优瑞佳新型建筑材料有限公司 | Light-weight aerogel |
Also Published As
Publication number | Publication date |
---|---|
JP2009256112A (en) | 2009-11-05 |
TW200829532A (en) | 2008-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12012361B2 (en) | Geopolymer cement | |
KR100993189B1 (en) | Environmentally friendly and light weight mortar composition | |
KR101187320B1 (en) | Exposed concrete pannel for exterior of building comprising additive of carbon source and manufacturing method thereof | |
WO2008020561A1 (en) | Process for producing cured magnesia cement foam, cured foam obtained by the process, and molded object comprising the cured object | |
KR101737811B1 (en) | Expanded mortar and method for fabricating thereof and repair material method | |
KR101034228B1 (en) | Concrete composition and artificial waterfall or artificial cancer comprising the same, and method of constructing artificial waterfall or artificial cancer | |
JP5767714B2 (en) | Phosphate cement composition | |
JP2004513868A (en) | Structural covering panel | |
JP2008513340A (en) | Flexible hydraulic composition | |
JP2013540098A5 (en) | ||
EP1215181B1 (en) | Fire door cores and methods of their manufacture | |
RU2338724C1 (en) | Dry heat-insulating plastered cellular polystyrene construction mixture for coatings, items and structures and method of its preparation | |
KR100853754B1 (en) | High strength fire resistant molded object for building and manufacturing method | |
KR100723929B1 (en) | Multifunctional Concrete Block for Building Walls | |
CN105350707A (en) | Mineral fiber reinforced green energy-saving environmentally-friendly novel wall and preparation method | |
KR101323343B1 (en) | Adhesive composition for binding an fire resistant insulating board on aluminum curtain wall and method for jointing aluminum curtain wall using them | |
JPH01160882A (en) | Inorganic heat-insulation material | |
JP6624822B2 (en) | Lightweight aerated concrete panel | |
JPH03122060A (en) | Refractory coating composition having excellent adhesive force to iron | |
JPH07233587A (en) | Light weight concrete and production method thereof and architectural panel by use thereof | |
CN1307029C (en) | A kind of manufacturing method of lightweight concrete product | |
JP2001316165A (en) | Wall structure of building | |
JP4558851B2 (en) | Inorganic hydraulic composition and plate material | |
KR100748622B1 (en) | Manufacturing method of lightweight porous insulation board using water glass | |
CA3060992A1 (en) | An insulation material and method of making same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07792263 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07792263 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |