WO2008069265A1 - Air-conditioner - Google Patents
Air-conditioner Download PDFInfo
- Publication number
- WO2008069265A1 WO2008069265A1 PCT/JP2007/073566 JP2007073566W WO2008069265A1 WO 2008069265 A1 WO2008069265 A1 WO 2008069265A1 JP 2007073566 W JP2007073566 W JP 2007073566W WO 2008069265 A1 WO2008069265 A1 WO 2008069265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- unit
- heating
- pressure
- heat source
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 101
- 230000007246 mechanism Effects 0.000 claims abstract description 73
- 238000005057 refrigeration Methods 0.000 claims abstract description 13
- 239000003507 refrigerant Substances 0.000 claims description 303
- 239000002826 coolant Substances 0.000 abstract description 10
- 238000004891 communication Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 13
- 238000001816 cooling Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 238000004378 air conditioning Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000011084 recovery Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007664 blowing Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0233—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
- F25B2313/02334—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02741—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/19—Calculation of parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/28—Means for preventing liquid refrigerant entering into the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
Definitions
- the present invention relates to an air conditioner, in particular, a plurality of utilization units including a utilization side expansion mechanism and a utilization side heat exchanger are connected to a heat source unit including a compressor and a heat source side heat exchanger. It is related with the air conditioning apparatus in which the heating operation by the refrigerating cycle operation in which the high pressure side becomes the pressure exceeding the critical pressure of the refrigerant is provided.
- a heating operation is possible having a refrigerant circuit configured by connecting a plurality of utilization units including a utilization side expansion valve and a utilization side heat exchanger to a heat source unit.
- a refrigerant circuit configured by connecting a plurality of utilization units including a utilization side expansion valve and a utilization side heat exchanger to a heat source unit.
- utilization side expansion valve configured by connecting a plurality of utilization units including a utilization side expansion valve and a utilization side heat exchanger to a heat source unit.
- multi-type air conditioners There are so-called multi-type air conditioners.
- Patent Document 1 Japanese Unexamined Patent Publication No. 2003-121015
- the usage units in the heating stopped state are in the usage unit. Since the refrigerant flow in the refrigerant is eliminated, the refrigerant pressure at the high-pressure side of the refrigeration cycle operation is mainly the same as that of the utilization unit during heating! If the stagnation phenomenon occurs and the amount of refrigerant stagnating in the use unit when heating is stopped (hereinafter referred to as refrigerant stagnation amount) increases, the amount of refrigerant circulating in the refrigerant circuit may be insufficient.
- the discharge temperature of the compressor for compressing the refrigerant excessively rises, and heating cannot be continued.
- the opening degree of the use side expansion valve of the use unit during the heating stop is temporarily set.
- the refrigerant recovery operation described above uses the discharge temperature of the compressor as a threshold value, control for increasing the opening of the use-side expansion valve relatively abruptly in consideration of protection of the compressor.
- the upper limit control of the discharge temperature is performed, a large refrigerant flow noise is generated in the use unit that is not heating.
- the refrigerant discharge temperature is increased because the refrigerant pressure on the high-pressure side exceeds the critical pressure of the refrigerant. Consideration for excessive rise of the refrigerant is further required, and refrigerant flow noise in the use unit during discharge temperature upper limit control is likely to occur.
- An object of the present invention is to provide a refrigerant circuit configured by connecting a plurality of utilization unit forces including a utilization side expansion mechanism and a utilization side heat exchanger, and a heat source unit including a compressor and a heat source side heat exchanger. It has an air conditioner that can be heated by refrigeration cycle operation where the high pressure side exceeds the critical pressure of the refrigerant, and the discharge temperature of the compressor is excessively increased by the refrigerant stagnation phenomenon. This is to prevent the generation of refrigerant flow noise in the use unit when heating is stopped.
- a plurality of utilization units including a utilization side expansion mechanism and a utilization side heat exchanger are connected to a heat source unit including a compressor and a heat source side heat exchanger.
- a heat source unit including a compressor and a heat source side heat exchanger.
- the refrigerant pressure in the user-side heat exchanger exceeds the critical pressure and is not in a gas-liquid two-phase state, so it exists in the user unit from the refrigerant temperature and refrigerant pressure in the user unit. It is possible to calculate the amount of refrigerant to be performed.
- the refrigerant stagnation amount of the usage unit when heating is stopped is calculated, and the use side expansion mechanism of the usage unit when heating is stopped is controlled according to the calculated refrigerant stagnation amount. Therefore, it is possible to prevent the refrigerant discharge temperature from being excessively increased due to a shortage of the refrigerant circulating in the refrigerant circuit due to the refrigerant stagnation in the use unit that is not heating.
- the use side expansion mechanism is controlled more finely than when the discharge temperature upper limit control is performed, which is the refrigerant recovery operation that recovers the refrigerant that has fallen into the use unit that has stopped heating with the discharge temperature of the compressor as a threshold value.
- the discharge temperature upper limit control is performed, which is the refrigerant recovery operation that recovers the refrigerant that has fallen into the use unit that has stopped heating with the discharge temperature of the compressor as a threshold value.
- heating is stopped here means not only when the user has intentionally instructed the unit to stop heating using a remote controller or the like, but also during the heating, This includes cases where the condition continues for a long time.
- the air conditioner according to the second aspect of the invention is the air conditioner according to the first aspect of the invention.
- the refrigerant temperature is the inlet side of the use side heat exchanger during heating, the use side during heating. It is detected by a temperature sensor provided on at least one of the outlet side of the heat exchanger and the use side heat exchanger.
- thermosensors provided on at least one of the inlet side of the use side heat exchanger during heating, the outlet side of the use side heat exchanger during heating, and the use side heat exchanger Since the refrigerant temperature detected by the above is used for calculating the refrigerant stagnation amount, the calculation accuracy of the refrigerant stagnation amount can be improved.
- the air conditioner according to the third aspect of the present invention is the same as the air conditioner according to the second aspect of the present invention!
- the usage side expansion mechanism of the usage unit that is not warmed is controlled so that the refrigerant passes through the usage unit that is not heated.
- This air conditioner produces a refrigerant flow in the use unit when heating is stopped.
- the refrigerant temperature detection accuracy can be increased.
- FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
- FIG. 2 is a pressure-enthalpy diagram illustrating the refrigeration cycle.
- FIG. 3 is a flowchart of discharge temperature upper limit control and refrigerant stagnation control.
- FIG. 1 is a schematic configuration diagram of an air-conditioning apparatus 1 according to an embodiment of the present invention.
- the air conditioner 1 is an apparatus used for indoor air conditioning by performing a vapor compression refrigeration cycle operation.
- the air conditioner 1 is a refrigerant communication pipe that connects the heat source unit 2, a plurality of (here, two) use units 4 and 5, and the heat source unit 2 and the use units 4 and 5.
- the first refrigerant communication pipe 6 and the second refrigerant communication pipe 7 are provided. That is, the vapor compression refrigerant circuit 10 of the air conditioner 1 of the present embodiment is configured by connecting the heat source unit 2, the utilization units 4 and 5, and the refrigerant communication pipes 6 and 7. The Yes.
- the refrigerant circuit 10 is compressed to a pressure exceeding the critical pressure of the refrigerant, cooled, depressurized, heated and evaporated, and then again.
- the refrigeration cycle operation of being compressed is performed.
- the utilization units 4 and 5 are installed indoors and connected to the heat source unit 2 via the refrigerant communication pipes 6 and 7 and constitute a part of the refrigerant circuit 10.
- the configuration of the usage units 4 and 5 will be described. Since the usage unit 4 and the usage unit 5 have the same configuration, only the configuration of the usage unit 4 will be described here, and the configuration of the usage unit 5 indicates each part of the usage unit 4. Instead of the 40's code, the 50's code is used, and the description of each part is omitted.
- the usage unit 4 mainly has a usage-side refrigerant circuit 10a (in the usage unit 5, the usage-side refrigerant circuit 10b) that constitutes a part of the refrigerant circuit 10.
- the use side refrigerant circuit 10a mainly includes a use side expansion mechanism 41 and a use side heat exchanger 42.
- the use-side expansion mechanism 41 is a mechanism for decompressing the refrigerant.
- the use-side expansion mechanism 41 adjusts the flow rate of the refrigerant flowing in the use-side refrigerant circuit 10a (the use-side refrigerant circuit 10b in the use unit 5).
- This is an electric expansion valve connected to one end of the use side heat exchanger 42 to perform the above.
- the use side expansion mechanism 41 has one end connected to the first refrigerant communication pipe 6 and the other end connected to the use side heat exchanger 42.
- the use side heat exchanger 42 is a heat exchanger that functions as a refrigerant heater or cooler.
- the utilization heat exchanger 42 has one end connected to the utilization side expansion mechanism 41 and the other end connected to the second refrigerant communication pipe 7.
- the usage unit 4 includes a usage-side fan 43 for sucking indoor air into the unit and supplying it to the room again.
- the usage unit 4 includes a refrigerant flowing through the usage-side heat exchanger 42 and the indoor air. It is possible to exchange heat.
- the use side fan 43 is rotationally driven by a use side fan drive motor 43a.
- the utilization unit 4 is provided with various sensors. Specifically, when the use-side heat exchanger 42 is functioned as a refrigerant cooler, the first use-side heat for detecting the cooler outlet refrigerant temperature Tho is provided on the outlet side of the use-side heat exchanger 42. Exchanger temperature sensor 44 When the use side heat exchanger 42 functions as a refrigerant cooler, the use side heat exchanger 42 has a second use side heat exchanger that detects the refrigerant inlet refrigerant temperature Thi at the inlet side. A temperature sensor 45 is provided. In the present embodiment, the use side heat exchanger temperature sensors 44 and 45 are thermistors. In addition, the usage unit 4 has a usage-side control unit 46 that controls the operation of each unit constituting the usage unit 4.
- the use-side control unit 46 includes a microcomputer, a memory, and the like provided for controlling the use unit 4, and is connected to a remote controller (not shown) for individually operating the use unit 4. Control signals etc. can be exchanged between them, and control signals etc. can be exchanged with the heat source unit 2 via the transmission line 8a.
- the heat source unit 2 is installed outside and is connected to the usage units 4 and 5 through the refrigerant communication pipes 6 and 7, and the refrigerant circuit 10 is configured between the usage units 4 and 5.
- the heat source unit 2 mainly has a heat source side refrigerant circuit 10c constituting a part of the refrigerant circuit 10! /.
- the heat source side refrigerant circuit 10c mainly includes a compressor 21, a switching mechanism 22, a heat source side heat exchanger 23, a heat source side expansion mechanism 24, a first closing valve 25, and a second closing valve 26. have.
- the compressor 21 is a hermetic compressor driven by a compressor drive motor 21a. In the present embodiment, only one compressor 21 is provided. However, the present invention is not limited to this, and two or more compressors 21 may be connected in parallel depending on the number of connected units. Good.
- the switching mechanism 22 is a mechanism for switching the direction of the flow of the refrigerant in the refrigerant circuit 10.
- the heat source side heat exchanger 23 is used as a refrigerant cooler compressed by the compressor 21.
- the discharge side of the compressor 21 and one end of the heat source side heat exchanger 23 are connected.
- the heating-side heat exchangers 42 and 52 are connected by the compressor 21 during heating.
- the switching mechanism 22 is a four-way switching valve connected to the suction side of the compressor 21, the discharge side of the compressor 21, the heat source side heat exchanger 23, and the second closing valve 26. Note that the switching mechanism 22 is not limited to a four-way switching valve.
- the switching mechanism 22 is configured to have a function of switching the flow direction of the refrigerant as described above by combining a plurality of solenoid valves. It may be.
- the heat source side heat exchanger 23 is a heat exchanger that functions as a refrigerant cooler or heater.
- One end of the heat source side heat exchanger 23 is connected to the switching mechanism 22, and the other end is connected to the heat source side expansion mechanism 24! /.
- the heat source unit 2 has a heat source side fan 27 for sucking outdoor air into the unit and discharging it outside the room again.
- the heat source side fan 27 can exchange heat between the outdoor air and the refrigerant flowing through the heat source side heat exchanger 23.
- the heat source side fan 27 is rotationally driven by a heat source side fan drive motor 27a.
- the heat source of the heat source side heat exchanger 23 may be another heat medium such as water, which is not limited to outdoor air.
- the heat source side expansion mechanism 24 is a mechanism for decompressing the refrigerant.
- the other end of the heat source side heat exchanger 23 is used to adjust the flow rate of the refrigerant flowing in the heat source side refrigerant circuit 10c. It is an electric expansion valve connected to.
- One end of the heat source side expansion mechanism 24 is connected to the heat source side heat exchanger 23, and the other end is connected to the first closing valve 25.
- the first closing valve 25 is a valve to which a first refrigerant communication pipe 6 for exchanging refrigerant between the heat source unit 2 and the utilization units 4 and 5 is connected, and is connected to the heat source side expansion mechanism 24.
- the second closing valve 26 is a valve to which a second refrigerant communication pipe 7 for exchanging refrigerant between the heat source unit 2 and the utilization units 4 and 5 is connected, and is connected to the switching mechanism 22.
- the first and second shutoff valves 25 and 26 are three-way valves provided with service ports that can communicate with the outside of the refrigerant circuit 10.
- the heat source unit 2 is provided with various sensors. Specifically, on the discharge side of the compressor 21, a compressor discharge pressure sensor 28 for detecting the compressor discharge pressure Pd, and a pressure A compressor discharge temperature sensor 29 for detecting the compressor discharge temperature Td is provided. In the present embodiment, the compressor discharge temperature sensor 29 is a thermistor. Further, the heat source unit 2 includes a heat source side control unit 30 that controls the operation of each unit constituting the heat source unit 2.
- the heat source side control unit 30 includes a microcomputer memory provided for controlling the heat source unit 2, and the use side control units 46 and 56 of the use units 4 and 5. Control signals and the like can be exchanged via the transmission line 8a.
- Refrigerant communication pipes 6 and 7 are refrigerant pipes installed on site when the air conditioner 1 is installed at the installation site.
- the air conditioner 1 includes various types of the air conditioner 1 using the use side control units 46 and 56, the heat source side control unit 30, and the transmission line 8a that connects the control units 30, 46, and 56.
- a control unit 8 is configured as a control means for performing operation control. The control unit 8 is connected so that it can receive the detection signals of the various sensors 29, 30, 44, 45, 54, 55, and various devices 21, 22, 24, 27, 41, 43, 51, 53 can be controlled.
