WO2008005752A2 - Modification des surfaces d'articles polymères par réaction d'addition de michael - Google Patents
Modification des surfaces d'articles polymères par réaction d'addition de michael Download PDFInfo
- Publication number
- WO2008005752A2 WO2008005752A2 PCT/US2007/072119 US2007072119W WO2008005752A2 WO 2008005752 A2 WO2008005752 A2 WO 2008005752A2 US 2007072119 W US2007072119 W US 2007072119W WO 2008005752 A2 WO2008005752 A2 WO 2008005752A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- medical device
- group
- functional group
- coating
- coating polymer
- Prior art date
Links
- 238000006845 Michael addition reaction Methods 0.000 title claims abstract description 29
- 230000004048 modification Effects 0.000 title description 4
- 238000012986 modification Methods 0.000 title description 4
- 125000000524 functional group Chemical group 0.000 claims abstract description 75
- 229920001688 coating polymer Polymers 0.000 claims abstract description 46
- 239000000463 material Substances 0.000 claims abstract description 45
- 239000000017 hydrogel Substances 0.000 claims abstract description 20
- 239000000178 monomer Substances 0.000 claims description 55
- -1 guanadines Chemical class 0.000 claims description 49
- 238000000034 method Methods 0.000 claims description 37
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 32
- 239000011248 coating agent Substances 0.000 claims description 30
- 238000000576 coating method Methods 0.000 claims description 30
- 150000001875 compounds Chemical class 0.000 claims description 27
- 229920001296 polysiloxane Polymers 0.000 claims description 25
- 230000000269 nucleophilic effect Effects 0.000 claims description 20
- 125000006575 electron-withdrawing group Chemical group 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 11
- 150000001412 amines Chemical class 0.000 claims description 7
- 150000001735 carboxylic acids Chemical class 0.000 claims description 7
- 150000005846 sugar alcohols Polymers 0.000 claims description 7
- 125000003277 amino group Chemical group 0.000 claims description 6
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 5
- 238000002513 implantation Methods 0.000 claims description 4
- 239000002243 precursor Substances 0.000 claims description 4
- 125000002947 alkylene group Chemical group 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 150000002429 hydrazines Chemical class 0.000 claims description 3
- 150000002443 hydroxylamines Chemical class 0.000 claims description 3
- 150000002466 imines Chemical class 0.000 claims description 3
- 150000003003 phosphines Chemical class 0.000 claims description 3
- 150000003573 thiols Chemical class 0.000 claims description 3
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 claims description 2
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 claims description 2
- 150000001720 carbohydrates Chemical class 0.000 claims 1
- 238000006116 polymerization reaction Methods 0.000 claims 1
- 238000006557 surface reaction Methods 0.000 claims 1
- 150000002433 hydrophilic molecules Chemical class 0.000 abstract 1
- 229920000642 polymer Polymers 0.000 description 45
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 42
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 26
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 150000002430 hydrocarbons Chemical group 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 125000004432 carbon atom Chemical group C* 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 230000005660 hydrophilic surface Effects 0.000 description 10
- 229920000962 poly(amidoamine) Polymers 0.000 description 10
- 229920006395 saturated elastomer Polymers 0.000 description 10
- 229930195734 saturated hydrocarbon Natural products 0.000 description 10
- 238000011282 treatment Methods 0.000 description 10
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 125000003118 aryl group Chemical group 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 150000003254 radicals Chemical class 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 6
- LVLANIHJQRZTPY-UHFFFAOYSA-N vinyl carbamate Chemical compound NC(=O)OC=C LVLANIHJQRZTPY-UHFFFAOYSA-N 0.000 description 6
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 5
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 125000000753 cycloalkyl group Chemical group 0.000 description 5
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 238000004381 surface treatment Methods 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- 102100026735 Coagulation factor VIII Human genes 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 229920001477 hydrophilic polymer Polymers 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 238000009832 plasma treatment Methods 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- 229940044192 2-hydroxyethyl methacrylate Drugs 0.000 description 3
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 3
- BESKSSIEODQWBP-UHFFFAOYSA-N 3-tris(trimethylsilyloxy)silylpropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC[Si](O[Si](C)(C)C)(O[Si](C)(C)C)O[Si](C)(C)C BESKSSIEODQWBP-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 239000004386 Erythritol Substances 0.000 description 3
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 3
- 125000002877 alkyl aryl group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 3
- 235000019414 erythritol Nutrition 0.000 description 3
- 229940009714 erythritol Drugs 0.000 description 3
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 3
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 3
- VHRYZQNGTZXDNX-UHFFFAOYSA-N methacryloyl chloride Chemical compound CC(=C)C(Cl)=O VHRYZQNGTZXDNX-UHFFFAOYSA-N 0.000 description 3
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 125000005401 siloxanyl group Chemical group 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 239000000811 xylitol Substances 0.000 description 3
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 3
- 235000010447 xylitol Nutrition 0.000 description 3
- 229960002675 xylitol Drugs 0.000 description 3
- SJHPCNCNNSSLPL-CSKARUKUSA-N (4e)-4-(ethoxymethylidene)-2-phenyl-1,3-oxazol-5-one Chemical compound O1C(=O)C(=C/OCC)\N=C1C1=CC=CC=C1 SJHPCNCNNSSLPL-CSKARUKUSA-N 0.000 description 2
- NPPNUGUVBUJRAB-UHFFFAOYSA-N 2-[tert-butyl(dimethyl)silyl]oxyethyl ethenyl carbonate Chemical compound CC(C)(C)[Si](C)(C)OCCOC(=O)OC=C NPPNUGUVBUJRAB-UHFFFAOYSA-N 0.000 description 2
- 229940095095 2-hydroxyethyl acrylate Drugs 0.000 description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 2
- HCGFUIQPSOCUHI-UHFFFAOYSA-N 2-propan-2-yloxyethanol Chemical compound CC(C)OCCO HCGFUIQPSOCUHI-UHFFFAOYSA-N 0.000 description 2
- YYPNJNDODFVZLE-UHFFFAOYSA-N 3-methylbut-2-enoic acid Chemical compound CC(C)=CC(O)=O YYPNJNDODFVZLE-UHFFFAOYSA-N 0.000 description 2
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000005119 alkyl cycloalkyl group Chemical group 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000003618 borate buffered saline Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- KZJNAICCMJTRKF-UHFFFAOYSA-N ethenyl 2-trimethylsilylethyl carbonate Chemical compound C[Si](C)(C)CCOC(=O)OC=C KZJNAICCMJTRKF-UHFFFAOYSA-N 0.000 description 2
- RWEUKWCZWYHIQA-UHFFFAOYSA-N ethenyl 3-trimethylsilylpropyl carbonate Chemical compound C[Si](C)(C)CCCOC(=O)OC=C RWEUKWCZWYHIQA-UHFFFAOYSA-N 0.000 description 2
- NDXTZJDCEOXFOP-UHFFFAOYSA-N ethenyl 3-tris(trimethylsilyloxy)silylpropyl carbonate Chemical compound C[Si](C)(C)O[Si](O[Si](C)(C)C)(O[Si](C)(C)C)CCCOC(=O)OC=C NDXTZJDCEOXFOP-UHFFFAOYSA-N 0.000 description 2
- BHBDVHVTNOYHLK-UHFFFAOYSA-N ethenyl 3-tris(trimethylsilyloxy)silylpropylsulfanylformate Chemical compound C[Si](C)(C)O[Si](O[Si](C)(C)C)(O[Si](C)(C)C)CCCSC(=O)OC=C BHBDVHVTNOYHLK-UHFFFAOYSA-N 0.000 description 2
