WO2008012990A1 - Portable electronic device and method of controlling the same - Google Patents
Portable electronic device and method of controlling the same Download PDFInfo
- Publication number
- WO2008012990A1 WO2008012990A1 PCT/JP2007/061312 JP2007061312W WO2008012990A1 WO 2008012990 A1 WO2008012990 A1 WO 2008012990A1 JP 2007061312 W JP2007061312 W JP 2007061312W WO 2008012990 A1 WO2008012990 A1 WO 2008012990A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- calibration data
- electronic device
- portable electronic
- unit
- azimuth
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 40
- 230000006870 function Effects 0.000 claims abstract description 54
- 238000004364 calculation method Methods 0.000 claims abstract description 46
- 230000004913 activation Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 238000012937 correction Methods 0.000 abstract description 9
- 230000005389 magnetism Effects 0.000 abstract description 9
- 230000008569 process Effects 0.000 description 24
- 238000012545 processing Methods 0.000 description 19
- 238000004891 communication Methods 0.000 description 8
- 230000003321 amplification Effects 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005236 sound signal Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000005355 Hall effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C17/00—Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
- G01C17/38—Testing, calibrating, or compensating of compasses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/72—Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
- H04M1/724—User interfaces specially adapted for cordless or mobile telephones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2250/00—Details of telephonic subscriber devices
- H04M2250/10—Details of telephonic subscriber devices including a GPS signal receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2250/00—Details of telephonic subscriber devices
- H04M2250/12—Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion
Definitions
- the present invention relates to a portable electronic device equipped with a geomagnetic sensor and a control method thereof, and more particularly, to a portable electronic device equipped with a geomagnetic sensor that can perform calibration processing accurately and a control method thereof.
- geomagnetic sensors have been miniaturized and reduced in price, and geomagnetic sensors are often mounted on portable electronic devices.
- portable electronic devices include various magnetic materials such as speakers, batteries, and metal parts, these magnetic materials generate magnetic flux and affect the accuracy of the geomagnetic sensor.
- a geomagnetic sensor mounted on a portable electronic device detects a magnetism in which “in-device magnetism” and “geomagnetism” generated by a magnetic material in the device are combined. Therefore, in order to properly maintain the accuracy of the geomagnetic sensor, a calibration for correcting the error due to “magnetism” generated by the magnetic material in the device is necessary.
- calibration is to correct the influence of magnetism inside the portable electronic device.
- the calibration is performed by a magnetic generating member in the portable electronic device by, for example, rotating the portable electronic device horizontally. This operation reduces the influence.
- Magnetism generated by a magnetic generating member in a portable electronic device can change due to the influence of temperature.
- the magnetization state of the portable electronic device as a whole changes. It will affect the measurement.
- Patent Document 1 Japanese Patent Laid-Open No. 2004-12416 (paragraphs 0005-0007, FIG. 1)
- portable electronic devices are equipped with various functions other than geomagnetic sensors, such as communication functions, more specifically, wireless telephone functions, mail transmission / reception functions, alarm functions, or digital functions.
- 'Analog broadcast (for example, one segment broadcast) reception function is installed.
- incoming calls and emails with the wireless phone function and email transmission / reception function occur at an unexpected timing, so incoming calls and emails may occur even during the calibration process.
- the magnetic status in the portable electronic device changes, and accurate calibration data cannot be acquired. In this way, depending on the function, the magnetic status of the portable electronic device is often changed during execution.In such a case, even though the user intends to finish the calibration process correctly, it is actually not. Incorrect calibration processing may be performed and the correct orientation may not be displayed.
- an object of the present invention is to provide a portable electronic device that can accurately perform calibration processing and calculate an accurate azimuth and a control method thereof. .
- a portable electronic device that solves the above-described problems is as follows.
- a mobile electronic device (cell phone terminal device, PDA, etc.) equipped with a plurality of functions, a geomagnetic sensor for detecting geomagnetism used for azimuth calculation,
- a calibration data acquisition unit for acquiring calibration data for correcting the azimuth calculation
- An azimuth calculating unit for calculating an azimuth using the geomagnetism and the calibration data;
- the calibration data acquired by the calibration data acquisition unit is acquired when at least one of the plurality of functions is being executed, the calibration data is obtained by the direction calculation unit.
- a control unit that is prohibited from being used for bearing calculation,
- the calibration unit when the calibration data is acquired by an input unit that receives a calibration processing start operation by a user and the calibration data acquisition unit, the calibration unit is mounted on the portable electronic device.
- a calibration unit for example, an interrupt handler
- calibration data acquired by the calibration data acquisition unit And a calibration processing execution unit that performs calibration processing based on the above and sets correction values (sensitivity values, offsets, etc.) for each axis of the geomagnetic sensor.
- a portable electronic device includes:
- the control unit prohibits the calibration data from being used for azimuth calculation in the azimuth calculation unit by discarding the calibration data.
- a portable electronic device includes:
- the at least one function is an incoming function for a telephone (voice call, videophone, etc.), an incoming mail function, and an activation function based on time information (system clock and activation set time) in the portable electronic device ( (Typically, alarm, timer recording 'recording, etc.)
- a portable electronic device includes:
- the calibration data acquisition unit is controlled to re-execute calibration data acquisition. It is characterized by.
- a portable electronic device includes:
- the portable electronic device further includes a display unit, The control unit controls the display unit to display a message to that effect on the display unit when the acquisition of calibration data is being re-executed.
- a portable electronic device according to a further embodiment of the present invention provides:
- the portable electronic device further includes a display unit,
- a display prompting selection of whether to re-execute acquisition of the calibration data for example, The display unit is controlled to display “Calibration data has been discarded. Do you want to re-execute?”) On the display unit.
- the solution of the present invention has been described as a device (apparatus).
- the present invention can also be realized as a method, a program, and a storage medium that records the program substantially corresponding to these. It should be understood that these are included in the scope of the present invention.
- a detection step for detecting geomagnetism for use in azimuth calculation a data acquisition step for obtaining calibration data for correction of azimuth calculation,
- An azimuth calculating step of calculating an azimuth using the geomagnetism and the calibration data using a calculation unit processor such as CPU, DSP, MPU;
- Calibration data force acquired in the data acquisition step When the execution step is acquired when at least one of the plurality of functions is being executed, the calibration data is calculated as the direction.
- FIG. 1 is a block diagram showing a basic configuration of a portable electronic device according to the present invention.
- FIG. 2 is a functional block diagram showing an azimuth calculation process using a two-axis magnetic sensor.
- FIG. 3 is a flowchart showing an example of a calibration operation executed by the portable electronic device according to the present invention.
- FIG. 4 is a view showing a display example at the time of a calibration operation executed by the portable electronic device according to the present invention.
- FIG. 1 is a block diagram showing a basic configuration of a portable electronic device according to the present invention.
- a portable electronic device 100 includes a two-axis geomagnetic sensor (electronic connos) 110, a control unit 120, a storage unit 130, a wireless communication unit 140, a GPS signal receiving unit 150, and a memory card unit 160.
- a key input unit 170, a display unit 180, and an audio processing unit 190 is a mobile phone terminal device.
- the biaxial geomagnetic sensor 110 outputs geomagnetic information in the X-axis direction and the Y-axis direction, respectively, and based on these, the orientation of the portable electronic device 100 on a plane parallel to the X-axis / ⁇ -axis is calculated. Is done.
- the biaxial geomagnetic sensor 110 measures the geomagnetism in each axial direction with reference to a predetermined coordinate system (two axes) set on a circuit board (not shown) in the casing of the portable electronic device 100.
- a predetermined coordinate system two axes
- a circuit board not shown
- various methods such as a method using excitation of a coil, a method using a Hall effect, and a method using a magnetoresistive element can be used.
- the control unit 120 controls the entire apparatus, and includes a calibration data acquisition unit 121, a calibration processing execution unit 122, a monitoring unit 123, a calibration data acquisition control unit 124, and an orientation calculation unit 125. Is provided.
- the storage unit 130 stores various data used for processing in the control unit 120.
- the storage unit 130 stores, for example, calibration data acquired by the calibration data acquisition unit 121 and other various information.
- the computer program provided in the control unit 120 the address book for managing personal information such as the telephone number and email address of the communication partner, the sound source file for playing ringtones and alarm sounds, and the standby screen Image files, various setting data, and temporary data used in the program processing.
- the storage unit 130 includes, for example, a non-volatile storage device (nonvolatile semiconductor memory, hard disk device, optical disk device, etc.), a random accessible storage device (eg, SRAM, DRAM), or the like.
- Radio communication section 140 performs radio communication with a base station (not shown) connected to the communication network.
- the radio communication unit 140 performs a predetermined modulation process on the transmission data supplied from the control unit 120 to convert it into a radio signal, and also transmits the antenna force.
- a predetermined demodulation process is performed on the radio signal having the base station power received by the antenna to convert the radio signal into reception data, which is output to the control unit 120.
- the GPS signal receiving unit 150 receives GPS signals transmitted from three or more GPS satellites orbiting a known orbit, and performs signal processing such as amplification, noise removal, and modulation on the GPS signals. The information necessary for calculating the geographical position of the portable electronic device 100 is acquired.
