+

WO2008018128A1 - Alliage à base de fer résistant à l'usure et résistant à la corrosion et matière de soudage par dépôt pour obtenir l'alliage - Google Patents

Alliage à base de fer résistant à l'usure et résistant à la corrosion et matière de soudage par dépôt pour obtenir l'alliage Download PDF

Info

Publication number
WO2008018128A1
WO2008018128A1 PCT/JP2006/315732 JP2006315732W WO2008018128A1 WO 2008018128 A1 WO2008018128 A1 WO 2008018128A1 JP 2006315732 W JP2006315732 W JP 2006315732W WO 2008018128 A1 WO2008018128 A1 WO 2008018128A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
wear
resistant
corrosion
iron
Prior art date
Application number
PCT/JP2006/315732
Other languages
English (en)
French (fr)
Inventor
Hajime Kawatsu
Akira Shinnya
Original Assignee
Ing Shoji Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ing Shoji Co., Ltd. filed Critical Ing Shoji Co., Ltd.
Priority to PCT/JP2006/315732 priority Critical patent/WO2008018128A1/ja
Priority to EP06782548A priority patent/EP2050533A1/en
Priority to CN2006800555672A priority patent/CN101505910B/zh
Priority to AU2006347111A priority patent/AU2006347111B2/en
Priority to US12/376,715 priority patent/US20100189588A1/en
Priority to JP2008528680A priority patent/JP4310368B2/ja
Priority to TW096142154A priority patent/TWI393789B/zh
Publication of WO2008018128A1 publication Critical patent/WO2008018128A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to an iron-base alloy of low carbon, high silicon, boron, niobium, and high chrome steel, which has excellent corrosion resistance and wear resistance, more specifically, 304 stainless steel and high chrome pig iron, Compared to high-carbon, high-chromium pig iron-based materials, it is overwhelmingly superior in corrosion resistance and wear resistance, and high-carbon, high-chromium carbide precipitation-type iron-based wear-resistant alloys can never be obtained! ⁇ Corrosion resistance, wear resistance superior to these metals, and brittle delamination unique to high Si-containing steels are difficult to occur! ⁇ ⁇ High performance and low cost iron-based corrosion and wear resistant alloy and its alloys
  • the present invention relates to a build-up welding material for obtaining the above.
  • Non-Patent Document 1 Text of the 14th Practical Welding Course “Surface Treatment Technology Fundamentals and Applications” (Part 1) Welding Society Eastern Section June 23-24, 1988
  • high-carbon and high-chromium pig iron-based overlay materials are currently inexpensive, so the force and corrosion resistance that has been used for many times is low. It was extremely inferior to nickel-base alloys, and was not a very corrosion-resistant material.
  • the typical composition of high-carbon, high-chromium pig iron-based welding materials that have been used mainly in the past is: C: 3-6%, Cr: 16-36%, Mo: 0-3%, Fe: "Remain".
  • the alloys belonging to this are extremely excellent in wear resistance, and despite being an iron-base alloy, it has excellent high-temperature oxidation resistance due to its high chromium content, and is at 600 ° C and 600 ° C or higher. It has been widely used for high temperature wear applications.
  • One typical example is an alloy with the following chemical components. “C: 5.2%, Cr: 32%, Si: 0.6%, Mn: 0.7%, Fe: remaining.”
  • This iron-based wear-resistant weld overlay metal exhibits excellent wear resistance and, if expressed in terms of wear coefficient, shows a wear test value of 5.0 to 10 with SS400 mild steel as 100. 10 to 20 times higher wear resistance. However, the corrosion resistance is not sufficient due to the too high carbon content.
  • the corrosion resistance of the cobalt alloys Stellite No. 1 and No. 6 is equivalent to or comparable to the wear resistance of the high-carbon, high-chromium pig iron weld overlaying alloy.
  • the standard composition of Stellite No. 1 and No. 6 is as follows.
  • the present inventor as one of the means to solve this problem as much as possible, is an inexpensive iron-based alloy and exhibits high high temperature oxidation resistance at a high temperature of 600 ° C or higher.
  • Patent Document 1 We proposed a patent for the wear-resistant “build-up welding material and cladding material” (Patent Document 1). This The patented alloy provides performance superior to Stellite No. 1 when it is built on equipment that requires high-temperature wear resistance, oxidation resistance, and corrosion resistance in applications above 600 ° C. Reduce.
  • Patent Document 1 Japanese Patent No. 3343576
  • a rotary kiln lifting lifter used at an ambient temperature of 800 to 900 ° C
  • a clinker cooler outlet liner used at 900 to 1000 ° C
  • 900 ° C The above copper resource recovery clinker grizzly bar, 800 ° C clinker conveyor bucket, fluidized bed furnace boiler tube, air blow nozzle nozzle overlay, etc. Can contribute to significant cost reduction.
  • the typical composition and performance of this patent overlaying alloy are shown below.
  • Microstructure X 400 times (Photo No. 1 in Fig. 2)
  • test piece No. 1 was subjected to a bending cage (bending radius 290 mmR) with a hard metal inside.
  • Patent Document 2 Japanese Patent Laid-Open No. 54-81115
  • the weld metal of high-Si-containing steel has a property of causing a surface-like peeling of the surface on the surface, and there is a risk of being scattered in a shape of a piece when bending is performed. When it is further strongly pushed and bent, it breaks so that the weld metal falls off the base metal.
  • the typical peeling state can be recognized by looking at the bending test piece No. 55 of the wear resistant alloy. Therefore, the patented alloys have been mainly used in the form of welding rods and welding overlay wires with few opportunities for bending.
  • the patented alloy has been developed with a high Si additive. Its use is for high-temperature wear at 600 ° C or higher, and high-temperature oxidation resistance equivalent to that of SUS310S, despite the fact that it is an iron-based alloy.
  • high-temperature wear resistance and high-temperature hardness were remarkably improved by precipitating a large amount of acicular chromium carbide that would not easily fall off at high temperatures.
  • the alloy becomes more ductile than the normal temperature at high temperatures of 600 to 1000 ° C, which improves brittleness, and Si dissolves in a large amount in the matrix within the deposited metal. It contributes to improving the acid resistance, and can withstand high temperatures of 1000 ° C.
  • the basic condition for constructing the patent alloy “Cr% ⁇ —1.6Si% + 37Cr%” is an acicular shape necessary to ensure excellent wear resistance at 600 ° C. or higher. It is a two-element correlation between Cr and Si that promotes the precipitation of large amounts of chromium carbide. If this correlation is not satisfied, sufficient acicular chromium carbide (Cr C) precipitates cannot be obtained, resulting in high temperature wear resistance.
  • the patented alloy was able to obtain performance comparable to that of the stellite alloy, but the biggest drawback was that due to the high Si content, delamination occurred on the surface of the deposited metal in the form of a slice. This makes it difficult to manufacture wear-resistant steel sheets that have a particularly large area. In addition, even in welding between clad steels made of the same alloy, the hardened metal peeled off when pulled by welding stress, making welding very difficult.
  • the purpose of the present invention is to improve the brittleness, which is a drawback of high-Si steels, and maintain overwhelming anti-corrosion performance compared to high chromium pig iron overlay alloys and 304 stainless steel. Is it equivalent to or better than Stellite No. 1 and No. 6 for the environment, and is it equivalent to Stellite No 1. No. 6 in terms of wear resistance? It is an object of the present invention to provide a low-carbon, high-chromium, high-Si-boron-niobium-steel-based iron-based corrosion-resistant wear-resistant alloy that can surpass it, and an overlay welding material for obtaining the alloy.
  • the present inventor combined a large amount of Cr with a small amount of Si, Mo, Cu, Ni, etc. in order to improve the sulfuric acid resistance, which is a weak point of iron-based alloys.
  • the Worthite alloy (C 0.07%, Cr20%, Ni25%, Si3.5%, Mo3%, Cu 2%), which has already been developed, is used as one model to find an alloy with excellent hydrochloric acid resistance.
  • Worthite alloy is Cr-Ni-Si-Mo developed by Worthington Pum of America. It is a Cu-based stainless steel, and is used for sulfuric acid corrosion resistance in chemical plants and oil-fired boilers. From the standpoint of sulfuric acid corrosion resistance, Kor Worthite alloy was used as a model. 1S The problem of this alloy was that the inventor's intention was different from the intention of the present inventors. The wisdom of resource saving of rare-value alloys, which is the premise, was to deviate greatly. Worthite alloy is used as a corrosion-resistant structural material that requires strength, for example, as a stainless steel pump.
  • the metal itself has toughness, but it is assumed that it is brittle due to high Si content and designed to have high Ni content in order to improve the brittleness.
  • high Ni content is to improve corrosion resistance, but it leads to low hardness and is inferior in wear resistance as a wear-resistant hardened metal material.
  • the present inventor can expect the base metal stainless steel isotropic force to be picked up in the weld metal with respect to the Ni content, so the initial content of Ni content to be added to the welding material should be 13% at maximum. conserveed resources. In other words, the amount of Ni added to the developed alloy is usually 5% or less, and the maximum addition was 13% only in special cases.
  • Si it is as follows.
  • High-carbon, high-chromium pig iron-based weld overlay materials are included in the pig iron range, which has a very high carbon content of 4.5 to 6.0%. As a result, a large amount of brittle chromium carbide was precipitated, and the Cr content contained in the matrix was reduced to extremely reduce the corrosion resistance.
  • the biggest reason why various high-carbon, high-chromium pig iron-based weld overlay materials are inferior in corrosion resistance is to contain a large amount of carbon in order to obtain wear resistance, and a carbide-forming element that has a strong affinity for carbon, This is because wear resistance is ensured by bonding a large amount of high-hardness carbides in the metal matrix by bonding carbon with chromium, tandastene, vanadium, titanium, niobium and the like.
  • chromium carbide is HV1650-2100
  • niobium carbide is HV2400
  • titanium carbide is HV2800
  • vanadium carbide is HV2800
  • tungsten carbide is HV2400-3000.
  • High chromium pig iron alloys ensure excellent wear resistance due to the precipitation of these carbides! On the other hand, the corrosion resistance of the weld metal becomes extremely deteriorated due to the high carbon content.
  • the carbon content is 2.0 to 2.1% as a boundary, and the steel is below that, and above that, it is pig iron .
  • the steel containing less than 2.0% is superior to the carbon-containing pig iron containing more than 2.0% in terms of mechanical properties, particularly the toughness of the metal matrix
  • the developed weld alloy is the first layer.
  • the carbon content of the weld metal was designed to be 2% or less. Naturally, it was assumed that the low carbon content also contributes to the improvement of corrosion resistance.
  • the carbon content of the welding material is reduced to 3.0% or less, it is hypoeutectoid to be judged from the amount of precipitation of carbides.
  • it receives penetration of mild steel.
  • the deposited metal in the layer did not show enough carbide precipitation, resulting in very poor wear resistance.
  • the carbon content contained in the weld metal is reduced to the base metal.
  • it depends on the penetration depth, it varies from 1.8% to 2.1% (penetration depth is about 30% to 40%). This content is 2.0% of the carbon content divided into pig steel and pig iron. Near%.
  • the amount of carbon contained in a high-carbon, high-chromium pig iron-based welding material is required to be at least 4.5%, and from the first layer, sufficient carbide can be obtained even if affected by the dilution of mild steel. It is important to maintain the state of precocious praying. In other words, even if 30% penetration occurs, the carbon content of the first layer weld metal must be about 3% or more, and it is necessary to pray.
  • the upper limit of the carbon content of the first-layer weld metal of the developed alloy was set to 2.0% or less, which is the content that distinguishes pig iron and pig iron.
  • the carbon content of the cobalt-based alloy Stellite No. 1 alloy is C: 2.0%, and the developed welding material has the same corrosion resistance judgment criteria as the corrosion performance of Stellite No. 1. Since the goals have been determined above, we decided to keep the carbon content almost the same.
  • Table 1 shows a comparison of wear resistance depending on the difference in carbon content. Alloys No. 41 and No. 42 are high-Si steels and do not contain Nb and B, so they are not included in the developed alloy composition range. It was.
  • No. 41 alloy and No. 42 alloy were prepared by adjusting to almost the same chemical composition except for the carbon content.
  • the wear resistance of No. 42 alloy with a high carbon content was about 2.5 times better than No. 41. This is an improvement in wear resistance due to high precipitation of chromium carbide due to the high carbon content of No. 42 alloy.
  • the carbon content is one of the factors having a great adverse effect on the corrosion resistance.
  • the carbon content is decreased in order to improve the corrosion resistance, the precipitation amount of the carbide is reduced and the wear resistance is reduced. Is significantly reduced. Therefore, the present inventor changed the component composition of high-carbon, high-chromium pig iron to ensure wear resistance by precipitating a large amount of carbide with a high carbon content.
  • the carbon content range is 0.5% ⁇ C ⁇ 2.0 to 2.5%
  • excellent wear resistance can be secured and at the same time excellent corrosion resistance and excellent toughness
  • the maximum amount of C was set to 2.5% or less.
  • Cr is the alloying element that most affects the brittleness of high Si steel.
  • the chromium content of the first layer of weld metal actually built using a welding material with a maximum chromium addition of 45% is approximately 25% to 50% when the base material is mild steel or esten steel.
  • the chromium content is 25%, it is about 15-19%.
  • the chromium content of the first layer of the deposited metal will be about 26-31%.
  • the penetration depth varies depending on the welding method, but on average the Cr content of the first layer weld metal is selected in the range of “15% ⁇ Cr ⁇ 31%”.
  • the maximum addition amount is 45%, it is used for hand-welded rods with a base metal dilution ratio of 50% or more, and when the base material is mild steel, the chromium content of the first layer weld metal Is about 23% and is within the above range.
  • the chromium content of the first layer weld metal Is about 23% and is within the above range.
  • the thickness of the weld metal is about 4-6 mm. It is considered that the behavior of the first layer weld metal is the most important in regard to the brittleness of the weld metal obtained from the weld overlay material. Therefore, it was necessary to establish the range of chromium content in the first layer weld metal.
  • chromium is the most abundant element in the developed alloy compared to other alloy elements, and the force also has a great influence on the brittleness of the weld metal, so the influence of other small additive alloys This is because it is very important to judge the behavior of this element within the specified range.
  • the above-mentioned patent alloy requires the precipitation of a large amount of acicular chromium carbide in order to give excellent high temperature wear resistance at 600 ° C or higher. It was very important to satisfy “6Si + 37 (wt%)”. When the Cr content is 32% or more and the Si content is 3% or more, a large amount of acicular chromium carbide precipitates, causing remarkable embrittlement and peeling on the hardened metal surface. It has been proved (Photo No. 2 in Fig. 2).
  • the developed alloy is not an alloy that focuses on high-temperature wear resistance, but has been developed with the main themes of ensuring ductility and improving corrosion resistance of steels that are brittle with iron-based alloys. Alloy. Therefore, there is no need to satisfy the condition Cr ⁇ —1.6Si% + 37Cr% to ensure wear resistance at high temperatures, so the amount of silicon and chromium that make the weld metal brittle is higher than the former. The force that can be reduced If the amount of Cr and Si added is reduced, the amount of chromium carbide precipitated decreases, and the ductility is restored, but the wear resistance decreases significantly.
  • the FREA-METAL alloy (No. 55), which had a high Cr and Si content and consequently deposited a large amount of brittle acicular chromium carbide in the matrix, was easily peeled off by bending (Photo No. in Fig. 2). 2).
  • the property that Si itself makes steel brittle cannot be improved.
  • the amount of chromium carbide precipitation that has been found to have the most impact on the brittleness of the alloy, followed by a tendency to acicularize the chromium carbide as the Si content increases.
  • the shape of chromium carbide also promotes embrittlement and is considered to be one of the main factors that cause cracks and delamination and reduce wear resistance.
  • the wear resistance of the weld metal is in the range of 15% ⁇ Cr ⁇ 31%
  • the wear resistance can be improved by adding boron. For example, 0.5%
  • 4.0% was added the weld metal became very hard and numerous cracks in the direction perpendicular to the weld bead occurred. It was very difficult to judge the degree of ductility of the weld metal, which was narrowed by adding B alone.
  • the wear resistance of the low B content steel and that of the high B content steel were compared.
  • the high B content steel showed very good wear resistance, but it showed significant brittleness.
  • Table 4 shows the effect of boron addition on wear resistance and bending workability.
  • the high silicon content which is the greatest feature of the developed alloy, is a very effective factor for high-temperature oxidation resistance, sulfuric acid corrosion resistance, hydrochloric acid corrosion resistance, and organic acid corrosion resistance.
  • Addition of 3.5% or more to an iron-base alloy has the property of making the alloy very brittle. Despite its excellent performance, it has not been used much as an iron-base weld overlay material.
  • Increasing the amount of Si added to high Cr steels makes it easier to make chromium carbides needle-like, resulting in a tendency to make the weld metal brittle, and when 5% alone is added, surface layer peeling occurs in the weld metal. 2.5 When it was reduced to 5%, the wear resistance was very poor.
  • the Si-added calorie that is the centerpiece of the developed alloy The amount must be at least 2.5% at the minimum and the range of the addition amount from 4.5% to 5.5% at the minimum, and it is an absolute requirement to eliminate brittleness within this addition range. .
  • Si has a narrow addition range, and it was very difficult to evaluate the ductility and wear resistance of the weld metal when added alone. Therefore, the need for the product of Si X B (% by weight) has arisen as a method of considering the effects of both B and Si.
  • B crystallized boride and gives very high hardness, but the type, shape and size of the boride, and the amount of crystallization considered that it affects the ductility of steel. In particular, if the size is remarkably smaller than the size of acicular chromium carbide, it was assumed that the factor that physically promotes fracture in bending was greatly reduced. It was expected that the wear resistance of the deposited metal would be improved if the microboride hardness was very high.
  • the boride NbB was amorphous, Cr B was plate-like, and Mo FeB was network-like (
  • Chromium boride is one of the various boride crystallized products that is supposed to cause the alloy to brittle in shape.
  • the correlation between the product of the Si XB addition amount and the Cr content can be considered as a correlation with the precipitation amount of acicular chromium carbide that promotes the most brittleness.
  • the amount of Cr carbide precipitation decreases and the tendency to embrittlement decreases.
  • the wear resistance is greatly reduced.
  • the wear resistance was improved and the range of the appropriate alloy composition was expanded.
  • the Si x B product should be set higher than 7.5, and for high Cr, Six
  • the alloy composition range that satisfies the ductility and wear resistance of the alloy at the same time was investigated by setting the product of B as low as 1.55 to 6.4.
  • the survey results are shown in Tables 5 and 6.
  • the wear resistance was secured when the upper limit of Si XB was 7.5, but if it was added more than this, the bending ductility could not be secured. If the wear resistance is less than this, the upper and lower adjustment ranges are very narrow, and the upper limit of the wear coefficient is 6.1 and the lower limit is 12.4, so excellent wear resistance cannot be obtained. Katsuta.
  • the alloy composition range that satisfies both excellent ductility and wear resistance at the same time was very narrow and limited. As a result, it was difficult to obtain a wide alloy composition range that satisfies both ductility and wear resistance at the same time only by the correlation between the product of Si x B and Cr.
  • the minimum standard value of WR is 15, so it is well within the standard value.
  • Nb and B coexisting additives provide ductility and wear resistance. At the same time, it has become possible to greatly expand the alloy composition range to be satisfied.
  • Nb is present as a third effective element for improving wear resistance in the product with Si XB, and the addition is very wide including 0 to 8.0% and no addition. It was expected that the amount range could be selected and the wear resistance could be adjusted easily. It is a well-known fact that Nb is an element that makes carbide carbide finer, and there is less risk of brittle metals, and niobium carbide (about HV2400) and niobium boride (about HV2250) give high hardness. Abrasion resistance was improved.
  • both B and Nb form microcrystallized materials that prevent brittle flaws in the newly developed alloy, and it is possible to recover the ductility of steel by substituting brittle acicular chromium carbide with both, Due to its high hardness, the wear resistance could be remarkably improved.
  • the effect of adding 1S Nb alone, which has already been proved by experiments, has not been able to obtain sufficient wear resistance, the co-addition effect with B has made it possible to improve wear resistance.
  • the essential condition of the developed alloy is that the product of SiX B and the coexistence of Nb are the absolute conditions in the correlation with the Cr content, and any of these lacks sufficient ductility and wear resistance. It is very difficult to secure a wide alloy composition range that satisfies the requirements.
  • Si X B that affects bending cacheability was determined.
  • the product of Si and B that gives a weld metal with excellent bending strength without brittleness of the matrix was in the range of “1.25 ⁇ Si X B ⁇ l l.5”.
  • Si X B value was high, and when the Cr content was high, the Si X B value was low.
  • the wear resistance tends to decrease as the value of Si X B decreases, and Nb was added to compensate for the wear resistance.
  • the developed alloy is intended to improve corrosion resistance.
  • the chromium content of the first layer weld metal is as low as 15 to 18%, carbon and chromium are bonded to the grain boundaries by welding heat.
  • Ti has extremely strong affinity for oxygen and is a loss in high-temperature oxygen-ion reaction in metal than Nb. Judging from the fact that there were many, the amount was 1%.
  • Weld metal bending bending performance evaluation method is SS400, SUS304, SUS310S 9mm thickness X 100mm width X 400mm length on a steel sheet with 1 layer overlay 5-5mm weld metal
  • the cladding clad steel plate was manufactured and bent with a press with the hardened metal inside.
  • the target Stellite No. 1 alloy was deposited by gas welding on the SS400 in two layers and a thickness of 5mm. The length of the test piece was about 200 mm.
  • the bending curve curvature is about 200R, and the bending curve does not affect the hardened metal, and a good bending performance is obtained. Bending ductility was evaluated when surface peeling or very slight chipping occurred ⁇ , and when the surface of the hardened metal had many surface peeling or block-like chipping and poor toughness. The results are shown in Figure 1.
  • Si X B is plotted on the vertical axis and the Cr content of the first layer weld metal is plotted on the horizontal axis, and the relationship between these ductility is displayed.
  • the upper curve shows the fracture limit line for surface layer separation and dropout that occurs in the weld metal when the clad steel sheet is bent at a curvature of 200R. Above this line, it is easy to break by bending. Show.
  • the underline shows the limit line where the low stress wear coefficient WR of the weld metal is maintained at 15, and below this, the wear coefficient increased and the wear resistance deteriorated significantly.
  • wear resistance composed of one-layer overlay
  • the bending strength of worn steel there are many alloys that can be bent to a radius of 200 mm and can be bent with a minimum curvature of less than that. Its bending workability is similar to or better than that of Stellite Nol, and the bending workability equivalent to or higher than that of high-carbon, high-chromium pig iron alloys used in wear-resistant steel sheets was obtained. Alloys with high Si content steels that have such a minimal R bending force looked back in the past, and they did not exist.
  • the evaluation method of wear resistance was performed using an endless belt grinder polishing tester.
  • the wear coefficient of each alloy was calculated based on the ratio between the wear volume of SS400 and the wear volume of the alloy to be compared with mild steel SS400 as a reference value.
  • WR wear coefficient
