WO2008016032A1 - Filter for biochip, method for manufacturing filter for biochip and biochip using filter for biochip - Google Patents
Filter for biochip, method for manufacturing filter for biochip and biochip using filter for biochip Download PDFInfo
- Publication number
- WO2008016032A1 WO2008016032A1 PCT/JP2007/064943 JP2007064943W WO2008016032A1 WO 2008016032 A1 WO2008016032 A1 WO 2008016032A1 JP 2007064943 W JP2007064943 W JP 2007064943W WO 2008016032 A1 WO2008016032 A1 WO 2008016032A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filter
- biochip
- well
- silicon
- metal
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/551—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
- G01N33/552—Glass or silica
Definitions
- Biochip filter Biochip filter, biochip filter manufacturing method, and biochip using biochip filter
- the present invention relates to a target substance comprising, for example, a step of reacting or interacting with a particle carrying a bioprobe such as nucleic acid or protein, and a target substance in a specimen, and a step of washing the particle.
- Biochip filters and biochips used for biochips to perform B / F separation, detection and identification of target substances and bioprobes in the specimen by reaction or interaction using optical means, etc.
- the present invention relates to a method for producing a filter for a biochip and a biochip using a filter for a biochip.
- This method has the advantage that the reactivity is very high because the probe-carrying particles are three-dimensionally dispersed in the solution and the probe-carrying particles and the analyte can move to each other. is there.
- the target substance in the sample reacts specifically with the probe on the latex particle surface, and the content of the target substance that specifically reacts and binds to the probe is analyzed by B / F (Bound form / Free form) separation. Detection and identification methods are known.
- Biochips have DNA chips or oligonucleotides immobilized thereon as probes, proteins such as antigens and antibodies, or proteins that specifically react with or interact with these proteins. There is also a chip, etc. For various applications, there is a need for a biochip capable of detecting and identifying with high sensitivity and higher B / F separation efficiency.
- the biochip filter disclosed in Patent Document 6 is a plate made of a plurality of materials having different compositions, such as aluminum / alumina, metal silicon / silica, as a method for producing a biochip filter.
- a method for forming filters and wells by performing both-side forces and pattern etching on metal titanium / tita, etc. is disclosed!
- a filter is formed by etching the metal oxide layer such as alumina, silica, and titania to the boundary between the metal oxide layer and the metal layer, and then aluminum, metal It is disclosed that a biochip filter in which a well and a filter are joined can be manufactured by etching a metal layer such as silicon or titanium metal to the boundary between the metal layer and the metal oxide layer.
- a silicon substrate 100 having a thickness of about 300 m on which a thermal oxide film 102, 104 of SiO having a thickness of about 2 ⁇ m is formed is prepared.
- a resist film 106 is formed on the upper surface of the SiO thermal oxide film 102 of the silicon substrate 100, and a fine filter is formed by photolithography. A recess 108 pattern corresponding to a hole is formed.
- etching removal of the SiO thermal oxide film 102 is performed through the recess 108, so that the portion of the SiO thermal oxide film 102 is removed.
- a recess 110 corresponding to the pore is formed.
- the resist film 106 is peeled off.
- a resist film 112 is formed on the upper surface of the thermal oxidation film 104 of S in the silicon substrate body 101, and photolithography is performed. According to one, the concave 114 pattern corresponding to the well is formed.
- the SiO thermal oxide film 104 is etched and removed through the recess 114, so that the portion of the SiO thermal oxide film 104 is exposed to the well. Recess 116 Form. Then, as shown in FIG. 9C, the resist film 112 is peeled off.
- the exposed portion of the silicon substrate body 101 is removed by etching using the portion of the thermal oxide film 104 of SiO as a mask to form the well 124.
- a dicing tape 128 is attached to the thermal oxide film 104 of SiO, and then dicing is performed as shown in FIG. 10 (B). Separate into individual biochip filters 130.
- the dicing tape 128 is expanded by pulling outward, and the dicing tape is heated to increase the temperature of the dicing tape.
- Each chip is peeled from 128 and separated into individual biochip filters 130.
- a filter main body 130 composed of the silicon substrate main body 101 constituting the substrate portion and a plurality of recesses provided in the filter main body 130 are formed.
- a biochip filter 130 is obtained which is provided with the wel 124 and the filter 136 which forms the bottom surface of the wel 124 and has a plurality of through-holes 110 formed therein.
- the force indicating one well 124 is actually formed with a plurality of wells 124 spaced apart from each other by a fixed interval.
- Patent Document 1 U.S. Pat.No. 5,736,330
- Patent Document 2 Japanese Patent Laid-Open No. 62-81566
- Patent Document 3 Japanese Patent Publication No. 7-54324
- Patent Document 4 Japanese Patent Laid-Open No. 11 243997
- Patent Document 5 Japanese Unexamined Patent Publication No. 2000-346842
- Patent Document 6 Japanese Unexamined Patent Publication No. 2005-148048
- the filter 136 is a metal oxide that is a glass component such as alumina film, silica (silicon oxide film), titania, and the like. Although it is composed of material layers and has some strength and durability, the thickness of the filter 136 is, for example, about 1 to 10 mm, and extremely thin. For this reason, there is a need for a biochip filter with improved strength and durability that can prevent damage to the filter even when the pressure of the liquid when flowing the cleaning liquid is increased.
- the present invention further improves the strength and durability of the filter as compared with the conventional biochip filter, and the yield is improved in the manufacturing process without damage to the filter.
- An object of the present invention is to provide a biochip filter capable of reducing costs, a method for producing a biochip filter, and a biochip using the biochip filter.
- the present invention has been invented in order to achieve the above-described problems and objects in the prior art, and the method for producing a biochip filter of the present invention includes:
- a filter which forms the bottom surface of the well and has a plurality of through-holes formed therein.
- a wafer comprising a metal substrate, a metal oxide layer formed on the upper surface of the metal substrate, and a metal thin film layer formed on the upper surface of the metal oxide layer,
- the metal thin film layer and a part of the metal substrate are etched and removed from the upper and lower surfaces through the metal oxide layer to form a well and a bottom surface of the well, and a plurality of through-holes are formed. And a filter formed from.
- the metal thin film layer and the metal substrate are etched and removed from the upper and lower surfaces through the metal oxide layer, thereby forming the well and the bottom surface of the well, and a plurality of through holes are formed. Fine pores are formed, and a filter made of metal can be formed.
- a biochip filter including a filter formed of metal can be easily manufactured without a complicated process, and the yield of the filter is not damaged in the manufacturing process. Can be improved and the cost can be reduced.
- the method for producing a biochip filter of the present invention includes:
- a wafer comprising the metal substrate, a metal oxide layer formed on the upper surface of the metal substrate, and a metal thin film layer formed on the upper surface of the metal oxide layer,
- the recess is formed by removing the metal thin film layer of the wafer to form a recess in which the pores of the filter are to be formed.
- a tool is formed through the metal oxide layer so as to face the recess.
- the metal oxide layer is removed by etching to form filter pores. It is the force to form a filter in which a plurality of fine pores are formed by communicating the recess to be welded with the well.
- a biochip filter having a filter formed of metal can be easily obtained without performing a complicated process by performing the recess forming process, the well forming process, and the filter forming process.
- the manufacturing process there is no breakage and damage of the filter, yield can be improved, and cost can be reduced.
- the strength of the filter is made of, for example, a metal such as silicon.
- a metal such as silicon
- the strength and durability of a very thin filter having a thickness of about 1 to 10 m are obtained.
- this is a significant improvement over a biochip filter having a conventional filter composed of a metal oxide layer such as alumina, silica (silicon oxide film), and titania.
- the biochip filter of the present invention can be used, for example, for nucleic acid, protein, and other buffers.
- B / F separation of the target substance including the step of reacting or interacting the particle carrying the bioprobe with the target substance in the specimen and the step of washing the particle, and the target substance and bioprobe in the specimen
- these B / F separation and target substances in the specimen It is possible to reliably perform detection and identification by optical means or the like of the reaction or interaction between the probe and the bioprobe.
- the method for producing a biochip filter of the present invention includes:
- a filter which forms the bottom surface of the well and has a plurality of through-holes formed therein.
- the filter is formed of metal
- the metal substrate force constituting the filter body is composed of a silicon substrate
- a method for producing a biochip filter which is a metallic silicon that constitutes the filter
- SOI Silicon On Insulator
- the silicon thin film layer and a part of the silicon substrate are etched and removed from the upper and lower surfaces through the SiO layer to form a well and a bottom surface of the well, and a plurality of through-holes are formed. Forming a filtered filter.
- the silicon thin film layer and the silicon substrate are etched and removed from the upper and lower surfaces through the SiO layer, thereby forming the well and the bottom surface of the well, and a plurality of penetrating fine cells. A hole is formed, and a filter made of silicon can be formed. [0032] Therefore, a biochip filter equipped with a filter formed from silicon can be easily manufactured without a complicated process, and in the manufacturing process, there is no damage to the filter and the yield is high. It is possible to improve and reduce costs.
- the method for producing a biochip filter of the present invention includes:
- an SOI (Silicon On Insulator) wafer comprising the silicon substrate, a SiO layer formed on the upper surface of the silicon substrate, and a silicon thin film layer formed on the upper surface of the SiO layer, one of the silicon thin film layers of the SOI wafer is used.
- the silicon thin film layer of the SOI wafer is etched away to form a recess in which the pores of the filter are to be formed.
- a well is formed so as to face the recess through the SiO layer.
- the SiO layer is removed by etching, and the pores of the filter are formed. This is the force by forming a filter in which a plurality of through-holes are formed by communicating the recess to be formed with the well.
- a biochip filter including a filter formed of silicon can be easily obtained without performing a complicated process by performing the recess forming process, the well forming process, and the filter forming process.
- the manufacturing process there is no breakage and damage of the filter, the yield is improved, and the chip manufacturing cost can be reduced.
- the method for producing a biochip filter of the present invention includes:
- the SiO2 layer is etched away in the well pattern portion.
- the method for producing a biochip filter of the present invention is characterized in that the surface of the silicon thin film layer in the tool portion is oxidized.
- the biochip filter manufacturing method of the present invention is characterized in that the ratio of the depth of the filter to the pore diameter (hereinafter referred to as “aspect ratio”) is 5 or less.
- the aspect ratio of the depth to the pore diameter of the filter is 5 or less as described above, pores having a uniform pore diameter are formed over the entire surface of the wafer when etching is performed in the formation of the pores. If the production effect of being able to flow, the flow of liquid when draining the liquid through the pores is easy to flow to the extent that it does not become a practical problem is obtained.
- the biochip filter manufacturing method of the present invention is characterized in that a distance force between the tools is 0.05 mm or more.
- the strength of the chip can be sufficiently maintained in the metal region between the wells.
- the filter for a biochip of the present invention includes
- a biochip filter provided with a filter that forms the bottom surface of the well and has a plurality of through-holes formed therein.
- the filter force S is formed of metal.
- biochip filter of the present invention comprises:
- the metal substrate force constituting the filter body is composed of a silicon substrate.
- the filter is made of metallic silicon that constitutes the filter.
- the filter is made of a metal such as silicon.
- a metal such as silicon
- the strength and durability of a very thin filter having a thickness of about 1 to 10 m are obtained.
- this is a significant improvement over a biochip filter having a conventional filter composed of a metal oxide layer such as alumina, silica (silicon oxide film), and titania.
- the biochip filter of the present invention comprises, for example, a step of reacting or interacting with a particle carrying a bioprobe such as a nucleic acid or protein and a target substance in a specimen, and washing the particle.
- Biochips used in biochips to perform B / F separation of target substances including processes, and detection / identification by means of optical means of reaction or interaction between target substances and bioprobes in the specimen
- biochip filter of the present invention includes
- SOI Silicon On Insulator
- the silicon thin film layer and a part of the silicon substrate are etched and removed from the upper and lower surfaces through the SiO layer to form a well and a bottom surface of the well, and a plurality of through-holes are formed. It is characterized by being a biochip filter obtained by forming a formed filter.
- the silicon thin film layer and the silicon substrate are etched away from the upper and lower surfaces through the SiO layer, thereby forming the well and the bottom surface of the well, and a plurality of penetrating fine cells.
- a hole is formed, and a filter made of silicon can be formed.
- biochip filter formed from silicon without complicated processes.
- the obtained biochip filter can be manufactured, and in the manufacturing process, the filter is not damaged and the yield is improved, and the cost can be reduced.
- the biochip filter of the present invention includes the SiO layer in the well pattern portion.
- the biochip filter of the present invention is characterized in that the surface of the silicon thin film layer in the well portion is oxidized.
- the biochip filter of the present invention is characterized in that the aspect ratio S of the depth with respect to the pore diameter of the pore of the filter is 5 or less.
- pores having a uniform pore diameter can be formed during etching, and the ease of liquid flow can be maintained at a level where there is no practical problem.
- the biochip filter of the present invention is characterized in that the distance force between the wells is 0.05 mm or more.
- a biochip of the present invention is characterized by including any one of the biochip filters described above.
- the biochip of the present invention is characterized by including a biochip filter obtained by any one of the aforementioned biochip filters.
- the filter force S is formed from a metal such as silicon, for example, the strength and durability of a very thin filter having a thickness of about 1 to 10 m, for example, for example, this is a marked improvement over a biochip filter having a conventional filter composed of a metal oxide layer such as alumina, silica, and titania.
- the biochip filter of the present invention reacts or interacts with, for example, particles carrying a bioprobe such as a nucleic acid or protein and a target substance in a specimen. Separation and target washing B / F separation, and detection / identification by optical means of reaction or interaction between the target substance and bioprobe in the sample.
- a bioprobe such as a nucleic acid or protein
- detection / identification by optical means of reaction or interaction between the target substance and bioprobe in the sample.
- the detection and identification of these B / F separations and the optical means of the reaction or interaction between the target substance and the bioprobe in the sample are possible. It can be done reliably.
- a biochip filter including a filter formed of a metal such as silicon can be easily manufactured without a complicated process, and the filter can be manufactured even in the manufacturing process. There is no breakage and damage, and the yield can be improved and the cost can be reduced.
- FIG. 1 is a top view of the biochip filter of the present invention.
- FIG. 2 is a cross-sectional view taken along the A-A spring in FIG.
- Fig. 3 is an enlarged plan view of one well.
- FIG. 4 is a partially enlarged sectional view of one well.
- FIG. 5 is a process schematic diagram showing a method for producing a biochip filter according to the present invention.