- FIG. 2 is a pressure entry ruby diagram illustrating the refrigeration cycle in the present embodiment.
- the control in various operations described below is performed by the control unit 8 functioning as the operation control means. Specifically, the use side control units 46, 56, the heat source side control unit 33, and the control units 33, 46, 56 This is done by the transmission line 8a) connecting them.
- the switching mechanism 22 is in the state indicated by the solid line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the heat source side heat exchanger 23, and the suction side of the compressor 21 is connected to the second closing valve 26. It has become a state. The opening degrees of the heat source side expansion mechanism 24 and the use side expansion mechanisms 41 and 51 are adjusted. Moreover, the shut-off valves 25 and 26 are opened. [0020] In the state of the refrigerant circuit 10, when the compressor 21, the heat source side fan 27, and the use side fans 43, 53 are started, low-pressure refrigerant (see point A in FIG. 2) is sucked into the compressor 21. Thus, it is compressed to a pressure exceeding the critical pressure (ie, Pep in Fig.
- the high-pressure refrigerant is sent to the heat source side heat exchanger 23 that functions as a refrigerant cooler via the switching mechanism 22 to exchange heat with the outdoor air supplied by the heat source side fan 27. (Refer to point C in Fig. 2). Then, the high-pressure refrigerant cooled in the heat source side heat exchanger 23 is sent to the utilization units 4 and 5 via the heat source side expansion mechanism 24, the first closing valve 25, and the first refrigerant communication tube 6. It is done.
- the refrigerant sent to each of the usage units 4 and 5 is decompressed by the usage-side expansion mechanisms 41 and 51 to become low-pressure gas-liquid two-phase refrigerant (see point D in FIG. 2), and serves as a refrigerant heater.
- the functioning use-side heat exchangers 42 and 52 heat is exchanged with room air, respectively, and they are evaporated to become low-pressure refrigerant (see point A in Fig. 2).
- the low-pressure refrigerant heated in these use side heat exchangers 42 and 52 is sent to the heat source unit 2 via the second refrigerant communication pipe 7, and the second closing valve 26 and the switching mechanism 22 are passed through. Via, it is sucked into the compressor 21 again. In this way, cooling is performed.
- the force S described when both of the two usage units 4 and 5 perform cooling is used when only one of the usage units 4 and 5 performs cooling.
- the corresponding usage-side expansion mechanism has a stop opening degree (for example, fully closed), so that the refrigerant does not pass through the usage unit when the cooling is stopped!
- the use-side expansion mechanism is not at the stop position! /
- only the use unit is cooled.
- cooling stopped here means not only when the user has intentionally issued a cooling stop command to the use units 4 and 5 by a remote controller or the like, but also when the thermostat is off. Even when the air condition and the air blowing state continue for a long time, the usage side expansion mechanism corresponding to the usage unit that is in the cooling stop state is at the stop opening, so this is included.
- the switching mechanism 22 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the second closing valve 26, and the suction side of the compressor 21 is connected to the heat source side heat exchanger 23. Connected. The opening degrees of the heat source side expansion mechanism 24 and the use side expansion mechanisms 41 and 51 are adjusted. Moreover, the shut-off valves 25 and 26 are opened.
- the high-pressure refrigerant sent to each of the usage units 4 and 5 is cooled by exchanging heat with room air in the usage-side heat exchangers 42 and 52 that function as a refrigerant cooler (Fig. After passing through the use side expansion mechanism 41, 51, it is sent to the heat source unit 2 via the first refrigerant communication pipe 6.
- the high-pressure refrigerant sent to the heat source unit 2 is reduced in pressure by the heat source side expansion mechanism 24 to become a low-pressure gas-liquid two-phase refrigerant (see point D in FIG. 2), and serves as a refrigerant heater. It flows into the side heat exchanger 23.
- the low-pressure gas-liquid two-phase refrigerant flowing into the heat source side heat exchanger 23 evaporates by heat exchange with the outdoor air supplied by the heat source side fan 27 to become a low pressure refrigerant. (Refer to point A in FIG. 2), the air is again sucked into the compressor 21 via the switching mechanism 22. In this way, heating is performed.
- the refrigerant in the range from the connection with the second refrigerant communication pipe 7 of the usage unit when heating is stopped to the usage side expansion mechanism is The refrigerant pressure becomes the refrigerant pressure on the high-pressure side of the refrigeration cycle operation (that is, the pressure almost the same as the refrigerant pressure at points B and C in Fig. 2), and the refrigerant temperature The temperature is close to the ambient temperature of the place where the use unit is stopped and the ambient temperature of the use side heat exchanger (in Fig. 2, the refrigerant temperature is the line connecting point B and point C.
- the alternate long and short dash line shown in FIG. 2 is an isotherm.
- the refrigerant stagnation amount Ms increases, and the amount of refrigerant circulating in the refrigerant circuit 10 may be insufficient. If the amount of refrigerant circulating in the refrigerant circuit 10 is insufficient, the discharge temperature of the compressor 21 for compressing the refrigerant (that is, the compressor discharge temperature Td) rises excessively, and heating cannot be continued. End up.
- the upper limit value Tdh is set for the compressor discharge temperature Td as in the conventional case, and the compressor discharge temperature Td is set to the upper limit value Tdh.
- the control unit temporarily increases the opening of the usage-side expansion mechanism of the user unit that is not in heating, thereby creating a refrigerant flow in the user unit that is not heating.
- a refrigerant recovery operation (hereinafter referred to as discharge temperature upper limit control) is performed in which the refrigerant that has fallen into the unit is returned to the flow path portion where the refrigerant in the refrigerant circuit 10 circulates.
- FIG. 3 is a flowchart of the discharge temperature upper limit control and the refrigerant stagnation amount control in the present embodiment.
- the usage unit 4 is heating and the usage unit 5 is not heating.
- step S1 it is determined whether or not the compressor discharge temperature Td has risen to the upper limit value Tdh. If the compressor discharge temperature Td has risen to the upper limit value Tdh, step S2 When the compressor discharge temperature Td has not risen to the upper limit value Tdh, the process proceeds to steps S6 to S10 (that is, refrigerant stagnation amount control described later). Next, in step S2, control is performed to increase the opening of the use-side expansion mechanism 51 of the use unit 5 while heating is stopped. More specifically, when the compressor discharge temperature Td rises to the upper limit value Tdh, the opening degree of the use side expansion mechanism 51 is changed to the current opening degree (for example, the stop opening degree or the refrigerant described later).
- the current opening degree for example, the stop opening degree or the refrigerant described later.
- the opening amount is already larger than the stop opening amount due to the stagnation amount control, the opening amount is rapidly controlled from the opening amount to a relatively large first opening amount (for example, fully open).
- a relatively large first opening amount for example, fully open.
- step S3 the force at which the compressor discharge temperature Td is lower than the upper limit value Tdh is determined by the process of step S2, and the compressor discharge temperature Td is lower than the upper limit value Tdh.
- step S4 the use side expansion mechanism 51 opened to the first opening in step S2 is closed to the stop opening. Continue to heat unit 4 in use.
- the compressor discharge temperature Td does not fall below the upper limit value Tdh, for example, a process of stopping the compressor 21 is performed from the viewpoint of protecting the compressor 21 as in step S5.
- the discharge temperature upper limit control it is possible to eliminate the stagnation of the refrigerant in the utilization unit 5 during the heating stop mainly for the purpose of protecting the compressor 21.
- the compressor discharge temperature Td is used as a threshold value, and the viewpoint of protecting the compressor 21 Therefore, the opening degree of the utilization side expansion mechanism of the utilization unit while heating is stopped is rapidly opened to the first opening degree, so that a refrigerant flow noise is generated in the utilization unit when heating is stopped.
- the refrigerant pressure in the use side heat exchanger 42, 52 is critical pressure P Since it exceeds cp and is not in a gas-liquid two-phase state, it becomes possible to calculate the amount of refrigerant present in the usage units 4 and 5 from the refrigerant temperature and refrigerant pressure in the usage units 4 and 5. Using this fact, the refrigerant stagnation amount Ms of the utilization unit while heating is stopped is calculated, and the utilization side expansion mechanism of the utilization unit when heating is stopped is controlled according to the calculated refrigerant stagnation amount Ms.
- the refrigerant stagnation amount control is performed to prevent the refrigerant amount circulating in the refrigerant circuit 10 from being insufficient and the compressor discharge temperature Td from excessively rising due to the stagnation of the refrigerant in the use unit when heating is stopped. I have to.
- the refrigerant stagnation amount control is a control performed when the compressor discharge temperature Td has not risen to the upper limit value Tdh in step S1.
- usage unit 4 is heating and usage unit 5 is not heating.
- step S6 the refrigerant temperature and the refrigerant pressure in the usage unit 5 necessary for calculating the refrigerant stagnation amount Ms of the usage unit 5 during the heating stop are detected.
- the refrigerant temperature it is desirable to use the use side heat exchanger 52 having a large volume of refrigerant in the equipment constituting the use side refrigerant circuit 10b of the use unit 5 and the refrigerant temperature in the vicinity thereof.
- the refrigerant outlet refrigerant temperature Tho, the condenser inlet refrigerant temperature Thi, or the average temperature of the condenser outlet refrigerant temperature Tho and the condenser inlet refrigerant temperature Thi when calculating the refrigerant stagnation amount Ms, the refrigerant outlet refrigerant temperature Tho, the condenser inlet refrigerant temperature Thi, or the average temperature of the condenser outlet refrigerant temperature Tho and the condenser inlet refrigerant temperature Thi.
- the refrigerant temperature is used as the refrigerant temperature.
- the refrigerant pressure is based on the compressor discharge pressure Pd or the compressor discharge pressure Pd.
- the pressure calculated in consideration of the pressure loss from the discharge side of the compressor 21 to the branch portion of the second refrigerant communication pipe 7 is used as the refrigerant pressure when calculating the refrigerant stagnation amount Ms.
- the opening degree of the use-side expansion mechanism 51 is set to a second value slightly larger than the stop opening degree in order to increase the detection accuracy of the refrigerant temperature. It is desirable to allow the refrigerant to pass through the use unit 5 when heating is stopped by opening it to the opening.
- the second opening is smaller than the first opening in the discharge temperature upper limit control. Then, the refrigerant temperature and refrigerant pressure detected in this way are converted into refrigerant density, and the refrigerant stagnation is based on the volume of the equipment constituting the usage side refrigerant circuit 10b of the usage unit 5 and the density of this refrigerant. Calculate the quantity Ms.
- step S7 it is determined whether or not the refrigerant stagnation amount Ms obtained by the calculation exceeds the allowable value Msa of the refrigerant stagnation amount.
- the allowable value Msa of the refrigerant stagnation amount is a value determined based on the total refrigerant amount enclosed in the refrigerant circuit 10 and the necessary refrigerant circulation amount according to the operating conditions of the air conditioner 1.
- the process proceeds to step S8, and the opening degree of the utilization side expansion mechanism 51 of the utilization unit 5 during the heating stop. Is opened by a predetermined opening increment from the current opening (for example, the stop opening or the opening when the refrigerant stagnation amount control is already larger than the stop opening). .
- the opening increment of the use side expansion mechanism 51 is smaller than the opening increment when opening to the first opening in the discharge temperature upper limit control.
- the opening increment may be a constant value or a value that can be varied according to the deviation between the refrigerant stagnation amount Ms and the allowable value Msa.
- step S9 the refrigerant stagnation amount Ms becomes smaller than the refrigerant stagnation amount allowable value Msa.
- the opening degree of the use-side expansion mechanism 51 is further increased from the current opening degree by a predetermined opening degree increment.
- the process of steps Sl, S6, S7, and S8 is repeated so as to be opened, so that the refrigerant stagnation amount Ms becomes smaller than the allowable value Msa of the refrigerant stagnation amount.
- step S9 it is determined whether or not the opening degree of the utilization side expansion mechanism 51 of the utilization unit 5 during the heating stop is the stop opening force. Returning to the process, if it is not the stop opening (that is, if the process of step S8 has been performed at least once), the use-side expansion mechanism 51 is closed to the stop opening and the process of step S1 is performed. Return. As described above, in the present embodiment, by adopting the refrigerant stagnation amount control, the refrigerant in the refrigerant circuit 10 converts the refrigerant stagnation into the use unit during the heating stop regardless of the change in the compressor discharge temperature Td. It can be gently returned to the circulating flow path portion.
- the discharge temperature upper limit control functions only when the refrigerant circulation amount decreases so rapidly that the refrigerant stagnation state in the use unit during the heating stop cannot be eliminated even by the refrigerant stagnation amount control.
- the processes in steps S2 to S5 described above are hardly performed.As a result, the refrigerant stagnation amount control prevents excessive rise in the compressor discharge temperature Td due to the refrigerant stagnation phenomenon, and the heating is stopped. It is possible to suppress the generation of refrigerant flow noise in other units.
- the air conditioner 1 of the present embodiment has the following features.
- the refrigerant pressure in the usage-side heat exchangers 42 and 52 exceeds the critical pressure Pep and is not in a gas-liquid two-phase state.
- the refrigerant temperature and the refrigerant pressure in the usage unit that is not heating among the usage units 4 and 5 are calculated. Based on this, the refrigerant stagnation amount Ms of the usage unit while heating is stopped is calculated, and the use side expansion mechanism of the usage unit when heating is stopped is controlled according to the calculated refrigerant stagnation amount Ms.
- the use side expansion mechanism is compared with the case where the discharge temperature upper limit control is performed which is the refrigerant recovery operation in which the refrigerant that has stagnation in the use unit that is not heating is recovered using the discharge temperature of the compressor 21 as a threshold value. This makes it possible to finely control the air flow and to perform it slowly, so that it is possible to suppress the generation of the refrigerant flow noise in the utilization unit when the heating is stopped.
- the air conditioner 1 of the present embodiment at least one of the inlet side of the use side heat exchangers 42 and 52 during heating and the outlet side of the use side heat exchangers 42 and 52 during heating. Since the refrigerant temperature detected by the temperature sensor (here, temperature sensors 44, 45, 54, 55) provided for the two is used for calculating the refrigerant stagnation amount Ms, the calculation accuracy of the refrigerant stagnation amount Ms is improved. Can be increased.
- the refrigerant when detecting the refrigerant temperature in the heating-use usage unit used for calculating the refrigerant stagnation amount Ms, the refrigerant passes through the heating-use usage unit.
- the control of the use side expansion mechanism of the usage unit when heating is stopped is performed, it is used when calculating the refrigerant stagnation amount Ms while causing the flow of refrigerant in the usage unit when heating is stopped. It becomes possible to detect the refrigerant temperature in the utilization unit when heating is stopped, and the accuracy of refrigerant temperature detection can be improved.