  • overlaying small articles of stellite alloy overlaying of parts with a large force area to be gas-welded is typically built up by arc welding.
  • Overlaying technology which has higher welding efficiency than gas welding, is easier than gas welding, and welding engineers in recent years have become proficient in arc welding. The material penetration becomes deep and the wear resistance is greatly reduced.
  • the wear coefficient is 54. If 2 to 3 layers are not built up, the wear resistance equivalent to the gas method cannot be obtained.
  • the appropriate range of wear coefficient WR for the developed alloy is 1 ⁇ WR ⁇ 15.
  • the bending performance of welded materials and the wear resistance evaluation basically conform to the correlation formula between Si XB and Cr obtained with wear-resistant steel sheets.
  • the difference between the wear-resistant steel plate and the steel plate is that the dilution rate depends on the base material and that bending is not necessary. Therefore, wear-resistant steel The addition of a slightly larger amount of alloy is permitted as compared with the case of producing a plate.
  • the force that is the component addition range in the welding material Since the welding overlay method, the type of base material, and the penetration depth are greatly different, it is necessary to correct the components obtained in the clad steel plate. For example, a penetration rate of about 50% is predicted for the build-up of hand-welded rods, about 35% for MIG welding, about 45% for TIG welding, about 35% for flux cored wire, and 30 for the submerged door method. ⁇ 60% is expected. Since it is generally susceptible to deep penetration, it is necessary to add a large amount compared to the case of manufacturing a clad steel plate. Incidentally, the penetration depth in the case of the clad steel plate is assumed to be in the range of about 25-35%.
  • the difference from the clad steel plate is that the need for bending is very small. There is no need for bending because the surface of the original shape of the article is built up.
  • the layers are overlaid with one or two layers, so if the number of layers increases, the influence of dilution of the base metal decreases, and it approximates the design component. In general, however, there are many two-layer overlays.
  • the thickness of one layer is generally about 3 mm, and the thickness of the second layer is generally 5 to 6 mm. If a larger number of layers is deposited, the amount of welding material used increases and the number of build-up steps increases, which is expensive and is generally a two-layer build-up.
  • the carbon content is 0.5% ⁇ C ⁇ 2.5%
  • the chromium content is 15% ⁇ Cr ⁇ 45%, 0 ⁇ Ni ⁇ 13 %, 0 ⁇ Mn ⁇ 10%, 0 ⁇ Nb + V ⁇ 8%, Cu: 7% or less, Mo: 10% or less, performance can be secured within this range even under the influence of penetration. .
  • Table 7 shows a comparison of hardness and wear resistance of various representative alloys.
  • SS400, SUS31 OS stainless steel, high chromium pig iron, and sulfuric acid-resistant steel sheet are cut out from the raw material, Stellite Nol and No.6 are built up 5mm by double layer gas welding, GL and UF are double layer 5mm by non-gas arc method It was built up.
  • the alloy of the wear-resistant steel plate was built up to a thickness of about 5 mm per layer by the submerged arc method.
  • the material of the overlay is SS400, SUS304, SUS310S stainless steel, and the wall thickness is 9mm.
  • the iron-base corrosion-resistant wear-resistant overlay welding material is composed of 0.5 to 2.5% by weight, Si: 2.5 to 5.5%, Mn: 0 to 10% or less, Cr: 15% to 45%, Ni: 0 to 13%, Cu: 7% or less, Mo: 10% or less, B: 0.5% to 4.5%, 0 ⁇ Nb + V ⁇ 8 %, With the balance being iron and inevitable impurities.
  • the welding material is a coated arc welding rod, a flux cored composite wire, a metal powder or a forged rod.
  • the iron-based corrosion-resistant wear-resistant alloy of the present invention is as follows:% by weight: 0.5 to 2.0%, Si: 2.5 to 4.5%, Mn: 0 to 10% or less, Cr: 15-31%, Ni: 0-16%, Cu: 7% or less, Mo: 10% or less, B: 0.5-3.5%, including 0 ⁇ Nb + V ⁇ 8%, 15% ⁇ Cr rather than to have you in the range of 27% (SiX B) ⁇ 2014ZCr 2 +0. 083Cr + l. 05 to satisfy, in the range of 27% ⁇ Cr ⁇ 31%, 1. 25% ⁇ (SiX B) ⁇ 6.
  • Ti 1.0% or less
  • AL 3% or less
  • Rare earth metals 0.5% or less in total
  • N 0.2% or less
  • 1 type or 2 types or more Can be included.
  • This iron-based corrosion-resistant and wear-resistant alloy is specifically an overlay welding metal or steel, and the V-shift is comparable to or more than that of the cobalt-based alloys Stellite No. 1 and No. 6. Excellent wear resistance and corrosion resistance.
  • the amount of C is 0.5% or less, the amount of chromium carbide that contributes to wear resistance decreases.
  • the amount of C exceeds 3%, (Cr, Fe) C-type carbides precipitate as coarse-grained needle-like carbides.
  • the carbon content contained in the weld metal is preferably 2% or less because bending workability is required. Less than 2% is a transition point where iron and steel changes into steel as judged from the iron-carbon phase diagram, and steel is more ductile than steel.
  • overlay welding there is an effect of penetration into the base metal, and even if 2.5% of C is added to the alloy material, if the base metal is diluted by 25-40%, the carbon of the first layer of weld metal The content drops to about 1.5-1.9%. Therefore, the amount of carbon added to the alloy is preferably 2.5% or less.
  • the amount of carbon contained in the weld metal has an influence on the corrosion resistance, and the corrosion to the 10% hydrochloric acid solution does not significantly affect the range of the addition amount of 0.5% to 3.0%. But 10 When the added amount is 2.0% or more with respect to the% sulfuric acid solution, the corrosion resistance suddenly decreases. In the range of 0, 5% to 1.5%, no change is observed compared to corrosion weight loss, but it changes rapidly at 2.0% or more.
  • the particularly desirable carbon addition amount is 0.5% or more for the lower limit, and 2.0% or less for the upper limit as judged by the sulfuric acid resistance to corrosion, and a maximum of 2. considering the penetration depth of different types of welding methods. 5% or less is preferable.
  • Si 2.5 to 5.5 (material), 2.5% to 4.5% (alloy)
  • Si works to prevent the oxidation of steel. 2. Increase the acid resistance at 5% or more, and effectively prevent acidity in the temperature range up to 1100 ° C with a single additive of 5% or more. From the standpoint of corrosion resistance, Si is effective in hydrochloric acid corrosion resistance and sulfuric acid corrosion resistance, and exhibits its true value in the presence of Cr, Mo, and Cu.
  • the high Si content weakens the steel and when it is added in a large amount, it becomes easy to peel off the surface layer, and in particular, it has an adverse effect on the bending cacheability of the wear-resistant steel plate. If it is less than that, the wear resistance and acid resistance are lowered, and at the same time, the hydrochloric acid corrosion resistance is adversely affected.
  • Si exceeds 4.5%, the steel becomes very brittle, leading to a reduction in the ductility of the steel and causing a piece-like exfoliation on the surface layer until it is built up. This also has an adverse effect on bending workability, so this is the upper limit of the maximum amount of sprinkling.
  • the Si addition amount is 2.5% or more for the lower limit, and the upper limit is preferably 5.5% or less considering the effect of penetration depth due to different welding methods, and the upper limit is particularly 4.5% or less. preferable.
  • Cr is extremely effective in suppressing the acidity of steel and contributes to improving high-temperature oxidation resistance.
  • Cr combines with carbon to deposit various chromium carbides to give high hardness and improve the wear resistance of the steel.
  • the amount of carbon added is 3% or less, the weld metal in the first layer is diluted with the base metal and the carbon content is around 2%, so that sufficient carbide precipitation cannot be expected and wear resistance is reduced.
  • the corrosion resistance has been improved. Improvement of corrosion resistance of iron-base alloy, which is the main object of the present invention. Suppresses precipitation of a large amount of carbide and remains in the matrix.
  • the Cr content is increased to improve the corrosion resistance.
  • the wear resistance is not adversely affected by the addition of B, Nb and Si, and the amount of C added is 2.5. Suppressed to below%.
  • the alloy of the present invention it is one of the main purposes of the present invention to give the ductility of the high Si content steel, and the Cr content has a great influence on the ductility of the high Si steel. The correlation between the Cr content and the product of Si and B has already been described in detail.
  • the weld overlay Since the weld overlay is deposited on a dissimilar base metal, it undergoes dilution of the base metal strength.
  • the chromium content of the first layer weld metal obtained by dilution of the base metal is set to a minimum of 15% and a maximum of 31%. Therefore, since the dilution rate with the base metal differs depending on the various overlaying methods, the minimum addition rate was set to 15% and the maximum addition rate was set to 45%.
  • Mn 0 to 10% (material, alloy)
  • Mn and Ni promote austenite and increase its stability. Mn's austenite formation ability is about half that of Ni. This Mn has the effect of stabilizing the workability of overlay welding. Since the alloy of the present invention has a high Si content as a basic composition, it contains ferrite, and in order to maintain the austenite yarn and weave, Ni is expensive, so it is added as a substitute for Ni. Particularly preferred is an Mn addition amount of 0% to an upper limit of 8% or less. [0120] Ni: 0-13% (material), 0-16% (alloy)
  • the high Ni-added alloy is preferably 0% in view of the consumption of the rare-value alloy. Therefore, it is inevitable that the additive is added only when it is necessary for corrosion resistance and bending ductility.
  • the Cr content is 23.5% or more and less than 31%, if the Ni content increases by 3 to 6%, the bending ductility or the tendency of the surface of the weld metal to peel off decreases, which has the effect of improving the Si XB value by 3 points. Admitted.
  • Applications of the alloy of the present invention are related to waste incineration and are effective in terms of chlorine gas corrosion resistance, and a high content is desired. It also has the effect of preventing carburization at high temperatures, and in applications subject to thermal shock, it has the effect of preventing the peeling of the Cr passive film, so it is desirable that the Ni content be high when the operating temperature is high.
  • the alloy structure of the present invention basically tends to form a mixed structure of ferrite and austenite, and the structure can be converted to an austenite structure by the combined addition of Mn and Ni.
  • Mn manganese
  • Ni nickel
  • the base material is austenitic stainless steel. Due to the difference in linear expansion coefficient, there is a risk that the weld fusion line will be stressed and debonded.
  • the maximum addition amount of Ni is preferably 13% or less. If it is insufficient, Mn can be added to adjust.
  • Nb + V 0% or more, 8% or less (material, alloy)
  • V forms fine carbides, and its formation ability is located between Cr and Mo.
  • High temperature wear resistance is improved by improving tempering resistance by carbide reaction and secondary hardening by tempering. It also improves resistance to soft deformation due to temperature rise and cracking due to heat chucking.
  • Some of the borides that crystallize in the alloy composition range of the present invention crystallize in a shape that makes it difficult to promote embrittlement of the alloy.
  • Mo FeB is a network
  • NbB is an amorphous shape.
  • Cr B is plate-shaped. Each micro hardness is HV2400, HV2250, HV1400
  • Cr B crystallizes in a plate shape, but is larger than acicular chromium carbide
  • the minimum addition amount of B ranges from 0.5% to the maximum addition amount to 3.5%, and considering the penetration depth of dissimilar welding methods, the maximum addition amount for welding materials is 4. 5% or less.
  • Titanium carbide also produces very high hardness, but titanium makes welding workability difficult and the bead surface is not smooth. Therefore, in the same way as Nb, add up to 1% or less to prevent intergranular corrosion in 15% low chromium steel.
  • the alloy of the present invention may be used for high-temperature applications with a normal temperature power of 600 ° C or higher, and the need to provide high-temperature acid resistance. These can be selectively added mainly to improve high-temperature oxidation resistance. For example, A1 improves acid resistance at high temperatures, and exhibits its effect especially when sulfur gas is used in a large amount of usage atmosphere. In this case, it is better to reduce the Ni content and increase the A1 content. If A1 exceeds 3%, an alumina film is formed on the overlay metal, and slag is likely to intervene, which hinders welding workability. In order to obtain a stable effect, 0.5% to 3% is preferable.
  • Mo exerts a remarkable effect on the sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance of the alloy of the present invention by co-addition with Cr, Cu, Si, and corrosion resistance equal to or higher than that of cobalt-based alloys Stellite No. 1 and No. 6 Showing gender.
  • Mo is currently an extremely expensive alloy, and if the addition amount is increased too much, the production unit price of the alloy of the present invention will increase significantly. Therefore, the minimum addition amount is set to 0% and the maximum addition amount is set to 10%.
  • sulfuric acid corrosion exceeded the corrosion resistance of stellite, so even if it is added more than this, excess additive will be added, so the maximum addition amount should be 10% or less, and the maximum L addition is particularly preferred. 8%.
  • Cu improves sulfuric acid resistance and hydrochloric acid resistance.
  • a garbage incinerator when combustion is interrupted, strong corrosiveness and acid dew point liquids such as sulfuric acid and hydrochloric acid are generated.
  • Mo which is not effective with Mo alone, is effective. Is.
  • the composite additive refines the microstructure and improves the high-temperature wear resistance that facilitates the precipitation of fine needle-like carbides in a high Cr and high Si content state.
  • the base metal regardless of the type, for example, mild steel, weathering steel plate, sulfuric acid resistant steel, seawater resistant steel, various stainless steels, Mn-Cr austenitic steel, nickel alloy steel, Easily weldable steels such as chrome alloy steel can be used, but the points to suppress dilution and the points to ensure corrosion resistance and high-temperature acid resistance are 9 to 35% for Cr and 0 to 25% for Ni. Including is preferable.
  • the iron-based corrosion-resistant wear-resistant metal of the present invention is an inexpensive iron-based alloy, although it is an inexpensive iron-based alloy.
  • it is resistant to sulfuric acid and hydrochloric acid corrosion, and wear resistance is equivalent to or better than these alloys, and it can be used as various welding materials, wear resistant steel plates and steel plates. It is an alloy.
  • Si When Si is added to a metal as an alloy, particularly an inexpensive iron-based alloy causes weakness peculiar to Si, and it is very difficult to use it as a welding material. In particular, it has the feature of generating countless cracks in the thickness direction of the weld metal. Due to its fragility, the overlay metal generated surface force section-like delamination, and when the content increased, it became bulky and dropped from the base metal. Furthermore, in the case of wear-resistant steel plates, peeling and dropping occurred just by applying pressure with a press or the like in the strain removal operation, and its use was restricted except for limited applications. When it was used as a welding overlay wire or welding rod, the build-up material was peeled off and dropped off when the overlay was subjected to a slight impact.
  • Nb is an alloy element that is very effective as a wear resistance adjustment alloy by expanding the wear resistance adjustment range.
  • Tables 8 to 10 show the composition of the weld metal of various wear-resistant steel plates prepared to obtain the correlation formula between Si X B and Cr.
  • the bending workability of these wear-resistant steel sheets was investigated.
  • the amount of Cr contained in the first layer molten metal was calculated with a base material dilution rate of 25%.
  • the method for evaluating the bending performance of the weld metal is as follows: overlaying 5 to 6 mm of weld metal in a single layer on a steel plate with dimensions of SS400, SUS304, SUS310S 9 mm thick x 100 mm wide x 400 mm long.
  • the clad steel plate was manufactured and bent with a press with the hardened metal inside.
  • the target Stellite No. 1 alloy was deposited by gas welding on the SS400 in two layers and a thickness of 5mm.
  • the length of the test piece was about 200 mm.
  • the bending curvature is about 200R, and the bending process has no effect on the hardened metal, and a good bending performance is obtained. Bending ductility was evaluated when a slight drop occurred, and when the surface of the hardened metal had a large number of surface peeling and lump formation and lacked toughness. The results are shown below.
  • Fig. 1 shows these figures organized. Te proper range in odor correlation diagram for the product and the Cr content of SiXB despite was decline significantly carbon amount and ⁇ ⁇ 5 ⁇ 2 .0%, No.2, No.6, No.10 — C. No. 15, No. 16, 16— C, No. 23, No. 26, N ° -32, No. 32— 1, No. 33, No. 34, No. 38, No. 66, No.67, No.68, No.72, and alloys had a wear coefficient of 3 to 6, and there were many alloys that could secure wear resistance more than twice that of Stellite No.1 and No.6.
  • Nb showed the ability to improve the wear resistance without fail.
  • the wear coefficient WR tended to be very bad with 8 to 15 regardless of the Cr content, but the bending performance improved on the contrary. .
  • it can be improved by increasing or decreasing the Nb loading between 4 and 8%. If the SiX B product is in the range of 4.5 or more and 11.5 or less, adjust the amount of Nb applied force in the range of 0.5-4%, and the product of Si XB is about 4. When the content is lowered to 5 or less, if 4 to 8% addition is selected, the wear resistance can be improved without lowering the bending ductility.
  • the bending ductility of No. 10 alloy has a high force of Si X B as high as 8.6, so if it is lowered to about 7, it can be changed to ⁇ .
  • No. 17 alloy can also be improved to ⁇ if the Nb addition amount is reduced from 4% to 1-2%. It was found that good bending ductility and excellent wear resistance can be obtained by adjusting the amount of Nb added and Si X B within the range surrounded by the upper and lower limit curves.
  • V is said to be effective as a spherical carbide forming element equivalent to Nb, so the effect of V was investigated.
  • Table 16 shows Nb-added alloy groups, and V-added alloy groups. Table 17 shows.
  • the wear coefficient WR was 11.0 for Nb alloy and 7.4 for V alloy, and the V-added cage was somewhat superior in wear resistance.
  • Nb alloy No. 9 and V alloy No. 49 were compared.
  • the alloy loading is the same, and the base material SS400 is the same.
  • the amount of V added was less than that of Nb, and it was effective in improving wear resistance. V, like Nb, contributed to improved wear resistance. Regarding bending ductility However, the amount of V added was limited to the same maximum as 8% for Nb. In addition, coexistence of Nb and V can be considered, and the total addition amount of both is preferably 8% or less.
  • the force using a large amount of the SUS310S base metal is used.
  • the difference in wear resistance due to the difference was a concern. This is because the numerical value of the wear coefficient WR, which indicates wear resistance, is the force obtained by mixing and comparing the numerical values obtained from the S stainless steel base material and the mild steel base material. Originally, it was necessary to perform tests on the same base metal.It was necessary to vary the chromium content of the weld metal from 15% to 31%. Because it was used to adjust the chromium content of the weld metal, it was very powerful.
  • Table 18 shows the effect of base metal type on wear resistance.
  • the former is SS400 and the latter is SUS310S with the same component addition.
  • SS400 and SUS304 stainless steel base materials were used up to a Cr content of about 23-24%, and SUS310S stainless steel was used when the Cr content exceeded 25%.
  • the Ni content range is about 0.0 to 10%, for the SUS304 base material, about 2. 0 to 12%, for the SUS310S base material, the t content.
  • the Ni content range is about 0.0 to 10%, for the SUS304 base material, about 2. 0 to 12%, for the SUS310S base material, the t content.
  • the Cr content is 23.5% or more and less than 31%, if the Ni content increases by about 3 to 6%, the bending ductility tends to improve by about 3 points in the Si XB value.
  • the generated alloys are also mixed, and in the area surrounded by this region, it is necessary to carefully examine the combination of various elements and carefully construct the alloy.
  • the Cr content was 23.5% or less, the weld metal was broken even when the Ni content was 7 to 8%, and the effect of Ni addition preventing cracking was ineffective.
  • SiX B 570 / Cr 2 -0. 066Cr + l. 145 (3)
  • the corrosion resistance of the alloy of the present invention was developed with the goal of the Worthite alloy as described above. Its chemical composition is as follows. C ⁇ 0.07%, Cr20%, Ni25%, Si3.5%, Mo3.0%, Cu2.0%
  • Other welding materials include DIN8556 E20. 25. 5LCuR26.
  • the typical chemistry component is as follows. CO. 025%, Mn2%, SiO. 4%, Cr21%, Ni25%, Mo5%, Cul. 8%, NbO. 1%, NO. 08%
  • the alloy design was made so that the two types of corrosion-resistant alloys were transformed into wear-resistant alloys and at the same time the two types of alloys were originally retained! DIN8556 welding rods are used as a corrosion-resistant material for joining plants in phosphoric acid, sulfuric acid, acetic acid, salt, and seawater environments. In in use.
  • SS400 mild steel, SUS310S, SUS304 stainless steel, high-chromium pig iron, and meta-acid steel were also cut into plate materials and used as test pieces. Others were all materials for overlaying, and a test piece was prepared by overlaying 5 mm thick on the top of SUS310S.
  • the build-up test piece is a corrosion weight loss including the base material SUS310S, and it is impossible to compare hardened metal samples themselves for the corrosion test because some alloys are cracked frequently. Assuming an actual plant, the corrosion test including the base material was conducted.
  • test piece The dimensions of the test piece were 50 x 50 mm, and the wall thickness was 9 mm.
  • the thickness of the hardened metal was about 5 mm, and the base metal surface was cut based on the hardened metal surface to ensure a thickness of 9 mm.
  • the total surface area of the specimen was 68 cm 2 . Force considering the display of corrosion weight loss per unit area Since the SUS310S dissimilar metal of the base metal is included, the total corrosion weight loss measurement values were displayed as they were for comparison.
  • SUS 31 OS The reason for selecting SUS 31 OS as the base metal is that a large amount of chromium is transferred to the weld metal by melting from the base metal. This made it easy to adjust the amount of Cr added to the weld metal.
  • the amount of chromium contained in SUS304 was 18%, which is 25%, but SUS310S made it easier to obtain more chromium from the base metal. Furthermore, it is excellent in corrosion resistance. Due to the effect of penetration, the Cr content of the 1-layer overlay metal will be the same as or more than that of the additive component in the SUS 310S base metal strength. The base material penetration rate was 25%.
  • the Cr content is less than that, mild steel or esten steel is often selected as the base material, and the chromium content often decreases upon dilution.
  • the base metal is stainless steel, and 304, 316, 316L steel is mainly used. Therefore, the corrosion test was conducted mainly in the range where the Cr content was about 23-30%, but some low-chromium steels were also required, so 16% chromium steels were also investigated.
  • No. 29 alloy, No. 10 alloy and No. 30 alloy were superior to Stellite alloy against hydrochloric acid corrosion. Especially in 10% hydrochloric acid solution corrosion test, No. 10 alloy was both Stellite No. 1 and No. 6. It is better to use No. 10 alloy for hydrochloric acid corrosion resistance.
  • No. 16 alloy is about 54 times for 10% sulfuric acid corrosion, about 72 times for 5% salty ferric iron, and about 10% for hydrochloric acid solution. It was 94 times more resistant to corrosion. No. 14 alloy showed almost the same tendency.
  • the No. 16 alloy showed almost the same tendency.
  • the No. 16 alloy Compared to the conventional high-carbon, high-chromium pig iron-based welding alloy GL, which is a conventional iron-based alloy, the No.
  • 16 alloy has a corrosion resistance of about 19 times with 10% sulfuric acid solution and about 23 times with 5% salty iron-iron solution It has been demonstrated that it has excellent corrosion resistance compared to the high chromium pig iron alloys that have been used in the past, and that it can be sufficiently applied to corrosion-resistant and wear-resistant applications as an iron-based alloy.
  • Low chromium steel should be used for wear applications and high chromium steel should be used for light wear applications.
  • FIG. 1 is a chart showing the effects of Six B content and Cr content on bending cacheability.
  • FIG. 2 Photographs related to alloy evaluation
  • Photo 1 is a photomicrograph showing the acicular structure of a conventional alloy
  • Photo 2 is a photograph of a sample cross section showing bending cracks of the conventional alloy.
  • Photo 1 is a photomicrograph showing the structure of Alloy No. 10-C of the present invention
  • Photo 2 is a photo after the bending crack test.
  • FIG. 4 is a photomicrograph showing the structure of Alloy No. 5 of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Powder Metallurgy (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Description