- KRAZQXAPJAYYJI-UHFFFAOYSA-N ethenyl trimethylsilylmethyl carbonate Chemical compound C[Si](C)(C)COC(=O)OC=C KRAZQXAPJAYYJI-UHFFFAOYSA-N 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000001072 heteroaryl group Chemical group 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N itaconic acid Chemical compound OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- WFKDPJRCBCBQNT-UHFFFAOYSA-N n,2-dimethylprop-2-enamide Chemical compound CNC(=O)C(C)=C WFKDPJRCBCBQNT-UHFFFAOYSA-N 0.000 description 2
- SENLDUJVTGGYIH-UHFFFAOYSA-N n-(2-aminoethyl)-3-[[3-(2-aminoethylamino)-3-oxopropyl]-[2-[bis[3-(2-aminoethylamino)-3-oxopropyl]amino]ethyl]amino]propanamide Chemical compound NCCNC(=O)CCN(CCC(=O)NCCN)CCN(CCC(=O)NCCN)CCC(=O)NCCN SENLDUJVTGGYIH-UHFFFAOYSA-N 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 150000003512 tertiary amines Chemical group 0.000 description 2
- 125000001302 tertiary amino group Chemical group 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- WBYWAXJHAXSJNI-VOTSOKGWSA-M trans-cinnamate Chemical compound [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 2
- PCMORTLOPMLEFB-ONEGZZNKSA-M trans-sinapate Chemical compound COC1=CC(\C=C\C([O-])=O)=CC(OC)=C1O PCMORTLOPMLEFB-ONEGZZNKSA-M 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- ZLYYJUJDFKGVKB-OWOJBTEDSA-N (e)-but-2-enedioyl dichloride Chemical compound ClC(=O)\C=C\C(Cl)=O ZLYYJUJDFKGVKB-OWOJBTEDSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- QRIMLDXJAPZHJE-UHFFFAOYSA-N 2,3-dihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CO QRIMLDXJAPZHJE-UHFFFAOYSA-N 0.000 description 1
- OWPUOLBODXJOKH-UHFFFAOYSA-N 2,3-dihydroxypropyl prop-2-enoate Chemical compound OCC(O)COC(=O)C=C OWPUOLBODXJOKH-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- PRAMZQXXPOLCIY-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethanesulfonic acid Chemical class CC(=C)C(=O)OCCS(O)(=O)=O PRAMZQXXPOLCIY-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- QLIBJPGWWSHWBF-UHFFFAOYSA-N 2-aminoethyl methacrylate Chemical compound CC(=C)C(=O)OCCN QLIBJPGWWSHWBF-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- CGCRIQNPIBHVCQ-UHFFFAOYSA-N 2-methylidenebutanedioyl dichloride Chemical compound ClC(=O)CC(=C)C(Cl)=O CGCRIQNPIBHVCQ-UHFFFAOYSA-N 0.000 description 1
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical group SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- 238000006957 Michael reaction Methods 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical class CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- UMEUMGUZBPZVMV-VOTSOKGWSA-N [(e)-2-isocyanatoethenyl]benzene Chemical compound O=C=N\C=C\C1=CC=CC=C1 UMEUMGUZBPZVMV-VOTSOKGWSA-N 0.000 description 1
- PQGAHNJECSVDEI-UHFFFAOYSA-N [CH2]CCCCC Chemical compound [CH2]CCCCC PQGAHNJECSVDEI-UHFFFAOYSA-N 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 229940114081 cinnamate Drugs 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- ILHMPZFVDISGNP-UHFFFAOYSA-N ethenyl n-[3-tris(trimethylsilyloxy)silylpropyl]carbamate Chemical compound C[Si](C)(C)O[Si](O[Si](C)(C)C)(O[Si](C)(C)C)CCCNC(=O)OC=C ILHMPZFVDISGNP-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000000852 hydrogen donor Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- WARQUFORVQESFF-UHFFFAOYSA-N isocyanatoethene Chemical compound C=CN=C=O WARQUFORVQESFF-UHFFFAOYSA-N 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000013627 low molecular weight specie Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- TWXDDNPPQUTEOV-FVGYRXGTSA-N methamphetamine hydrochloride Chemical compound Cl.CN[C@@H](C)CC1=CC=CC=C1 TWXDDNPPQUTEOV-FVGYRXGTSA-N 0.000 description 1
- QRWZCJXEAOZAAW-UHFFFAOYSA-N n,n,2-trimethylprop-2-enamide Chemical compound CN(C)C(=O)C(C)=C QRWZCJXEAOZAAW-UHFFFAOYSA-N 0.000 description 1
- RQAKESSLMFZVMC-UHFFFAOYSA-N n-ethenylacetamide Chemical compound CC(=O)NC=C RQAKESSLMFZVMC-UHFFFAOYSA-N 0.000 description 1
- 238000005935 nucleophilic addition reaction Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003141 primary amines Chemical group 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 150000003335 secondary amines Chemical group 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
- G02B1/043—Contact lenses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/18—Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
Definitions
- the present invention relates to modification of surfaces of polymeric articles by the Michael addition reaction.
- the present invention relates to medical devices having surfaces modified by the Michael addition reaction.
- a known method for modifying the surface hydrophilicity of a relatively hydrophobic ophthalmic device, such as a contact lens, is through the use of a plasma treatment.
- Plasma treatment techniques are disclosed, for example, in PCT Publications WO 96/31792 to Nicolson et al., WO 99/57581 to Chabrececk et al., and WO 94/06485 to Chatelier et al.
- photoinitiator molecules are covalently bound to the surface of the article after the article has been subjected to a plasma treatment which provides the surface with functional groups.
- a layer of polymerizable macromonomer is then coated onto the modified surface and heat or radiation is applied to graft polymerize the macromonomer to form the hydrophilic surface.
- heat or radiation is applied to graft polymerize the macromonomer to form the hydrophilic surface.
- photoinitiators it may be difficult to provide an effective number of photoinitiators on the surface to effect a strong attachment of the resulting polymer.
- the present invention provides a method for modifying surfaces of polymeric articles by the Michael addition reaction (sometimes also referred to in the art as "Michael reaction”).
- Michael addition reaction sometimes also referred to in the art as "Michael reaction”
- the present invention also provides such polymeric articles having surfaces comprising attached polymeric materials.
- the polymeric articles are medical devices that can provide higher level of performance quality and/or comfort to the users.
- the present invention provides a medical device having a polymer coating on a surface of the medical device.
- the polymer coating comprises a hydrophilic polymer coating.
- the hydrophilic polymer coating is attached directly or indirectly to the surface of the medical device.
- the coating comprises a coating polymer covalently attached directly or indirectly to the surface of the medical device.
- the coating polymer is attached to the surface of the medical device by the Michael addition reaction.
- the medical device and the coating polymer have complementary functional groups that participate in the Michael addition reaction.
- the medical devices are ophthalmic devices.
- the medical devices are contact lenses.
- the medical devices have reduced contact angles compared to those that do not have a polymeric coating of the present invention.
- the present invention provides a method of making a medical device that has a hydrophilic surface.
- the method comprises: (a) providing the medical device having a medical-device surface functional group; (b) providing a polymer having a hydrophilic moiety and a polymer functional group capable of interacting with said medical-device surface functional group in the Michael addition reaction; and (c) contacting the medical device with the polymer at a condition sufficient to produce the medical device having an increased surface hydrophilicity.
- the present invention provides a method for modifying surfaces of polymeric articles by the Michael addition reaction.
- the present invention also provides such polymeric articles having surfaces comprising attached polymeric materials.
- the polymeric materials are attached to the surfaces of the polymeric articles by the Michael addition reaction, which is the nucleophilic addition to the ⁇ - ⁇ double bond conjugate to an electron-withdrawing group.
- a coating polymeric material of the present invention comprises one or more ⁇ - ⁇ double bonds conjugate to electron-withdrawing groups (such as carbonyl or sulfonyl group), and the surfaces of the polymeric article comprise a plurality of nucleophilic groups.