- the memory card unit 160 functions as an interface for storing various information and data by inserting an external storage element such as a flash memory and using it as an external storage unit.
- the key input unit 170 includes keys to which various functions such as a power key, a call key, a numeric key, a character key, a direction key, and a determination key are assigned, for example. When operated, a signal corresponding to the operation content is generated and input to the control unit 120 as a user instruction.
- the display unit 180 is configured by using a display device such as a liquid crystal display panel or an organic EL panel, for example, and displays an image corresponding to the video signal supplied from the control unit 120. For example, the phone number of the callee at the time of outgoing call, the phone number of the callee at the time of incoming call, the contents of received or sent mail, date, time, remaining battery level, standby screen, etc. Displays various information.
- the display unit 180 also displays azimuth information based on the detection result of the biaxial geomagnetic sensor 110 when performing navigation using the GPS function or displaying a standby screen.
- the audio processing unit 190 processes an audio signal output from the speaker SP and an audio signal input from the microphone M1C.
- the microphone MIC power is also subjected to signal processing such as amplification, analog-digital conversion, encoding, etc., and converted into digital voice data and output to the control unit 120.
- the audio data supplied from the control unit 120 is subjected to signal processing such as decoding, digital-analog conversion, amplification, etc., and converted into an analog audio signal and output to the speaker SP.
- FIG. 2 is a functional block diagram showing an example of an azimuth calculation process using a two-axis magnetic sensor.
- a 2-axis magnetic sensor 200 As shown in the figure, a 2-axis magnetic sensor 200, element drive unit 210, sensor power supply 220, differential input amplifier 230, A / D converter 240, bearing calculation unit 250, and control unit 260 are provided.
- the magnetic sensor 200 is provided with an X-axis Hall element 200X and a Y-axis Hall element 200Y!
- the X-axis Hall element 200X and the Y-axis Hall element 200Y are, for example, on a main circuit board (not shown) mounted in parallel to the main surface (not shown) of the casing of the portable electronic device.
- the X-axis Hall element 200X and the Y-axis Hall element 200Y are arranged so as to detect the rotation angle in the horizontal plane.
- the X-axis Hall element 200X and the Y-axis Hall element 200Y are for detecting geomagnetism.
- the element driving unit 210 is for switching terminals for driving the X-axis Hall element 200X and the Y-axis Hall element 200Y, that is, for selecting the Hall element to be driven. Is applied to the X-axis Hall element 200X and Y-axis Hall element 200Y, respectively.
- the element driving unit 210 can be configured as, for example, chitsubaba driving.
- the signals output from X-axis Hall element 200X and Y-axis Hall element 200Y are differentially input.
- the output amplification value of the analog signal amplified by the force amplifier 230 is converted into a digital signal by the AZD converter 240 and then input to the bearing calculation unit 250.
- direction calculation unit 250 Based on the correction instruction obtained from control unit 260, direction calculation unit 250 performs correction processing on the output amplification values of the X-axis and Y-axis digital signals and calculates the direction.
- the azimuth calculation unit 250 does not calculate the azimuth and continues to store the output amplification values of the X-axis and Y-axis digital signals as calibration data, and obtains a predetermined amount of data. After is completed, use the calibration data properly acquired as correction data to calculate the bearing.
- FIG. 3 is a flowchart showing an example of a calibration operation executed by the portable electronic device according to the present invention.
- FIG. 4 is a view showing a display example at the time of the calibration operation executed by the portable electronic device according to the present invention.
- the key input unit 170 accepts a calibration process start operation by the user, and in response to this, the control unit 120 starts the calibration operation. From this time, the user performs an operation “calibration operation” that rotates the portable electronic device horizontally.
- step S11 the control unit 120 clears (discards) the calibration data buffer. After that, it is determined whether or not the “re-execution” flag of the calibration process is set (step S12). If the re-execution flag is not set, the process proceeds to step S15. Based on the geomagnetism detected by the 121-force two-axis geomagnetic sensor 110, calibration data acquisition for azimuth measurement (correction) is executed.
- a monitoring unit for example, an interrupt handler
- the control unit for example, a CPU
- causes a force ie, an interrupt handler
- the power ie, power
- step S16 If it is determined in step S16 that an interrupt has occurred, the process proceeds to step S17, where the monitoring unit 123 temporarily saves various data such as the register at the time of the interrupt and the task being executed in the storage unit 130, and Corresponding to interrupt In addition to performing interrupt processing, it instructs the calibration data acquisition control unit 123 provided in the control unit 120 to re-execute calibration data acquisition and set a flag (not shown) during re-execution. In response to the re-execution instruction, the process returns to step S11, and the calibration data acquisition unit 121 that received the instruction from the calibration data acquisition control unit 124 provided in the control unit 120 clears (discards) the calibration data buffer. ) This clearing prohibits the use of data stored in the buffer. To do.
- step S12 it is determined in step S12 that the “re-execution” flag of the calibration process is set, and the process proceeds to step S13, where whether or not the force to start re-execution is determined as shown in FIG.
- a display prompting the user to make a selection is displayed on display unit 180. If it is selected to start re-execution, as shown in Fig. 4 (b), the display unit 180 displays that re-execution is in progress (step S14), and the actual data acquisition process in step S15 is performed. Transition. If it is determined in step S13 that re-execution is not to be started in accordance with a user instruction via the key input unit 170, the calibration operation is terminated.
- step S16 If it is determined in step S16 that no interrupt has occurred, the process proceeds to step S18, where it is determined whether or not the calibration data has been acquired up to the required number, and until the required number is satisfied. Return to step S15 and repeat data acquisition. If it is determined in step S18 that the necessary number has been acquired, the calibration data acquisition process is terminated, and the subsequent process, for example, the calibration process execution unit 122 provided in the control unit 120 acquires Calibration processing is performed based on the calibration data, and correction values (offset, etc.) are set for each axis of the geomagnetic sensor.
- the portable electronic device 100 has a plurality of functions and the calibration data obtained by the calibration data obtaining unit 121, for example, an interrupt such as an incoming call. It is configured to discard (clear) the calibration data if it was acquired when at least one of these functions was being executed. Therefore, the calibration data is forbidden from being used for the direction calculation by the direction calculation unit 250, and the possibility that an incorrect direction is calculated using the calibration data is reduced. .
- the calibration data prohibition method is Other methods of prohibition are not limited to discarding, for example, a flag that prohibits the use of calibration data is added to the calibration data, thereby prohibiting the use of the calibration data for azimuth calculation. It may be.
- the portable electronic device 100 is configured to discard the calibration data acquired when at least one of the plurality of functions is being executed. ing. Therefore, there is no possibility that calibration data unnecessary for calculating the azimuth is stored in a storage area such as the storage unit 130, and useless use of the storage area is avoided.
- the present invention is not limited to this, and the calibration data until the function is executed may be protected, and only the calibration data after the function is executed may be discarded. As a result, calibration data that is unnecessary for calculating the azimuth is efficiently discarded.
- any one of an incoming call function, an incoming mail function, and an activation function based on time information in the mobile electronic device is executed during acquisition of the calibration data. If configured, the calibration data is configured to be discarded. Therefore, calibration data that is not necessary for azimuth calculation by executing functions that are difficult for the user to predict when to execute such functions as an incoming call function, an incoming mail function, and a start function based on time information in a portable electronic device. May be stored in a storage area such as the storage unit 130.
- the portable electronic device 100 discards the calibration data acquired when at least one of the plurality of functions is being executed, and re-acquires the acquisition of the calibration data. Since this is a configuration to be executed, the calibration data necessary for azimuth calculation can be reliably acquired, and the optimum azimuth can be calculated.
- the power that is configured to re-execute the acquisition of calibration data after the calibration data is discarded.
- the present invention is not limited to this, and after re-executing the acquisition of calibration data. , At least of several functions
- the configuration may be such that the calibration data acquired when one function is being executed is discarded.
- the portable electronic device 100 discards the calibration data acquired when at least one of a plurality of functions is being executed, and again acquires the calibration data.
- the display unit 180 displays that fact, so the user of the portable electronic device 100 can easily know that the acquisition of calibration data has been re-executed.
- the portable electronic device 100 discards the calibration data acquired when at least one of the plurality of functions is being executed, and again acquires the calibration data. Since the display unit 180 displays a message prompting the user to select whether or not to execute the force, the user of the portable electronic device 100 determines whether or not the user has the power to re-execute the acquisition of calibration data. be able to.
- the present invention is not limited to this, and calibration data acquired when at least one of a plurality of functions is being executed is automatically acquired. May be configured to be re-executed.
- the force showing an example of the azimuth calculation process using the biaxial magnetic sensor is not limited to this.
- another magnetic sensor such as a triaxial magnetic sensor is used. May have been.
- the calibration data is discarded.