- FIG. 6 is a process schematic diagram showing a method for producing a biochip filter according to the present invention.
- FIG. 7 is a process schematic diagram showing a method for producing a biochip filter of the present invention.
- FIG. 8 is a process schematic diagram showing a conventional method for producing a biochip filter.
- FIG. 9 is a process schematic diagram showing a conventional method for producing a biochip filter.
- FIG. 10 is a process schematic diagram showing a conventional method for producing a biochip filter.
- FIG. 11 is a schematic diagram showing a conventional ( ⁇ 1 manufacturing method.
- FIG. 1 is a top view of the biochip filter of the present invention
- FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1
- FIG. 3 is an enlarged plan view of one well
- FIG. FIG. 3 is a partial enlarged cross-sectional view of one well.
- reference numeral 10 denotes the biochip filter of the present invention as a whole.
- the biochip filter 10 of the present invention comprises, for example, a step of reacting or interacting with a particle carrying a bioprobe such as a nucleic acid or protein and a target substance in a specimen, and a step of washing the particle.
- a bioprobe such as a nucleic acid or protein
- These filters are used in biochips for the purpose of B / F separation of target substances containing, and detection / identification by optical means of reaction or interaction between target substances and bioprobes in the specimen.
- the biochip filter 10 of the present invention has a rectangular flat plate shape and includes a filter body 12 made of a metal substrate constituting the substrate portion.
- the filter main body 12 is formed with a plurality of wells 14 that form cylindrical recesses that form a plurality of recesses, spaced apart from each other at a central portion.
- the one well 14 is provided with a filter 18 that constitutes the bottom surface of the well 14 and has a plurality of through-holes 16 formed therein. .
- the probe-carrying particles that have reacted with the analyte are separated depending on the size of the pore.
- the pores 16 are formed to have a constant arrangement pattern at uniform intervals.
- the pores 16 are formed so as to be straight cylindrical pores having a uniform pore diameter.
- uniform hole diameter means that the hole diameter error is 20% or less, preferably 10% or less in terms of CV (Coefficient of Variation).
- CV Coefficient of Variation
- the pore diameter of the pore is not particularly limited. Usually, it is 0.Ol ⁇ m-lOO ⁇ m, preferably 0.1. ⁇ 111-20 ⁇ 111, more preferably 0.5 ⁇ m to 10 ⁇ m.
- “Uniform hole interval” means that the error of the hole interval is 15% or less in terms of CV (Coefficient of Variation) value.
- CV Coefficient of Variation
- the “hole interval” is the shortest distance between holes adjacent to each other.
- straight pores mean that the pores are formed without branching along the way.
- the pores are not substantially deviated from the perpendicular to the surface 18a, and the pore size on the primary side (upper surface side) of the filter 18 is different from the pore size on the secondary side (lower surface side)! / It can be something! /
- the shape of the pore 16 is not particularly limited, and may be any shape such as a through-hole having a shape such as a cylinder, a quadrangular pyramid, or a polygonal pyramid. From the viewpoint of minimization, it is desirable that the cross-sectional shape of the pores perpendicular to the penetration direction of the pores is obtuse or circular.
- the meniscus is not so much a problem, and it is a through-hole having a shape such as a quadrangular column or a pyramid. There is no problem.
- the aspect ratio of the depth to the pore diameter (diameter) of the pores 16 of the filter 18 is 5 or less.
- the pores 16 of the filter 18 are formed by etching, but if the aspect ratio is large, the shape of the pores 16 may be uneven due to the etching. is there. Considering this, the aspect ratio obtained by normal chemical etching is 5 or less, and preferably 3 or less.
- the probe-carrying particles are arranged on the primary side opening, and if necessary, It is also possible to flush the liquid such as the analyte from the secondary side and disperse the particles to the primary side, and the reaction and detection between the analyte and the probe-carrying particles can be easily performed.
- the pore size of the filter 18 is made smaller than the minimum particle size.
- the thickness of the filter 18 is preferably 1—, more preferably 2 to 7 ⁇ m. is there.
- the thickness force S of the filter 18 is larger than 10 m, the filtration resistance increases when the liquid is filtered, and when the thickness of the filter 18 is less than 1 m, the mechanical strength of the filter 18 is insufficient.
- the aperture ratio of the filter 18 is preferably 15-60%, more preferably 20-50.
- the periphery of the filter 18 has a portion where the pores 16 are not formed, and is connected to the filter body 12. This is preferable.
- the diameter and height of the well 14 can be arbitrarily set according to the number of required particles and the reaction volume without particular limitation.
- the distance force between the wels 14 is 0.05 mm or more, preferably 0.1 mm or more.
- the shape of the wel 14 is not particularly limited.
- the shape of the concave portion such as a cylinder, a quadrangular pyramid, or a polygonal pyramid may be used, but in order to minimize the meniscus. It is desirable that the cross-sectional shape of the pore perpendicular to the penetration direction of the wel 14 is obtuse or circular.
- the force as the biochip filter 10 having a plurality of wells 14 can of course be used as the biochip filter 10 having a single well 14.
- the number and arrangement shape are not particularly limited.
- the diameters of these wells 14 are not necessarily the same, and are different from each other in consideration of the number of contained particles and the reaction volume. It is also possible to have a uel 14.
- the filter 18 of the biochip filter 10 of the present invention is made of metal.
- silicon (Si) or the like can be used as the metal.
- a wafer comprising a metal substrate, a metal oxide layer formed on the upper surface of the metal substrate, and a metal thin film layer formed on the upper surface of the metal oxide layer. May be used. Then, the metal thin film layer and the metal substrate are etched away from the upper and lower surfaces through the metal oxide layer, thereby forming the well 14 and the bottom surface of the well 14, and a plurality of through-holes 16 are formed.
- the filter 18 made of metal may be formed.
- the metal thin film layer and the metal substrate are etched and removed from the upper and lower surfaces through the metal oxide layer, thereby forming the well and the bottom surface of the well, and a plurality of through holes are formed. Fine pores are formed, and a filter made of metal can be formed.
- an SOI Silicon On Insulator
- a silicon substrate a SiO layer formed on the upper surface of the silicon substrate, and a silicon thin film layer formed on the upper surface of the SiO layer.
- a well 14 and a bottom surface of the well 14 are formed, and a plurality of through holes 16 are formed.
- a filter 18 made of silicon may be formed.
- the SOI (Silicon On Insulator) wafer forms a thermal oxide film on the surface of the single crystal silicon constituting the two substrates, and the two Si substrates are bonded together via the thermal oxide film.
- an SOI substrate structure can be obtained (an SOI substrate manufacturing method using a bonding method).
- the filter body 12 is formed of the same material as the filter 18 because it is formed at the same time as described later when the tool 14 and the filter 18 are produced as described above. Is. However, the filter body 12 is not limited to the one made of the same material as the filter 18.
- the filter 18 force S is formed from a metal such as silicon, for example, so that the strength of a very thin filter having a thickness of, for example, about 1 to 10 m.
- the degree of durability and durability will be significantly improved compared to a biochip filter having a conventional filter composed of a metal oxide layer such as alumina, silica, or titania.
- the biochip filter 10 of the present invention comprises, for example, a step of reacting or interacting a particle carrying a nanoprobe such as a nucleic acid or a protein with a target substance in a specimen, and a particle.
- a particle carrying a nanoprobe such as a nucleic acid or a protein
- a particle Used in biochips for B / F separation of target substances including washing steps, and detection and identification by optical means of reaction or interaction between target substances and bioprobes in the specimen
- these B / F separation and detection / identification by optical means such as reaction or interaction between target substance and bioprobe in the sample can be reliably performed.
- the strength of the filter 18 is large, so that the yield without breaking and damaging a part of the filter is improved and the cost S can be reduced.
- the SOI (Silicon On Insulator) wafer forms a thermal oxide film on the surface of the single crystal silicon substrate constituting the substrate, and bonds the two Si substrates through the thermal oxide film.
- SOI substrate structure by etching Si substrate to desired thickness from one side
- the thickness of the silicon substrate 20 constitutes most of the depth of the well 14, and is preferably about 300 m, for example.
- the silicon thin film layer 22 constitutes the filter 18, it is preferably 1-20 ⁇ 111, more preferably 2-5 ⁇ m.
- the SiO layer 21 functions as a protective film such as an etching stop film during the manufacturing process, and the thickness thereof is preferably 0.5 111 to 10 111. More preferably, it is 1 to 111 to 2 to 111.
- a resist film 24 having 5 is formed (recess forming step).
- the silicon thin film layer 22 is etched away using the resist layer 24 as a mask, so that the silicon thin film layer 22 corresponds to the pores of the filter. A recess 26 is formed.
- etching a reactive ion etching method (RIE method) using a fluorine-based gas may be used.
- RIE method reactive ion etching method
- the SiO layer 21 is not etched by dry etching, a recess 26 having a predetermined depth corresponding to the thickness of the Si layer 22 is formed.
- a resist film 28 is formed on the upper surface of the silicon substrate 20 of the SOI wafer 23.
- a resist mask layer 28 having a recess 29 pattern corresponding to the well 14 is formed.
- the exposed portion of the silicon substrate 20 is etched away using the resist film 28 as a mask to form the well 14 (well forming step). ).
- a dry etching method (RIE method) using a fluorine-based gas may be used.
- RIE method a dry etching method using a fluorine-based gas
- the SiO layer 21 is removed by etching.
- dicing using a dicing cutter or the like can be used as dicing.
- the dicing tape 34 is expanded while the temperature is increased. By pulling outward, the dicing tape 34 and individual chips are peeled off and separated into individual biochip filters 10.
- the filter main body 12 made of the silicon substrate 20 constituting the substrate portion and the well 14 forming a plurality of recesses provided in the filter main body 12.
- the biochip filter 10 provided with the filter 18 made of silicon that forms the bottom surface of the well 14 and has a plurality of through-holes 16 formed therein is obtained.
- the force indicating one well 14 is actually formed with a plurality of wells 14 spaced apart from each other.
- the surface force of the silicon thin film layer 22 in the portion of the well 14 is oxidized.
- a thermal oxidation method can be used as this oxidation method.
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Inorganic Chemistry (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
[PROBLEMS] Provided is a filter for biochips, which has improved filter strength and durability, improved yield without filter breakage and damage in a manufacturing process, and reduced cost. A method for manufacturing the filter for biochips and a biochip using the filter for biochips are also provided. [MEANS FOR SOLVING PROBLEMS] A filter for biochips is provided with a filter main body, which is composed of a metal substrate configuring a substrate section and is made of silicon or the like; a well, which forms a recessed section on the filter main body; and a filter which configures the bottom surface of the well and has a filter having a plurality of penetrating pores. The filter is formed of a metal such as silicon.
Description
明 細 書 Specification
バイオチップ用フィルター、およびバイオチップ用フィルターの製造方法、 ならびにバイオチップ用フィルターを用いたバイオチップ Biochip filter, biochip filter manufacturing method, and biochip using biochip filter
技術分野 Technical field
[0001] 本発明は、例えば、核酸、タンパク質などのバイオプローブを担持した粒子と、被検 体中の標的物質とを反応または相互作用させる工程と、粒子を洗浄する工程とを含 む標的物質の B/F分離や、被検体中の標的物質とバイオプローブとの反応または 相互作用の光学的手段等による検出 ·同定などを行うためのバイオチップに用いら れるバイオチップ用フィルター、およびバイオチップ用フィルターの製造方法、ならび にバイオチップ用フィルターを用いたバイオチップに関する。 [0001] The present invention relates to a target substance comprising, for example, a step of reacting or interacting with a particle carrying a bioprobe such as nucleic acid or protein, and a target substance in a specimen, and a step of washing the particle. Biochip filters and biochips used for biochips to perform B / F separation, detection and identification of target substances and bioprobes in the specimen by reaction or interaction using optical means, etc. The present invention relates to a method for producing a filter for a biochip and a biochip using a filter for a biochip.
背景技術 Background art
[0002] 目的とする塩基配列を有する核酸を精度良く検出するための方法として、この核酸 と相補的な配列を有する核酸をプローブとして粒子へ担持させて、このプローブ担持 粒子を含む溶液中で、プローブ担持粒子と被検体中の標的物質とを反応させる方法 が知られている(特許文献;!〜 5)。 [0002] As a method for accurately detecting a nucleic acid having a target base sequence, a nucleic acid having a sequence complementary to this nucleic acid is supported on a particle as a probe, and in a solution containing the probe-supported particle, A method of reacting probe-carrying particles with a target substance in a specimen is known (Patent Documents !! to 5).
[0003] この方法は、プローブ担持粒子が溶液中に三次元的に分散していることと、プロ一 ブ担持粒子と被検体とが相互に移動できることから、反応性が非常に高いという利点 がある。例えば、ラテックス粒子表面のプローブに被検体中の標的物質を特異的に 反応させ、 B/F (Bound form / Free form)分離によって、特異的にプローブに反応 し結合した標的物質の内容を解析する検出 ·同定方法が知られている。 [0003] This method has the advantage that the reactivity is very high because the probe-carrying particles are three-dimensionally dispersed in the solution and the probe-carrying particles and the analyte can move to each other. is there. For example, the target substance in the sample reacts specifically with the probe on the latex particle surface, and the content of the target substance that specifically reacts and binds to the probe is analyzed by B / F (Bound form / Free form) separation. Detection and identification methods are known.
[0004] バイオチップには、そのプローブとして DNAフラグメントまたはオリゴヌクレオチドを 固定した DNAチップの他、抗原および抗体等のタンパク、あるいはこれらのタンパク と特異的に反応もしくは相互作用する化学物質を固定したプロテインチップ等もある 力 各種の用途において、より B/F分離効率が高ぐ高感度での検出'同定が可能 なバイオチップが求められている。 [0004] Biochips have DNA chips or oligonucleotides immobilized thereon as probes, proteins such as antigens and antibodies, or proteins that specifically react with or interact with these proteins. There is also a chip, etc. For various applications, there is a need for a biochip capable of detecting and identifying with high sensitivity and higher B / F separation efficiency.
[0005] このようなバイオチップとして、本出願人らは、被検体、洗浄液などの液体を通過さ せると共にプローブ担持粒子を通過させないバイオチップ用フィルターを用いる技術
を、特許文献 6 (特開 2005— 148048号公報)に開示している。 [0005] As such a biochip, the present applicants use a technique for using a biochip filter that allows a liquid such as an analyte and a cleaning liquid to pass therethrough and does not allow probe-carrying particles to pass therethrough. Is disclosed in Patent Document 6 (Japanese Patent Laid-Open No. 2005-148048).