- the surfaces of the polymeric article comprise a plurality of ⁇ - ⁇ double bonds conjugate to electron-withdrawing groups (such as carbonyl or sulfonyl group), and a coating polymeric material of the present invention comprises one or more nucleophilic groups.
- electron-withdrawing groups such as carbonyl or sulfonyl group
- nucleophilic groups are amines, thiols, hydroxyl, hydroxylamines, hydrazines, guanadines, imines, phosphines, and carbanions.
- the nucleophilic groups comprise the primary amine group (-NH 2 ), the secondary amine groups (-NHR), the tertiary amine groups (-NR 1 R 2 ), wherein R, R 1 , and R 2 are monovalent groups, such as, for example, monovalent d-1 0 aliphatic hydrocarbon groups or alkylaryl groups, or aromatic tertiary amino groups (such as pyridine); and the coating polymeric material comprises the acrylate group.
- the nucleophilic group comprises a tertiary amino group
- the attachment reaction is advantageously carried out in the presence of a hydrogen donor.
- the polymeric material of the article comprises the nucleophilic groups, some of which are exposed on the surface of the article.
- the nucleophilic groups are created on the surface of the polymeric article, such as by implantation of reactive moieties at the surface of such an article, which reactive moieties comprise such nucleophilic groups or by reaction of the surface material with a reagent to result in such nucleophilic groups.
- ⁇ - ⁇ double bonds conjugate to electron- withdrawing groups are formed on the surfaces of the polymeric article by reacting the same with reactive compounds having such double bonds.
- the polymeric article is a medical device.
- the medical device is an ophthalmic device.
- the ophthalmic device is a contact lens.
- the medical device comprises a siloxanyl-based polymer.
- siloxanyl-based means comprising a silicon-oxygen-silicon bond. Suitable siloxanyl-based polymers are disclosed below.
- the present invention provides medical devices comprising hydrophilic surfaces and/or reduced dehydration rates and methods for making these devices.
- a method of making a medical device that has a hydrophilic surface comprises: (a) providing the medical device having a medical-device surface functional group; (b) providing a polymer having a hydrophilic moiety and polymer functional group that is capable of interacting with said medical-device surface functional group in the Michael addition reaction; and (c) contacting the medical device with the polymer at a condition sufficient to produce the medical device having an increased surface hydrophilicity.
- the step of providing the medical device having a medical-device surface functional group comprises creating the surface functional group by implantation of moieties that comprise the surface functional group. The implantation is effected at or in the surface of the medical device.
- the step of providing the medical device having a medical- device surface functional group comprises creating the surface functional group by reacting the material of the surface of the medical device with a suitable reagent to form the surface functional group.
- the suitable reagent is an oxidizing agent.
- the step of reacting comprises exposing the surface to plasma containing an oxidizing agent, such as an oxygen-containing species, ammonia, or amine.
- One class of coating materials includes a macromonomer having the formula of
- G and G' are groups that comprise at least an ethylenically unsaturated group
- L is a direct bond or a divalent linkage group that comprises a hydrocarbon group or a heterohydrocarbon group
- M represents a hydrophilic monomeric unit
- n is a positive integer in the range from about 2 to about 1000. In some embodiments, n is in the range from about 2 to about 800, or from about 2 to about 600, or from about 10 to about 600, or from about 20 to about 600, or from about 20 to 500.
- L is a direct bond.
- L comprises a C M O linear saturated or unsaturated hydrocarbon group, a C 3- io branched saturated or unsaturated hydrocarbon group, or a 0 3 -1 0 cyclic saturated or unsaturated hydrocarbon group.
- L also can include one or more atoms selected from the group consisting of O, N, S, and combinations thereof.
- G' can be absent, and a macromonomer of the present invention has a formula of G' (M) n - (H)
- G, L, M, and n have the meanings as disclosed above, and E comprises a C- 1 - 10 linear or branched hydrocarbon group, or a C 3- I 0 cyclic saturated, or unsaturated hydrocarbon group, or a heteroatom.
- G and G' are independently selected from the group consisting of acrylate, methacrylate, sinapate (or 3,5-dimethoxy-4- hydroxycinnamate), cinnamate (or 3-phenylacrylate), senecioate (or 3,3- dimethylacrylate), crotonate, maleate, fumarate, itaconate, vinyl, allyl, and styryl groups.
- (M) n represents oligomeric or polymeric chain comprising units of N-vinylpyrrolidone.
- (M) n represents oligomeric or polymeric chain comprising units of polyhydric alcohols (such as glyceryl methacrylate or glyceryl acrylate), dimethyl methacrylamide, dimethyl acrylamide (“DMA”), 2-hydroxyethyl methacrylate (“HEMA”), 2- hydroxyethyl acrylate, erythritol (meth)acrylate, xylitol (meth)acrylate, sorbitol (meth)acrylate, or derivatives thereof.
- polyhydric alcohols such as glyceryl methacrylate or glyceryl acrylate
- DMA dimethyl acrylamide
- HEMA 2-hydroxyethyl methacrylate
- 2- hydroxyethyl acrylate 2- hydroxyethyl acrylate
- erythritol (meth)acrylate erythr
- (M) n represents oligomeric or polymeric chain comprising units of one of the foregoing monomers and units of an alkylene oxide (such as ethylene oxide or propylene oxide).
- M include acrylic acid, methacrylic acid, and Zwitterionic monomer such as ⁇ 3-(methacryloylamino)propyi ⁇ dimethyl(3- sulfopropyl)ammonium hydroxide inner salt.
- the macromonomer is a methacrylate- or acrylate-terminated poly(N-vinylpyrrolidone). Poly(N-vinylpyrrolidone) is sometimes herein abbreviated as "PVP". Such a macromonomer is represented by the following formula.
- G 1 and G 2 are independently selected from the group consisting of acrylate and methacrylate; G 2 can be absent in some embodiments; and L, M, and have the meanings disclosed above.
- the present invention provides a method for making an ethylenically unsaturated hydrophilic macromonomer.
- the method comprises reacting an oligomer or polymer having a first functional group with a compound having a second functional group that is capable of reacting with the first functional group, wherein the compound comprises an ethylenically unsaturated group.
- An acrylate- or methacrylate-terminated PVP can be prepared by reacting acryloyl chloride or methacryloyl chloride with monohydroxy- or dihydroxy-terminated PVP in the presence of a weak base, such as a tertiary amine or an alkali carbonate.
- a weak base such as a tertiary amine or an alkali carbonate.
- an acrylate-terminated PVP is prepared according to the following reaction.
- R is a direct bond or a divalent group selected from the group consisting of C-1-10 saturated and unsaturated hydrocarbon groups, C M0 saturated and unsaturated hydrocarbon groups having one or more heteroatoms therein, C3- 10 cyclic hydrocarbon groups, C3-10 heterocyclic groups, C ⁇ -36 aryl groups, and C 6-36 heteroaryl groups.
- R is a C M0 alkyl group.
- R is methylene, dimethylene, trimethylene, or tetra methylene.
- hydroxy-terminated PVP can be reacted with glycidyl acrylate or glycidyl methacylate to yield acrylate- or methacrylate-terminated PVP.
- methacrylate-terminated PVP can be prepared according to the following reaction, wherein R has the meaning disclosed above.
- hydroxyl-terminated PVP can be reacted with 2-isocyantoethyi acrylate or 2-isocyanato methacylate to yield acrylate- or methacrylate-terminated PVP.
- methacrylate-terminated PVP is prepared according to the following reaction, wherein R has the meaning disclosed above.
- such a methacrylate- or acrylate- terminated PVP can be further modified to produce amino-terminated PVP, for example, according to the following scheme.
- vinyl-, allyl-, or styryl-terminated PVP can be prepared by reacting hydroxy-terminated PVP with vinyl, allyl, or styryl isocyanate, respectively.
- vinyl-terminated can be prepared from hydroxyl-terminated PVP and vinyl isocyanate according to the following reaction, wherein R has the meaning disclosed above.