- the present invention is not limited to this, and the calibration buffer is used for azimuth calculation. This is applicable to any configuration that performs some processing that prohibits this. For example, as described above, by setting a flag indicating invalidity in the calibration buffer data, it is prohibited to use it for azimuth calculation.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Telephone Function (AREA)
- Measuring Magnetic Variables (AREA)
- Mobile Radio Communication Systems (AREA)
- Traffic Control Systems (AREA)
Abstract
A portable electronic device (100) having an earth magnetism sensor (110) for detecting earth magnetism used to calculate a direction, a calibration data acquisition section (121) for acquiring calibration data for correction in the direction calculation, a direction calculation section (125) for calculating a direction by using earth magnetism and the calibration data, and a control section (124, 120) for preventing, when calibration data is acquired by the calibration data acquisition section when at least one function among plural functions is being executed, this calibration data from being used for direction calculation by the direction calculation section.
Description
明 細 書 Specification
携帯電子機器およびその制御方法 Portable electronic device and control method thereof
技術分野 Technical field
[0001] 本発明は、地磁気センサを搭載した携帯電子機器およびその制御方法に関し、特 に、キャリブレーション処理を正確に行えるようにした地磁気センサを搭載した携帯電 子機器およびその制御方法に関する。 TECHNICAL FIELD [0001] The present invention relates to a portable electronic device equipped with a geomagnetic sensor and a control method thereof, and more particularly, to a portable electronic device equipped with a geomagnetic sensor that can perform calibration processing accurately and a control method thereof.
背景技術 Background art
[0002] 近年、地磁気センサの小型化および低価格化が進み、地磁気センサが携帯電子 機器に搭載される場合が多くなりつつある。しかし、携帯電子機器は、スピーカ、バッ テリや金属部品など、様々な磁性材料を含むため、これら磁性材料が磁気'磁束を 発し、地磁気センサの精度などに影響を及ぼすこととなる。即ち、携帯電子機器に搭 載された地磁気センサは、機器内の磁性材料が発する「機器内磁気」と「地磁気」と が合成された磁気を検出してしまう。従って、地磁気センサの精度を適正に保持する ためには、機器内の磁性材料が発する「磁気」による誤差分を補正するためのキヤリ ブレーシヨンが必要である。 [0002] In recent years, geomagnetic sensors have been miniaturized and reduced in price, and geomagnetic sensors are often mounted on portable electronic devices. However, since portable electronic devices include various magnetic materials such as speakers, batteries, and metal parts, these magnetic materials generate magnetic flux and affect the accuracy of the geomagnetic sensor. In other words, a geomagnetic sensor mounted on a portable electronic device detects a magnetism in which “in-device magnetism” and “geomagnetism” generated by a magnetic material in the device are combined. Therefore, in order to properly maintain the accuracy of the geomagnetic sensor, a calibration for correcting the error due to “magnetism” generated by the magnetic material in the device is necessary.
[0003] ここで「キャリブレーション」とは、携帯電子機器内部の磁気の影響を補正することで あり、例えば、携帯電子機器を水平に保ち回転させる動作等によって携帯電子機器 内の磁気発生部材による影響を低減させる動作である。携帯電子機器内の磁気発 生部材による磁気は、温度の影響で変化し得るものである。また、携帯電子機器をよ り大きな磁気を発するスピーカやモータなどのそばに置いた場合やフラッシュメモリな どの外部記憶素子を挿入した場合も、携帯電子機器全体として着磁状態が変化して 磁気センサの計測に影響を及ぼしてしまう。 [0003] Here, "calibration" is to correct the influence of magnetism inside the portable electronic device. For example, the calibration is performed by a magnetic generating member in the portable electronic device by, for example, rotating the portable electronic device horizontally. This operation reduces the influence. Magnetism generated by a magnetic generating member in a portable electronic device can change due to the influence of temperature. In addition, when a portable electronic device is placed near a speaker or motor that emits more magnetism, or when an external storage element such as a flash memory is inserted, the magnetization state of the portable electronic device as a whole changes. It will affect the measurement.
[0004] 携帯電子機器内の地磁気センサが、自機器内の磁性体の影響を受け、正確な方 位を示すことができなくなつている力否かは、ユーザが外部力 携帯電子機器を観察 しても見極めることができない。従って、ユーザは地磁気センサに定期的なキヤリブレ ーシヨン処理を施す必要がある。従来より、キャリブレーション処理において機器を水 平に回転させる動作において、回転速度が速すぎると、キャリブレーションデータ取
得用のメモリがオーバーフローするなど、回転速度が一定の範囲力も外れた場合に 、キャリブレーション精度が劣化したり不能になったりするなどの問題がある。そこで、 回転速度に依存せず低速でも高速でも正確にキャリブレーション動作を行うことがで きる技術が提案されている (特許文献 1を参照されたい。 ) o [0004] A user observes an external force portable electronic device to determine whether or not the geomagnetic sensor in the portable electronic device is affected by the magnetic substance in the device and cannot accurately indicate the position. I can't figure it out. Therefore, the user needs to perform a periodic calibration process on the geomagnetic sensor. Conventionally, in the operation of rotating the device horizontally in the calibration process, if the rotation speed is too high, the calibration data is acquired. There is a problem that the calibration accuracy deteriorates or becomes impossible when the rotational speed deviates from a certain range force, such as overflowing memory for acquisition. Therefore, a technique has been proposed that can accurately perform a calibration operation at low speed or high speed without depending on the rotation speed (see Patent Document 1).
特許文献 1:特開 2004-12416号公報(段落 0005-0007、図 1) Patent Document 1: Japanese Patent Laid-Open No. 2004-12416 (paragraphs 0005-0007, FIG. 1)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] 一般的に、携帯電子機器は、地磁気センサ以外の諸機能を搭載しており、例えば 、通信機能、より具体的には、無線電話機能、メール送受信機能、アラーム機能、ま たはデジタル 'アナログ放送 (例えばワンセグメント放送)受信機能などが搭載される。 しかし、無線電話機能やメール送受信機能ではによる電話やメールの着信は予期で きぬタイミングで発生するため、キャリブレーション処理中であっても電話やメールの 着信が発生する場合が考えられる。そうすると、携帯電子機器内の磁気状況が変化 し、正確なキャリブレーションデータが取得されない。このように、機能によっては実行 中に携帯電子機器の磁気状況を変動させる場合がよくあるが、このような場合では、 ユーザは正確にキャリブレーション処理を終えたつもりであっても、実際には誤ったキ ヤリブレーシヨン処理が実行され、正確な方位を表示することができな 、ことがある。 [0005] In general, portable electronic devices are equipped with various functions other than geomagnetic sensors, such as communication functions, more specifically, wireless telephone functions, mail transmission / reception functions, alarm functions, or digital functions. 'Analog broadcast (for example, one segment broadcast) reception function is installed. However, incoming calls and emails with the wireless phone function and email transmission / reception function occur at an unexpected timing, so incoming calls and emails may occur even during the calibration process. Then, the magnetic status in the portable electronic device changes, and accurate calibration data cannot be acquired. In this way, depending on the function, the magnetic status of the portable electronic device is often changed during execution.In such a case, even though the user intends to finish the calibration process correctly, it is actually not. Incorrect calibration processing may be performed and the correct orientation may not be displayed.
[0006] 本発明は、上述した諸課題を解消するために、キャリブレーション処理を正確に行 つて、正確な方位を算出することができる携帯電子機器およびその制御方法を提供 することを目的とする。 In order to solve the above-described problems, an object of the present invention is to provide a portable electronic device that can accurately perform calibration processing and calculate an accurate azimuth and a control method thereof. .
課題を解決するための手段 Means for solving the problem
[0007] 上述した諸課題を解決すベぐ本発明による携帯電子機器は、 [0007] A portable electronic device according to the present invention that solves the above-described problems is as follows.
複数の機能を搭載した携帯電子機器 (携帯電話端末装置、 PDAなど)であって、 方位算出に用いられる地磁気を検出する地磁気センサと、 A mobile electronic device (cell phone terminal device, PDA, etc.) equipped with a plurality of functions, a geomagnetic sensor for detecting geomagnetism used for azimuth calculation,
方位算出の補正のためのキャリブレーションデータを取得するキャリブレーションデ ータ取得部と、 A calibration data acquisition unit for acquiring calibration data for correcting the azimuth calculation;
前記地磁気および前記キャリブレーションデータを使用して方位を算出する方位算 出部と、
前記キャリブレーションデータ取得部により取得されるキャリブレーションデータが、 前記複数の機能のうち少なくとも 1つの機能が実行中であるときに取得された場合に は、当該キャリブレーションデータを前記方位算出部での方位算出に使用することを 禁止する制御部と、 An azimuth calculating unit for calculating an azimuth using the geomagnetism and the calibration data; When the calibration data acquired by the calibration data acquisition unit is acquired when at least one of the plurality of functions is being executed, the calibration data is obtained by the direction calculation unit. A control unit that is prohibited from being used for bearing calculation,
を備えることを特徴とする。 It is characterized by providing.