[0006] すなわち、この特許文献 6に開示されるバイオチップ用フィルタ一は、バイオチップ 用フィルターの製造方法として、組成の異なる複数の材質からなるプレート、例えば、 アルミ/アルミナ、金属シリコン/シリカ、あるいは金属チタン/チタユアなどについ て、それぞれ両側力、らパターンエッチングを行うことにより、フィルターとゥエルを形成 する方法が開示されて!/、る。 [0006] That is, the biochip filter disclosed in Patent Document 6 is a plate made of a plurality of materials having different compositions, such as aluminum / alumina, metal silicon / silica, as a method for producing a biochip filter. Alternatively, a method for forming filters and wells by performing both-side forces and pattern etching on metal titanium / tita, etc. is disclosed!
[0007] 具体的には、例えば、アルミナ、シリカ、チタニアなどの金属酸化物層について、こ の金属酸化物層と金属層との境界までをエッチングしてフィルターを形成し、次いで 、アルミ、金属シリコン、金属チタンなどの金属層について、この金属層と金属酸化物 層との境界までエッチングすることにより、ゥエルとフィルタ一とが接合したバイオチッ プ用フィルターを作製できることが開示されている。 [0007] Specifically, for example, a filter is formed by etching the metal oxide layer such as alumina, silica, and titania to the boundary between the metal oxide layer and the metal layer, and then aluminum, metal It is disclosed that a biochip filter in which a well and a filter are joined can be manufactured by etching a metal layer such as silicon or titanium metal to the boundary between the metal layer and the metal oxide layer.
[0008] この特許文献 6のバイオチップ用フィルターの製造方法を示せば、概略下記のよう な方法である。 [0008] The manufacturing method of the biochip filter disclosed in Patent Document 6 is roughly as follows.
[0009] すなわち、先ず、図 8 (A)に示したように、シリコン基板本体 101の両面に、例えば That is, first, as shown in FIG. 8A, on both surfaces of the silicon substrate body 101, for example,
、 2 ^ m程度の膜厚の SiOの熱酸化膜 102、 104が形成された膜厚 300 m程度の シリコン基板 100を準備する。 A silicon substrate 100 having a thickness of about 300 m on which a thermal oxide film 102, 104 of SiO having a thickness of about 2 ^ m is formed is prepared.
[0010] そして、図 8 (B)に示したように、このシリコン基板 100の SiOの熱酸化膜 102の上 面に、レジスト膜 106を形成して、フォトリソグラフィ一によつて、フィルターの細孔(hoi e)に対応する凹部 108パターンを形成する。 [0010] Then, as shown in FIG. 8B, a resist film 106 is formed on the upper surface of the SiO thermal oxide film 102 of the silicon substrate 100, and a fine filter is formed by photolithography. A recess 108 pattern corresponding to a hole is formed.
[0011] 次に、図 8 (C)に示したように、この凹部 108を介して、 SiOの熱酸化膜 102をエツ チング除去することによって、 SiOの熱酸化膜 102の部分に、フィルターの細孔に対 応する凹部 110を形成する。そして、図 8 (D)に示したように、レジスト膜 106を剥離 する。 Next, as shown in FIG. 8C, etching removal of the SiO thermal oxide film 102 is performed through the recess 108, so that the portion of the SiO thermal oxide film 102 is removed. A recess 110 corresponding to the pore is formed. Then, as shown in FIG. 8D, the resist film 106 is peeled off.
[0012] そして、天地を逆にした状態で、図 9 (A)に示したように、シリコン基板本体 101の S ΪΟの熱酸化膜 104の上面に、レジスト膜 112を形成して、フォトリソグラフィ一によつ て、ゥエルに対応する凹部 114パターンを形成する。 Then, with the top and bottom turned upside down, as shown in FIG. 9A, a resist film 112 is formed on the upper surface of the thermal oxidation film 104 of S in the silicon substrate body 101, and photolithography is performed. According to one, the concave 114 pattern corresponding to the well is formed.
[0013] 次に、図 9 (B)に示したように、この凹部 114を介して、 SiOの熱酸化膜 104をエツ チング除去することによって、 SiOの熱酸化膜 104の部分に、ゥエルとなる凹部 116
を形成する。そして、図 9 (C)に示したように、レジスト膜 112を剥離する。 Next, as shown in FIG. 9B, the SiO thermal oxide film 104 is etched and removed through the recess 114, so that the portion of the SiO thermal oxide film 104 is exposed to the well. Recess 116 Form. Then, as shown in FIG. 9C, the resist film 112 is peeled off.
[0014] そして、図 9 (C)に示したように、 SiOの熱酸化膜 104の部分をマスクとして、露出 したシリコン基板本体 101の部分をエッチング除去することによって、ゥエル 124を形 成する。 Then, as shown in FIG. 9C, the exposed portion of the silicon substrate body 101 is removed by etching using the portion of the thermal oxide film 104 of SiO as a mask to form the well 124.
[0015] 次に、図 10 (A)に示したように、 SiOの熱酸化膜 104に、ダイシングテープ 128を 貼着した後、図 10 (B)に示したように、ダイシングを行うことによって、個々のバイオ チップ用フィルター 130に分断する。 Next, as shown in FIG. 10 (A), a dicing tape 128 is attached to the thermal oxide film 104 of SiO, and then dicing is performed as shown in FIG. 10 (B). Separate into individual biochip filters 130.
[0016] そして、図 11 (A)に示したように、ダイシングテープ 128をエキスパンドすることによ つて外方に引っ張って、ダイシングテープを昇温することによって、ダイシングテープ[0016] Then, as shown in FIG. 11 (A), the dicing tape 128 is expanded by pulling outward, and the dicing tape is heated to increase the temperature of the dicing tape.
128から各チップを剥離して、個々のバイオチップ用フィルター 130に分離する。 Each chip is peeled from 128 and separated into individual biochip filters 130.
[0017] これによつて、図 11 (B)に示したように、基板部を構成するシリコン基板本体 101か らなるフィルター本体 130と、フィルター本体 130に設けられた複数の凹部を形成す るゥエル 124と、ゥエル 124の底面を構成し、複数の貫通した細孔 110が形成された フィルター 136が設けられたバイオチップ用フィルター 130が得られる。 Accordingly, as shown in FIG. 11 (B), a filter main body 130 composed of the silicon substrate main body 101 constituting the substrate portion and a plurality of recesses provided in the filter main body 130 are formed. A biochip filter 130 is obtained which is provided with the wel 124 and the filter 136 which forms the bottom surface of the wel 124 and has a plurality of through-holes 110 formed therein.
[0018] なお、図 8〜図 11では、説明の便宜上、 1つのゥエル 124を示している力 実際に は、複数のゥエル 124が一定間隔離間して形成されている。 In FIGS. 8 to 11, for the sake of convenience of explanation, the force indicating one well 124 is actually formed with a plurality of wells 124 spaced apart from each other by a fixed interval.
特許文献 1 :米国特許第 5, 736, 330号公報 Patent Document 1: U.S. Pat.No. 5,736,330
特許文献 2:特開昭 62— 81566号公報 Patent Document 2: Japanese Patent Laid-Open No. 62-81566
特許文献 3:特公平 7— 54324号公報 Patent Document 3: Japanese Patent Publication No. 7-54324
特許文献 4:特開平 11 243997号公報 Patent Document 4: Japanese Patent Laid-Open No. 11 243997
特許文献 5:特開 2000— 346842号公報 Patent Document 5: Japanese Unexamined Patent Publication No. 2000-346842
特許文献 6:特開 2005— 148048号公報 Patent Document 6: Japanese Unexamined Patent Publication No. 2005-148048
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0019] しかしながら、このような特許文献 6に開示される従来のバイオチップ用フィルター 1 30では、フィルター 136が、例えば、アルミナ膜、シリカ(シリコン酸化膜)、チタニアな どのガラス成分である金属酸化物層で構成され、ある程度、強度、耐久性を有するも のであるが、このフィルター 136の厚さは、例えば、約 l〜10〃mの厚さであり極めて
薄い。このため、洗浄液を流す時の液体の圧力をより高めた場合であってもフィルタ 一の破損等を回避できるより強度、耐久性を向上したバイオチップ用フィルターが求 められている。 However, in such a conventional biochip filter 130 disclosed in Patent Document 6, the filter 136 is a metal oxide that is a glass component such as alumina film, silica (silicon oxide film), titania, and the like. Although it is composed of material layers and has some strength and durability, the thickness of the filter 136 is, for example, about 1 to 10 mm, and extremely thin. For this reason, there is a need for a biochip filter with improved strength and durability that can prevent damage to the filter even when the pressure of the liquid when flowing the cleaning liquid is increased.
[0020] 本発明は、このような現状に鑑み、従来のバイオチップ用フィルターよりも、さらに、 フィルターの強度、耐久性を向上し、製造工程においても、フィルターの破損損傷が なく歩留まりが向上し、コストを低減することが可能なバイオチップ用フィルター、およ びバイオチップ用フィルターの製造方法、ならびにバイオチップ用フィルターを用い たバイオチップを提供することを目的とする。 [0020] In view of such a current situation, the present invention further improves the strength and durability of the filter as compared with the conventional biochip filter, and the yield is improved in the manufacturing process without damage to the filter. An object of the present invention is to provide a biochip filter capable of reducing costs, a method for producing a biochip filter, and a biochip using the biochip filter.
課題を解決するための手段 Means for solving the problem
[0021] 本発明は、前述したような従来技術における課題及び目的を達成するために発明 されたものであって、本発明のバイオチップ用フィルターの製造方法は、 [0021] The present invention has been invented in order to achieve the above-described problems and objects in the prior art, and the method for producing a biochip filter of the present invention includes:
基板部を構成する金属基板からなるフィルター本体と、 A filter body made of a metal substrate constituting the substrate part;
前記フィルター本体に設けられた凹部を形成するゥエルと、 A well forming a recess provided in the filter body,
前記ゥエルの底面を構成し、複数の貫通した細孔が形成されたフィルターが設けら れ、 A filter is provided which forms the bottom surface of the well and has a plurality of through-holes formed therein.
前記フィルタ一力 S、金属から形成されているバイオチップ用フィルターを製造する方 法であって、 A method of manufacturing a filter for a biochip made of metal, S, which is the best of the filter,
金属基板と、金属基板の上面に形成した金属酸化物層と、金属酸化物層の上面に 形成した金属薄膜層とからなるゥエーハを用いて、 Using a wafer comprising a metal substrate, a metal oxide layer formed on the upper surface of the metal substrate, and a metal thin film layer formed on the upper surface of the metal oxide layer,
前記金属酸化物層を介して、上下面から金属薄膜層と金属基板の一部をそれぞれ エッチング除去することによって、ゥエルと、ゥエルの底面を構成し、複数の貫通した 細孔が形成され、金属から形成されたフィルターとを形成することを特徴とする。 The metal thin film layer and a part of the metal substrate are etched and removed from the upper and lower surfaces through the metal oxide layer to form a well and a bottom surface of the well, and a plurality of through-holes are formed. And a filter formed from.
[0022] このように構成することによって、金属酸化物層を介して、上下面から金属薄膜層と 金属基板をそれぞれエッチング除去することによって、ゥエルと、ゥエルの底面を構成 し、複数の貫通した細孔が形成され、金属から形成されたフィルタ一とが形成できる。 With this configuration, the metal thin film layer and the metal substrate are etched and removed from the upper and lower surfaces through the metal oxide layer, thereby forming the well and the bottom surface of the well, and a plurality of through holes are formed. Fine pores are formed, and a filter made of metal can be formed.
[0023] 従って、複雑な工程となることなぐ簡単に、金属から形成されたフィルターを備えた バイオチップ用フィルターを製造することができ、しかも、製造工程においても、フィル ターの破損損傷がなく歩留まりが向上し、コストを低減することが可能である。
[0024] また、本発明のバイオチップ用フィルターの製造方法は、 [0023] Therefore, a biochip filter including a filter formed of metal can be easily manufactured without a complicated process, and the yield of the filter is not damaged in the manufacturing process. Can be improved and the cost can be reduced. [0024] In addition, the method for producing a biochip filter of the present invention includes:
前記金属基板と、金属基板の上面に形成した金属酸化物層と、金属酸化物層の上 面に形成した金属薄膜層とからなるゥエーハを用いて、 Using a wafer comprising the metal substrate, a metal oxide layer formed on the upper surface of the metal substrate, and a metal thin film layer formed on the upper surface of the metal oxide layer,
前記ゥエーハの金属薄膜層の一部をエッチング除去することによって、前記フィノレ ターの細孔を形成すべき凹部を形成する凹部形成工程と、 A recess forming step of forming a recess in which the fine holes of the finoletor are to be formed by etching away a part of the metal thin film layer of the wafer;
前記ゥエーハの金属基板をエッチング除去することによって、前記金属酸化物層を 介して、前記凹部に対峙するようにゥエルを形成するゥエル形成工程と、 Forming a well so as to face the recess through the metal oxide layer by etching away the metal substrate of the wafer;
前記金属酸化物層の一部をエッチング除去して、前記フィルターの細孔を形成す べき凹部と、ゥエルを連通させて、複数の貫通した細孔が形成されたフィルターを形 成するフィルター形成工程と、 A filter forming step of forming a filter in which a plurality of through pores are formed by communicating a well with a recess to form the pores of the filter by etching away a part of the metal oxide layer. When,
を備えることを特 ί毁とする。 The provision of
[0025] このように構成することによって、凹部形成工程において、ゥエーハの金属薄膜層 をエッチング除去することによって、フィルターの細孔を形成すべき凹部を形成して、 ゥエル形成工程において、ゥエーハの金属基板をエッチング除去することによって、 金属酸化物層を介して、凹部に対峙するようにゥヱルを形成し、その後、フィルター 形成工程において、金属酸化物層をエッチング除去して、フィルターの細孔を形成 すべき凹部と、ゥエルを連通させて、複数の貫通した細孔が形成されたフィルターを 形成すること力でさる。 With this configuration, in the recess forming process, the recess is formed by removing the metal thin film layer of the wafer to form a recess in which the pores of the filter are to be formed. By removing the substrate by etching, a tool is formed through the metal oxide layer so as to face the recess. Then, in the filter formation process, the metal oxide layer is removed by etching to form filter pores. It is the force to form a filter in which a plurality of fine pores are formed by communicating the recess to be welded with the well.