- a maleate- or itaconate-terminated PVP can be prepared by reacting maleic anhydride or itaconic anhydride with hydroxyl-terminated PVP.
- fumarate-terminated PVP can be prepared by reacting fumaric acid with hydroxyl-terminated PVP.
- maleate-terminated PVP can be prepared according to the following reaction, wherein R has the meaning disclosed above.
- a macromonomer comprising hydrophilic moieties other than, or in addition to N-vinylpyrrolidone can be prepared in a method similar to one of those disclosed above.
- hydrophilic monomers comprising such other hydrophilic moieties include glyceryl (meth)acrylate, dimethyl (meth)acrylamide, 2-hydroxyethyl (meth)acrylate, erythritol (meth)acrylate, xylitol (meth)acrylate, sorbitol (meth)acrylate, derivatives thereof, combinations thereof, and mixtures thereof.
- a macromonomer of the present invention can comprise units of one or more hydrophilic monomers disclosed above.
- a contact lens comprises surface amino group
- the coating polymer comprises acrylate- terminated polyvinylpyrrolidone
- the surface-modified contact lens is produced according to Scheme 1 , wherein n is a positive integer. In one embodiment, n can range from about 5 to about 1000, or from about 10 to 800, or from about 10 to about 600, or from about 20 to about 500.
- R is a direct bond or a divalent group selected from the group consisting of C1- 10 saturated and unsaturated hydrocarbon groups, CM O saturated and unsaturated hydrocarbon groups having one or more heteroatoms therein, C3-10 cyclic hydrocarbon groups, C3-10 heterocyclic groups, C 6 - 3 6 aryl groups, and C ⁇ -36 heteroaryi groups.
- the medical devices have increased surface lubricity.
- the medical devices of the present invention provide higher level of performance quality and/or comfort to the users due to their hydrophilic or lubricious surfaces.
- the medical devices are contact lenses, such as extended-wear contact lenses. Hydrophilic surfaces of such contact lenses substantially prevent or limit the adsorption of tear lipids and proteins on, and their eventual absorption into, the contact lenses, thus preserving the clarity of the contact lenses, and in turn preserving their performance quality and providing a higher level of comfort to the wearer.
- the present invention provides a medical device having a hydrophilic polymer coating that is attached to a surface of the medical device by the Michael addition reaction at surface functional groups.
- the hydrophilic polymer coating comprises a plurality of hydrophilic moieties, which may be the same or different, and a polymer functional group that is capable of reacting with the surface functional groups in the Michael addition reaction.
- such a polymer functional group comprises an ⁇ - ⁇ double bond conjugate to an electron-withdrawing group.
- such an electron-withdrawing group is a carbonyl group.
- such an electron-withdrawing group is a sulfonyl group.
- the coating polymer comprises monomeric units selected from the group consisting of N,N-dimethylacrylamide, polymerizable polyhydric alcohols, polymerizable alkylene oxides, polymerizable carboxylic acids, derivatives thereof, combinations thereof, and mixtures thereof.
- n is a positive integer.
- n can range from about 5 to about 1000, or from about 10 to 800, or from about 10 to about 600, or from about 20 to about 500, and R is as previously defined.
- the polymerizable polyhydric alcohols comprise a material other than polymerizable poly(alkylene glycol) (or poly(oxyalkylene)) and derivatives thereof.
- the polymerizable polyhydric alcohols are other than polymerizable poly(ethylene glycol) or polymerizable poly(propylene glycol).
- Non-limiting examples of such polymerizable polyhydric alcohols include glycerol (meth)acrylate, erythritol (meth)acrylate, xylitol (meth)acrylate, sorbitol (meth)acrylate, derivatives thereof, combinations thereof, r or mixtures thereof.
- the term "(meth)acrylate” means methacrylate or acrylate.
- the (meth)acrylate is mono(meth)acrylate.
- di(meth)acrylate or a mixture of mono(meth)acrylate and di(meth)acrylate may be used.
- the coating polymer comprises polysaccharides (such as hyaluronic acid or hydroxypropylmethyl cellulose) that have a terminal functional group that is capable of participating in the Michael addition reaction.
- polysaccharides such as hyaluronic acid or hydroxypropylmethyl cellulose
- the coating polymer comprises a macromonomer having a formula of
- the coating polymer can comprise carboxylic acids that are selected from alkenoic acids comprising 4 to and including 10 carbon atoms.
- the alkenoic acids are selected from the group consisting of maleic acid, fumaric acid, itaconic acid, derivatives thereof (such as maleic anhydride, fumaric anhydride, or itaconic anhydride), combinations thereof, and mixtures thereof.
- carboxylic acids also includes compounds that are capable of being converted into carboxylic acids, such as, for example, vinyldimethyloxozalone ("VDMO").
- the coating polymer is attached to the surface of the medical device through an intermediate compound or linking compound or an intermediate polymer (or also herein sometimes called "linking polymer") that has functional groups capable of interacting with functional groups on the surface of the medical device and functional groups of the coating polymer.
- the intermediate compound acts to couple the coating polymer to the surface of the medical device through the Michael addition reaction.
- the intermediate compound or polymer can comprise terminal amino groups, which are capable of forming bonds with functional groups on the surface of the medical device and with the conjugate unsaturated bond at the end of the hydrophilic coating polymer.
- the intermediate compound or polymer has a terminal amino group, it may be desirable to have no other functional groups in such intermediate compound or polymer that can react with the terminal amino group.
- a contact lens comprises surface carboxylic group
- the coating polymer comprises acrylate-terminated poly(vinylpyrrolidone)
- the linking compound is ethylene diamine
- n can range from about 5 to about 1000, or from about 10 to 800, or from about 10 to about 600, or from about 20 to about 500
- R is a direct bond or a divalent group selected from the group consisting of CM O saturated and unsaturated hydrocarbon groups, Ci- io saturated and unsaturated hydrocarbon groups having one or more heteroatoms therein, C 3 -10 cyclic hydrocarbon groups, C 3 -10 heterocyclic groups, C ⁇ -36 aryl groups, and C 6 -36 heteroaryl groups.
- the medical device has a polymer coating consisting or consisting essentially of units of vinylpyrrolidone.
- the surface treatment of the medical device can be carried out, for example, at about room temperature or under autoclave condition.
- the medical device is immersed in a solution comprising the coating polymer.
- the medical device is immersed in a solution comprising the coating polymer and the linking compound (or linking polymer).
- the medical device comes into contact with the linking compound and the coating polymer substantially simultaneously.
- the medical device is immersed in a solution comprising the linking compound.
- the coating polymer is added to the solution in which the medical device is still immersed.
- the solution is aqueous.
- the solution comprises a polar organic solvent, such as methanol or ethanol.
- the medical device comprises a polymeric material and the nucleophilic functional groups on the surface thereof are parts of units of the polymeric material.
- hydrogel polymers of contact lens typically comprise hydrophilic monomeric units, such as 2-hydroxyethyl methacrylate, which provides nucleophilic hydroxyl surface groups.
- a hydrogel polymer can comprise a suitable amount of a precursor of 2-aminoethyl methacrylate, which provides nucleophilic amino surface groups after the manufactured lens is neutralized.
- the surface of the medical device can be treated with a plasma discharge or corona discharge to increase the population of reactive surface groups.
- the type of gas introduced into the treatment chamber is selected to provide the desired type of reactive surface groups.
- hydroxyl surface groups can be produced with a treatment chamber atmosphere comprising water vapor or alcohols.
- Carboxyl surface groups can be generated with a treatment chamber comprising oxygen or air or another oxygen-containing gas.
- Ammonia or amines in a treatment chamber atmosphere can generate amino surface groups.
- Sulfur-containing gases, such as organic mercaptans or hydrogen sulfide can generate the mercaptan group on the surface.
- a combination of any of the foregoing gases also can be used in the treatment chamber.