明 細 書
鉄基耐食耐摩耗性合金及びその合金を得るための肉盛溶接材料 技術分野
[0001] 本発明は、耐腐食性及び耐摩耗性に優れた低炭素一高シリコン一ボロン一ニオブ 一高クロム铸鋼系の鉄基合金、より詳しくは、 304ステンレス鋼や高クロム铸鉄、高炭 素一高クロム铸鉄系材料に比べて耐腐食性及び耐摩耗性に圧倒的に優れ、しかも 高炭素一高クロム炭化物析出型鉄基耐摩耗性合金では到底得られな!/ヽ高 ヽ耐食性 を有すると共に、これら金属より優れた耐摩耗性を有し、更には高 Si含有鋼特有の脆 性剥離を生じ難!ヽ高性能で安価な鉄基耐食耐摩耗性合金、及びその合金を得るた めの肉盛溶接材料に関する。
背景技術
[0002] 近年、ごみ焼却工場、カーシュレッダ一流動層焼却炉、廃油、廃液焼却炉等が建 設され稼動している。これらの装置の耐熱耐摩耗部には高クロム铸鉄が、また高温熱 酸ィ匕を受ける装置には例えば SCH13耐熱铸鋼等が使用されている。しかし稼動後 、僅かな時間でそれらの部材類及び装置類が処理物や熱により磨耗、焼損及び腐 食損耗を受けており、その延命対策が望まれている。
[0003] これら装置類、部材類の長寿命化対策としては、磨耗部分の肉盛補修溶接が主で あり、その溶接材料としては鉄基合金である高炭素一高クロム铸鉄系肉盛溶接材料 が主に使用されてきた。その理由は、安価な鉄基合金であることや、耐摩耗性や高 温耐酸ィ匕性に優れていることによる。しかし、これらの炉装置や周辺装置類は、高温 における腐食性燃焼ガスゃ炉停止時に生じる酸露点腐食等に曝され、単なる高温 耐酸ィ匕性ゃ耐摩耗性のみでは対処できなくなってきているのが現状である。
[0004] 即ち、高炭素一高クロム铸鉄系溶接材料が持つ優れた耐摩耗性を保持しつつ、優 れた耐腐食性をも具備して 、なければ、これらの諸装置類の長寿命化を図ることが 出来なくなつきた。特に耐食性に関しては塩素ガス、塩酸、硫酸、希硫酸等による腐 食耐性が必要である。
[0005] 耐腐食性、耐酸化性、さらに高温耐摩耗性が要求されるこれら使用環境に関して は、コバルト基合金であるステライトが鉄基肉盛材料に比べ非常に優れており、肉盛 材料としての適用が考えられた。しかし、この合金は鉄基合金に比べて非常に高価 であり、費用対効果のバランスが取れない。このため、安価で同等の性能を持つ鉄基 肉盛溶接材料の開発が望まれて!ヽた (非特許文献 1)。
[0006] 非特許文献 1 :第 14回実用溶接講座テキスト「表面処理技術の基礎と応用」(その 1) 溶接学会東部支部 昭和 63年 6月 23〜24日
[0007] これにカ卩え、ニッケル、コバルト等の希少価値の金属元素を持つ高価な合金を、単 なる使い捨ての磨耗材料として使用することは、国際的な省資源化の方向性力 判 断して非常に無駄であり、これらの高価な合金は本来、付加価値の高い恒久的な材 料や資源回収可能な用途に有効利用されるべきであり、磨耗材料のような使い捨て 用途には安価な鉄基耐摩耗合金が使用されるべきと、本発明者は常々考えていた。
[0008] そして、鉄基耐摩耗合金としては、現在は高炭素一高クロム铸鉄系肉盛材料が安 価であることから、多々使用され続けられている力 耐腐食性に関して言えばコバル ト、ニッケル基合金に比べ極度に見劣りし、とても耐食性材料とは言えない存在であ つた。従来から主に使用されてきた高炭素一高クロム铸鉄系溶接材料の代表的な成 分組成は「C : 3〜6%、 Cr: 16〜36%, Mo : 0〜3%、 Fe :残」である。
[0009] だだ、これに属する合金は非常に耐摩耗性に優れており、鉄基合金にも拘わらず 高クロム含有量により一応は高温耐酸化性に優れ、 600°C及び 600°C以上の高温 摩耗用途にも多用されてきた。その代表例の一つとして次に述べる化学成分を持つ 合金がある。「C : 5. 2%、 Cr: 32%、 Si: 0. 6%、 Mn: 0. 7%、 Fe :残。」
[0010] この鉄基耐摩耗性溶接肉盛金属は、優れた耐摩耗性を示し、磨耗係数で表示する ならば SS400軟鋼を 100として 5. 0〜 10の磨耗試験値を示し、軟鋼の約 10〜20倍 の耐摩耗性を示す。しかし、あまりにも高炭素含有量のために耐腐食性は十分とは 言えない。
[0011] そこで本発明者は、この高炭素一高クロム铸鉄系溶接肉盛合金が持つ耐摩耗性と 同等かそれに匹敵し、コバルト合金のステライト No. l、No. 6が持つ耐腐食性に近 似し、ある種の腐食媒体に関しては同等かそれ以上の耐腐食性を持つ安価な鉄基 合金の開発を企画した。ニッケル基合金で耐摩耗性に優れた合金としてはコルモノ ィ No. 6合金が有名である。これの磨耗係数 WRは 5であり、ステライト No. 1の WR =8より幾分優れているが、硫酸腐食性に関してはステライト合金より劣るので、本発 明者の目標はあくまでもコノ レト基のステライト合金とし、それを凌駕すればニッケル 基に勝ると判断した。ステライト No. 1、 No. 6の標準組成は以下のとおりである。
[0012] 〔コバルト基合金のステライト No. 1の標準化学成分〕
「C : 2. l%、Si: 0. 8%、Mn: 0. 4%、 Cr32. 0%、Fe : 2. 0%、W: 12. 0、 Ni: l. 7 、 Mo : 0. 1、 Co :残」
[0013] 〔コバルト基合金のステライト No. 6の標準化学成分〕
「C : 1, 2%、Si: 0. 8%、Mn: 0. 5%、 Cr: 27%、 Ni: 2. 7%、W:4. 5%、Fe : 2, 5 %、 Mo : 0. 1%、 Co :残」
[0014] これらのコバルト基合金に含有されている合金元素を見ると、コバルト、タングステン 等が多量含まれ、非常に高価な元素力も構成されている。従って、コバルト基合金は 非常に高価な合金であるため、肉盛面積が非常に広い装置の場合にはコスト的に採 算が取れず、費用対効果を満足させることが極めて困難であった。
[0015] このため、この合金は極端に限られた小さい面積を持つ部分の肉盛で多大の効果 を発揮出来る用途にのみ使用が限定されると考えられる。各種バルブシート類、例え ば-一ドルバルブの先端、ポンプロッド、ポンプスリーブ、カムシャフト等である。ステ ライト No. 1、 No. 6合金は耐熱、耐腐食、耐摩耗性合金として 3要因が同時に要求 される用途で、特に 600°C以上の用途に適切であり、世界的に著名な合金である。し かし、 600°C以下の用途に関しても耐腐食性、耐摩耗性が要求される装置の肉盛に 多用され続けているのが現状である。
[0016] 600°C以下の用途にさえ高価な希少元素を含有した合金を単なる磨耗部材に使 用することは、先にも述べたように世界的な資源の無駄使いと将来の資源の枯渴カも 判断して反社会的であり、高価な希少元素はより有意義な付加価値の高い用途に適 用されなければならないし、回収可能な用途に使用されなければならない。
[0017] そこで、本発明者はこの問題点を少しでも解決前進させる手段の一つとして、安価 な鉄基合金であって、かつ 600°C以上の高温で優れた高温耐酸化性を示す高耐摩 耗性の「肉盛溶接材料及びクラッド材」を提案し特許を取得した (特許文献 1)。この 特許合金は、 600°C以上の用途で高温耐摩耗性、耐酸化性、耐腐食性が要求され る装置に肉盛されることにより、ステライト No. 1より優れた性能を与え、大幅なコスト 削減を図る。
[0018] 特許文献 1 :特許第 3343576号公報
[0019] 代表的な実用例としては、 800〜900°Cの雰囲気温度で使用されるロータリキルン の搔き上げリフター、 900〜1000°Cで使用されるクリンカークーラー落とし口ライナ 一、 900°C以上の銅資源回収クリンカーグリズリーバー、 800°Cのクリンカー搬送コン ベヤーバケツ、流動床炉ボイラーチューブ、エア吹き出しノズルのトワイヤーの肉盛 等があり、これらの肉盛に関する多数の実用実績により、長寿命化による大幅なコスト 低減に貢献して ヽる。この特許肉盛合金の代表的な成分組成及び性能を以下に示 す。
[0020] [No. 55合金の FREA— METAL化学成分(重量%)〕
溶着金属組成「C : 1. 3%、 Si:4. 5%、 Ni: 3. 7%、 Mn: 3. 6%、 Cr: 36%、 Fe :残 J
母材: SUS310S 9mmt
硬度: HV977
磨耗係数: 4. 2
1層目 Cr分析値 : 35%
ミクロ組織: X 400倍(図 2中の写真 No. 1)
[0021] また、硬化金属を内側にした曲げカ卩ェ(曲げ半径 290mmR)を行った試験片 No.
55を図 2中に写真 No. 2で示す。なお合金 No.は後述する組成比較試験で採用さ れて 、るものである(図 1参照)。
[0022] この特許合金の最大の特徴は、 30%を越える高クロム鉄基合金に高 Siを含有させ たことである。 Siは、高温耐摩耗性や耐熱性を与える高価な V, W, Mo, Co, Ni等 の元素に比べ非常に安価であり、シリカから還元すれば、地球上に無尽蔵に存在す る原料を利用できる。しかし、高 Si含有鋼の最大の欠点は合金を非常に脆くすること であり、この欠点のために鉄基耐摩耗肉盛金属への多量添カ卩は現在においても敬 遠され続けている。それにもかかわらず、本発明者はあえて Siの特徴である地球上 で無尽蔵に存在する安価な元素、高温耐酸化性、クロム炭化物の針状化を促進する 性質に着眼して、通常避けて使用されない程の高含有量、即ち 3. 0〜7. 0%を添カロ した。
[0023] ちなみに、既にシリカロイと呼ばれる高 Si含有鋼が製造されてはいる力 この金属 は金属間磨耗用途に対して開発された合金であり、炭素含有量が 100分の 1台で耐 摩耗性を与える炭化物の析出量が極端に少なぐ前記特許合金のような激しい高温 研削磨耗用途にぉ 、ては実用に耐えな!/、合金であった (特許文献 2)。
[0024] 特許文献 2 :特開昭 54— 81115公報
[0025] 高 Si含有鋼の溶着金属は、表層面において切片状の表層剥離を生じる性質があり 、曲げ加工を行うと切片状に飛び散る危険性がある。更に強く押し曲げると溶着金属 が母材金属カゝら脱落するように破断する。前記耐摩耗性合金の曲げ試験片 No. 55 を見ればその典型的な剥離状態が認知できる。従って、前記特許合金は曲げ加工 の機会が少ない溶接棒や溶接肉盛ワイヤの形態で主に使用されて来た。
[0026] このように高 Si添カ卩により前記特許合金が開発された力 その用途は 600°C以上の 高温磨耗用途であり、鉄基合金にも拘わらず SUS310Sと同等の高温耐酸化性を与 え、さらに高温では脱落し難い針状クロム炭化物を多量析出させることにより高温耐 摩耗性、高温硬度を著しく向上させた。特に 600〜1000°Cの高温状態で合金は常 温に比べ延性に富むようになるので脆さが改善され、さらに Siは溶着金属内でマトリ ックス地に多量固溶される事により、マトリックスの高温耐酸ィ匕性を向上させることに 貢献し 1000°Cの高温にも耐えることを可能にした。
[0027] 特に前記特許合金を構成するための根幹となる条件「Cr%≥— 1. 6Si% + 37Cr %」は、 600°C以上で優れた耐摩耗性を確保するために必要な針状クロム炭化物の 多量析出を促す Crと Siとの 2元素相関式である。この相関式を満足しなければ、充 分な針状クロム炭化物 (Cr C )の析出が得られなくなり、その結果、高温耐摩耗性
7 3
の低下を招来させる。
[0028] 通常金属の通性として、 600°Cを越え 1000°Cの高温域においては金属マトリックス の硬度が極端に軟化するため容易に磨耗が促進されるが、針状炭化物は編み物の 繊維の如くマトリックス全面に絡みながら厚み方向に抱合されるため、柔らかいマトリ ッタスの選択磨耗が防止され、高硬度の針状炭化物を多量晶出させることにより高温 磨耗を防止することが、前記特許合金技術の根本とする所であった。この合金の組 織をみれば見事な針状炭化物の析出が認知できる(図 2中の写真 No. 1)。
[0029] しかし、高温での優れた特性は、常温では逆にその脆弱性が大きな欠点となり、非 常に脆く曲げ加工性に劣り、前記特許合金で肉盛された耐摩耗鋼板を製造した場合 、直線状のアイテムにし力適用できず、曲率を持つ品物に関しては溶接ワイヤや手 溶接棒により肉盛加工を余儀なくされ、常に製作コストが高価になった。
[0030] このように前記特許合金はステライト合金に匹敵するほどの性能を得ることが出来 たが、その最大の欠点は高 Si含有量のために溶着金属の表層面において切片状に 剥離を発生し易ぐ特に大きな面積を持つ耐摩耗鋼板の製造を困難にすることであ る。また同一合金で形成されたクラッド鋼同士の接合溶接においても、溶接応力で引 つ張られると硬化金属に剥離を生じ、溶接接合が非常に困難であった。
発明の開示
発明が解決しょうとする課題
[0031] 本発明の目的は、高 Si含有鋼の欠点である脆性を改善し、高クロム铸鉄系肉盛合 金や 304ステンレス鋼に比べ圧倒的な耐腐食性能を保持し、一部の腐食環境に対し てはステライト No. l、No. 6と同等かそれ以上の性能を持ち、耐摩耗性に関しては 高炭素一高クロム铸鉄系肉盛合金ゃステライト No 1. No. 6と同等かそれを上回るこ とが可能な低炭素一高クロム一高 Si—ボロン一ニオブー铸鋼系の鉄基耐食耐摩耗 性合金、及びその合金を得るための肉盛溶接材料を提供することにある。
課題を解決するための手段
[0032] 上記目的を達成するために、本発明者は鉄基合金の弱点である耐硫酸性の向上 を図るために、多量の Crと少量の Si、 Mo、 Cu、 Ni等を旨く組み合わせ、既に開発さ れていた Worthite合金(Cく 0. 07%、 Cr20%、 Ni25%, Si3. 5%, Mo3%, Cu 2%)を一つのモデルとし、耐塩酸性にも優れた合金を模索し、高価なコノ レト基合 金であるステライト No. 1及び No. 6と耐腐食性と耐摩耗性とが同等かそれを越える 安価な鉄基合金の開発を企画した。
[0033] Worthite合金はアメリカの Worthington Pum社が開発した Cr— Ni— Si— Mo Cu系ステンレス鋼であた、化学プラントや石油専焼ボイラーなどにおる耐硫酸腐 食用途に使用される。耐硫酸腐食の観点カゝら Worthite合金を一つのモデルとした 1S この合金の問題点としては本発明者の意図とは異なり、この合金には Niが非常 に多く含有されており、本来の大前提である希少価値合金の省資源化の見知力 大 きく逸脱して ヽることであった。 Worthite合金はあくまで強度が必要とされる耐食性 構造材料として使用され、例えばステンレス铸鋼製ポンプ等として使用されて 、る。 従って、金属自体が靱性を持つことが重要であるが、高 Si含有量のために脆ィ匕し、そ の脆ィ匕改善を行うために高 Ni含有量に設計されているものと想定される。当然、高 N i含有量は耐食性の向上が主目的であるが、低硬度を招来し、耐摩耗性硬化金属材 料としては耐摩耗性に劣り、本発明者が企画する耐摩耗性合金としては使用できな いような鉄基合金であった。
[0034] 本発明者が開発する肉盛合金は、耐腐食性と耐摩耗性とを同時に満足することを 根本原則とするものであるために、その母材金属にはステンレス鋼が多々使用される
。このため、本発明者は Ni含有量に関しては母材金属のステンレス鋼等力も溶着金 属内にピックアップさせることを期待できるので、当初力も溶接材料に添加する Ni含 有量は最大で 13%とし省資源化を図った。すなわち、開発合金の Ni添加量に関し は通常は 5%以下であり、特別な場合に限って最大 13%の添加とした。一方、 Siに 関しては以下のとおりである。
[0035] (1)高 Si含有鋼の脆ィ匕について
鉄基金属の高 Si含有鋼に高ケィ素鋼板がある。その成分の一例を下に示す。 「C : 0. 12%、 Si:4. 12%、 Mn: 0. 07%、 P : 0. 07%、 S : 0. 005%、 Fe :残」
[0036] ケィ素鋼板は主にトランスやモーターのコア等に使用されている。 Si含有量を増加 すれば磁性が強くなり好ましいが、 Siを 5%以上添加すると鋼が脆くなり、それ以上添 加すると圧延作業が困難になり、薄鉄板の製造を難しくする。 Siは単なる炭素鋼に添 加するだけで鋼を脆くする性質がある。まして Crを多量に含有した高クロム合金に同 等の Siを添加するのであるから、 Si自体が持つ脆化傾向と高クロム合金が析出する 脆くて高硬度のクロム炭化物とが相乗的に合金の脆化を促進するので、開発合金に 延性を与えることは非常に困難である。 [0037] (2)高 Si含有鋼の脆化と耐腐食性、耐摩耗性に及ぼす Cの影響
溶着金属の延性改善、即ち剥離の発生を生じさせないことと、耐腐食性の改善にと つて重要な成分元素の一つとして先ず炭素含有量が考えられる。高炭素一高クロム 铸鉄系溶接肉盛材料は、炭素含有量が非常に高ぐ 4. 5〜6. 0%を含有する铸鉄 範囲に含まれている。その結果、多量の脆いクロム炭化物を析出し、マトリックスに含 有される Cr含有量が減少して耐腐食性を極度に低下させた。すなわち、各種高炭素 一高クロム铸鉄系溶接肉盛材料が耐腐食性に劣る最大の原因は、耐摩耗性を得る ために多量の炭素を含有させ、炭素との親和力の強い炭化物形成元素、クロム、タン ダステン、バナジューム、チタン、ニオブ等と炭素とを結合をさせて、金属マトリックス 中に多量の高硬度炭化物を析出させることにより耐摩耗性を確保している点にある。
[0038] クロム炭化物は HV1650〜2100、ニオブ炭化物は HV2400,チタン炭化物は H V2800、バナジューム炭化物は HV2800、タングステン炭化物は HV2400〜3000 の高硬度を持つと言われている。高クロム铸鉄系合金は、これら炭化物の析出により 優れた耐摩耗性を確保して!/、る反面、高炭素含有量のために溶着金属の耐腐食性 は極端に劣化させるようになる。
[0039] 一般に鉄 炭素 2元状態図から、炭素含有量が 2. 0〜2. 1%を境界としてそれ以 下が铸鋼であり、それ以上を超えると铸鉄であると言われている。また 2. 0%を超え る炭素含有铸鉄よりも 2. 0%以下の铸鋼の方が機械的性質、特に金属マトリックスの 靭性に関して優れていると判断したので、開発溶接合金は 1層目溶着金属の炭素含 有量が 2%以下になるように設計した。当然、低炭素含有量は耐腐食性の改善にも 寄与すると想定した。
[0040] 溶接材料の炭素含有量を 3. 0%以下にした場合、炭化物の析出量から判断すれ ば言わば亜共析になり、軟鋼上に 1層肉盛した場合、軟鋼の溶け込みを受け 1層目 の溶着金属には充分な炭化物の析出が見られず、耐摩耗性が非常に劣る結果を生 じた。例えば、溶接材料に炭素含有量を 3. 0%添加していたとしても、軟鋼ゃステン レス鋼母材に 1層肉盛した場合、溶着金属に含有される炭素含有量は母材金属へ の溶け込み深さにより異なるが、 1. 8%〜2. 1%の範囲に変化する(溶け込み深さ 約 30%〜40%とする)。この含有量は铸鋼と铸鉄とに区分される炭素含有量の 2. 0 %付近になる。通常、高炭素一高クロム铸鉄系溶接材料に含有される炭素量は少な くとも 4. 5%以上が必要とされ、 1層目から軟鋼の希釈の影響を受けても充分な炭化 物を析出する過共祈の状態を保持することが重要である。即ち、 30%の溶け込みを 受けても、 1層目溶着金属の炭素含有量が約 3%以上になり過共祈になることが必要 である。
[0041] このようなことから、開発合金の 1層目溶着金属の炭素含有量の上限値は铸鋼と铸 鉄とを区分けする含有量である 2. 0%以下を一つの目安とした。他の理由としては、 コバルト基合金のステライト No. 1合金の炭素含有量が C : 2. 0%であり、開発溶接 材料の耐腐食性能判定基準はステライト No. 1の腐食性能と同等力 それ以上に目 標を決めているので、炭素含有量はほぼ同量にすることに決めた。
[0042] 炭素含有量の差異による耐摩耗性の比較を表 1に示す。合金 No. 41, No. 42は 高 Si含有鋼であり、 Nb, Bを含有していないので開発合金成分範囲には含まれない 力 炭素量の差異による耐摩耗性比較に都合が良いので取り上げた。
[0043] [表 1] 炭素含有量が耐摩耗性に及ぼす影響 (重量%)
Figure imgf000011_0001
[0044] No. 41合金と No. 42合金は炭素含有量以外はほぼ同一化学成分に調整し製作 した。炭素含有量の高い No. 42合金の耐摩耗性は No. 41より約 2. 5倍も優れた結 果が得られた。これは No. 42合金の炭素含有量が高いためにクロム炭化物の析出 量が多ぐ耐摩耗性を改善したものである。
[0045] 炭素含有量は耐腐食性に大きな悪影響を与える因子の 1つであるが、耐腐食性を 向上させるために炭素含有量を減少させれば炭化物の析出量が減少して耐摩耗性 を著しく低下させる。そこで本発明者は高炭素含有量により多量の炭化物を析出さ せ、耐摩耗性を確保する高炭素一高クロム铸鉄の成分構成を改めた。すなわち、炭 素添カ卩量の範囲が 0. 5%≤C≤2. 0〜2. 5%であっても、優れた耐摩耗性を確保 できると同時に優れた耐腐食性と優れた靭性を確保できる合金を開発することを目 標にした。溶接肉盛材料に関しては種々の異種肉盛方法が存在し、それぞれ溶け 込み深さが異なるために母材希釈率が異なるので Cの最大添加量を 2. 5%以下にし た。
[0046] (3)高 Si含有鋼の脆化と耐摩耗性に及ぼす Crの影響
高 Si含有鋼の脆ィ匕に最も影響を与える合金元素として Crがある。クロム添加量が 最高 45%をもつ溶接材料を使用して実際に肉盛された第 1層目の溶着金属のクロム 含有量は、母材材質が軟鋼やエステン鋼の場合、約 25%〜50%の母材希釈を受け ること力 約 23〜34%になる。クロム添カ卩量が 25%の場合には約 15〜 19%になる 。 SUS304〜316の母材を使用した場合、 Cr35%の溶接材料を使用したとすれば 、第 1層目の溶着金属のクロム含有量は約 26〜31%になる。溶接方法により溶け込 み深さが異なるが、平均して第 1層目溶着金属の Cr含有量はおおむね「15%≤Cr ≤ 31%」の範囲に選定される。
[0047] 最大添加量が 45%の場合は、母材希釈率が 50%かこれを超える手溶接棒の場合 に使用され、母材が軟鋼であると第 1層目溶着金属のクロム含有量は約 23%程度に なり、上記範囲内に含まれる。特に、耐磨耗鋼板の場合は 1層肉盛で形成され、その 溶着金属の肉厚は約 4〜6mmとなる。溶接肉盛材料ゃ耐摩耗鋼板で得られる溶着 金属の脆ィ匕に関しては第 1層目溶着金属の挙動が最も重要であると考えられる。従 つて、第 1層目溶着金属のクロム含有量の範囲を策定する必要があった。その理由 はクロムが他の合金元素に比べ開発合金の中で最も多量含有される元素であり、し 力も溶着金属の脆ィ匕に大きな影響力を持つので、他の少量添加合金の影響度の把 握はこの元素の規定範囲内での挙動において判断することが非常に重要であること による。
[0048] ちなみに、前述した特許合金は 600°C以上において優れた高温耐摩耗性を与える ために針状クロム炭化物を多量析出させる必要上、 Crと Siとの 2元素相関式「Cr≥ — 1. 6Si+ 37 (重量%)」を満足させることが非常に重要であった。 Cr含有量が 32 %以上で Si含有量が 3%以上の場合、針状クロム炭化物が多量析出して顕著な脆 化を生じ硬化金属表面に剥離が生じることが、 No. 55曲げ試験片により証明されて いる(図 2中の写真 No. 2)。 [0049] この特許合金に対し、開発合金は特に高温耐摩耗性を主眼にした合金ではなぐ あくまで鉄基合金で脆弱な高 Si含有鋼の延性確保と耐腐食性の改善を主テーマとし て開発する合金である。従って高温での耐摩耗性を確保するための Cr≥—1. 6Si % + 37Cr%の条件を満足させる必要性が無 、ので、溶着金属を脆くする珪素とクロ ムの添加量を前者に比べ減少させることが可能になった力 Cr, Siの添加量を減少 させればクロム炭化物の析出量が減少し、延性は回復されるが耐摩耗性の低下が顕 著になる。
[0050] この現象は以下に述べる実験で証明された。前記特許合金を基本合金として最も 耐摩耗性に影響を与える Cr添加量を 36%から約 20〜25%まで低下させた場合の 合金の靭性と耐摩耗性を調査した。靭性の調査は SUS310S母材で肉厚 9mmt X 幅 100mm X長さ 400mm上に試験合金を 5mm厚み 1層で溶着した耐摩耗鋼板を 作成して、 200R、 290Rの曲げ試験によりその靭性を判定した。この曲げ試験で溶 着金属が一部でも剥離、欠落した場合には靭性不可と判断した。磨耗係数 WRはス テライト No. 6が持つ磨耗係数 WR= 15以下を基準として、それより優れていることを 必要とした。合金組成を表 2に、調査結果を表 3に示す。
[0051] [表 2]
F R E A - M E T A I改質合金 (添加重量%)
Figure imgf000013_0001
[0052] [表 3] 試験 $g果
Figure imgf000014_0001