- the refrigerant temperatures on the inlet side of the usage-side heat exchangers 42 and 52 during heating and the outlet side of the usage-side heat exchangers 42 and 52 during heating are used for calculating the refrigerant stagnation amount Ms.
- the refrigerant temperature in the use side heat exchangers 42 and 52 is determined as the inlet of the use side heat exchangers 42 and 52 during heating.
- the refrigerant stagnation amount Ms may be used instead of the refrigerant temperature at the outlet side of the use-side heat exchangers 42 and 52 during heating or in combination with these refrigerant temperatures.
- the present invention is applied to the configuration in which the two usage units 4 and 5 are connected to the heat source unit 2 has been described.
- the present invention is applied to a configuration in which a larger number of usage units are connected to the heat source unit.
- the invention may be applied.
- all use sides of the use units that are in heating stop are You may make it control the opening degree of an expansion mechanism, and you may make it control the opening degree of the utilization side expansion mechanism of a utilization unit with the largest refrigerant
- a plurality of utilization units including a utilization side expansion mechanism and a utilization side heat exchanger are connected to a heat source unit including a compressor and a heat source side heat exchanger. It has an air conditioner that has a refrigerant circuit and can be heated by refrigeration cycle operation where the high-pressure side exceeds the critical pressure of the refrigerant, and the excessive discharge temperature of the compressor due to refrigerant stagnation. In addition to preventing the rise, it is possible to suppress the generation of refrigerant flow noise in the use unit when heating is stopped.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Air Conditioning Control Device (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
An air-conditioner having a coolant circuit constituted by use units are connected to a heat source unit and capable of performing heating operation by refrigeration cycle operation in which the high-pressure side exceeds the critical pressure of the coolant. An excessive increase of the discharge temperature of the compressor due to a coolant liquefaction phenomenon is prevented, and coolant flow noise produced in a use unit whose heating operation is at rest is suppressed. From the coolant temperature and the pressure in the use unit whose heating operation is at rest out of the use units, the amount of liquefied coolant, i.e., the amount of coolant staying in the use unit whose heating operation is at rest is computed. According to the amount of liquefied coolant, the use-side expansion mechanism of the use unit whose heating operation is at rest is controlled.
Description
明 細 書 Specification
空気調和装置 Air conditioner
技術分野 Technical field
[0001] 本発明は、空気調和装置、特に、利用側膨張機構と利用側熱交換器とを含む複数 の利用ユニットが、圧縮機と熱源側熱交換器とを含む熱源ユニットに接続されること によって構成された冷媒回路を有しており、高圧側が冷媒の臨界圧力を超える圧力 となる冷凍サイクル運転による暖房動作が可能な空気調和装置に関する。 The present invention relates to an air conditioner, in particular, a plurality of utilization units including a utilization side expansion mechanism and a utilization side heat exchanger are connected to a heat source unit including a compressor and a heat source side heat exchanger. It is related with the air conditioning apparatus in which the heating operation by the refrigerating cycle operation in which the high pressure side becomes the pressure exceeding the critical pressure of the refrigerant is provided.
背景技術 Background art
[0002] 従来より、利用側膨張弁と利用側熱交換器とを含む複数の利用ユニットが熱源ュニ ットに接続されることによって構成された冷媒回路を有する、暖房動作が可能な、い わゆる、マルチタイプの空気調和装置がある。 Conventionally, a heating operation is possible having a refrigerant circuit configured by connecting a plurality of utilization units including a utilization side expansion valve and a utilization side heat exchanger to a heat source unit. There are so-called multi-type air conditioners.
また、このような空気調和装置において、冷媒回路内に封入される冷媒として、環 境への影響の小さい二酸化炭素等の自然冷媒の使用が検討されている。そして、 自 然冷媒として二酸化炭素等の臨界温度が低いものを使用する場合には、高圧側の 冷媒圧力が冷媒の臨界圧力を超える圧力となる冷凍サイクル運転が行われることに なる (特許文献 1参照)。 In such an air conditioner, the use of a natural refrigerant such as carbon dioxide having a small influence on the environment as a refrigerant sealed in the refrigerant circuit is being studied. When natural refrigerant such as carbon dioxide having a low critical temperature is used, a refrigeration cycle operation is performed in which the refrigerant pressure on the high pressure side exceeds the critical pressure of the refrigerant (Patent Document 1). reference).
特許文献 1 :特開 2003— 121015号公報 Patent Document 1: Japanese Unexamined Patent Publication No. 2003-121015
発明の開示 Disclosure of the invention
[0003] 上述の空気調和装置においては、複数の利用ユニットの一部を停止した状態で暖 房を行う場合があるが、この場合、暖房停止中の利用ユニットにおいては、利用ュニ ット内における冷媒の流れがなくなることから、主として、暖房中の利用ユニットと同様 に冷凍サイクル運転の高圧側の冷媒圧力になって!/、る利用側熱交換器内に冷媒が 滞留する、いわゆる、冷媒寝込み現象が発生し、暖房停止中の利用ユニット内に滞 留する冷媒量 (以下、冷媒寝込み量とする)が多くなると、冷媒回路内を循環する冷 媒量が不足するおそれがある。そして、冷媒回路内を循環する冷媒量が不足すると、 冷媒を圧縮するための圧縮機の吐出温度が過度に上昇してしまい、暖房を継続でき なくなってしまう。
これに対して、圧縮機の吐出温度に上限値を設定し、圧縮機の吐出温度が上限値 に到達した際に、一時的に、暖房停止中の利用ユニットの利用側膨張弁の開度を大 きくする制御を行うことで、暖房停止中の利用ユニット内における冷媒の流れを作り 出し、利用ユニットに寝込んだ冷媒を冷媒回路の冷媒が循環して!/、る流路部分に戻 す冷媒回収運転 (以下、吐出温度上限制御とする)を行うことで、冷媒寝込み現象及 び循環量不足を解消するようにしてレ、る。 [0003] In the air conditioning apparatus described above, there are cases in which heating is performed with some of the plurality of usage units stopped, but in this case, the usage units in the heating stopped state are in the usage unit. Since the refrigerant flow in the refrigerant is eliminated, the refrigerant pressure at the high-pressure side of the refrigeration cycle operation is mainly the same as that of the utilization unit during heating! If the stagnation phenomenon occurs and the amount of refrigerant stagnating in the use unit when heating is stopped (hereinafter referred to as refrigerant stagnation amount) increases, the amount of refrigerant circulating in the refrigerant circuit may be insufficient. If the amount of refrigerant circulating in the refrigerant circuit is insufficient, the discharge temperature of the compressor for compressing the refrigerant excessively rises, and heating cannot be continued. On the other hand, when the upper limit value is set for the discharge temperature of the compressor and the discharge temperature of the compressor reaches the upper limit value, the opening degree of the use side expansion valve of the use unit during the heating stop is temporarily set. By increasing the control, a refrigerant flow is created in the use unit when heating is stopped, and the refrigerant in the use unit circulates through the refrigerant in the use circuit! By performing the recovery operation (hereinafter referred to as the discharge temperature upper limit control), the refrigerant stagnation phenomenon and the insufficient circulation amount are eliminated.
[0004] しかし、上述の冷媒回収運転は、圧縮機の吐出温度をしきい値としているため、圧 縮機の保護を考慮して、利用側膨張弁の開度を比較的急激に大きくする制御を行う 必要があり、吐出温度上限制御時に、暖房停止中の利用ユニットにおいて、大きな 冷媒流動音が発生してしまう。特に、冷媒として二酸化炭素等の臨界温度が低いも のを使用する場合には、高圧側の冷媒圧力が冷媒の臨界圧力を超える圧力となる 冷凍サイクル運転が行われることから、圧縮機の吐出温度の過度の上昇に対する考 慮がさらに必要となり、また、吐出温度上限制御時の利用ユニットにおける冷媒流動 音も発生しやすくなる。 [0004] However, since the refrigerant recovery operation described above uses the discharge temperature of the compressor as a threshold value, control for increasing the opening of the use-side expansion valve relatively abruptly in consideration of protection of the compressor. When the upper limit control of the discharge temperature is performed, a large refrigerant flow noise is generated in the use unit that is not heating. In particular, when a refrigerant having a low critical temperature such as carbon dioxide is used, the refrigerant discharge temperature is increased because the refrigerant pressure on the high-pressure side exceeds the critical pressure of the refrigerant. Consideration for excessive rise of the refrigerant is further required, and refrigerant flow noise in the use unit during discharge temperature upper limit control is likely to occur.
本発明の課題は、利用側膨張機構と利用側熱交換器とを含む複数の利用ユニット 力、圧縮機と熱源側熱交換器とを含む熱源ユニットに接続されることによって構成さ れた冷媒回路を有しており、高圧側が冷媒の臨界圧力を超える圧力となる冷凍サイ クル運転による暖房動作が可能な空気調和装置にぉレ、て、冷媒寝込み現象による 過度の圧縮機の吐出温度の上昇を防ぐとともに、暖房停止中の利用ユニットにおけ る冷媒流動音の発生を抑えることにある。 An object of the present invention is to provide a refrigerant circuit configured by connecting a plurality of utilization unit forces including a utilization side expansion mechanism and a utilization side heat exchanger, and a heat source unit including a compressor and a heat source side heat exchanger. It has an air conditioner that can be heated by refrigeration cycle operation where the high pressure side exceeds the critical pressure of the refrigerant, and the discharge temperature of the compressor is excessively increased by the refrigerant stagnation phenomenon. This is to prevent the generation of refrigerant flow noise in the use unit when heating is stopped.
[0005] 第 1の発明にかかる空気調和装置は、利用側膨張機構と利用側熱交換器とを含む 複数の利用ユニットが、圧縮機と熱源側熱交換器とを含む熱源ユニットに接続される ことによって構成された冷媒回路を有しており、高圧側が冷媒の臨界圧力を超える圧 力となる冷凍サイクル運転による暖房動作が可能な空気調和装置において、複数の 利用ユニットのうち暖房停止中の利用ユニットにおける冷媒温度及び冷媒圧力に基 づいて、暖房停止中の利用ユニット内に滞留する冷媒量である冷媒寝込み量を演算 し、冷媒寝込み量に応じて、暖房停止中の利用ユニットの利用側膨張機構の制御を 行う。
この空気調和装置では、暖房時には、利用側熱交換器内の冷媒圧力が臨界圧力 を超えており、気液二相の状態ではないため、利用ユニットにおける冷媒温度及び 冷媒圧力から利用ユニット内に存在する冷媒量を演算することが可能となる。 [0005] In the air conditioner according to the first invention, a plurality of utilization units including a utilization side expansion mechanism and a utilization side heat exchanger are connected to a heat source unit including a compressor and a heat source side heat exchanger. In an air conditioner capable of heating operation by refrigeration cycle operation in which the high-pressure side has a pressure exceeding the critical pressure of the refrigerant Based on the refrigerant temperature and the refrigerant pressure in the unit, the refrigerant stagnation amount, which is the amount of refrigerant that stays in the usage unit when heating is stopped, is calculated, and the usage side expansion of the usage unit when heating is stopped according to the refrigerant stagnation amount Control the mechanism. In this air conditioner, during heating, the refrigerant pressure in the user-side heat exchanger exceeds the critical pressure and is not in a gas-liquid two-phase state, so it exists in the user unit from the refrigerant temperature and refrigerant pressure in the user unit. It is possible to calculate the amount of refrigerant to be performed.
このことを利用して、暖房停止中の利用ユニットの冷媒寝込み量を演算し、この演 算された冷媒寝込み量に応じて、暖房停止中の利用ユニットの利用側膨張機構の制 御を行うことで、暖房停止中の利用ユニットに冷媒が寝込むことによって冷媒回路内 を循環する冷媒量が不足し、圧縮機の吐出温度が過度に上昇するのを防ぐことがで きる。 Utilizing this, the refrigerant stagnation amount of the usage unit when heating is stopped is calculated, and the use side expansion mechanism of the usage unit when heating is stopped is controlled according to the calculated refrigerant stagnation amount. Therefore, it is possible to prevent the refrigerant discharge temperature from being excessively increased due to a shortage of the refrigerant circulating in the refrigerant circuit due to the refrigerant stagnation in the use unit that is not heating.
しかも、圧縮機の吐出温度をしきい値として暖房停止中の利用ユニットに寝込んだ 冷媒を回収する冷媒回収運転である吐出温度上限制御を行う場合に比べて、利用 側膨張機構の制御をきめ細かぐまた、緩やかに行うことができるようになるため、暖 房停止中の利用ユニットにおける冷媒流動音の発生を抑えることができる。 In addition, the use side expansion mechanism is controlled more finely than when the discharge temperature upper limit control is performed, which is the refrigerant recovery operation that recovers the refrigerant that has fallen into the use unit that has stopped heating with the discharge temperature of the compressor as a threshold value. In addition, since it can be performed slowly, it is possible to suppress the generation of refrigerant flow noise in the use unit during the heating stop.
尚、ここでいう「暖房停止中」には、リモコン等によってユーザーが意図的に利用ュ ニットに対して暖房停止指令をしている場合のみならず、暖房中であってもサーモォ フ状態や送風状態が長時間継続している場合も含まれる。 Note that “heating is stopped” here means not only when the user has intentionally instructed the unit to stop heating using a remote controller or the like, but also during the heating, This includes cases where the condition continues for a long time.
[0006] 第 2の発明に力、かる空気調和装置は、第 1の発明に力、かる空気調和装置において 、冷媒温度は、暖房時における利用側熱交換器の入口側、暖房時における利用側 熱交換器の出口側、及び、利用側熱交換器のうちの少なくとも 1つに設けられた温度 センサによって検出される。 [0006] The air conditioner according to the second aspect of the invention is the air conditioner according to the first aspect of the invention. In the air conditioner according to the first aspect, the refrigerant temperature is the inlet side of the use side heat exchanger during heating, the use side during heating. It is detected by a temperature sensor provided on at least one of the outlet side of the heat exchanger and the use side heat exchanger.
この空気調和装置では、暖房時における利用側熱交換器の入口側、暖房時にお ける利用側熱交換器の出口側、及び、利用側熱交換器のうちの少なくとも 1つに設け られた温度センサによって検出された冷媒温度を、冷媒寝込み量の演算に用いてい るため、冷媒寝込み量の演算精度を高めることができる。 In this air conditioner, temperature sensors provided on at least one of the inlet side of the use side heat exchanger during heating, the outlet side of the use side heat exchanger during heating, and the use side heat exchanger Since the refrigerant temperature detected by the above is used for calculating the refrigerant stagnation amount, the calculation accuracy of the refrigerant stagnation amount can be improved.