- the surfaces of the polymeric article comprise a plurality of ⁇ - ⁇ double bonds conjugate to electron-withdrawing groups (such as carbonyl or sulfonyl group), and a coating polymeric material of the present invention comprises one or more nucleophilic groups.
- the plurality of ⁇ - ⁇ double bonds conjugate to electron-withdrawing groups can be generated on the surfaces of the polymeric article by reacting the article with a compound that has a moiety that comprises such an ⁇ - ⁇ double bond.
- a polymeric article the surfaces of which have a plurality of hydroxyl groups can be reacted with acryloyl chloride, methacryloyl chloride, fumaroyl chloride, or itaconyl chloride to generate a plurality of ⁇ - ⁇ double bonds conjugate to carbonyl electron-withdrawing groups.
- the polymeric article thus treated can then be exposed to a hydrophilic coating polymeric material comprising at least a nucleophilic group to form a hydrophilic coating thereon, as shown in Scheme 4, wherein the hydrophilic coating comprises a plurality of polyethylene glycol units.
- an acryloyl-functionalized contact lens as disclosed above, can be treated with hydrophilic poly(vinylpyrrolidone) to produce a hydrophilic coating as shown in Scheme 5.
- Non-hydrogel materials are hydrophobic polymeric materials that do not contain water in their equilibrium state.
- Typical non- r hydrogel materials comprise silicone acrylics, such as those formed from bulky silicone monomer (e.g., tris(trimethylsiloxy)silylpropyl methacrylate, commonly known as "TRIS" monomer), methacrylate end-capped poly(dimethylsiloxane) prepolymer, or silicones having fluoroalkyl side groups.
- hydrogel materials comprise hydrated, cross-linked polymeric systems containing water in an equilibrium state. Hydrogel materials contain about 5 weight percent water or more (up to, for example, about 80 weight percent).
- Non-limiting examples of materials suitable for the manufacture of medical devices, such as contact lenses, are herein disclosed.
- Hydrogel materials for medical devices can comprise a hydrophilic monomer, such as, HEMA, methacrylic acid (“MAA”), acrylic acid (“AA”), methacrylamide, acrylamide, N,N'-dimethylmethacrylamide, or N,N'-dimethylacrylamide; copolymers thereof; hydrophilic prepolymers, such as poly(alkylene oxide) having varying chain length, functionalized with polymerizable groups; and/or silicone hydrogels comprising siloxane-containing monomeric units and at least one of the aforementioned hydrophilic monomers and/or prepolymers.
- a hydrophilic monomer such as, HEMA, methacrylic acid (“MAA"), acrylic acid (“AA”), methacrylamide, acrylamide, N,N'-dimethylmethacrylamide, or N,N'-dimethylacrylamide
- copolymers thereof hydrophilic prepolymers, such as poly(alkylene oxide) having varying chain length, functionalized with polymerizable groups
- Hydrogel materials also can comprise a cyclic lactam, such as N-vinyl-2-pyrrolidone ("NVP"), or derivatives thereof.
- NDP N-vinyl-2-pyrrolidone
- Still further examples are the hydrophilic vinyl carbonate or vinyl carbamate monomers disclosed in U.S. Patent 5,070,215, and the hydrophilic oxazolone monomers disclosed in U.S. Patent 4,910,277.
- Other suitable hydrophilic monomers will be apparent to one skilled in the art.
- Silicone hydrogels generally have water content greater than about 5 weight percent and more commonly between about 10 to about 80 weight percent. Such materials are usually prepared by polymerizing a mixture containing at least one siloxane-containing monomer and at least one hydrophilic monomer. Typically, either the siloxane-containing monomer or the hydrophilic monomer functions as a crosslinking agent (a crosslinking agent or crosslinker being defined as a monomer having multiple polymerizable functionalities) or a separate crosslinker may be employed. Applicable siloxane-containing monomeric units for use in the formation of silicone hydrogels are known in the art and numerous examples are provided, for example, in U.S. Patents 4,136,250; 4,153,641 ; 4,740,533; 5,034,461 ; 5,070,215; 5,260,000; 5,310,779; and 5,358,995.
- Examples of applicable siloxane-containing monomeric units include bulky polysiloxanylalkyl (meth)acrylic monomers.
- the term "(meth)acrylic” means methacrylic or acrylic, depending on whether the term "meth” is present or absent.
- An example of bulky polysiloxanylalkyl (meth)acrylic monomers are represented by the following Formula I:
- X denotes -O- or -NR-; each Ri independently denotes hydrogen or methyl; each R 2 independently denotes a lower alkyl radical, phenyl radical or a group represented by
- each R 2 independently denotes a lower alkyl, fluoroalkyl, or phenyl radical; and h is 1 to 10.
- lower alkyl means an alkyl radical having 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms, such as methyl, ethyl, propyl, butyl, isobutyl, pentyl, isopentyl, or hexyl radical.
- a suitable bulky monomer is methacryloxypropyltris(trimethyl- siloxy)silane or tris(trimethylsiloxy)silylpropyl methacrylate (“TRIS").
- silicon-containing monomers includes silicone-containing vinyl carbonate or vinyl carbamate monomers such as: 1 ,3- bis ⁇ 4-vinyloxycarbonyloxy)but-1-yl ⁇ tetramethyldisiloxane; 3-(trimethylsilyl)propyl vinyl carbonate; 3-(vinyloxycarbonylthio)propyl- ⁇ tris(trimethylsiloxy)silane ⁇ ; 3- ⁇ tris(trimethylsiloxy)silyl ⁇ propyl vinyl carbamate; 3- ⁇ tris(trimethylsiloxy)silyl ⁇ propyl allyl carbamate; 3- ⁇ tris(trimethylsiloxy)silyl ⁇ propyl vinyl carbonate; t- butyldimethylsiloxyethyl vinyl carbonate; trimethylsilylethyl vinyl carbonate; and trimethylsilylmethyl vinyl carbonate.
- silicone-containing vinyl carbonate or vinyl carbamate monomers such as: 1 ,3- bis ⁇ 4-vinyloxycarbonyloxy)but
- silicon-containing monomers includes silicone-containing vinyl carbonate or vinyl carbamate monomers such as: 1 ,3- bis ⁇ 4-vinyloxycarbonyloxy)but-1-yl ⁇ tetramethyl-disiloxane; 3-(trimethylsilyl)propyl vinyl carbonate; 3-(vinyloxycarbonylthio)propyl- ⁇ tris(trimethylsiloxy)silane ⁇ ; 3- ⁇ tris(tri-methyisiloxy)silyl ⁇ propyl vinyl carbamate; 3- ⁇ tris(trimethylsiloxy)silyi ⁇ propyl allyl carbamate; 3- ⁇ tris(trimethylsiloxy)silyl ⁇ propyl vinyl carbonate; t- butyldimethylsiloxyethyl vinyl carbonate; trimethylsilylethyl vinyl carbonate; and trimethylsilylmethyl vinyl carbonate.
- silicone-containing vinyl carbonate or vinyl carbamate monomers such as: 1 ,3- bis ⁇ 4-vinyloxycarbony
- Y 1 denotes -O-, -S- or -NH-;
- R denotes a silicon-containing organic radical
- R 3 denotes hydrogen or methyl
- d is 1 , 2, 3 or 4.
- Suitable silicon-containing organic radicals RSi include the following: -(CH 2 J n . Si[(CH 2 ) m ,CH 3 ] 3 ; -(CH 2 J n . Si[OSi(CH 2 ) m ,CH 3 ] 3 ;
- R 5 denotes an alkyi radical or a fluoroalkyl radical having from 1 to and including 6 carbon atoms; e is 1 to 200; n' is 1 , 2, 3 or 4; and m' is 0, 1 , 2, 3, 4 or 5.
- An example of a particular species within Formula Il is represented by Formula III.