[0008] 好適には、ユーザによるキャリブレーション処理開始操作を受ける入力部と、前記キ ヤリブレーシヨンデータ取得部により前記キャリブレーションデータが取得されていると きに、前記携帯電子機器に搭載されている複数の機能のうち少なくとも 1つの機能が 実行中(起動を含む)であるカゝ否かを判定する監視部 (例えば、割り込みハンドラー) と、前記キャリブレーションデータ取得部により取得されたキャリブレーションデータに 基づきキャリブレーション処理を行 、前記地磁気センサの各軸に補正値 (感度値、ォ フセットなど)を設定するキャリブレーション処理実行部とをさらに備える。 [0008] Preferably, when the calibration data is acquired by an input unit that receives a calibration processing start operation by a user and the calibration data acquisition unit, the calibration unit is mounted on the portable electronic device. A calibration unit (for example, an interrupt handler) that determines whether or not at least one of a plurality of functions is being executed (including activation), and calibration data acquired by the calibration data acquisition unit And a calibration processing execution unit that performs calibration processing based on the above and sets correction values (sensitivity values, offsets, etc.) for each axis of the geomagnetic sensor.
[0009] また、本発明の一実施態様による携帯電子機器は、 [0009] Further, a portable electronic device according to an embodiment of the present invention includes:
前記制御部が、前記キャリブレーションデータを破棄することにより、前記キヤリブレ ーシヨンデータを前記方位算出部での方位算出に使用することを禁止する、 ことを特徴とする。 The control unit prohibits the calibration data from being used for azimuth calculation in the azimuth calculation unit by discarding the calibration data.
[0010] また、本発明の別の実施態様による携帯電子機器は、 [0010] Further, a portable electronic device according to another embodiment of the present invention includes:
前記少なくとも 1つの機能が、電話 (音声通話、テレビ電話など)の着信機能、メー ルの着信機能、および、前記携帯電子機器内の時間情報 (システムクロックおよび起 動設定時刻)に基づく起動機能 (典型的には、アラーム、タイマー録画'録音など)の うちのいずれか 1つである、 The at least one function is an incoming function for a telephone (voice call, videophone, etc.), an incoming mail function, and an activation function based on time information (system clock and activation set time) in the portable electronic device ( (Typically, alarm, timer recording 'recording, etc.)
ことを特徴とする。 It is characterized by that.
[0011] また、本発明のさらなる実施態様による携帯電子機器は、 [0011] Further, a portable electronic device according to a further embodiment of the present invention includes:
前記制御部が、前記取得されたキャリブレーションデータを前記方位算出部での方 位算出に使用することを禁止する場合に、キャリブレーションデータ取得を再実行す るよう前記キャリブレーションデータ取得部を制御する、ことを特徴とする。 When the control unit prohibits the use of the acquired calibration data for the direction calculation in the azimuth calculation unit, the calibration data acquisition unit is controlled to re-execute calibration data acquisition. It is characterized by.
[0012] また、本発明のさらなる実施態様による携帯電子機器は、 [0012] Further, a portable electronic device according to a further embodiment of the present invention includes:
携帯電子機器が表示部をさらに備え、
前記制御部は、前記キャリブレーションデータの取得の再実行中のときその旨を前 記表示部に表示するよう前記表示部を制御する、ことを特徴とする。 The portable electronic device further includes a display unit, The control unit controls the display unit to display a message to that effect on the display unit when the acquisition of calibration data is being re-executed.
[0013] また、本発明のさらなる実施態様による携帯電子機器は、 [0013] Further, a portable electronic device according to a further embodiment of the present invention provides:
携帯電子機器が表示部をさらに備え、 The portable electronic device further includes a display unit,
前記制御部は、前記キャリブレーションデータを前記方位算出部での方位算出に 使用することを禁止する場合に、前記キャリブレーションデータの取得の再実行を行 うか否かの選択を促す表示 (例えば、「キャリブレーションデータは破棄されました。再 実行しますか?」など)を前記表示部に表示するよう前記表示部を制御する、ことを特 徴とする。 When the control unit prohibits the use of the calibration data for azimuth calculation in the azimuth calculation unit, a display prompting selection of whether to re-execute acquisition of the calibration data (for example, The display unit is controlled to display “Calibration data has been discarded. Do you want to re-execute?”) On the display unit.
[0014] 上述したように本発明の解決手段を機器 (装置)として説明してきたが、本発明はこ れらに実質的に相当する方法、プログラム、プログラムを記録した記憶媒体としても実 現し得るものであり、本発明の範囲にはこれらも包含されるものと理解されたい。 As described above, the solution of the present invention has been described as a device (apparatus). However, the present invention can also be realized as a method, a program, and a storage medium that records the program substantially corresponding to these. It should be understood that these are included in the scope of the present invention.
[0015] 例えば、本発明を方法として実現させた、本発明の別の態様による携帯電子機器 の制御方法は、 [0015] For example, a method for controlling a portable electronic device according to another aspect of the present invention, in which the present invention is implemented as a method,
複数の機能のうち少なくとも 1つの機能を実行する実行ステップと、 An execution step for executing at least one of the plurality of functions;
地磁気センサを用いて、方位算出に使用して地磁気を検出する検出ステップと、 方位算出の補正のためのキャリブレーションデータを取得するデータ取得ステップ と、 Using a geomagnetic sensor, a detection step for detecting geomagnetism for use in azimuth calculation, a data acquisition step for obtaining calibration data for correction of azimuth calculation,
演算部(CPU, DSP, MPUなどのプロセッサ)を用いて、前記地磁気および前記 キャリブレーションデータを使用して方位を算出する方位算出ステップと、 An azimuth calculating step of calculating an azimuth using the geomagnetism and the calibration data using a calculation unit (processor such as CPU, DSP, MPU);
前記データ取得ステップにより取得されるキャリブレーションデータ力 前記実行ス テツプにより前記複数の機能のうち少なくとも 1つの機能が実行中であるときに取得さ れた場合には、当該キャリブレーションデータを前記方位算出ステップでの方位算出 に使用することを禁止する制御ステップと、 Calibration data force acquired in the data acquisition step When the execution step is acquired when at least one of the plurality of functions is being executed, the calibration data is calculated as the direction. A control step that prohibits it from being used to calculate the direction in a step;
を有することを特徴とする。 It is characterized by having.
発明の効果 The invention's effect
[0016] キャリブレーション処理中に携帯電子機器に含まれる諸機能 (音声通話の着信など )が起動される事象が発生した場合、携帯電子機器内の磁気状況が変動する恐れが
あるが、本発明によれば、このような事象が発生した場合、信頼性の低いキヤリブレー シヨンデータを方位算出に使用することを禁止するため、適正なキャリブレーション処 理によってユーザに正確な方位を算出することが可能となる。 [0016] When an event that activates various functions included in the portable electronic device (such as incoming voice call) occurs during the calibration process, the magnetic state in the portable electronic device may change. However, according to the present invention, when such an event occurs, it is prohibited to use the unreliable calibration data for azimuth calculation. It is possible to calculate.
図面の簡単な説明 Brief Description of Drawings
[0017] [図 1]本発明による携帯電子機器の基本的な構成を示すブロック図である。 FIG. 1 is a block diagram showing a basic configuration of a portable electronic device according to the present invention.
[図 2]2軸式磁気センサを用いた方位算出処理を示す機能ブロック図である。 FIG. 2 is a functional block diagram showing an azimuth calculation process using a two-axis magnetic sensor.
[図 3]本発明による携帯電子機器で実行されるキャリブレーション操作の一例を示す フローチャートである。 FIG. 3 is a flowchart showing an example of a calibration operation executed by the portable electronic device according to the present invention.
[図 4]本発明による携帯電子機器で実行されるキャリブレーション操作時の表示例を 示す図である。 FIG. 4 is a view showing a display example at the time of a calibration operation executed by the portable electronic device according to the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以降、諸図面を参照しながら、本発明の実施態様を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<携帯電子機器の基本構成 > <Basic configuration of portable electronic device>
図 1は、本発明による携帯電子機器の基本的な構成を示すブロック図である。図に 示すように、本発明による携帯電子機器 100は、 2軸式地磁気センサ (電子コンノス) 110、制御部 120、記憶部 130、無線通信部 140、 GPS信号受信部 150、メモリカー ド部 160、キー入力部 170、表示部 180、および音声処理部 190を備える。なお、無 線通信部を備える携帯電子機器の典型例は携帯電話端末装置である。 FIG. 1 is a block diagram showing a basic configuration of a portable electronic device according to the present invention. As shown in the figure, a portable electronic device 100 according to the present invention includes a two-axis geomagnetic sensor (electronic connos) 110, a control unit 120, a storage unit 130, a wireless communication unit 140, a GPS signal receiving unit 150, and a memory card unit 160. , A key input unit 170, a display unit 180, and an audio processing unit 190. A typical example of a portable electronic device provided with a wireless communication unit is a mobile phone terminal device.
[0019] 2軸式地磁気センサ 110は、 X軸方向および Y軸方向の地磁気情報をそれぞれ出 力し、これらに基づき、携帯電子機器 100の X軸 ·Υ軸に平行な平面上における方位 が算出される。例えば、 2軸式地磁気センサ 110は、携帯電子機器 100の筐体内の 回路基板上(図示せず)に設定された所定の座標系(2軸)を基準として、その各軸方 向の地磁気を検出する。地磁気の検出には、例えばコイルの励磁を利用する方法や 、ホール効果を利用する方法、磁気抵抗素子を利用する方法など、種々の方法を用 いることが可能である。 [0019] The biaxial geomagnetic sensor 110 outputs geomagnetic information in the X-axis direction and the Y-axis direction, respectively, and based on these, the orientation of the portable electronic device 100 on a plane parallel to the X-axis / Υ-axis is calculated. Is done. For example, the biaxial geomagnetic sensor 110 measures the geomagnetism in each axial direction with reference to a predetermined coordinate system (two axes) set on a circuit board (not shown) in the casing of the portable electronic device 100. To detect. For detection of geomagnetism, various methods such as a method using excitation of a coil, a method using a Hall effect, and a method using a magnetoresistive element can be used.