[0026] 従って、これらの凹部形成工程、ゥエル形成工程、およびフィルター形成工程を実 施することで、複雑な工程となることなぐ簡単に、金属から形成されたフィルターを備 えたバイオチップ用フィルターを製造することができ、しかも、製造工程においても、 フィルターの破損損傷がなく歩留まりが向上し、コストを低減することが可能である。 [0026] Therefore, a biochip filter having a filter formed of metal can be easily obtained without performing a complicated process by performing the recess forming process, the well forming process, and the filter forming process. In addition, in the manufacturing process, there is no breakage and damage of the filter, yield can be improved, and cost can be reduced.
[0027] このように構成することによって、フィルタ一力 例えば、シリコンなどの金属から形 成されているので、例えば、約 1〜10 mの厚さであり極めて薄いフィルターの強度 、耐久性が、例えば、アルミナ、シリカ(シリコン酸化膜)、チタニアなどの金属酸化物 層で構成された従来のフィルターを有するバイオチップ用フィルターに比較して格段 に向上することになる。 [0027] By configuring in this way, the strength of the filter is made of, for example, a metal such as silicon. For example, the strength and durability of a very thin filter having a thickness of about 1 to 10 m are obtained. For example, this is a significant improvement over a biochip filter having a conventional filter composed of a metal oxide layer such as alumina, silica (silicon oxide film), and titania.
[0028] 従って、本発明のバイオチップ用フィルターを、例えば、核酸、タンパク質などのバ
ィォプローブを担持した粒子と、被検体中の標的物質とを反応または相互作用させ る工程と、粒子を洗浄する工程とを含む標的物質の B/F分離や、被検体中の標的 物質とバイオプローブとの反応または相互作用の光学的手段等による検出 ·同定な どを行うためのバイオチップに用いられるバイオチップ用フィルターに適用した場合 に、これらの B/F分離や、被検体中の標的物質とバイオプローブとの反応または相 互作用の光学的手段等による検出 ·同定を確実に行うことができる。 [0028] Therefore, the biochip filter of the present invention can be used, for example, for nucleic acid, protein, and other buffers. B / F separation of the target substance, including the step of reacting or interacting the particle carrying the bioprobe with the target substance in the specimen and the step of washing the particle, and the target substance and bioprobe in the specimen When applied to a biochip filter used in biochips for detection and identification by reaction or interaction with optical means, etc., these B / F separation and target substances in the specimen It is possible to reliably perform detection and identification by optical means or the like of the reaction or interaction between the probe and the bioprobe.
[0029] また、バイオチップ用フィルターを製造する際にも、フィルターの強度が大きいので 、フィルタ一分が破損損傷することなぐ歩留まりが向上し、コストを低減することがで きる。 [0029] Also, when manufacturing a biochip filter, since the strength of the filter is high, the yield can be improved without damaging and damaging the filter for one minute, and the cost can be reduced.
[0030] また、本発明のバイオチップ用フィルターの製造方法は、 [0030] Further, the method for producing a biochip filter of the present invention includes:
基板部を構成する金属基板からなるフィルター本体と、 A filter body made of a metal substrate constituting the substrate part;
前記フィルター本体に設けられた凹部を形成するゥエルと、 A well forming a recess provided in the filter body,
前記ゥエルの底面を構成し、複数の貫通した細孔が形成されたフィルターが設けら れ、 A filter is provided which forms the bottom surface of the well and has a plurality of through-holes formed therein.
前記フィルターが、金属から形成され、 The filter is formed of metal;
前記フィルター本体を構成する金属基板力 シリコン基板から構成されているととも に、 The metal substrate force constituting the filter body is composed of a silicon substrate,
前記フィルターを構成する金属力 シリコンであるバイオチップ用フィルターを製造 する方法であって、 A method for producing a biochip filter, which is a metallic silicon that constitutes the filter,
シリコン基板と、シリコン基板の上面に形成した SiO層と、 SiO層の上面に形成し たシリコン薄膜層とからなる SOI (Silicon On Insulator)ゥエーハを用いて、 Using an SOI (Silicon On Insulator) wafer consisting of a silicon substrate, an SiO layer formed on the upper surface of the silicon substrate, and a silicon thin film layer formed on the upper surface of the SiO layer,
前記 SiO層を介して、上下面からシリコン薄膜層とシリコン基板の一部をそれぞれ エッチング除去することによって、ゥエルと、ゥエルの底面を構成し、複数の貫通した 細孔が形成され、シリコンから形成されたフィルターとを形成することを特徴とする。 The silicon thin film layer and a part of the silicon substrate are etched and removed from the upper and lower surfaces through the SiO layer to form a well and a bottom surface of the well, and a plurality of through-holes are formed. Forming a filtered filter.
[0031] このように構成することによって、 SiO層を介して、上下面からシリコン薄膜層とシリ コン基板をそれぞれエッチング除去することによって、ゥエルと、ゥエルの底面を構成 し、複数の貫通した細孔が形成され、シリコンから形成されたフィルタ一とが形成でき
[0032] 従って、複雑な工程となることなぐ簡単に、シリコンから形成されたフィルターを備 えたバイオチップ用フィルターを製造することができ、しかも、製造工程においても、 フィルターの破損損傷がなく歩留まりが向上し、コストを低減することが可能である。 [0031] With this configuration, the silicon thin film layer and the silicon substrate are etched and removed from the upper and lower surfaces through the SiO layer, thereby forming the well and the bottom surface of the well, and a plurality of penetrating fine cells. A hole is formed, and a filter made of silicon can be formed. [0032] Therefore, a biochip filter equipped with a filter formed from silicon can be easily manufactured without a complicated process, and in the manufacturing process, there is no damage to the filter and the yield is high. It is possible to improve and reduce costs.
[0033] また、本発明のバイオチップ用フィルターの製造方法は、 [0033] In addition, the method for producing a biochip filter of the present invention includes:
前記シリコン基板と、シリコン基板の上面に形成した SiO層と、 SiO層の上面に形 成したシリコン薄膜層とからなる SOI (Silicon On Insulator)ゥエーハを用いて、 前記 SOIゥエーハのシリコン薄膜層の一部をエッチング除去することによって、前記 フィルターの細孔を形成すべき凹部を形成する凹部形成工程と、 Using an SOI (Silicon On Insulator) wafer comprising the silicon substrate, a SiO layer formed on the upper surface of the silicon substrate, and a silicon thin film layer formed on the upper surface of the SiO layer, one of the silicon thin film layers of the SOI wafer is used. A recess forming step for forming a recess in which the pores of the filter are to be formed by etching away the portion;
前記 SOIゥエーハのシリコン基板をエッチング除去することによって、前記 SiO層を 介して、前記凹部に対峙するようにゥエルを形成するゥエル形成工程と、 Forming a well so as to face the recess through the SiO layer by etching away the silicon substrate of the SOI wafer;
前記 SiO層の一部をエッチング除去して、前記フィルターの細孔を形成すべき凹 部と、ゥエルを連通させて、複数の貫通した細孔が形成されたフィルターを形成する フィルター形成工程と、 A filter forming step of forming a filter in which a plurality of through-holes are formed by communicating a well with a recess to form a pore of the filter by etching away a part of the SiO layer; and
を備えることを特 ί毁とする。 The provision of
[0034] このように構成することによって、凹部形成工程において、 SOIゥエーハのシリコン 薄膜層をエッチング除去することによって、フィルターの細孔を形成すべき凹部を形 成して、ゥエル形成工程において、 SOIゥエーハのシリコン基板をエッチング除去す ることによって、 SiO層を介して、凹部に対峙するようにゥエルを形成し、その後、フィ ルター形成工程において、 SiO層をエッチング除去して、フィルターの細孔を形成 すべき凹部と、ゥエルを連通させて、複数の貫通した細孔が形成されたフィルターを 形成すること力でさる。 With this configuration, in the recess forming process, the silicon thin film layer of the SOI wafer is etched away to form a recess in which the pores of the filter are to be formed. By etching away the silicon substrate of the wafer, a well is formed so as to face the recess through the SiO layer. Then, in the filter forming process, the SiO layer is removed by etching, and the pores of the filter are formed. This is the force by forming a filter in which a plurality of through-holes are formed by communicating the recess to be formed with the well.
[0035] 従って、これらの凹部形成工程、ゥエル形成工程、およびフィルター形成工程を実 施することで、複雑な工程となることなぐ簡単に、シリコンから形成されたフィルター を備えたバイオチップ用フィルターを製造することができ、しかも、製造工程において も、フィルターの破損損傷がなく歩留まりが向上し、チップ製造コストを低減することが 可能である。 [0035] Therefore, a biochip filter including a filter formed of silicon can be easily obtained without performing a complicated process by performing the recess forming process, the well forming process, and the filter forming process. In addition, in the manufacturing process, there is no breakage and damage of the filter, the yield is improved, and the chip manufacturing cost can be reduced.
[0036] また、本発明のバイオチップ用フィルターの製造方法は、 [0036] Further, the method for producing a biochip filter of the present invention includes:
ウエルバターン部分の前記 SiO層力 エッチング除去されていることを特徴とする。
[0037] このように構成することによって、ウエルバターンに応じたゥエルを正確にかつ効率 良く形成することができる。 The SiO2 layer is etched away in the well pattern portion. [0037] With this configuration, a well corresponding to the well pattern can be formed accurately and efficiently.
[0038] また、本発明のバイオチップ用フィルターの製造方法は、前記ゥヱル部におけるシリ コン薄膜層の表面が、酸化されていることを特徴とする。 [0038] Further, the method for producing a biochip filter of the present invention is characterized in that the surface of the silicon thin film layer in the tool portion is oxidized.
[0039] このようにゥエル部におけるシリコン薄膜層の表面力 酸化されていれば、表面に付 着したパーティクルなどを希釈フッ酸などの溶液で除去しやすくなり製品の歩留まり が向上することになる。 [0039] When the surface force of the silicon thin film layer in the well portion is oxidized in this way, particles attached to the surface can be easily removed with a solution such as diluted hydrofluoric acid, and the yield of the product is improved.
[0040] また、本発明のバイオチップ用フィルターの製造方法は、前記フィルターの細孔の 孔径に対する深さの比(以下、「アスペクト比」と呼ぶ)が、 5以下であることを特徴とす [0040] Further, the biochip filter manufacturing method of the present invention is characterized in that the ratio of the depth of the filter to the pore diameter (hereinafter referred to as "aspect ratio") is 5 or less.
[0041] このようにフィルターの細孔の孔径に対する深さのアスペクト比が、 5以下であれば 、細孔の形成におけるエッチングの際に均一な孔径を有する細孔をゥヱーハ全面に 渡って形成することができるという製造上の効果ば力、りでなぐ液体を細孔を通して排 出する場合の液体の流れやすさが実用上問題とならない程度に流れやすくできるな どの効果が得られる。 [0041] When the aspect ratio of the depth to the pore diameter of the filter is 5 or less as described above, pores having a uniform pore diameter are formed over the entire surface of the wafer when etching is performed in the formation of the pores. If the production effect of being able to flow, the flow of liquid when draining the liquid through the pores is easy to flow to the extent that it does not become a practical problem is obtained.
[0042] また、本発明のバイオチップ用フィルターの製造方法は、前記ゥヱル相互の間の距 離力 0. 05mm以上であることを特徴とする。 [0042] The biochip filter manufacturing method of the present invention is characterized in that a distance force between the tools is 0.05 mm or more.
[0043] このように、ゥエル相互の間の距離力 0. 05mm以上であれば、ゥエル間の金属領 域でチップの強度を十分に保つことができる。 [0043] As described above, when the distance force between the wells is 0.05 mm or more, the strength of the chip can be sufficiently maintained in the metal region between the wells.
[0044] また、本発明のバイオチップ用フィルタ一は、 [0044] Further, the filter for a biochip of the present invention includes
基板部を構成する金属基板からなるフィルター本体と、 A filter body made of a metal substrate constituting the substrate part;
前記フィルター本体に設けられた凹部を形成するゥエルと、 A well forming a recess provided in the filter body,
前記ゥエルの底面を構成し、複数の貫通した細孔が形成されたフィルターが設けら れたバイオチップ用フィルタ一であって、 A biochip filter provided with a filter that forms the bottom surface of the well and has a plurality of through-holes formed therein.
前記フィルタ一力 S、金属から形成されていることを特徴とする。 The filter force S is formed of metal.
[0045] また、本発明のバイオチップ用フィルタ一は、 [0045] Further, the biochip filter of the present invention comprises:
前記フィルター本体を構成する金属基板力 シリコン基板から構成されているととも に
前記フィルターを構成する金属力 シリコンであることを特徴とする。 The metal substrate force constituting the filter body is composed of a silicon substrate. The filter is made of metallic silicon that constitutes the filter.
[0046] このように構成することによって、フィルタ一力 例えば、シリコンなどの金属から形 成されているので、例えば、約 1〜10 mの厚さであり極めて薄いフィルターの強度 、耐久性が、例えば、アルミナ、シリカ(シリコン酸化膜)、チタニアなどの金属酸化物 層で構成された従来のフィルターを有するバイオチップ用フィルターに比較して格段 に向上することになる。 [0046] With this configuration, the filter is made of a metal such as silicon. For example, the strength and durability of a very thin filter having a thickness of about 1 to 10 m are obtained. For example, this is a significant improvement over a biochip filter having a conventional filter composed of a metal oxide layer such as alumina, silica (silicon oxide film), and titania.
[0047] 従って、本発明のバイオチップ用フィルターを、例えば、核酸、タンパク質などのバ ィォプローブを担持した粒子と、被検体中の標的物質とを反応または相互作用させ る工程と、粒子を洗浄する工程とを含む標的物質の B/F分離や、被検体中の標的 物質とバイオプローブとの反応または相互作用の光学的手段等による検出 ·同定な どを行うためのバイオチップに用いられるバイオチップ用フィルターに適用した場合 に、これらの B/F分離や、被検体中の標的物質とバイオプローブとの反応または相 互作用の光学的手段等による検出 ·同定を確実に行うことができる。 [0047] Therefore, the biochip filter of the present invention comprises, for example, a step of reacting or interacting with a particle carrying a bioprobe such as a nucleic acid or protein and a target substance in a specimen, and washing the particle. Biochips used in biochips to perform B / F separation of target substances including processes, and detection / identification by means of optical means of reaction or interaction between target substances and bioprobes in the specimen When applied to filters, it is possible to reliably detect and identify these B / F separations and optical means for the reaction or interaction between the target substance in the sample and the bioprobe.