[0007] 第 3の発明に力、かる空気調和装置は、第 2の発明にかかる空気調和装置にお!/、て 、冷媒寝込み量を演算するために使用される暖房停止中の利用ユニットにおける冷 媒温度を検出する際に、暖房停止中の利用ユニット内を冷媒が通過するように、暖 房停止中の利用ユニットの利用側膨張機構の制御を行う。 [0007] The air conditioner according to the third aspect of the present invention is the same as the air conditioner according to the second aspect of the present invention! When detecting the cooling medium temperature, the usage side expansion mechanism of the usage unit that is not warmed is controlled so that the refrigerant passes through the usage unit that is not heated.
この空気調和装置では、暖房停止中の利用ユニット内における冷媒の流れを生じ
させながら、冷媒寝込み量を演算する際に用いられる暖房停止中の利用ユニットに おける冷媒温度を検出するようにしているため、冷媒温度の検出精度を高めることが できる。 This air conditioner produces a refrigerant flow in the use unit when heating is stopped. In addition, since the refrigerant temperature is detected in the heating-use unit used when calculating the refrigerant stagnation amount, the refrigerant temperature detection accuracy can be increased.
図面の簡単な説明 Brief Description of Drawings
[0008] [図 1]本発明の一実施形態に力、かる空気調和装置の概略構成図である。 FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
[図 2]冷凍サイクルが図示された圧力ーェンタルピ線図である。 FIG. 2 is a pressure-enthalpy diagram illustrating the refrigeration cycle.
[図 3]吐出温度上限制御及び冷媒寝込み量制御のフローチャートである。 FIG. 3 is a flowchart of discharge temperature upper limit control and refrigerant stagnation control.
符号の説明 Explanation of symbols
[0009] 1 空気調和装置 [0009] 1 Air conditioner
2 熱源ユニット 2 Heat source unit
4、 5 利用ユニット 4, 5 Usage unit
6、 7 冷媒連絡管 6, 7 Refrigerant communication pipe
10 冷媒回路 10 Refrigerant circuit
21 圧縮機 21 Compressor
23 熱源側熱交換器 23 Heat source side heat exchanger
41、 51 利用側膨張機構 41, 51 User side expansion mechanism
42、 52 利用側熱交換器 42, 52 User side heat exchanger
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、図面に基づいて、本発明にかかる空気調和装置の実施形態について説明 する。 Hereinafter, embodiments of an air-conditioning apparatus according to the present invention will be described based on the drawings.
(1)空気調和装置の構成 (1) Configuration of air conditioner
図 1は、本発明の一実施形態に力、かる空気調和装置 1の概略構成図である。空気 調和装置 1は、蒸気圧縮式の冷凍サイクル運転を行うことによって、室内の冷暖房に 使用される装置である。空気調和装置 1は、本実施形態において、熱源ユニット 2と、 複数(ここでは、 2つ)の利用ユニット 4、 5と、熱源ユニット 2と利用ユニット 4、 5とを接 続する冷媒連絡管としての第 1冷媒連絡管 6及び第 2冷媒連絡管 7とを備えている。 すなわち、本実施形態の空気調和装置 1の蒸気圧縮式の冷媒回路 10は、熱源ュニ ット 2と、利用ユニット 4、 5と、冷媒連絡管 6、 7とが接続されることによって構成されて
いる。そして、冷媒回路 10内には、二酸化炭素が冷媒として封入されており、後述の ように、冷媒の臨界圧力を超える圧力まで圧縮され、冷却され、減圧され、加熱'蒸 発された後に、再び圧縮されるという冷凍サイクル運転が行われるようになつている。 FIG. 1 is a schematic configuration diagram of an air-conditioning apparatus 1 according to an embodiment of the present invention. The air conditioner 1 is an apparatus used for indoor air conditioning by performing a vapor compression refrigeration cycle operation. In this embodiment, the air conditioner 1 is a refrigerant communication pipe that connects the heat source unit 2, a plurality of (here, two) use units 4 and 5, and the heat source unit 2 and the use units 4 and 5. The first refrigerant communication pipe 6 and the second refrigerant communication pipe 7 are provided. That is, the vapor compression refrigerant circuit 10 of the air conditioner 1 of the present embodiment is configured by connecting the heat source unit 2, the utilization units 4 and 5, and the refrigerant communication pipes 6 and 7. The Yes. Then, carbon dioxide is sealed in the refrigerant circuit 10 as a refrigerant. As will be described later, the refrigerant circuit 10 is compressed to a pressure exceeding the critical pressure of the refrigerant, cooled, depressurized, heated and evaporated, and then again. The refrigeration cycle operation of being compressed is performed.
[0011] 一利用ユニット [0011] One usage unit
利用ユニット 4、 5は、室内等に設置されており、冷媒連絡管 6、 7を介して熱源ュニ ット 2に接続されており、冷媒回路 10の一部を構成している。 The utilization units 4 and 5 are installed indoors and connected to the heat source unit 2 via the refrigerant communication pipes 6 and 7 and constitute a part of the refrigerant circuit 10.
次に、利用ユニット 4、 5の構成について説明する。尚、利用ユニット 4と利用ユニット 5とは同様の構成であるため、ここでは、利用ユニット 4の構成のみ説明し、利用ュニ ット 5の構成については、それぞれ、利用ユニット 4の各部を示す 40番台の符号の代 わりに 50番台の符号を付して、各部の説明を省略する。 Next, the configuration of the usage units 4 and 5 will be described. Since the usage unit 4 and the usage unit 5 have the same configuration, only the configuration of the usage unit 4 will be described here, and the configuration of the usage unit 5 indicates each part of the usage unit 4. Instead of the 40's code, the 50's code is used, and the description of each part is omitted.
利用ユニット 4は、主として、冷媒回路 10の一部を構成する利用側冷媒回路 10a ( 利用ユニット 5では、利用側冷媒回路 10b)を有している。この利用側冷媒回路 10a は、主として、利用側膨張機構 41と、利用側熱交換器 42とを有している。 The usage unit 4 mainly has a usage-side refrigerant circuit 10a (in the usage unit 5, the usage-side refrigerant circuit 10b) that constitutes a part of the refrigerant circuit 10. The use side refrigerant circuit 10a mainly includes a use side expansion mechanism 41 and a use side heat exchanger 42.
[0012] 利用側膨張機構 41は、冷媒を減圧するための機構であり、本実施形態において、 利用側冷媒回路 10a (利用ユニット 5では、利用側冷媒回路 10b)内を流れる冷媒の 流量の調節等を行うために、利用側熱交換器 42の一端に接続された電動膨張弁で ある。利用側膨張機構 41は、その一端が第 1冷媒連絡管 6に接続され、その他端が 利用側熱交換器 42に接続されて!/、る。 [0012] The use-side expansion mechanism 41 is a mechanism for decompressing the refrigerant. In this embodiment, the use-side expansion mechanism 41 adjusts the flow rate of the refrigerant flowing in the use-side refrigerant circuit 10a (the use-side refrigerant circuit 10b in the use unit 5). This is an electric expansion valve connected to one end of the use side heat exchanger 42 to perform the above. The use side expansion mechanism 41 has one end connected to the first refrigerant communication pipe 6 and the other end connected to the use side heat exchanger 42.
利用側熱交換器 42は、冷媒の加熱器又は冷却器として機能する熱交換器である。 利用熱交換器 42は、その一端が利用側膨張機構 41に接続され、その他端が第 2冷 媒連絡管 7に接続されている。 The use side heat exchanger 42 is a heat exchanger that functions as a refrigerant heater or cooler. The utilization heat exchanger 42 has one end connected to the utilization side expansion mechanism 41 and the other end connected to the second refrigerant communication pipe 7.
利用ユニット 4は、本実施形態において、ユニット内に室内空気を吸入して、再び室 内に供給するための利用側ファン 43を備えており、室内空気と利用側熱交換器 42 を流れる冷媒とを熱交換させることが可能である。利用側ファン 43は、利用側ファン 駆動モータ 43aによって回転駆動されるようになっている。 In the present embodiment, the usage unit 4 includes a usage-side fan 43 for sucking indoor air into the unit and supplying it to the room again. The usage unit 4 includes a refrigerant flowing through the usage-side heat exchanger 42 and the indoor air. It is possible to exchange heat. The use side fan 43 is rotationally driven by a use side fan drive motor 43a.
[0013] また、利用ユニット 4には、各種のセンサが設けられている。具体的には、冷媒の冷 却器として利用側熱交換器 42を機能させた場合における利用側熱交換器 42の出 口側には、冷却器出口冷媒温度 Thoを検出する第 1利用側熱交換器温度センサ 44
が設けられ、冷媒の冷却器として利用側熱交換器 42を機能させた場合における利 用側熱交換器 42の入口側には、冷却器入口冷媒温度 Thiを検出する第 2利用側熱 交換器温度センサ 45が設けられている。本実施形態において、利用側熱交換器温 度センサ 44、 45は、サーミスタからなる。また、利用ユニット 4は、利用ユニット 4を構 成する各部の動作を制御する利用側制御部 46を有して!/、る。そして、利用側制御部 46は、利用ユニット 4の制御を行うために設けられたマイクロコンピュータやメモリ等を 有しており、利用ユニット 4を個別に操作するためのリモコン(図示せず)との間で制 御信号等のやりとりを行ったり、熱源ユニット 2との間で伝送線 8aを介して制御信号等 のやりとりを行うことができるようになつている。 In addition, the utilization unit 4 is provided with various sensors. Specifically, when the use-side heat exchanger 42 is functioned as a refrigerant cooler, the first use-side heat for detecting the cooler outlet refrigerant temperature Tho is provided on the outlet side of the use-side heat exchanger 42. Exchanger temperature sensor 44 When the use side heat exchanger 42 functions as a refrigerant cooler, the use side heat exchanger 42 has a second use side heat exchanger that detects the refrigerant inlet refrigerant temperature Thi at the inlet side. A temperature sensor 45 is provided. In the present embodiment, the use side heat exchanger temperature sensors 44 and 45 are thermistors. In addition, the usage unit 4 has a usage-side control unit 46 that controls the operation of each unit constituting the usage unit 4. The use-side control unit 46 includes a microcomputer, a memory, and the like provided for controlling the use unit 4, and is connected to a remote controller (not shown) for individually operating the use unit 4. Control signals etc. can be exchanged between them, and control signals etc. can be exchanged with the heat source unit 2 via the transmission line 8a.
[0014] 熱源ユニット [0014] Heat source unit
熱源ユニット 2は、室外に設置されており、冷媒連絡管 6、 7を介して利用ユニット 4、 5に接続されており、利用ユニット 4、 5の間で冷媒回路 10を構成している。 The heat source unit 2 is installed outside and is connected to the usage units 4 and 5 through the refrigerant communication pipes 6 and 7, and the refrigerant circuit 10 is configured between the usage units 4 and 5.
次に、熱源ユニット 2の構成について説明する。熱源ユニット 2は、主として、冷媒回 路 10の一部を構成する熱源側冷媒回路 10cを有して!/、る。この熱源側冷媒回路 10 cは、主として、圧縮機 21と、切換機構 22と、熱源側熱交換器 23と、熱源側膨張機 構 24と、第 1閉鎖弁 25と、第 2閉鎖弁 26とを有している。 Next, the configuration of the heat source unit 2 will be described. The heat source unit 2 mainly has a heat source side refrigerant circuit 10c constituting a part of the refrigerant circuit 10! /. The heat source side refrigerant circuit 10c mainly includes a compressor 21, a switching mechanism 22, a heat source side heat exchanger 23, a heat source side expansion mechanism 24, a first closing valve 25, and a second closing valve 26. have.
圧縮機 21は、本実施形態において、圧縮機駆動モータ 21aによって駆動される密 閉式圧縮機である。尚、圧縮機 21は、本実施形態において、 1台のみであるが、これ に限定されず、利用ユニットの接続台数等に応じて、 2台以上の圧縮機が並列に接 続されていてもよい。 In the present embodiment, the compressor 21 is a hermetic compressor driven by a compressor drive motor 21a. In the present embodiment, only one compressor 21 is provided. However, the present invention is not limited to this, and two or more compressors 21 may be connected in parallel depending on the number of connected units. Good.
[0015] 切換機構 22は、冷媒回路 10内における冷媒の流れの方向を切り換えるための機 構であり、冷房時には、熱源側熱交換器 23を圧縮機 21によって圧縮される冷媒の 冷却器として、かつ、利用側熱交換器 42、 52を熱源側熱交換器 23において冷却さ れた冷媒の加熱器として機能させるために、圧縮機 21の吐出側と熱源側熱交換器 2 3の一端とを接続するとともに圧縮機 21の吸入側と第 2閉鎖弁 26とを接続し(図 1の 切換機構 22の実線を参照)、暖房時には、利用側熱交換器 42、 52を圧縮機 21によ つて圧縮される冷媒の冷却器として、かつ、熱源側熱交換器 23を利用側熱交換器 4 2、 52において冷却された冷媒の加熱器として機能させるために、圧縮機 21の吐出
側と第 2閉鎖弁 26とを接続するとともに圧縮機 21の吸入側と熱源側熱交換器 23の 一端とを接続することが可能である(図 1の切換機構 22の破線を参照)。本実施形態 において、切換機構 22は、圧縮機 21の吸入側、圧縮機 21の吐出側、熱源側熱交 換器 23及び第 2閉鎖弁 26に接続された四路切換弁である。尚、切換機構 22は、四 路切換弁に限定されるものではなぐ例えば、複数の電磁弁を組み合わせる等によ つて、上述と同様の冷媒の流れの方向を切り換える機能を有するように構成したもの であってもよい。 [0015] The switching mechanism 22 is a mechanism for switching the direction of the flow of the refrigerant in the refrigerant circuit 10. During cooling, the heat source side heat exchanger 23 is used as a refrigerant cooler compressed by the compressor 21. In addition, in order for the use side heat exchangers 42 and 52 to function as a heater for the refrigerant cooled in the heat source side heat exchanger 23, the discharge side of the compressor 21 and one end of the heat source side heat exchanger 23 are connected. As well as connecting the suction side of the compressor 21 and the second closing valve 26 (see the solid line of the switching mechanism 22 in FIG. 1), the heating-side heat exchangers 42 and 52 are connected by the compressor 21 during heating. In order to function as a cooler for the refrigerant to be compressed and the heat source side heat exchanger 23 as a heater for the refrigerant cooled in the use side heat exchangers 42, 52, the discharge of the compressor 21 It is possible to connect the suction side of the compressor 21 and one end of the heat source side heat exchanger 23 (see the broken line of the switching mechanism 22 in FIG. 1). In the present embodiment, the switching mechanism 22 is a four-way switching valve connected to the suction side of the compressor 21, the discharge side of the compressor 21, the heat source side heat exchanger 23, and the second closing valve 26. Note that the switching mechanism 22 is not limited to a four-way switching valve. For example, the switching mechanism 22 is configured to have a function of switching the flow direction of the refrigerant as described above by combining a plurality of solenoid valves. It may be.