[0020] 制御部 120は、装置全体の制御を司るものであり、キャリブレーションデータ取得部 121、キャリブレーション処理実行部 122、監視部 123、キャリブレーションデータ取 得制御部 124、および方位算出部 125を備える。
[0021] 記憶部 130は、制御部 120において処理に利用される各種のデータを記憶する。 記憶部 130は、例えば、キャリブレーションデータ取得部 121により取得されたキヤリ ブレーシヨンデータ、その他の様々な情報を格納する。さらには、制御部 120に備わ るコンピュータのプログラム、通信相手の電話番号や電子メールアドレス等の個人情 報を管理するアドレス帳、着信音やアラーム音を再生するための音源ファイル、待ち 受け画面用の画像ファイル、各種の設定データ、プログラムの処理過程で利用される 一時的なデータなどを保持する。また、記憶部 130は、例えば不揮発性の記憶デバ イス (不揮発性半導体メモリ、ハードディスク装置、光ディスク装置など)やランダムァ クセス可能な記憶デバイス(例えば SRAM、 DRAM)などによって構成される。 The control unit 120 controls the entire apparatus, and includes a calibration data acquisition unit 121, a calibration processing execution unit 122, a monitoring unit 123, a calibration data acquisition control unit 124, and an orientation calculation unit 125. Is provided. The storage unit 130 stores various data used for processing in the control unit 120. The storage unit 130 stores, for example, calibration data acquired by the calibration data acquisition unit 121 and other various information. Furthermore, the computer program provided in the control unit 120, the address book for managing personal information such as the telephone number and email address of the communication partner, the sound source file for playing ringtones and alarm sounds, and the standby screen Image files, various setting data, and temporary data used in the program processing. The storage unit 130 includes, for example, a non-volatile storage device (nonvolatile semiconductor memory, hard disk device, optical disk device, etc.), a random accessible storage device (eg, SRAM, DRAM), or the like.
[0022] 無線通信部 140は、通信ネットワークに接続される基地局(図示せず)と無線通信 を行う。例えば、無線通信部 140は、制御部 120から供給される送信データに所定 の変調処理を施して無線信号に変換し、アンテナ力も送出する。また、アンテナにお いて受信される基地局力 の無線信号に所定の復調処理を施して受信データに変 換し、制御部 120に出力する。 [0022] Radio communication section 140 performs radio communication with a base station (not shown) connected to the communication network. For example, the radio communication unit 140 performs a predetermined modulation process on the transmission data supplied from the control unit 120 to convert it into a radio signal, and also transmits the antenna force. In addition, a predetermined demodulation process is performed on the radio signal having the base station power received by the antenna to convert the radio signal into reception data, which is output to the control unit 120.
[0023] GPS信号受信部 150は、既知の軌道を周回する 3つまたはそれ以上の GPS衛星 から送信される GPS信号を受信し、これに増幅、ノイズ除去、変調等の信号処理を施 して、携帯電子機器 100の地理的位置を算出するために必要な情報を取得する。 [0023] The GPS signal receiving unit 150 receives GPS signals transmitted from three or more GPS satellites orbiting a known orbit, and performs signal processing such as amplification, noise removal, and modulation on the GPS signals. The information necessary for calculating the geographical position of the portable electronic device 100 is acquired.
[0024] メモリカード部 160は、フラッシュメモリなどの外部記憶素子を挿入し、それを外部記 憶部として利用し、各種情報やデータを格納するためのインターフェイスとして機能 する。 The memory card unit 160 functions as an interface for storing various information and data by inserting an external storage element such as a flash memory and using it as an external storage unit.
[0025] キー入力部 170は、例えば電源キー、通話キー、数字キー、文字キー、方向キー、 決定キーなど、各種の機能が割り当てられたキーを有しており、これらのキーがユー ザによって操作された場合に、その操作内容に対応する信号を発生し、これをユー ザの指示として制御部 120に入力する。 [0025] The key input unit 170 includes keys to which various functions such as a power key, a call key, a numeric key, a character key, a direction key, and a determination key are assigned, for example. When operated, a signal corresponding to the operation content is generated and input to the control unit 120 as a user instruction.
[0026] 表示部 180は、例えば液晶表示パネルや有機 ELパネルなどの表示デバイスを用 いて構成されており、制御部 120から供給される映像信号に応じた画像を表示する。 例えば、発信時における発信先の電話番号、着信時における着信相手の電話番号 、受信メールや送信メールの内容、日付、時刻、ノ ッテリ残量、待ち受け画面などの
各種の情報を表示する。また表示部 180は、 GPS機能によりナビゲーシヨンを行う場 合や待ち受け画面を表示して 、る場合などにぉ 、て、 2軸式地磁気センサ 110の検 出結果に基づく方位の情報を表示する。 The display unit 180 is configured by using a display device such as a liquid crystal display panel or an organic EL panel, for example, and displays an image corresponding to the video signal supplied from the control unit 120. For example, the phone number of the callee at the time of outgoing call, the phone number of the callee at the time of incoming call, the contents of received or sent mail, date, time, remaining battery level, standby screen, etc. Displays various information. The display unit 180 also displays azimuth information based on the detection result of the biaxial geomagnetic sensor 110 when performing navigation using the GPS function or displaying a standby screen.
[0027] 音声処理部 190は、スピーカ SPにおいて出力される音声信号やマイクロフォン Ml Cにおいて入力される音声信号の処理を行う。すなわち、マイクロフォン MIC力も入 力される音声信号に増幅、アナログ デジタル変換、符号化等の信号処理を施し、 デジタルの音声データに変換して制御部 120に出力する。また、制御部 120から供 給される音声データに復号化、デジタル アナログ変換、増幅等の信号処理を施し 、アナログの音声信号に変換してスピーカ SPに出力する。 [0027] The audio processing unit 190 processes an audio signal output from the speaker SP and an audio signal input from the microphone M1C. In other words, the microphone MIC power is also subjected to signal processing such as amplification, analog-digital conversion, encoding, etc., and converted into digital voice data and output to the control unit 120. In addition, the audio data supplied from the control unit 120 is subjected to signal processing such as decoding, digital-analog conversion, amplification, etc., and converted into an analog audio signal and output to the speaker SP.
[0028] < 2軸式磁気センサの方位算出処理 > [0028] <Direction calculation processing of biaxial magnetic sensor>
2軸式地磁気センサには、上述したように各種原理を利用したものがある力 ホー ル効果を利用したホール素子を例示して 2軸式地磁気センサの方位算出処理の詳 細を説明する。図 2は、 2軸式磁気センサを用いた方位算出処理の一例を示す機能 ブロック図である。図に示すように、 2軸式磁気センサ 200、素子駆動部 210、センサ 用電源 220、差動入力アンプ 230、 A/Dコンバータ 240、方位算出部 250、および 制御部 260が設けられ、 2軸式磁気センサ 200は、 X軸ホール素子 200Xおよび Y軸 ホール素子 200Yが設けられて!/、る。 As described above, there are some two-axis geomagnetic sensors that use various principles. The details of the azimuth calculation processing of the two-axis geomagnetic sensor will be described by exemplifying a Hall element using the force-hole effect. FIG. 2 is a functional block diagram showing an example of an azimuth calculation process using a two-axis magnetic sensor. As shown in the figure, a 2-axis magnetic sensor 200, element drive unit 210, sensor power supply 220, differential input amplifier 230, A / D converter 240, bearing calculation unit 250, and control unit 260 are provided. The magnetic sensor 200 is provided with an X-axis Hall element 200X and a Y-axis Hall element 200Y!
[0029] ここで、 X軸ホール素子 200Xおよび Y軸ホール素子 200Yは、例えば、携帯電子 機器の筐体主面(図示せず)に平行に装着されている主回路基板(図示せず)上に 配置され、 X軸ホール素子 200Xおよび Y軸ホール素子 200Yは水平面内の回転角 を検出するように配置されている。なお、 X軸ホール素子 200Xおよび Y軸ホール素 子 200Yは地磁気を検出するためのものである。 [0029] Here, the X-axis Hall element 200X and the Y-axis Hall element 200Y are, for example, on a main circuit board (not shown) mounted in parallel to the main surface (not shown) of the casing of the portable electronic device. The X-axis Hall element 200X and the Y-axis Hall element 200Y are arranged so as to detect the rotation angle in the horizontal plane. Note that the X-axis Hall element 200X and the Y-axis Hall element 200Y are for detecting geomagnetism.