[0053] 高 Si添加量にも拘わらず曲げ性能は総ての合金に関して合格(〇)であった理由 は、 Cr含有量が少なレ、ために針状クロム炭化物の析出量が少なく曲げ延性に寄与 したと想定され、逆に炭化物が少ないために耐摩耗性が大幅に低下した。
[0054] この試験により Cr、即ちクロム炭化物が靱性(曲げ延性)と耐摩耗性に最も大きく影 響を与えることが判明した。耐摩耗性に関しては No. 58, No. 70の 2種類の合金が ぎりぎり合格した。 No. 58合金の Cr添加量が 20% (含有量約 21%)、 No. 70合金 の Crの添加量が 25% (含有量約 25%)で Nbを最大添加量の 8%を添加しても耐摩 耗性 WRは 14〜15の最低値を示し、 Nb単独添加で耐摩耗性を調整することが不可 能であることが判明した。
[0055] (4)高 Si鋼の耐摩耗性、延性に及ぼす Bの添加効果
Cr、 Si含有量が多ぐその結果マトリックスに多量の脆い針状クロム炭化物を析出し た FREA— METAL合金 (No. 55)は、曲げ加工により簡単に剥離を発生した(図 2 中の写真 No. 2)。 Si自体が鋼を脆くすると言う性質を改善することは出来ない。しか し開発合金に関しては、クロム炭化物の析出量が最もその合金を脆くすることに影響 を与えることが判明した力 それに次いで Si含有量が増加するに連れてクロム炭化物 を針状化する傾向があり、クロム炭化物の形状も脆化を促進しており、割れや剥離を 発生させ耐摩耗性を低下させる主要な要因の一つになっていると考えられた。
[0056] 曲げ延性を改善するためには脆い針状クロム炭化物の多量晶出の減少を図ること が重要である。その針状炭化物量を減少させた分だけ、耐摩耗性が低下するのでそ れを補償するために分散し晶出した球状、島状、網状、不定形の形状を持つ非常に 高硬度の微細化されたィヒ合物を晶出させることにより、溶着金属の脆ィヒを防止し耐 摩耗性を向上させる方法が最善の手段と考えられた。
[0057] 高 Si鋼の脆性を促すことなしに耐摩耗性を向上させる手段として、耐腐食性に悪影 響を与えない非常に高硬度のホウ化物の晶出ゃ非常に炭素との親和力が強ぐ球 状微細化炭化物を晶出するニオブ炭化物との共存により耐摩耗性の向上を図る事を 企てた。同時にその高 Si含有鋼の最大の欠点である表層金属の剥離、脱落等の脆 化にこれら 2元素が影響を耐えないことと、寧ろ脆ィ匕を抑制する方向に働くことが期待 された。
[0058] 溶着金属のクロム含有量が 15%≤Cr≤31%の範囲において、ボロンを添加する ことにより耐摩耗性の向上は図れる力 ボロン単独添カ卩において、例えば 0. 5%添 カロしても耐摩耗性の改善には寄与されず、 4. 0%添加すると溶着金属が非常に硬く なり溶接ビードに対して直角方向の無数の割れを発生した。 B単独添加のみでは添 加量の範囲が狭ぐ溶着金属の延性度合いを判断することが非常に困難であった。 低 B含有鋼と高 B含有鋼との耐摩耗性を比較したが、高 B含有鋼は非常に優れた耐 摩耗性を示したが、著しい脆ィ匕を生じた。ボロン添加量が耐摩耗性と曲げ加工性に 及ぼす影響を表 4に示す。
[0059] [表 4] ポ口ン添加量が耐摩耗性と曲げ加工性に及ぼす影
Figure imgf000015_0001
C r ; 量(1層目溶着金属)
[0060] さらに開発合金の最大の特徴である高シリコン含有量は、高温耐酸化性ゃ耐硫酸 腐食性、耐塩酸腐食性、有機酸腐食性に対して非常に有効な要素であるが、通常 鉄基合金に 3. 5%以上添加すると非常に合金を脆くする性質があり、その優れた性 能にも拘わらず鉄基溶接肉盛材料にはあまり使用されて来な力つた。高 Cr鋼に Siの 添加量を増加すればクロム炭化物を針状ィ匕し易くなり、その結果溶着金属を脆くする 傾向が生じ、 5%単独添加した場合には溶着金属に表層剥離が発生し、 2. 5%まで 減少させると耐摩耗性が非常に悪くなつた。従って、開発合金の目玉である Si添カロ 量は少なくとも最低で 2. 5%、最高で 4. 5%〜5. 5%までの添加量の範囲が必須で あり、この添加範囲内においての脆ィ匕を無くすことが絶対条件であった。
[0061] Siも Bと同様に添加範囲が狭く単独添加では溶着金属の延性と耐摩耗性とを評価 することが非常に困難であった。従って、 Bと Siとの両者の影響を含め考慮する方法 として Si X Bの積 (重量%)の必要性が生じた。 Bはホウ化物を晶出して非常に高硬 度を与えるがホウ化物の種類、その形状と大きさと晶出量とが鋼の延性に影響を与え ると考えた。特にそのサイズが針状のクロム炭化物の大きさに比べ著しく小さければ 曲げ加工において物理的に破壊を促進する要因は大幅に減少する事が想定された 。し力も微小ホウ化物の硬度が非常に硬ければ溶着金属の耐摩耗性を改善させるこ と事が期待された。
[0062] そこで耐硫酸、耐塩酸腐食に優れた結果を示した No. 10— C合金を取り上げその 合金に晶出する炭化物、ホウ化物を SEM— EDX分析装置により同定した。晶出物 は Cr Cクロム炭化物(約 HV2100)と Cr B (約 HV1400)、 Mo FeB (約 HV24
7 3 2 2 2
00〉、 NbB (約 HV2250)の 3種類のホウ化物とが晶出していた。これら総てが全溶 着金属の 30%を占有していた。これら晶出物の形状は Cr Cが花びら状または榭枝
7 3
状であり、ホウ化物の NbBが不定形、 Cr Bが板状、、 Mo FeBが網目状を示した(
2 2 2
図 3中の写真 1参照)。
[0063] No. 10— C合金の炭素含有量が約 0. 7%〜0. 8%と少なかったので炭化物は Cr
Cのみが晶出し、 Nbはニオブ炭化物を形成しな力つた。しかしニオブホウ化物(N
7 3
bB)が晶出されており、ニオブ炭化物に匹敵する程の高硬度を与えた。従って、炭素 含有量が少な 、場合にぉ 、ては Nbはホウ化物を形成して耐摩耗性の向上に貢献 する事が判明した。低炭素含有量にぉ ヽても耐摩耗性が優れて ヽる理由はこれらホ ゥ化物の晶出にある事が判明した。
[0064] 炭素含有量が増加すれば同時にニオブ炭化物も晶出するので、さらに耐摩耗性の 向上に貢献すると考えられる。 Bと Nbとの共存添カ卩により曲げ延性を低下させずにそ の優れた硬度により耐摩耗性を向上させることに成功した。各種ホウ化物晶出物のな かで形状的に合金を脆ィ匕させると想定させるものにホウ化クロム(Cr B)
2 がある。これ は形状的には板状組織であるが、微細針状クロム炭化物と形状的に近似しており危 惧された(図 3中の写真 1参照)。実際には曲げ試験において No. 10— C合金は容 易に曲げ力卩ェが可能で、それによる表層剥離は生じな力つた(図 3中の写真 2参照)
。針状クロム炭化物との晶出量の差によるの力、あまり曲げ力卩ェ性に影響を与えなか つた。ホウ化物の硬度は金属化学熱処理便覧〈著者 =ゲ ·ゥヱ'ボリセノーク〉を引用 した。
[0065] (5) Si x Bと Cr含有量との相関
Si X B添加量の積と Cr含有量との相関は、最も脆性を促進する針状クロム炭化物 の析出量との相関として考えることが出来る。
Figure imgf000017_0001
、と当然 Cr炭化物の 析出量が少なくなり脆化傾向は減少する力 その反面耐摩耗性が大幅に低下する。 Si単独で添加量を多量増加すると Siが持つ特有の脆化傾向とクロム炭化物を針状 ィ匕させる性質とにより金属を脆化させる傾向が強くなるので、 Bと共存添加することで どの程度延性と耐摩耗性とが改善され適正合金組成範囲を拡大するかを調査した。
[0066] 低 Cr含有量の場合には Si x Bの積を 7. 5以上に高く設定し、高 Crの場合には Six
Bの積を 1. 55から 6. 4と低めに設定して合金の延性と耐摩耗性とを同時に満足する 合金組成範囲を調査した。調査結果を表 5及び表 6に示す。
[0067] [表 5]
S ί X Β合金(重量%)
Figure imgf000017_0002
[0068] [表 6] 試 験 結 果
Figure imgf000018_0001
[0069] Si X Bの上限値が 7. 5で耐摩耗性は確保出来たが、これ以上添加すると曲げ延性 が確保できず、 Si X Bの下限値が 6. 4で曲げ延性は確保出来るが耐摩耗性がこれ 以下では不合格になり、上下の調整範囲の幅が非常に狭く磨耗係数に関しては上 限値が 6. 1、下限値で 12. 4であり優れた耐摩耗性が得られなカゝつた。優れた延性と 耐摩耗性とを同時に満足させる合金組成範囲は非常に幅が狭く限定された範囲でし か得られなかった。これにより Si x Bの積と Crとの相関のみで延性と耐摩耗性とを同 時に満足させる幅の広い合金組成範囲を得る事が困難であった。
[0070] (6) Nbの添加効果
特に Si X Bの下限値では曲げ延性が非常に良くなる反面、耐摩耗性が大幅に低下 することが判明している。 B, Nbは単独添加ではそれ程有効では無いが、これを共存 添加することにより下限値における耐摩耗性の改善に大いに貢献すると想定された。 これにより延性と耐摩耗性の両方を満足する合金組成範囲を大幅に拡大する事が可 會 こなると考えられた。
[0071] No35合金の Si X Bは 1, 8であるが、 Nb=4. 0%、 AL = 2. 0%の添カ卩により磨耗 係数 WR= 9. 3が確保出来た。 No. 33合金は SiX B = 3. 5で Nb=4. 0%の添カロ により磨耗係数 WR= 5. 9が得られた。耐摩耗性を示す磨耗係数 WRの最低基準値 が 15であることから充分基準値内にあり Nbと Bの共存添カ卩により延性と耐摩耗性を 同時に満足させる合金組成範囲を大幅に拡大させることが可能に成った。
[0072] Si X Bとの積にぉ 、て、耐摩耗性を向上させる第 3の有効な元素として Nbが存在し ており、 0〜8. 0%と無添加を含む非常に幅の広い添加量の範囲が選択出来、耐摩 耗性を容易に調整できることが期待された。 Nbは炭化物を球状微細化する元素であ ることは公知の事実であり、金属を脆くする危険性が少なぐまたニオブ炭化物〈約 H V2400)やニオブホウ化物〈約 HV2250〉は高硬度を与えるので耐摩耗性を向上さ せることが出来た。
[0073] 例えばねずみ铸鉄の黒鉛形状が針状黒鉛の場合、铸物を脆くするので Mg, Caを 添加することにより黒鉛を球状化して球状黒鉛铸鉄を形成し、軟鋼と遜色がな!、程の 延性を与える方法が有る力 Nbの添加は Mg, Caと同じ効果が炭化物に関してもも たらされた。合金の炭素含有量が 0. 5%のように非常に低い場合には炭化物の晶出 が大幅に減少するがボロン添カ卩によりホウ化ニオブ(NbB)、ホウ化クロム(Cr B)を
2 分散晶出して耐摩耗性の向上に貢献した。
[0074] このように Bと Nbは両者ともに本開発合金の脆ィ匕を防止する微小晶出物を形成し、 脆い針状クロム炭化物を両者で置換させることにより鋼の延性回復を可能にし、その 高硬度により耐摩耗性を格段に向上させることが出来た。すでに実験により証明した 1S Nb単独添加の効果は充分な耐摩耗性を得ることが出来なかったが、 Bとの共存 添加効果により耐摩耗性の向上を企てることが可能に成った。
[0075] 開発合金の必須条件は Cr含有量との相関において、 SiX Bとの積と Nbの共存添 加が絶対条件であり、この内のいずれを欠いても延性と耐摩耗性とを充分に満足さ せる合金組成範囲を幅広く確保する事が非常に困難である。
[0076] Si, B, Nbの 3元素を適切に組み合わせることにより従来、高 Si含有鋼の最大の欠 点であった脆性が緩和できたことは大きな意義があり、今後鉄基合金の耐摩耗材料 に関して安価な優れた耐腐食性、高温耐酸ィ匕性を与える Siの有効利用を可能にし た。これにより Co, Ni等の高価な希少価値のある合金元素の代替として Siの有効利 用が考えられ、塩酸、塩素ガス腐食に対して優れた耐食性を与えることができるので 、産業廃棄物、高温燃焼炉、熱分解装置、流動床炉などの耐塩酸、硫酸腐食にその 有効利用が拡大された。 [0077] 合金の脆さを評価する方法として、曲げ試験が最も簡便で正確であると想定された ので曲げ加工によりその延性を評価した。曲げ加工性能と耐摩耗性とがクロム含有 量と Si X Bとの積の相関とにより総括された。その結果一定の曲率で曲げ試験を行つ ても溶着金属に剥離や破断を生じさせない限界傾向は Cr含有量が低 、場合、 Si X Bの積は高値になり、クロム含有量が高い場合、 Si X Bの積は低値になる傾向を示し た。 Si X Bの積で曲げ加工性能を評価する方法は Bや Si単独で評価する方法よりそ の評価範囲が格段に拡大されより正確に性能を判定することに役立った。
[0078] (7)耐摩耗鋼板の曲げ加工による延性評価と耐摩耗性評価
Si含有量を仮に最高の 4. 5%を含有させれば、 Cr%≥— 1. 6Si% + 37の方程式 力もクロム含有量が約 30%以上で針状炭化物を多量析出させることになり、 Si=4% の場合では Crが約 31%になるので、 1層目溶着金属におけるクロム含有量の範囲を 「15%≤Cr≤31%」とした。そして曲げ加工性、即ち延性に優れた溶着金属を得る ための主要影響元素の適切な成分範囲を以下のとおり特定した。
[0079] 15%≤Cr≤31%、 (1層目溶着金属含有量)
0. 5%≤C≤2. 0% (添加量)
2. 5%≤Si≤4. 5% (添加量)
0≤Nb+V≤8. 0% (添加量)
0. 5%≤B≤3. 5% (添加量)
[0080] この成分特定範囲内において曲げカ卩ェ性に影響を与える Si X Bの適正範囲を求 めた。マトリックスを脆ィ匕させず曲げカ卩ェ性に優れた溶着金属を与える Siと Bとの積は 「1. 25≤Si X B≤l l. 5」の範囲であった。大まかな傾向として、 Crの含有量が低い 場合、 Si X Bの数値は高くなり、 Crの含有量が高い場合、 SiX Bの数値は低い傾向 を示した。特に Si X Bの数値が低くなると耐摩耗性が低下する傾向があり、その耐摩 耗性を補う目的で Nbを添加した。
[0081] Si X Bの数値が高くなれば成るほど、溶着金属を脆ィ匕させる傾向があるので、曲げ 加工性能は劣化し、曲げカ卩ェ性能を高めるためには Si X Bの数値を低く抑える必要 があった。 SiX Bの数値が低くなれば溶着金属の延性が増加し、曲げカ卩ェ性能は向 上するが逆に耐摩耗性が低下するので Nbを 0≤Nb+V≤8%の範囲内で添カ卩して 耐摩耗性を調整した。例えば、 4. 0≤Si X B≤l l. 5%と数値が高い場合には Nbの 添加量を低目の 0. 5〜4%以内とし、 4. 0≥Si X B≥l. 25%の数値が低い場合に は Nbの添加量を 4〜8%と高くして耐摩耗性を改善した。
[0082] 開発合金は耐腐食性の向上を目的としたものであり、 1層目溶着金属のクロム含有 量が 15〜18%と低い場合、結晶粒界に溶接熱で炭素とクロムとが結合して Cr C
23 6 炭化物が形成され、それが粒界に沿って析出し耐食性に必要な Crが欠乏して粒界 腐食の危険性が生じた。 Nbを 0. 5%以上添加することにより、 Crより炭素との親和力 の強い Nbが炭素と結合して Cr C の析出を抑制する効果がある。
23 6
[0083] Ti≤ 1. 0%以下の添加目的も Nbと同様の効果を求めたものである力 Tiは酸素と の親和力が極度に強く Nbよりメタル中での高温酸ィ匕反応でのロスが多いと判断して 1%の添カ卩量にした。
[0084] 溶着金属の曲げカ卩ェ性能評価方法は SS400、 SUS304、 SUS310Sの 9mm肉 厚 X 100mm幅 X 400mm長の寸法を持つ鋼板上に 1層肉盛で 5〜6mmの溶着金 属を全面肉盛したクラッド鋼板を製造して、硬化金属を内側にしてプレスで曲げ加工 を行った。 目標とするステライト No. 1合金はガス溶着で SS400上に 2層 5mm厚み 肉盛した。試験片の長さは約 200mmとした。
[0085] 曲げカ卩ェ曲率は約 200Rとし、曲げカ卩ェによって硬化金属に何ら影響を与えず健 全な曲げ性能が得られ無欠陥状況の場合を〇、硬化金属の表面に数箇所の表層剥 離や極僅かな欠落を発生した場合を▲、硬化金属の表面に多数の表層剥離や塊状 の欠落を発生し靭性に乏しい場合を參として曲げ延性を評価した。結果を図 1に示 す。
[0086] 図 1においては、 Si X Bを縦軸に、第 1層目溶着金属の Cr含有量を横軸にとり、こ れら延性の関係を表示した。上部の曲線はクラッド鋼板を 200Rの曲率で曲げ力卩ェし た場合の溶着金属に生じる表層面剥離や脱落の破断限界線を示し、この線の上側 では曲げ加工により容易に破断し易いことを示す。下線は溶着金属が持つ低応力磨 耗係数 WRが 15を保持する限界線を示し、これ以下では磨耗係数が上昇して耐摩 耗性が大幅に劣化することを示した。
[0087] 上下の限界線により囲まれた適正成分範囲において、 1層肉盛で構成される耐摩 耗鋼板の曲げ力卩ェ性は曲率で言えば半径 200mmまで R曲げ力卩ェが行え、それ以 下の極小曲率の曲げ加工も可能な合金が多数存在した。その曲げ加工性はステライ ト Nolと同程度かそれより以上優れており、耐摩耗鋼板に使用されている高炭素一 高クロム铸鉄合金と同等かそれ以上の曲げ加工性能が得られた。高 Si含有鋼でこれ ほどまでに極小 R曲げ力卩ェが出来る合金は過去を振り返り存在し得な力つた。
[0088] 次に重要な性質は常温における耐摩耗性の向上である。先にも述べたように耐摩 耗性の向上にとって最も重要な因子である炭素含有量を高クロム铸鉄系肉盛合金よ り大幅に低下させたために、曲げ加工性能と耐腐食性の向上が図られた力 耐摩耗 性が減少し、耐摩耗性の確保が重要になった。
[0089] 耐摩耗性の判定評価方法はエンドレスベルトグラインダー研磨試験機を使用して 行った。各種合金の磨耗係数は軟鋼 SS400を基準値として、 SS400の磨耗容積と 比較したい合金の磨耗容積との比率により算出した。
[0090] 開発合金の耐摩耗性の目標はステライト No. 1合金をガス溶着した場合の耐摩耗 性であり、その摩耗係数は WR= 8であった。ステライト合金の肉盛方法は通常、小 物の肉盛の場合にはガス溶着される力 面積が大きい部品の肉盛はアーク溶接法で 肉盛される。ガス溶着に比べ溶接能率が高ぐ肉盛技術もガス溶着に比べ容易であ り、近年の溶接技能者もアーク溶接に習熟しているが、アーク溶接で肉盛する場合の 最大の欠点は母材溶け込みが深くなり耐摩耗性が大幅に低下する。
[0091] ステライト No. 1を TIG法で肉盛した場合の摩耗係数は 54になり、 2〜3層肉盛しな ければガス法と同等の耐摩耗性が得られない。また、高クロム铸鉄の磨耗係数が 14 〜17. 5であり、高炭素一高クロム铸鉄系溶接棒の摩耗係数は約 4〜 10の範囲であ るので、真の目標値はステライト No. 1ガス溶着の磨耗係数 WR= 8とし、最低目標 値としてはステライト No. 6の磨耗係数 14とした。開発合金の磨耗係数 WRの適正範 囲は 1≤WR≤15とした。
[0092] (8)肉盛溶接材料の曲げ加工性能と耐摩耗性評価
溶接材料の曲げ加工性能ゃ耐摩耗性評価は基本的に耐摩耗鋼板で得られた Si X Bと Crとの相関式に適合するものである。耐摩耗鋼板と铸鋼とで異なる点は母材に よる希釈率が異なることと曲げ加工がさして必要でないことである。従って、耐摩耗鋼 板を製造する場合に比べもう少し多量の合金添加が許容されることである。
[0093] 溶接材料における成分添加範囲である力 溶接肉盛方法や母材の種類、溶け込 み深さも大きく異なるので、クラッド鋼板で得られた成分を補正する必要がある。例え ば手溶接棒の肉盛施工では約 50%の溶け込み率が予測され、 MIG溶接では約 35 %、 TIG溶接では約 45%、フラックスコアードワイヤでは約 35%、サブマージドア一 ク法では 30〜60%が予測される。一般にかなり深い溶け込みの影響を受け易いの で、添加量はクラッド鋼板を製造する場合に比べ多量添加する必要がある。因みにク ラッド鋼板の場合の溶け込み深さは約 25〜35%の範囲と想定される。
[0094] 肉盛溶接材料の場合は、クラッド鋼板と比べ異なる点は曲げ加工の必要性が非常 に少ないことである。元々、形状を作成した物品の表面を肉盛するのであるから曲げ 加工の必要性が無い。但し、肉盛溶接の場合には層を 1層、 2層と重ねて肉盛される から層数が増加すると母材希釈の影響は少なくなり、設計成分に近似するようになる 。し力し、一般的には 2層肉盛が多ぐ 1層での肉厚は約 3mm、 2層目で 5〜6mmの 肉厚が得られるのが一般的である。それ以上の層数を溶着すると溶接材料の使用量 が増加し、肉盛工数も増加するので高価になり通常 2層肉盛が一般的に行われる方 法である。
[0095] 溶接材料に添加される各合金成分を検討すると、炭素含有量に関しては 0. 5%≤ C≤2. 5%、クロム含有量は 15%≤Cr≤45%、 0≤Ni≤13%, 0≤Mn≤10%、 0 ≤Nb+V≤8%とし、 Cu: 7%以下、 Mo : 10%以下で、溶け込みの影響を受けても 充分この範囲内で性能確保は可能である。
[0096] 曲げカ卩ェ性能に大きく影響を与える Bは 0. 5%〜4. 5%、 Siは 2. 5%から 5. 5% までとした。特に曲げカ卩ェ性能に影響を与える Siの最大添加量は特許第 3343576 号に比べ 1. 5%少なく出来た。すなわち、本開発合金は 600°C以上での高温用途 に使用される目的で開発された合金では無いので、針状炭化物の析出は必要なぐ 針状炭化物の析出に直接関係する Siの添加量を減少させることが出来た。
[0097] Cr、 Si、 B、 Nbの 4元素の適切な組み合わせにより、本開発合金の常温における曲 げ加工性能 (延性)と、目標とする耐摩耗性、耐腐食性を確保することが出来た。
[0098] 代表的な各種合金の硬度及び耐摩耗性を比較して表 7に示す。 SS400, SUS31 OSステンレス鋼、高クロム铸鉄、耐硫酸性鋼板は素材カゝら切り出され、ステライト Nol , No.6は 2層ガス溶着法で 5mm肉盛され、 GL, UFはノンガスアーク法で 2層 5mm 肉盛された。
[0099] 耐摩耗鋼板の合金はサブマージドアーク法により 1層約 5mm厚が肉盛された。肉 盛品の素材は SS400, SUS304, SUS310Sステンレス鋼であり、肉厚 9mmを採用 した。
[0100] [表 7] 代表的な各種合金の硬度及び耐摩耗性比較表
Figure imgf000024_0001
[0101] 本発明はカゝかる知見を基礎として完成されたものであり、その鉄基耐食耐摩耗性肉 盛溶接材料は、重量%でじ:0.5〜2.5%, Si: 2.5〜5.5%、 Mn:0〜10%以下、 Cr:15%〜45%、Ni:0〜13%、Cu:7%以下、 Mo: 10%以下、 B:0.5%〜4.5 %、 0≤Nb+V≤8%を含み、残部が鉄及び不可避不純物力 なる。
[0102] これらの成分に加えて、 Ti:l.0%以下、 AL:3%以下、レアアースメタル:合計で 0 .5%以下、 N:0.2%以下を 1種または 2種以上を含むことができる。 [0103] その溶接材料は,具体的には被覆アーク溶接棒、フラックスコアード複合ワイヤ、金 属パウダー又は铸造棒である。
[0104] また、本発明の鉄基耐食耐摩耗性合金は、重量%でじ: 0. 5〜2. 0%、 Si: 2. 5〜 4. 5%、 Mn: 0〜10%以下、 Cr: 15〜31%、 Ni: 0〜16%、 Cu: 7%以下、 Mo : 10 %以下、 B: 0. 5〜3. 5%、 0≤Nb+V≤8%を含み、 15%≤Crく 27%の範囲にお いて(SiX B)≤2014ZCr2 +0. 083Cr+ l . 05を満足し、 27%≤Cr≤31%の範 囲において、 1. 25%≤(SiX B)≤6. 0%を満足し、 15%≤Crく 20%の範囲にお いて(SiX B)≥570ZCr2— 0. 066Cr+ l. 145を満足し、 20%≤Cr≤31%の範 囲において(Si X B)≥1. 25を満足する低炭素一高シリコン一高クロム一ボロン一- ォブ系の鉄基耐食耐摩耗性合金である。
[0105] これらの成分に加えて、 Ti: 1. 0%以下、 AL : 3%以下、レアアースメタル:合計で 0 . 5%以下、 N : 0. 2%以下を 1種または 2種以上を含むことができる。
[0106] この鉄基耐食耐摩耗性合金は、具体的には肉盛溶接金属又は铸鋼であり、 Vヽずれ もコバルト基合金であるステライト No. 1、 No. 6に匹敵するかそれより勝る耐摩耗性 及び耐食性を示す。
[0107] 本発明材料及び本発明合金を構成する各元素の役割は以下のとおりである。
[0108] C : 0. 5〜2. 5% (材料)、 0. 5〜2. 0% (合金)
C量が 0. 5%以下ならば耐摩耗性に寄与するクロム炭化物の析出量が減少する。 C量が 3%を越えると (Cr、 Fe) C型炭化物が粗粒化した針状の炭化物として析出す
7 3