[0048] また、バイオチップ用フィルターを製造する際にも、フィルターの強度が大きいので 、フィルタ一部分が破損損傷することなぐ歩留まりを向上させ、コストを低減すること ができる。 [0048] Also, when manufacturing a biochip filter, since the strength of the filter is high, the yield can be improved and the cost can be reduced without damaging and damaging a part of the filter.
[0049] また、本発明のバイオチップ用フィルタ一は、 [0049] Further, the biochip filter of the present invention includes
シリコン基板と、シリコン基板の上面に形成した SiO層と、 SiO層の上面に形成し たシリコン薄膜層とからなる SOI (Silicon On Insulator)ゥエーハを用いて、 Using an SOI (Silicon On Insulator) wafer consisting of a silicon substrate, an SiO layer formed on the upper surface of the silicon substrate, and a silicon thin film layer formed on the upper surface of the SiO layer,
前記 SiO層を介して、上下面からシリコン薄膜層とシリコン基板の一部をそれぞれ エッチング除去することによって、ゥエルと、ゥエルの底面を構成し、複数の貫通した 細孔が形成され、シリコンから形成されたフィルターとを形成することによって得られ たバイオチップ用フィルターであることを特徴とする。 The silicon thin film layer and a part of the silicon substrate are etched and removed from the upper and lower surfaces through the SiO layer to form a well and a bottom surface of the well, and a plurality of through-holes are formed. It is characterized by being a biochip filter obtained by forming a formed filter.
[0050] このように構成することによって、 SiO層を介して、上下面からシリコン薄膜層とシリ コン基板をそれぞれエッチング除去することによって、ゥエルと、ゥエルの底面を構成 し、複数の貫通した細孔が形成され、シリコンから形成されたフィルタ一とが形成でき [0050] With this configuration, the silicon thin film layer and the silicon substrate are etched away from the upper and lower surfaces through the SiO layer, thereby forming the well and the bottom surface of the well, and a plurality of penetrating fine cells. A hole is formed, and a filter made of silicon can be formed.
[0051] 従って、複雑な工程となることなぐ簡単に、シリコンから形成されたフィルターを備
えたバイオチップ用フィルターを製造することができ、しかも、製造工程においても、 フィルターの破損損傷がなく歩留まりが向上し、コストを低減することが可能である。 [0051] Accordingly, it is easy to provide a filter formed from silicon without complicated processes. The obtained biochip filter can be manufactured, and in the manufacturing process, the filter is not damaged and the yield is improved, and the cost can be reduced.
[0052] また、本発明のバイオチップ用フィルタ一は、ウエルバターン部分の前記 SiO層が[0052] In addition, the biochip filter of the present invention includes the SiO layer in the well pattern portion.
、エッチング除去されていることを特徴とする。 Etching is removed.
[0053] このように構成することによって、ウエルバターンに応じたゥエルを正確にかつ効率 良く形成することができる。 [0053] With this configuration, it is possible to accurately and efficiently form a well corresponding to the well pattern.
[0054] また、本発明のバイオチップ用フィルタ一は、前記ゥエル部におけるシリコン薄膜層 の表面が、酸化されていることを特徴とする。 [0054] The biochip filter of the present invention is characterized in that the surface of the silicon thin film layer in the well portion is oxidized.
[0055] また、本発明のバイオチップ用フィルタ一は、前記フィルターの細孔の孔径に対す る深さのアスペクト比力 S、 5以下であることを特徴とする。 [0055] Further, the biochip filter of the present invention is characterized in that the aspect ratio S of the depth with respect to the pore diameter of the pore of the filter is 5 or less.
[0056] このようにフィルターの細孔の孔径に対する深さのアスペクト比が、 5以下であれば[0056] Thus, if the aspect ratio of the depth to the pore diameter of the filter is 5 or less,
、エッチングの際に均一な孔径を有する細孔を形成することができ、液体の流れやす さも実用上問題が無い程度を維持できる。 Further, pores having a uniform pore diameter can be formed during etching, and the ease of liquid flow can be maintained at a level where there is no practical problem.
[0057] また、本発明のバイオチップ用フィルタ一は、前記ゥエル相互の間の距離力 0. 05 mm以上であることを特徴とする。 [0057] Further, the biochip filter of the present invention is characterized in that the distance force between the wells is 0.05 mm or more.
[0058] このように、ゥエル相互の間の距離力 0. 05mm以上であれば、十分なチップ強度 を実現できる。 [0058] Thus, if the distance force between the wells is 0.05 mm or more, sufficient tip strength can be achieved.
[0059] また、本発明のバイオチップは、前述のいずれかに記載のバイオチップ用フィルタ 一を備えることを特徴とする。 [0059] In addition, a biochip of the present invention is characterized by including any one of the biochip filters described above.
[0060] また、本発明のバイオチップは、前述のいずれかに記載のバイオチップ用フィルタ 一の製造方法で得られたバイオチップ用フィルターを備えることを特徴とする。 [0060] Further, the biochip of the present invention is characterized by including a biochip filter obtained by any one of the aforementioned biochip filters.
発明の効果 The invention's effect
[0061] 本発明によれば、フィルタ一力 S、例えば、シリコンなどの金属から形成されているの で、例えば、約 1〜10 mの厚さであり極めて薄いフィルターの強度、耐久性が、例 えば、アルミナ、シリカ、チタニアなどの金属酸化物層で構成された従来のフィルター を有するバイオチップ用フィルターに比較して格段に向上することになる。 [0061] According to the present invention, since the filter force S is formed from a metal such as silicon, for example, the strength and durability of a very thin filter having a thickness of about 1 to 10 m, for example, For example, this is a marked improvement over a biochip filter having a conventional filter composed of a metal oxide layer such as alumina, silica, and titania.
[0062] 従って、本発明のバイオチップ用フィルターを、例えば、核酸、タンパク質などのバ ィォプローブを担持した粒子と、被検体中の標的物質とを反応または相互作用させ
る工程と、粒子を洗浄する工程とを含む標的物質の B/F分離や、被検体中の標的 物質とバイオプローブとの反応または相互作用の光学的手段等による検出 ·同定な どを行うためのバイオチップに用いられるバイオチップ用フィルターに適用した場合 に、これらの B/F分離や、被検体中の標的物質とバイオプローブとの反応または相 互作用の光学的手段等による検出 ·同定を確実に行うことができる。 [0062] Therefore, the biochip filter of the present invention reacts or interacts with, for example, particles carrying a bioprobe such as a nucleic acid or protein and a target substance in a specimen. Separation and target washing B / F separation, and detection / identification by optical means of reaction or interaction between the target substance and bioprobe in the sample. When applied to biochip filters used in biochips, the detection and identification of these B / F separations and the optical means of the reaction or interaction between the target substance and the bioprobe in the sample are possible. It can be done reliably.
[0063] また、バイオチップ用フィルターを製造する際にも、フィルターの強度が大きいので 、フィルタ一部分が破損損傷することなぐ歩留まりが向上し、コストを低減することが できる。 [0063] Also, when manufacturing a biochip filter, since the strength of the filter is high, the yield without breaking and damaging a part of the filter can be improved, and the cost can be reduced.
[0064] さらに、複雑な工程となることなぐ簡単に、例えば、シリコンなどの金属から形成さ れたフィルターを備えたバイオチップ用フィルターを製造することができ、しかも、製 造工程においても、フィルターの破損損傷がなく歩留まりが向上し、コストを低減する ことが可能である。 [0064] Furthermore, a biochip filter including a filter formed of a metal such as silicon can be easily manufactured without a complicated process, and the filter can be manufactured even in the manufacturing process. There is no breakage and damage, and the yield can be improved and the cost can be reduced.
図面の簡単な説明 Brief Description of Drawings
[0065] [図 1]図 1は、本発明のバイオチップ用フィルターの上面図である。 [0065] FIG. 1 is a top view of the biochip filter of the present invention.
[図 2]図 2は、図 1の A— A泉での断面図である。 [FIG. 2] FIG. 2 is a cross-sectional view taken along the A-A spring in FIG.
[図 3]図 3は、 1つのゥエルの拡大平面図である。 [Fig. 3] Fig. 3 is an enlarged plan view of one well.
[図 4]図 4は、 1つのゥエルの部分拡大断面図である。 [FIG. 4] FIG. 4 is a partially enlarged sectional view of one well.
[図 5]図 5は、本発明のバイオチップ用フィルターの製造方法を示す工程概略図であ [図 6]図 6は、本発明のバイオチップ用フィルターの製造方法を示す工程概略図であ [図 7]図 7は、本発明のバイオチップ用フィルターの製造方法を示す工程概略図であ [図 8]図 8は、従来のバイオチップ用フィルターの製造方法を示す工程概略図である FIG. 5 is a process schematic diagram showing a method for producing a biochip filter according to the present invention. FIG. 6 is a process schematic diagram showing a method for producing a biochip filter according to the present invention. FIG. 7 is a process schematic diagram showing a method for producing a biochip filter of the present invention. [FIG. 8] FIG. 8 is a process schematic diagram showing a conventional method for producing a biochip filter.
[図 9]図 9は、従来のバイオチップ用フィルターの製造方法を示す工程概略図である FIG. 9 is a process schematic diagram showing a conventional method for producing a biochip filter.
[図 10]図 10は、従来のバイオチップ用フィルターの製造方法を示す工程概略図であ
[図 11]図 11は、従来 ( ^一の製造方法を示す工程概略図であ o FIG. 10 is a process schematic diagram showing a conventional method for producing a biochip filter. [FIG. 11] FIG. 11 is a schematic diagram showing a conventional (^ 1 manufacturing method.
符号の説明 Explanation of symbols
10 バイオチップ用フ 10 Biochip chip
12 フィルター本体 12 Filter body
14 ウエノレ 14 Uenore
16 細孔 16 pores
18a 、 18b 表面 18a, 18b surface
20 シリコン基板 20 Silicon substrate
21 SiO層 21 SiO layer
2 2
22 シリコン薄膜層 22 Silicon thin film layer
23 ゥエーハ 23 Ueha
24 レジスト膜 24 resist film
25 凹部 25 recess
26 凹部 26 Recess
28 レジスト膜 28 resist film
29 凹部 29 Recess
34 ダイシングテープ 34 Dicing tape
100シリコン基板 100 silicon substrate
101シリコン基板本体 101 silicon substrate body
102熱酸化膜 102 thermal oxide film
104熱酸化膜 104 thermal oxide film
106レジスト膜 106 resist film
108凹部 108 recess
110凹部 110 recess
112レジスト膜
116凹部 112 resist film 116 recess
124ゥエル 124 uel
128ダイシングテープ 128 dicing tape
130バイオチップ用フィルター 130 Biochip filter
136フィルター 136 filters
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0067] 以下、本発明の実施の形態(実施例)を図面に基づいてより詳細に説明する。 Hereinafter, embodiments (examples) of the present invention will be described in more detail with reference to the drawings.
[0068] 図 1は、本発明のバイオチップ用フィルターの上面図、図 2は、図 1の A— A線での 断面図、図 3は、 1つのゥエルの拡大平面図、図 4は、 1つのゥエルの部分拡大断面図 である。 [0068] FIG. 1 is a top view of the biochip filter of the present invention, FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, FIG. 3 is an enlarged plan view of one well, and FIG. FIG. 3 is a partial enlarged cross-sectional view of one well.
[0069] 図 1〜図 2において、符号 10は、全体で本発明のバイオチップ用フィルターを示し ている。 [0069] In Figs. 1 and 2, reference numeral 10 denotes the biochip filter of the present invention as a whole.
[0070] 本発明のバイオチップ用フィルター 10は、例えば、核酸、タンパク質などのバイオ プローブを担持した粒子と、被検体中の標的物質とを反応または相互作用させるェ 程と、粒子を洗浄する工程とを含む標的物質の B/F分離や、被検体中の標的物質 とバイオプローブとの反応または相互作用の光学的手段等による検出 ·同定などを 行うためのバイオチップに用いられるフィルターである。 [0070] The biochip filter 10 of the present invention comprises, for example, a step of reacting or interacting with a particle carrying a bioprobe such as a nucleic acid or protein and a target substance in a specimen, and a step of washing the particle. These filters are used in biochips for the purpose of B / F separation of target substances containing, and detection / identification by optical means of reaction or interaction between target substances and bioprobes in the specimen.
[0071] 本発明のバイオチップ用フィルター 10は、図 1および図 2に示したように、矩形平板 形状であって、基板部を構成する金属基板からなるフィルター本体 12を備えている。 [0071] As shown in Figs. 1 and 2, the biochip filter 10 of the present invention has a rectangular flat plate shape and includes a filter body 12 made of a metal substrate constituting the substrate portion.
[0072] このフィルター本体 12には、その中央部分に、一定間隔離間して、複数の凹部を 形成する円柱形状の凹部を形成するゥエル 14が複数個形成されている。 [0072] The filter main body 12 is formed with a plurality of wells 14 that form cylindrical recesses that form a plurality of recesses, spaced apart from each other at a central portion.
[0073] また、図 3および図 4に示したように、この 1つのゥエル 14には、ゥエル 14の底面を 構成し、複数の貫通した細孔 16が形成されたフィルター 18が設けられている。 In addition, as shown in FIGS. 3 and 4, the one well 14 is provided with a filter 18 that constitutes the bottom surface of the well 14 and has a plurality of through-holes 16 formed therein. .
[0074] 細孔 16は、細孔の大きさによって、被検体と反応したプローブ担持粒子が分離され [0074] In the pore 16, the probe-carrying particles that have reacted with the analyte are separated depending on the size of the pore.
[0075] この場合、図 3および図 4の実施例では、細孔 16は、均一な間隔で一定の配列パ ターンとなるように形成されている。また、細孔 16は、均一な孔径を有するストレート な円筒形状の細孔となるように形成されてレ、る。
[0076] この場合、「均一な孔径」とは、孔径の誤差が CV(Coefficient of Variation)で、 20% 以下、好ましくは、 10%以下であることを意味する。孔径誤差が CV値で 20%以下で あるような細孔は、後述する方法によって作製可能であり、ゥエル 14内に収納される プローブ担持粒子と孔径との寸法差を僅少とすることができる。 In this case, in the embodiment of FIGS. 3 and 4, the pores 16 are formed to have a constant arrangement pattern at uniform intervals. The pores 16 are formed so as to be straight cylindrical pores having a uniform pore diameter. In this case, “uniform hole diameter” means that the hole diameter error is 20% or less, preferably 10% or less in terms of CV (Coefficient of Variation). A pore whose pore diameter error is 20% or less in terms of CV value can be produced by the method described later, and the dimensional difference between the probe-carrying particles contained in the well 14 and the pore diameter can be made small.