- silicon-containing monomer includes polyurethane- polysiloxane macromonomers (also sometimes referred to as prepolymers), which may have hard-soft-hard blocks like traditional urethane elastomers. They may be end-capped with a hydrophilic monomer such as HEMA.
- silicone urethanes are disclosed in a variety or publications, including Lai, Yu-Chin, "The Role of Bulky Polysiloxanylalkyl Methacryates in Polyurethane- Polysiloxane Hydrogels," Journal of Applied Polymer Science, Vol. 60, 1193- 1199 (1996).
- PCT Published Application No. WO 96/31792 discloses examples of such monomers, which disclosure is hereby incorporated by reference in its entirety.
- Further examples of silicone urethane monomers are represented by Formulae IV and V:
- D denotes an alkyl diradical, an alkyl cycloalkyl diradical, a cycloalkyl diradical, an aryl diradical or an alkylaryl diradical having 6 to 30 carbon atoms
- G denotes an alkyl diradical, a cycloalkyl diradical, an alkyl cycloalkyl diradical, an aryl diradical or an alkylaryl diradical having 1 to 40 carbon atoms and which may contain ether, thio or amine linkages in the main chain;
- a is at least 1 ;
- A denotes a divalent polymeric radical of Formula Vl:
- each R s independently denotes an alkyl or fluoro-substituted alkyl group having 1 to 10 carbon atoms which may contain ether linkages between carbon atoms; m' is at least 1 ; and p is a number which provides a moiety weight of 400 to 10,000; each of E and E' independently denotes a polymerizable unsaturated organic radical represented by Formula VII:
- R 6 is hydrogen or methyl
- R 7 is hydrogen, an alkyl radical having from 1 to and including 6 carbon atoms, or a -CO-Y-R 9 radical wherein Y is -O-, -S- or -NH-;
- R 8 is a divalent alkylene radical having from 1 to and including 10 carbon r atoms
- R 9 is a alkyl radical having from 1 to and including 12 carbon atoms
- X denotes -CO- or -OCO-
- Z denotes -O- or -NH-
- Ar denotes a substituted or unsubstituted aromatic radical having from 6 to and including 30 carbon atoms
- w is from 0 to and including 6; x is 0 or 1 ; y is 0 or 1 ; and z is 0 or 1.
- a preferred silicone hydrogel material comprises (in the bulk monomer mixture that is copolymerized) 5 to 50 percent, preferably 10 to 25, by weight of one or more silicone macromonomers, 5 to 75 percent, preferably 30 to 60 percent, by weight of one or more poly(siloxanylalkyl (meth)acrylic) monomers, and 10 to 50 percent, preferably 20 to 40 percent, by weight of a hydrophilic monomer.
- the silicone macromonomer is a poly(organosiloxane) capped with an unsaturated group at two or more ends of the molecule.
- the silane macromonomer is a silicon-containing vinyl carbonate or vinyl carbamate or a polyurethane-polysiloxane having one or more hard-soft-hard blocks and end- capped with a hydrophilic monomer.
- a polymeric material of the present invention comprises an additional monomer selected from the group consisting of hydrophilic monomers and hydrophobic monomers.
- Hydrophilic monomers can be nonionic monomers, such as 2- hydroxyethyl methacrylate (“HEMA”), 2-hydroxyethyl acrylate (“HEA”), 2-(2- ethoxyethoxy)ethyl (meth)acrylate, glyceryl (meth)acrylate, poly(ethylene glycol (meth)acrylate), tetrahydrofurfuryl (meth)acrylate, (meth)acrylamide, N 1 N'- dimethylmethacrylamide, N,N'-dimethylacrylamide("DMA”), N-vinyl-2-pyrrolidone (or other N-vinyl lactams), N-vinyl acetamide, and combinations thereof.
- HEMA 2- hydroxyethyl methacrylate
- HOA 2-hydroxyethyl acrylate
- glyceryl (meth)acrylate poly(ethylene glycol (meth)
- hydrophilic monomers can have more than one polymerizable group, such as tetraethylene glycol (meth)acrylate, triethylene glycol (meth)acryiate, tripropylene glycol (meth)acrylate, ethoxylated bisphenol-A (meth)acrylate, pentaerythritol (meth)acrylate, pentaerythritol (meth)acrylate, ditrimethylolpropane (meth)acrylate, ethoxylated trimethylolpropane (meth)acrylate, dipentaerythritol (meth)acrylate, alkoxylated glyceryl (meth)acrylate.
- polymerizable group such as tetraethylene glycol (meth)acrylate, triethylene glycol (meth)acryiate, tripropylene glycol (meth)acrylate, ethoxylated bisphenol-A (meth)acrylate, pentaerythritol (me
- hydrophilic monomers are the vinyl carbonate and vinyl carbamate monomers disclosed in U.S. Patent 5,070,215, and the hydrophilic oxazolone monomers disclosed in U.S. Patent 4,910,277. The contents of these patents are incorporated herein by reference.
- the hydrophilic monomer also can be an anionic monomer, such as 2-methacryloyloxyethylsulfonate salts.
- Substituted anionic hydrophilic monomers such as from acrylic and methacrylic acid, can also be utilized wherein the substituted group can be removed by a facile chemical process.
- Non-limiting examples of such substituted anionic hydrophilic monomers include trimethylsilyl esters of (meth)acrylic acid, which are hydrolyzed to regenerate an anionic carboxyl group.
- the hydrophilic monomer also can be a cationic monomer selected from the group consisting of 3- methacrylamidopropyl-N,N,N-trimethyammonium salts, 2-methacryloyloxyethyl- N,N,N-trimethylarnmonium salts, and amine-containing monomers, such as 3- methacrylamidopropyl-N,N-dimethyl amine.
- Other suitable hydrophilic monomers will be apparent to one skilled in the art.
- Non-limiting examples of hydrophobic monomers are CrC 2 O alkyl and C 3 -C 20 cycloalkyl (meth)acrylates, substituted and unsubstituted aryl (meth)acrylates (wherein the aryl group comprises 6 to 36 carbon atoms), (meth)acrylonitrile, styrene, lower alkyl styrene, lower alkyl vinyl ethers, and C 2 - C 10 perfluoroalkyl (meth)acrylates and correspondingly partially fluorinated (meth)acrylates.
- Solvents useful in the surface treatment of the medical device, such as a contact lens include solvents that readily solubilize the polymers such as water, alcohols, lactams, amides, cyclic ethers, linear ethers, carboxylic acids, and combinations thereof.
- Preferred solvents include tetrahydrofuran (“THF”), acetonitrile, N,N-dimethyl formamide (“DMF”), and water. The most preferred solvent is water.
- PVP Hydroxyl-functionalized poly(vinylpyrrolidone)
- PureVision® contact lenses (comprising silicone hydrogel, Bausch & Lomb Incorporated, Rochester, New York) were dried and then plasma treated sequentially with ammonia, butadiene, and ammonia to generate amine- containing groups on the surfaces of the lenses.
- the lenses were placed in glass vials.
- Freshly prepared methanol solution containing 16.8% (by weight) of acrylate PVP of Example 2 was then added to the glass vials, which were then set on a rotary machine for three days at room temperature.
- the treated lenses were rinsed with Dl water and stored in borate buffer saline ("BBS").
- Control lenses (only plasma treated) were extracted with isopropanol, rinsed with Dl water, and placed in BBS. After being desalinated, both control lenses and coated lenses were subjected to standard surface analysis by XPS, and water contact angles were measured on the lenses. The results are shown in Table 1.
- the results show an increase in surface carbon and large decreases in surface nitrogen, oxygen, and silicon, indicating that the lens surfaces are covered with the coating polymer.
- the water contact angle of coated lenses is smaller than that of control lenses, indicating that the coated lenses are more wettable and, thus, should be more lubricious.
- the coated medical device has a water contact angle of less than about 50 degrees.
- the water contact angle can be less than about 40 degrees, or less than about 30 degrees, or less than about 20 degrees.