るようになり肉盛金属の剥離、脆ィ匕に影響し曲げ加工性が低下するようになる。耐摩 耗性鋼板の場合、曲げ加工性が要求されるために溶着金属に含有される炭素含有 量は 2%以下が好ましい。 2%以下は鉄一炭素状態図から判断して铸鉄カも铸鋼に 変わる遷移点であり、铸鉄より铸鋼の方が延性に富む力もである。肉盛溶接では母 材金属への溶け込みの影響があり、合金材料に Cを 2. 5%添カ卩しても、 25〜40%の 母材希釈を受けると 1層目の溶着金属の炭素含有量は約 1. 5〜1. 9%に低下する 。従って、合金に添加される炭素量は最高でも 2. 5%以下が望ましい。
[0109] さらに溶着金属に含有される炭素量は耐腐食性に影響を与え、 10%塩酸溶液に 対する腐食には 0. 5%〜3. 0%の添加量の範囲であまり影響を及ぼさないが、 10 %硫酸溶液に対して添加量が 2. 0%以上になると急激に耐腐食性が低下するように なる。 0, 5%〜1. 5%の範囲では腐食減量にさして変化が認められないが、 2. 0% 以上で急激に変化する。
[0110] 特に望ましい炭素添加量は下限については 0. 5%以上、上限については耐硫酸 腐食性力 判断して 2. 0%以下、異種溶接方法の溶け込み深さの影響を考慮すると 最大 2. 5%以下が好ましい。
[0111] Si: 2. 5〜5. 5 (材料)、 2. 5%〜4. 5% (合金)
Siは鋼の酸ィ匕を防止するは働きがある。 2. 5%以上で酸ィ匕抵抗を増し、 5%以上 の単独添カ卩により 1100°Cまでの温度域における酸ィ匕を効果的に阻止する。耐腐食 性の観点から、 Siは耐塩酸腐食、耐硫酸腐食に効果があり Cr、 Mo, Cuとの共存下 にお 、てその真価が発揮される。
[0112] しかし、高 Siは鋼を脆弱化して多量添加すると表層剥離し易くなり、特に耐摩耗鋼 板の曲げカ卩ェ性に悪影響を与えるのでその最小添加量を 2. 5%にした。それ以下 にすると耐摩耗性と耐酸ィ匕性を低下させると同時に耐塩酸腐食に悪影響を与える。
[0113] Siが 4. 5%を越えると鋼を非常に脆弱化するので鋼の延性低下を招来し肉盛のま まで表層面に切片状の剥離を発生するようになる。また曲げ加工性に悪影響を与え るのでこれが最大添カ卩量の上限値である。また Siが 4. 5%以上で Cr含有量が 30% 以上になると針状クロム炭化物が多量析出するようになり、脆くなる。特に Si添加量は 下限については 2. 5%以上、上限については異種溶接方法による溶け込み深さの 影響を考慮して最大 5. 5%以下が望ましぐとりわけ上限については 4. 5%以下が 好ましい。
[0114] Cr含有量を一定にして Si含有量を増加していくとその硬化金属は比例的に脆くな る。従って、 Si含有量は 2. 5%≤Si≤4. 5%の必須範囲内において出来る限り低値 の方が脆ィ匕を防げる。 Siが少なくなつた分、耐摩耗性が低下するので B, Nb、 V等の 共存添加等で低下した耐摩耗性を回復させる。その場合、ホウ化物、ニオブ、バナジ ユーム炭化物の形態が球状であり、ダクタイル铸鉄の球状黒鉛のように物理的に合 金の破壊靱性を高めることが重要であり、それが高 Si鋼の延性を確保する最高の手 段に成る。 [0115] Cr: 15%〜45% (材料)、 15〜31% (合金)
一般的に言って Crは鋼の酸ィ匕を抑えるために極めて有効であり、高温耐酸化性の 改善に寄与する。 Crは炭素と結合して各種のクロム炭化物を析出して高硬度を与え 鋼の耐摩耗性を向上させる。しかし、耐摩耗性を向上させるためには Crと結合してク ロム炭化物を形成する必要があり、そのために多量の炭素を添加する必要がある。し かし、炭素添加量が 3%以下の場合には第 1層目の溶着金属は母材希釈を受け炭 素含有量が 2%前後になり、充分な炭化物の析出が期待できず耐摩耗性が低下す る反面、耐腐食性が向上した。本発明の主目的である鉄基合金の耐腐食性の改善 力 多量の炭化物の析出を抑制してマトリックスに残存する
[0116] Cr量を増加させ耐腐食性の向上を図り、耐摩耗性の改善は耐腐食性に悪影響を 与えない B, Nb、 Siの添カ卩により行い、 Cの添加量を 2. 5%以下に抑制した。さらに 本発明合金に関しては高 Si含有鋼の延性を与える事が本特許請求項の主要目的の 一つであり、 Cr含有量は高 Si鋼の延性に大きな影響を与えた。 Cr含有量と Si, Bと の積の相関はすでに詳述した。
[0117] 溶接肉盛は異種母材金属に肉盛されるために母材金属力ゝらの希釈を受ける。本発 明では母材希釈を受けて得られる第 1層目溶着金属のクロム含有量を最小 15%とし 、最大 31%とした。従って、各種肉盛方法の相違で母材金属による希釈率が異なる ので最小添加率は 15%とし、最大添加率を 45%とした。
[0118] Cr含有量が 25%以上高く含有されると Siとの組み合わせで脆い針状炭化物の析 出が生じやすぐ用途的に衝撃摩耗を受け延性が求められる合金の場合には針状 炭化物が析出し難い低 Cr含有鋼を選択し例えば 15%%クロム鋼が望まれる。特に 好ましい Cr値は下限については 15%以上、上限については 31%以下である。
[0119] Mn: 0〜10% (材料、合金)
Mnおよび Niはオーステナイトィ匕を助長し、その安定度を増す。 Mnのオーステナイ ト形成能力は Niの約半分である。この Mnは肉盛溶接の作業性を安定させる効果が ある。本発明合金が高 Si含有を基本組成にしているためにフェライトを含有するよう になり、オーステナイト糸且織を保持するためには Niが高価であるために Niの代用とし て添加する。特に好まし 、Mn添加量は 0%から上限は 8%以下である。 [0120] Ni: 0〜13% (材料)、 0〜16% (合金)
本発明合金の主旨からして高 Ni添カ卩は希少価値合金の消費と言う観点カゝら好まし くなぐ 0%が好ましい。従って、どうしても添カ卩が耐食性、曲げカ卩工延性にとって必 要な場合にのみ添加することは止むを得ない。 Cr含有量が 23. 5%以上 31%未満 において、 Ni含有量が 3〜6%増加すると、曲げ延性か若しくは溶着金属の表層面 剥離傾向が減少し、 Si X B値を 3ポイント改善する効果が認められた。本発明合金の 用途はごみ焼却関係が多く塩素ガス耐腐食性に関して効果的で高含有量が望まし い。高温では浸炭を防止する効果もあり、サーマルショックを受ける用途では Crの不 動態皮膜の剥離を防止する効果を持つので使用温度が高温の場合には Ni含有量 が高いことが望ましい。
[0121] 本発明合金組織は基本的にフェライト +オーステナイトの混合組織を形成し易く M nと Niとの併合添カ卩により組織をオーステナイト組織に変換することが可能に成る。例 えば重拘束されたオーステナイトステンレス鋼上に硬化肉盛施工を行う場合、本装置 が温度変化が激しくサーマルショックを受けると硬化肉盛金属にフェライトが多量含 有されていると母材オーステナイトステンレス鋼との線膨張係数の差異により溶接融 合線に応力が発生して剥離する危険性が生じる場合がある。このような場合に Niを 添加することにより硬化金属をオーステナイト単体組織に変化させ母材と同一組織に 調整することが可能に成る。そのためには Niの最大添加量は 13%以下が好ましい。 万一、不足した場合には Mnを添加して調整可能である。
[0122] Nb+V: 0%以上、 8%以下 (材料、合金)
Nbは炭化物を球状微細化する効果があり、物理的に組織構成に破壊ゃ脆ィ匕し難 い組織を耐える。その効果は既に上述したようにねずみ铸鉄とダクタイル铸鉄との延 性に影響を及ぼす黒鉛形状と同じことで黒鉛を球状化する Ca, Mgと同じ作用効果 を炭化物形状に作用する。さらにニオブ炭化物自体の硬度が約 HV2400と非常に 硬いことが添加する意義の最大の狙い目である。低炭素の場合、例えば C = 0. 7% で NbC (ニオブ炭化物)が晶出しな!/、領域にぉ 、て非常に高硬度の NbB (ニオブホ ゥ化物、 Hv2250)がその代わりに晶出して耐摩耗性の低下を防止する効果がある。
[0123] 一方、 Vは微細な炭化物を形成し、その形成能力は Crと Moの中間に位置し、この 炭化物反応による焼き戻し抵抗性と焼き戻しによるい二次硬化の改善により高温耐 摩耗性を向上させる。また、温度上昇による軟ィ匕変形とヒートチヱッキングによる割れ に対する抵抗性を向上させる。
[0124] Cr含有量と Si x Bの相関式において、溶着金属に剥離脱落を発生させるほどの高 Si X B値においては、即ち曲げ延性が得られない限界状態においては、これらの元 素は必ずしも添加する必要はない。添加することにより、より一層の溶着金属の脆ィ匕 を促進させることになる。 15%の低クロム含有鋼の粒界腐食を防止する観点からは、 少なくとも Nb+V≥0. 5%の添カ卩が好ましい。したがって、その添加量は 0%以上、 好ましくは 0. 5%以上とした。ただし、合計で 8%以上添加してもその効果を飽和させ ると共〖こ、肉盛金属を脆化させる危険性が生じるので、最大添加量は合計で 8%とし た。
[0125] B : 0. 5%〜4. 5% (材料)、 0. 5%〜3. 5% (合金)
本発明合金成分範囲において晶出するホウ化物の形状はその合金の脆化を促進 し難い形状で晶出するものがあり、例えば Mo FeBは網目状であり、 NbBは不定形
2 2
、 Cr Bは板状である。それぞれのミクロ硬度は HV2400、 HV2250, HV1400であ
2
り、非常に硬い。 Cr Bは板状で晶出するが、針状クロム炭化物に比べ大きな晶出物
2
も見受けられるが、それらは数が少なぐ大半は長さが短く不連続であり、形状的に は問題がある力 連続して晶出しない限りマトリックスを物理的に脆くする危険性は少 ない。その証拠に 200R曲げ力卩ェを行っても硬化金属は非常に健全であり、小片剥 離さえ発生していな力つた。これらの効果を得るために、 Bの最小添加量は 0. 5%か ら最高添加量を 3. 5%までとし、異種溶接方法の溶け込み深さを考慮すれば、溶接 材料では最高添加量は 4. 5%以下とする。
[0126] Ti: l. 0%以下 (材料、合金)
チタン炭化物も非常に高硬度を生じるが、チタンは溶接作業性を困難にしビード表 面も平滑に仕上がらない。従って、 Nbと同様に 15%低クロム鋼における粒界腐食防 止の為に最高 1%以下の添加とする。
[0127] Al: 3%以下、 N: 0. 2%、 Ce及び Y等のレアアースメタル:合計量で 0. 5%以下の 1 種または 2種以上 (材料、合金) 本発明合金は常温力 600°C以上の高温用途まで使用される可能性があり、高温 耐酸ィ匕性をも与える必要性が生じた。これらは主に高温耐酸化性を改善するために 選択的な添加が可能である。例えば A1は、高温における耐酸ィ匕性を改善し、特に硫 黄ガスが使用雰囲気に多い場合、その効果を発揮する。この場合は Ni量を少なくし て、 A1量を多くするのが良い。 A1が 3%を越えると肉盛金属にアルミナ皮膜が生じス ラグが介在し易くなり溶接作業性が阻害される。安定的な効果を得るためには 0. 5% 以上、 3%以下が好ましい。
[0128] Mo: 10%以下 (材料、合金)
Moは本発明合金の耐硫酸腐食ゃ耐塩酸腐食に Cr, Cu, Siとの共存添加により 著しい効果を発揮し、コバルト基合金のステライト No. 1, No. 6と同等かそれ以上の 耐腐食性を示す。但し Moは現在、非常に高価な合金となり、あまり添加量を増加す ると本発明合金の製造単価が大幅に上昇するので最小添加量は 0%とし、最大添加 量は 10%とした。特に 8%添カ卩により、硫酸腐食はステライトの耐食性を上回ったの で、これ以上添加しても過剰添カ卩になるので最大添加量を 10%以下とし、特に好ま L ヽ最高添加量を 8%とした。
[0129] Cu: 7%以下 (材料、合金)
Cuは耐硫酸性、耐塩酸性を向上させる。ごみ焼却炉において、燃焼を中断したと き腐食性の強 、硫酸や塩酸等の酸露点液が生じるが、これに対して Mo単独ではさ して有効ではなぐ Cuとの複合添カ卩が効果的である。また、その複合添カ卩によればミ クロ組織が微細化され、高 Cr,高 Si含有状態で微細針状炭化物が析出し易ぐ高温 耐摩耗性が改善される。
[0130] 母材金属につ ヽては、特にその種類を問わず、例えば軟鋼、耐候性鋼板、耐硫酸 性鋼、耐海水性鋼、各種ステンレス鋼、 Mn— Crオーステナイト鋼、ニッケル合金鋼、 クロム合金鋼等の易溶接性鋼を使用することが出来るが、希釈を抑える点及び耐腐 食性、高温耐酸ィ匕性を確保する点力も Crを 9〜35%、 Niを 0〜25%を含むものが好 ましい。
発明の効果
[0131] 本発明の鉄基耐食耐摩耗性金属は、安価な鉄基合金であるにも拘らず、高価なコ バルト基合金やニッケル基合金の代替金属として硫酸、塩酸腐食に耐え、しかも耐 摩耗性がこれら合金と同等かそれより優れ、各種溶接材料、耐摩耗鋼板、铸鋼として 使用可能な画期的な合金である。
[0132] 世界的な視野から、高価なコバルト、ニッケル等の希少価値合金が生産設備の単 なる摩耗防止用溶接肉盛材料の合金として莫大な量が消費され、世界中において 摩耗消失、分散消耗され回収されずに放棄されているのが現状である。将来を見据 えれば現在これら希少価値合金を無駄に浪費することは子子孫孫に対していずれに は枯渴を招来することになり、現時点力 希少合金の有効利用、資源回収効率の向 上を計っていかなければ成らない。そこで本発明者は資源有効利用の観点力も地球 上に莫大な埋蔵量があり安価なシリコンを 26年前力も取り上げ、その有効利用として 溶接肉盛材料に添加することを継続研究して来た。
[0133] その当時、合金添カ卩量が C5. 2%、 S112. 3%、 Cr20% (磨耗係数 WR= 7、平均 硬度 HV730)の SLCE合金を開発し耐摩耗鋼板を製造した。銅精鍊工場、製紙会 社、セメント工場に多数納入し、スエーデンの製紙工場にも輸出した経験がある。こ の合金は塩酸腐食、硫酸腐食に強くそれなりの評価を得たが曲げ加工等の加工性 に乏しく非常に脆い合金であった。
[0134] Siを合金として金属に添加すると、特に安価な鉄基合金に関しては Si特有の脆弱 化を招来し、溶接材料としては使用に供することが非常に困難であった。特に溶着金 属の厚み方向に無数の割れを発生させる特徴があった。その脆弱さの為に肉盛金 属が表層面力 切片状剥離を発生したり、含有量が増加すると塊状で母材金属から 脱落を生じた。さらに耐摩耗鋼板の場合には、歪除去作業においてプレス等で加圧 するだけで剥離、脱落を生じ、限定された用途以外には使用が制限された。溶接肉 盛ワイヤや溶接棒として使用した場合には、肉盛物が僅かな衝撃を受けただけで硬 化肉盛金属に剥離、脱落を生じた。
[0135] 長年の研究により、本発明者は Si単独添加を放棄して B, Nb、 V等の元素との共存 添カロによりその脆弱性を克服することに成功し本出願に至った。その方法は、 Siが鉄 基合金を脆くすることはどうしても防止出来ないが、 Siが増加すると高クロム鋼のクロ ム炭化物を針状化させる性質を見抜!、て針状クロム炭化物の析出量を抑制し、その 減少した分を補うように球状微細化するニオブ炭化物、網状もしくは不定形、板状ホ ゥ化物を析出するボロンを添加することにより脆ィ匕を抑制し、さらに耐摩耗性を向上さ せると 、ものである。特に Nbは耐摩耗性の調整範囲を拡大して耐摩耗性の調整合 金として非常に有効な合金元素であった。
発明を実施するための最良の形態
[0136] 以下に本発明の実施形態を説明する。
[0137] Si X Bと Crの相関式を得るために作製した各種耐摩耗鋼板の溶着金属の組成を 表 8〜表 10に示す。
[0138] [表 8]
耐摩耗鋼板の溶着金属の添加化学成分 (重量%)
T P. C S i N i C r M o N b B C u
1 1 5 4. 0 3. 3 2 0 0 4. 5 2. 0 3 0 4. 6
2 1 . 5 3. 5 3. 3 2 0 0 4 . 5 2 . 0 3 . 0 4. 6
3 1 . 5 3. 5 3. 3 2 0 0 4 . 5 2. 0 2 . 3 4. 6
4 1 . 5 3. 5 3 . 3 2 0 0 4 . 5 3 . 0 1 - 6 4. 6 — C 1 . 5 2. 5 3. 3 1 3 0 4 . 5 4. 0 1 . 0 4. 6, 1 9 0 . 7 2. 6 3. 3 2 5 0 4 . 7 0. 5 2 . 5 4. 6, 2 0 0 . 7 2. 5 3 . 3 2 7 0 4 . 6 3 . 0 1 . 7 4. 5
8 2 . 5 2. 6 3. 3 2 5 0 4 . 6 6. 0 1 . 0 4. 6 、 2 2 1 . 5 3. 5 1 0. 0 2 5 0 4 . 6 4. 0 0 . 5 4. 6
1 0 0 . 7 3. 6 3. 3 2 7 0 4 . 6 0. 5 2 • 4 4. 5
1 1 1 • 4 5. 0 3 . 3 2 9 0 4 . 0. 5 1 . 7 4. 6
1 2 0 . 5 4. 0 3. 6 2 9 0 4 . 6 0. 5 1 . 7 4. 6
1 3 1 . 5 3. 5 3. 3 3 0 0 4 . 6 4. 0 0 5 4. 6
1 4 3 . 0 4. 1 3. 3 3 2 0 0 6 . 0 1 . 8 3. 5
1 5 0 7 3. 7 3. 3 2 6. 0 4 • 6 4. 0 1 7 4. 5
1 6 2 0 3. 1 3 , 3 3 2. 0 0 6. 0 1 8 3. 5
1 7 1 5 3 . 6 3. 3 3 1 . 0 4. 6 4. 0 1 0 4. 6 8 1 5 2. 6 3. 3 2 5. 0 4. 6 0. 5 3 0 4. 6 - 1 1 5 2. 6 0 2 7 . 5 4. 6 0. 5 3 0 4. 6 - 1 0 7 2. 6 0 2 7 . 5 4. 6 0. 5 2 5 4. 6
2 1 1 . 5 2. 5 0 2 7 0 4 . 5 8. 1 1 . 0 4. 6
2 3 1 . 5 3. 5 0 3 1 0 4 . 5 2. 0 2 . 4. 6
2 4 1 . 5 2. 5 3. 3 2 8 0 4 . 5 4. 0 0 5 4. 6
2 5 1 . 5 3. 5 0 3 2 0 4 . 5 2. 0 2 . 3 4. 6
2 6 2 . 5 3. 1 3. 3 2 5 0 0 6 . 0 1 5 3. 5
2 7 1 . 5 2. 5 3. 3 3 2 0 4 6 4. 0 1 0 4. 6
8 1. 5 3. 5 3. 3 24. 0 4. 6 6. 0 0 5 4. 6 Mn 8
9 1. 5 3. 5 3. 3 25. 0 8. 1 6. 0 0 5 4. 6 0 1. 5 3. 5 3. 3 25. 0 4. 6 6. 0 0 5 6. 0 1 2. 0 3. 5 0 29. 0 0 0. 5 2 1 4. 6-1 2. 0 3. 5 0 31. 5 0 0. 5 2 1 4. 6 2 2. 0 3. 5 0 29. 0 0 2. 0 1 6 4. 6-1 2. 0 3. 5 0 31. 5 0 2. 0 1 6 4. 6 3 2. 0 3. 5 0 29. 0 0 4. 0 1 0 4. 6 4 2. 0 3. 5 0 33. 0 0 2. 0 1 6 3. 5 AL 1. 5 3. 5 Aし 2 23. 0 0 4. 0 0 . 5 4 6 6 1. 5 4. 0 0 25. 0 4. 5 0. 5 2 . 5 4 6 7 3. 0 4. 0 0 23. 0 0 0. 5 2 . 1 3 5 8 2. 0 4. 0 0 2 θ. 0 0 0. 5 2 - 1 4 6 9 5. 5 4. 0 0 22. 0 0 6. 0 0 3 3 0 3. 0 4. 0 3. 3 32. 0 0 0. 5 1 . 7 4 6 1 2. 0 5. 0 3. 3 30. 0 4. 6 0 0 4 6 2 3. 0 5. 1 3. 3 30. 0 4. 6 0 0 4 6 3 3. 0 4. 0 0 30. 0 0 3. 1 1 . 6 3 .5 4 3. 0 4. 0 0 34. 0 0 3. 1 1 . 6 3 5 5 1. 5 4. 0 9 25. 0 4. 5 0. 5 2 . 5 4 6 6 1 - 5 3. 5 6 24. 0 4. 5 0. 5 3 . 0 4 • 5 7 2. 5 3. 0 8 25. 0 0 0. 6 3 . 0 4 . 5 8 0. 7 3. 5 3. 3 30. 0 4. 6 V2. 0 1 . 7 4 . 6 9 1. 5 3. 5 3. 3 31. 0 4. 6 V4. 0 0 . 5 4 . 6 0 0. 7 2. 5 3. 3 27. 0 4. 6 V2. 0 1 . 7 4 . 6 1 0. 5 4. 0 3. 3 30. 0 0 0 0 4 . 7 2 1. 5 4. 0 3. 3 30. 0 0 0 0 4 . 7 3 2. 5 4. 0 3. 3 30. 0 0 0 0 4 • 7 4 3. 0 4. 0 3. 3 30. 0 Mn 4 0 0 4 . 7
55 1. 5 4. 0 3. 7 36. 0 Mn 4 0 0 0 6 1. 3 4. 5 3. 7 20. 0 Mn 3. 5 0 0 0
57 1 - 3 4. 5 3. 7 20. 0 Mn 3. 6 0. 6 1 . 0 0
58 1. 3 4. 5 3. 7 20. 0 Mn3. β 0. 5 2 . 0 0 59 1. 5 3. 5 0 20. 0 4. 6 V8. 0 0. 5 4. 6
60 1 - 5 3. 5 0 20. 0 4. 6 V6. 0 0. 5 4. 6
61 0. 7 2. 5 0 20. 0 4. 6 V6. 0 1. 7 4. 6
62 2. 0 2. 6 3. 3 25. 0 4. 6 6. O 1. 0 4. 6
63 2. 0 4. 0 3. 3 31. 0 0 6. 0 1. 8 4. 6
64 2. 0 3. 2 3. 3 25. 0 0 6. 0 1. 5 3. 5
65 2. 0 4. 1 0 24. 0 0 0. 5 2. 1 3. 5
66 1. 5 2. 5 3. 3 13. 0 4. 5 4. 0 3. 5 4. 6
67 1. 5 2. 5 3. 3 18. 0 4. 5 0. 5 3. 5 4. 6
68 1. 5 2. 5 3. 3 20. 0 4. 5 0. 5 3. 0 4. 6
69 1, 3 4. 5 3. 7 20. 0 Mn 3. 6 8. 0 0 0
70 1. 3 4. 5 3. 7 25. 0 Mn 3. 6 8. 0 0 0
71 2. 0 4. 1 3. 3 30. 0 0 0 0 4. 7
72 1. 5 2. 5 3. 3 26. 0 4. 5 0. 5 2. 7 4. 6
[0141] これらの耐摩耗鋼板の曲げ加工性を調査した。第 1層目溶看金属に含有される Cr 量は母材希釈率を 25%として算出したものである。溶着金属の曲げ加工性能評価 方法は、前述したとおり、 SS400、 SUS304、 SUS310Sの 9mm肉厚 X 100mm幅 X400mm長の寸法を持つ鋼板上に 1層肉盛で 5〜6mmの溶着金属を全面肉盛し たクラッド鋼板を製造して、硬化金属を内側にしてプレスで曲げカ卩ェを行った。 目標 と十るステライト No.1合金はガス溶着で SS400上に 2層 5mm厚み肉盛した。試験 片の長さは約 200mmとした。
[0142] 曲げ加工曲率は約 200Rとし、曲げ加工によって硬化金属に何ら影響を与えず健 全な曲げ性能が得られ無欠陥状況の場合を〇、硬化金属の表面に数箇所の表層剥 離や極僅かな欠落を発生した場合を▲、硬化金属の表面に多数の表層剥離や塊状 の欠落を発生し靭性に乏しい場合を參として曲げ延性を評価した。結果を以下に示 す。
[0143] [表 11] 耐庫耗鋼板の曲げ加工性能に及ぼす S i x Bの影響
第 1層目溶 *金属に含有される C r最 (添加置では無い. 母材希 ίϊ率を 2 5 %とする。)
Figure imgf000036_0001
Figure imgf000036_0002
2] [swo]
Figure imgf000037_0001
Figure imgf000037_0002
Z£LSl£/900Zdr/13d 8ΖΪ8Ϊ0/800Ζ OAV TP No C S i C r 1Mb S i xQ 曲げ 母《τ mm W
K性
31 2. 0 3. S 28. 0 0. 5 7. 4 Ο 310 587 4. 9
31 -1 2. 0 3. 5 28. 0 0. 5 7. 4 • 304 一 —
32 2. 0 3. 5 28. 0 2. 0 5. β ο 310 561 3. 8
32-1 2. 0 3. 5 28. 0 2. 0 5. 6 ο 304 一 一
33 2. 0 3. 5 28. 0 4. 0 3. 5 ο 310 504 5. θ
34 2. 0 3. 5 31. 0 2. 0 6. 6 ο 310 560 5. 3
36 1. 5 3. S 22.0 4. 0 1. 8 ο 304 528 g. 3
AL2. 0
36 1. 5 4. 0 1 Θ 0. 5 10. 0 • SS βθ 6 4. 0