[0077] このように均一な孔径を有するフィルターにおいて、その細孔(hole)の孔径は、特 に限定されない力 通常は、 0. O l ^ m—l OO ^ m,好ましくは、 0. 1 ^ 111—20 ^ 111 、より好ましくは、 0. 5 μ m~ 10 μ mである。 [0077] In such a filter having a uniform pore diameter, the pore diameter of the pore is not particularly limited. Usually, it is 0.Ol ^ m-lOO ^ m, preferably 0.1. ^ 111-20 ^ 111, more preferably 0.5 μm to 10 μm.
[0078] また「均一な孔間隔」とは、孔間隔の誤差が、 CV(Coefficient of Variation)値で 15 %以下であることを意味する。孔間隔には特に限定はないが、孔間隔があまりに狭い とフィルターの強度が弱くなり、また孔間隔があまりに広いと開口率が下がることから、 通常は孔径の 2倍以下であり、且つ 0· 5 111〜10 111であることが好ましい。なお、「 孔間隔」とは隣接する各孔の間における孔が空レ、てレ、なレ、部分の最短距離のことで ある。 “Uniform hole interval” means that the error of the hole interval is 15% or less in terms of CV (Coefficient of Variation) value. There is no particular limitation on the pore spacing, but if the pore spacing is too narrow, the strength of the filter will be weak, and if the pore spacing is too wide, the aperture ratio will decrease, so it is usually less than twice the pore diameter, and 0 5 111 to 10 111 is preferable. The “hole interval” is the shortest distance between holes adjacent to each other.
[0079] また、「ストレート」な細孔とは、細孔が途中で分岐することなく形成されていることを 意味する。 [0079] Further, "straight" pores mean that the pores are formed without branching along the way.
[0080] 例えば、一方のフィルター 18の表面 18aに形成された開口の中心から他方のフィ ルター表面への垂線と、この他方のフィルターの表面 18bに形成された開口の中心 から、一方のフィルターの表面 18aへの垂線とが実質的にずれていない細孔である のが好ましぐ且つフィルター 18の一次側(上面側)の孔径が二次側(下面側)の孔 径と異なって!/、るものであってもよ!/、。 [0080] For example, from the center of the opening formed on the surface 18a of one filter 18 to the other filter surface and the center of the opening formed on the surface 18b of the other filter, It is preferable that the pores are not substantially deviated from the perpendicular to the surface 18a, and the pore size on the primary side (upper surface side) of the filter 18 is different from the pore size on the secondary side (lower surface side)! / It can be something! /
[0081] また、細孔 16の形状としては、特に限定されるものではなぐ例えば、円柱、四角錐 、多角錐などの形状の貫通孔のようにいずれの形状であってもよいが、メニスカスを 最小限にする点から、細孔の貫通方向と垂直な細孔断面の形状は、鈍角形状あるい は円形であることが望ましい。 [0081] The shape of the pore 16 is not particularly limited, and may be any shape such as a through-hole having a shape such as a cylinder, a quadrangular pyramid, or a polygonal pyramid. From the viewpoint of minimization, it is desirable that the cross-sectional shape of the pores perpendicular to the penetration direction of the pores is obtuse or circular.
[0082] 但し、ゥエル 14の容積が所定量以上、例えば、 0. 1マイクロリツター以上の場合に は、メニスカスはそれほど問題とならず、四角柱や四角錐などの形状の貫通孔であつ ても問題ない。 [0082] However, when the volume of the well 14 is a predetermined amount or more, for example, 0.1 microliter or more, the meniscus is not so much a problem, and it is a through-hole having a shape such as a quadrangular column or a pyramid. There is no problem.
[0083] このようにストレートな細孔 16とすることにより、フィルター 18を形成する細孔長さが
最小となるため、細孔壁との接触面積が減少し、濾過に伴う圧送抵抗を最小限とする こと力 Sでさる。 [0083] By making the straight pores 16 in this way, the pore length forming the filter 18 is reduced. Since it is minimized, the contact area with the pore wall is reduced, and the force S that minimizes the pumping resistance associated with filtration is reduced.
[0084] さらに、フィルター 18の細孔 16の孔径(直径)に対する深さのアスペクト比が、 5以 下であるのが好ましい。 Furthermore, it is preferable that the aspect ratio of the depth to the pore diameter (diameter) of the pores 16 of the filter 18 is 5 or less.
[0085] このようにフィルター 18の細孔 16の孔径に対する深さのアスペクト比が、 5以下であ れば、エッチングの際に均一な孔径を有する細孔を形成することができ、細孔を通し た液体の流れ安さも確保できることになる。 [0085] As described above, when the aspect ratio of the depth to the pore diameter of the pores 16 of the filter 18 is 5 or less, pores having a uniform pore diameter can be formed at the time of etching. It is possible to secure a low flow rate of the liquid.
[0086] すなわち、後述するようにエッチングによってフィルター 18の細孔 16を形成するが 、アスペクト比がに大きいと、エッチングによって細孔 16の孔径ゃ形状が不均一にな る可能性があるからである。これを考慮すれば、通常の化学エッチングで得られるァ スぺタト比としては、 5以下であり、好ましくは、 3以下であるのが望ましい。 That is, as will be described later, the pores 16 of the filter 18 are formed by etching, but if the aspect ratio is large, the shape of the pores 16 may be uneven due to the etching. is there. Considering this, the aspect ratio obtained by normal chemical etching is 5 or less, and preferably 3 or less.
[0087] また、プローブ担持粒子がフィルター 18の一次側に堆積して目詰まりを起こした場 合であっても、粒子がフィルター 18の内部に入り込まずにフィルター 18の表面に留 まることになる(いわゆる完全閉塞モデルとなる)。この場合、フィルター 18二次側から 液体を流すことにより(「フラッシング」と言う)、粒子をフィルター 18表面から一次側へ 容易に離脱 ·分散させること力 Sできる。 [0087] Further, even when the probe-carrying particles accumulate on the primary side of the filter 18 and become clogged, the particles do not enter the filter 18 and remain on the surface of the filter 18. (It becomes a so-called complete occlusion model). In this case, by flowing liquid from the secondary side of the filter 18 (referred to as “flushing”), the force S can be easily separated and dispersed from the surface of the filter 18 to the primary side.
[0088] このため、フィルター 18の目詰まりを再度解消して再生させることができ、フィルタ 一 18の寿命を延ばすこと力 Sできる。 [0088] For this reason, the clogging of the filter 18 can be resolved again and regenerated, and the life S of the filter 18 can be extended.
[0089] 以上のように、フィルター 18に均一な孔径を有するストレートな細孔を、均一な孔間 隔で形成することによって、プローブ担持粒子は一次側の開口上に配列され、必要 に応じて、被検体などの液体を二次側からフラッシングして、粒子を一次側へ分散さ せることも可能であり、被検体とプローブ担持粒子との反応や検出を容易に行うこと ができる。 [0089] As described above, by forming straight pores having a uniform pore diameter in the filter 18 with uniform pore spacing, the probe-carrying particles are arranged on the primary side opening, and if necessary, It is also possible to flush the liquid such as the analyte from the secondary side and disperse the particles to the primary side, and the reaction and detection between the analyte and the probe-carrying particles can be easily performed.
[0090] さらに、プローブ担持粒子がフィルター 18の二次側に排出されることが許されず、 粒子を 100%捕捉する必要がある場合には、フィルター 18の孔径を、粒子の最小径 よりも小さくするように、粒子サイズなどを考慮することで、透過係数と濾過効率を低 下させることなく 100%の粒子捕捉が可能である。 [0090] Further, when the probe-carrying particles are not allowed to be discharged to the secondary side of the filter 18 and it is necessary to capture 100% of the particles, the pore size of the filter 18 is made smaller than the minimum particle size. Thus, by taking into account the particle size, 100% particle capture is possible without reducing the permeation coefficient and filtration efficiency.
[0091] また、フィルター 18の厚さは、好ましくは、 1— より好ましくは、 2〜7 μ mで
ある。フィルター 18の厚さ力 S、 10 mよりも大きい場合、液体の濾過時に濾過抵抗が 大きくなり、フィルター 18の厚さが 1 m未満である場合、フィルター 18の機械的な強 度が不足する。 [0091] The thickness of the filter 18 is preferably 1—, more preferably 2 to 7 μm. is there. When the thickness force S of the filter 18 is larger than 10 m, the filtration resistance increases when the liquid is filtered, and when the thickness of the filter 18 is less than 1 m, the mechanical strength of the filter 18 is insufficient.
[0092] さらに、フィルター 18の開口率は、好ましくは、 15-60% ,より好ましくは、 20-50 [0092] Further, the aperture ratio of the filter 18 is preferably 15-60%, more preferably 20-50.
%である。開口率が 15%未満である場合、濾過効率が低下し、開口率が 60%よりも 大きい場合、フィルター 18の機械的な強度が不足する。 %. When the aperture ratio is less than 15%, the filtration efficiency decreases, and when the aperture ratio is greater than 60%, the mechanical strength of the filter 18 is insufficient.
[0093] 一方、フィルター 18周辺部には、図 3および図 4に示したように、細孔 16が形成さ れていない部分があり、フィルター本体 12と連結されていること力 機械的な強度の 面では好ましい。 [0093] On the other hand, as shown in FIGS. 3 and 4, the periphery of the filter 18 has a portion where the pores 16 are not formed, and is connected to the filter body 12. This is preferable.
[0094] また、この実施例では、ゥエル 14の径と高さには、特に限定はなぐ必要な粒子の 個数と反応容積にしたがって、任意に設定可能である。例えば、ゥエル径は 0. 5mm の円柱形状の穴、高さは 0. 3mm程度である。 [0094] Further, in this example, the diameter and height of the well 14 can be arbitrarily set according to the number of required particles and the reaction volume without particular limitation. For example, a cylindrical hole with a well diameter of 0.5 mm and a height of about 0.3 mm.
[0095] また、ゥエル 14の相互の間の距離力 0. 05mm以上であり、好ましくは、 0. lmm 以上であるのが望ましい。 [0095] The distance force between the wels 14 is 0.05 mm or more, preferably 0.1 mm or more.
[0096] このような範囲にゥエル 14の相互の間の距離があれば、実使用に耐えるチップ強 度を実現することができる。 [0096] If there is a distance between the wells 14 within such a range, the chip strength that can withstand actual use can be realized.
[0097] さらに、ゥエル 14の形状も特に限定されるものではなぐ例えば、円柱、四角錐、多 角錐などの形状の凹部のいずれの形状であってもよいが、メニスカスを最小限にする ためにゥエル 14の貫通方向と垂直な細孔断面の形状は、鈍角形状あるいは円形で あることが望ましい。 [0097] Further, the shape of the wel 14 is not particularly limited. For example, the shape of the concave portion such as a cylinder, a quadrangular pyramid, or a polygonal pyramid may be used, but in order to minimize the meniscus. It is desirable that the cross-sectional shape of the pore perpendicular to the penetration direction of the wel 14 is obtuse or circular.
[0098] また、この実施例では、複数のゥエル 14を有するバイオチップ用フィルター 10とし た力 単一のゥエル 14を有するバイオチップ用フィルター 10とすることももちろん可 能であって、ゥエル 14の数、配置形状は特に限定されるものではない。 [0098] Further, in this embodiment, the force as the biochip filter 10 having a plurality of wells 14 can of course be used as the biochip filter 10 having a single well 14. The number and arrangement shape are not particularly limited.
[0099] また、複数のゥエル 14を有するバイオチップ用フィルター 10では、これらのゥエル 1 4の径は、必ずしも同一である必要はなぐ収納する粒子の数や反応容積を考慮して 、異なる径のゥエル 14を設けることも可能である。 [0099] Further, in the biochip filter 10 having a plurality of wells 14, the diameters of these wells 14 are not necessarily the same, and are different from each other in consideration of the number of contained particles and the reaction volume. It is also possible to have a uel 14.
[0100] 本発明のバイオチップ用フィルター 10のフィルター 18は、金属から形成されており 、この場合、金属としては、例えば、シリコン(Si)などを使用することができる。
[0101] この場合、フィルター 18を金属から構成するには、金属基板と、金属基板の上面に 形成した金属酸化物層と、金属酸化物層の上面に形成した金属薄膜層とからなるゥ エーハを用いればよい。そして、金属酸化物層を介して、上下面から金属薄膜層と金 属基板をそれぞれエッチング除去することによって、ゥエル 14と、ゥエル 14の底面を 構成し、複数の貫通した細孔 16が形成され、金属から形成されたフィルター 18とを 形成すればよい。 [0100] The filter 18 of the biochip filter 10 of the present invention is made of metal. In this case, for example, silicon (Si) or the like can be used as the metal. [0101] In this case, in order to form the filter 18 from a metal, a wafer comprising a metal substrate, a metal oxide layer formed on the upper surface of the metal substrate, and a metal thin film layer formed on the upper surface of the metal oxide layer. May be used. Then, the metal thin film layer and the metal substrate are etched away from the upper and lower surfaces through the metal oxide layer, thereby forming the well 14 and the bottom surface of the well 14, and a plurality of through-holes 16 are formed. The filter 18 made of metal may be formed.
[0102] このように構成することによって、金属酸化物層を介して、上下面から金属薄膜層と 金属基板をそれぞれエッチング除去することによって、ゥエルと、ゥエルの底面を構成 し、複数の貫通した細孔が形成され、金属から形成されたフィルタ一とが形成できる。 [0102] With this configuration, the metal thin film layer and the metal substrate are etched and removed from the upper and lower surfaces through the metal oxide layer, thereby forming the well and the bottom surface of the well, and a plurality of through holes are formed. Fine pores are formed, and a filter made of metal can be formed.
[0103] 従って、複雑な工程となることなぐ簡単に、金属から形成されたフィルターを備えた バイオチップ用フィルターを製造することができ、しかも、製造工程においても、フィル ターの破損損傷がなく歩留まりが向上し、コストを低減することが可能である。 [0103] Therefore, it is possible to easily manufacture a biochip filter having a filter formed of metal without being a complicated process, and in the manufacturing process, there is no damage to the filter and the yield is low. Can be improved and the cost can be reduced.