[0030] 素子駆動部 210は、 X軸ホール素子 200Xおよび Y軸ホール素子 200Yをそれぞ れ駆動する端子を切り換える、即ち、駆動対象のホール素子を選択するためのもの であり、センサ用電源 220から出力された駆動電圧を X軸ホール素子 200Xおよび Y 軸ホール素子 200Yにそれぞれ印加する。ここで、素子駆動部 210は、例えば、チヨ ツバ駆動として構成させることが可能ある。 [0030] The element driving unit 210 is for switching terminals for driving the X-axis Hall element 200X and the Y-axis Hall element 200Y, that is, for selecting the Hall element to be driven. Is applied to the X-axis Hall element 200X and Y-axis Hall element 200Y, respectively. Here, the element driving unit 210 can be configured as, for example, chitsubaba driving.
[0031] X軸ホール素子 200Xおよび Y軸ホール素子 200Yから出力された信号は、差動入
力アンプ 230によりそれぞれ増幅され、ここで増幅されたアナログ信号の出力増幅値 が AZDコンバータ 240でデジタル信号に変換された後、方位算出部 250に入力さ れる。 [0031] The signals output from X-axis Hall element 200X and Y-axis Hall element 200Y are differentially input. The output amplification value of the analog signal amplified by the force amplifier 230 is converted into a digital signal by the AZD converter 240 and then input to the bearing calculation unit 250.
[0032] 方位算出部 250では、制御部 260から得られる補正指示に基づき、 X軸および Y軸 のデジタル信号の出力増幅値に補正処理を行!、、方位を算出する。 Based on the correction instruction obtained from control unit 260, direction calculation unit 250 performs correction processing on the output amplification values of the X-axis and Y-axis digital signals and calculates the direction.
[0033] キャリブレーション処理中は、方位算出部 250は、方位を算出せずに、 X軸および Y軸のデジタル信号の出力増幅値をキャリブレーションデータとして格納し続け、所 定の量のデータ取得が完了した後で、適正に取得されたキャリブレーションデータを 補正用データとして使用し、方位を算出する。 During the calibration process, the azimuth calculation unit 250 does not calculate the azimuth and continues to store the output amplification values of the X-axis and Y-axis digital signals as calibration data, and obtains a predetermined amount of data. After is completed, use the calibration data properly acquired as correction data to calculate the bearing.
[0034] くキャリブレーション操作 > [0034] Calibration operation>
図 3は、本発明による携帯電子機器で実行されるキャリブレーション操作の一例を 示すフローチャートである。また、図 4は、本発明による携帯電子機器で実行されるキ ヤリブレーシヨン操作時の表示例を示す図である。図 3に示すように、ステップ S10で は、キー入力部 170がユーザによるキャリブレーション処理開始操作を受け付け、こ れを受け、制御部 120がキャリブレーション操作を開始する。このときから、ユーザは 、携帯電子機器を水平にして回転する動作「キャリブレーション動作」を行う。ステップ S11では、制御部 120がキャリブレーションデータ用バッファをクリア (破棄)する。そ の後、キャリブレーション処理の「再実行中」のフラグが立っている力否かを判定し (ス テツプ S12)、再実行中のフラグが立っていない場合はステップ S15に進み、制御部 120に設けられたキヤリブレーションデータ取得部 121力 2軸式地磁気センサ 110 によって検出される地磁気に基づいて、方位測定 (補正)のためのキャリブレーション データ取得を実行する。 FIG. 3 is a flowchart showing an example of a calibration operation executed by the portable electronic device according to the present invention. FIG. 4 is a view showing a display example at the time of the calibration operation executed by the portable electronic device according to the present invention. As shown in FIG. 3, in step S10, the key input unit 170 accepts a calibration process start operation by the user, and in response to this, the control unit 120 starts the calibration operation. From this time, the user performs an operation “calibration operation” that rotates the portable electronic device horizontally. In step S11, the control unit 120 clears (discards) the calibration data buffer. After that, it is determined whether or not the “re-execution” flag of the calibration process is set (step S12). If the re-execution flag is not set, the process proceeds to step S15. Based on the geomagnetism detected by the 121-force two-axis geomagnetic sensor 110, calibration data acquisition for azimuth measurement (correction) is executed.
[0035] キャリブレーションデータ取得の実行中は、制御部(例えば CPUなど) 120に設けら れた監視部 (例えば、割り込みハンドラーなど) 123が、着信などの割り込みが発生し た力否力 (即ち、当該割り込みに関連する機能が開始される、或いは、実行中である か否か)を監視する (ステップ S16)。ステップ S 16で割り込みが発生したと判定された 場合は、ステップ S17に進み、監視部 123が割り込み発生時のレジスタや実行中の タスクなどの諸データを一時的に記憶部 130に退避させ、当該割り込みに対応した
割り込み処理を行うと共に、制御部 120に設けられたキャリブレーションデータ取得 制御部 123に対して、キャリブレーションデータ取得の再実行および再実行中のフラ グ(図示せず)を立てるよう指示する。再実行指示を受け、処理はステップ S 11に戻り 、制御部 120に設けられたキャリブレーションデータ取得制御部 124の指示を受けた キャリブレーションデータ取得部 121が、キャリブレーションデータ用バッファをクリア( 破棄)する。このクリアによって、当該バッファに格納されていたデータの使用が禁止 されることとなる。する。この場合は、キャリブレーション処理の「再実行中」のフラグが 立っているとステップ S12で判定され、ステップ S13に進み、図 4 (a)に示すように、再 実行を開始する力否かを選択するようユーザに促す表示を表示部 180に表示する。 再実行を開始することが選択された場合は、図 4 (b)に示すように、表示部 180に再 実行中である旨を表示し (ステップ S14)、ステップ S15の実際のデータ取得処理に 移行する。キー入力部 170を介したユーザの指示によりステップ S 13で再実行を開 始しないものと判定された場合はキャリブレーション操作を終了する。 [0035] During the execution of calibration data acquisition, a monitoring unit (for example, an interrupt handler) 123 provided in the control unit (for example, a CPU) 120 causes a force (ie, an interrupt handler) 123 to detect the power (ie, power) Whether the function related to the interrupt is started or is being executed is monitored (step S16). If it is determined in step S16 that an interrupt has occurred, the process proceeds to step S17, where the monitoring unit 123 temporarily saves various data such as the register at the time of the interrupt and the task being executed in the storage unit 130, and Corresponding to interrupt In addition to performing interrupt processing, it instructs the calibration data acquisition control unit 123 provided in the control unit 120 to re-execute calibration data acquisition and set a flag (not shown) during re-execution. In response to the re-execution instruction, the process returns to step S11, and the calibration data acquisition unit 121 that received the instruction from the calibration data acquisition control unit 124 provided in the control unit 120 clears (discards) the calibration data buffer. ) This clearing prohibits the use of data stored in the buffer. To do. In this case, it is determined in step S12 that the “re-execution” flag of the calibration process is set, and the process proceeds to step S13, where whether or not the force to start re-execution is determined as shown in FIG. A display prompting the user to make a selection is displayed on display unit 180. If it is selected to start re-execution, as shown in Fig. 4 (b), the display unit 180 displays that re-execution is in progress (step S14), and the actual data acquisition process in step S15 is performed. Transition. If it is determined in step S13 that re-execution is not to be started in accordance with a user instruction via the key input unit 170, the calibration operation is terminated.
[0036] ステップ S16で割り込みが発生していないと判定された場合は、ステップ S18に進 み、キャリブレーションデータが必要な数まで取得できた力否かを判定し、必要な数 を満たすまではステップ S 15に戻りデータ取得を繰り返す。ステップ S 18で必要な数 が取得できたと判定された場合は、キャリブレーションデータ取得の処理を終え、そ の後の処理、例えば、制御部 120に設けられたキャリブレーション処理実行部 122が 、取得したキャリブレーションデータに基づきキャリブレーション処理を行い、地磁気 センサの各軸に補正値 (オフセットなど)を設定するなどを実行する。 [0036] If it is determined in step S16 that no interrupt has occurred, the process proceeds to step S18, where it is determined whether or not the calibration data has been acquired up to the required number, and until the required number is satisfied. Return to step S15 and repeat data acquisition. If it is determined in step S18 that the necessary number has been acquired, the calibration data acquisition process is terminated, and the subsequent process, for example, the calibration process execution unit 122 provided in the control unit 120 acquires Calibration processing is performed based on the calibration data, and correction values (offset, etc.) are set for each axis of the geomagnetic sensor.
[0037] このように、本実施形態における携帯電子機器 100は、複数の機能が搭載されると 共に、キャリブレーションデータ取得部 121により取得されたキャリブレーションデータ 力 例えば着信などの割り込みが入るなど、それら複数の機能のうち少なくとも 1つの 機能が実行中であるときに取得されたものである場合には、そのキャリブレーションデ ータを破棄 (クリア)するよう構成されている。したがって、そのキャリブレーションデー タは、方位算出部 250による方位算出に用いられることが禁止され、方位算出部 250 力 そのキャリブレーションデータを使用して誤った方位を算出してしまう恐れが低減 される。なお、キャリブレーションデータの禁止の方法は、キャリブレーションデータの
破棄に限定されるものではなぐ例えば、キャリブレーションデータに使用を禁止する 旨のフラグが付加されることにより、そのキャリブレーションデータが方位算出に用い られることが禁止されるなどのその他の禁止の方法であってもよい。 [0037] As described above, the portable electronic device 100 according to the present embodiment has a plurality of functions and the calibration data obtained by the calibration data obtaining unit 121, for example, an interrupt such as an incoming call. It is configured to discard (clear) the calibration data if it was acquired when at least one of these functions was being executed. Therefore, the calibration data is forbidden from being used for the direction calculation by the direction calculation unit 250, and the possibility that an incorrect direction is calculated using the calibration data is reduced. . Note that the calibration data prohibition method is Other methods of prohibition are not limited to discarding, for example, a flag that prohibits the use of calibration data is added to the calibration data, thereby prohibiting the use of the calibration data for azimuth calculation. It may be.