37 3. 0 4. 0 24 0. 5 8. 4 ο 310 668 5. 3
38 2. 0 4. 0 28 0. 5 8. 4 ο 310 699 Z. 8
OS Θ 5. 4 4. 0 16. 0 6. 4 0 -
Figure imgf000038_0001
SS 852 2. 0 母材 310は MEN JRffi C r=23%. S.Sは曲 IfKM 310 8 iB 2 2. 7
40 3. 0 4. 0 24. 0 0. 5 6. 8 • SS 814 2. 4
41 2. 0 5. 0 23. 0 0 0 SS 616 β. 3
42 3. 0 5. 0 23. 0 0 0 • SS 679 2. 6
43 3. 0 4. 0 27. 0 3. 0 6. 0 • 304 706 3. 0
44 3. 0 4. 0 30. 0 3. 0 6. 0 • 304 739 3. 0
14]
Figure imgf000039_0001
〔¾u §〕g0 63 2. 0 4. 0 24. 0 6. 0 7. 2 攀 SS 640 3. 3
63-1 2. 0 4. 0 30. 0 β. 0 7. 2 • 310 64 θ 3. β
64 2. 0 3. 2 23. 0 6. 0 4. 8 ο 304 511 12. 3
65 2. 0 4. 1 24. 0 0. 6 θ. β ο 310 506 8. 8
6 β 1 - 5 Ζ. 5 β.0 4. 0 8. 8 ο 310 583 2. 4
67 1. 5 2. 5 18. 0 0. 5 8. 8 ο 304 618 4. 0
68 1 - 5 2. 6 19. 5 0. 5 7. 6 ο 304 627 4. 8 β9 1 - 3 4. 5 21 - 0 8. 0 0 ο 310 335 17. 3
70 1. 3 4. 5 25-0 8. 0 0 ο 310 362 15. 0
71 2. 0 4. 1 27. 0 0 0 ο 304 407 36. 6
72 1. 5 2. 5 19. 5 0. 5 6. 8 ο 304 716 6. 1
[0148] (1)31 と0:の相関
これらを整理して図示したのが図丄である。炭素添加量を ο· 52.0%と著しく減 少させたにも拘わらず SiXBの積と Cr含有量に関する相関図の適正範囲内におい て、 No.2, No.6, No.10— C. No. 15、 No. 16、 16— C, No.23, No.26, N °- 32、 No.32— 1、 No.33, No.34、 No.38、 No.66, No.67, No.68, No. 72,合金は磨耗係数が 3〜6でありステライト No. 1, No.6の約 2倍以上の耐摩耗性 を確保出来た合金が多数存在した。
[0149] さらに高炭素一高クロム铸鉄系肉盛合金 GL(WR=6)と比較してもそれ以上の耐 摩耗性が得られたことは画期的であり、現状では鉄基高温耐摩耗溶接肉盛合金の u F(WR=2)が最高の耐摩耗性を持つ合金として世界的に認められているが、 No 6 6、 No.38はそれに匹敵する耐摩耗性をも確保出来た。
[0150] 傾向として上部限界曲線は Cr含有量が約 15%力も約 27%間では SiXBの数値が 約 11. 5から 6まで下降し、 Cr= 27%以上 31%の間で数値が約 6で飽和した。 Six Bがこの限界値を越えると曲げ性能が著しく低下し溶着金属自体に剥離、脱落を発 生して極端に延性低下することを示した。
[0151] Si X Bの数値が高い程、耐摩耗性は向上する力 逆に SiX Bが低い値になると曲 げ性能は良好になるが耐摩耗性が大幅に低下した。耐摩耗性の改善のために Nbを 添加した。
[0152] (2) Nb添カ卩の効果について
19%Cr含有量の No. 6合金に関しては、 Si X B = 6. 5、 Nb添加量力^). 5%で磨 耗係数 WR= 5. 6が得られたが、同じ Cr量の No. 62合金に関して、 SiX B = 2. 6、 Nb添加量が 6. 0%で磨耗係数 =6. 5が得られ、ほぼ同じ程度の耐摩耗性が得られ た。 Si X Bが 2. 6の低値ならば、磨耗係数は 9〜15程度に低下するが Nbを 6%添カロ すれば摩耗係数が 6. 5にまで回復出来た。
[0153] Nbは確実に耐摩耗性を改善する能力を示した。 Si X Bの数値が 1. 25〜4. 5の範 囲になると Cr含有量に拘わらず磨耗係数 WRが 8〜15と非常に悪くなる傾向が見ら れたが曲げ性能は逆に良くなつた。この範囲内で耐摩耗性を向上させるためには Nb の添力卩量を 4〜8%の間で加減すれば改善出来る。 SiX Bの積が 4. 5以上で 11. 5 以下の範囲の場合には Nbの添力卩量を 0. 5〜4%の範囲で添力卩量を調整し、 Si X B の積が約 4. 5以下に低下した場合には 4〜8%の添加量を選択すれば曲げ延性を 低下させずに耐摩耗性の改善が図れる。
[0154] No. 10合金の曲げ延性は參である力 Si X Bの積が 8. 6と高いので、 7程度に低 下させれば〇に変化させることが可能に成る。 No. 17合金も Nb添加量を 4%から 1 〜2%までに減少すれば を〇に改善出来る。上下限界曲線に囲まれた範囲内で Nbの添加量の調整や Si X Bの調整を行えば良好な曲げ延性と優れた耐摩耗性が 得られる事が判明した。
[0155] (3) Nbの置換元素としての Vの効果
通常、 Vは Nbと同等の球状炭化物形成元素として効果があると言われて 、るので Vの効果を調査した。 Nbと Vとの耐摩耗性に与える効果の差異を調べるために Nb合 金群と V合金群との比較を試みた。 Nb添加合金群を表 16に示し、 V添加合金群を 表 17に示す。
[0156] [表 16]
N b添加合金(C rは 1層目含有量)
Figure imgf000042_0001
[0157] [表 17]
V添加合金群(C rは 1層目含有量)
Figure imgf000042_0002
[0158] Nb合金の No. 7と V合金の No. 50を比較したところ両者ともに母材は SS400, Si xB=4. 3で C, Cr, Si添加量は同じであり、 Nb = 3%、 V=2%であった。磨耗係数 WRは Nb合金が 11. 0、 V合金が 7. 4で V添カ卩の方が幾分耐摩耗性に優れていた。
[0159] Nb合金の No. 9と V合金の No. 49とを比較した。合金添力卩量は総て同一であり母 材 SS400も同じある。 Nb=4%, V=4%と同一添カ卩量で前者の磨耗係数 WR= 11 . 0、後者 WR= 19. 0の差異を生じた。
[0160] Si X B=4. 3の場合には Nbより Vの添カ卩量が幾分少ないにも拘わらず Vの方が N bより耐摩耗性を向上させた。 Si X B= l. 8の場合には同一添カ卩量において Nbの方 が圧倒的に耐摩耗性を向上させた。
[0161] 比較試験から判断して Six B= l. 8と低い場合には Nb添カ卩が有効であり、 Six B
=4. 3と高い場合には Vの添加量が Nbより少なくて耐摩耗性の向上に効果があるこ とが判明した。やはり Vは Nbと同じく耐摩耗性の向上に貢献した。曲げ延性に関して も問題なく Vの添加量として Nbと同じ最高 8%までに限定した。また Nbと Vとの共存 添加も考えられ、両者の合計添加量が 8%以下が好ま Uヽ。
[0162] (3)母材の種類が耐摩耗性に及ぼす影響
Cr含有量がおおよそ 25%以上 31%以内の場合には SUS310S母材を多く使用し た力 25%以下の場合には軟鋼, 304ステンレス鋼の母材を併用して肉盛したので 母材の相違による耐摩耗性の差異が憂慮された。なぜなら耐摩耗性を表す磨耗係 数 WRの数値力 Sステンレス鋼母材と軟鋼母材とで得られた数値とを混合して比較した 力もである。本来ならば、同一母材で試験を行う必要があった力 溶着金属のクロム 含有量を 15%から 31%の範囲にまで変動させる必要があつたので、母材の溶け込 みを利用して溶着金属のクロム含有量の調整に利用したために止むを得な力つた。
[0163] 母材の種類が耐摩耗性に及ぼす影響を表 18に示す。 No6合金と No. 19合金は 同一成分添加量で母材の種類を前者が SS400,後者が SUS310Sにした。同様に
No. 7,と No. 20合金は前者力 SSS400後者力 SUS310S、 No. 9と No. 22合金は fff 力 SSS400、 力 S310Sであった。
[0164] [表 18] 母材の相違が耐摩耗性に与える影響
Figure imgf000043_0001
[0165] 母材の差異により影響を受けた因子は寧ろ硬度値であって耐摩耗性には殆ど影響 を及ぼさな力つた。これら磨耗係数の差異は特許請求範囲に含まれるために問題は なかった。従って、 SS400と SUS310Sとの磨耗係数を同一と見做しても差し支え無 いと判断できた。
[0166] (4) Ni含有量と曲げ延性との関係 溶着金属の Ni含有量と曲げカ卩ェ性との関係を表 19に示す。
[0167] [表 19] 溶着金属のニッケル含有量と曲げ加工性との関係
Figure imgf000044_0001
[0168] Cr含有量が約 23〜24%までが SS400, SUS304ステンレス鋼母材が使用され、 Cr含有量が 25%以上になると SUS310Sステンレス鋼が使用された。 SS400軟鋼 母材が使用された場合の Ni含有量の範囲は約 0. 0〜10%、 SUS304母材の場合 tこ ίま約 2. 0~12%, SUS310S母材の場合 tこ ίま約 5. 0〜16ο/ο ίこなる。
[0169] Cr含有量が 23. 5%以上 31%未満において、 Ni含有量が約 3〜6%増加すれば 曲げ延性が Si X B値で約 3ポイント改善される傾向がみられた力 割れを発生する合 金も混在しており、この領域で囲まれる範囲においては各種元素の組み合せを精査 して慎重に合金構成を行わなければならなレ、。 Cr含有量が 23. 5%以下の場合には 、 Ni含有量が 7〜8%になっても溶着金属は破断を発生し、 Ni添加が割れ破断を防 止する効果が無力つた。
[0170] (5) Si x Bと Cr含有量との相関式
1)硬化金属の剥離、脱落を発生する上部限界曲線
15%≤Cr≤27%
Si X B≤2014/Cr2+0. 083Cr+ l . 05 (1) 27%≤Cr≤31%
1. 25%≤SiX B≤6. 0% (2)
2)硬化金属の耐摩耗性 WRが最低の 15を保持できる下部限界曲線
15%≤Cr≤20. 0%
SiX B = 570/Cr2-0. 066Cr+ l. 145 (3)
20. 0%≤Cr≤31%
SiX B≥l. 25 (4)
3)溶着金属の Ni含有量が 3〜6%増加すると剥離、脱落上部限界曲線は 23. 5% ≤ Cr≤ 31 , 0%の範囲にお!、て Si X B = 3ポイント分 (1)式を上方に平行移動させ、 割れが発生し難!、範囲を拡大する。
[0171] (6)肉盛溶接材料の耐腐食性評価
本発明合金の耐腐食性は既に述べたように Worthite合金を目標として開発した。 その化学成分は以下のようである。 C< 0. 07%、 Cr20%、 Ni25%, Si3. 5%、 Mo3. 0%、 Cu2. 0%
[0172] その他、溶接材料として DIN8556 E20. 25. 5LCuR26がある。その代表的な ィ匕学成分は以下のようである。 CO. 025%、 Mn2%, SiO. 4%, Cr21%, Ni25%, Mo5%, Cul. 8%, NbO. 1%, NO. 08%
[0173] 両合金ともに Ni含有量が高ぐ耐腐食性構造材料であり、耐摩耗性金属としては使 用出来ない。後者の場合には溶接材料であるが、 Si=0. 4%と低ぐ炭素含有量も 極端に少ないので耐摩耗性金属としては使用出来な力つた。従って、発明者は耐摩 耗性金属として必要な炭素含有量を 0. 5%以上、 2. 0%以下とした。さらに Si含有 が本開発合金の主題であるから、その範囲を 2. 5%≤Si≤5. 5%にした。さらに耐 摩耗性向上の為に炭化物形成元素の Nb, Vを添加し、高硬度を与えるホウ化物を 形成する Bを共存添加した。
[0174] 2種類の耐腐食性合金を耐摩耗性合金に変質させると同時に 2種類の合金が元々 保持して!/ヽた耐腐食性を劣化させな ヽように合金設計を行った。 DIN8556溶接棒 は燐酸、硫酸、酢酸、塩、海水環境のプラント類の接合や耐食材料として軟鋼や低 合金鋼上に肉盛して使用されているが耐摩耗材では無く機械構造部材への肉盛に 使用されている。
[0175] 曲げ延性と耐摩耗性が確保出来るグラフの範囲内でステライト No. 1、ステライト No . 6合金の耐腐食性より優れた合金を発明した。これらの合金の耐腐食性比較試験 を行った。腐食試験は室温において 10%硫酸水溶液、 5%塩ィ匕第-鉄水溶液、 10 %塩酸水溶液、 48%苛性ソーダ水溶液に 480時間連続浸漬させた場合の腐食減 量を測定し、その差異で耐腐食性の優劣を比較した。
[0176] SS400軟鋼、 SUS310S, SUS304ステンレス鋼、高クロム铸鉄,而據酸性鋼は 板材カも切り出し試験片とした。その他は総て肉盛材料であり、 SUS310Sの上〖こ 5 mm厚み肉盛して試験片を作成した。肉盛試験片は母材 SUS310Sを含めた腐食 減量であり、硬化金属自体を採取して腐食試験に供試することは一部の合金に割れ を多発していることから比較が不可能になり、実機プラントを想定して母材込みの腐 食試験とした。
[0177] 試験片の寸法は 50 X 50mmとし、その肉厚は 9mmにした。硬化金属の厚みは約 5mmあり、硬化金属面を基準として母材面を切削して 9mmの厚みを確保した。試験 片の全表面積は 68cm2であった。単位面積当たりの腐食減量の表示を考えた力 母 材金属の SUS310S異種金属が含まれているのでトータルの腐食減量測定値をそ のまま表示して比較した。
[0178] 母材金属に SUS 31 OSを選択した理由は母材金属から溶け込みにより多量のクロ ムを溶着金属に移行させることにある。それにより溶着金属の Crの添加量調整が行 いやすかった。 SUS304では含有しているクロム量が 18%と少なぐ 25%を含有す る SUS310Sの方がより多量のクロムを母材金属から得易力つた。さらに耐腐食性に 優れて 、たからである。 1層肉盛溶着金属の Cr含有量は溶け込みの影響により SUS 310S母材金属力も Crをピックアップして添加成分に比べ同等かより多く含有される ようになる。母材溶け込み率は 25%とした。
[0179] Si X Bと第 1層目溶着金属の Cr含有量との相関図において、その囲まれた範囲内 の合金を適当に選択して腐食試験行った。腐食試験を行った合金は外から〇で囲 み認識し易く配慮した。 800°C以上の高温域において使用されるならば SUS310, 3 10S耐熱ステンレス鋼母材が選択される力 室温付近から 800°Cまでの耐熱材料と して選択される板材は SUS304, 316ステンレス鋼が主に使用される。従って、クロム の添加量から判断して 1層目の溶着金属に含有される Cr含有量は約 23〜30%の 範囲と想定される。それ以下の Cr含有量の場合には軟鋼やエステン鋼を母材に選 択され希釈を受けてクロム含有量が低下する場合が多 、。耐腐食性を要求される場 合には少なくとも母材金属にはステンレス鋼が採用され、 304, 316, 316L鋼が主に 使用される。従って、腐食試験は主に Cr含有量が約 23〜30%の範囲を中心に行つ たが一部低クロム鋼の調査も必要であるから 16%クロム鋼も調査した。
[0180] No. 5合金は Cr含有量が 16%と低い場合、 No. 10、 17合金は Cr含有量が 27% 、 30%で高価な Moを含有している場合、 No. 16, 14, 39合金は C含有量を 2%、 3 %、 5. 4%と変動させ Moを含有していない場合、 No. 22合金は 10%Ni、 No. 28 合金は Mn8%, No. 29合金は Mo8%、 No. 30合金は Cu6%と本発明合金におけ る Ni、 Mn、 Mo、 Cu等の各合金成分添加量の上限値に近い値を選択し、腐食の差 異を調査した。調査結果を表 20〜22に総括した。
[0181] [表 20] 耐腐食性比較に適用した各種合金化学成分
Figure imgf000047_0001
[0182] [表 21] 各種合金の耐腐食性比較試験結果
Figure imgf000048_0001
1 0 %塩酸水溶液、 4 8 %苛性ソーダ水溶液腐食試験
Figure imgf000049_0001
[0184] 腐食試験には母材に総て SUS310Sが使用されているので母材力も Crをピックァ ップし Cr含有量が増加した。例えば No. 10合金はグラフの曲げ延性試験において Cr含有量が 20%であるが、腐食試験片では Cr= 27%に増加した。当然、 SUS31 OS母材力 Cr, Niを拾い、溶着金属の Cr, Ni含有量は増加する。腐食試験番号は 腐食を示す英語 Corrosionの Cを取って番号数値の後に Cを付けた。
従って、腐食試験に関しての合金は総て C合金についてである。
[0185] (7) 10%硫酸腐食について (C合金について)
10%硫酸溶液に 480時間浸漬して行った腐食減量の比較により、 No. 5, No22, No. 28, No. 29, No. 30合金類力ステライ卜 No. 1, No. 6に _b匕べ 常に優れた耐 腐食性を示した。耐摩耗性を示す磨耗係数 WRが 8〜: 10とステライト No. 1と同等の 耐摩耗性を示した。 No. 10, No. 17合金はステライトと同等の耐腐食性を示したが 耐摩耗性は本特許合金類の中で最高級の耐摩耗性を示し磨耗係数 WRが 3. 3であ つた o
[0186] これら鉄基合金が 10%硫酸腐食に対してコバルト基合金のステライト合金より非常 に優れた結果を示したことは驚異的であったので、その信憑性を確認するために再 度、腐食性の激しい濃度である 40%硫酸溶液を選択し、この溶液を 50〜70度の範 囲に加熱し試験片を 4時間連続に浸漬した場合の腐食減量を比較した。再度、 480 時間に亘る腐食試験を行うことが困難なので、単なる確認試験であるから、短時間の 加速試験として行った。その結果を表 23に示した。
[表 23]
40%硫酸溶液一 50~70°C加速腐食試験結果 (試験時間: 4 H)
Figure imgf000050_0001
[0188] 加速試験においてもステライト No.1, No.6と同等かそれ以上の耐硫酸腐食性を 示した。特に、 No.5合金は非常に優れており、 No.30合金はステライトより幾分劣 つてはいるが大差が無ぐ同等と判断出来た。
[0189] 次に、炭素含有量が耐硫酸腐食に及ぼす影響を調査した。調査結果を表 24及び 25に示す。
[0190] [表 24] 炭素含有量が耐硫酸腐食に及ぼす影響 合金 N o C S i C r N i Mo C u B
12— C 0 . 5 4. 0 29 3. 6 4. 6 4. 6 1 . 7
10— C 0 . 7 3. 6 27 3. 3 4. 6 4. 5 2 . 4
1 7— C 1 . 5 3. 6 31 3. 3 4. 6 4. 6 1 . 0
A 2 . 0 3. 0 30 3. 3 4. 6 4. 6 0
B 2 . 5 5. 1 30 3. 3 4. 6 4. 6 0
C 3 . 0 5. 2 30 3. 3 4. 6 4. 6 0
[0191] [表 25] 4 8 0時間浸漬試験比較
Figure imgf000051_0001
[0192] 炭素含有量が 0. 5%≤C≤3. 0%範囲において、耐腐食性との相関を見ると硫酸 腐食は炭素含有量に影響され易ぐ 2%以上になると耐硫酸腐食性が低下する傾向 を示した。ボロンは硫酸腐食に影響を及ぼさないと判断した。従って、硫酸腐食を受 ける用途には炭素添加量が 2%以下を使用すべきである。
[0193] 硫酸腐食に対して、従来鉄基耐摩耗金属では不可能と考えられていたが、耐食耐 摩耗材料であり、高価なコバルトを 50〜65%を含有するステライト No. 1, No. 6より 優れ、しかも耐摩耗性が No. 1と同等かそれ以上の鉄基合金を発明した。世界的な 見地から希少価値を持つコバルトを多量含有するステライト合金を単なる摩耗用途で 消耗し、資源回収出来ない用途に使用されることは有効資源の無駄使いになり、こ れらの代替金属として本発明合金は今後使用されるべきである。
[0194] (8)塩酸腐食について
塩酸腐食に対して、 No. 29合金、 No. 10合金、 No. 30合金がステライト合金より 優れていた力 特に 10%塩酸溶液腐食試験では、 No. 10合金がステライト No. 1, No6の両者より優れており、耐塩酸腐食用途には No. 10合金を使用することが重要 である。
[0195] 炭素含有量が塩酸腐食に及ぼす影響を調査した。塩酸腐食に関しては No. 17合 金のみ数値が他の合金に比べ約 10倍程度の腐食減量を示したが他の合金に関し て大差は無く溶着金属の炭素含有量による影響は見られな 、。確かにステライト No . 1は炭素含有量の少ない No. 6より耐塩酸腐食に強い傾向を示しており、耐塩酸腐 食には硫酸腐食のように炭素添加量に影響されな 、。
[0196] ステライトに対抗するほどの耐腐食性を得るためには高価な Moの添カ卩が必要であ る。しかし、近年 Moの合金単価が異常な値上がりを生じ多量添加すると合金コストに 多大の影響を与え鉄基合金である安価なメリットを半減しかねな 、。そこで本発明者 はステライトほどの耐腐食性を求めるのでは無ぐ同じ鉄基合金同士で比較して非常 に耐腐食性に優れている合金を同時に発明した。それは No. 16, No. 14である。
[0197] 铸造で製作される高クロム铸鉄と比較して、 No. 16合金は 10%硫酸腐食に関して 約 54倍、 5%塩ィ匕第二鉄に関して約 72倍、 10%塩酸溶液に関して約 94倍の耐腐 食性を示した。 No. 14合金はほぼ同じ傾向を示した。従来の鉄基合金である高炭素 一高クロム铸鉄系溶接合金 GLに比べ No. 16合金は 10%硫酸液では約 19倍、 5% 塩ィ匕第-鉄液に関しては約 23倍の耐食性に優れ、従来から使用されてきた高クロム 铸鉄系合金に比べ非常に優れた耐腐食性を持ち、鉄基合金としては耐食耐摩耗用 途に充分適用可能であることを実証した。
実施例
[0198] 次に実施例を示し、比較例と対比することにより本発明の効果を明らかにする。近 年、石油の価格高騰により、石炭輸入コストも連動して高騰し資源小国の我国は燃 料高騰に困惑しているのが現状である。特に莫大な石炭量を使用する石炭火力発 電所、製鉄所、セメント工場においては高価な良炭の使用量を減少させ、安価な粗 悪炭との混炭使用が増加して 、る。粗悪炭の中でも硫黄含有量の多 、石炭が存在 し、ストックヤードに野積されていると雨で水分が増加して石炭に含有されている硫黄 分が水と反応して希硫酸を生じるようになる。
[0199] 実施例としては、石炭を粉砕機にまで導入する過程において、トラフコンベヤーが あるが、その底板ライナーが従来摩耗を受けることにより高炭素一高クロム铸鉄系合 金を肉盛された耐摩耗鋼板が使用されていた。その化学成分は既に述べた GL合金 であった。硫黄含有量が多量含まれる石炭を混炭してからは従来、単なる摩耗であ つたので長期寿命を与えていたが、希硫酸の腐食を受けその寿命は僅か 2. 5力月に 短縮した。その底板ライナーに本開発合金を適用したところ、 1年経過しても全く腐食 摩耗を発生しておらず、継続使用されている。
[0200] 高 Si含有鋼の脆弱化を証明する為に上述した曲げ加工後のビード写真を撮影した 。その中の代表例として No. 55合金は高 Si含有の欠点である脆弱化を示しプレスで 圧下したビード表面が総てに亘り剥離を生じていた。しかし、本発明合金である No. 10— C合金は 200Rの曲げカ卩ェにお!/、て、その健全性を示して!/、る。
[0201] クロム含有量の相違によるクロム炭化物の析出量に関して、低クロム含有鋼の No.
5 (Cr= 16%)と高クロム含有鋼の No. 10— C (Cr= 27%)とのミクロ組織を比較した 。図 3の写真 1及び図 4に示すように、高クロム合金の 10— Cには板状の粗大ホウィ匕 クロム(Cr B)の晶出が見られ、 No. 5合金には見受けられない。従って、重衝撃摩
2
耗を受ける用途には低クロム鋼を使用し、軽衝撃を受ける摩耗用途には高クロム鋼を 採用すれば良い。
図面の簡単な説明
[0202] [図 1]曲げカ卩ェ性に及ぼす Six B量及び Cr量の影響を示す図表である。
[図 2]合金評価に関する写真で、写真 1は従来合金の針状組織を示す顕微鏡写真、 写真 2は従来合金の曲げ割れを示す試料断面の写真である。
[図 3]写真 1は本発明合金 No. 10— Cの組織を示す顕微鏡写真、写真 2は曲げ割れ 試験後の写真である。
[図 4]本発明合金 No. 5の組織を示す顕微鏡写真である。

Claims

請求の範囲
[1] 重量0 /0で C:0.5〜2.5%、 Si: 2.5〜5.5%、 Mn:0〜10%以下、 Cr:15%〜4 5%、 Ni:0〜13%、 Cu:7%以下、 Mo: 10%以下、 B:0.5%〜4.5%、 0≤Nb + V≤ 8%を含み、残部が鉄及び不可避不純物からなる鉄基耐食耐磨耗性肉盛溶接 材料。
[2] 請求項 1に記載の成分に加えて、 Ti: 1.0%以下、 Al:3%以下、レアアースメタル: 合計で 0.5%以下、 N:0.2%以下を 1種または 2種以上を含む鉄基耐食耐磨耗性 肉盛溶接材料。
[3] 手溶接棒、フラックスコアード複合ワイヤ、金属パウダー又は铸造棒である請求項 1 又は 2に記載の鉄基耐食耐磨耗性肉盛溶接材料。
[4] 重量%でじ:0.5〜2.0%、 Si: 2.5〜4.5%、 Mn:0〜10%以下、 Cr:15〜31
%、 Ni:0〜16%、 Cu:7%以下、 Mo: 10%以下、 B:0.5〜3.5%、 0≤Nb+V≤ 80/0を含み、 150/o≤Cr<270/0の範囲【こお!ヽて(SiXB)≤2014/Cr2+0.083Cr +1.05を満足し、 270/0≤Cr≤310/oの範囲【こお!ヽて、 1.25%≤ (SiXB)≤6.0 0/0を満足し、 150/0≤じ1:<200/0の範囲【こぉ1、て(81 :6)≥570/じ1:2—0.066Cr +1. 145を満足し、 20%≤Cr≤31%の範囲において(SiXB)≥l.25を満足する 低炭素一高シリコン一高クロム一ボロン一ニオブ系の鉄基耐食耐摩耗性合金。
[5] 請求項 4に記載の成分にカ卩えて、 Ti: 1.0%以下、 A1: 3%以下、レアアースメタル: 合計で 0.5%以下、 N:0.2%以下を 1種または 2種以上を含む鉄基耐食耐摩耗性 合金。
[6] 耐磨耗性及び耐食性が、コバルト基合金であるステライト No. 1、 No.6に匹敵する かそれより勝る請求項 4又は 5に記載の鉄基耐食耐摩耗性合金。
[7] 肉盛溶接金属又は铸鋼である請求項 4又は 5に記載の鉄基耐食耐摩耗性合金。
PCT/JP2006/315732 2006-08-09 2006-08-09 Alliage à base de fer résistant à l'usure et résistant à la corrosion et matière de soudage par dépôt pour obtenir l'alliage WO2008018128A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2006/315732 WO2008018128A1 (fr) 2006-08-09 2006-08-09 Alliage à base de fer résistant à l'usure et résistant à la corrosion et matière de soudage par dépôt pour obtenir l'alliage
EP06782548A EP2050533A1 (en) 2006-08-09 2006-08-09 Iron-based corrosion resistant wear resistant alloy and deposit welding material for obtaining the alloy
CN2006800555672A CN101505910B (zh) 2006-08-09 2006-08-09 铁基耐蚀耐磨损性合金以及用于获得该合金的堆焊材料
AU2006347111A AU2006347111B2 (en) 2006-08-09 2006-08-09 Iron-based corrosion resistant wear resistant alloy and deposit welding material for obtaining the alloy
US12/376,715 US20100189588A1 (en) 2006-08-09 2006-08-09 Iron-based corrosion resistant wear resistant alloy and deposit welding material for obtaining the alloy
JP2008528680A JP4310368B2 (ja) 2006-08-09 2006-08-09 鉄基耐食耐摩耗性合金及びその合金を得るための肉盛溶接材料
TW096142154A TWI393789B (zh) 2006-08-09 2007-11-08 鐵基耐腐蝕耐摩耗性合金

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/315732 WO2008018128A1 (fr) 2006-08-09 2006-08-09 Alliage à base de fer résistant à l'usure et résistant à la corrosion et matière de soudage par dépôt pour obtenir l'alliage

Publications (1)

Publication Number Publication Date
WO2008018128A1 true WO2008018128A1 (fr) 2008-02-14

Family

ID=39032674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315732 WO2008018128A1 (fr) 2006-08-09 2006-08-09 Alliage à base de fer résistant à l'usure et résistant à la corrosion et matière de soudage par dépôt pour obtenir l'alliage

Country Status (7)

Country Link
US (1) US20100189588A1 (ja)
EP (1) EP2050533A1 (ja)
JP (1) JP4310368B2 (ja)
CN (1) CN101505910B (ja)
AU (1) AU2006347111B2 (ja)
TW (1) TWI393789B (ja)
WO (1) WO2008018128A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2224031A1 (en) * 2009-02-17 2010-09-01 MEC Holding GmbH Wear resistant alloy
JP2012503743A (ja) * 2008-09-25 2012-02-09 ボーグワーナー インコーポレーテッド ターボ過給機およびターボ過給機用の保持ディスク
JP2012503744A (ja) * 2008-09-25 2012-02-09 ボーグワーナー インコーポレーテッド ターボチャージャおよびその調整リング
US20120091663A1 (en) * 2009-03-26 2012-04-19 Laszlo Pelsoeczy Nitriding Grade Steel Material Composition for Manufacturing Piston Rings and Cylinder Liners
CN103160757A (zh) * 2013-04-15 2013-06-19 平勇 一种轨梁矫直圈
DE102014217369A1 (de) 2014-09-01 2016-03-03 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Hochfeste, mechanische energie absorbierende und korrosionsbeständige formkörper aus eisenlegierungen und verfahren zu deren herstellung
RU2769682C1 (ru) * 2021-03-30 2022-04-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный аграрный университет" (ФГБОУ ВО Алтайский ГАУ) Электрод для износостойкой электродуговой наплавки
JP7572384B2 (ja) 2019-07-09 2024-10-23 エリコン メテコ(ユーエス)インコーポレイテッド 耐摩耗性と耐食性のために設計された鉄ベースの合金

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009010473A1 (de) * 2009-02-26 2010-11-18 Federal-Mogul Burscheid Gmbh Stahlwerkstoffzusammensetzung zur Herstellung von Kolbenringen und Zylinderlaufbuchsen
DE102009010728C5 (de) * 2009-02-26 2019-08-14 Federal-Mogul Burscheid Gmbh Kolbenringe und Zylinderlaufbuchsen
JP5627935B2 (ja) * 2009-07-24 2014-11-19 山陽特殊製鋼株式会社 Ti系ろう材
CN101690903B (zh) * 2009-08-14 2012-03-07 淮阴工学院 一种不断裂的高铬铸铁破碎机锤头
CN101905390B (zh) * 2010-08-23 2012-05-23 武汉钢铁(集团)公司 一种低合金高强度的气体保护焊丝
JP5606994B2 (ja) 2010-09-30 2014-10-15 株式会社神戸製鋼所 肉盛溶接材料及び肉盛溶接金属が溶接された機械部品
CN103635284B (zh) * 2011-03-23 2017-03-29 思高博塔公司 用于抗应力腐蚀裂开的细粒镍基合金及其设计方法
JP5742447B2 (ja) 2011-05-09 2015-07-01 大同特殊鋼株式会社 高硬度肉盛合金粉末
RU2448186C1 (ru) * 2011-05-27 2012-04-20 Юлия Алексеевна Щепочкина Чугун
CN102259163A (zh) * 2011-07-22 2011-11-30 江苏联兴成套设备制造有限公司 稀土耐热耐磨筛板
CN102286702B (zh) * 2011-08-15 2016-06-01 奥美合金材料科技(北京)有限公司 一种铁基粉末及其零件
WO2013101561A1 (en) 2011-12-30 2013-07-04 Scoperta, Inc. Coating compositions
KR101614061B1 (ko) * 2012-03-29 2016-04-20 주식회사 고영테크놀러지 조인트 검사 장치
EA021913B1 (ru) * 2012-04-13 2015-09-30 Борис Иванович Уваров Литейный сплав
CN102758125B (zh) * 2012-07-17 2014-07-16 安徽三联泵业股份有限公司 一种过流部件用白口铸铁
US9738959B2 (en) 2012-10-11 2017-08-22 Scoperta, Inc. Non-magnetic metal alloy compositions and applications
CN103014479A (zh) * 2012-11-26 2013-04-03 姚芙蓉 一种耐磨铸铁合金材料
CN103938106B (zh) * 2013-01-21 2016-03-30 学修机械科技(上海)有限公司 铬镍铜钒铌氮高温耐热耐磨铸钢
RU2530978C1 (ru) * 2013-05-16 2014-10-20 Фонд поддержки научной, научно-технической и инновационной деятельности "Энергия без границ" (Фонд "Энергия без границ") Состав присадочного материала
CN103266252B (zh) * 2013-05-31 2015-08-19 滁州市昊宇滑动轴承有限公司 耐磨、耐腐蚀塑料合金
CN103266251B (zh) * 2013-05-31 2015-09-02 滁州市昊宇滑动轴承有限公司 耐腐蚀塑料合金
CN103451569A (zh) * 2013-08-02 2013-12-18 安徽三联泵业股份有限公司 耐腐蚀高强度泵盖不锈钢材料及其制造方法
CN109830269B (zh) 2013-10-10 2023-09-19 思高博塔公司 选择材料组合物和设计具有目标特性的材料的方法
WO2015081209A1 (en) 2013-11-26 2015-06-04 Scoperta, Inc. Corrosion resistant hardfacing alloy
CN104694840B (zh) * 2013-12-10 2017-02-01 有研粉末新材料(北京)有限公司 一种用电弧喷涂方法制备曲轴再制造涂层用的粉芯丝材及其应用
TW201527634A (zh) * 2014-01-09 2015-07-16 Nat Inst Chung Shan Science & Technology 轉子引擎三角氣封之製造方法及其配方
CN103882337A (zh) * 2014-02-18 2014-06-25 芜湖市鸿坤汽车零部件有限公司 一种用于液压阀的耐磨合金材料及其制备方法
US9499889B2 (en) 2014-02-24 2016-11-22 Honeywell International Inc. Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
CN103912332A (zh) * 2014-04-04 2014-07-09 含山县全兴内燃机配件有限公司 一种内燃机气门座圈
CN103921013A (zh) * 2014-05-07 2014-07-16 四川华都核设备制造有限公司 钴基合金焊丝、应用该焊丝的钩爪、连杆及堆焊方法
CN103966515B (zh) * 2014-05-28 2016-02-03 河南理工大学 一种利用电弧炉制备低合金高强韧铸钢的方法
WO2015191458A1 (en) 2014-06-09 2015-12-17 Scoperta, Inc. Crack resistant hardfacing alloys
CN104096989B (zh) * 2014-07-09 2017-10-20 博睿泰达科技(北京)有限公司 一种发动机气门堆焊用铁基喷焊粉
MY190226A (en) 2014-07-24 2022-04-06 Oerlikon Metco Us Inc Hardfacing alloys resistant to hot tearing and cracking
CA2956382A1 (en) 2014-07-24 2016-01-28 Scoperta, Inc. Impact resistant hardfacing and alloys and methods for making the same
CN104087875A (zh) * 2014-07-31 2014-10-08 宁国市鑫煌矿冶配件制造有限公司 一种耐磨高硬度高韧性球磨机用研磨体的制备工艺
CN104404373A (zh) * 2014-11-14 2015-03-11 无锡信大气象传感网科技有限公司 一种风力发电风叶用的铜锰合金钢材料
WO2016100374A2 (en) 2014-12-16 2016-06-23 Scoperta, Inc. Tough and wear resistant ferrous alloys containing multiple hardphases
KR20170095219A (ko) * 2014-12-17 2017-08-22 우데홀름스 악티에보라그 내마모 합금
CN104878299B (zh) * 2015-05-15 2017-05-03 安泰科技股份有限公司 粉末冶金耐磨耐蚀工具钢
MX2018002635A (es) 2015-09-04 2019-02-07 Scoperta Inc Aleaciones resistentes al desgaste sin cromo y bajas en cromo.
EP3347501B8 (en) 2015-09-08 2021-05-12 Oerlikon Metco (US) Inc. Non-magnetic, strong carbide forming alloys for powder manufacture
CN105112803A (zh) * 2015-09-18 2015-12-02 巢湖市南特精密制造有限公司 一种冰箱压缩机曲轴用耐磨合金材料及其制备方法
US10954588B2 (en) 2015-11-10 2021-03-23 Oerlikon Metco (Us) Inc. Oxidation controlled twin wire arc spray materials
CN105269183B (zh) * 2015-12-01 2018-01-30 哈尔滨工业大学 一种纳米改性含硼高铬铸铁耐磨堆焊自保护药芯焊丝的药芯
JP7217150B2 (ja) 2016-03-22 2023-02-02 エリコン メテコ(ユーエス)インコーポレイテッド 完全可読性溶射コーティング
RU2629400C1 (ru) * 2016-07-11 2017-08-29 Юлия Алексеевна Щепочкина Литой высокобористый сплав
CN106283036A (zh) * 2016-08-19 2017-01-04 合肥东方节能科技股份有限公司 一种在导卫辊表面制备耐磨抗热涂层的方法
RU2625191C1 (ru) * 2016-10-10 2017-07-12 Юлия Алексеевна Щепочкина Чугун
RU2624543C1 (ru) * 2016-10-10 2017-07-04 Юлия Алексеевна Щепочкина Чугун
CN106504121A (zh) * 2016-11-11 2017-03-15 广东核电合营有限公司 一种基于材料力学分析的核级密封系统堆焊材料选用方法
CN106555128A (zh) * 2016-11-21 2017-04-05 常熟市张桥华丰铸造五金厂 一种抗腐蚀高强度铸件
RU2643774C1 (ru) * 2017-02-15 2018-02-05 Юлия Алексеевна Щепочкина Чугун
CN107201476A (zh) * 2017-04-18 2017-09-26 芜湖市和蓄机械股份有限公司 一种灰铸铁及其制备方法与应用
CN107217194A (zh) * 2017-04-18 2017-09-29 芜湖市和蓄机械股份有限公司 一种耐腐蚀、耐磨合金铸铁及其制法与应用
CN107326291A (zh) * 2017-05-26 2017-11-07 太仓明仕金属制造有限公司 一种金属五金材料
CN107326309A (zh) * 2017-08-14 2017-11-07 乔斌 一种耐腐蚀机械臂及其制备方法
CN107641774A (zh) * 2017-08-21 2018-01-30 宁国慧宏耐磨材料有限公司 一种高铬稀土钢球及其制备方法
US10927439B2 (en) * 2018-05-30 2021-02-23 Garrett Transportation I Inc Stainless steel alloys, turbocharger components formed from the stainless steel alloys, and methods for manufacturing the same
JP7044328B2 (ja) 2018-06-01 2022-03-30 株式会社荏原製作所 Ni-Fe基合金粉末、及び当該Ni-Fe基合金粉末を用いる合金皮膜の製造方法
CN108754344B (zh) * 2018-07-02 2020-08-11 澳洋集团有限公司 一种高硬度高韧性钢板及其制备方法
EP3590642B1 (en) * 2018-07-02 2021-01-27 Höganäs AB (publ) Wear-resistant iron-based alloy compositions comprising chromium
CN113195759B (zh) 2018-10-26 2023-09-19 欧瑞康美科(美国)公司 耐腐蚀和耐磨镍基合金
CN109182954A (zh) * 2018-11-14 2019-01-11 广东省材料与加工研究所 一种等离子堆焊合金粉末及其制备方法和应用
US12227853B2 (en) 2019-03-28 2025-02-18 Oerlikon Metco (Us) Inc. Thermal spray iron-based alloys for coating engine cylinder bores
CA3136967A1 (en) 2019-05-03 2020-11-12 Oerlikon Metco (Us) Inc. Powder feedstock for wear resistant bulk welding configured to optimize manufacturability
CN110527901A (zh) * 2019-09-29 2019-12-03 马鞍山常裕机械设备有限公司 一种高铬合金铸球及其铸造方法
CN110938782A (zh) * 2019-10-30 2020-03-31 武汉科技大学 一种低成本耐热钢及其制备方法
CN111151920A (zh) * 2019-12-31 2020-05-15 江苏新华合金有限公司 一种3425lc焊带及其生产工艺
CN111391433B (zh) * 2020-05-09 2021-11-02 长沙威尔保新材料有限公司 一种耐磨复合金属材料及制备方法
CN111843283A (zh) * 2020-06-05 2020-10-30 中国科学院金属研究所 一种高铬铸铁型铁基自熔性合金粉末
CN111687562A (zh) * 2020-06-23 2020-09-22 中国石油天然气集团有限公司 一种适用于抗细菌腐蚀集输管线钢埋弧焊接用焊丝
US11492690B2 (en) 2020-07-01 2022-11-08 Garrett Transportation I Inc Ferritic stainless steel alloys and turbocharger kinematic components formed from stainless steel alloys
CN112077299B (zh) * 2020-08-31 2022-09-09 宁波华帆金属材料科技有限公司 一种自熔性铁基合金粉末
CN113969386B (zh) * 2020-10-23 2024-04-09 深圳优易材料科技有限公司 一种应用于低于400℃温度工况的垃圾焚烧炉锅炉管及其生产方法
RU2752057C1 (ru) * 2020-10-26 2021-07-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Состав для наплавки
CN112775586B (zh) * 2020-12-25 2022-11-04 四川省绵阳市华意达化工有限公司 一种含铬废渣制备堆焊材料的方法
CN112775585B (zh) * 2021-02-01 2022-07-08 北京工业大学 一种抗擦伤的铁基堆焊材料及其制备方法
CN113235015A (zh) * 2021-05-12 2021-08-10 上海交通大学 基于快速凝固铸造工艺的高硼铁基合金及其制备方法
CN113547252B (zh) * 2021-06-29 2022-02-22 广东省科学院中乌焊接研究所 一种高韧高耐磨性的热作模具增材制造用丝材及其制备方法
CN115679225A (zh) * 2021-07-28 2023-02-03 叶均蔚 高铬硅耐蚀钢及其用途
CN113604751B (zh) * 2021-08-04 2022-02-08 温州东南工业机械实业有限公司 一种轧机用滑板及其表面熔覆堆焊工艺
CN113862574B (zh) * 2021-09-29 2022-04-19 宁波辉格休闲用品有限公司 一种耐高温耐磨不粘烤盘涂层及其制备方法
DE102021210978A1 (de) 2021-09-30 2023-03-30 Mahle International Gmbh Ferritischer Werkstoff und Kombination damit
CN114086053B (zh) * 2021-11-19 2022-08-02 襄阳金耐特机械股份有限公司 低温韧性优异的球墨铸铁部件及其制造方法
US20230220528A1 (en) * 2022-01-11 2023-07-13 Garrett Transportation I Inc High silicon stainless steel alloys and turbocharger kinematic components formed from the same
CN115074612B (zh) * 2022-03-04 2023-03-17 中原内配集团股份有限公司 一种铸铁缸套及铸铁缸套制作方法
CN116083799A (zh) * 2022-12-29 2023-05-09 宁国东方碾磨材料股份有限公司 一种高硬度耐磨钢球及其制备工艺
CN117506230B (zh) * 2024-01-05 2024-03-15 成都工业学院 一种焊条焊芯和耐磨堆焊焊条
CN118357630B (zh) * 2024-06-20 2024-08-23 西安热工研究院有限公司 受热面管堆焊用复合碳化物强化马氏体焊丝及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149515A (ja) * 1974-05-24 1975-11-29
JPS5419371B2 (ja) * 1973-02-15 1979-07-14
JPH04500840A (ja) * 1989-08-04 1992-02-13 ワーマン インターナショナル リミテッド フェロクロム合金
JPH0645803B2 (ja) * 1985-05-23 1994-06-15 新東ブレ−タ−株式会社 鉄基自溶性合金粉
JPH11226778A (ja) * 1998-02-09 1999-08-24 Ing Shoji Kk 肉盛り溶接材料及び肉盛りクラッド材
JP2001279369A (ja) * 2000-03-30 2001-10-10 Hitachi Metals Ltd 耐摩耗耐食合金および成形機用シリンダ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6485678B1 (en) * 2000-06-20 2002-11-26 Winsert Technologies, Inc. Wear-resistant iron base alloys
CN1197679C (zh) * 2001-09-17 2005-04-20 宝山钢铁股份有限公司 连铸辊堆焊用合金焊带
US6761777B1 (en) * 2002-01-09 2004-07-13 Roman Radon High chromium nitrogen bearing castable alloy
CN1263579C (zh) * 2003-03-17 2006-07-12 攀钢集团钢城企业总公司溶解乙炔厂 一种无药皮耐热耐磨铸铁合金堆焊焊条及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419371B2 (ja) * 1973-02-15 1979-07-14
JPS50149515A (ja) * 1974-05-24 1975-11-29
JPH0645803B2 (ja) * 1985-05-23 1994-06-15 新東ブレ−タ−株式会社 鉄基自溶性合金粉
JPH04500840A (ja) * 1989-08-04 1992-02-13 ワーマン インターナショナル リミテッド フェロクロム合金
JPH11226778A (ja) * 1998-02-09 1999-08-24 Ing Shoji Kk 肉盛り溶接材料及び肉盛りクラッド材
JP2001279369A (ja) * 2000-03-30 2001-10-10 Hitachi Metals Ltd 耐摩耗耐食合金および成形機用シリンダ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Textbook for 14 th Practical", vol. 1, article "Basics and Applications of Surface Treatment Techniques"
"Textbook for 14th Practical Welding Seminar, East Branch of Welding Society", vol. 1, 23 June 1988, article "Basics and Applications of Surface Treatment Techniques"

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503743A (ja) * 2008-09-25 2012-02-09 ボーグワーナー インコーポレーテッド ターボ過給機およびターボ過給機用の保持ディスク
JP2012503744A (ja) * 2008-09-25 2012-02-09 ボーグワーナー インコーポレーテッド ターボチャージャおよびその調整リング
US20110300016A1 (en) * 2009-02-17 2011-12-08 Mec Holding Gmbh Wear resistant alloy
WO2010094708A3 (en) * 2009-02-17 2011-12-22 Mec Holding Gmbh Wear resistant alloy
EP2224031A1 (en) * 2009-02-17 2010-09-01 MEC Holding GmbH Wear resistant alloy
RU2530196C2 (ru) * 2009-02-17 2014-10-10 Мек Холдинг Гмбх Износостойкий сплав
US9650702B2 (en) * 2009-03-26 2017-05-16 Federal-Mogul Burscheid Gmbh Nitridable piston rings
US20120091663A1 (en) * 2009-03-26 2012-04-19 Laszlo Pelsoeczy Nitriding Grade Steel Material Composition for Manufacturing Piston Rings and Cylinder Liners
CN103160757A (zh) * 2013-04-15 2013-06-19 平勇 一种轨梁矫直圈
WO2016034390A1 (de) 2014-09-01 2016-03-10 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Hochfeste, mechanische energie absorbierende und korrosionsbeständige formkörper aus eisenlegierungen und verfahren zu deren herstellung
DE102014217369A1 (de) 2014-09-01 2016-03-03 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Hochfeste, mechanische energie absorbierende und korrosionsbeständige formkörper aus eisenlegierungen und verfahren zu deren herstellung
JP7572384B2 (ja) 2019-07-09 2024-10-23 エリコン メテコ(ユーエス)インコーポレイテッド 耐摩耗性と耐食性のために設計された鉄ベースの合金
RU2769682C1 (ru) * 2021-03-30 2022-04-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный аграрный университет" (ФГБОУ ВО Алтайский ГАУ) Электрод для износостойкой электродуговой наплавки

Also Published As

Publication number Publication date
TWI393789B (zh) 2013-04-21
EP2050533A1 (en) 2009-04-22
AU2006347111A1 (en) 2008-02-14
JP4310368B2 (ja) 2009-08-05
AU2006347111B2 (en) 2011-01-20
CN101505910B (zh) 2012-01-04
CN101505910A (zh) 2009-08-12
US20100189588A1 (en) 2010-07-29
TW200920860A (en) 2009-05-16
JPWO2008018128A1 (ja) 2009-12-24

Similar Documents

Publication Publication Date Title
WO2008018128A1 (fr) Alliage à base de fer résistant à l&#39;usure et résistant à la corrosion et matière de soudage par dépôt pour obtenir l&#39;alliage
JP7185672B2 (ja) 靱性及び耐摩耗性を有する多重硬質相含有鉄合金
CA2774546C (en) Compositions and methods for determining alloys for thermal spray, weld overlay, thermal spray post processing applications, and castings
US8647449B2 (en) Alloys for hardbanding weld overlays
EP2725112B1 (en) Carburization-resistant metal material and uses of the carburization-resistant metal material
JP2019148013A (ja) オーステナイト系ステンレス鋼
CN108350528B (zh) 无铬和低铬耐磨合金
JP5326344B2 (ja) 接熱影響部のクリープ特性に優れた耐熱構造体
EP0834580A1 (en) Alloy having high corrosion resistance in environment of high corrosiveness, steel pipe of the same alloy and method of manufacturing the same steel pipe
JP5827576B2 (ja) 肉盛溶接材料および肉盛溶接金属が溶接された機械部品
EP2246454A1 (en) Carburization-resistant metal material
WO2012037339A2 (en) Compositions and methods for determining alloys for thermal spray, weld overlay, thermal spray post processing applications, and castings
JP6805574B2 (ja) オーステナイト系耐熱鋼及びオーステナイト系伝熱部材
CN107949455B (zh) 埋弧焊用焊丝
JP3343576B2 (ja) 肉盛り溶接材料及び肉盛りクラッド材
KR20090045252A (ko) 철기 내식 내마모성 합금 및 그 합금을 얻기 위한 육성 용접 재료
US5106577A (en) Cement cooler grate alloy
WO2017038975A1 (ja) サブマージアーク溶接用ワイヤ
JP7658555B2 (ja) 二相ステンレス鋼鋳物
Strauss REQUIRING EXTREME STABILITY
CN118900927A (zh) 在碳化、硫化和氯化环境中具有高耐受性且同时具有良好可加工性和强度的镍铁铬合金的用途
JP2021016884A (ja) フェライト系耐熱鋼異材溶接継手およびその製造方法
CN102383047A (zh) 高氮无镍超级双相不锈钢
CN110144447A (zh) 一种高强度抗腐蚀油套管钢材及其制备工艺

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680055567.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06782548

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008528680

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2006782548

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006782548

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006347111

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020097003398

Country of ref document: KR

Ref document number: KR

ENP Entry into the national phase

Ref document number: 2006347111

Country of ref document: AU

Date of ref document: 20060809

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12376715

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载