[0016] 熱源側熱交換器 23は、冷媒の冷却器又は加熱器として機能する熱交換器である。 [0016] The heat source side heat exchanger 23 is a heat exchanger that functions as a refrigerant cooler or heater.
熱源側熱交換器 23は、その一端が切換機構 22に接続されており、その他端が熱源 側膨張機構 24に接続されて!/、る。 One end of the heat source side heat exchanger 23 is connected to the switching mechanism 22, and the other end is connected to the heat source side expansion mechanism 24! /.
熱源ユニット 2は、ユニット内に室外空気を吸入して、再び室外に排出するための 熱源側ファン 27を有している。この熱源側ファン 27は、室外空気と熱源側熱交換器 23を流れる冷媒とを熱交換させることが可能である。熱源側ファン 27は、熱源側ファ ン駆動モータ 27aによって回転駆動されるようになっている。尚、熱源側熱交換器 23 の熱源としては、室外空気に限定されるものではなぐ水等の別の熱媒体であっても よい。 The heat source unit 2 has a heat source side fan 27 for sucking outdoor air into the unit and discharging it outside the room again. The heat source side fan 27 can exchange heat between the outdoor air and the refrigerant flowing through the heat source side heat exchanger 23. The heat source side fan 27 is rotationally driven by a heat source side fan drive motor 27a. Note that the heat source of the heat source side heat exchanger 23 may be another heat medium such as water, which is not limited to outdoor air.
熱源側膨張機構 24は、冷媒を減圧するための機構であり、本実施形態において、 熱源側冷媒回路 10c内を流れる冷媒の流量の調節等を行うために、熱源側熱交換 器 23の他端に接続された電動膨張弁である。熱源側膨張機構 24は、その一端が熱 源側熱交換器 23に接続され、その他端が第 1閉鎖弁 25に接続されている。 The heat source side expansion mechanism 24 is a mechanism for decompressing the refrigerant. In this embodiment, the other end of the heat source side heat exchanger 23 is used to adjust the flow rate of the refrigerant flowing in the heat source side refrigerant circuit 10c. It is an electric expansion valve connected to. One end of the heat source side expansion mechanism 24 is connected to the heat source side heat exchanger 23, and the other end is connected to the first closing valve 25.
[0017] 第 1閉鎖弁 25は、熱源ユニット 2と利用ユニット 4、 5との間で冷媒をやりとりするため の第 1冷媒連絡管 6が接続される弁であり、熱源側膨張機構 24に接続されている。 第 2閉鎖弁 26は、熱源ユニット 2と利用ユニット 4、 5との間で冷媒をやりとりするため の第 2冷媒連絡管 7が接続される弁であり、切換機構 22に接続されている。ここで、 第 1及び第 2閉鎖弁 25、 26は、冷媒回路 10の外部と連通可能なサービスポートを備 えた 3方弁である。 [0017] The first closing valve 25 is a valve to which a first refrigerant communication pipe 6 for exchanging refrigerant between the heat source unit 2 and the utilization units 4 and 5 is connected, and is connected to the heat source side expansion mechanism 24. Has been. The second closing valve 26 is a valve to which a second refrigerant communication pipe 7 for exchanging refrigerant between the heat source unit 2 and the utilization units 4 and 5 is connected, and is connected to the switching mechanism 22. Here, the first and second shutoff valves 25 and 26 are three-way valves provided with service ports that can communicate with the outside of the refrigerant circuit 10.
また、熱源ユニット 2には、各種のセンサが設けられている。具体的には、圧縮機 21 の吐出側には、圧縮機吐出圧力 Pdを検出する圧縮機吐出圧力センサ 28、及び、圧
縮機吐出温度 Tdを検出する圧縮機吐出温度センサ 29が設けられて!/、る。本実施形 態において、圧縮機吐出温度センサ 29は、サーミスタからなる。また、熱源ユニット 2 は、熱源ユニット 2を構成する各部の動作を制御する熱源側制御部 30を有している。 そして、熱源側制御部 30は、熱源ユニット 2の制御を行うために設けられたマイクロコ ンピュータゃメモリ等を有しており、利用ユニット 4、 5の利用側制御部 46、 56との間 で伝送線 8aを介して制御信号等のやりとりを行うことができるようになつている。 The heat source unit 2 is provided with various sensors. Specifically, on the discharge side of the compressor 21, a compressor discharge pressure sensor 28 for detecting the compressor discharge pressure Pd, and a pressure A compressor discharge temperature sensor 29 for detecting the compressor discharge temperature Td is provided. In the present embodiment, the compressor discharge temperature sensor 29 is a thermistor. Further, the heat source unit 2 includes a heat source side control unit 30 that controls the operation of each unit constituting the heat source unit 2. The heat source side control unit 30 includes a microcomputer memory provided for controlling the heat source unit 2, and the use side control units 46 and 56 of the use units 4 and 5. Control signals and the like can be exchanged via the transmission line 8a.
[0018] <冷媒連絡管〉 [0018] <Refrigerant tube>
冷媒連絡管 6、 7は、空気調和装置 1を設置場所に設置する際に、現地にて施工さ れる冷媒管である。 Refrigerant communication pipes 6 and 7 are refrigerant pipes installed on site when the air conditioner 1 is installed at the installation site.
以上のように、利用側冷媒回路 10a、 10bと、熱源側冷媒回路 10cと、冷媒連絡管 6、 7とが接続されて、冷媒回路 10が構成されている。そして、本実施形態の空気調 和装置 1は、利用側制御部 46、 56と熱源側制御部 30と制御部 30、 46、 56間を接続 する伝送線 8aとによって、空気調和装置 1の各種運転制御を行う制御手段としての 制御部 8が構成されている。制御部 8は、各種センサ 29、 30、 44、 45、 54、 55の検 出信号を受けることができるように接続されるとともに、これらの検出信号等に基づい て各種機器 21、 22、 24、 27、 41、 43、 51、 53を制卸することカできるようになって いる。 As described above, the use side refrigerant circuits 10a and 10b, the heat source side refrigerant circuit 10c, and the refrigerant communication pipes 6 and 7 are connected to constitute the refrigerant circuit 10. The air conditioner 1 according to the present embodiment includes various types of the air conditioner 1 using the use side control units 46 and 56, the heat source side control unit 30, and the transmission line 8a that connects the control units 30, 46, and 56. A control unit 8 is configured as a control means for performing operation control. The control unit 8 is connected so that it can receive the detection signals of the various sensors 29, 30, 44, 45, 54, 55, and various devices 21, 22, 24, 27, 41, 43, 51, 53 can be controlled.
[0019] (2)空気調和装置の動作 [0019] (2) Operation of air conditioner
次に、本実施形態の空気調和装置 1の動作について、図 1及び図 2を用いて説明 する。ここで、図 2は、本実施形態における冷凍サイクルが図示された圧力 ェンタ ルビ線図である。尚、以下に説明する各種運転における制御は、運転制御手段とし て機能する制御部 8はり具体的には、利用側制御部 46、 56と熱源側制御部 33と制 御部 33、 46、 56間を接続する伝送線 8a)によって行われる。 Next, the operation of the air conditioner 1 of the present embodiment will be described using FIG. 1 and FIG. Here, FIG. 2 is a pressure entry ruby diagram illustrating the refrigeration cycle in the present embodiment. The control in various operations described below is performed by the control unit 8 functioning as the operation control means. Specifically, the use side control units 46, 56, the heat source side control unit 33, and the control units 33, 46, 56 This is done by the transmission line 8a) connecting them.
冷房 Air conditioning
冷房時は、切換機構 22が図 1の実線で示される状態、すなわち、圧縮機 21の吐出 側が熱源側熱交換器 23に接続され、かつ、圧縮機 21の吸入側が第 2閉鎖弁 26に 接続された状態となっている。熱源側膨張機構 24及び利用側膨張機構 41、 51は、 開度調節されるようになっている。また、閉鎖弁 25、 26は、開状態にされている。
[0020] この冷媒回路 10の状態において、圧縮機 21、熱源側ファン 27及び利用側ファン 4 3、 53を起動すると、低圧の冷媒(図 2の点 A参照)は、圧縮機 21に吸入されて臨界 圧力(すなわち、図 2の Pep)を超える圧力まで圧縮されて高圧の冷媒となる(図 2の 点 B参照)。その後、高圧の冷媒は、切換機構 22を経由して、冷媒の冷却器として機 能する熱源側熱交換器 23に送られて、熱源側ファン 27によって供給される室外空 気と熱交換を行って冷却される(図 2の点 C参照)。そして、熱源側熱交換器 23にお いて冷却された高圧の冷媒は、熱源側膨張機構 24、第 1閉鎖弁 25及び第 1冷媒連 絡管 6を経由して、利用ユニット 4、 5に送られる。各利用ユニット 4、 5に送られた冷媒 は、利用側膨張機構 41、 51によってそれぞれ減圧されて低圧の気液二相状態の冷 媒となり(図 2の点 D参照)、冷媒の加熱器として機能する利用側熱交換器 42、 52に おいて、それぞれ室内空気と熱交換を行って加熱されることによって蒸発して低圧の 冷媒となる(図 2の点 A参照)。そして、これらの利用側熱交換器 42、 52において加 熱された低圧の冷媒は、第 2冷媒連絡管 7を経由して熱源ユニット 2に送られ、第 2閉 鎖弁 26及び切換機構 22を経由して、再び、圧縮機 21に吸入される。このようにして 、冷房が行われる。 During cooling, the switching mechanism 22 is in the state indicated by the solid line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the heat source side heat exchanger 23, and the suction side of the compressor 21 is connected to the second closing valve 26. It has become a state. The opening degrees of the heat source side expansion mechanism 24 and the use side expansion mechanisms 41 and 51 are adjusted. Moreover, the shut-off valves 25 and 26 are opened. [0020] In the state of the refrigerant circuit 10, when the compressor 21, the heat source side fan 27, and the use side fans 43, 53 are started, low-pressure refrigerant (see point A in FIG. 2) is sucked into the compressor 21. Thus, it is compressed to a pressure exceeding the critical pressure (ie, Pep in Fig. 2) to become a high-pressure refrigerant (see point B in Fig. 2). Thereafter, the high-pressure refrigerant is sent to the heat source side heat exchanger 23 that functions as a refrigerant cooler via the switching mechanism 22 to exchange heat with the outdoor air supplied by the heat source side fan 27. (Refer to point C in Fig. 2). Then, the high-pressure refrigerant cooled in the heat source side heat exchanger 23 is sent to the utilization units 4 and 5 via the heat source side expansion mechanism 24, the first closing valve 25, and the first refrigerant communication tube 6. It is done. The refrigerant sent to each of the usage units 4 and 5 is decompressed by the usage-side expansion mechanisms 41 and 51 to become low-pressure gas-liquid two-phase refrigerant (see point D in FIG. 2), and serves as a refrigerant heater. In the functioning use-side heat exchangers 42 and 52, heat is exchanged with room air, respectively, and they are evaporated to become low-pressure refrigerant (see point A in Fig. 2). Then, the low-pressure refrigerant heated in these use side heat exchangers 42 and 52 is sent to the heat source unit 2 via the second refrigerant communication pipe 7, and the second closing valve 26 and the switching mechanism 22 are passed through. Via, it is sucked into the compressor 21 again. In this way, cooling is performed.
[0021] 尚、上述の説明においては、 2つの利用ユニット 4、 5がいずれも冷房を行う場合に ついて説明している力 S、利用ユニット 4、 5のいずれか一方のみが冷房を行う場合に は、利用ユニット 4、 5のいずれか他方については、対応する利用側膨張機構が停止 開度(例えば、全閉)になり、これにより、冷房停止中の利用ユニット内を冷媒が通過 しな!/、ようになり、利用側膨張機構が停止開度ではな!/、利用ユニットのみにっレ、て冷 房が行われることになる。尚、ここでいう「冷房停止中」には、リモコン等によってユー ザ一が意図的に利用ユニット 4、 5に対して冷房停止指令をしている場合のみならず 、冷房中であってもサーモオフ状態や送風状態が長時間継続している場合も、冷房 停止中の利用ユニットに対応する利用側膨張機構が停止開度にあるため、これに含 よれ 。 [0021] It should be noted that, in the above description, the force S described when both of the two usage units 4 and 5 perform cooling is used when only one of the usage units 4 and 5 performs cooling. In any one of the usage units 4 and 5, the corresponding usage-side expansion mechanism has a stop opening degree (for example, fully closed), so that the refrigerant does not pass through the usage unit when the cooling is stopped! Thus, the use-side expansion mechanism is not at the stop position! /, And only the use unit is cooled. Note that “cooling stopped” here means not only when the user has intentionally issued a cooling stop command to the use units 4 and 5 by a remote controller or the like, but also when the thermostat is off. Even when the air condition and the air blowing state continue for a long time, the usage side expansion mechanism corresponding to the usage unit that is in the cooling stop state is at the stop opening, so this is included.
暖房 Heating
暖房時は、切換機構 22が図 1の破線で示される状態、すなわち、圧縮機 21の吐出 側が第 2閉鎖弁 26に接続され、かつ、圧縮機 21の吸入側が熱源側熱交換器 23に
接続された状態となっている。熱源側膨張機構 24及び利用側膨張機構 41、 51は、 開度調節されるようになっている。また、閉鎖弁 25、 26は、開状態にされている。 During heating, the switching mechanism 22 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the second closing valve 26, and the suction side of the compressor 21 is connected to the heat source side heat exchanger 23. Connected. The opening degrees of the heat source side expansion mechanism 24 and the use side expansion mechanisms 41 and 51 are adjusted. Moreover, the shut-off valves 25 and 26 are opened.
[0022] この冷媒回路 10の状態において、圧縮機 21、熱源側ファン 27及び利用側ファン 4 3、 53を起動すると、低圧の冷媒(図 2の点 A参照)は、圧縮機 21に吸入されて臨界 圧力(すなわち、図 2の Pep)を超える圧力まで圧縮されて高圧の冷媒となる(図 2の 点 B参照)。その後、この高圧の冷媒は、切換機構 22、第 2閉鎖弁 26及び第 2冷媒 連絡管 7を経由して、利用ユニット 4、 5に送られる。そして、各利用ユニット 4、 5に送 られた高圧の冷媒は、冷媒の冷却器として機能する利用側熱交換器 42、 52におい て、それぞれ室内空気と熱交換を行って冷却された後(図 2の点 C参照)、利用側膨 張機構 41、 51を通過した後に、第 1冷媒連絡管 6を経由して熱源ユニット 2に送られ る。この熱源ユニット 2に送られた高圧の冷媒は、熱源側膨張機構 24によって減圧さ れて低圧の気液二相状態の冷媒となり(図 2の点 D参照)、冷媒の加熱器として機能 する熱源側熱交換器 23に流入する。そして、熱源側熱交換器 23に流入した低圧の 気液二相状態の冷媒は、熱源側ファン 27によって供給される室外空気と熱交換を行 つて加熱されることによって蒸発して低圧の冷媒となり(図 2の点 A参照)、切換機構 2 2を経由して、再び、圧縮機 21に吸入される。このようにして、暖房が行われる。 [0022] In this state of the refrigerant circuit 10, when the compressor 21, the heat source side fan 27, and the use side fans 43, 53 are started, low-pressure refrigerant (see point A in FIG. 2) is sucked into the compressor 21. Thus, it is compressed to a pressure exceeding the critical pressure (ie, Pep in Fig. 2) to become a high-pressure refrigerant (see point B in Fig. 2). Thereafter, the high-pressure refrigerant is sent to the use units 4 and 5 via the switching mechanism 22, the second closing valve 26 and the second refrigerant communication pipe 7. The high-pressure refrigerant sent to each of the usage units 4 and 5 is cooled by exchanging heat with room air in the usage-side heat exchangers 42 and 52 that function as a refrigerant cooler (Fig. After passing through the use side expansion mechanism 41, 51, it is sent to the heat source unit 2 via the first refrigerant communication pipe 6. The high-pressure refrigerant sent to the heat source unit 2 is reduced in pressure by the heat source side expansion mechanism 24 to become a low-pressure gas-liquid two-phase refrigerant (see point D in FIG. 2), and serves as a refrigerant heater. It flows into the side heat exchanger 23. Then, the low-pressure gas-liquid two-phase refrigerant flowing into the heat source side heat exchanger 23 evaporates by heat exchange with the outdoor air supplied by the heat source side fan 27 to become a low pressure refrigerant. (Refer to point A in FIG. 2), the air is again sucked into the compressor 21 via the switching mechanism 22. In this way, heating is performed.
[0023] 尚、上述の説明においては、 2つの利用ユニット 4、 5がいずれも暖房を行う場合に ついて説明している力 利用ユニット 4、 5のいずれか一方のみが暖房を行う場合に は、利用ユニット 4、 5のいずれか他方については、対応する利用側膨張機構が停止 開度(例えば、全閉)になり、これにより、暖房停止中の利用ユニット内を冷媒が通過 しな!/、ようになり、利用側膨張機構が停止開度ではな!/、利用ユニットのみにっレ、て暖 房が行われることになる。尚、ここでいう「暖房停止中」には、リモコン等によってユー ザ一が意図的に利用ユニット 4、 5に対して暖房停止指令をしている場合のみならず 、暖房中であってもサーモオフ状態や送風状態が長時間継続している場合も、暖房 停止中の利用ユニットに対応する利用側膨張機構が停止開度にあるため、これに含 よれ 。 [0023] It should be noted that in the above description, when only one of the power usage units 4 and 5 is heating when the two usage units 4 and 5 are both heating, For the other of the usage units 4 and 5, the corresponding usage side expansion mechanism is at the stop opening (for example, fully closed), so that the refrigerant does not pass through the usage unit when heating is stopped! /, Thus, the use side expansion mechanism is not at the stop position! /, And only the use unit is heated. Note that “heating is stopped” as used herein includes not only the case where the user has intentionally instructed the heating units 4 and 5 to be stopped by the remote controller or the like, but also the thermo-off even during heating. Even if the state or the air blowing state continues for a long time, it is included because the use side expansion mechanism corresponding to the use unit in the heating stop is at the stop opening.
吐出温度上限制御及び冷媒寝込み制御 Discharge temperature upper limit control and refrigerant stagnation control
上述のように、 2つの利用ユニット 4、 5のいずれか一方のみが暖房を行う場合にお
いては、暖房停止中の利用ユニット内における冷媒の流れがなくなることから、暖房 停止中の利用ユニットの第 2冷媒連絡管 7との接続部から利用側膨張機構までの範 囲内の冷媒については、その冷媒圧力が、暖房中の利用ユニットと同様、冷凍サイク ル運転の高圧側の冷媒圧力(すなわち、図 2の点 B、 Cにおける冷媒圧力とほぼ同じ 圧力)になるとともに、その冷媒温度が、暖房停止中の利用ユニットが設置された場 所の雰囲気温度や利用側熱交換器の周囲温度に近い温度になる(図 2上で言えば 、点 Bと点 Cとを結ぶ線を冷媒温度が低くなる方向に延長した点線 L上の状態になる) 。尚、図 2に示される一点鎖線は、等温線である。そして、暖房停止中の利用ユニット 内の冷媒カこのような状態になると、主として、利用側熱交換器内に冷媒が滞留する 、いわゆる、冷媒寝込み現象が発生し、暖房停止中の利用ユニット内に滞留する冷 媒量 (以下、冷媒寝込み量 Msとする)が多くなり、冷媒回路 10内を循環する冷媒量 が不足するおそれがある。そして、冷媒回路 10内を循環する冷媒量が不足すると、 冷媒を圧縮するための圧縮機 21の吐出温度(すなわち、圧縮機吐出温度 Td)が過 度に上昇してしまい、暖房を継続できなくなってしまう。 As mentioned above, when only one of the two usage units 4, 5 is heating Therefore, the flow of refrigerant in the usage unit when heating is stopped is eliminated, so the refrigerant in the range from the connection with the second refrigerant communication pipe 7 of the usage unit when heating is stopped to the usage side expansion mechanism is The refrigerant pressure becomes the refrigerant pressure on the high-pressure side of the refrigeration cycle operation (that is, the pressure almost the same as the refrigerant pressure at points B and C in Fig. 2), and the refrigerant temperature The temperature is close to the ambient temperature of the place where the use unit is stopped and the ambient temperature of the use side heat exchanger (in Fig. 2, the refrigerant temperature is the line connecting point B and point C. (It will be on the dotted line L extended in the direction of decreasing). Incidentally, the alternate long and short dash line shown in FIG. 2 is an isotherm. When the refrigerant in the use unit during the heating stop is in such a state, the refrigerant mainly stays in the use-side heat exchanger, that is, a so-called refrigerant stagnation phenomenon occurs. The amount of refrigerant that stays (hereinafter referred to as refrigerant stagnation amount Ms) increases, and the amount of refrigerant circulating in the refrigerant circuit 10 may be insufficient. If the amount of refrigerant circulating in the refrigerant circuit 10 is insufficient, the discharge temperature of the compressor 21 for compressing the refrigerant (that is, the compressor discharge temperature Td) rises excessively, and heating cannot be continued. End up.
[0024] そこで、本実施形態においては、圧縮機 21を保護するために、従来と同様に、圧 縮機吐出温度 Tdに対して上限値 Tdhを設定し、圧縮機吐出温度 Tdが上限値 Tdh に到達した際に、一時的に、暖房停止中の利用ユニットの利用側膨張機構の開度を 大きくする制御を行うことで、暖房停止中の利用ユニット内における冷媒の流れを作 り出し、利用ユニットに寝込んだ冷媒を冷媒回路 10の冷媒が循環している流路部分 に戻す冷媒回収運転 (以下、吐出温度上限制御とする)を行うようにしている。 Therefore, in the present embodiment, in order to protect the compressor 21, the upper limit value Tdh is set for the compressor discharge temperature Td as in the conventional case, and the compressor discharge temperature Td is set to the upper limit value Tdh. When the temperature reaches the value, the control unit temporarily increases the opening of the usage-side expansion mechanism of the user unit that is not in heating, thereby creating a refrigerant flow in the user unit that is not heating. A refrigerant recovery operation (hereinafter referred to as discharge temperature upper limit control) is performed in which the refrigerant that has fallen into the unit is returned to the flow path portion where the refrigerant in the refrigerant circuit 10 circulates.
以下、この吐出温度上限制御について、図 3を用いて説明する。ここで、図 3は、本 実施形態における吐出温度上限制御及び冷媒寝込み量制御のフローチャートであ る。尚、以下においては、 2つの利用ユニット 4、 5のうち、利用ユニット 4が暖房中であ り、利用ユニット 5が暖房停止中であるものとして説明を行うものとする。 Hereinafter, the discharge temperature upper limit control will be described with reference to FIG. Here, FIG. 3 is a flowchart of the discharge temperature upper limit control and the refrigerant stagnation amount control in the present embodiment. In the following description, it is assumed that, out of the two usage units 4 and 5, the usage unit 4 is heating and the usage unit 5 is not heating.
[0025] まず、ステップ S1において、圧縮機吐出温度 Tdが上限値 Tdhまで上昇しているか どうかを判定し、圧縮機吐出温度 Tdが上限値 Tdhまで上昇している場合には、ステ ップ S2に移行し、圧縮機吐出温度 Tdが上限値 Tdhまで上昇していない場合には、 ステップ S6〜S10の処理 (すなわち、後述の冷媒寝込み量制御)に移行する。
次に、ステップ S2において、暖房停止中の利用ユニット 5の利用側膨張機構 51の 開度を大きくする制御を行う。より具体的には、圧縮機吐出温度 Tdが上限値 Tdhま で上昇している場合には、利用側膨張機構 51の開度を現状の開度(例えば、停止 開度、又は、後述の冷媒寝込み量制御により既に停止開度よりも大きな開度になつ ている場合にはその開度)から比較的大きな第 1開度(例えば、全開)まで急速に開 ける制御を行う。これにより、暖房停止中の利用ユニット 5内に寝込んだ冷媒を、でき るだけ速ぐ冷媒回路 10の冷媒が循環している流路部分に戻して、圧縮機吐出温度 Tdを低下させること力 Sできる。 [0025] First, in step S1, it is determined whether or not the compressor discharge temperature Td has risen to the upper limit value Tdh. If the compressor discharge temperature Td has risen to the upper limit value Tdh, step S2 When the compressor discharge temperature Td has not risen to the upper limit value Tdh, the process proceeds to steps S6 to S10 (that is, refrigerant stagnation amount control described later). Next, in step S2, control is performed to increase the opening of the use-side expansion mechanism 51 of the use unit 5 while heating is stopped. More specifically, when the compressor discharge temperature Td rises to the upper limit value Tdh, the opening degree of the use side expansion mechanism 51 is changed to the current opening degree (for example, the stop opening degree or the refrigerant described later). If the opening amount is already larger than the stop opening amount due to the stagnation amount control, the opening amount is rapidly controlled from the opening amount to a relatively large first opening amount (for example, fully open). As a result, the refrigerant that has fallen in the use unit 5 while heating is stopped is returned to the flow path portion where the refrigerant in the refrigerant circuit 10 circulates as fast as possible, and the compressor discharge temperature Td is reduced. it can.
[0026] 次に、ステップ S3において、ステップ S2の処理によって、圧縮機吐出温度 Tdが上 限値 Tdhよりも低下した力、を判定し、圧縮機吐出温度 Tdが上限値 Tdhよりも低下し た場合には、暖房停止中の利用ユニット 5における冷媒寝込み現象が解消されてい るため、ステップ S4において、ステップ S2において第 1開度まで開けられた利用側膨 張機構 51を停止開度まで閉止して、利用ユニット 4の暖房を継続する。一方、圧縮機 吐出温度 Tdが上限値 Tdhよりも低下しない場合には、例えば、ステップ S5のように、 圧縮機 21の保護の観点から、圧縮機 21を停止する処理を行う。 Next, in step S3, the force at which the compressor discharge temperature Td is lower than the upper limit value Tdh is determined by the process of step S2, and the compressor discharge temperature Td is lower than the upper limit value Tdh. In this case, since the refrigerant stagnation phenomenon in the use unit 5 while heating is stopped has been eliminated, in step S4, the use side expansion mechanism 51 opened to the first opening in step S2 is closed to the stop opening. Continue to heat unit 4 in use. On the other hand, when the compressor discharge temperature Td does not fall below the upper limit value Tdh, for example, a process of stopping the compressor 21 is performed from the viewpoint of protecting the compressor 21 as in step S5.
このように、吐出温度上限制御を行うことによって、主として、圧縮機 21の保護を目 的として、暖房停止中の利用ユニット 5への冷媒の寝込みを解消することができる。 しかし、このような吐出温度上限制御による暖房停止中の利用ユニットへの冷媒の 寝込みを解消する手法では、圧縮機吐出温度 Tdをしきい値としていること、及び、圧 縮機 21の保護という観点から、暖房停止中の利用ユニットの利用側膨張機構の開度 を第 1開度まで急速に開けることになるため、暖房停止中の利用ユニットにおける冷 媒流動音が発生してしまう。 In this way, by performing the discharge temperature upper limit control, it is possible to eliminate the stagnation of the refrigerant in the utilization unit 5 during the heating stop mainly for the purpose of protecting the compressor 21. However, in the method of eliminating the stagnation of the refrigerant in the use unit during the heating stop by such discharge temperature upper limit control, the compressor discharge temperature Td is used as a threshold value, and the viewpoint of protecting the compressor 21 Therefore, the opening degree of the utilization side expansion mechanism of the utilization unit while heating is stopped is rapidly opened to the first opening degree, so that a refrigerant flow noise is generated in the utilization unit when heating is stopped.