[0038] また、このように、本実施形態における携帯電子機器 100は、複数の機能のうち少 なくとも 1つの機能が実行中であるときに取得されたキャリブレーションデータを破棄 するように構成されている。したがって、方位算出に不要なキャリブレーションデータ が記憶部 130などの記憶領域に格納される恐れがなく、記憶領域の無駄な使用が回 避される。なお、本実施形態においては、キャリブレーションデータ取得中に、複数 の機能のうち少なくとも 1つの機能が実施されると、それまでに取得したキヤリブレー シヨンデータの全てが破棄される構成となっていたが、本発明はこれに限定されるも のではなぐ当該機能が実行されるまでのキャリブレーションデータが保護され、当該 機能が実行されて以降のキャリブレーションデータのみが破棄される構成としてもよ い。これにより、方位算出に不要なキャリブレーションデータが効率的に破棄されるこ ととなる。 [0038] Further, as described above, the portable electronic device 100 according to the present embodiment is configured to discard the calibration data acquired when at least one of the plurality of functions is being executed. ing. Therefore, there is no possibility that calibration data unnecessary for calculating the azimuth is stored in a storage area such as the storage unit 130, and useless use of the storage area is avoided. In this embodiment, if at least one of a plurality of functions is performed during calibration data acquisition, all the calibration data acquired up to that point is discarded. However, the present invention is not limited to this, and the calibration data until the function is executed may be protected, and only the calibration data after the function is executed may be discarded. As a result, calibration data that is unnecessary for calculating the azimuth is efficiently discarded.
[0039] また、本実施形態における携帯電子機器 100は、着信機能、メールの着信機能、 および、携帯電子機器内の時間情報に基づく起動機能のうちいずれか 1つがキヤリ ブレーシヨンデータ取得中に実行されると、そのキャリブレーションデータが破棄され るように構成されている。したがって、、着信機能、メールの着信機能、および、携帯 電子機器内の時間情報に基づく起動機能といった、その実行のタイミングを使用者 が予期しにくい機能の実行により、方位算出に不要なキャリブレーションデータが記 憶部 130などの記憶領域に格納されてしまう恐れが低減される。 [0039] Also, in the mobile electronic device 100 according to the present embodiment, any one of an incoming call function, an incoming mail function, and an activation function based on time information in the mobile electronic device is executed during acquisition of the calibration data. If configured, the calibration data is configured to be discarded. Therefore, calibration data that is not necessary for azimuth calculation by executing functions that are difficult for the user to predict when to execute such functions as an incoming call function, an incoming mail function, and a start function based on time information in a portable electronic device. May be stored in a storage area such as the storage unit 130.
[0040] また、本実施形態における携帯電子機器 100は、複数の機能のうち少なくとも 1つ の機能が実行中であるときに取得されたキャリブレーションデータを破棄すると共に、 キャリブレーションデータの取得を再実行する構成であるため、方位算出に必要なキ ヤリブレーシヨンデータを確実に取得することができ、最適な方位を算出することがで きる。なお、本実施形態においては、キャリブレーションデータの破棄の後にキヤリブ レーシヨンデータの取得を再実行する構成となっていた力 本発明はこれに限定され ず、キャリブレーションデータの取得を再実行した後に、複数の機能のうち少なくとも
1つの機能が実行中であるときに取得されたキャリブレーションデータを破棄する構 成であってもよい。 [0040] In addition, the portable electronic device 100 according to the present embodiment discards the calibration data acquired when at least one of the plurality of functions is being executed, and re-acquires the acquisition of the calibration data. Since this is a configuration to be executed, the calibration data necessary for azimuth calculation can be reliably acquired, and the optimum azimuth can be calculated. In the present embodiment, the power that is configured to re-execute the acquisition of calibration data after the calibration data is discarded. The present invention is not limited to this, and after re-executing the acquisition of calibration data. , At least of several functions The configuration may be such that the calibration data acquired when one function is being executed is discarded.
[0041] また、本実施形態における携帯電子機器 100は、複数の機能のうち少なくとも 1つ の機能が実行中であるときに取得されたキャリブレーションデータを破棄すると共に、 キャリブレーションデータの取得を再実行した場合に、その旨を表示部 180に表示す る構成であるため、携帯電子機器 100のユーザは、キャリブレーションデータの取得 が再実行されて 、ることを容易に知ることができる。 [0041] In addition, the portable electronic device 100 according to the present embodiment discards the calibration data acquired when at least one of a plurality of functions is being executed, and again acquires the calibration data. When executed, the display unit 180 displays that fact, so the user of the portable electronic device 100 can easily know that the acquisition of calibration data has been re-executed.
[0042] また、本実施形態における携帯電子機器 100は、複数の機能のうち少なくとも 1つ の機能が実行中であるときに取得されたキャリブレーションデータを破棄すると共に、 キャリブレーションデータの取得を再実行する力否かの選択を促す旨を表示部 180 に表示する構成であるため、携帯電子機器 100のユーザは、キャリブレーションデー タの取得を再実行する力否かを自らの選択により決定することができる。なお、本発 明はこれに限定されるものではなぐ複数の機能のうち少なくとも 1つの機能が実行中 であるときに取得されたキャリブレーションデータを破棄した場合に自動的にキヤリブ レーシヨンデータの取得が再実行される構成であってもよい。 [0042] In addition, the portable electronic device 100 according to the present embodiment discards the calibration data acquired when at least one of the plurality of functions is being executed, and again acquires the calibration data. Since the display unit 180 displays a message prompting the user to select whether or not to execute the force, the user of the portable electronic device 100 determines whether or not the user has the power to re-execute the acquisition of calibration data. be able to. However, the present invention is not limited to this, and calibration data acquired when at least one of a plurality of functions is being executed is automatically acquired. May be configured to be re-executed.
[0043] 本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基 づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの 変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各部材、各手 段、各ステップなどに含まれる機能などは論理的に矛盾しな 、ように再配置可能であ り、複数の手段やステップなどを 1つに組み合わせたり、或いは分割したりすることが 可能である。本実施形態では、監視部としての「割り込みハンドラー」が電話などの着 信を監視'検知する方式を想定して説明したが、割り込みハンドラー以外の監視部( ハードウェアモジュール、或いは、 CPUで実行されるソフトウェアモジュール、または これらの双方力 なるモジュール)力 割り込み用キューの内容、或いは、割り込みハ ンドラーの後続タスクにおける割り込み内容を表す特定のフィールドの内容などを監 視する構成であってもよい。また、本実施形態においては、 2軸式磁気センサを用い た方位算出処理の一例を示した力 本発明はこれに限定されず、例えば、 3軸式磁 気センサなど、他の磁気センサを用いたものであってもよい。また、本実施形態にお
いては、キャリブレーションデータ取得中に着信などの割り込みが発生した場合には 、キャリブレーションデータを破棄する構成となっている力 本発明はこれに限定され ず、キャリブレーション用バッファを方位算出に用いることを禁止する何らかの処理を 行う構成であれば適用可能である。例えば、上述したように、キャリブレーション用バ ッファのデータに無効であることを示すフラグを設定することによって、方位算出に用 いることを禁止してちょい。 [0043] Although the present invention has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various modifications and corrections based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention. For example, the functions included in each member, each means, each step, etc. can be rearranged so that there is no logical contradiction, and multiple means and steps can be combined or divided into one. It is possible to In this embodiment, the “interrupt handler” serving as a monitoring unit has been described on the assumption that a call or other incoming call is monitored. However, a monitoring unit (hardware module or CPU) other than the interrupt handler is executed. It may be configured to monitor the contents of the interrupt queue or the contents of a specific field indicating the interrupt contents in the task following the interrupt handler. Further, in the present embodiment, the force showing an example of the azimuth calculation process using the biaxial magnetic sensor is not limited to this. For example, another magnetic sensor such as a triaxial magnetic sensor is used. May have been. In this embodiment, However, when an interruption such as an incoming call occurs during calibration data acquisition, the calibration data is discarded. The present invention is not limited to this, and the calibration buffer is used for azimuth calculation. This is applicable to any configuration that performs some processing that prohibits this. For example, as described above, by setting a flag indicating invalidity in the calibration buffer data, it is prohibited to use it for azimuth calculation.
関連出願へのクロスリファレンス Cross-reference to related applications
本願は、日本国特許出願第 2006-203276号 (2006年 7月 26日出願)の優先権の利 益を主張し、これらの全内容を参照により本願明細書に取り込むものとする。
This application claims the benefit of priority of Japanese Patent Application No. 2006-203276 (filed on July 26, 2006), the entire contents of which are incorporated herein by reference.
Claims
[1] 複数の機能を搭載した携帯電子機器であって、 [1] A portable electronic device with multiple functions,
方位算出に用いられる地磁気を検出する地磁気センサと、 A geomagnetic sensor for detecting the geomagnetism used for calculating the bearing;
方位算出の補正のためのキャリブレーションデータを取得するキャリブレーションデ ータ取得部と、 A calibration data acquisition unit for acquiring calibration data for correcting the azimuth calculation;
前記地磁気および前記キャリブレーションデータを使用して方位を算出する方位算 出部と、 An azimuth calculating unit for calculating an azimuth using the geomagnetism and the calibration data;
前記キャリブレーションデータ取得部により取得されるキャリブレーションデータが、 前記複数の機能のうち少なくとも 1つの機能が実行中であるときに取得された場合に は、当該キャリブレーションデータを前記方位算出部での方位算出に使用することを 禁止する制御部と、 When the calibration data acquired by the calibration data acquisition unit is acquired when at least one of the plurality of functions is being executed, the calibration data is obtained by the direction calculation unit. A control unit that is prohibited from being used for bearing calculation,
を備えることを特徴とする携帯電子機器。 A portable electronic device comprising:
[2] 請求項 1に記載の携帯電子機器にぉ 、て、 [2] The portable electronic device according to claim 1,
前記制御部は、前記キャリブレーションデータを破棄することにより、前記キヤリブレ ーシヨンデータを前記方位算出部での方位算出に使用することを禁止する、 ことを特徴とする携帯電子機器。 The portable electronic device, wherein the control unit prohibits the calibration data from being used for azimuth calculation in the azimuth calculation unit by discarding the calibration data.
[3] 請求項 1に記載の携帯電子機器にぉ 、て、 [3] The portable electronic device according to claim 1,
前記少なくとも 1つの機能が、電話の着信機能、メールの着信機能、および、前記 携帯電子機器内の時間情報に基づく起動機能のうちのいずれか 1つである、 ことを特徴とする携帯電子機器。 The portable electronic device, wherein the at least one function is any one of an incoming call function, an incoming mail function, and an activation function based on time information in the portable electronic device.
[4] 請求項 1に記載の携帯電子機器にぉ 、て、 [4] The portable electronic device according to claim 1,
前記制御部が、前記取得されたキャリブレーションデータを前記方位算出部での方 位算出に使用することを禁止する場合に、前記キャリブレーションデータの取得を再 実行するよう前記キャリブレーションデータ取得部を制御する、 When the control unit prohibits the use of the acquired calibration data for the direction calculation in the direction calculation unit, the calibration data acquisition unit is configured to re-execute the acquisition of the calibration data. Control,
ことを特徴とする携帯電子機器。 A portable electronic device characterized by that.
[5] 請求項 4に記載の携帯電子機器において、 [5] In the portable electronic device according to claim 4,
携帯電子機器が表示部をさらに備え、 The portable electronic device further includes a display unit,
前記制御部は、前記キャリブレーションデータの取得の再実行中のときその旨を前
記表示部に表示するよう前記表示部を制御する、 The control unit notifies that when the calibration data acquisition is being re-executed. Controlling the display unit to display on the display unit,
ことを特徴とする携帯電子機器。 A portable electronic device characterized by that.
[6] 請求項 1に記載の携帯電子機器にぉ 、て、 [6] The portable electronic device according to claim 1,
携帯電子機器が表示部をさらに備え、 The portable electronic device further includes a display unit,
前記制御部は、前記キャリブレーションデータを前記方位算出部での方位算出に 使用することを禁止する場合に、キャリブレーションデータ取得の再実行を行うか否 かの選択を促す表示を前記表示部に表示するよう前記表示部を制御する、 ことを特徴とする携帯電子機器。 When the control unit prohibits the calibration data from being used for the azimuth calculation by the azimuth calculation unit, the control unit displays a display prompting the user to select whether or not to re-execute calibration data acquisition. The portable electronic device characterized by controlling the said display part to display.
[7] 複数の機能のうち少なくとも 1つの機能を実行する実行ステップと、 [7] an execution step that executes at least one of the functions;
方位算出に用いられる地磁気を検出する検出ステップと、 A detection step for detecting geomagnetism used for azimuth calculation;
方位算出の補正のためのキャリブレーションデータを取得するデータ取得ステップ と、 A data acquisition step for acquiring calibration data for correcting the azimuth calculation;
前記地磁気および前記キャリブレーションデータを使用して方位を算出する方位算 出ステップと、 An azimuth calculating step of calculating an azimuth using the geomagnetism and the calibration data;
前記データ取得ステップにより取得されるキャリブレーションデータ力 前記実行ス テツプにより前記複数の機能のうち少なくとも 1つの機能が実行中であるときに取得さ れた場合には、当該キャリブレーションデータを前記方位算出ステップでの方位算出 に使用することを禁止する制御ステップと、 Calibration data force acquired in the data acquisition step When the execution step is acquired when at least one of the plurality of functions is being executed, the calibration data is calculated as the direction. A control step that prohibits it from being used to calculate the direction in a step;
を有することを特徴とする携帯電子機器の制御方法。
A method for controlling a portable electronic device, comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-203276 | 2006-07-26 | ||
JP2006203276A JP2009229062A (en) | 2006-07-26 | 2006-07-26 | Portable electronic apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008012990A1 true WO2008012990A1 (en) | 2008-01-31 |
Family
ID=38981305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/061312 WO2008012990A1 (en) | 2006-07-26 | 2007-06-04 | Portable electronic device and method of controlling the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2009229062A (en) |
WO (1) | WO2008012990A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103229020A (en) * | 2010-11-25 | 2013-07-31 | Nec卡西欧移动通信株式会社 | Portable terminal with electronic compass and direction calculation method |
CN105006170A (en) * | 2015-07-06 | 2015-10-28 | 中国船舶重工集团公司第七一〇研究所 | Parking stall detection system and method based on doppler radar and terrestrial magnetism detection |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7217824B1 (en) | 2022-03-23 | 2023-02-03 | 旭化成エレクトロニクス株式会社 | CALIBRATION INSTRUCTION DEVICE, SENSOR, SENSOR SYSTEM, CALIBRATION INSTRUCTION METHOD AND PROGRAM |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006005540A (en) * | 2004-06-16 | 2006-01-05 | Yamaha Corp | Mobile terminal |
JP2006098200A (en) * | 2004-09-29 | 2006-04-13 | Yamaha Corp | Portable terminal |
-
2006
- 2006-07-26 JP JP2006203276A patent/JP2009229062A/en not_active Withdrawn
-
2007
- 2007-06-04 WO PCT/JP2007/061312 patent/WO2008012990A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006005540A (en) * | 2004-06-16 | 2006-01-05 | Yamaha Corp | Mobile terminal |
JP2006098200A (en) * | 2004-09-29 | 2006-04-13 | Yamaha Corp | Portable terminal |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103229020A (en) * | 2010-11-25 | 2013-07-31 | Nec卡西欧移动通信株式会社 | Portable terminal with electronic compass and direction calculation method |
CN103229020B (en) * | 2010-11-25 | 2016-06-08 | 日本电气株式会社 | The portable terminal of having electronic compass and orientation computational methods |
CN105006170A (en) * | 2015-07-06 | 2015-10-28 | 中国船舶重工集团公司第七一〇研究所 | Parking stall detection system and method based on doppler radar and terrestrial magnetism detection |
CN105006170B (en) * | 2015-07-06 | 2017-05-03 | 中国船舶重工集团公司第七一〇研究所 | Parking stall detection system and method based on doppler radar and terrestrial magnetism detection |
Also Published As
Publication number | Publication date |
---|---|
JP2009229062A (en) | 2009-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101421585B (en) | Portable electronic device and geomagnetic sensor calibration method | |
JP4545814B2 (en) | Portable electronic device and geomagnetic sensor calibration method | |
EP2431709B1 (en) | Method for correcting a geomagnetic sensor for a mobile device, as well as a mobile device and a program | |
JP4674240B2 (en) | Portable electronic device and its orientation display method | |
JP2010054469A (en) | Current position detector, current position detection method, and program for current position detection | |
WO2008012990A1 (en) | Portable electronic device and method of controlling the same | |
JP2007232415A (en) | Portable electronic device and control method thereof | |
JP2006005540A (en) | Mobile terminal | |
JP2019219308A (en) | Electronic apparatus, information processing method, and information processing program | |
JP2011169800A (en) | Portable terminal | |
JP3733904B2 (en) | Mobile phone device and control method thereof | |
JP5263956B2 (en) | Electronic device and program | |
JP4669751B2 (en) | Direction measuring apparatus with wireless communication function, direction measuring method, and program | |
JP2007235279A (en) | Portable electronic device and control method thereof | |
JP4864146B2 (en) | Portable electronic device and control method thereof | |
JP2007127491A (en) | Azimuth measuring device and azimuth measuring method | |
JP2006266800A (en) | Portable information terminal and correction program for geomagnetic sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07744671 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07744671 Country of ref document: EP Kind code of ref document: A1 |