- Low contact angles can be obtained with hydrophilic coating polymers having an abundance of hydrophilic moieties.
- PureVision® contact lenses (comprising silicone hydrogel, Bausch & Lomb Incorporated, Rochester, New York) were plasma treated in succession with ammonia, butadiene, and ammonia.
- the plasma-treated lenses were placed in a 5% (by weight) solution of acryloyl chloride in tetrahydrofuran overnight, followed by hydration.
- the acryloyl chloride-treated lenses were placed in a 2% (by weight) solution of amino-terminated polyamidoamine (“PAMAM”) dendrimer (generation 4) in methanol/water (5/1 v/v) for 72 hours, and then were rinsed with distilled water and stored in borate buffered saline.
- PAMAM amino-terminated polyamidoamine
- Another batch of lenses serving as control lenses was not treated with the PAMAM dendrimer, were extracted with isopropanol, then rinses in deionized water and then stored in borate buffered saline.
- the results show that treatment of Pure Vision® lenses with hydrophilic PAMAM dendrimer via Michael addition reaction produced a lower contact angle as compared to the control lenses or lenses that were not exposed to PAMAM.
- the PAMAM-treated lenses also had a significantly lower surface silicon content and a significantly higher surface nitrogen content as compared to control lenses and lenses that were not exposed to PAMAM.
- the lower contact angle and lower surface silicon content indicate that the PAMAM-treated lenses are much more wettable than control lenses or lenses that were not treated with PAMAM.
- the present invention also provides a method for producing a medical device having improved hydrophilic surfaces.
- the method comprises: (a) providing the medical device having a medical-device surface functional group; (b) providing a polymer having a hydrophilic moiety and a polymer functional group capable of interacting with said medical-device surface functional group through the Michael addition reaction; and (c) contacting the medical device with the polymer at a condition sufficient to produce the medical device having an increased surface hydrophilicity.
- the interaction of the polymer functional group and the medical-device surface functional group involves a Michael addition reaction between said groups.
- such an interaction involves the Michael addition reaction between the polymer functional group and a functional group of a linking compound (or linking polymer), and a second reaction between a second functional group of the linking compound (or linking polymer) and the medical-device surface functional group.
- such an interaction involves the Michael addition reaction between the medical-device surface functional group and a functional group of a linking compound (or linking polymer), and a second reaction between a second functional group of the linking compound (or linking polymer) and the polymer functional group.
- the medical device is contacted with the linking compound or polymer and the coating polymer substantially simultaneously.
- the medical device may be contacted with the linking compound or polymer in a medium.
- the coating polymer is subsequently added into the medium after an elapsed time to produce the finally treated medical device.
- the step of contacting can be effected at ambient condition or under autoclave condition at about 120° C.
- the temperature for treatment can range from ambient to about 120 0 C, or from slightly above ambient temperature to about 80 0 C.
- the treatment time can range from about 10 seconds to about 5 days, or from about 1 minute to about 3 days, or from about 10 minutes to about 24 hours, or from about 10 minutes to about 4 hours, or from about 10 minutes r to about 2 hours.
- the method further comprises the step of treating the surface of the medical device to increase a population of the medical-device surface functional groups before the step of contacting the medical device with the coating polymer or with the coating polymer and the linking polymer.
- the step of treating the surface of the medical device is carried out in a plasma discharge or corona discharge environment.
- a gas is supplied to the discharge environment to provide the desired surface functional groups.
- Medical devices having a hydrophilic coating of the present invention can be used advantageously in many medical procedures.
- contact lenses having a hydrophilic coating of the present invention and/or produced by a method of the present invention can be advantageously used to correct the vision of the natural eye.
- Medical articles that are in contact with body fluid such as a wound dressing, catheters, implants (e.g., artificial hearts or other artificial organs), can be provided with a hydrophilic coating of the present invention to inhibit bacterial attachment and growth or to reduce a deposit of lipids or proteins thereon.
- the coating polymer of any one of the methods disclosed herein comprises units selected from the group consisting of polymerizable poly(N-vinylpyrrolidone), polyhydric alcohols, polymerizable carboxylic acids, copolymers thereof, combinations thereof, and mixtures r thereof.
- the present invention provides a method of making a medical device that has reduced affinity for bacterial attachment.
- the method comprises: (a) forming the medical device comprising a polymeric material; (b) treating the medical device such that a surface thereof becomes more hydrophilic.
- the method comprises: (a) forming the medical device comprising a polymeric material having a medical-device surface functional group; (b) contacting the medical device with a coating polymer having a hydrophilic moiety and a coating-polymer functional group that is capable of interacting with said medical-device surface functional group via the Michael addition reaction.
- the interaction between the coating polymer and the surface of the medical device is direct.
- the coating polymer also may interact indirectly with the surface of the medical device through another compound, such as a linking compound or polymer that comprises a first functional group capable of interacting with the medical-device surface functional group and a second functional group capable of interacting with the coating- polymer functional group.
- a linking compound or polymer that comprises a first functional group capable of interacting with the medical-device surface functional group and a second functional group capable of interacting with the coating- polymer functional group.
- One or both of the interactions are effected by the Michael addition reaction.
- Non-limiting examples of materials for the medical device, the linking compound or polymer, and the coating polymer are disclosed above.
- the medical device is formed by disposing precursors for the medical device material in a cavity of a mold, which cavity has the shape of the medical device, and polymerizing the precursors.
- a solid block of a polymeric material is first produced, then the medical device is formed from such a solid block; e.g., by shaping, cutting, lathing, machining, or a combination thereof.