[0104] 例えば、シリコンの場合には、後述するように、シリコン基板と、シリコン基板の上面 に形成した SiO層と、 SiO層の上面に形成したシリコン薄膜層とからなる SOI (Silico n On Insulator)ゥエーハを用いればよい。そして、 SiO層を介して、上下面からシリコ ン薄膜層とシリコン基板をそれぞれエッチング除去することによって、ゥエル 14と、ゥ エル 14の底面を構成し、複数の貫通した細孔 16が形成され、シリコンから形成され たフィルター 18とを形成すればよい。 [0104] For example, in the case of silicon, as will be described later, an SOI (Silicon On Insulator) comprising a silicon substrate, a SiO layer formed on the upper surface of the silicon substrate, and a silicon thin film layer formed on the upper surface of the SiO layer. ) Use a wafer. Then, by etching and removing the silicon thin film layer and the silicon substrate from the upper and lower surfaces through the SiO layer, a well 14 and a bottom surface of the well 14 are formed, and a plurality of through holes 16 are formed. A filter 18 made of silicon may be formed.
[0105] この場合、 SOI (Silicon On Insulator)ゥエーハは、 2枚の基板を構成する単結晶シ リコンの表面に熱酸化膜を形成し、 2枚の Si基板を熱酸化膜を介して張り合わせ、片 側から Si基板を所望の厚みにエッチングすることにより、 SOI基板構造を得ることが できる(張り合わせ法による SOI基板の作製方法)。 [0105] In this case, the SOI (Silicon On Insulator) wafer forms a thermal oxide film on the surface of the single crystal silicon constituting the two substrates, and the two Si substrates are bonded together via the thermal oxide film. By etching the Si substrate to a desired thickness from one side, an SOI substrate structure can be obtained (an SOI substrate manufacturing method using a bonding method).
[0106] 一方、フィルター本体 12は、このようにゥヱル 14と、フィルター 18とを作製する場合 に、後述するように、同時に形成されるものであるので、フィルター 18と同一の材料よ り構成されるものである。しかしながら、フィルター本体 12は、フィルター 18と同一の 材料より構成されるものに限定されるものではない。 [0106] On the other hand, the filter body 12 is formed of the same material as the filter 18 because it is formed at the same time as described later when the tool 14 and the filter 18 are produced as described above. Is. However, the filter body 12 is not limited to the one made of the same material as the filter 18.
[0107] このように構成することによって、フィルター 18力 S、例えば、シリコンなどの金属から 形成されているので、例えば、約 1〜10 mの厚さであり極めて薄いフィルターの強
度、耐久性が、例えば、アルミナ、シリカ、チタニアなどの金属酸化物層で構成された 従来のフィルターを有するバイオチップ用フィルターに比較して格段に向上すること になる。 [0107] With this configuration, the filter 18 force S is formed from a metal such as silicon, for example, so that the strength of a very thin filter having a thickness of, for example, about 1 to 10 m. The degree of durability and durability will be significantly improved compared to a biochip filter having a conventional filter composed of a metal oxide layer such as alumina, silica, or titania.
[0108] 従って、本発明のバイオチップ用フィルター 10を、例えば、核酸、タンパク質などの ノ^オプローブを担持した粒子と、被検体中の標的物質とを反応または相互作用さ せる工程と、粒子を洗浄する工程とを含む標的物質の B/F分離や、被検体中の標 的物質とバイオプローブとの反応または相互作用の光学的手段等による検出 ·同定 などを行うためのバイオチップに用いられるバイオチップ用フィルターに適用した場 合に、これらの B/F分離や、被検体中の標的物質とバイオプローブとの反応または 相互作用の光学的手段等による検出 ·同定を確実に行うことができる。 [0108] Therefore, the biochip filter 10 of the present invention comprises, for example, a step of reacting or interacting a particle carrying a nanoprobe such as a nucleic acid or a protein with a target substance in a specimen, and a particle. Used in biochips for B / F separation of target substances including washing steps, and detection and identification by optical means of reaction or interaction between target substances and bioprobes in the specimen When applied to biochip filters, these B / F separation and detection / identification by optical means such as reaction or interaction between target substance and bioprobe in the sample can be reliably performed. .
[0109] また、バイオチップ用フィルター 10を製造する際にも、フィルター 18の強度が大き いので、フィルタ一部分が破損損傷することなぐ歩留まりが向上し、コストを低減する こと力 Sでさる。 [0109] Further, when the biochip filter 10 is manufactured, the strength of the filter 18 is large, so that the yield without breaking and damaging a part of the filter is improved and the cost S can be reduced.
[0110] 以下に、このように構成される本発明のバイオチップ用フィルター 10の製造方法に ついて、フィルター 18力 S、シリコンである場合を例として、図面に基づいて詳細に説 明する。 [0110] Hereinafter, the method for producing the biochip filter 10 of the present invention configured as described above will be described in detail with reference to the drawings, taking as an example the case of 18 filters of S and silicon.
[0111] 先ず、図 5 (A)に示したように、シリコン基板 20と、シリコン基板 20の上面に形成し た SiO層 21と、この SiO層 21の上面に形成したシリコン薄膜層 22とからなる SOI (Si licon On Insulator)ゥエーハ 23を準備する。 First, as shown in FIG. 5 (A), from a silicon substrate 20, an SiO layer 21 formed on the upper surface of the silicon substrate 20, and a silicon thin film layer 22 formed on the upper surface of the SiO layer 21. Prepare the SOI (Si licon On Insulator) wafer 23.
[0112] なお、この場合、 SOI (Silicon On Insulator)ゥエーハは、基板を構成する単結晶シ リコン基板の表面に熱酸化膜を形成し、 2枚の Si基板を熱酸化膜を介して張り合わ せ、片側から Si基板を所望の厚みにエッチングすることにより SOI基板構造を用いる [0112] In this case, the SOI (Silicon On Insulator) wafer forms a thermal oxide film on the surface of the single crystal silicon substrate constituting the substrate, and bonds the two Si substrates through the thermal oxide film. Use SOI substrate structure by etching Si substrate to desired thickness from one side
[0113] この場合、シリコン基板 20の厚さは、ゥエル 14の深さの大部分を構成するものであ り、例えば、 300 m程度であるのが望ましい。また、シリコン薄膜層 22は、フィルタ 一 18を構成するものであるので、好ましくは、 1— 20 ^ 111,より好ましくは、 2〜5〃m であるのが望ましい。さらに、 SiO層 21は、製造工程の際にエッチングストップ膜など の保護膜として機能するものであり、その厚さは、好ましくは、 0. 5 111〜10 111、よ
り好ましくは、 1〃111〜2〃111であるのが望ましい。 [0113] In this case, the thickness of the silicon substrate 20 constitutes most of the depth of the well 14, and is preferably about 300 m, for example. Further, since the silicon thin film layer 22 constitutes the filter 18, it is preferably 1-20 ^ 111, more preferably 2-5 μm. Furthermore, the SiO layer 21 functions as a protective film such as an etching stop film during the manufacturing process, and the thickness thereof is preferably 0.5 111 to 10 111. More preferably, it is 1 to 111 to 2 to 111.
[0114] そして、図 5 (B)に示したように、この SOIゥエーハ 23のシリコン薄膜層 22の上面にThen, as shown in FIG. 5B, on the upper surface of the silicon thin film layer 22 of the SOI wafer 23.
、フォトリソグラフィ一によつて、フィルター 18の細孔(hole)に対応する凹部パターン 2According to photolithography, the concave pattern 2 corresponding to the hole of the filter 18 2
5を有するレジスト膜 24を形成する(凹部形成工程)。 A resist film 24 having 5 is formed (recess forming step).
[0115] 次に、図 5 (C)に示したように、このレジスト層 24をマスクとして、シリコン薄膜層 22 をエッチング除去することによって、シリコン薄膜層 22の部分に、フィルターの細孔に 対応する凹部 26を形成する。 [0115] Next, as shown in FIG. 5C, the silicon thin film layer 22 is etched away using the resist layer 24 as a mask, so that the silicon thin film layer 22 corresponds to the pores of the filter. A recess 26 is formed.
[0116] この場合、エッチングとしては、フッ素系ガスによる反応性イオンエッチング法 (RIE 法)を用いればよい。この際には、 SiO層 21が、ドライエッチングによってエッチング されないので、 Si層 22の厚みに対応した所定の深さの凹部 26が形成されることにな In this case, as the etching, a reactive ion etching method (RIE method) using a fluorine-based gas may be used. At this time, since the SiO layer 21 is not etched by dry etching, a recess 26 having a predetermined depth corresponding to the thickness of the Si layer 22 is formed.
[0117] そして、図 5 (D)に示したように、レジスト膜 24を剥離する。 Then, as shown in FIG. 5D, the resist film 24 is peeled off.
[0118] そして、天地を逆にした状態で、図 6 (A)に示したように、 SOIゥエーハ 23のシリコン 基板 20の上面に、レジスト膜 28を形成して、フォトリソグラフィ一によつて、ゥエル 14 に対応する凹部 29パターンを有するレジストマスク層 28を形成する。 [0118] Then, with the top and bottom reversed, as shown in FIG. 6A, a resist film 28 is formed on the upper surface of the silicon substrate 20 of the SOI wafer 23. A resist mask layer 28 having a recess 29 pattern corresponding to the well 14 is formed.
[0119] そして、図 6 (B)に示したように、レジスト膜 28の部分をマスクとして、露出したシリコ ン基板 20の部分をエッチング除去することによって、ゥエル 14を形成する(ゥエル形 成工程)。 [0119] Then, as shown in FIG. 6B, the exposed portion of the silicon substrate 20 is etched away using the resist film 28 as a mask to form the well 14 (well forming step). ).
[0120] この場合、シリコンエッチングとしては、フッ素系ガスによるドライエッチング方法 (RI E法)を用いればよい。この際には、 SiO層 21が、ドライエッチングによってエツチン グされないので、所定の深さのゥエル 14が形成されることになる。 In this case, as the silicon etching, a dry etching method (RIE method) using a fluorine-based gas may be used. At this time, since the SiO layer 21 is not etched by dry etching, the well 14 having a predetermined depth is formed.
[0121] そして、図 6 (C)に示したように、 SiO層 21をエッチング除去する。 Then, as shown in FIG. 6C, the SiO layer 21 is removed by etching.
[0122] 次に、図 7 (A)に示したように、シリコン基板 20の下面に、ダイシングテープ 34を貼 着した後、図 7 (B)に示したように、ダイシングを fiうことによって、個々のバイオチッ プ用フィルター 10に分断する。 [0122] Next, as shown in FIG. 7A, after dicing tape 34 is attached to the lower surface of the silicon substrate 20, dicing is performed as shown in FIG. 7B. Divide into individual biochip filters 10.
[0123] この場合、ダイシングとしては、ダイシングカッターによるダイシングなどを用いること ができる。 [0123] In this case, dicing using a dicing cutter or the like can be used as dicing.
[0124] そして、図 7 (C)に示したように、ダイシングテープ 34を昇温しながらエキスパンドす
ることによって外方に引っ張って、ダイシングテープ 34と個々のチップを剥離して、個 々のバイオチップ用フィルター 10に分離する。 [0124] Then, as shown in FIG. 7C, the dicing tape 34 is expanded while the temperature is increased. By pulling outward, the dicing tape 34 and individual chips are peeled off and separated into individual biochip filters 10.
[0125] これによつて、図 7 (D)に示したように、基板部を構成するシリコン基板 20からなるフ ィルター本体 12と、フィルター本体 12に設けられた複数の凹部を形成するゥエル 14 と、ゥエル 14の底面を構成し、複数の貫通した細孔 16が形成されたシリコンからなる フィルター 18が設けられたバイオチップ用フィルター 10が得られる。 Accordingly, as shown in FIG. 7 (D), the filter main body 12 made of the silicon substrate 20 constituting the substrate portion and the well 14 forming a plurality of recesses provided in the filter main body 12. Thus, the biochip filter 10 provided with the filter 18 made of silicon that forms the bottom surface of the well 14 and has a plurality of through-holes 16 formed therein is obtained.
[0126] なお、図 5〜図 7では、説明の便宜上、 1つのゥエル 14を示している力 実際には、 複数のゥエル 14が一定間隔離間して形成されている。 In FIGS. 5 to 7, for convenience of explanation, the force indicating one well 14 is actually formed with a plurality of wells 14 spaced apart from each other.
[0127] また、ゥエル 14の部分におけるシリコン薄膜層 22の表面力 酸化されているのが好 ましい。このようにゥエル 14の部分におけるシリコン薄膜層 22の表面力 酸化されて いればシリコン薄膜層 22の表面に付着するパーティクルなどの異物を例えば希釈フ ッ酸などの溶液で容易にリフトオフ除去することができる。この酸化方法としては、熱 酸化法を用いることができる。 [0127] Further, it is preferable that the surface force of the silicon thin film layer 22 in the portion of the well 14 is oxidized. Thus, if the surface force of the silicon thin film layer 22 in the portion of the well 14 is oxidized, foreign matters such as particles adhering to the surface of the silicon thin film layer 22 can be easily lifted off with a solution such as diluted hydrofluoric acid. it can. As this oxidation method, a thermal oxidation method can be used.
[0128] 以上、本発明の好ましい実施の態様を説明してきたが、本発明はこれに限定される ことはなく、例えば、上記実施例では、張り合わせ法を用いた SOI (Silicon On Insulat or)ゥエーハを用いた例について説明した力 SIMOX法で形成した SOIゥエーハな ども使用可能であるなど本発明の目的を逸脱しない範囲で種々の変更が可能である [0128] While the preferred embodiments of the present invention have been described above, the present invention is not limited thereto. For example, in the above embodiment, an SOI (Silicon On Insulat or SOI) wafer using a bonding method is used. Various examples can be used without departing from the object of the present invention, such as the use of the SOI wafer formed by the SIMOX method.
〇
Yes
Claims
[1] 基板部を構成する金属基板からなるフィルター本体と、 [1] A filter body made of a metal substrate constituting the substrate part;
前記フィルター本体に設けられた凹部を形成するゥエルと、 A well forming a recess provided in the filter body,
前記ゥエルの底面を構成し、複数の貫通した細孔が形成されたフィルターが設けら れ、 A filter is provided which forms the bottom surface of the well and has a plurality of through-holes formed therein.
前記フィルタ一力 S、金属から形成されているバイオチップ用フィルターを製造する方 法であって、 A method of manufacturing a filter for a biochip made of metal, S, which is the best of the filter,
金属基板と、金属基板の上面に形成した金属酸化物層と、金属酸化物層の上面に 形成した金属薄膜層とからなるゥエーハを用いて、 Using a wafer comprising a metal substrate, a metal oxide layer formed on the upper surface of the metal substrate, and a metal thin film layer formed on the upper surface of the metal oxide layer,
前記金属酸化物層を介して、上下面から金属薄膜層と金属基板の一部をそれぞれ エッチング除去することによって、ゥエルと、ゥエルの底面を構成し、複数の貫通した 細孔が形成され、金属から形成されたフィルターとを形成することを特徴とするバイオ チップ用フィルターの製造方法。 The metal thin film layer and a part of the metal substrate are etched and removed from the upper and lower surfaces through the metal oxide layer to form a well and a bottom surface of the well, and a plurality of through-holes are formed. A filter for biochip, characterized by forming a filter formed from
[2] 前記金属基板と、金属基板の上面に形成した金属酸化物層と、金属酸化物層の上 面に形成した金属薄膜層とからなるゥエーハを用いて、 [2] Using a wafer comprising the metal substrate, a metal oxide layer formed on the upper surface of the metal substrate, and a metal thin film layer formed on the upper surface of the metal oxide layer,
前記ゥエーハの金属薄膜層の一部をエッチング除去することによって、前記フィノレ ターの細孔を形成すべき凹部を形成する凹部形成工程と、 A recess forming step of forming a recess in which the fine holes of the finoletor are to be formed by etching away a part of the metal thin film layer of the wafer;
前記ゥエーハの金属基板をエッチング除去することによって、前記金属酸化物層を 介して、前記凹部に対峙するようにゥエルを形成するゥエル形成工程と、 Forming a well so as to face the recess through the metal oxide layer by etching away the metal substrate of the wafer;
前記金属酸化物層の一部をエッチング除去して、前記フィルターの細孔を形成す べき凹部と、ゥエルを連通させて、複数の貫通した細孔が形成されたフィルターを形 成するフィルター形成工程と、 A filter forming step of forming a filter in which a plurality of through pores are formed by communicating a well with a recess to form the pores of the filter by etching away a part of the metal oxide layer. When,
を備えることを特徴とする請求項 1に記載のバイオチップ用フィルターの製造方法。 The method for producing a biochip filter according to claim 1, comprising:
[3] 基板部を構成する金属基板からなるフィルター本体と、 [3] A filter body made of a metal substrate constituting the substrate part;
前記フィルター本体に設けられた凹部を形成するゥエルと、 A well forming a recess provided in the filter body,
前記ゥエルの底面を構成し、複数の貫通した細孔が形成されたフィルターが設けら れ、 A filter is provided which forms the bottom surface of the well and has a plurality of through-holes formed therein.
前記フィルターが、金属から形成され、
前記フィルター本体を構成する金属基板力 シリコン基板から構成されているととも に、 The filter is formed of metal; The metal substrate force constituting the filter body is composed of a silicon substrate,
前記フィルターを構成する金属力 シリコンであるバイオチップ用フィルターを製造 する方法であって、 A method for producing a biochip filter, which is a metallic silicon that constitutes the filter,
シリコン基板と、シリコン基板の上面に形成した SiO層と、 SiO層の上面に形成し たシリコン薄膜層とからなる SOI (Silicon On Insulator)ゥエーハを用いて、 Using an SOI (Silicon On Insulator) wafer consisting of a silicon substrate, an SiO layer formed on the upper surface of the silicon substrate, and a silicon thin film layer formed on the upper surface of the SiO layer,
前記 SiO層を介して、上下面からシリコン薄膜層とシリコン基板の一部をそれぞれ エッチング除去することによって、ゥエルと、ゥエルの底面を構成し、複数の貫通した 細孔が形成され、シリコンから形成されたフィルターとを形成することを特徴とするバ ィォチップ用フィルターの製造方法。 The silicon thin film layer and a part of the silicon substrate are etched and removed from the upper and lower surfaces through the SiO layer to form a well and a bottom surface of the well, and a plurality of through-holes are formed. A method for manufacturing a biochip filter, comprising: forming a filter.
[4] 前記シリコン基板と、シリコン基板の上面に形成した SiO層と、 SiO層の上面に形 成したシリコン薄膜層とからなる SOI (Silicon On Insulator)ゥエーハを用いて、 前記 SOIゥエーハのシリコン薄膜層の一部をエッチング除去することによって、前記 フィルターの細孔を形成すべき凹部を形成する凹部形成工程と、 [4] Using an SOI (Silicon On Insulator) wafer comprising the silicon substrate, a SiO layer formed on the upper surface of the silicon substrate, and a silicon thin film layer formed on the upper surface of the SiO layer, the silicon thin film of the SOI wafer A recess forming step of forming a recess to form a pore of the filter by etching away a part of the layer;
前記 SOIゥエーハのシリコン基板をエッチング除去することによって、前記 SiO層を 介して、前記凹部に対峙するようにゥエルを形成するゥエル形成工程と、 Forming a well so as to face the recess through the SiO layer by etching away the silicon substrate of the SOI wafer;
前記 SiO層の一部をエッチング除去して、前記フィルターの細孔を形成すべき凹 部と、ゥエルを連通させて、複数の貫通した細孔が形成されたフィルターを形成する フィルター形成工程と、 A filter forming step of forming a filter in which a plurality of through-holes are formed by communicating a well with a recess to form a pore of the filter by etching away a part of the SiO layer; and
を備えることを特徴とする請求項 3に記載のバイオチップ用フィルターの製造方法。 The method for producing a biochip filter according to claim 3, comprising:
[5] ウエルバターン部分の前記 SiO層力 エッチング除去されていることを特徴とする 請求項 3から 4のいずれかに記載のバイオチップ用フィルターの製造方法。 [5] The method for producing a biochip filter according to any one of claims 3 to 4, wherein the SiO layer force in the well pattern portion is removed by etching.
[6] 前記ゥエル部におけるシリコン薄膜層の表面力 酸化されていることを特徴とする請 求項 3から 5のいずれかに記載のバイオチップ用フィルターの製造方法。 [6] The method for producing a biochip filter according to any one of claims 3 to 5, wherein a surface force of the silicon thin film layer in the well portion is oxidized.
[7] 前記フィルターの細孔の孔径に対するフィルターの厚さの比力 5以下であることを 特徴とする請求項 1から 6のいずれかに記載のバイオチップ用フィルターの製造方法[7] The method for producing a biochip filter according to any one of [1] to [6], wherein a specific force of a filter thickness to a pore diameter of the filter is 5 or less.
〇 Yes
[8] 前記ゥエル相互の間の距離力 0. 05mm以上であることを特徴とする請求項 1から
7のいずれかに記載のバイオチップ用フィルターの製造方法。 [8] The distance force between the wels is 0.05 mm or more. 8. A method for producing a biochip filter according to any one of 7 above.
請求項 1から 8のいずれかに記載のバイオチップ用フィルターの製造方法で得られ たバイオチップ用フィルターを備えることを特徴とするバイオチップ。 A biochip comprising the biochip filter obtained by the method for producing a biochip filter according to claim 1.
基板部を構成する金属基板からなるフィルター本体と、 A filter body made of a metal substrate constituting the substrate part;
前記フィルター本体に設けられた凹部を形成するゥエルと、 A well forming a recess provided in the filter body,
前記ゥエルの底面を構成し、複数の貫通した細孔が形成されたフィルターが設けら れたバイオチップ用フィルタ一であって、 A biochip filter provided with a filter that forms the bottom surface of the well and has a plurality of through-holes formed therein.
前記フィルタ一力 S、金属から形成されていることを特徴とするバイオチップ用フィノレ ター。 A filter chip for biochip, characterized in that the filter is made of S and a metal.
前記フィルター本体を構成する金属基板力 シリコン基板から構成されているととも に、 The metal substrate force constituting the filter body is composed of a silicon substrate,
前記フィルターを構成する金属力 シリコンであることを特徴とする請求項 10に記 載のバイオチップ用フィルター。 11. The biochip filter according to claim 10, wherein the filter is made of metallic silicon that constitutes the filter.
シリコン基板と、シリコン基板の上面に形成した SiO層と、 SiO層の上面に形成し たシリコン薄膜層とからなる SOI (Silicon On Insulator)ゥエーハを用いて、 Using an SOI (Silicon On Insulator) wafer consisting of a silicon substrate, an SiO layer formed on the upper surface of the silicon substrate, and a silicon thin film layer formed on the upper surface of the SiO layer,
前記 SiO層を介して、上下面からシリコン薄膜層とシリコン基板の一部をそれぞれ エッチング除去することによって、ゥエルと、ゥエルの底面を構成し、複数の貫通した 細孔が形成され、シリコンから形成されたフィルターとを形成することによって得られ たバイオチップ用フィルターであることを特徴とする請求項 11に記載のバイオチップ 用フィルター。 The silicon thin film layer and a part of the silicon substrate are etched and removed from the upper and lower surfaces through the SiO layer to form a well and a bottom surface of the well, and a plurality of through-holes are formed. 12. The biochip filter according to claim 11, which is a biochip filter obtained by forming a formed filter.
ウエルバターン部分の前記 SiO層力 エッチング除去されていることを特徴とする 請求項 12に記載のバイオチップ用フィルター。 13. The biochip filter according to claim 12, wherein the SiO layer force in the well pattern portion is removed by etching.
前記ゥエル部におけるシリコン薄膜層の表面力 酸化されていることを特徴とする請 求項 11力も 13のいずれかに記載のバイオチップ用フィルター。 14. The biochip filter according to any one of claims 11 and 13, wherein a surface force of the silicon thin film layer in the well portion is oxidized.
前記フィルターの細孔の孔径に対する深さのアスペクト比が、 5以下であることを特 徴とする請求項 10から 14のいずれかに記載のバイオチップ用フィルター。 15. The biochip filter according to claim 10, wherein an aspect ratio of a depth to a pore diameter of the filter is 5 or less.
前記ゥエル相互の間の距離力 0. 05mm以上であることを特徴とする請求項 10か ら 15のいずれかに記載のバイオチップ用フィルター。
[17] 請求項 10から 16のいずれかに記載のバイオチップ用フィルターを備えることを特 徴とするバイオチップ。
The biochip filter according to any one of claims 10 to 15, wherein a distance force between the wells is 0.05 mm or more. [17] A biochip comprising the biochip filter according to any one of claims 10 to 16.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006209241A JP2008032656A (en) | 2006-07-31 | 2006-07-31 | Filter for biochip, manufacturing method of filter for biochip, and biochip using filter for the biochip |
JP2006-209241 | 2006-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008016032A1 true WO2008016032A1 (en) | 2008-02-07 |
Family
ID=38997207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/064943 WO2008016032A1 (en) | 2006-07-31 | 2007-07-31 | Filter for biochip, method for manufacturing filter for biochip and biochip using filter for biochip |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2008032656A (en) |
WO (1) | WO2008016032A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011006557A (en) * | 2009-06-24 | 2011-01-13 | Jsr Corp | Acid transfer resin composition and method for producing biochip |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005148048A (en) * | 2003-04-25 | 2005-06-09 | Jsr Corp | Biochip, biochip kit, and method for manufacturing and using the same |
JP2006082250A (en) * | 2004-09-14 | 2006-03-30 | Ricoh Printing Systems Ltd | Inkjet head and its manufacturing method |
-
2006
- 2006-07-31 JP JP2006209241A patent/JP2008032656A/en active Pending
-
2007
- 2007-07-31 WO PCT/JP2007/064943 patent/WO2008016032A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005148048A (en) * | 2003-04-25 | 2005-06-09 | Jsr Corp | Biochip, biochip kit, and method for manufacturing and using the same |
JP2006082250A (en) * | 2004-09-14 | 2006-03-30 | Ricoh Printing Systems Ltd | Inkjet head and its manufacturing method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011006557A (en) * | 2009-06-24 | 2011-01-13 | Jsr Corp | Acid transfer resin composition and method for producing biochip |
Also Published As
Publication number | Publication date |
---|---|
JP2008032656A (en) | 2008-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6806787B2 (en) | Wafer-scale assembly of insulator-membrane-insulator devices for nanopore sensing | |
US20190101531A1 (en) | Method for Forming Biochips and Biochips With Non-Organic Landings for Improved Thermal Budget | |
US10371667B2 (en) | BAW sensor with passive mixing structures | |
Smistrup et al. | On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator | |
US20150283513A1 (en) | Particulate nanosorting stack | |
US20240230593A1 (en) | Fluidic device with fluid port orthogonal to functionalized active region | |
CN108139364A (en) | Sensor device with BAW resonators and the fluid through-hole for passing through substrate | |
US20240226889A1 (en) | Acoustic resonator device | |
JP2008032657A (en) | Filter for biochip, method for manufacturing same, and biochip using filter | |
US20170134002A1 (en) | Baw sensor with enhanced surface area active region | |
WO2013037196A1 (en) | Method for manufacturing cavity of full silicon-based microfluidic device | |
US11353428B2 (en) | BAW sensor device with peel-resistant wall structure | |
EP3377886A1 (en) | Acoustic resonator with reduced mechanical clamping of an active region for enhanced shear mode response | |
KR20090007173A (en) | Wafer-Level Packages, Biochip Kits, and Their Packaging Methods | |
JP2005522689A (en) | Method for forming a molecularly smooth surface | |
WO2008016032A1 (en) | Filter for biochip, method for manufacturing filter for biochip and biochip using filter for biochip | |
JP4653995B2 (en) | Bio-separation filter manufacturing method, bio-separation filter, and bio-separation kit using the same | |
WO2010122720A1 (en) | Flow path device | |
CN109896498A (en) | A kind of parallel-connection structure and processing method of embedded channel micro-cantilever | |
WO2012098349A1 (en) | Lab on a chip device | |
JP2003222581A (en) | Quartz oscillator and method for manufacturing the same | |
CN101430300B (en) | Three-dimensional microelectrode for biomedical electrochemical detection and manufacturing method thereof | |
KR20230075500A (en) | Custom electrode capping for microfluidic devices | |
JP2007178366A (en) | Filter for biochip, and biochip using the biochip | |
CN202471542U (en) | Thin film bulk acoustic resonance biochemical sensor integrated with micro-channel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07791628 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07791628 Country of ref document: EP Kind code of ref document: A1 |