[0027] このため、冷媒寝込み現象による過度の圧縮機吐出温度 Tdの上昇を防ぐとともに 、暖房停止中の利用ユニットにおける冷媒流動音の発生を抑えることが可能な暖房 停止中の利用ユニットにおける冷媒の寝込みを解消する手法を行うことが望ましい。 そこで、本願発明者は、本実施形態のように、高圧側が冷媒の臨界圧力を超える 圧力となる冷凍サイクル運転による暖房動作が可能な冷媒回路 10においては、図 2 に示されるように、暖房時には、利用側熱交換器 42、 52内の冷媒圧力が臨界圧力 P
cpを超えており、気液二相の状態ではないことから、利用ユニット 4、 5における冷媒 温度及び冷媒圧力から利用ユニット 4、 5内に存在する冷媒量を演算することが可能 になるため、このことを利用して、暖房停止中の利用ユニットの冷媒寝込み量 Msを演 算し、この演算された冷媒寝込み量 Msに応じて、暖房停止中の利用ユニットの利用 側膨張機構の制御を行うことで、暖房停止中の利用ユニットに冷媒が寝込むことによ つて冷媒回路 10内を循環する冷媒量が不足し、圧縮機吐出温度 Tdが過度に上昇 するのを防ぐ冷媒寝込み量制御を行うことにしている。 [0027] Therefore, it is possible to prevent an excessive increase in the compressor discharge temperature Td due to the refrigerant stagnation phenomenon, and to suppress the generation of refrigerant flow noise in the heating unit while heating is stopped. It is desirable to use a technique to eliminate stagnation. Therefore, the inventor of the present application, as in the present embodiment, in the refrigerant circuit 10 capable of performing the heating operation by the refrigeration cycle operation in which the high pressure side exceeds the critical pressure of the refrigerant, as shown in FIG. , The refrigerant pressure in the use side heat exchanger 42, 52 is critical pressure P Since it exceeds cp and is not in a gas-liquid two-phase state, it becomes possible to calculate the amount of refrigerant present in the usage units 4 and 5 from the refrigerant temperature and refrigerant pressure in the usage units 4 and 5. Using this fact, the refrigerant stagnation amount Ms of the utilization unit while heating is stopped is calculated, and the utilization side expansion mechanism of the utilization unit when heating is stopped is controlled according to the calculated refrigerant stagnation amount Ms. Therefore, the refrigerant stagnation amount control is performed to prevent the refrigerant amount circulating in the refrigerant circuit 10 from being insufficient and the compressor discharge temperature Td from excessively rising due to the stagnation of the refrigerant in the use unit when heating is stopped. I have to.
[0028] 以下、この冷媒寝込み量制御について、図 3を用いて説明する。この冷媒寝込み 量制御は、上述のように、ステップ S 1において、圧縮機吐出温度 Tdが上限値 Tdhま で上昇していない場合に行われる制御である。尚、以下においては、 2つの利用ュニ ット 4、 5のうち、利用ユニット 4が暖房中であり、利用ユニット 5が暖房停止中であるも
Hereinafter, the refrigerant stagnation amount control will be described with reference to FIG. As described above, the refrigerant stagnation amount control is a control performed when the compressor discharge temperature Td has not risen to the upper limit value Tdh in step S1. In the following, out of the two usage units 4 and 5, usage unit 4 is heating and usage unit 5 is not heating.
まず、ステップ S6において、暖房停止中の利用ユニット 5の冷媒寝込み量 Msを演 算するのに必要な利用ユニット 5における冷媒温度及び冷媒圧力を検出する。ここで 、冷媒温度については、利用ユニット 5の利用側冷媒回路 10bを構成する機器の中 で冷媒を保有する容積が大きい利用側熱交換器 52及びその近傍の冷媒温度を用 いることが望ましいため、本実施形態においては、冷却器出口冷媒温度 Tho、冷却 器入口冷媒温度 Thi、又は、冷却器出口冷媒温度 Thoと冷却器入口冷媒温度 Thiと の平均温度を、冷媒寝込み量 Msを演算する際の冷媒温度として用いている。また、 冷媒圧力については、利用側熱交換器 52が圧縮機 21の吐出側に連通しているた め、本実施形態においては、圧縮機吐出圧力 Pd、又は、圧縮機吐出圧力 Pdに基づ いて圧縮機 21の吐出側から第 2冷媒連絡管 7の分岐部分までの圧力損失を考慮し て演算された圧力を、冷媒寝込み量 Msを演算する際の冷媒圧力として用いている。 First, in step S6, the refrigerant temperature and the refrigerant pressure in the usage unit 5 necessary for calculating the refrigerant stagnation amount Ms of the usage unit 5 during the heating stop are detected. Here, as the refrigerant temperature, it is desirable to use the use side heat exchanger 52 having a large volume of refrigerant in the equipment constituting the use side refrigerant circuit 10b of the use unit 5 and the refrigerant temperature in the vicinity thereof. In this embodiment, when calculating the refrigerant stagnation amount Ms, the refrigerant outlet refrigerant temperature Tho, the condenser inlet refrigerant temperature Thi, or the average temperature of the condenser outlet refrigerant temperature Tho and the condenser inlet refrigerant temperature Thi. It is used as the refrigerant temperature. Regarding the refrigerant pressure, since the use side heat exchanger 52 communicates with the discharge side of the compressor 21, in this embodiment, the refrigerant pressure is based on the compressor discharge pressure Pd or the compressor discharge pressure Pd. Thus, the pressure calculated in consideration of the pressure loss from the discharge side of the compressor 21 to the branch portion of the second refrigerant communication pipe 7 is used as the refrigerant pressure when calculating the refrigerant stagnation amount Ms.
[0029] 尚、暖房停止中の利用ユニット 5における冷媒温度を検出する際においては、冷媒 温度の検出精度を高めるために、利用側膨張機構 51の開度を停止開度よりも少し 大きな第 2開度まで開けることで、暖房停止中の利用ユニット 5内を冷媒が通過する ようにすることが望ましい。ここで、第 2開度は、吐出温度上限制御における第 1開度 に比べて小さ!/、ものである。
そして、このようにして検出された冷媒温度及び冷媒圧力を冷媒の密度に換算し、 利用ユニット 5の利用側冷媒回路 10bを構成する機器の容積やこの冷媒の密度に基 づレ、て冷媒寝込み量 Msを演算する。 [0029] It should be noted that when detecting the refrigerant temperature in the use unit 5 while heating is stopped, the opening degree of the use-side expansion mechanism 51 is set to a second value slightly larger than the stop opening degree in order to increase the detection accuracy of the refrigerant temperature. It is desirable to allow the refrigerant to pass through the use unit 5 when heating is stopped by opening it to the opening. Here, the second opening is smaller than the first opening in the discharge temperature upper limit control. Then, the refrigerant temperature and refrigerant pressure detected in this way are converted into refrigerant density, and the refrigerant stagnation is based on the volume of the equipment constituting the usage side refrigerant circuit 10b of the usage unit 5 and the density of this refrigerant. Calculate the quantity Ms.
次に、ステップ S7において、演算により得られた冷媒寝込み量 Msが冷媒寝込み量 の許容値 Msaを超えていないかどうかを判定する。ここで、冷媒寝込み量の許容値 Msaは、冷媒回路 10に封入された全冷媒量ゃ空気調和装置 1の運転条件に応じて 必要な冷媒循環量に基づいて決定される値である。 Next, in step S7, it is determined whether or not the refrigerant stagnation amount Ms obtained by the calculation exceeds the allowable value Msa of the refrigerant stagnation amount. Here, the allowable value Msa of the refrigerant stagnation amount is a value determined based on the total refrigerant amount enclosed in the refrigerant circuit 10 and the necessary refrigerant circulation amount according to the operating conditions of the air conditioner 1.
[0030] そして、冷媒寝込み量 Msが冷媒寝込み量の許容値 Msaを超えている場合には、 ステップ S8の処理に移行して、暖房停止中の利用ユニット 5の利用側膨張機構 51の 開度を現状の開度(例えば、停止開度、又は、既に冷媒寝込み量制御により停止開 度よりも大きな開度になっている場合にはその開度)から所定の開度増分だけ開ける ようにする。ここで、利用側膨張機構 51の開度増分は、吐出温度上限制御における 第 1開度まで開ける際の開度増分に比べて小さいものである。また、この開度増分は 、一定の値でもよいし、冷媒寝込み量 Msと許容値 Msaとの偏差に応じて可変される 値であってもよい。これにより、暖房停止中の利用ユニット 5に寝込んだ冷媒が冷媒 回路 10の冷媒が循環している流路部分に戻されて、圧縮機吐出温度 Tdの変化とは 無関係に冷媒寝込み量 Msを少なく制御を行うことができるようになる。そして、ステツ プ S8の処理の後、再び、ステップ S l、 S6、 S7の処理が行われて、冷媒寝込み量 M sが冷媒寝込み量の許容値 Msaよりも小さくなつた場合には、ステップ S9の処理に移 行し、冷媒寝込み量 Msが冷媒寝込み量の許容値 Msaを超えている場合には、さら に、利用側膨張機構 51の開度を現状の開度から所定の開度増分だけ開けるように して、ステップ Sl、 S6、 S7、 S8の処理が繰り返し行われることで、冷媒寝込み量 Ms が冷媒寝込み量の許容値 Msaよりも小さくなる。 [0030] If the refrigerant stagnation amount Ms exceeds the allowable value Msa of the refrigerant stagnation amount, the process proceeds to step S8, and the opening degree of the utilization side expansion mechanism 51 of the utilization unit 5 during the heating stop. Is opened by a predetermined opening increment from the current opening (for example, the stop opening or the opening when the refrigerant stagnation amount control is already larger than the stop opening). . Here, the opening increment of the use side expansion mechanism 51 is smaller than the opening increment when opening to the first opening in the discharge temperature upper limit control. The opening increment may be a constant value or a value that can be varied according to the deviation between the refrigerant stagnation amount Ms and the allowable value Msa. As a result, the refrigerant that has stagnated in the use unit 5 while heating is stopped is returned to the flow path portion where the refrigerant in the refrigerant circuit 10 circulates, and the refrigerant stagnation amount Ms is reduced regardless of the change in the compressor discharge temperature Td. Control can be performed. Then, after the process of step S8, the processes of steps S1, S6, and S7 are performed again, and if the refrigerant stagnation amount Ms becomes smaller than the refrigerant stagnation amount allowable value Msa, step S9 is performed. If the refrigerant stagnation amount Ms exceeds the refrigerant stagnation amount allowable value Msa, the opening degree of the use-side expansion mechanism 51 is further increased from the current opening degree by a predetermined opening degree increment. The process of steps Sl, S6, S7, and S8 is repeated so as to be opened, so that the refrigerant stagnation amount Ms becomes smaller than the allowable value Msa of the refrigerant stagnation amount.
[0031] 次に、ステップ S9において、暖房停止中の利用ユニット 5の利用側膨張機構 51の 開度が停止開度力、どうかを判定し、停止開度である場合には、そのままステップ S1 の処理に戻り、停止開度でない場合 (すなわち、ステップ S8の処理が少なくとも 1回 は行われている場合)には、利用側膨張機構 51を停止開度まで閉止して、ステップ S 1の処理に戻る。
このように、本実施形態においては、冷媒寝込み量制御を採用することによって、 圧縮機吐出温度 Tdの変化とは無関係に、暖房停止中の利用ユニットに寝込んだ冷 媒を冷媒回路 10の冷媒が循環している流路部分に緩やかに戻すことができる。この ため、本実施形態において、吐出温度上限制御は、冷媒寝込み量制御によっても、 暖房停止中の利用ユニットにおける冷媒寝込み状態を解消できないほどに急激に冷 媒循環量が減少した場合のみに機能するものとなるため、上述のステップ S2〜S5の 処理がほとんど行われることはなぐその結果、冷媒寝込み量制御によって、冷媒寝 込み現象による過度の圧縮機吐出温度 Tdの上昇を防ぐとともに、暖房停止中の利 用ユニットにおける冷媒流動音の発生を抑えることが可能となる。 [0031] Next, in step S9, it is determined whether or not the opening degree of the utilization side expansion mechanism 51 of the utilization unit 5 during the heating stop is the stop opening force. Returning to the process, if it is not the stop opening (that is, if the process of step S8 has been performed at least once), the use-side expansion mechanism 51 is closed to the stop opening and the process of step S1 is performed. Return. As described above, in the present embodiment, by adopting the refrigerant stagnation amount control, the refrigerant in the refrigerant circuit 10 converts the refrigerant stagnation into the use unit during the heating stop regardless of the change in the compressor discharge temperature Td. It can be gently returned to the circulating flow path portion. For this reason, in the present embodiment, the discharge temperature upper limit control functions only when the refrigerant circulation amount decreases so rapidly that the refrigerant stagnation state in the use unit during the heating stop cannot be eliminated even by the refrigerant stagnation amount control. As a result, the processes in steps S2 to S5 described above are hardly performed.As a result, the refrigerant stagnation amount control prevents excessive rise in the compressor discharge temperature Td due to the refrigerant stagnation phenomenon, and the heating is stopped. It is possible to suppress the generation of refrigerant flow noise in other units.
[0032] (3)空気調和装置の特徴 [0032] (3) Features of the air conditioner
本実施形態の空気調和装置 1には、以下のような特徴がある。 The air conditioner 1 of the present embodiment has the following features.
(A) (A)
本実施形態の空気調和装置 1では、利用側熱交換器 42、 52内の冷媒圧力が臨界 圧力 Pepを超えており気液二相の状態ではないことから、利用ユニット 4、 5における 冷媒温度及び冷媒圧力から利用ユニット 4、 5内に存在する冷媒量を演算することが 可能であることを利用して、複数の利用ユニット 4、 5のうち暖房停止中の利用ユニット における冷媒温度及び冷媒圧力に基づ!/、て、暖房停止中の利用ユニットの冷媒寝 込み量 Msを演算し、この演算された冷媒寝込み量 Msに応じて、暖房停止中の利用 ユニットの利用側膨張機構の制御を行うことで、暖房停止中の利用ユニットに冷媒が 寝込むことによって冷媒回路 10内を循環する冷媒量が不足し、圧縮機 21の吐出温 度が過度に上昇するのを防ぐことができるようになつている。 In the air conditioner 1 of the present embodiment, the refrigerant pressure in the usage-side heat exchangers 42 and 52 exceeds the critical pressure Pep and is not in a gas-liquid two-phase state. Using the fact that it is possible to calculate the amount of refrigerant present in the usage units 4 and 5 from the refrigerant pressure, the refrigerant temperature and the refrigerant pressure in the usage unit that is not heating among the usage units 4 and 5 are calculated. Based on this, the refrigerant stagnation amount Ms of the usage unit while heating is stopped is calculated, and the use side expansion mechanism of the usage unit when heating is stopped is controlled according to the calculated refrigerant stagnation amount Ms. As a result, it is possible to prevent the amount of refrigerant circulating in the refrigerant circuit 10 from being deficient when the refrigerant stagnates in the use unit when heating is stopped, and the discharge temperature of the compressor 21 from being excessively increased. Yes.
[0033] しかも、圧縮機 21の吐出温度をしきい値として暖房停止中の利用ユニットに寝込ん だ冷媒を回収する冷媒回収運転である吐出温度上限制御を行う場合に比べて、利 用側膨張機構の制御をきめ細かぐまた、緩やかに行うことができるようになるため、 暖房停止中の利用ユニットにおける冷媒流動音の発生を抑えることができる。 [0033] In addition, the use side expansion mechanism is compared with the case where the discharge temperature upper limit control is performed which is the refrigerant recovery operation in which the refrigerant that has stagnation in the use unit that is not heating is recovered using the discharge temperature of the compressor 21 as a threshold value. This makes it possible to finely control the air flow and to perform it slowly, so that it is possible to suppress the generation of the refrigerant flow noise in the utilization unit when the heating is stopped.
(B) (B)
本実施形態の空気調和装置 1では、暖房時における利用側熱交換器 42、 52の入 口側、及び、暖房時における利用側熱交換器 42、 52の出口側のうちの少なくとも 1
つに設けられた温度センサ(ここでは、温度センサ 44、 45、 54、 55)によって検出さ れた冷媒温度を、冷媒寝込み量 Msの演算に用いているため、冷媒寝込み量 Msの 演算精度を高めることができる。 In the air conditioner 1 of the present embodiment, at least one of the inlet side of the use side heat exchangers 42 and 52 during heating and the outlet side of the use side heat exchangers 42 and 52 during heating. Since the refrigerant temperature detected by the temperature sensor (here, temperature sensors 44, 45, 54, 55) provided for the two is used for calculating the refrigerant stagnation amount Ms, the calculation accuracy of the refrigerant stagnation amount Ms is improved. Can be increased.
[0034] (C) [0034] (C)
本実施形態の空気調和装置 1では、冷媒寝込み量 Msを演算するために使用され る暖房停止中の利用ユニットにおける冷媒温度を検出する際に、暖房停止中の利用 ユニット内を冷媒が通過するように、暖房停止中の利用ユニットの利用側膨張機構の 制御を行うようにしているため、暖房停止中の利用ユニット内における冷媒の流れを 生じさせながら、冷媒寝込み量 Msを演算する際に用いられる暖房停止中の利用ュ ニットにおける冷媒温度を検出できるようになり、冷媒温度の検出精度を高めることが できる。 In the air conditioner 1 of the present embodiment, when detecting the refrigerant temperature in the heating-use usage unit used for calculating the refrigerant stagnation amount Ms, the refrigerant passes through the heating-use usage unit. In addition, since the control of the use side expansion mechanism of the usage unit when heating is stopped is performed, it is used when calculating the refrigerant stagnation amount Ms while causing the flow of refrigerant in the usage unit when heating is stopped. It becomes possible to detect the refrigerant temperature in the utilization unit when heating is stopped, and the accuracy of refrigerant temperature detection can be improved.
(4)他の実施形態 (4) Other embodiments
以上、本発明の実施形態について図面に基づいて説明した力 具体的な構成は、 これらの実施形態に限られるものではなぐ発明の要旨を逸脱しない範囲で変更可 能である。 As described above, the specific configurations of the embodiments of the present invention based on the drawings can be changed without departing from the gist of the invention which is not limited to these embodiments.
[0035] (A) [0035] (A)
上述の実施形態においては、暖房時における利用側熱交換器 42、 52の入口側や 暖房時における利用側熱交換器 42、 52の出口側の冷媒温度を冷媒寝込み量 Ms の演算に使用しているが、利用側熱交換器 42、 52自体に温度センサを設けている 場合には、この利用側熱交換器 42、 52における冷媒温度を、暖房時における利用 側熱交換器 42、 52の入口側や暖房時における利用側熱交換器 42、 52の出口側の 冷媒温度に代えて、又は、これらの冷媒温度と併用して、冷媒寝込み量 Msの演算に 使用してもよい。 In the above-described embodiment, the refrigerant temperatures on the inlet side of the usage-side heat exchangers 42 and 52 during heating and the outlet side of the usage-side heat exchangers 42 and 52 during heating are used for calculating the refrigerant stagnation amount Ms. However, if the use side heat exchangers 42 and 52 themselves are provided with temperature sensors, the refrigerant temperature in the use side heat exchangers 42 and 52 is determined as the inlet of the use side heat exchangers 42 and 52 during heating. The refrigerant stagnation amount Ms may be used instead of the refrigerant temperature at the outlet side of the use-side heat exchangers 42 and 52 during heating or in combination with these refrigerant temperatures.
(B) (B)
上述の実施形態においては、 2つの利用ユニット 4、 5が熱源ユニット 2に接続され た構成に本発明を適用した例を説明したが、さらに多数の利用ユニットを熱源ュニッ トに接続した構成に本発明を適用してもよい。この場合において、暖房停止中の利 用ユニットが複数存在する場合には、暖房停止中の利用ユニットのすべての利用側
膨張機構の開度を制御するようにしてもよいし、また、冷媒寝込み量 Msが最も大きい 利用ユニットの利用側膨張機構の開度を制御するようにしてもよい。 産業上の利用可能性 In the above-described embodiment, the example in which the present invention is applied to the configuration in which the two usage units 4 and 5 are connected to the heat source unit 2 has been described. However, the present invention is applied to a configuration in which a larger number of usage units are connected to the heat source unit. The invention may be applied. In this case, if there are multiple use units that are not in heating, all use sides of the use units that are in heating stop are You may make it control the opening degree of an expansion mechanism, and you may make it control the opening degree of the utilization side expansion mechanism of a utilization unit with the largest refrigerant | coolant stagnation amount Ms. Industrial applicability
本発明を利用すれば、利用側膨張機構と利用側熱交換器とを含む複数の利用ュ ニットが、圧縮機と熱源側熱交換器とを含む熱源ユニットに接続されることによって構 成された冷媒回路を有しており、高圧側が冷媒の臨界圧力を超える圧力となる冷凍 サイクル運転による暖房動作が可能な空気調和装置にぉレ、て、冷媒寝込み現象に よる過度の圧縮機の吐出温度の上昇を防ぐとともに、暖房停止中の利用ユニットにお ける冷媒流動音の発生を抑えることができるようになる。
If the present invention is used, a plurality of utilization units including a utilization side expansion mechanism and a utilization side heat exchanger are connected to a heat source unit including a compressor and a heat source side heat exchanger. It has an air conditioner that has a refrigerant circuit and can be heated by refrigeration cycle operation where the high-pressure side exceeds the critical pressure of the refrigerant, and the excessive discharge temperature of the compressor due to refrigerant stagnation. In addition to preventing the rise, it is possible to suppress the generation of refrigerant flow noise in the use unit when heating is stopped.
Claims
[1] 利用側膨張機構 (41、 51)と利用側熱交換器 (42、 52)とを含む複数の利用ュニッ ト (4、 5)が、圧縮機(21)と熱源側熱交換器 (23)とを含む熱源ユニット (2)に接続さ れることによって構成された冷媒回路(10)を有しており、高圧側が冷媒の臨界圧力 を超える圧力となる冷凍サイクル運転による暖房動作が可能な空気調和装置におい て、 [1] A plurality of utilization units (4, 5) including a utilization side expansion mechanism (41, 51) and utilization side heat exchangers (42, 52) are connected to a compressor (21) and a heat source side heat exchanger ( 23) and a refrigerant circuit (10) configured by being connected to a heat source unit (2), which can be heated by a refrigeration cycle operation in which the high pressure side becomes a pressure exceeding the critical pressure of the refrigerant. In the air conditioner,
前記複数の利用ユニットのうち暖房停止中の利用ユニットにおける冷媒温度及び 冷媒圧力に基づ!/、て、前記暖房停止中の利用ユニット内に滞留する冷媒量である冷 媒寝込み量を演算し、前記冷媒寝込み量に応じて、前記暖房停止中の利用ユニット の利用側膨張機構の制御を行う、 Based on the refrigerant temperature and the refrigerant pressure in the use unit that is not in heating among the plurality of use units, the refrigerant stagnation amount that is the amount of refrigerant that stays in the use unit in the heating stop is calculated. Depending on the amount of refrigerant stagnation, control of the use side expansion mechanism of the use unit during the heating stop,
空気調和装置(1)。 Air conditioner (1).
[2] 前記冷媒温度は、暖房時における前記利用側熱交換器 (42、 52)の入口側、暖房 時における前記利用側熱交換器の出口側、及び、前記利用側熱交換器のうちの少 なくとも 1つに設けられた温度センサによって検出される、請求項 1に記載の空気調 和装置(1)。 [2] The refrigerant temperature is selected from among an inlet side of the use side heat exchanger (42, 52) during heating, an outlet side of the use side heat exchanger during heating, and the use side heat exchanger. The air conditioner (1) according to claim 1, wherein the air conditioner (1) is detected by at least one temperature sensor.
[3] 前記冷媒寝込み量を演算するために使用される前記暖房停止中の利用ユニットに おける冷媒温度を検出する際に、前記暖房停止中の利用ユニット内を冷媒が通過す るように、前記暖房停止中の利用ユニットの利用側膨張機構の制御を行う、請求項 2 に記載の空気調和装置(1)。
[3] When detecting the refrigerant temperature in the heating-use usage unit used to calculate the refrigerant stagnation amount, the refrigerant passes through the heating-use usage unit. The air conditioner (1) according to claim 2, which controls the use side expansion mechanism of the use unit while heating is stopped.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-332648 | 2006-12-08 | ||
JP2006332648A JP4274236B2 (en) | 2006-12-08 | 2006-12-08 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008069265A1 true WO2008069265A1 (en) | 2008-06-12 |
Family
ID=39492143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/073566 WO2008069265A1 (en) | 2006-12-08 | 2007-12-06 | Air-conditioner |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4274236B2 (en) |
WO (1) | WO2008069265A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105556219A (en) * | 2013-09-19 | 2016-05-04 | 大金工业株式会社 | Freezer |
CN110173796A (en) * | 2019-05-29 | 2019-08-27 | 南京天加环境科技有限公司 | A kind of control method preventing machine refrigerant time liquid in multi-connected air conditioner room |
JP2021055941A (en) * | 2019-09-30 | 2021-04-08 | ダイキン工業株式会社 | Refrigeration unit |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016003848A (en) * | 2014-06-19 | 2016-01-12 | 日立アプライアンス株式会社 | Air conditioning system and control method for the same |
JP2017172946A (en) * | 2016-03-25 | 2017-09-28 | 三菱重工サーマルシステムズ株式会社 | Air conditioning operation control device, air conditioning system, and air conditioning operation control method and program |
CN113639395B (en) * | 2021-08-05 | 2023-02-28 | 青岛海尔空调电子有限公司 | Control method and system of multi-split air conditioner and multi-split air conditioner |
JP2024114179A (en) * | 2023-02-13 | 2024-08-23 | 三菱重工サーマルシステムズ株式会社 | Air conditioner and control method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07158989A (en) * | 1993-12-01 | 1995-06-20 | Daikin Ind Ltd | Multi-room air conditioner |
JPH0886527A (en) * | 1994-09-16 | 1996-04-02 | Toshiba Corp | Air conditioner |
-
2006
- 2006-12-08 JP JP2006332648A patent/JP4274236B2/en active Active
-
2007
- 2007-12-06 WO PCT/JP2007/073566 patent/WO2008069265A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07158989A (en) * | 1993-12-01 | 1995-06-20 | Daikin Ind Ltd | Multi-room air conditioner |
JPH0886527A (en) * | 1994-09-16 | 1996-04-02 | Toshiba Corp | Air conditioner |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105556219A (en) * | 2013-09-19 | 2016-05-04 | 大金工业株式会社 | Freezer |
CN110173796A (en) * | 2019-05-29 | 2019-08-27 | 南京天加环境科技有限公司 | A kind of control method preventing machine refrigerant time liquid in multi-connected air conditioner room |
CN110173796B (en) * | 2019-05-29 | 2020-12-22 | 南京天加环境科技有限公司 | Control method for preventing refrigerant of multi-connected air conditioner indoor unit from returning liquid |
JP2021055941A (en) * | 2019-09-30 | 2021-04-08 | ダイキン工業株式会社 | Refrigeration unit |
WO2021065118A1 (en) * | 2019-09-30 | 2021-04-08 | ダイキン工業株式会社 | Refrigeration device |
CN114341571A (en) * | 2019-09-30 | 2022-04-12 | 大金工业株式会社 | Refrigerating device |
EP4015939A4 (en) * | 2019-09-30 | 2022-10-12 | Daikin Industries, Ltd. | REFRIGERATION DEVICE |
US11512876B2 (en) | 2019-09-30 | 2022-11-29 | Daikin Industries, Ltd. | Refrigeration apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP4274236B2 (en) | 2009-06-03 |
JP2008145044A (en) | 2008-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6935720B2 (en) | Refrigeration equipment | |
JP6081033B1 (en) | Air conditioner | |
JP6479162B2 (en) | Air conditioner | |
CN104024764B (en) | Refrigeration apparatus | |
EP2339256A2 (en) | Air conditioner and method for controlling the same | |
US8176743B2 (en) | Refrigeration device | |
US10976090B2 (en) | Air conditioner | |
EP2270405A1 (en) | Refrigerating device | |
US8171747B2 (en) | Refrigeration device | |
CN107709887B (en) | Air conditioner and operation control device | |
WO2008032559A1 (en) | Air conditioner | |
EP2806228A1 (en) | Air conditioner | |
WO2008069265A1 (en) | Air-conditioner | |
AU2016279490A1 (en) | Air conditioner | |
CN114110739A (en) | One-driving-multiple refrigerating and heating air conditioner | |
CN101558267B (en) | Freezing device | |
JP5098987B2 (en) | Air conditioner | |
JP5056794B2 (en) | Air conditioner | |
CN113614469A (en) | Air conditioner | |
JP6257812B2 (en) | Air conditioner | |
JP4105413B2 (en) | Multi-type air conditioner | |
KR101485848B1 (en) | Control method of multi-type air conditioner | |
JP2008209021A (en) | Multi-air conditioner | |
JP2017120141A (en) | Air conditioner and defrost auxiliary device | |
KR20090107310A (en) | Multi type air conditioner and its heating operation cooperative control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07850182 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07850182 Country of ref document: EP Kind code of ref document: A1 |