- the medical devices produced in a method of the present invention can be contact lenses, intraocular lenses, corneal inlays, corneal rings, or keratoprotheses.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07812327A EP2035050A2 (fr) | 2006-06-30 | 2007-06-26 | Modification des surfaces d'articles polymères par réaction d'addition de michael |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/479,227 | 2006-06-30 | ||
US11/480,243 | 2006-06-30 | ||
US11/480,243 US20080003259A1 (en) | 2006-06-30 | 2006-06-30 | Modification of surfaces of polymeric articles by Michael addition reaction |
US11/479,227 US20080003252A1 (en) | 2006-06-30 | 2006-06-30 | Functionalized hydrophilic macromonomers and medical devices incorporating same |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008005752A2 true WO2008005752A2 (fr) | 2008-01-10 |
WO2008005752A3 WO2008005752A3 (fr) | 2008-09-18 |
Family
ID=38669223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/072119 WO2008005752A2 (fr) | 2006-06-30 | 2007-06-26 | Modification des surfaces d'articles polymères par réaction d'addition de michael |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2035050A2 (fr) |
WO (1) | WO2008005752A2 (fr) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010096649A1 (fr) | 2009-02-21 | 2010-08-26 | Tyco Healthcare Group Lp | Dispositifs médicaux présentant des surfaces activées |
WO2014149544A1 (fr) | 2013-03-15 | 2014-09-25 | Johnson & Johnson Vision Care, Inc. | Lentille de contact contenant de la silicone présentant une quantité réduite de silicium sur la surface |
US9486311B2 (en) | 2013-02-14 | 2016-11-08 | Shifamed Holdings, Llc | Hydrophilic AIOL with bonding |
US10195018B2 (en) | 2013-03-21 | 2019-02-05 | Shifamed Holdings, Llc | Accommodating intraocular lens |
US10350056B2 (en) | 2016-12-23 | 2019-07-16 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lenses and methods for making and using same |
WO2019185302A1 (fr) | 2018-03-27 | 2019-10-03 | Mercene Labs Ab | Revêtement et apprêt |
US10548718B2 (en) | 2013-03-21 | 2020-02-04 | Shifamed Holdings, Llc | Accommodating intraocular lens |
US10736734B2 (en) | 2014-08-26 | 2020-08-11 | Shifamed Holdings, Llc | Accommodating intraocular lens |
US10987214B2 (en) | 2017-05-30 | 2021-04-27 | Shifamed Holdings, Llc | Surface treatments for accommodating intraocular lenses and associated methods and devices |
US11141263B2 (en) | 2015-11-18 | 2021-10-12 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lens |
US11266496B2 (en) | 2017-06-07 | 2022-03-08 | Shifamed Holdings, Llc | Adjustable optical power intraocular lenses |
CN116635492A (zh) * | 2020-12-30 | 2023-08-22 | 康沃特克科技公司 | 医疗器材的官能化 |
US12167960B2 (en) | 2016-12-23 | 2024-12-17 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lenses and methods for making and using same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6440571B1 (en) * | 1999-05-20 | 2002-08-27 | Bausch & Lomb Incorporated | Surface treatment of silicone medical devices with reactive hydrophilic polymers |
US20020120333A1 (en) * | 2001-01-31 | 2002-08-29 | Keogh James R. | Method for coating medical device surfaces |
WO2003063926A1 (fr) * | 2002-02-01 | 2003-08-07 | Sustech Gmbh & Co. Kg | Prepolymeres en etoile pour la production de revetements ultraminces formant des hydrogels |
AU2005234905B2 (en) * | 2004-04-21 | 2008-07-31 | Alcon Inc. | Curable colored inks for making colored silicone hydrogel lenses |
-
2007
- 2007-06-26 WO PCT/US2007/072119 patent/WO2008005752A2/fr active Application Filing
- 2007-06-26 EP EP07812327A patent/EP2035050A2/fr not_active Withdrawn
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9555154B2 (en) | 2009-02-21 | 2017-01-31 | Covidien Lp | Medical devices having activated surfaces |
EP2398523A1 (fr) * | 2009-02-21 | 2011-12-28 | Tyco Healthcare Group LP | Dispositifs médicaux présentant des surfaces activées |
EP2398523A4 (fr) * | 2009-02-21 | 2014-04-16 | Covidien Lp | Dispositifs médicaux présentant des surfaces activées |
WO2010096649A1 (fr) | 2009-02-21 | 2010-08-26 | Tyco Healthcare Group Lp | Dispositifs médicaux présentant des surfaces activées |
US10709549B2 (en) | 2013-02-14 | 2020-07-14 | Shifamed Holdings, Llc | Hydrophilic AIOL with bonding |
US10350057B2 (en) | 2013-02-14 | 2019-07-16 | Shifamed Holdings, Llc | Hydrophilic AIOL with bonding |
US9486311B2 (en) | 2013-02-14 | 2016-11-08 | Shifamed Holdings, Llc | Hydrophilic AIOL with bonding |
US11540916B2 (en) | 2013-02-14 | 2023-01-03 | Shifamed Holdings, Llc | Accommodating intraocular lens |
US9250357B2 (en) | 2013-03-15 | 2016-02-02 | Johnson & Johnson Vision Care, Inc. | Silicone-containing contact lens having reduced amount of silicon on the surface |
WO2014149544A1 (fr) | 2013-03-15 | 2014-09-25 | Johnson & Johnson Vision Care, Inc. | Lentille de contact contenant de la silicone présentant une quantité réduite de silicium sur la surface |
US10195018B2 (en) | 2013-03-21 | 2019-02-05 | Shifamed Holdings, Llc | Accommodating intraocular lens |
US10548718B2 (en) | 2013-03-21 | 2020-02-04 | Shifamed Holdings, Llc | Accommodating intraocular lens |
US11583390B2 (en) | 2014-08-26 | 2023-02-21 | Shifamed Holdings, Llc | Accommodating intraocular lens |
US10736734B2 (en) | 2014-08-26 | 2020-08-11 | Shifamed Holdings, Llc | Accommodating intraocular lens |
US12251303B2 (en) | 2014-08-26 | 2025-03-18 | Shifamed Holdings, Llc | Accommodating intraocular lens |
US11141263B2 (en) | 2015-11-18 | 2021-10-12 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lens |
US10350056B2 (en) | 2016-12-23 | 2019-07-16 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lenses and methods for making and using same |
US11065109B2 (en) | 2016-12-23 | 2021-07-20 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lenses and methods for making and using same |
US12167960B2 (en) | 2016-12-23 | 2024-12-17 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lenses and methods for making and using same |
US10987214B2 (en) | 2017-05-30 | 2021-04-27 | Shifamed Holdings, Llc | Surface treatments for accommodating intraocular lenses and associated methods and devices |
US11266496B2 (en) | 2017-06-07 | 2022-03-08 | Shifamed Holdings, Llc | Adjustable optical power intraocular lenses |
WO2019185302A1 (fr) | 2018-03-27 | 2019-10-03 | Mercene Labs Ab | Revêtement et apprêt |
EP3655247B2 (fr) † | 2018-03-27 | 2024-10-09 | Mercene Coatings AB | Revêtement et apprêt |
US10975246B2 (en) | 2018-03-27 | 2021-04-13 | Mercene Coatings Ab | Coating and primer |
EP3655247B1 (fr) | 2018-03-27 | 2021-01-13 | Mercene Coatings AB | Revêtement et apprêt |
CN116635492A (zh) * | 2020-12-30 | 2023-08-22 | 康沃特克科技公司 | 医疗器材的官能化 |
Also Published As
Publication number | Publication date |
---|---|
WO2008005752A3 (fr) | 2008-09-18 |
EP2035050A2 (fr) | 2009-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080003259A1 (en) | Modification of surfaces of polymeric articles by Michael addition reaction | |
EP2035050A2 (fr) | Modification des surfaces d'articles polymères par réaction d'addition de michael | |
US7942929B2 (en) | Coating solutions comprising segmented reactive block copolymers | |
EP1572261B1 (fr) | Traitement de surface d'un dispositif medical | |
EP2597113A1 (fr) | Solutions de revêtement comprenant des segments de copolymères séquencés réactifs | |
EP2231207A1 (fr) | Solutions de revêtement comprenant des segments de copolymères séquencés interactifs | |
WO2007027500A2 (fr) | Dispositifs medicaux a modification de surface et procedes d'elaboration | |
WO2007064594A2 (fr) | Nouveaux revetements sur lentilles ophtalmique | |
JP2012514114A (ja) | ブラシコポリマー | |
KR20020042530A (ko) | 중간 탄소 코팅에 부착된 친수성 중합체 사슬을 포함하는실리콘 히드로겔 콘택트 렌즈의 표면 처리 | |
WO2009085754A1 (fr) | Copolymères séquencés segmentés interactifs | |
US20070264503A1 (en) | Polymers comprising polyhydric alcohols, medical devices modified with same, and method of making | |
WO2009055189A1 (fr) | Dispositif de fabrication de dispositifs biomédicaux | |
WO2009085759A1 (fr) | Copolymères à blocs réactifs segmentés | |
US20070264509A1 (en) | Copolymer and Medical Device with the Copolymer | |
WO2007047716A2 (fr) | Dispositifs medicaux a surface modifiee et leur procede de fabrication | |
US20080003252A1 (en) | Functionalized hydrophilic macromonomers and medical devices incorporating same | |
WO2008005753A2 (fr) | MACROMONOMÈRES HYDROPHILES COMPORTANT UN GROUPEMENT TERMINAL CARBOXYLIQUE α,β-CONJUGUÉ ET DISPOSITIFS MÉDICAUX LES INCORPORANT | |
US7390863B2 (en) | Polymeric materials having enhanced ion and water transport property and medical devices comprising same | |
EP2215501A1 (fr) | Dispositifs biomédicaux | |
JP2008504395A (ja) | コンタクトレンズの表面改質の改良用新規プレポリマー | |
WO2009079224A2 (fr) | Dispositifs biomédicaux modifiés en surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780024792.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07812327 Country of ref document: EP Kind code of ref document: A2 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2009518510 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007812327 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |