WO2008062844A1 - Radiating resin compositions, process for producing the same, and molded article - Google Patents
Radiating resin compositions, process for producing the same, and molded article Download PDFInfo
- Publication number
- WO2008062844A1 WO2008062844A1 PCT/JP2007/072583 JP2007072583W WO2008062844A1 WO 2008062844 A1 WO2008062844 A1 WO 2008062844A1 JP 2007072583 W JP2007072583 W JP 2007072583W WO 2008062844 A1 WO2008062844 A1 WO 2008062844A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- heat
- resin
- resin composition
- carbon fiber
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L55/00—Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
- C08L55/02—ABS [Acrylonitrile-Butadiene-Styrene] polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
- H05K7/20436—Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
- H05K7/20445—Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
- H05K7/20472—Sheet interfaces
- H05K7/20481—Sheet interfaces characterised by the material composition exhibiting specific thermal properties
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
- H05K9/0083—Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
- H05K9/009—Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/552—Protection against radiation, e.g. light or electromagnetic waves
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a heat-dissipating resin composition containing a thermoplastic resin and a carbon fiber structure having a specific structure and a method for producing the same, a thermoplastic resin, graphite particles, and a carbon fiber structure.
- a thermoplastic resin e.g., polymethyl methacrylate
- graphite particles e.g., polymethyl methacrylate
- Patent Document 1 discloses a highly thermally conductive resin composition containing a thermoplastic resin such as PBT and PEEK, and inorganic fibers and inorganic powders such as aluminum nitride.
- Patent Document 2 discloses a resin composition containing a specific block copolymer or hydrogenated block copolymer, a rubber softener, and a heat conductive material such as magnesium hydroxide! /, The Further, in Patent Document 3, a filler made of aluminum nitride sintered powder or the like is dispersed in a matrix resin and is formed into a network by a low melting point metal or eutectic alloy having a melting point power of 3 ⁇ 400 ° C. or less. A high thermal conductive composite is disclosed in which the filler is continuously welded to each other through the formed metal network.
- Patent Documents 4 and 5 each disclose a conductive resin composition containing graphite having a specific shape or size.
- resin compositions containing metal fibers, metal powders, inorganic fibers, inorganic powders, and the like sometimes have insufficient moldability and impact resistance.
- environmental stability may be insufficient, which may cause corrosion of the product.
- Patent Document 7 has preferable characteristics as a composite material filter, and physical properties such as electrical characteristics, mechanical characteristics, and thermal characteristics can be obtained with a small addition amount without damaging the characteristics of the matrix resin.
- a composite material comprising a novel carbon fiber structure that can improve properties is disclosed.
- the resin composition of Patent Document 7 can obtain a high thermal conductivity with a small blending amount with respect to the matrix resin by blending a carbon fiber structure having a specific structure.
- the range of use was limited, where the balance between moldability and impact resistance was not sufficient.
- Patent Document 1 Japanese Patent Application Laid-Open No. 8-283456
- Patent Document 2 Japanese Patent Application Laid-Open No. 2001_106865
- Patent Document 3 Japanese Patent Laid-Open No. 6-196884
- Patent Document 4 Japanese Patent Laid-Open No. 2001-60413
- Patent Document 5 Japanese Unexamined Patent Publication No. 2003-253127
- Patent Document 6 JP-A-8-27279
- Patent Document 7 Japanese Unexamined Patent Application Publication No. 2006-265315 Disclosure of the invention
- An object of the present invention is a heat-dissipating resin composition excellent in heat dissipation, excellent in balance between molding processability and impact resistance, and further excellent in electromagnetic shielding properties, and a method for producing the same, and molding. Is to provide goods.
- Another object of the present invention is a heat dissipating resin composition excellent in heat dissipation, excellent in moldability and impact resistance, and further excellent in thermal conductivity and electromagnetic shielding properties, and the same. It is providing the molded article containing this.
- the present inventors have excellent heat dissipation and molding by blending a thermoplastic resin and a carbon fiber structure having a specific structure.
- the present inventors have found a heat-dissipating resin composition excellent in the balance between workability and impact resistance, and further excellent in electromagnetic shielding properties, a manufacturing method thereof, and a molded product.
- thermoplastic resin a thermoplastic resin
- graphite particles a carbon fiber structure
- heat-dissipating resin composition excellent in conductivity and electromagnetic shielding properties and a molded product containing the same were found.
- thermoplastic resin and [B] an outer diameter of 15 to; carbon having a carbon fiber part of OOnm and a joining part for joining a large number of the carbon fiber parts, and having a three-dimensional network structure
- the carbon fiber structure [B] is contained in an amount of! To 80 parts by mass when the thermoplastic resin [A] is 100 parts by mass.
- a heat-dissipating resin composition is included.
- the thermoplastic resin [A] is a rubber-reinforced bull resin obtained by polymerizing a bull monomer (bl) containing an aromatic bull compound in the presence of a rubber polymer, or A rubber-reinforced resin and a mixture comprising a (co) polymer of a bull-based monomer (b2), which contains a rubber-reinforced resin and a polycarbonate resin, and the rubber-reinforced resin and the polycarbonate resin.
- thermoplastic resin [A] and at least a part of the carbon fiber structure [B] are melt kneaded.
- the manufacturing method of the heat-radiating resin composition characterized by providing these.
- the first mixing step the total amount of the carbon fiber structure [B] is used, and the use ratio of the thermoplastic resin [A] and the carbon fiber structure [B] is 50 to 95 quality, respectively.
- the second mixing step and the kneaded product obtained in the first mixing step and the heat in the second mixing step. 9. The method for producing a heat-dissipating resin composition as described in 8 above, wherein the remainder of the plastic resin [A] is melt-kneaded.
- a method for producing a heat-dissipating resin composition is described in 2 above, wherein the polycarbonate resin and at least a part of the carbon fiber structure [B] are melt-kneaded in a first mixing step. And a second mixing step of melt-kneading the kneaded material obtained in the first mixing step, the rubber-reinforced resin, and the remaining part of the carbon fiber structure [B].
- the total amount of the carbon fiber structure [B] is used, and the usage ratios of the polycarbonate resin and the carbon fiber structure [B] are 50 to 95% by mass and 50 to 50%, respectively. 5% by mass (however, the total of these is 100% by mass), and in the second mixing step, the kneaded product obtained in the first mixing step and the rubber-reinforced resin are 11.
- Graphite particles (C1) having an aspect ratio of 10 to 20, a weight average particle size of 10 to 2 OO ⁇ m, and a fixed carbon content of 98% by mass or more. 13.
- Ratio D of particle diameters D and D when the cumulative weights obtained by measuring the particle size distribution of the graphite particles (C1) are 20% and 80%, respectively. Above 13
- the graphite particles [C] are graphite particles (C2) having an aspect ratio of 3 or less, a weight average particle diameter of !! to 70 m, and a fixed carbon content of 98% by mass or more. 13.
- the content ratio of the carbon fiber structure [B] and the graphite particles [C] is 20 to 95 mass% and 80 to 5 mass%, respectively, when the total of these contents is 100 mass%.
- the heat-dissipating resin composition according to any one of 12 to 17 above, wherein
- the heat-dissipating resin composition of the present invention containing the thermoplastic resin [A] and the carbon fiber structure [B] having a specific structure, the heat-dissipating resin composition is excellent in heat dissipating property, Excellent balance of impact resistance, and excellent electromagnetic shielding properties.
- thermoplastic resin [A] contains a rubber reinforced resin and a polycarbonate resin, it is particularly excellent in molding processability, heat dissipation and impact resistance.
- the heat-dissipating resin composition produced by subjecting these resins to a specific kneading method is excellent in the compatibility of the thermoplastic resin [A] and the carbon fiber structure [B].
- the molded product of the present invention which is excellent in heat dissipation and contains the above-mentioned thermoplastic resin [A] and a carbon fiber structure [B] having a specific structure, has heat dissipation, molding processability, impact resistance and electromagnetic wave shielding. Excellent in properties.
- the heat dissipating resin composition which includes a thermoplastic resin [A] and a carbon fiber structure [B] having a specific structure
- the heat dissipating resin composition has excellent heat dissipation and is molded. It is possible to easily obtain a heat-dissipating resin composition having an excellent balance of workability and impact resistance and also having excellent electromagnetic shielding properties.
- the heat-dissipating resin composition of the present invention further contains graphite particles [C]
- the heat-dissipating resin composition is excellent in heat dissipating property, excellent in the balance of molding processability and impact resistance, and further in heat conduction. And excellent electromagnetic shielding properties.
- the graphite particles [C] have a specific size or shape, they are particularly excellent in heat dissipation, thermal conductivity, and electromagnetic shielding properties.
- thermoplastic resin [A] contains a rubber-reinforced resin and a polycarbonate resin, and these are in a specific content ratio, in particular, moldability, heat dissipation, thermal conductivity, impact resistance and Excellent electromagnetic shielding properties.
- thermoplastic resin [A] carbon fiber structure [B] having a specific structure, and graphite particles [
- the molded product of the present invention containing C] is excellent in heat dissipation, molding processability, impact resistance, thermal conductivity and electromagnetic wave shielding properties.
- FIG. 1 is a longitudinal cross-sectional explanatory view of a thermal fogging test apparatus.
- (co) polymerization means homopolymerization and copolymerization
- (meth) acryl means acrylic and methacrylic.
- the heat-dissipating resin composition of the present invention comprises [A] a thermoplastic resin (hereinafter also referred to as “component [A]”), and [B] a carbon fiber portion having an outer diameter of 15 to 100 nm, A carbon fiber structure having a three-dimensional network structure (hereinafter, also referred to as “component [B]”), and the component [B].
- component [A] a thermoplastic resin
- component [B] a carbon fiber portion having an outer diameter of 15 to 100 nm
- component [B] A carbon fiber structure having a three-dimensional network structure
- the content of is 1 to 80 parts by mass, when the component [A] is 100 parts by mass.
- the heat dissipating resin composition of the present invention may be a resin composition containing [C] graphite particles (hereinafter also referred to as “component [C]”).
- thermosipating resin composition [S] the composition containing the above components [A] and [B] and not containing the above component [C] is referred to as “heat dissipating resin composition [S]”, and the above components [A], [B ] And the composition containing [C] are referred to as “heat-dissipating resin composition [T]”.
- the component [A] is not particularly limited as long as it is a thermoplastic polymer.
- Styrene (co) polymers such as styrene copolymers; Rubber-reinforced resins such as ABS resin, AES resin and ASA resin; Polyethylene, polypropylene, ethylene 'propylene copolymer, etc.
- 10 ⁇ -olefin (co) polymers composed of at least one of ⁇ -olefins and modified resins (chlorinated polyethylene, etc.), olefin resins such as cyclic olefin copolymers; ionomers, ethylene Polymers, Ethylene Copolymers such as Ethylene 'Buyl Alcohol Copolymers; Polychlorinated Bull, Ethylene Copolymer 'Buluric chloride resins such as poly (vinyl chloride) and polyvinylidene chloride; acrylics such as (co) polymers using one or more (meth) acrylic acid esters such as poly (methyl methacrylate) (PMMA) Resin: Polyamide, polyamide, 6, polyamide, 6, 6, polyamide, 6, 12, etc.
- PA polyamide, resin
- PET polyethylene terephthalate
- PBT polybutylene terephthalate
- POM Polyacetal Resin
- PC Polycarbonate resin
- Polyarylate resin Polyphenylene ether; Polyphenylene sulfide; Fluororesin such as polytetrafluoroethylene and polyvinylidene fluoride; Liquid crystal polymer; Polyimide, Polyamideimide Imide resins such as polyetherimide; polyetherketone, polyetherether Ketone resins such as ruketone; Sulfone resins such as polysulfone and polyethersulfone; Urethane resins; Polyacetate butyl; Polyethylene oxide; Polybulol alcohol; Polybulul ether; Polybulbutyral; Phenoxy resin; Photosensitive resin; And other plastics.
- the rubber-reinforced resin polymerizes a bulle monomer (bl) containing an aromatic bur compound in the presence of a rubbery polymer (hereinafter referred to as "rubbery polymer (a)").
- the rubber-reinforced vinyl resin hereinafter referred to as “rubber-reinforced vinyl resin (Al)”
- the rubber-reinforced vinyl resin (A1) and the rubber monomer (b2) A mixture of (co) polymer (hereinafter referred to as “(co) polymer (A2)”).
- the rubbery polymer (a) may be a homopolymer as long as it is rubbery at room temperature! /, And may be a copolymer. (Gen-based rubber polymer) and non-gen-based polymer (non-gen rubber-based polymer) are preferred. Further, the rubbery polymer (a) may be a crosslinked polymer or a non-crosslinked polymer. These can be used alone or in combination of two or more.
- gen-based polymer examples include homopolymers such as polybutadiene, polyisoprene, polychloroprene; styrene 'butadiene copolymer, styrene' butadiene, styrene copolymer, Acrylonitrile 'butadiene copolymer, acrylonitrile.
- Styrene / butadiene copolymer rubber such as styrene / butadiene copolymer; styrene / isoprene copolymer, styrene / isoprene / styrene copolymer, acrylonitrile / styrene / isoprene copolymer / styrene / isoprene copolymer Combined rubber; natural rubber and the like.
- These copolymers may be block copolymers or random copolymers. These copolymers may be hydrogenated (however, the hydrogenation rate is less than 50%).
- the above gen-based polymers can be used singly or in combination of two or more.
- the non-gen-based polymer is an ethylene'a-olefin-based copolymer rubber containing an ethylene unit and a unit comprising ⁇ -olefin having 3 or more carbon atoms; Examples include urethane rubbers; acrylic rubbers; silicone rubbers; silicone 'acrylic IPN rubbers; polymers obtained by hydrogenating (co) polymers containing units composed of conjugated diene compounds. These copolymers may be block copolymers or random copolymers. These copolymers may be hydrogenated (however, the hydrogenation rate is 50% or more).
- the non-gen-based polymers can be used singly or in combination of two or more.
- the rubber-reinforced vinyl resin (A1) obtained when a gen-based polymer is used as the rubber polymer (a) is a gen-based rubber-reinforced resin. "It is said that. Further, as the rubbery polymer (a), the rubber-reinforced bur resin (A1) obtained when ethylene'a-olefin and / or ethylene'a-olefin'nonconjugated-gen copolymer is generally used, It is said to be “AES resin”. Furthermore, the rubber-reinforced bull resin (A 1) obtained when acrylic rubber is used as the rubbery polymer (a) is an acrylic rubber-reinforced bull resin, generally referred to as “ASA resin”. It is said
- the shape of the rubbery polymer (a) used for the formation of the rubber-reinforced bull resin (A1) is not particularly limited, but when it is particulate, its weight average particle diameter is preferably 50 to 3,000 stomachs, more preferably 100 to 2,000 stomachs, and still more preferably 120 to 800 stomachs.
- the weight average particle diameter is less than 50 nm, the heat-dissipating resin compositions [S] and [T] of the present invention and molded products containing them tend to be inferior in impact resistance.
- the surface appearance of the molded product tends to be inferior.
- the weight average particle diameter can be measured by a laser diffraction method, a light scattering method, or the like.
- the rubbery polymer (a) is in the form of particles, as long as the weight average particle diameter is within the above range, for example, JP-A-61-233010, JP-A-59-93701, Those enlarged by a known method described in JP-A-56-167704 and the like can also be used.
- the method for producing the rubbery polymer (a) is preferably emulsion polymerization in consideration of adjustment of the average particle diameter and the like.
- the average particle size can be adjusted by selecting production conditions such as the type and amount of emulsifier, the type and amount of initiator used, polymerization time, polymerization temperature, and stirring conditions.
- Another method for adjusting the average particle size (particle size distribution) may be a method of blending two or more of the rubbery polymers (a) having different particle sizes.
- the bull monomer (bl) used for forming the bull rubber polymer (A1) includes an aromatic bull compound.
- This bull monomer (bl) may be an aromatic bull compound alone, and this bull monomer, for example, cyanide bull compound, (meth) acrylate compound, maleimide compound, acid anhydride It may be a combination of a compound that can be copolymerized with an aromatic bur compound such as a product.
- the compounds that can be copolymerized with the above aromatic bur compound can be used singly or in combination of two or more. Therefore, as the bulle monomer (bl), one kind of aromatic bur compound is used.
- the aromatic bur compound is not particularly limited as long as it is a compound having at least one butyl bond and at least one aromatic ring.
- examples thereof include styrene, ⁇ -methyl styrene, ⁇ -methyl styrene. , ⁇ -methyl styrene, butyl toluene, ⁇ -methyl styrene, ethyl styrene, p- tert-butyl styrene, butyl xylene, vinyl naphthalene, monochlorostyrene, dichlorostyrene, monobromostyrene, dib-mouthed styrene And fluorostyrene. These can be used singly or in combination of two or more. Of these, styrene and ⁇ -methylstyrene are preferred.
- Examples of the cyanide bur compound include acrylonitrile and methacrylonitrile. These can be used alone or in combination of two or more. Of these, acrylonitrile is preferred.
- Examples of the (meth) acrylic acid ester compound include methyl (meth) acrylate, ethyl (meth) acrylate, ⁇ -propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth) alkyl.
- Examples include ⁇ -butyl acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, and (meth) acrylate phenyl. These can be used alone or in combination of two or more. Of these, methyl (meth) acrylate is preferred.
- the maleimide compounds include maleimide, N-methylmaleimide, N-butylmaleimide, N-phenylmaleimide, N- (2-methylphenylenole) maleimide, N- (4-hydroxyphenyl) maleimide, N —Cyclohexylmaleimide and the like. These can be used alone or in combination of two or more.
- maleimide-based compound such a unit, for example, maleic anhydride is copolymerized and then imidized.
- Examples of the acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. These can be used alone or in combination of two or more.
- a bur compound having a functional group such as a hydroxyl group, an amino group, an epoxy group, an amide group, a carboxyl group, or an oxazoline group.
- the bull monomer (bl) is a combination of one or more aromatic bull compounds and one or more compounds copolymerizable with the aromatic bull compounds, that is, the above monomers. It is preferable to use the body (y).
- the mass ratio between the aromatic bur compound and the other compounds is usually (2 to 95) when the total is 100% by mass. % By mass / (98 to 5)% by mass, preferably (10 to 90)% by mass / (90 to 10)% by mass. If the ratio of the above aromatic bur compound is too small, the moldability tends to be inferior, and if it is too large, the resulting molded article may not have sufficient chemical resistance, heat resistance and the like.
- the monomer (y) is preferably a combination of an aromatic bull compound and a cyanide bull compound (hereinafter referred to as "monomer (yl)”), and an aromatic bull compound.
- a combination of a cyanated bur compound and another compound (such as a (meth) acrylate compound) hereinafter referred to as “monomer (y2)”.
- cyanide bur compound improves the balance of physical properties such as chemical resistance and heat resistance.
- the rubber-reinforced bull resin (A1) is obtained by polymerizing the vinyl monomer (bl) in the presence of the rubber polymer (a). Illustrated.
- the above embodiments [2] and [3] are preferable. Further, it may be a combination of two or three of these embodiments [1], [2] and [3].
- the rubber reinforced resin may be only the rubber reinforced bull resin (A1), or the rubber reinforced bull resin (A1) and the bull monomer (b2 ) (Co) polymer (hereinafter referred to as “(co) polymer (A2)”).
- the above (co) polymer (A2) May be a polymer obtained by polymerizing components having the same composition as the above-mentioned bull monomer (M) used for the formation of the rubber-reinforced bull resin (A1), or a different composition. It may be a polymer obtained by polymerizing the same type of monomer, or may be a polymer obtained by polymerizing different types of monomers with different compositions. . These polymers may contain two or more types! /.
- the (co) polymer (A2) is a homopolymer or copolymer obtained by polymerization of the bull monomer (b2), and is exemplified below.
- the compounds used for forming the rubber-strengthened bull resin (al) can be applied to the respective compounds, and preferable compounds are also the same.
- the (co) polymer of the above embodiment can be used alone or in combination of two or more.
- the rubber-reinforced bull resin (A1) can be produced by polymerizing the vinyl monomer (bl) in the presence of the rubber polymer (a).
- the polymerization method emulsion polymerization, solution polymerization, bulk polymerization, and bulk suspension polymerization are preferable.
- the rubber-reinforced bull resin (A1) the rubber polymer (a) and the bull monomer (bl) are mixed in the reaction system with the rubber polymer ( a)
- the above-mentioned bulle monomer (bl) may be added all at once to initiate the polymerization, or the polymerization may be carried out while being divided or continuously added.
- the bulle monomer (bl) may be added all at once to initiate polymerization, or may be divided or continuously. May be added. At this time, the remainder of the rubbery polymer (a) may be added in a batch, divided or continuously during the reaction.
- the amount of the rubbery polymer (a) used is usually 5 to 80 parts by mass, preferably 10 to 70 parts by mass, Preferably it is 15-60 mass parts.
- the amount of the above-mentioned bulle monomer (bl) is usually 25 to 1,900 parts by weight, preferably 60 to 560 parts by weight, based on 100 parts by weight of the rubbery polymer (a). .
- the rubber-reinforced bull resin (A1) is produced by emulsion polymerization, a polymerization initiator, a chain transfer agent (molecular weight regulator), an emulsifier, water and the like are used.
- Examples of the polymerization initiator include organic peroxides such as cumene hydride mouth peroxide, diisopropylbenzene oxide mouth peroxide, and noramentan nanodropperoxide, and reductions such as sugar-containing pyrophosphate prescription and sulfoxylate prescription.
- Redox initiators combined with other agents; persulfates such as potassium persulfate; benzoyl peroxide (BPO), lauroyl peroxide, tert butinoreperoxylaurate, tert butinoreperoxy monocarbonate, etc. And the like. These can be used alone or in combination of two or more.
- the amount of the polymerization initiator used is usually from 0.2 to 0.7% by mass, preferably from 0.2 to 0.7% by mass, based on the total amount of the bull monomer (b 1).
- the polymerization initiator can be added to the reaction system all at once or continuously.
- Examples of the chain transfer agent include octyl mercaptan, n-dodecyl mercaptan, tert- Examples include dodecyl mercaptan, n-hexyl mercaptan, n-hexadecyl mercaptan, n-pinolenes, and a-methylstyrene dimer. These can be used alone or in combination of two or more.
- the amount of the chain transfer agent used is generally 0.05-2. 0% by mass with respect to the total amount of the bulle monomer (bl).
- the chain transfer agent can be added to the reaction system all at once or continuously.
- Examples of the emulsifier include a canyon surfactant and a noion surfactant.
- Anionic surfactants include higher alcohol sulfates; alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate; aliphatic sulfonates such as sodium lauryl sulfate; higher aliphatic carboxylates and aliphatic phosphates. Salt and the like.
- Examples of nonionic surfactants include polyethylene glycol alkyl ester type compounds and alkyl ether type compounds. These can be used alone or in combination of two or more.
- the amount of the emulsifier used is usually 0.3 to 5.0% by mass with respect to the total amount of the vinyl monomer (bl).
- Emulsion polymerization can be carried out under known conditions depending on the type of the bull monomer (bl), the polymerization initiator and the like.
- the latex obtained by this emulsion polymerization is usually purified by coagulating with a coagulant to form a polymer component in powder form, and then washing and drying.
- a coagulant inorganic salts such as calcium chloride, magnesium sulfate, magnesium chloride and sodium chloride; inorganic acids such as sulfuric acid and hydrochloric acid; organic acids such as acetic acid and lactic acid are used.
- the resin may be isolated from each latex and then mixed. There are methods such as coagulating a mixture of latexes each containing fat.
- the graft ratio of the rubber-reinforced bull resin (A1) is usually 10 to 200% by mass, preferably 15 to 150% by mass, more preferably 20 to 100% by mass. Graft rate is 10% by mass If it is less than 1, the surface appearance and impact resistance of the molded product containing the heat-dissipating resin composition [S] or [T] of the present invention may be lowered. On the other hand, if the graft ratio exceeds 200%, the moldability may decrease.
- the graft ratio refers to X-gram of the rubbery polymer (a) in 1 gram of the rubber-reinforced bull resin (Al) and 1 gram of the rubber-reinforced bull resin (Al) in acetone. This is the value obtained from the following equation, where y grams is the insoluble content when dissolved.
- the rubbery polymer (a) is an acrylic rubber, acetonitrile is used instead of acetone.
- the graft ratio (mass 0/0) ⁇ (y- ⁇ ) / ⁇ X 100
- the intrinsic viscosity of a component soluble in acetone of the rubber-reinforced bull resin (A1) is usually 0.;! To 1 ⁇ 0 dl / g, preferably 0.2 to 0 ⁇ 9 dl / g, more preferably 0 ⁇ 3 to 0 ⁇ 7dl / g.
- the intrinsic viscosity []] is within the above range, the molding processability is excellent and the resulting molded article is excellent in impact resistance.
- the above-mentioned graft ratio and intrinsic viscosity [7] are the types of polymerization initiator, chain transfer agent, emulsifier, solvent, etc. used when the rubber-reinforced bull resin (A1) is produced.
- the amount can be easily controlled by adjusting the polymerization time, polymerization time, polymerization temperature and the like.
- the (co) polymer (A2) is obtained by polymerizing the bull monomer (b2) using a polymerization initiator or the like applied to the production of the rubber-reinforced bull resin (A1). Can be manufactured.
- a polymerization initiator As the polymerization method, solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization and the like are suitable, and these polymerization methods may be used in combination.
- the (co) polymer (A2) may be a method using a polymerization initiator, a thermal polymerization method without using a polymerization initiator, or a combination thereof. .
- the intrinsic viscosity [ ⁇ ] (in methyl ethyl ketone, 30. Measured at C) of the acetone-soluble component of the (co) polymer (A2) is usually 0.1 to 1. Odl / g, Preferably it is 0.15-0.7 dl / g.
- the intrinsic viscosity [7] of the (co) polymer (A2) can be controlled by adjusting the production conditions, as in the case of the rubber-reinforced resin (A1). it can.
- Soluble in acetone of the rubber-reinforced resin (however, when the rubbery polymer ⁇ used for forming the rubber-reinforced resin (A1) is an acrylic rubber, acetonitrile is used).
- the intrinsic viscosity [7]] of the component is usually from 0 ⁇ ;! To 0.8 dl / g, preferably 0.15-0. 7 dl / g. When this intrinsic viscosity [7] is within the above range, the balance between physical properties of molding processability and impact resistance is excellent.
- the component [A] includes the rubber-reinforced resin
- the rubber-reinforced resin is the rubber-reinforced vinyl resin (A1), the rubber-reinforced resin resin (A1) and the (
- the content of the rubbery polymer (a) in the heat-dissipating resin composition [S] or [T] of the present invention is usually !!-50 mass%, preferably 3-40 mass%, more preferably 3-35 mass%, particularly preferably 5-35 mass%.
- the content of the rubbery polymer (a) is within the above range, the molding processability is excellent, and the molded product containing the heat-dissipating resin composition [S] or [ ⁇ ] of the present invention has an impact resistance. Excellent surface appearance, rigidity and heat resistance.
- the polycarbonate resin is not particularly limited as long as it has a carbonate bond in the main chain, and may be an aromatic polycarbonate or an aliphatic polycarbonate. Moreover, you may use combining these. In the present invention, aromatic polycarbonate is preferred from the viewpoints of moldability, impact resistance, and heat resistance.
- the polycarbonate resin may have a terminal modified with an R—CO— group or an R′—O—CO— group (wherein R and R ′ each represents an organic group). Good. These polycarbonate resins can be used singly or in combination of two or more.
- Examples of the aromatic polycarbonate include those obtained by melt transesterification (transesterification reaction) of an aromatic dihydroxy compound and carbonic acid diester, those obtained by an interfacial polycondensation method using phosgene, and pyridine.
- a product obtained by a pyridine method using a reaction product of phosgene and phosgene can be used.
- the aromatic dihydroxy compound is a compound having two hydroxyl groups in the molecule.
- Dihydrobenzene such as hydroquinone and resorcinol, 4,4'-biphenol, 2,2-bis (4-hydroxyphenol) propane (hereinafter referred to as “bisphenolenore A”), 2,2-bis (3,5-Dibu-Mole 4-Hydroxyphenol) Propane, 2,2-Bis (4-Hydroxyphenol 2-Lu 3-Methylphenol) Propane, 2,2-Bis (3-tert-Butinole 4-hydroxy Phenyleno) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) methane, 1,1-bis (p-hydroxyphenyl) ethane, 2,2-bis (p-hydroxyphenol) butane, 2,2-bis (p-hydroxyphenol) pentane, 1,1-bis (p-hydroxyphenol) cyclohexane, 1, 1 —Bis (p
- the hydrocarbon group may be a halogen-substituted hydrocarbon group.
- the benzene ring may be substituted with a hydrogen atom force S halogen atom contained in the benzene ring. Therefore, the above compounds include bisphenol A, 2,2-bis (3,5-dib-mouthed 4-hydroxyphenol) propane, 2,2-bis (4-hydroxyphenyl-1-3-methylphenol) propane.
- 2,2-bis (3-tert-butyl-4-hydroxyphenol) propane 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis (4-hydroxyphenol) methane
- Examples include 1-bis (p-hydroxyphenyl) ethane and 2,2-bis (p-hydroxyphenyl) butane. This Of these, bisphenol A is particularly preferred.
- Examples of the carbonic acid diesterate used for obtaining the aromatic polycarbonate by transesterification include dimethylolene carbonate, jetinole carbonate, di-tert-butinocarbonate, diphenyl carbonate, and ditolyl carbonate. These can be used alone or in combination of two or more.
- the viscosity-average molecular weight of the polycarbonate resin is usually 15,000-40,000, preferably (17,000 to 30,000, more preferably 18,000 to 28,000).
- the polycarbonate resin may be used by mixing two or more polycarbonate resins having different viscosity average molecular weights as long as the viscosity average molecular weight as a whole is in the above range.
- the polycarbonate resin may be the rubber reinforced resin or the (co) polymer ( ⁇ 2) used in the preparation of the rubber reinforced resin, for example, acrylonitrile styrene copolymer, talaronitrile, ⁇ - methylstyrene copolymer. It can be used as the above component [A] in combination with a polymer, acrylonitrile 'styrene' methyl methacrylate copolymer or the like.
- the rubber reinforced resin at this time preferably includes a rubber reinforced resin (gen-based rubber reinforced resin) using a gen-based polymer as the rubber polymer (a).
- the content ratio is 100% by mass. 1 to 80% by mass and 99 to 20% by mass, respectively, more preferably;! To 75% by mass and 99 to 25% by mass, more preferably 5 to 75% by mass and 95 to 25% by mass, respectively. %, Particularly preferably 35 to 75% by weight and 65 to 25% by weight. If this content ratio is within the above range, it is possible to obtain a molded product having excellent molding processability, heat dissipation and impact resistance by the force S.
- the content ratio thereof is 100% by mass. In this case, it is preferably 1 to 80% by mass and 99 to 20% by mass, more preferably 1 to 75% by mass and 99 to 25% by mass, still more preferably 1 to 65% by mass and 99 to 35% by mass, respectively. It is. If this content ratio is in the above range, moldability, heat dissipation Excellent in heat resistance, thermal conductivity, impact resistance, and electromagnetic shielding properties.
- the olefin-based resin is not particularly limited as long as it is a polymer including a monomer unit composed of ⁇ -olefin having 2 or more carbon atoms.
- a preferred olefin-based resin is a polymer containing a monomer unit composed of ⁇ -olefin having 2 to 10 carbon atoms. Therefore, (co) polymer mainly containing one or more monomer units composed of ⁇ -olefin having 2 to 10 carbon atoms; one or more monomer units composed of ⁇ -olefin having 2 to 10 carbon atoms And a copolymer mainly containing at least one monomer unit composed of a compound copolymerizable with ⁇ -olefin. These can be used alone or in combination of two or more.
- Examples of the ⁇ -olefin include ethylene, propylene, butene-1, pentene 1, hexene-1, 3-methylbutene 1, 4-methylpentene 1, 3-methylhexene 1, and the like. These can be used alone or in combination of two or more. Of these, ethylene, propylene, butene-1, 1, 3-methylbutene 1 and 4-methylpentene 1-1 are preferable.
- compounds used for forming other monomer units constituting the olefin-based resin include 4-methinoleyl 1,4 monohexagen, 5-methinoleyl 1,4 monohexagen, 7-methyl.
- Non-conjugated gens such as 1, 6 octagens and 1, 9 decadienes. These can be used alone or in combination of two or more.
- Examples of the olefin-based resin include polyethylene, polypropylene, ethylene'propylene copolymer, polybutene 1, ethylene'butene 1 copolymer, and the like. Of these, a polymer containing 50% by mass or more of propylene units preferred by polyethylene, polypropylene and propylene / ethylene copolymers with respect to all monomer units, that is, polypropylene, ethylene and propylene copolymers. Is more preferable.
- the ethylene / propylene copolymer includes a random copolymer and a block copolymer, and the random copolymer is particularly preferable.
- the olefin-based resin may be crystalline! /, And may be amorphous! /. Preferably, it has a crystallinity of 20% or more by X-ray diffraction at room temperature.
- the melting point (based on JIS K7121) of the olefin resin is preferably 40 ° C or higher.
- the molecular weight of the olefin-based resin is not particularly limited, but from the viewpoint of moldability, the melt flow rate (based on JIS K7210; hereinafter also referred to as “MFR”) is preferably 0.0;! To 500 g / 10 minutes, more preferred ⁇ 0.05-; lOOg / 10 minutes, preferably those having a molecular weight corresponding to each value.
- MFR melt flow rate
- olefin-based resin ionomers, ethylene 'butyl acetate copolymer, ethylene' butyl alcohol copolymer, cyclic olefin copolymer, chlorinated polyethylene, and the like can also be used.
- the polyester resin is not particularly limited as long as it has an ester bond in the main chain of the molecule, and may be a saturated polyester resin or an unsaturated polyester resin. Of these, saturated polyester resins are preferred. Further, it may be a homopolymerized polyester or a copolyester. Further, it may be a crystalline resin or an amorphous resin.
- the polyester resin is obtained by using, for example, a resin obtained by polycondensation of a dicarboxylic acid component and a dihydroxy component, polycondensation of an oxycarboxylic acid component or a rataton component, or the like.
- dicarboxylic acid component examples include terephthalic acid, isophthalic acid, phthalic acid, naphthalene dicarboxylic acid (2,6-naphthalenedicarboxylic acid, etc.), diphenyl dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylmethane dicarboxylic acid, diphenyl ether.
- Aromatic dicarboxylic acids having 8 to 16 carbon atoms such as tandicarboxylic acid, diphenyl ketone dicarboxylic acid, etc., or their derivatives, cyclohexanedicarboxylic acid, hexahydrophthalic acid, hexahydroisophthalic acid, hexa Hydroterephthalic acid, hymic acid, etc.
- alicyclic dicarboxylic acid having about 12 or its derivatives, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, hexadecanedicarboxylic acid Aliphatic dicarboxylic acids with 2 to 40 carbon atoms such as acids and dimer acids Its derivatives, and the like.
- the derivatives include derivatives capable of forming an ester, for example, lower alkyl esters such as dimethyl ester, acid anhydrides such as acid anhydride and acid chloride, and the like.
- dicarboxylic acid components can be used alone or in combination of two or more. And force S.
- the dihydroxy component includes linear chains such as ethylene glycol, trimethylene glycol, propylene glycol, 1,3-butanediol, 1,4 butanediol, neopentinoglycol, hexanediol, octanediol, and decanediol.
- alkylene diols such as alkylene diols having about 2 to 12 carbon atoms, cyclohexanediols, cyclohexane dimethanols, alicyclic diols such as hydrogenated bisphenol A, hydroquinone, resorcin, dihydroxy Adducts obtained by adding alkylene oxides such as ethylene oxide and propylene oxide to phenyl, naphthalenediol, dihydroxydiphenyl ether, bisphenol A, and bisphenol A (diethoxylated vinyl) Aromatic diols such as phenol A), diethylene glycol, triethylene glycol, polyoxyethylene glycol, ditetramethylene glycol, polytetramethylene etherol glycolol, dipropylene glycolol, tripropylene glycolol, polyoxypropylene glycol, poly And polyoxyalkylene glycols such as tetramethylene ether glycol.
- the dihydroxy component may be, for example, a substitute such as an alkyl group, an alkoxy group, or a halogen.
- dihydroxy components can be used alone or in combination of two or more.
- oxycarboxylic acid component examples include oxycarboxylic acids such as oxybenzoic acid, oxynaphthoic acid, and diphenyleneoxycarboxylic acid, and derivatives thereof.
- oxycarboxylic acid components can be used alone or in combination of two or more.
- Examples of the rataton component include propiolataton, butyrolataton, valerolataton, ⁇ -force prolataton, and the like.
- latatoic acid components can be used alone or in combination of two or more.
- the copolymerizable monomer used for the formation thereof may be ethylene glycol, propylene glycol, 1, 4 Polyoxyalkylene glycol and adipine having an alkylene glycol unit such as butanediol and other poly (oxyalkylene) units such as linear glycols such as linear alkylene glycols, and ethylene glycol, and having about 2 to 4 repeats
- alkylene glycol unit such as butanediol
- other poly (oxyalkylene) units such as linear glycols such as linear alkylene glycols, and ethylene glycol, and having about 2 to 4 repeats
- Examples thereof include aliphatic dicarboxylic acids such as acid, pimelic acid, suberic acid, azelaic acid and sebacic acid, and aromatic dicarboxylic acids having an asymmetric structure such as phthalic acid and isophthalic acid.
- polyfunctional monomers such as polyvalent carboxylic acids such as trimellitic acid, trimesic acid and pyromellitic acid, and polyhydric alcohols such as glycerin, trimethylolpropane and pentaerythritol, as necessary. May be used in combination.
- polyester resin examples include polyethylene terephthalate (PET), polypropylene terephthalate (PPT), polybutylene terephthalate (PBT), polyhexamethylene terephthalate, polycyclohexane-1,4-dimethyl terephthalate, polyneopentyl.
- Polyalkylene terephthalate such as terephthalate, polyethylene isophthalate, polyethylene naphthalate, polybutylene naphthalate, polyalkylene naphthalate such as polyalkylene naphthalate, homopolymer polyester, alkylene terephthalate unit and / or alkylene naphthalate unit Mainly included are copolyesters and liquid crystal polyesters. Of these, polybutylene terephthalate is preferred. These can be used alone or in combination of two or more.
- the polyamide-based resin is not particularly limited as long as it is a resin having an acid amide bond (one CO-NH) in the main chain.
- the polyamide resin is usually produced by polymerization of ratata or amino acid having a ring structure, or condensation polymerization of dicarboxylic acid and diamine. Therefore, it is possible to use homopolyamide, copolyamide or the like as the polyamide resin.
- Monomers that can be polymerized alone include ⁇ -force prolatatam, aminocaproic acid, enantholatatam, 7-aminoheptanoic acid, 11-aminoundecanoic acid, 9-aminononanoic acid, piperidone, and the like.
- dicarboxylic acid used for polycondensation of dicarboxylic acid and diamine examples include adipic acid, sebacic acid, dodecanedicarboxylic acid, glutaric acid, terephthalic acid, 2-methylterephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid.
- Diamine includes tetramethylene diamine, hexamethylene diamine, nonamethylene diamine, decamethylene. Diamine, undecamethylenediamine, dodecamethylenediamine, paraphenylenediamine, metaphenylenediamine and the like.
- nylon 4 6, 7, 8, 11, 12, 6. 6, 6. 9, 6. 10, 6.11, 6. 12, 6T, 6/6 6 ⁇ 6 / 12 ⁇ 6 / 6 ⁇ ⁇ 6 ⁇ / 6 ⁇ etc.
- the terminal of the polyamide resin may be sealed with carboxylic acid, amine or the like.
- carboxylic acid include aliphatic monocarboxylic acids such as caproic acid, strong prillic acid, strong purine acid, lauric acid, myristic acid, palmitic acid, stearic acid, and behenic acid.
- amines include aliphatic primary amines such as hexylamine, octylamine, decylamine, laurylamine, myristylamine, normitylamine, stearylamine, and behenylamine.
- the above polyamide resins can be used singly or in combination of two or more.
- the component [ ⁇ ] has a three-dimensional network structure including a carbon fiber part having an outer diameter of 15 to 100 nm and a joint part for joining a large number of carbon fiber parts.
- This component [B] can be observed with a force S to confirm the specific structure shown below by observing with SEM or TEM.
- the component [B] is a bulky and stable structure in which a plurality of fine carbon fiber portions are extended based on the joint portion. Therefore, when the heat radiating resin composition [S] or [T] of the present invention is produced using the component [B] together with the component [A], the carbon fiber portion of the component [B] is cut or the like. It is distributed in the matrix while maintaining the 3D network structure. Further, even if the content ratio of the component [B] relative to the component [A] is small, the component [B] can be arranged with a uniform spread in the matrix.
- the heat-dissipating resin composition [S] of the present invention when the component [B] is present adjacent to each other, a good heat conduction path is formed on the whole, so that the heat conductivity is improved, and as a result, heat dissipation is also achieved. improves.
- the composition of the present invention is a heat-dissipating resin composition [T] containing graphite particles [C] described later, the graphite particles [C] are disposed in the voids of the component [B].
- the component [B] is balanced. Therefore, the characteristics can be improved.
- the cross-sectional shape of the carbon fiber portion constituting the component [B] is preferably a polygon.
- the length (the length from the joint portion) is not particularly limited, and is usually 2 to 50 111.
- the outer diameter is 15 to! OOnm, preferably 20 to 70nm. If this outer diameter is in the above range, the moldability and impact resistance are excellent. If the outer diameter is less than 15 nm, the carbon fiber section does not have a polygonal cross section. On the other hand, due to the physical properties of the carbon fiber part, the smaller the diameter, the greater the number per unit amount and the longer the length of the carbon fiber part in the axial direction, resulting in higher conductivity.
- a carbon fiber structure it is not suitable as a modifier or additive to a matrix such as a resin.
- cylindrical graph sheets that are laminated in the direction perpendicular to the axis that is, those that are multi-layered, are given elasticity that is difficult to bend, that is, the property of returning to the original shape even after deformation. Therefore, even after the carbon fiber structure is once compressed, it becomes easy to adopt a sparse structure after being arranged in a matrix such as a resin.
- the above component [B] is annealed at a temperature of 2,400 ° C. or more, the surface spacing of the laminated graph sheets is reduced, and the true density is increased from 1.89 g / cm 3 to 2. lg / cm 3 .
- the carbon fiber part has a polygonal shape in the cross-section perpendicular to the axis of the carbon fiber part. Because it is dense and has few defects, bending rigidity is improved.
- the carbon fiber part desirably has an outer diameter that changes along the axial direction.
- the outer diameter of the carbon fiber portion changes in a constant manner along the axial direction, it is considered that a kind of anchor effect occurs in the carbon fiber portion in the matrix, and the movement in the matrix is As a result, ⁇ dispersion stability increases.
- the joining portion that joins a plurality of carbon fiber portions is preferably longer than the outer diameter of the carbon fiber portion (excluding the carbon fiber portion protruding from the joining portion) This is the part that has the diameter when With the above configuration, when the heat-dissipating resin compositions [S] and [T] of the present invention are produced together with the component [A], the three-dimensional network is maintained even if a certain amount of shearing force is applied. It can be dispersed in a matrix.
- the equivalent-circle average diameter (area basis) of the component [B] is preferably 50 to 100.
- the area-equivalent circle-equivalent mean diameter means that the carbon fiber structure is photographed by SEM or the like, and the contour of each carbon fiber structure is traced by using image analysis software in this photographed image. The equivalent circle diameter of each fiber structure is calculated and averaged.
- the component [B] can be produced by the following method.
- organic compound materials such as hydrocarbons such as toluene and xylene, alcohols such as ethanol, etc. are chemically pyrolyzed by CVD to produce a fiber structure (hereinafter referred to as “intermediate”).
- intermediate organic compound materials such as hydrocarbons such as toluene and xylene, alcohols such as ethanol, etc.
- Examples of the catalyst used for the production of the intermediate include transition metals such as iron, cobalt, and molybdenum; transition metal compounds such as metal salt of pheucene and acetic acid, and sulfur, or sulfur such as thiophene and iron sulfide.
- transition metals such as iron, cobalt, and molybdenum
- transition metal compounds such as metal salt of pheucene and acetic acid, and sulfur, or sulfur such as thiophene and iron sulfide.
- the mixture which consists of a compound is mentioned.
- organic compound raw material it is preferable to use at least two kinds of organic compounds having different decomposition temperatures as the organic compound raw material.
- Examples of the atmospheric gas when performing the CVD method include inert gases such as argon, helium, and xenon, and hydrogen gas.
- a known CVD apparatus is used to evaporate a mixture of the organic compound raw material and the catalyst, and hydrogen gas or the like is introduced into the reaction furnace as a carrier gas, and the temperature is 800-1 300 ° C. It can be obtained by pyrolyzing. That is, by this pyrolysis, a plurality of carbon fiber structures (intermediates) having a sparse three-dimensional structure in which fibers having an outer diameter of 15 to 100 nm are bonded to granules grown using a catalyst as a nucleus. Contained aggregates of several centimeters to tens of centimeters are synthesized. This aggregate also contains unreacted raw materials, non-fibrous carbides, tar content and catalyst.
- the above aggregate is heated at a temperature of 800 to 1,200 ° C to remove volatile components such as unreacted raw materials and tars, and annealed at a temperature of 2,400-3,000 ° C.
- the catalyst contained in the fibrous body is evaporated and removed, and the desired carbon fiber structure is obtained.
- the body is manufactured. That is, by this annealing treatment, the patch-like sheet pieces made of carbon atoms are bonded to each other to form a plurality of graph-en-sheet-like layers, and constitute the carbon fiber portion of the component [B].
- a step of crushing the equivalent circle average diameter of the carbon fiber structure to several centimeters and a circle equivalent average diameter of the crushed carbon fiber structure of 50 to A carbon fiber structure having a desired circle-equivalent mean diameter can be obtained.
- a pulverization process may be performed instead of the pulverization process.
- a process of granulating an aggregate having a plurality of carbon fiber structures into an easy-to-use shape, size, and bulk density may be performed.
- annealing treatment in a state where the bulk density is low (a state where the fibers are stretched as much as possible and the porosity is large) further imparts conductivity to the resin. It is effective.
- the component [B] obtained by the above production method is firmly bonded to each other at the joint portion where the fine carbon fiber portions are not merely bonded to the joint portion.
- the heat-radiating resin composition [S] and [T] of the present invention may contain a carbon fiber structure other than the component [B].
- the content of the component [B] is as follows: when the component [A] is 100 parts by mass; Part, preferably 2 to 70 parts by weight, more preferably 5 to 65 parts by weight. If the content of the component [B] is too small, the thermal conductivity and electromagnetic wave shielding properties may not be sufficient. On the other hand, if the content is too large, productivity, moldability, and surface appearance of the molded product may deteriorate.
- the heat-dissipating resin composition [S] and [T] of the present invention contains a carbon fiber structure other than the above component [B], the content thereof is 100 parts by mass of the above component [A]. In general, it is 20 parts by mass or less.
- the component [A] includes a rubber-reinforced resin and a polycarbonate resin, and the polycarbonate resin 50 to 95 is used.
- the mixture or kneaded material (melt kneaded material) composed of 50% by mass and the above component [B] 50 to 5% by mass (however, the total of these is 100% by mass) and the rubber-reinforced resin are dissolved.
- the content of the component [B] is;! To 80 parts by mass, preferably 2 to 70 parts by mass, More preferably, the composition is 5 to 65 parts by mass.
- the method for producing the heat-dissipating resin composition [S] of the present invention (hereinafter referred to as “the first production method of the present invention”) is based on the carbon fiber structure based on 100 parts by mass of the thermoplastic resin [A]. It is a method for producing a heat-dissipating resin composition having a body [B] content of 1 to 80 parts by weight, comprising at least a part of the thermoplastic resin [A] and the carbon fiber structure [B].
- a first mixing step (hereinafter referred to as “first mixing step (1)”) in which a part of the mixture is melt-kneaded, and a kneaded product (hereinafter referred to as “kneaded product (1)” obtained by the first mixing step (I).
- thermoplastic resin [A] The remaining portion of the thermoplastic resin [A], and the remaining portion of the carbon fiber structure [B] (used as necessary) are mixed and kneaded (hereinafter referred to as” the second mixing step "). "Second mixing step (1)").
- the additive when used, it can be used in both the first mixing step (I) and the second mixing step (I)! ,.
- the raw material to be melt-kneaded in the first mixing step (I) includes a part of the component [A] and at least a part of the component [B].
- the amount of the component [B] used may be a part or the total amount.
- the amount of the component [B] used in the first mixing step (I) is preferably from 50 to 100% by weight based on the total amount of the component [B] to be contained in the heat-dissipating resin composition [S]. 100 mass%, More preferably, it is 70-100 mass%, More preferably, it is 90-100 mass%. The greater the amount of component [B] used, the better the heat dissipation of the resin composition [S] obtained after the second mixing step.
- the amount of the component [A] used is any of the above-mentioned component [A] to be contained in the heat-dissipating resin composition [S], when only one type is used, or when two or more types are used. However, a part of the above component [A] is used instead of the total amount. The proportion is selected depending on the amount of the component [B] used in the heat-dissipating resin composition [S].
- the above-mentioned components [A] and The amount of [B] used is usually in the range of 5 to 100 parts by mass of the above component [B] with respect to 100 parts by mass of the component [A] used in the first mixing step (I). Selected as
- component [A] is only one kind of thermoplastic resin, rubber reinforced resin, polycarbonate resin, olefin resin, polyester resin, polyamide resin and the like can be used.
- component [A] contains two or more thermoplastic resins
- examples of combinations suitable for the first production method of the present invention are shown below.
- the kneading method in the first mixing step (I) may be a method of kneading the raw materials with an extruder, a Banbury mixer, a kneader, a roll, a feeder ruder, or the like.
- the raw material charging method is not particularly limited, and the components may be mixed and then supplied to the kneader, or may be divided into multiple stages and supplied to the kneader.
- the kneading temperature is appropriately selected according to the type of the component [A], the blending ratio of the components [A] and [B], and the like.
- the raw materials to be melt kneaded in the second mixing step (I) are the kneaded product (I) obtained in the first mixing step (I), the remainder of the component [A], and the above And the remainder of component [B].
- the first mixing step (I) when the total amount of the component [B] to be contained in the heat-dissipating resin composition [S] is used, the raw material is mixed with the kneaded product (I). And the remainder of the component [A].
- the kneading method and conditions can be the same as those in the first mixing step (I).
- the first production method of the present invention includes the first mixing step (I) and the second mixing step (I), thereby dissipating heat with excellent dispersibility of the component [B].
- thermoplastic resins when two or more kinds of thermoplastic resins are used as the component [A], one kind (the same) resin is used in the first mixing step ( I) and 2nd It is preferable to use the entire amount in either one of the mixing steps, rather than dividing it into both of the mixing steps (I).
- the composition ratio of the plurality of resins contained in the component [A] for example, two kinds of resins (first resin and second resin) are used, and the composition ratio thereof is 1: 9.
- the method is not limited to the above method.
- thermoplastic resin having high compatibility with the component [B], such as a polycarbonate resin, is used as the component [A]
- the first mixing step of the first production method of the present invention it is particularly preferable to use the thermoplastic resin.
- the whole amount of the component [B] is used, and the usage ratios of the component [A] and the component [B] are respectively set. 50 to 95% by mass and 50 to 5% by mass (however, the total of these is 100% by mass), and the second mixing step (I) is the first mixing step (I).
- This is a method of melt-kneading the kneaded product (I) obtained by the above and the remainder of the component [A].
- the total amount of the component [B] is used, and the component [8] is 50 to 95% by mass (preferably 60 to 95% by mass, more (Preferably 65 to 90% by mass) and the above component [B] 5 to 50% by mass (preferably 5 to 40% by mass, more preferably 10 to 35% by mass) (however, the total of these is 100% by mass)
- the second mixing step (I) and 100 parts by mass of the kneaded product (1) and the remaining component [ A] 0.! To 4,950 parts by mass (preferably 0 .;! To 4,000 parts by mass, more preferably 0.;! To 3,000 parts by mass). is there.
- the first mixing step (I) if the content of the component [B] is less than 5% by mass, the heat conductivity and electromagnetic wave shielding property of the heat-dissipating resin composition [S] cannot be sufficiently obtained! / ⁇ ⁇ ⁇ There is a case. On the other hand, when the content exceeds 50% by mass, it may be difficult to produce the kneaded product (I). Further, in the second mixing step (I), finally, a composition in which the content of the component [B] is from! To 80 parts by mass with respect to 100 parts by mass of the total amount of the component [A].
- the second production method of the present invention Another method for producing the heat-dissipating resin composition [S] of the present invention (hereinafter referred to as "the second production method of the present invention") is a heat containing the rubber-reinforced resin and the polycarbonate resin in a predetermined ratio.
- a first mixing step (hereinafter referred to as “first mixing step ( ⁇ )”) in which the polycarbonate resin and at least a part of the carbon fiber structure [B] are melt-kneaded, and the first mixing step ( The kneaded product obtained by II) (hereinafter referred to as “kneaded product (ii)”), the rubber-reinforced resin, and the balance of the carbon fiber structure [B] (used as necessary);
- a second mixing step (hereinafter referred to as “second mixing step (11)”).
- the use ratio of the rubber-reinforced resin and the polycarbonate resin used as the component [A] is, from the viewpoint of melt kneadability, when the total of these is 100% by mass, 20 to 80% by mass and 80 to 20% by mass, preferably 20 to 75% by mass and 80 to 25% by mass, more preferably 25 to 75% by mass and 75 to 25% by mass, respectively.
- the raw material to be melt-kneaded in the first mixing step (II) includes the polycarbonate resin and at least a part of the component [B].
- the amount of the component [B] used may be a part or the total amount.
- the amount of the component [B] used in the first mixing step (II) is preferably from 50 to 100% by weight based on the total amount of the component [B] contained in the heat-dissipating resin composition [S1]. 100% by mass, more preferably 70 to 100% by mass, and still more preferably 90 to 100% by mass. The higher the amount of component [B] used, the better the heat dissipation of the resulting heat-dissipating resin composition [S 1].
- the polycarbonate resin is usually used in the whole amount. However, particularly when the amount of the rubber-reinforced resin used in the second mixing step (II) is excessive, a part of the polycarbonate resin is added. You may use in 2 mixing process (II). That is, in order to efficiently promote the melt-kneading in the first mixing step (II), the usage ratio of the polycarbonate resin and the component [B] is the same as the poly force used in the first mixing step (II). The amount of the component [B] is usually 5 to 100 parts by mass with respect to 100 parts by mass of the boronate resin.
- the kneading method of the first mixing step (II) can be the same as that of the first mixing step (I).
- the kneading temperature (usually 240 to 320 ° C, preferably 260 to 300 ° C).
- the raw material to be melt-kneaded in the second mixing step (II) includes the kneaded product (II) obtained in the first mixing step (II) and the rubber-reinforced resin.
- the kneading method can be the same as in the first mixing step (ii).
- the kneading temperature is usually 230 to 280. C, preferably 240-260. C.
- the first mixing step (II) and the second mixing step (II) are performed.
- a heat-dissipating resin composition [S1] excellent in dispersibility of the component [B] can be produced, and heat dissipation, impact resistance, molding processability, electromagnetic wave shielding properties, productivity, and hand It is possible to obtain a molded product with further excellent ringability.
- the melt kneading in the second mixing step (II) can proceed smoothly, and the resin has excellent heat dissipation.
- the first mixing step (II) the entire amount of the component [B] is used, and the usage ratios of the polycarbonate resin and the component [B] are respectively determined. 50 to 95% by mass and 50 to 5% by mass (however, the total of these is 100% by mass), and as the second mixing step (II), the first mixing step (II) This is a method of melt-kneading the obtained kneaded product and the rubber-reinforced resin.
- the total amount of the component [B] is used, and the polycarbonate resin is 50 to 95% by mass (preferably 60 to 95% by mass, more preferably 65 to 90% by mass) and the above component [B] 5 to 50% by mass (preferably 5 to 40% by mass, more preferably 10 to 35% by mass) (however, the total of these is 100% by mass).
- a kneaded product (II) such as pellets and masterbatch
- 100 parts by mass of the kneaded product (II) and the rubber-reinforced resin 0.; 950 mass Part (preferably 0.;! To 4,000 parts by mass, more preferably 0.;!
- the heat dissipation resin composition [S1] may not have sufficient thermal conductivity and electromagnetic shielding properties. is there. On the other hand, when the content exceeds 50% by mass, it may be difficult to produce the kneaded product (II).
- the amount of the rubber-reinforced resin used is too small relative to 100 parts by mass of the kneaded product (II), the moldability and impact resistance are sufficient. It may not be. On the other hand, if the amount used is too large, the heat conductivity and electromagnetic wave shielding properties of the heat-dissipating resin composition [S1] may not be sufficiently obtained.
- the heat-dissipating resin composition [S] of the present invention can be made to contain additives depending on the purpose and application.
- the additive include a filler, a heat stabilizer, an antioxidant, an ultraviolet absorber, a flame retardant, an antiaging agent, a plasticizer, a lubricant, an antibacterial agent, and a coloring agent.
- Fillers include heavy calcium carbonate, light calcium carbonate, ultrafine activated calcium carbonate, special calcium carbonate, basic magnesium carbonate, kaolin clay, sintered clay, neurophyllite clay, silane treatment Clay, Synthetic calcium silicate, Synthetic magnesium catenate, Synthetic quinolate, Magnesium carbonate, Magnesium hydroxide, Ferrine, Sericite, Talc, Fine talc, Wollastonite, Zeolite, Zonolite, Asbestos, PMF (Processed Mineral Fiber), pepper, sepiolite, potassium titanate, elestadite, gypsum fiber, glass balun, silica balun, hydrite talcite, flyer schbaln, carbon balun, barium sulfate, aluminum sulfate, calcium sulfate, molybdenum disulfide Or the like. These can be used alone or in combination of two or more.
- the content of the filler is usually 1 to 30 parts by mass, preferably 2 to 25 parts by mass, more preferably 2 to 20 parts by mass when the component [A] is 100 parts by mass.
- heat stabilizer examples include phosphites, hindered phenols, and thioethers. These can be used alone or in combination of two or more.
- the content of the heat stabilizer is usually 0.01 to 5 parts by mass when the component [A] is 100 parts by mass.
- antioxidants examples include phosphites, hindered amines, hydroquinones, hindered phenols, sulfur-containing compounds and the like. These can be used alone or in combination of two or more.
- the content of the antioxidant is usually from 0.0;! To 5 parts by mass, preferably from 0.05 to 3 parts by mass, more preferably from 0.00 when the component [A] is 100 parts by mass. ! ⁇ 2 parts by mass.
- Examples of the ultraviolet absorber include benzophenones, benzotriazoles, salicylic ester, and metal complex salts. These can be used singly or in combination of two or more.
- the content of the ultraviolet absorber is usually 0.0;! To 10 parts by mass, preferably 0.05 to 5 parts by mass, more preferably 0, when the component [A] is 100 parts by mass. ; ⁇ 5 parts by mass.
- Examples of the flame retardant include organic flame retardants, inorganic flame retardants, and reactive flame retardants. These can be used alone or in combination of two or more.
- organic flame retardant examples include brominated epoxy resin, brominated alkyltriazine compound, brominated bisphenol epoxy resin, brominated bisphenol phenol resin, brominated bisphenol polycarbonate resin, Halogenated flame retardants such as brominated polystyrene resin, brominated crosslinked polystyrene resin, brominated bisphenol cyanurate resin, brominated polyphenol ether, decabromodiphenyl oxide, tetrabromobisphenol A and oligomers thereof; trimethyl phosphate, Triethyl phosphate, Tripropinorephosphate, Tributinorephosphate, Tripentinorephosphate, Trihexinorephosphate, Tricyclohexinorephosphate, Tripheninophosphate, Tricredinole phosphate Phosphate esters such as a, trixyleninophosphate, credinoresinenophosphate, dicresinorefeninophosphate, dimethyleno
- Examples of the inorganic flame retardant include aluminum hydroxide, antimony oxide, magnesium hydroxide, zinc borate, zirconium-based, molybdenum-based, zinc stannate, guanidine salt, silicone-based, and phosphazene-based compounds. It is done. These can be used alone or in combination of two or more.
- Examples of the reactive flame retardant include tetrabromobisphenol A, dibromophenol daricidyl ether, brominated aromatic triazine, tribromophenol, tetrabromophthalate, tetrachlorophthalic anhydride, dibromoneopentyl glycol , Poly (pentabromobenzyl polytalylate), chlorendic acid (hett acid), chlorendic anhydride (hett acid anhydride), brominated phenol glycidyl ether, dib-mouthed mocresyl glycidyl ether, and the like. These can be used alone or in combination of two or more.
- the content of the flame retardant is usually 1 to 30 parts by mass, preferably 3 to 25 parts by mass, more preferably 5 to 20 parts by mass when the component [A] is 100 parts by mass. is there.
- the heat-radiating resin composition of the present invention contains a flame retardant
- a flame retardant aid include antimony trioxide, antimony tetroxide, antimony pentoxide, sodium antimonate, antimony tartrate and other antimony compounds, zinc borate, barium metaborate, hydrated alumina, zirconium oxide. And ammonium polyphosphate, tin oxide, iron oxide and the like. These can be used alone or in combination of two or more. Silicone oil can be added to improve flame retardancy.
- Anti-aging agents include naphthylamine compounds, diphenylamine compounds, p-phenylenediamine compounds, quinoline compounds, hydroquinone derivative compounds, monophenol compounds, bisphenol compounds, trisphenol compounds, polyphenol compounds. Examples thereof include compounds, thiobisphenol compounds, hindered phenol compounds, phosphorous acid ester compounds, imidazole compounds, dithiouric acid nickel salt compounds, and phosphoric acid compounds. These can be used alone or in combination of two or more.
- the content of the anti-aging agent is usually 0.0;! To 10 parts by weight, preferably 0.05 to 5 parts by weight, more preferably 0. ! ⁇ 5 parts by mass.
- plasticizer examples include dimethyl phthalate, jetyl phthalate, dibutyl phthalate, disobutyl phthalate, dioctyl phthalate, butyl octyl phthalate, di (2-ethynolehexyl) phthalate, diisooctyl phthalate, Phthanolates such as diisodecyl phthalate; dimethyl adipate, diisobutyl adipate, di (2-ethylhexyl) adipate, diisooctyl adipate, diisodecyl adipate, octyldecyl adipate, di (2-ethylhexyl) azelate, diisooctyl Fatty acid esters such as azelate, diisobutinorebagate, dibutinorebaevagate, di (2-ethinorehexino
- the content of the plasticizer is usually 0.5 to 20 parts by mass, preferably 1 to 15 parts by mass, more preferably 1 to 10 parts by mass when the component [A] is 100 parts by mass. is there.
- Examples of the lubricant include fatty acid ester, hydrocarbon resin, paraffin, higher fatty acid, oxy fatty acid, fatty acid amide, alkylene bis fatty acid amide, aliphatic ketone, fatty acid lower alcohol ester, fatty acid polyhydric alcohol ester, fatty acid.
- Polydaricol ester fatty acid ester, hydrocarbon resin, paraffin, higher fatty acid, oxy fatty acid, fatty acid amide, alkylene bis fatty acid amide, aliphatic ketone, fatty acid lower alcohol ester, fatty acid polyhydric alcohol ester, fatty acid.
- Aliphatic alcohol polyhydric alcohol, polydaricol, polyglycerol, metal sarcophagus, silicone, modified silicone, and the like. These can be used alone or in combination of two or more.
- the content of the lubricant is usually 0.;! To 5 parts by mass when the component [A] is 100 parts by mass.
- antibacterial agents include zeolite zeolites such as silver zeolite and silver-zinc zeolite, silica gel antibacterial agents such as complexed silver silica gel, glass antibacterial agents, and calcium phosphate.
- Inorganic antibacterial agents such as antibacterial agents, zirconium phosphate antibacterial agents, silicate antibacterial agents such as silver magnesium aluminate, titanium oxide antibacterial agents, ceramic antibacterial agents, whisker antibacterial agents, etc.
- Release agent halogenated aromatic compound, rhodopropargyl derivative, isocyanato compound, isothiazolinone derivative, torino, romethylthio compound, quaternary ammonium salt, biguanide compound, aldehydes, phenols, pyridine oxide, carbanilide, diphenyl ether, Organic antibacterial agents such as carboxylic acids and organometallic compounds; inorganic / organic hybrid antibacterial agents; natural antibacterial agents and the like. These can be used alone or in combination of two or more.
- the content of the antibacterial agent is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, more preferably 0. 5 parts by mass.
- Examples of the colorant include organic dyes, inorganic pigments, and organic pigments. These can be used alone or in combination of two or more.
- the heat conductivity of the heat-dissipating resin composition [S] of the present invention is superior to that of the component [A] alone, and is preferably lower than the lower limit of the thermal conductivity obtained by the method shown in the following examples. Is lW / (m'K), more preferably 2.5 W / (mK), and even more preferably 3W / (mK). A preferable upper limit is 100 W / (m′K), and more preferably 50 W / (m′K). If this thermal conductivity is too small, sufficient heat dissipation cannot be obtained. For example, the movement speed of heat generated from the heat source may be slow, and cooling in the vicinity of the heat source may be difficult to proceed.
- the Charpy impact strength of the heat-dissipating resin composition [S] of the present invention is preferably 3.5 kj / m 2 or more, more preferably 5 kj / m 2 or more, and further preferably 6 kj / m 2 or more. . If this Charpy impact strength is too small, the impact resistance will be insufficient, and there are cases where the development to applications requiring impact strength is restricted.
- the melt mass flow rate of the heat-dissipating resin composition [S] of the present invention is preferably 4 g / 10 min or more, more preferably 5 g / 10 min or more, and further preferably 6 g / 10 min or more. If the menoret mass flow rate is too small, the moldability will not be sufficient if the fluidity is insufficient, and the degree of freedom in the shape of the product used may be limited.
- the heat-dissipating resin composition [S] of the present invention has excellent electromagnetic shielding properties, and the electromagnetic shielding properties at 100 MHz are preferably 25 dB or more, more preferably 30 dB or more. (30 to 60 dB, particularly preferably (30 to 55 dB).
- the thermal conductivity is 3 W / (m ′ K) or more
- the Charpy impact strength is 5 kj / m 2 or more
- the melt mass flow rate is 5 g /
- the composition of the composition that gives such a molded article contains the above-mentioned component [A] containing a rubber-reinforced resin and a polycarbonate resin, and the above-mentioned component [B], and the rubber-reinforced resin and the polycarbonate resin.
- the content is preferably 25 to 75% by mass and 75 to 25% by mass, particularly preferably 35 to 75% by mass and 65 to 25% by mass, respectively (however, the total of these is 100% by mass). It is an aspect.
- the component [C] contained in the heat-dissipating resin composition [T] of the present invention is not particularly limited with respect to the type, shape, size (aspect ratio, weight average particle diameter, etc.), and the like.
- the type may be either a graphite or / 3—graphite. These may be combined. Furthermore, either natural graphite or artificial graphite may be used. These may be combined.
- the natural graphite is not particularly limited as long as no band is observed at the wavelength per lseocnT 1 by laser Raman measurement, and examples thereof include flaky graphite, massive graphite, and soil graphite.
- the shape of the component [c] is controlled by the force s such as powder, granule, plate, scale, strip, column, cone, needle or the like.
- the aspect ratio is preferably 1 to 20, and the weight average particle size is preferably;! To 200 m.
- Graphite particles having an aspect ratio of 3 or less, a weight average particle diameter of 1 to 70, and a fixed carbon content of 98% by mass or more (hereinafter referred to as “graphite particles (C2)”). .
- the aspect ratio can be calculated by measuring each length in the vertical and horizontal directions using an electron microscope or the like.
- the weight average particle diameter can be measured by a laser diffraction method, a light scattering method, or the like.
- the “weight average particle diameter” according to the present invention means the particle diameter (D) obtained by measuring the particle size distribution when the cumulative weight is 50%.
- the amount of fixed carbon is JIS M85.
- the above graphite particles (C1) and (C2) can be used in combination.
- the aspect ratio of the graphite particles (C1) is 10 to 20, preferably 12 to 18;
- Weight average particle diameter (10 to 200 to 111, preferably 15 to 80 to m.
- the amount of fixed carbon is 98% by mass or more, preferably 98.5% by mass or more. More preferably, it is 99 mass% or more.
- the ratio D / ⁇ of the particle diameters D and D when the cumulative weights obtained by measuring the particle size distribution are 20% and 80%, respectively, is Like
- the shape of the graphite particles (C1) is preferably flake graphite.
- the graphite particles (C1) can be used singly or in combination of two or more.
- the aspect ratio of the graphite particles (C2) is 3 or less, preferably 1 to 3.
- the weight average particle diameter is 10 to 70 111, preferably 15 to 60 111.
- the amount of fixed carbon is 98% by mass or more, preferably 98.5% by mass or more, and more preferably 99% by mass or more.
- the ratio D / ⁇ of the particle diameters D and D when the cumulative weights obtained by measuring the particle size distribution are 20% and 80%, respectively, is Especially limited
- the graphite particles (C2) As the shape of the graphite particles (C2), spherical graphite is preferred! /.
- the graphite particles (C2) can be used singly or in combination of two or more.
- the content of the component [C] is preferably 10 to 300 parts by mass when the component [A] is 100 parts by mass, More preferably 10 to 150 parts by mass, still more preferably 10 to 100 parts by mass, particularly preferably 10 to 50 parts by mass. If the content of the component [C] is too small, the thermal conductivity and electromagnetic wave shielding properties may not be sufficient. On the other hand, if the amount of the component [C] is too large, productivity, molding processability and surface appearance of the molded product may be deteriorated.
- the component [C] is the graphite particles (C1) and the case of the graphite particles (C2) will be described.
- the graphite particles (C1) are used as the component [C]
- a heat-dissipating resin composition having better thermal conductivity than the graphite particles (C2) can be obtained.
- the graphite particles (C2) are used as the component [C]
- a heat-dissipating resin composition superior in molding processability and impact resistance compared to the graphite particles (C1) can be obtained. Therefore, when the component [C] contains both of the above graphite particles (C1) and (C2), all of heat release, molding processability, impact resistance, thermal conductivity and electromagnetic wave shielding properties are highly developed.
- a heat-dissipating heat-dissipating resin composition can be obtained.
- the preferred content of graphite particles (C1) and (C2) is:! ⁇ 99 mass% and 99 ⁇ ;! Mass%, respectively, when the total is 100 mass%.
- they are 5-95 mass% and 95-5 mass%, More preferably, they are 10-90 mass% and 90-; 10 mass%.
- the heat-dissipating resin composition [T] of the present invention containing the above graphite particles (C1) and (C2) as the component [C], and the component [C] contained in the molded product thereof are known.
- the aspect ratio and the average particle diameter (specifically, the number average particle diameter) can be determined by observing the test piece prepared by this method with an electron microscope or the like.
- the above aspect ratio and average particle diameter are usually the same as the aspect ratio and weight average particle diameter of the component [C] before blending, respectively.
- the content ratios of the component [B] and the component [C] are as follows when the total of these contents is 100% by mass: 20 to 95% by weight and preferably 80 to 5% by weight, more preferably 40 to 90% by weight and 60 to 10% by weight. % By weight, particularly preferably 50 to 90% by weight and 50 to 10% by weight. If the content ratio of the above components [B] and [C] is in the above range, the heat dissipation is excellent, the balance between molding processability and impact resistance is excellent, and furthermore, the thermal conductivity and electromagnetic wave shielding properties are also achieved. Excellent.
- component [i] A yarn and composition in which component [A] is a rubber-reinforced resin and component [C] is graphite particles (C1) and / or (C2).
- component [ii] A composition wherein component [A] is a polycarbonate resin and component [C] is graphite particles (C1) and / or (C2).
- Component [A] is a rubber-reinforced resin and a polycarbonate resin (preferred content ratio;;! to 80 mass% and 99 to 20 mass%), and component [C] is graphite particles (C1) and / or (C2 ) Is a thread and a composition.
- the heat-dissipating resin composition [T] of the present invention is also a filler, heat stabilizer, antioxidant, ultraviolet absorber, flame retardant, anti-aging agent, plasticizer, lubricant, antibacterial agent, colorant, etc. It is possible to make it contain the additive.
- the content of each additive relative to the component [A] can be the same as that of the heat-dissipating resin composition [S].
- the heat conductivity of the heat-dissipating resin composition [T] of the present invention is superior to that of the above-mentioned component [A] alone.
- a preferable upper limit is 100 W / (m′K), and more preferably 50 W / (m * K). If this thermal conductivity is too small, sufficient heat dissipation cannot be obtained. For example, the movement speed of the heat generated by the heat source may be slow, and cooling near the heat source may not proceed easily.
- the Charpy impact strength of the heat-dissipating resin composition [T] of the present invention is the type of the component [A], the type and content of the component [B], and the type of the component [C]. And the force depending on the content thereof is preferably 1. Okj / m 2 or more, more preferably 3. Okj / m 2 or more, further preferably 3.5 kj / m 2 or more, and particularly preferably 5 kj / m 2 or more. If the Charpy impact strength is too small, the impact resistance will be insufficient, and there are cases where the development to applications requiring impact strength is restricted.
- the Charpy impact strength is, for example, the preferred embodiment [i] In [iii], it is possible to obtain power S.
- 240 ° C and load 196N depends on the type of component [A], the type and content of component [B], and the type and content of component [C]. 3 g / l 0 min or more, more preferably 4 g / 10 min or more, still more preferably 5 g / 10 min or more. If the melt mass flow rate is too small, moldability that is not sufficient for fluidity is deteriorated, and the degree of freedom of product shape to be used may be limited.
- the melt mass flow rate can be obtained, for example, in the preferred embodiments [i] to [iii].
- the heat-dissipating resin composition [T] of the present invention is also excellent in electromagnetic shielding properties, and the electromagnetic shielding properties at 100 MHz are preferably 15 dB or more, more preferably 20 dB or more, and further preferably 25 dB or more. More preferably, it is 30 dB or more. The upper limit is usually 60 dB.
- the heat-dissipating resin composition [T] of the present invention is a raw material component such as components [A], [B] and [C] in various extruders, Banbury mixers, kneaders, rolls, feeder rulers, etc. And can be produced by kneading under heating. Further, this composition [T] is a method of kneading the heat-dissipating resin composition [S] of the present invention (including the heat-dissipating resin composition [S1]), the component [C], etc.
- It can also be produced by a method of kneading the composition [S], components [A] and [C], a modified method of the heat-dissipating resin composition [S], and the like.
- the method of using the raw material components is not particularly limited, and each component may be mixed and kneaded in multiple steps, or may be mixed and mixed.
- the molded article of the present invention comprises the above heat-dissipating resin composition [S] or [T] of the present invention, or a component thereof, an injection molding apparatus, a sheet extrusion molding apparatus, a profile extrusion molding apparatus, a hollow Manufacturing force by processing with known molding equipment such as molding equipment, compression molding equipment, vacuum molding equipment, foam molding equipment, blow molding equipment, injection compression molding equipment, gas assist molding equipment, water assist molding equipment S it can. That is, the molded product of the present invention contains the heat-dissipating resin composition [S] or [ ⁇ ] of the present invention.
- the molded product containing the components [ ⁇ ], [ ⁇ ] and [C], that is, containing the heat-dissipating resin composition [T] is observed with an electron microscope or the like, and the component [ C) aspect ratio and average particle diameter Particle diameter) can be obtained.
- the obtained aspect ratio and average particle diameter are usually the same as the aspect ratio and weight average particle diameter of the component [c] before blending, respectively.
- the molding temperature and the mold temperature include the type of the component [A], the content of the components [A] and [B]. It is selected according to the ratio. Further, when processing the heat-dissipating resin composition [T], the molding temperature and the mold temperature depend on the type of the component [A], the content ratio of the components [A], [B] and [C], etc. Selected.
- the cylinder temperature during molding is usually 220 to 300 ° C, preferably 230 to 280 ° C.
- the mold temperature is usually 50-80. C.
- the cylinder temperature at the time of molding is usually 240 to 320 ° C, preferably 260 to 300 ° C.
- the mold temperature is usually 50-80. C.
- the cylinder temperature at the time of molding is usually 230 to 280 ° C, preferably 240 to 260 ° C.
- the mold temperature is usually 50 to 80 ° C.
- the cylinder temperature is generally set higher than the above temperature.
- the molded product of the present invention is the above heat-dissipating resin composition [S] or [T] of the present invention, or other thermoplastic resin composition (ABS resin, olefin resin, polycarbonate resin, polyamide resin). It is possible to force the member made of a composition comprising a polyester resin or the like to be disposed on the surface or the like.
- Such an article can be manufactured using a multicolor molding apparatus including two-color molding. It can also be an article integrated with a metal member such as aluminum or copper.
- the molded product of the present invention may be provided with a through hole, a groove, a concave portion, and the like at an arbitrary place in accordance with the purpose and application.
- the thickness is preferably 1 mm or more, more preferably 2 mm or more.
- the heat-dissipating resin composition comprises molding processability, impact strength, thermal conductivity, and electromagnetic wave sealing.
- Personal computer with built-in electronic components that generate heat and electromagnetic waves housings for mobile phones, substrates for mounting electronic components, panels that require heat dissipation and electromagnetic shielding, and CPU It is suitable as a material for heat sinks, radiating fins, fans, packings, etc.
- the raw material components used in the production of the heat radiating resin composition are shown below.
- the content of polybutadiene rubber obtained by emulsion polymerization of styrene and acrylonitrile in the presence of latex containing polybutadiene rubber particles having a weight average molecular weight of 280 nm and toluene-insoluble content of 80% as a gen-based rubbery polymer is 41.
- a gen-based rubber reinforced bull resin with 5% styrene unit strength of 3.5% and acrylonitrile unit content of 15% was used.
- the graft rate of this gen-based rubber-reinforced bulle resin is 55%, and the intrinsic viscosity [7]] (measured in methyl ethyl ketone at 30 ° C) of acetone-soluble component is 0 ⁇ 45 dl / g.
- a copolymer having a styrene unit amount of 74.5% and an acrylonitrile unit amount of 25.5% was used.
- Intrinsic viscosity [7]] (measured in methyl ethyl ketone at 30 ° C) is 0 ⁇ 60dl / g
- HF-150A (trade name) manufactured by Chuetsu Graphite Industries Co., Ltd. was used.
- the aspect ratio is 16, the weight average particle size is 161 m, and the fixed carbon content is 99.8%.
- D / ⁇ is 2.7
- WF-015 (trade name) manufactured by Chuetsu Graphite Industries Co., Ltd. was used.
- the aspect ratio is 1, the weight average particle size is 16.8 ⁇ ⁇ the fixed carbon content is 99.7%.
- D / ⁇ is 1.7
- Linear carbon fiber ( ⁇ — 1)
- VGCF vapor grown carbon fiber
- the phosphite antioxidant “ADK STAB PEP-36” (trade name) manufactured by Ade Riki Co., Ltd. was used.
- the hindered phenolic antioxidant “Adekastab AO-60” (trade name) manufactured by Ade Riki Co., Ltd. was used.
- the melt is located at the center of the bottom surface of a mold (mold temperature: 50 to 80 ° C) with a cylindrical cavity space with a diameter of 10 mm and a length of 50 mm.
- a cylinder with a diameter of 10 mm and a length of 50 mm was produced by injection molding from the gate. After that, it was cut out in a substantially central part in the length direction so as to be a disc having a thickness of 1.5 mm, and this was used as a test piece (diameter 10 mm and thickness 1.5 mm).
- thermo conductivity in the flow direction of the heat-dissipating resin composition In order to measure the thermal conductivity in the flow direction of the heat-dissipating resin composition, a probe is applied to each of the upper and lower surfaces of this test piece, and the laser flash method thermal constant measuring device “TR-7000R” manufactured by ULVAC-RIKO. The thermal conductivity at room temperature (25 ° C.) was measured using a mold, and the unit of the measured value was W / (mK).
- test piece was produced using an injection molding machine “J-100E type” manufactured by JSW, and Charpy impact strength (Edgewise Impact, with notch) was measured according to IS0179 under the following conditions.
- the unit of measurement value is kj / m 2 .
- test piece (diameter lOOmmX thickness 2mm disc) is manufactured by Toshiba Machine Co., Ltd. EP type "was prepared and measured according to JIS K6911-1995. The resistance value was measured by using each measuring instrument shown in Table 1 according to the value. The unit of resistance is ⁇
- test piece was prepared using an injection molding machine “J-100E type” manufactured by JSW, and measured using a precision universal testing machine “Autograph AG5000E type” manufactured by Shimadzu Corporation according to IS0527.
- the unit of measurement is% (distortion).
- test piece was prepared using an injection molding machine “J-100E type” manufactured by JSW, and measured under a load of 1.80 MPa in accordance with IS075. The unit of measurement is ° C.
- the electromagnetic wave reflectivity at a frequency of 100 MHz was measured, and the electromagnetic wave shielding property was evaluated.
- the unit of measurement is dB.
- the test piece was prepared by injection molding using a mold having a flat plate type cavity of 150 mm length ⁇ 150 mm width ⁇ 3 mm thickness.
- the electromagnetic shielding effect is an index of how much incident electromagnetic wave energy can be attenuated, and the standard is as follows.
- electromagnetic wave shielding effect is an average level.
- an acrylic resin cover with a height of lm and a width of lm is installed, and a polycarbonate (PC) frame as shown in Fig. 1 is installed at the center.
- a polycarbonate (PC) frame as shown in Fig. 1 is installed at the center.
- the front and rear surfaces of this box are made of PC walls.
- the heat dissipation is better as T2 is higher and T1 and T3 are lower. If the thermal conductivity of the resin is high, the heat generated from the heater is easy to conduct, so the T2 temperature tends to rise. In addition, the better the heat dissipation to the outside, the more heat is trapped in the box, and the T3 temperature becomes lower. Furthermore, the higher the heat conductivity of the resin and the better the heat dissipation, the more easily the heat generated from the heater is taken away, so the temperature of T1 tends to decrease.
- Ingredient [A] is a ratio with respect to 100 parts.
- Comparative Example 11 was an example containing no component [B], and the heat conductivity was low and the heat dissipation test result was insufficient, and the heat dissipation was inferior.
- Comparative Example 12 is an example where the content of component [B] is as small as 0.5 parts per 100 parts of 1S component [A], and the heat dissipation test results with a low thermal conductivity and sufficient heat dissipation It was inferior to.
- Comparative Example 13 is an example in which linear carbon fiber (E-1) was used in place of component [B], and the heat dissipation test result with low thermal conductivity was insufficient and the heat dissipation was inferior. . Moreover, it was also inferior in fluidity.
- Examples 1 1 ;! to 1 3, 1 5 and 17 to;! 1 9 are excellent in heat conductivity and also have good heat dissipation test results. It was excellent. Furthermore, it was excellent in the balance of molding processability and impact resistance and electromagnetic shielding properties. In particular, Examples 11 and 12 exhibited a high balance of heat dissipation, molding processability and impact resistance.
- Example 12 the content of the component [B] is 13.6%.
- Example 1 2 using a masterbatch containing polycarbonate resin (PC) has better thermal conductivity than Example 15 using a masterbatch containing ABS resin. The This is presumed to be due to the higher compatibility of component [B] in the strength of S and the strength of the polycarbonate resin than in the ABS resin.
- Example 2 — ;! ⁇ 2-8 and Comparative Example 2 — ;! ⁇ 2-3
- Ingredient [A] is a ratio with respect to 100 parts.
- component [B] and component [C] were 100%.
- Comparative Examples 2-1 and 2-2 are examples containing no component [C], and the heat conductivity was low and the electromagnetic wave shielding effect was poor. Comparative Examples 2-3 are also examples not containing the component [C], but the thermal conductivity was low and the fluidity was not sufficient.
- Examples 2— ;! to 2-8 were excellent in heat dissipation due to their excellent thermal conductivity and good results of the hot flash test. Furthermore, it has excellent moldability and impact resistance balance, thermal conductivity and electromagnetic shielding properties.
- thermoplastic resin As a heat-dissipating resin composition having excellent heat dissipation, a good balance between molding processability and impact resistance, and also excellent in thermal conductivity and electromagnetic wave shielding properties, [A] thermoplastic resin , [B ′] carbon fiber structure, and [C] graphite particles, the content of the carbon fiber structure [ ⁇ ′] and the graphite particles [C] is the thermoplastic resin [A] When 100 parts by mass is used, compositions of !! to 80 parts by mass and 10 to 300 parts by mass, respectively, can be used.
- Examples of the carbon fiber structure [B ′] include a carbon fiber portion whose outer diameter is not limited (for example, a carbon fiber portion having an outer diameter larger than 10 Onm; an outer diameter of 15 to; carbon fiber in the range of OOnm. And a structure having a bonding portion for bonding a large number of carbon fiber portions can be used.
- the types and content ratios of the preferred! / ⁇ thermoplastic resin [A] and the graphite particles [C] are the same as those of the heat dissipating resin composition of the present invention. Further, the preferable content ratio of the carbon fiber structure [B ′] can be the same as that of the carbon fiber structure [B] contained in the heat-dissipating resin composition of the present invention.
- the heat-dissipating resin composition of the present invention is excellent in the balance between moldability and impact resistance, the degree of freedom of the shape of the product to be applied is high.
- it is possible to obtain a molded product that is more excellent in heat dissipation than a metal material and excellent in electromagnetic wave shielding properties. Therefore, it can be used as a housing, a substrate, a panel, a heat sink, a heating fin, a fan, a packing, and the like.
- These members are suitable for electronic components such as circuit boards, chips, thermal heads, motors, etc .; electronic devices such as televisions, radios, cameras, video cameras, audios, videos, lighting fixtures, etc. Suitable for housing, heat sink and fan for escape to outside; audio back panel; display plate fixing member such as liquid crystal and plasma television.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Textile Engineering (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A radiating resin composition having excellent radiating properties, an excellent balance between moldability and impact resistance, and excellent electromagnetic-shielding properties; a process for producing the composition; and a molded article thereof. Also provided are: a radiating resin composition which has excellent radiating properties and an excellent balance between moldability and impact resistance and is excellent also in thermal conductivity and electromagnetic-shielding properties; and a molded article comprising the composition. These compositions comprise a thermoplastic resin (ABS, PC, etc.) and carbon fiber structures which each comprises carbon fiber parts having an outer diameter of 15-100 nm and a connection part connecting many of the carbon fiber parts and which has a three-dimensional network structure. The content of the carbon fiber structures is 1-80 parts by mass per 100 parts by mass of the thermoplastic resin. The compositions can further contain graphite particles.
Description
明 細 書 Specification
放熱性樹脂組成物及びその製造方法並びに成形品 Heat dissipation resin composition, method for producing the same, and molded product
技術分野 Technical field
[0001] 本発明は、熱可塑性樹脂と、特定の構造を有する炭素繊維構造体とを含有する放 熱性樹脂組成物及びその製造方法、熱可塑性樹脂と、黒鉛粒子と、炭素繊維構造 体とを含有する放熱性樹脂組成物、並びに、これらの組成物を含む成形品に関し、 更に詳しくは、放熱性に優れ、且つ、成形加工性及び耐衝撃性のバランスに優れ、 更には、電磁波シールド性、又は、熱伝導性及び電磁波シールド性にも優れた放熱 性樹脂組成物及びその製造方法並びに成形品に関する。 [0001] The present invention relates to a heat-dissipating resin composition containing a thermoplastic resin and a carbon fiber structure having a specific structure and a method for producing the same, a thermoplastic resin, graphite particles, and a carbon fiber structure. Regarding the heat-dissipating resin composition to be contained, and molded products containing these compositions, more specifically, it has excellent heat dissipation and excellent balance of molding processability and impact resistance, and further, electromagnetic shielding properties, Alternatively, the present invention relates to a heat-dissipating resin composition excellent in thermal conductivity and electromagnetic shielding properties, a method for producing the same, and a molded product.
背景技術 Background art
[0002] 近年、 LSI等の半導体素子の集積密度増大と高速化、そして電子部品の高密度実 装化に伴い、これら半導体素子や電子部品等からの発熱が増大し、その放熱対策が 大きな課題となっている。また、例えば、携帯電話ゃモパイルパソコン等のように、製 品の小型軽量化及び形状の複雑化が進んでおり、成形加工性及び耐衝撃性に優 れた成形材料が求められている。更に、周辺機器への電波障害や誤動作を誘発す る恐れのある電子部品から発生する電磁波の対策も大きな課題となっている。 [0002] In recent years, with the increase in integration density and speed of semiconductor elements such as LSIs and the high density implementation of electronic components, heat generation from these semiconductor elements and electronic components has increased, and countermeasures for heat dissipation are a major issue. It has become. In addition, for example, mobile phones and mopile personal computers are becoming smaller and lighter in product and more complicated in shape, and a molding material excellent in molding processability and impact resistance is required. Furthermore, countermeasures against electromagnetic waves generated from electronic components that may cause radio interference and malfunctions to peripheral devices are also a major issue.
[0003] 例えば、特許文献 1には、 PBT、 PEEK等の熱可塑性樹脂と、窒化アルミニウム等 の無機繊維及び無機粉末とを含む高熱伝導性樹脂組成物が開示されて!/、る。また、 特許文献 2には、特定のブロック共重合体又は水素添加ブロック共重合体と、ゴム用 軟化剤と、水酸化マグネシウム等の熱伝導材とを含む樹脂組成物が開示されて!/、る 。更に、特許文献 3には、マトリックス樹脂に、窒化アルミニウム焼結体粉末等からな るフイラ一が分散するとともに、融点力 ¾00°C以下の低融点金属又は共晶合金によつ て網目状に形成された金属網を介して、上記フィラーが相互に連続的に溶着されて なる高熱伝導性複合体が開示されて!/、る。 [0003] For example, Patent Document 1 discloses a highly thermally conductive resin composition containing a thermoplastic resin such as PBT and PEEK, and inorganic fibers and inorganic powders such as aluminum nitride. Patent Document 2 discloses a resin composition containing a specific block copolymer or hydrogenated block copolymer, a rubber softener, and a heat conductive material such as magnesium hydroxide! /, The Further, in Patent Document 3, a filler made of aluminum nitride sintered powder or the like is dispersed in a matrix resin and is formed into a network by a low melting point metal or eutectic alloy having a melting point power of ¾00 ° C. or less. A high thermal conductive composite is disclosed in which the filler is continuously welded to each other through the formed metal network.
[0004] また、特許文献 4及び 5には、それぞれ、特定の形状又は大きさの黒鉛を含有する 導電性樹脂組成物が開示されている。 [0004] Patent Documents 4 and 5 each disclose a conductive resin composition containing graphite having a specific shape or size.
[0005] また、他の熱伝導性を付与する材料として、炭素系フイラ一が提案されて!/、る。炭
素系フイラ一の配合により高い熱伝導率を得るためには、フィラーの微細化、ァスぺ タト比の増加、比表面積の増加等が有効であることが明らかになつている。例えば、 繊維状フイラ一の繊維径を小さくして比表面積を大きくした炭素繊維 (特許文献 6)、 比表面積の非常に大きなカーボンブラックやカーボンナノチューブ(中空炭素フイブ リル)等が知られている。 [0005] Further, carbon-based fillers have been proposed as other materials imparting thermal conductivity! Charcoal In order to obtain high thermal conductivity by blending an elemental filler, it has become clear that refinement of the filler, increase of the paste ratio, increase of the specific surface area, etc. are effective. For example, carbon fibers (Patent Document 6) in which the fiber diameter of the fibrous filler is reduced to increase the specific surface area, carbon black and carbon nanotubes (hollow carbon fibers) having a very large specific surface area are known.
[0006] しかしながら、金属繊維や金属粉末、無機繊維や無機粉末等を含有する樹脂組成 物は、成形加工性及び耐衝撃性が不十分となる場合があった。また、環境安定性が 不十分となる場合もあり、製品の腐食の原因となる可能性があった。更に、成形機等 に対する電気的障害、摺動性の悪化や、成形機のスクリューを摩耗させる等の原因 となる恐れがあった。 [0006] However, resin compositions containing metal fibers, metal powders, inorganic fibers, inorganic powders, and the like sometimes have insufficient moldability and impact resistance. In addition, environmental stability may be insufficient, which may cause corrosion of the product. Furthermore, there was a risk of causing electrical failure to the molding machine, deterioration of slidability, and abrasion of the screw of the molding machine.
また、炭素系フイラ一を配合する樹脂組成物の熱伝導率を高くするために、マトリツ タス樹脂に対する炭素系フイラ一の配合割合を高くすると、炭素系フイラ一の小さな 嵩密度と強い凝集力により、樹脂中に均一に分散させることが困難になり、成形加工 性、耐衝撃性及び表面外観が低下する恐れがあった。 Also, in order to increase the thermal conductivity of the resin composition containing the carbon-based filler, if the proportion of the carbon-based filler to the matrix resin is increased, the small bulk density and strong cohesive force of the carbon-based filter Further, it became difficult to uniformly disperse in the resin, and the moldability, impact resistance, and surface appearance might be deteriorated.
[0007] 更に、特許文献 7には、複合材料用フイラ一として好ましい特性を有し、少ない添加 量で、マトリックス樹脂の特性を損なわずに電気的特性、機械的特性、熱的特性等の 物理特性を改善できる新規な炭素繊維構造体を含む複合材料が開示されている。 特許文献 7の樹脂組成物は、特定の構造を有する炭素繊維構造体を配合すること により、マトリックス樹脂に対して少ない配合量で高い熱伝導率を得ることを可能にし ている。し力、しながら、成形加工性及び耐衝撃性のバランスが十分ではなぐその使 用範囲が限定されていた。 [0007] Further, Patent Document 7 has preferable characteristics as a composite material filter, and physical properties such as electrical characteristics, mechanical characteristics, and thermal characteristics can be obtained with a small addition amount without damaging the characteristics of the matrix resin. A composite material comprising a novel carbon fiber structure that can improve properties is disclosed. The resin composition of Patent Document 7 can obtain a high thermal conductivity with a small blending amount with respect to the matrix resin by blending a carbon fiber structure having a specific structure. However, the range of use was limited, where the balance between moldability and impact resistance was not sufficient.
[0008] 特許文献 1 :特開平 8— 283456号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 8-283456
特許文献 2:特開 2001 _ 106865号公報 Patent Document 2: Japanese Patent Application Laid-Open No. 2001_106865
特許文献 3:特開平 6— 196884号公報 Patent Document 3: Japanese Patent Laid-Open No. 6-196884
特許文献 4:特開 2001— 60413号公報 Patent Document 4: Japanese Patent Laid-Open No. 2001-60413
特許文献 5 :特開 2003— 253127号公報 Patent Document 5: Japanese Unexamined Patent Publication No. 2003-253127
特許文献 6 :特開平 8— 27279号公報 Patent Document 6: JP-A-8-27279
特許文献 7 :特開 2006— 265315号公報
発明の開示 Patent Document 7: Japanese Unexamined Patent Application Publication No. 2006-265315 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0009] 本発明の目的は、放熱性に優れ、且つ、成形加工性及び耐衝撃性のバランスに優 れ、更には電磁波シールド性にも優れた放熱性樹脂組成物及びその製造方法並び に成形品を提供することにある。 [0009] An object of the present invention is a heat-dissipating resin composition excellent in heat dissipation, excellent in balance between molding processability and impact resistance, and further excellent in electromagnetic shielding properties, and a method for producing the same, and molding. Is to provide goods.
また、本発明の他の目的は、放熱性に優れ、且つ、成形加工性及び耐衝撃性のバ ランスに優れ、更には熱伝導性及び電磁波シールド性にも優れた放熱性樹脂組成 物及びそれを含む成形品を提供することにある。 Another object of the present invention is a heat dissipating resin composition excellent in heat dissipation, excellent in moldability and impact resistance, and further excellent in thermal conductivity and electromagnetic shielding properties, and the same. It is providing the molded article containing this.
課題を解決するための手段 Means for solving the problem
[0010] 本発明者らは、上記課題を解決すベぐ鋭意研究した結果、熱可塑性樹脂と、特定 の構造を有する炭素繊維構造体とを配合することにより、放熱性に優れ、且つ、成形 加工性及び耐衝撃性のバランスに優れ、更には電磁波シールド性にも優れた放熱 性樹脂組成物及びその製造方法並びに成形品を見い出した。 [0010] As a result of earnest research to solve the above problems, the present inventors have excellent heat dissipation and molding by blending a thermoplastic resin and a carbon fiber structure having a specific structure. The present inventors have found a heat-dissipating resin composition excellent in the balance between workability and impact resistance, and further excellent in electromagnetic shielding properties, a manufacturing method thereof, and a molded product.
また、本発明者らは、熱可塑性樹脂と、黒鉛粒子と、炭素繊維構造体とを配合する ことにより、放熱性に優れ、且つ、成形加工性及び耐衝撃性のバランスに優れ、更に は熱伝導性及び電磁波シールド性にも優れた放熱性樹脂組成物及びそれを含む成 形品を見い出した。 In addition, the present inventors blended a thermoplastic resin, graphite particles, and a carbon fiber structure to provide excellent heat dissipation, a good balance between molding processability and impact resistance, and heat. A heat-dissipating resin composition excellent in conductivity and electromagnetic shielding properties and a molded product containing the same were found.
[0011] 本発明は、以下に示される。 [0011] The present invention is described below.
1. 〔A〕熱可塑性樹脂、及び、〔B〕外径 15〜; !OOnmの炭素繊維部と、多数本の該 炭素繊維部を接合する接合部とを備え、 3次元ネットワーク構造を有する炭素繊維構 造体、を含有し、上記炭素繊維構造体〔B〕の含有量は、上記熱可塑性樹脂〔A〕を 1 00質量部とした場合に、;!〜 80質量部であることを特徴とする放熱性樹脂組成物。 1. [A] a thermoplastic resin, and [B] an outer diameter of 15 to; carbon having a carbon fiber part of OOnm and a joining part for joining a large number of the carbon fiber parts, and having a three-dimensional network structure The carbon fiber structure [B] is contained in an amount of! To 80 parts by mass when the thermoplastic resin [A] is 100 parts by mass. A heat-dissipating resin composition.
2. 上記熱可塑性樹脂〔A〕が、ゴム質重合体の存在下に、芳香族ビュル化合物を 含むビュル系単量体 (bl)を重合して得られたゴム強化ビュル系樹脂、又は、該ゴム 強化ビュル系樹脂と、ビュル系単量体 (b2)の(共)重合体とからなる混合物、である ゴム強化樹脂、及び、ポリカーボネート樹脂を含有し、且つ、該ゴム強化樹脂及び該 ポリカーボネート樹脂の含有割合が、これらの含有量の合計を 100質量%とした場合 に、それぞれ、;!〜 80質量%及び 99〜20質量%である上記 1に記載の放熱性樹脂
組成物。 2. The thermoplastic resin [A] is a rubber-reinforced bull resin obtained by polymerizing a bull monomer (bl) containing an aromatic bull compound in the presence of a rubber polymer, or A rubber-reinforced resin and a mixture comprising a (co) polymer of a bull-based monomer (b2), which contains a rubber-reinforced resin and a polycarbonate resin, and the rubber-reinforced resin and the polycarbonate resin The heat-dissipating resin according to 1 above, wherein the total content of these is 100% by mass;! ~ 80% by mass and 99-20% by mass, respectively Composition.
3.上記ポリカーボネート樹脂 50〜95質量%及び上記炭素繊維構造体〔B〕 50〜5 質量% (但し、これらの合計は 100質量%である。)からなる混合物又は混練物と、上 記ゴム強化樹脂とが溶融混練されてなり、上記ポリカーボネート樹脂及び上記ゴム強 化樹脂の合計を 100質量部とした場合に、上記炭素繊維構造体〔B〕の含有量が;!〜 80質量部である上記 2に記載の放熱性樹脂組成物。 3. Mixture or kneaded material composed of 50 to 95% by mass of the above polycarbonate resin and 50 to 5% by mass of the carbon fiber structure [B] (the total of which is 100% by mass), and the above rubber reinforcement The above-mentioned carbon fiber structure [B] has a content of! -80 mass parts when the resin is melt-kneaded and the total of the polycarbonate resin and the rubber-reinforced resin is 100 mass parts. 2. The heat dissipating resin composition according to 2.
4.更に、難燃剤を含有し、該難燃剤の含有量が、上記熱可塑性樹脂〔A〕を 100質 量部とした場合に、;!〜 30質量部である上記 1乃至 3のいずれかに記載の放熱性樹 脂組成物。 4. In addition, any one of the above 1 to 3, further comprising a flame retardant, wherein the content of the flame retardant is 100 to 30 parts by mass when the thermoplastic resin [A] is 100 parts by mass; The heat-dissipating resin composition described in 1.
5.熱伝導率が 3W/ (m'K)以上である上記 1乃至 4のいずれかに記載の放熱性樹 脂組成物。 5. The heat-dissipating resin composition as described in any one of 1 to 4 above, which has a thermal conductivity of 3 W / (m′K) or more.
6.シャルピー衝撃強さが 5kj/m2以上であり、且つ、メルトマスフローレートが 5g/l 0分以上である上記 1乃至 5のいずれかに記載の放熱性樹脂組成物。 6. The heat-dissipating resin composition according to any one of 1 to 5 above, wherein the Charpy impact strength is 5 kj / m 2 or more and the melt mass flow rate is 5 g / l 0 minutes or more.
7. 100MHzの周波数における電磁波シールド性が 30dB以上である上記 1乃至 6 の!/、ずれかに記載の放熱性樹脂組成物。 7. The heat-dissipating resin composition according to 1 to 6 above, wherein the electromagnetic wave shielding property at a frequency of 100 MHz is 30 dB or more.
8.上記 1に記載の放熱性樹脂組成物の製造方法であって、上記熱可塑性樹脂〔A〕 の一部と、上記炭素繊維構造体〔B〕の少なくとも一部とを溶融混練する第 1混合工程 と、上記第 1混合工程により得られた混練物と、上記熱可塑性樹脂〔A〕の残部と、上 記炭素繊維構造体〔B〕の残部とを、溶融混練する第 2混合工程と、を備えることを特 徴とする放熱性樹脂組成物の製造方法。 8. A method for producing a heat-dissipating resin composition as described in 1 above, wherein a part of the thermoplastic resin [A] and at least a part of the carbon fiber structure [B] are melt kneaded. A mixing step, a kneaded product obtained by the first mixing step, a second mixing step of melt-kneading the remainder of the thermoplastic resin [A] and the remainder of the carbon fiber structure [B]. The manufacturing method of the heat-radiating resin composition characterized by providing these.
9.上記第 1混合工程において、上記炭素繊維構造体〔B〕を全量使用し、上記熱可 塑性樹脂〔A〕及び上記炭素繊維構造体〔B〕の使用割合が、それぞれ、 50〜95質 量%及び 50〜5質量% (但し、これらの合計は 100質量%である。)であり、且つ、上 記第 2混合工程において、上記第 1混合工程により得られた混練物と、上記熱可塑 性樹脂〔A〕の残部と、を溶融混練する上記 8に記載の放熱性樹脂組成物の製造方 法。 9. In the first mixing step, the total amount of the carbon fiber structure [B] is used, and the use ratio of the thermoplastic resin [A] and the carbon fiber structure [B] is 50 to 95 quality, respectively. In the second mixing step, and the kneaded product obtained in the first mixing step and the heat in the second mixing step. 9. The method for producing a heat-dissipating resin composition as described in 8 above, wherein the remainder of the plastic resin [A] is melt-kneaded.
10.上記 2に記載の放熱性樹脂組成物の製造方法であって、上記ポリカーボネート 樹脂と、上記炭素繊維構造体〔B〕の少なくとも一部とを溶融混練する第 1混合工程と
、上記第 1混合工程により得られた混練物と、上記ゴム強化樹脂と、上記炭素繊維構 造体〔B〕の残部と、を溶融混練する第 2混合工程と、を備えることを特徴とする放熱 性樹脂組成物の製造方法。 10. A method for producing a heat-dissipating resin composition as described in 2 above, wherein the polycarbonate resin and at least a part of the carbon fiber structure [B] are melt-kneaded in a first mixing step. And a second mixing step of melt-kneading the kneaded material obtained in the first mixing step, the rubber-reinforced resin, and the remaining part of the carbon fiber structure [B]. A method for producing a heat-dissipating resin composition.
11.上記第 1混合工程において、上記炭素繊維構造体〔B〕を全量使用し、上記ポリ カーボネート樹脂及び上記炭素繊維構造体〔B〕の使用割合が、それぞれ、 50〜95 質量%及び 50〜5質量% (但し、これらの合計は 100質量%である。)であり、且つ、 上記第 2混合工程において、上記第 1混合工程により得られた混練物と、上記ゴム強 化樹脂と、を溶融混練する上記 10に記載の放熱性樹脂組成物の製造方法。 11. In the first mixing step, the total amount of the carbon fiber structure [B] is used, and the usage ratios of the polycarbonate resin and the carbon fiber structure [B] are 50 to 95% by mass and 50 to 50%, respectively. 5% by mass (however, the total of these is 100% by mass), and in the second mixing step, the kneaded product obtained in the first mixing step and the rubber-reinforced resin are 11. The method for producing a heat-dissipating resin composition as described in 10 above, which is melt-kneaded.
12.更に、〔C〕黒鉛粒子を含有し、該黒鉛粒子〔C〕の含有量が、上記熱可塑性樹脂 〔A〕を 100質量部とした場合に、 10〜300質量部である上記 1乃至 7のいずれかに 記載の放熱性樹脂組成物。 12. Further, [C] graphite particles are contained, and the content of the graphite particles [C] is 10 to 300 parts by mass when the thermoplastic resin [A] is 100 parts by mass. 8. The heat dissipating resin composition according to any one of 7 above.
13.上記黒鉛粒子〔C〕が、アスペクト比が 10〜20であり、重量平均粒子径が 10〜2 OO ^ mであり、且つ、固定炭素量が 98質量%以上である黒鉛粒子(C1)である上記 12に記載の放熱性樹脂組成物。 13. Graphite particles (C1) having an aspect ratio of 10 to 20, a weight average particle size of 10 to 2 OO ^ m, and a fixed carbon content of 98% by mass or more. 13. The heat dissipating resin composition as described in 12 above.
14.上記黒鉛粒子(C1)の形状が鱗片状である上記 13に記載の放熱性樹脂組成物 14. The heat-dissipating resin composition as described in 13 above, wherein the graphite particles (C1) have a scaly shape.
〇 Yes
15.上記黒鉛粒子(C1)の粒度分布を測定して得られた、累積重量が、それぞれ、 2 0%及び 80%であるときの粒子径 D 及び D の比 D /Ό 力 ¾〜; 12である上記 13 15. Ratio D of particle diameters D and D when the cumulative weights obtained by measuring the particle size distribution of the graphite particles (C1) are 20% and 80%, respectively. Above 13
20 80 80 20 20 80 80 20
又は 14に記載の放熱性樹脂組成物。 Or the heat-radiating resin composition of 14.
16.上記黒鉛粒子〔C〕が、アスペクト比が 3以下であり、重量平均粒子径が;!〜 70 mであり、且つ、固定炭素量が 98質量%以上である黒鉛粒子(C2)である上記 12に 記載の放熱性樹脂組成物。 16. The graphite particles [C] are graphite particles (C2) having an aspect ratio of 3 or less, a weight average particle diameter of !! to 70 m, and a fixed carbon content of 98% by mass or more. 13. The heat dissipating resin composition as described in 12 above.
17.上記黒鉛粒子〔C〕が、上記黒鉛粒子 (C1 )及び上記黒鉛粒子 (C2)を含む上記 13乃至 16のいずれかに記載の放熱性樹脂組成物。 17. The heat-dissipating resin composition as described in any one of 13 to 16 above, wherein the graphite particles [C] include the graphite particles (C1) and the graphite particles (C2).
18.上記炭素繊維構造体〔B〕及び上記黒鉛粒子〔C〕の含有割合が、これらの含有 量の合計を 100質量%とした場合に、それぞれ、 20〜95質量%及び 80〜5質量% である上記 12乃至 17のいずれ力、 1項に記載の放熱性樹脂組成物。 18. The content ratio of the carbon fiber structure [B] and the graphite particles [C] is 20 to 95 mass% and 80 to 5 mass%, respectively, when the total of these contents is 100 mass%. The heat-dissipating resin composition according to any one of 12 to 17 above, wherein
19.上記 1乃至 7及び上記 12乃至 18のいずれかに記載の放熱性樹脂組成物を含
むことを特徴とする成形品。 19. A heat-dissipating resin composition as described in any one of 1 to 7 and 12 to 18 above. A molded product characterized by
発明の効果 The invention's effect
[0012] 熱可塑性樹脂〔A〕、及び、特定構造を有する炭素繊維構造体〔B〕を含有する、本 発明の放熱性樹脂組成物によれば、放熱性に優れ、且つ、成形加工性及び耐衝撃 性のバランスに優れ、更には電磁波シールド性にも優れる。 [0012] According to the heat-dissipating resin composition of the present invention containing the thermoplastic resin [A] and the carbon fiber structure [B] having a specific structure, the heat-dissipating resin composition is excellent in heat dissipating property, Excellent balance of impact resistance, and excellent electromagnetic shielding properties.
上記熱可塑性樹脂〔A〕が、ゴム強化樹脂、及び、ポリカーボネート樹脂を含有する 場合には、特に、成形加工性、放熱性及び耐衝撃性に優れる。また、これらの樹脂を 特定の混練方法に供して製造された放熱性樹脂組成物は、熱可塑性樹脂〔A〕及び 炭素繊維構造体〔B〕の相溶性に優れるため、特に、成形加工性及び放熱性に優れ 上記の熱可塑性樹脂〔A〕、及び、特定構造を有する炭素繊維構造体〔B〕を含有 する、本発明の成形品は、放熱性、成形加工性、耐衝撃性及び電磁波シールド性に 優れる。 When the thermoplastic resin [A] contains a rubber reinforced resin and a polycarbonate resin, it is particularly excellent in molding processability, heat dissipation and impact resistance. In addition, the heat-dissipating resin composition produced by subjecting these resins to a specific kneading method is excellent in the compatibility of the thermoplastic resin [A] and the carbon fiber structure [B]. The molded product of the present invention, which is excellent in heat dissipation and contains the above-mentioned thermoplastic resin [A] and a carbon fiber structure [B] having a specific structure, has heat dissipation, molding processability, impact resistance and electromagnetic wave shielding. Excellent in properties.
[0013] 熱可塑性樹脂〔A〕、及び、特定構造を有する炭素繊維構造体〔B〕を含有する、本 発明の放熱性樹脂組成物の製造方法によれば、放熱性に優れ、且つ、成形加工性 及び耐衝撃性のバランスに優れ、更には電磁波シールド性にも優れた放熱性樹脂 組成物を容易に得ること力 Sできる。 [0013] According to the method for producing a heat dissipating resin composition of the present invention, which includes a thermoplastic resin [A] and a carbon fiber structure [B] having a specific structure, the heat dissipating resin composition has excellent heat dissipation and is molded. It is possible to easily obtain a heat-dissipating resin composition having an excellent balance of workability and impact resistance and also having excellent electromagnetic shielding properties.
[0014] 本発明の放熱性樹脂組成物が、更に、黒鉛粒子〔C〕を含有する場合には、放熱性 に優れ、且つ、成形加工性及び耐衝撃性のバランスに優れ、更には熱伝導性及び 電磁波シールド性にも優れる。 [0014] When the heat-dissipating resin composition of the present invention further contains graphite particles [C], the heat-dissipating resin composition is excellent in heat dissipating property, excellent in the balance of molding processability and impact resistance, and further in heat conduction. And excellent electromagnetic shielding properties.
上記黒鉛粒子〔C〕が、特定の大きさ又は形状を備える場合には、特に、放熱性、熱 伝導性及び電磁波シールド性に優れる。 When the graphite particles [C] have a specific size or shape, they are particularly excellent in heat dissipation, thermal conductivity, and electromagnetic shielding properties.
上記熱可塑性樹脂〔A〕が、ゴム強化樹脂、及び、ポリカーボネート樹脂を含有し、 これらが特定の含有割合である場合には、特に、成形加工性、放熱性、熱伝導性、 耐衝撃性及び電磁波シールド性に優れる。 When the thermoplastic resin [A] contains a rubber-reinforced resin and a polycarbonate resin, and these are in a specific content ratio, in particular, moldability, heat dissipation, thermal conductivity, impact resistance and Excellent electromagnetic shielding properties.
[0015] 上記の熱可塑性樹脂〔A〕、特定構造を有する炭素繊維構造体〔B〕及び黒鉛粒子〔[0015] The above thermoplastic resin [A], carbon fiber structure [B] having a specific structure, and graphite particles [
C〕を含有する、本発明の成形品は、放熱性、成形加工性、耐衝撃性、熱伝導性及 び電磁波シールド性に優れる。
図面の簡単な説明 The molded product of the present invention containing C] is excellent in heat dissipation, molding processability, impact resistance, thermal conductivity and electromagnetic wave shielding properties. Brief Description of Drawings
[0016] [図 1]熱籠もり試験装置の縦断面説明図である。 [0016] FIG. 1 is a longitudinal cross-sectional explanatory view of a thermal fogging test apparatus.
符号の説明 Explanation of symbols
[0017] 1 :ポリカーボネート(PC)製枠部材 [0017] 1: Polycarbonate (PC) frame member
2 :評価に供する平板 2: Flat plate for evaluation
3 :シリコンゴムヒーター 3: Silicone rubber heater
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明を詳しく説明する。 [0018] Hereinafter, the present invention will be described in detail.
本発明において、「(共)重合」とは、単独重合及び共重合を意味し、「(メタ)アクリル 」とは、アクリル及びメタクリルを意味する。 In the present invention, “(co) polymerization” means homopolymerization and copolymerization, and “(meth) acryl” means acrylic and methacrylic.
[0019] 本発明の放熱性樹脂組成物は、〔A〕熱可塑性樹脂(以下、「成分〔A〕」ともいう。)、 及び、〔B〕外径 15〜100nmの炭素繊維部と、多数本の該炭素繊維部を接合する接 合部とを備え、 3次元ネットワーク構造を有する炭素繊維構造体 (以下、「成分〔B〕」と もいう。)、を含有し、上記成分〔B〕の含有量は、上記成分〔A〕を 100質量部とした場 合に、 1〜80質量部であることを特徴とする。 [0019] The heat-dissipating resin composition of the present invention comprises [A] a thermoplastic resin (hereinafter also referred to as “component [A]”), and [B] a carbon fiber portion having an outer diameter of 15 to 100 nm, A carbon fiber structure having a three-dimensional network structure (hereinafter, also referred to as “component [B]”), and the component [B]. The content of is 1 to 80 parts by mass, when the component [A] is 100 parts by mass.
また、本発明の放熱性樹脂組成物は、更に、〔C〕黒鉛粒子 (以下、「成分〔C〕」とも いう。)を含有する樹脂組成物であってもよい。 Further, the heat dissipating resin composition of the present invention may be a resin composition containing [C] graphite particles (hereinafter also referred to as “component [C]”).
以下、上記成分〔A〕及び〔B〕を含有し、且つ、上記成分〔C〕を含有しない組成物を 、「放熱性樹脂組成物 [S]」といい、上記成分〔A〕、〔B〕及び〔C〕を含有する組成物 を「放熱性樹脂組成物 [T]」という。 Hereinafter, the composition containing the above components [A] and [B] and not containing the above component [C] is referred to as “heat dissipating resin composition [S]”, and the above components [A], [B ] And the composition containing [C] are referred to as “heat-dissipating resin composition [T]”.
[0020] 上記成分〔A〕は、熱可塑性を有する重合体であれば、特に限定されず、ポリスチレ ン、スチレン ·アクリロニトリル共重合体、スチレン '無水マレイン酸共重合体、(メタ)ァ クリル酸エステル.スチレン共重合体等のスチレン系(共)重合体; ABS樹脂、 AES 樹脂、 ASA樹脂等のゴム強化樹脂;ポリエチレン、ポリプロピレン、エチレン 'プロピレ ン共重合体等の、炭素数 2〜; 10の α—ォレフインの少なくとも 1種からなる α—ォレ フィン (共)重合体並びにその変性重合体 (塩素化ポリエチレン等)、環状ォレフィン 共重合体等のォレフィン系樹脂;アイオノマー、エチレン '酢酸ビュル共重合体、ェチ レン 'ビュルアルコール共重合体等のエチレン系共重合体;ポリ塩化ビュル、ェチレ
ン '塩化ビュル重合体、ポリ塩化ビニリデン等の塩化ビュル系樹脂;ポリメタクリル酸メ チル(PMMA)等の(メタ)アクリル酸エステルの 1種以上を用いた(共)重合体等のァ クリル系樹脂;ポリアミド、 6、ポリアミド、 6, 6、ポリアミド、 6, 12等のポリアミド、系樹脂(PA) ;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレ ンナフタレート等のポリエステル系樹脂;ポリアセタール樹脂(POM);ポリカーボネー ト樹脂(PC);ポリアリレート樹脂;ポリフエ二レンエーテル;ポリフエ二レンサルファイド; ポリテトラフルォロエチレン、ポリフッ化ビニリデン等のフッ素樹脂;液晶ポリマー;ポリ イミド、ポリアミドイミド、ポリエーテルイミド等のイミド系樹脂;ポリエーテルケトン、ポリ エーテルエーテルケトン等のケトン系樹脂;ポリスルホン、ポリエーテルスルホン等の スルホン系樹脂;ウレタン系樹脂;ポリ酢酸ビュル;ポリエチレンォキシド;ポリビュルァ ルコール;ポリビュルエーテル;ポリビュルブチラール;フエノキシ樹脂;感光性樹脂; 生分解性プラスチック等が挙げられる。これらは、 1種単独であるいは 2種以上を組み 合わせて用いることができる。また、これらのうち、ゴム強化樹脂、ポリカーボネート樹 脂、ォレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂等が好ましぐ特に、ゴ ム強化樹脂及びポリカーボネート樹脂の組み合わせが好ましい。 [0020] The component [A] is not particularly limited as long as it is a thermoplastic polymer. Polystyrene, styrene / acrylonitrile copolymer, styrene / maleic anhydride copolymer, (meth) acrylic acid Esters. Styrene (co) polymers such as styrene copolymers; Rubber-reinforced resins such as ABS resin, AES resin and ASA resin; Polyethylene, polypropylene, ethylene 'propylene copolymer, etc. 2 to 10 carbon atoms; 10 Α-olefin (co) polymers composed of at least one of α-olefins and modified resins (chlorinated polyethylene, etc.), olefin resins such as cyclic olefin copolymers; ionomers, ethylene Polymers, Ethylene Copolymers such as Ethylene 'Buyl Alcohol Copolymers; Polychlorinated Bull, Ethylene Copolymer 'Buluric chloride resins such as poly (vinyl chloride) and polyvinylidene chloride; acrylics such as (co) polymers using one or more (meth) acrylic acid esters such as poly (methyl methacrylate) (PMMA) Resin: Polyamide, polyamide, 6, polyamide, 6, 6, polyamide, 6, 12, etc. polyamide, resin (PA); Polyester resin such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate; Polyacetal Resin (POM); Polycarbonate resin (PC); Polyarylate resin; Polyphenylene ether; Polyphenylene sulfide; Fluororesin such as polytetrafluoroethylene and polyvinylidene fluoride; Liquid crystal polymer; Polyimide, Polyamideimide Imide resins such as polyetherimide; polyetherketone, polyetherether Ketone resins such as ruketone; Sulfone resins such as polysulfone and polyethersulfone; Urethane resins; Polyacetate butyl; Polyethylene oxide; Polybulol alcohol; Polybulul ether; Polybulbutyral; Phenoxy resin; Photosensitive resin; And other plastics. These can be used alone or in combination of two or more. Of these, rubber reinforced resin, polycarbonate resin, olefin resin, polyester resin, polyamide resin and the like are preferred, and a combination of rubber reinforced resin and polycarbonate resin is particularly preferred.
[0021] 上記ゴム強化樹脂は、ゴム質重合体 (以下、「ゴム質重合体 (a)」という。)の存在下 に、芳香族ビュル化合物を含むビュル系単量体 (bl)を重合して得られたゴム強化ビ ニル系樹脂(以下、「ゴム強化ビュル系樹脂 (Al)」という。)、又は、このゴム強化ビニ ル系樹脂 (A1)と、ビュル系単量体 (b2)の (共)重合体 (以下、「(共)重合体 (A2)」と いう。)とからなる混合物、である。 [0021] The rubber-reinforced resin polymerizes a bulle monomer (bl) containing an aromatic bur compound in the presence of a rubbery polymer (hereinafter referred to as "rubbery polymer (a)"). The rubber-reinforced vinyl resin (hereinafter referred to as “rubber-reinforced vinyl resin (Al)”), or the rubber-reinforced vinyl resin (A1) and the rubber monomer (b2) A mixture of (co) polymer (hereinafter referred to as “(co) polymer (A2)”).
[0022] 上記ゴム質重合体(a)は、室温でゴム質であれば、単独重合体であってもよ!/、し、 共重合体であってもよレ、が、ジェン系重合体 (ジェン系ゴム質重合体)及び非ジェン 系重合体 (非ジェン系ゴム質重合体)が好ましい。更に、上記ゴム質重合体 (a)は、 架橋重合体であってもよいし、非架橋重合体であってもよい。これらは、 1種単独であ るいは 2種以上を組み合わせて用いることができる。 [0022] The rubbery polymer (a) may be a homopolymer as long as it is rubbery at room temperature! /, And may be a copolymer. (Gen-based rubber polymer) and non-gen-based polymer (non-gen rubber-based polymer) are preferred. Further, the rubbery polymer (a) may be a crosslinked polymer or a non-crosslinked polymer. These can be used alone or in combination of two or more.
[0023] 上記ジェン系重合体 (ジェン系ゴム質重合体)としては、ポリブタジエン、ポリイソプ レン、ポリクロ口プレン等の単独重合体;スチレン 'ブタジエン共重合体、スチレン'ブ タジェン.スチレン共重合体、アクリロニトリル 'ブタジエン共重合体、アクリロニトリル.
スチレン ·ブタジエン共重合体等のスチレン ·ブタジエン系共重合体ゴム;スチレン ·ィ ソプレン共重合体、スチレン.イソプレン.スチレン共重合体、アクリロニトリル.スチレン 'イソプレン共重合体等のスチレン 'イソプレン系共重合体ゴム;天然ゴム等が挙げら れる。これらの共重合体は、ブロック共重合体でもよいし、ランダム共重合体でもよい 。また、これらの共重合体は水素添加(但し、水素添加率は 50%未満。)されたもの であってもよい。上記ジェン系重合体は、 1種単独であるいは 2種以上を組み合わせ て用いることができる。 [0023] Examples of the gen-based polymer (gen-based rubbery polymer) include homopolymers such as polybutadiene, polyisoprene, polychloroprene; styrene 'butadiene copolymer, styrene' butadiene, styrene copolymer, Acrylonitrile 'butadiene copolymer, acrylonitrile. Styrene / butadiene copolymer rubber such as styrene / butadiene copolymer; styrene / isoprene copolymer, styrene / isoprene / styrene copolymer, acrylonitrile / styrene / isoprene copolymer / styrene / isoprene copolymer Combined rubber; natural rubber and the like. These copolymers may be block copolymers or random copolymers. These copolymers may be hydrogenated (however, the hydrogenation rate is less than 50%). The above gen-based polymers can be used singly or in combination of two or more.
[0024] また、上記非ジェン系重合体(非ジェン系ゴム質重合体)としては、エチレン単位と 、炭素数 3以上の α—ォレフィンからなる単位を含むエチレン' aーォレフイン系共重 合体ゴム;ウレタン系ゴム;アクリル系ゴム;シリコーンゴム;シリコーン 'アクリル系 IPN ゴム;共役ジェン系化合物よりなる単位を含む(共)重合体を水素添加してなる重合 体等が挙げられる。これらの共重合体は、ブロック共重合体であってもよいし、ランダ ム共重合体であってもよい。また、これらの共重合体は水素添加(但し、水素添加率 は 50%以上。)されたものであってもよい。上記非ジェン系重合体は、 1種単独であ るいは 2種以上を組み合わせて用いることができる。 [0024] The non-gen-based polymer (non-gen-based rubbery polymer) is an ethylene'a-olefin-based copolymer rubber containing an ethylene unit and a unit comprising α-olefin having 3 or more carbon atoms; Examples include urethane rubbers; acrylic rubbers; silicone rubbers; silicone 'acrylic IPN rubbers; polymers obtained by hydrogenating (co) polymers containing units composed of conjugated diene compounds. These copolymers may be block copolymers or random copolymers. These copolymers may be hydrogenated (however, the hydrogenation rate is 50% or more). The non-gen-based polymers can be used singly or in combination of two or more.
[0025] 上記ゴム質重合体(a)として、ジェン系重合体を用いた場合に得られるゴム強化ビ ニル系樹脂 (A1 )は、ジェン系ゴム強化ビュル系樹脂であり、一般に、「ABS樹脂」と いわれている。また、上記ゴム質重合体(a)として、エチレン' aーォレフイン及び/ 又はエチレン' aーォレフイン'非共役ジェン共重合体を用いた場合に得られるゴム 強化ビュル系樹脂 (A1 )は、一般に、「AES樹脂」といわれている。更に、上記ゴム質 重合体(a)として、アクリル系ゴムを用いた場合に得られるゴム強化ビュル系樹脂 (A 1 )は、アクリル系ゴム強化ビュル系樹脂であり、一般に、「ASA樹脂」といわれている [0025] The rubber-reinforced vinyl resin (A1) obtained when a gen-based polymer is used as the rubber polymer (a) is a gen-based rubber-reinforced resin. "It is said that. Further, as the rubbery polymer (a), the rubber-reinforced bur resin (A1) obtained when ethylene'a-olefin and / or ethylene'a-olefin'nonconjugated-gen copolymer is generally used, It is said to be “AES resin”. Furthermore, the rubber-reinforced bull resin (A 1) obtained when acrylic rubber is used as the rubbery polymer (a) is an acrylic rubber-reinforced bull resin, generally referred to as “ASA resin”. It is said
[0026] 上記ゴム強化ビュル系樹脂 (A1 )の形成に用いる上記ゴム質重合体(a)の形状は 、特に限定されないが、粒子状である場合、その重量平均粒子径は、好ましくは 50 〜3, 000腹、より好ましくは 100〜2 , 000腹、更に好ましくは 120〜800腹であ る。重量平均粒子径が 50nm未満であると、本発明の放熱性樹脂組成物 [S]及び [ T]並びにそれらを含む成形品の耐衝撃性が劣る傾向にあり、 3, OOOnmを超えると
、成形品の表面外観性が劣る傾向にある。尚、上記重量平均粒子径は、レーザー回 折法、光散乱法等により測定することができる。 [0026] The shape of the rubbery polymer (a) used for the formation of the rubber-reinforced bull resin (A1) is not particularly limited, but when it is particulate, its weight average particle diameter is preferably 50 to 3,000 stomachs, more preferably 100 to 2,000 stomachs, and still more preferably 120 to 800 stomachs. When the weight average particle diameter is less than 50 nm, the heat-dissipating resin compositions [S] and [T] of the present invention and molded products containing them tend to be inferior in impact resistance. The surface appearance of the molded product tends to be inferior. The weight average particle diameter can be measured by a laser diffraction method, a light scattering method, or the like.
[0027] 上記ゴム質重合体(a)が粒子状である場合、重量平均粒子径が上記範囲内にある 限り、例えば、特開昭 61— 233010号公報、特開昭 59— 93701号公報、特開昭 56 — 167704号公報等に記載されている公知の方法により肥大化したものを用いること もできる。 [0027] When the rubbery polymer (a) is in the form of particles, as long as the weight average particle diameter is within the above range, for example, JP-A-61-233010, JP-A-59-93701, Those enlarged by a known method described in JP-A-56-167704 and the like can also be used.
[0028] 上記ゴム質重合体 (a)を製造する方法としては、平均粒子径の調整等を考慮し、乳 化重合が好ましい。この場合、平均粒子径は、乳化剤の種類及びその使用量、開始 剤の種類及びその使用量、重合時間、重合温度、攪拌条件等の製造条件を選択す ることにより調整すること力 Sできる。また、上記平均粒子径 (粒子径分布)の他の調整 方法としては、異なる粒子径を有する上記ゴム質重合体(a)の 2種以上をブレンドす る方法でもよい。 [0028] The method for producing the rubbery polymer (a) is preferably emulsion polymerization in consideration of adjustment of the average particle diameter and the like. In this case, the average particle size can be adjusted by selecting production conditions such as the type and amount of emulsifier, the type and amount of initiator used, polymerization time, polymerization temperature, and stirring conditions. Another method for adjusting the average particle size (particle size distribution) may be a method of blending two or more of the rubbery polymers (a) having different particle sizes.
[0029] 上記ビュル系ゴム質重合体 (A1)の形成に用いる上記ビュル系単量体 (bl)は、芳 香族ビュル化合物を含む。このビュル系単量体 (bl)は、芳香族ビュル化合物のみ であってよいし、この芳香族ビュル化合物と、例えば、シアン化ビュル化合物、(メタ) アクリル酸エステル化合物、マレイミド系化合物、酸無水物等の芳香族ビュル化合物 と共重合可能な化合物との組合せであってもよレ、。上記の芳香族ビュル化合物と共 重合可能な化合物は、 1種単独であるいは 2種以上を組み合わせて用いることができ 従って、上記ビュル系単量体 (bl)としては、芳香族ビュル化合物の 1種以上からな る単量体 (χ)、又は、芳香族ビュル化合物の 1種以上、及び、この芳香族ビュル化合 物と共重合可能な化合物の 1種以上を組み合わせた単量体 (y)を用いることができ [0029] The bull monomer (bl) used for forming the bull rubber polymer (A1) includes an aromatic bull compound. This bull monomer (bl) may be an aromatic bull compound alone, and this bull monomer, for example, cyanide bull compound, (meth) acrylate compound, maleimide compound, acid anhydride It may be a combination of a compound that can be copolymerized with an aromatic bur compound such as a product. The compounds that can be copolymerized with the above aromatic bur compound can be used singly or in combination of two or more. Therefore, as the bulle monomer (bl), one kind of aromatic bur compound is used. A monomer (χ) consisting of the above, or a monomer (y) that is a combination of one or more aromatic bull compounds and one or more compounds copolymerizable with this aromatic bull compound. Can be used
[0030] 上記芳香族ビュル化合物としては、少なくとも 1つのビュル結合と、少なくとも 1つの 芳香族環を有する化合物であれば、特に限定されず、その例としては、スチレン、 α ーメチルスチレン、 ο—メチルスチレン、 ρ—メチルスチレン、ビュルトルエン、 βーメチ ノレスチレン、ェチルスチレン、 p— tert—ブチルスチレン、ビュルキシレン、ビニルナ フタレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブ口モスチレン
、フルォロスチレン等が挙げられる。これらは、 1種単独であるいは 2種以上を組み合 わせて用いることができる。また、これらのうち、スチレン及び α—メチルスチレンが好 ましい。 [0030] The aromatic bur compound is not particularly limited as long as it is a compound having at least one butyl bond and at least one aromatic ring. Examples thereof include styrene, α-methyl styrene, ο-methyl styrene. , Ρ-methyl styrene, butyl toluene, β-methyl styrene, ethyl styrene, p- tert-butyl styrene, butyl xylene, vinyl naphthalene, monochlorostyrene, dichlorostyrene, monobromostyrene, dib-mouthed styrene And fluorostyrene. These can be used singly or in combination of two or more. Of these, styrene and α-methylstyrene are preferred.
[0031] 上記シアン化ビュル化合物としては、アクリロニトリル、メタタリロニトリル等が挙げら れる。これらは、 1種単独であるいは 2種以上を組み合わせて用いることができる。ま た、これらのうち、アクリロニトリルが好ましい。 [0031] Examples of the cyanide bur compound include acrylonitrile and methacrylonitrile. These can be used alone or in combination of two or more. Of these, acrylonitrile is preferred.
[0032] 上記 (メタ)アクリル酸エステル化合物としては、(メタ)アクリル酸メチル、(メタ)アタリ ル酸ェチル、(メタ)アクリル酸 η—プロピル、(メタ)アクリル酸イソプロピル、(メタ)ァク リル酸 η—ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸 tert—ブチル、(メタ )アクリル酸へキシル、(メタ)アクリル酸シクロへキシル、(メタ)アクリル酸フエニル等が 挙げられる。これらは、 1種単独であるいは 2種以上を組み合わせて用いることができ る。これらのうち、(メタ)アクリル酸メチルが好ましい。 [0032] Examples of the (meth) acrylic acid ester compound include methyl (meth) acrylate, ethyl (meth) acrylate, η-propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth) alkyl. Examples include η-butyl acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, and (meth) acrylate phenyl. These can be used alone or in combination of two or more. Of these, methyl (meth) acrylate is preferred.
[0033] 上記マレイミド系化合物としては、マレイミド、 N—メチルマレイミド、 N—ブチルマレ イミド、 N—フエニルマレイミド、 N— (2—メチルフエ二ノレ)マレイミド、 N— (4—ヒドロキ シフエニル)マレイミド、 N—シクロへキシルマレイミド等が挙げられる。これらは、 1種 単独であるいは 2種以上を組み合わせて用いることができる。尚、マレイミド系化合物 力、らなる単位を導入する他の方法としては、例えば、無水マレイン酸を共重合し、そ の後イミド化する方法でもよレ、。 [0033] The maleimide compounds include maleimide, N-methylmaleimide, N-butylmaleimide, N-phenylmaleimide, N- (2-methylphenylenole) maleimide, N- (4-hydroxyphenyl) maleimide, N —Cyclohexylmaleimide and the like. These can be used alone or in combination of two or more. As another method for introducing maleimide-based compound, such a unit, for example, maleic anhydride is copolymerized and then imidized.
[0034] 上記酸無水物としては、無水マレイン酸、無水ィタコン酸、無水シトラコン酸等が挙 げられる。これらは、 1種単独であるいは 2種以上を組み合わせて用いることができる [0034] Examples of the acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. These can be used alone or in combination of two or more.
[0035] また、上記化合物以外に、必要に応じ、ヒドロキシル基、アミノ基、エポキシ基、アミ ド基、カルボキシル基、ォキサゾリン基等の官能基を有するビュル系化合物を用いる こと力 Sできる。例えば、(メタ)アクリル酸 2—ヒドロキシェチル、ヒドロキシスチレン、(メ タ)アクリル酸 N, N—ジメチルアミノメチル、 N, N—ジェチルー p—アミノメチルスチ レン、(メタ)アクリル酸グリシジル、(メタ)アクリル酸 3, 4—ォキシシクロへキシル、ビニ ルグリシジルエーテル、メタリルグリシジルエーテル、ァリルグリシジルエーテル、メタ クリノレアミド、アタリノレアミド、(メタ)アクリル酸、ビュルォキサゾリン等が挙げられる。こ
れらは、 1種単独であるいは 2種以上を組み合わせて用いることができる。 [0035] In addition to the above compounds, if necessary, it is possible to use a bur compound having a functional group such as a hydroxyl group, an amino group, an epoxy group, an amide group, a carboxyl group, or an oxazoline group. For example, (meth) acrylic acid 2-hydroxyethyl, hydroxystyrene, (meth) acrylic acid N, N-dimethylaminomethyl, N, N-jetyl-p-aminomethylstyrene, (meth) acrylic acid glycidyl, ( Examples include meth) acrylic acid 3,4-oxycyclohexyl, vinyl glycidyl ether, methallyl glycidyl ether, allyl glycidyl ether, methacrylolamide, attalinoleamide, (meth) acrylic acid, buroxazoline and the like. This These can be used alone or in combination of two or more.
[0036] 上記ビュル系単量体 (bl)としては、芳香族ビュル化合物の 1種以上、及び、この芳 香族ビュル化合物と共重合可能な化合物の 1種以上の組み合わせ、即ち、上記単 量体 (y)を用いることが好ましぐこの場合の芳香族ビュル化合物と、それ以外の化 合物との質量割合は、これらの合計を 100質量%とした場合、通常、(2〜95)質量 %/ (98〜5)質量%、好ましくは(10〜90)質量%/ (90〜10)質量%でぁる。上 記芳香族ビュル化合物の割合が少なすぎると、成形加工性が劣る傾向にあり、多す ぎると、得られる成形品の耐薬品性、耐熱性等が十分でない場合がある。 [0036] The bull monomer (bl) is a combination of one or more aromatic bull compounds and one or more compounds copolymerizable with the aromatic bull compounds, that is, the above monomers. It is preferable to use the body (y). In this case, the mass ratio between the aromatic bur compound and the other compounds is usually (2 to 95) when the total is 100% by mass. % By mass / (98 to 5)% by mass, preferably (10 to 90)% by mass / (90 to 10)% by mass. If the ratio of the above aromatic bur compound is too small, the moldability tends to be inferior, and if it is too large, the resulting molded article may not have sufficient chemical resistance, heat resistance and the like.
[0037] 上記単量体 (y)としては、好ましくは、芳香族ビュル化合物及びシアン化ビュル化 合物の組合せ(以下、「単量体 (yl)」という。)、並びに、芳香族ビュル化合物、シァ ン化ビュル化合物及び他の化合物((メタ)アクリル酸エステル化合物等)の組合せ( 以下、「単量体 (y2)」という。)である。シアン化ビュル化合物を用いることにより、耐 薬品性及び耐熱性等の物性バランスが向上する。 [0037] The monomer (y) is preferably a combination of an aromatic bull compound and a cyanide bull compound (hereinafter referred to as "monomer (yl)"), and an aromatic bull compound. , A combination of a cyanated bur compound and another compound (such as a (meth) acrylate compound) (hereinafter referred to as “monomer (y2)”). Use of cyanide bur compound improves the balance of physical properties such as chemical resistance and heat resistance.
[0038] 上記ゴム強化ビュル系樹脂 (A1)は、上記ゴム質重合体(a)の存在下に、上記ビニ ル系単量体 (bl)を重合して得られたものであり、以下に例示される。 [0038] The rubber-reinforced bull resin (A1) is obtained by polymerizing the vinyl monomer (bl) in the presence of the rubber polymer (a). Illustrated.
[1]上記ビュル系単量体 (b l )として上記単量体 (X)のみを用いて得られたゴム強化 ビュル系樹脂の 1種以上。 [1] One or more rubber-reinforced bull resins obtained by using only the monomer (X) as the bull monomer (b 1).
[2]上記ビュル系単量体(bl)として上記単量体 (yl)のみを用いて得られたゴム強 化ビュル系樹脂の 1種以上。 [2] One or more rubber-reinforced bull resins obtained by using only the monomer (yl) as the bull monomer (bl).
[3]上記ビュル系単量体(bl)として上記単量体 (y2)のみを用いて得られたゴム強 化ビュル系樹脂の 1種以上。 [3] One or more rubber-reinforced bull resins obtained using only the monomer (y2) as the bull monomer (bl).
上記ゴム強化ビュル系樹脂 (A1)としては、上記態様 [2]及び [3]が好ましい。また 、これらの態様 [1]、 [2]及び [3]のうちの 2種又は 3種の組合せであってもよい。 As the rubber-reinforced bull resin (A1), the above embodiments [2] and [3] are preferable. Further, it may be a combination of two or three of these embodiments [1], [2] and [3].
[0039] 尚、前述のように、上記ゴム強化樹脂は、上記ゴム強化ビュル系樹脂 (A1)のみで あってよいし、このゴム強化ビュル系樹脂 (A1)と、ビュル系単量体 (b2)の(共)重合 体 (以下、「(共)重合体 (A2)」という。)とからなる混合物であってもよい。 [0039] As described above, the rubber reinforced resin may be only the rubber reinforced bull resin (A1), or the rubber reinforced bull resin (A1) and the bull monomer (b2 ) (Co) polymer (hereinafter referred to as “(co) polymer (A2)”).
この(共)重合体 (A2)の形成に用いるビュル系単量体(b2)は、上記ビュル系単量 体 (bl)として例示した化合物を用いることができる。従って、上記(共)重合体 (A2)
は、上記ゴム強化ビュル系樹脂 (A1 )の形成に用いた上記ビュル系単量体 (M )と全 く同じ組成の成分を重合して得られる重合体であってもよいし、異なる組成で同じ種 類の単量体を重合して得られる重合体であってもよいし、更には、異なる組成で異な る種類の単量体を重合して得られる重合体であってもよレ、。これらの各重合体が 2種 以上含まれるものであってもよ!/、。 As the bull monomer (b2) used for the formation of the (co) polymer (A2), the compounds exemplified as the bull monomer (bl) can be used. Therefore, the above (co) polymer (A2) May be a polymer obtained by polymerizing components having the same composition as the above-mentioned bull monomer (M) used for the formation of the rubber-reinforced bull resin (A1), or a different composition. It may be a polymer obtained by polymerizing the same type of monomer, or may be a polymer obtained by polymerizing different types of monomers with different compositions. . These polymers may contain two or more types! /.
[0040] 上記(共)重合体 (A2)は、ビュル系単量体 (b2)の重合によって得られた単独重合 体又は共重合体であり、以下に例示される。尚、各化合物は、上記のように、ゴム強 化ビュル系樹脂(a l )の形成に用いられる化合物を適用でき、好ましい化合物も同様 である。 [0040] The (co) polymer (A2) is a homopolymer or copolymer obtained by polymerization of the bull monomer (b2), and is exemplified below. As described above, the compounds used for forming the rubber-strengthened bull resin (al) can be applied to the respective compounds, and preferable compounds are also the same.
[4]芳香族ビュル化合物のみを重合して得られた (共)重合体の 1種以上。 [4] One or more (co) polymers obtained by polymerizing only aromatic bur compounds.
[5] (メタ)アクリル酸エステル化合物のみを重合して得られた(共)重合体の 1種以上 [5] One or more (co) polymers obtained by polymerizing only (meth) acrylic acid ester compounds
[6]芳香族ビュル化合物及びシアン化ビュル化合物を重合して得られた共重合体の 1種以上。 [6] One or more types of copolymers obtained by polymerizing aromatic and cyanide bur compounds.
[7]芳香族ビュル化合物及び (メタ)アクリル酸エステル化合物を重合して得られた共 重合体の 1種以上。 [7] One or more kinds of copolymers obtained by polymerizing an aromatic bur compound and a (meth) acrylic acid ester compound.
[8]芳香族ビュル化合物、シアン化ビュル化合物及び他の化合物を重合して得られ た共重合体の 1種以上。 [8] One or more kinds of copolymers obtained by polymerizing aromatic bur compound, cyanide bur compound and other compounds.
[9]芳香族ビュル化合物と、シアン化ビュル化合物を除く他の化合物とを重合して得 られた共重合体の 1種以上。 [9] One or more types of copolymers obtained by polymerizing an aromatic bur compound and other compounds excluding the cyanide bur compound.
上記態様の(共)重合体は、 1種単独であるいは 2種以上を組み合わせて用いること ができる。 The (co) polymer of the above embodiment can be used alone or in combination of two or more.
[0041] 上記(共)重合体 (A2)としては、アクリロニトリル 'スチレン共重合体、アタリロニトリ ル' aーメチルスチレン共重合体、アクリロニトリル'スチレン'メタクリル酸メチル共重 合体、スチレン'メタクリル酸メチル共重合体、アクリロニトリル 'スチレン · Ν—フエニル マレイミド共重合体等が挙げられる。 [0041] As the above (co) polymer (A2), acrylonitrile 'styrene copolymer, acrylonitrile' a-methylstyrene copolymer, acrylonitrile 'styrene' methyl methacrylate copolymer, styrene 'methyl methacrylate copolymer Acrylonitrile 'styrene · ス チ レ ン -phenylmaleimide copolymer, and the like.
[0042] 次に、上記ゴム強化ビュル系樹脂 (A1 )及び上記 (共)重合体 (Α2)の製造方法に ついて説明する。
[0043] 上記ゴム強化ビュル系樹脂 (A1)は、上記ゴム質重合体(a)の存在下に、上記ビニ ル系単量体 (bl)を重合することにより製造することができる。重合方法としては、乳 化重合、溶液重合、塊状重合、及び、塊状 懸濁重合が好ましい。 [0042] Next, a method for producing the rubber-reinforced bull resin (A1) and the (co) polymer (説明 2) will be described. [0043] The rubber-reinforced bull resin (A1) can be produced by polymerizing the vinyl monomer (bl) in the presence of the rubber polymer (a). As the polymerization method, emulsion polymerization, solution polymerization, bulk polymerization, and bulk suspension polymerization are preferable.
[0044] 尚、上記ゴム強化ビュル系樹脂 (A1)の製造の際には、ゴム質重合体(a)及び上記 ビュル系単量体 (bl)は、反応系において、上記ゴム質重合体(a)全量の存在下に、 上記ビュル系単量体 (bl)を一括添加して重合を開始してよいし、分割して又は連続 的に添加しながら重合を行ってもよい。また、上記ゴム質重合体(a)の一部存在下、 又は、非存在下に、上記ビュル系単量体 (bl)を一括添加して重合を開始してよいし 、分割して又は連続的に添加してもよい。このとき、上記ゴム質重合体(a)の残部は、 反応の途中で、一括して、分割して又は連続的に添加してもよい。 [0044] In the production of the rubber-reinforced bull resin (A1), the rubber polymer (a) and the bull monomer (bl) are mixed in the reaction system with the rubber polymer ( a) In the presence of the total amount, the above-mentioned bulle monomer (bl) may be added all at once to initiate the polymerization, or the polymerization may be carried out while being divided or continuously added. In addition, in the presence or absence of part of the rubber polymer (a), the bulle monomer (bl) may be added all at once to initiate polymerization, or may be divided or continuously. May be added. At this time, the remainder of the rubbery polymer (a) may be added in a batch, divided or continuously during the reaction.
[0045] 上記ゴム強化ビュル系樹脂 (A1)を 100質量部製造する場合、上記ゴム質重合体( a)の使用量は、通常、 5〜80質量部、好ましくは 10〜70質量部、更に好ましくは 15 〜60質量部である。また、上記ビュル系単量体 (bl)の使用量は、上記ゴム質重合 体(a) 100質量部に対し、通常、 25〜; 1 , 900質量部、好ましくは 60〜560質量部で ある。 [0045] When producing 100 parts by mass of the rubber-reinforced bull resin (A1), the amount of the rubbery polymer (a) used is usually 5 to 80 parts by mass, preferably 10 to 70 parts by mass, Preferably it is 15-60 mass parts. The amount of the above-mentioned bulle monomer (bl) is usually 25 to 1,900 parts by weight, preferably 60 to 560 parts by weight, based on 100 parts by weight of the rubbery polymer (a). .
[0046] 乳化重合によりゴム強化ビュル系樹脂 (A1)を製造する場合には、重合開始剤、連 鎖移動剤 (分子量調節剤)、乳化剤、水等が用いられる。 [0046] When the rubber-reinforced bull resin (A1) is produced by emulsion polymerization, a polymerization initiator, a chain transfer agent (molecular weight regulator), an emulsifier, water and the like are used.
[0047] 上記重合開始剤としては、クメンハイド口パーオキサイド、ジイソプロピルベンゼンノヽ イド口パーオキサイド、ノ ラメンタンノヽィドロパーオキサイド等の有機過酸化物と、含糖 ピロリン酸処方、スルホキシレート処方等の還元剤とを組み合わせたレドックス系開始 剤;過硫酸カリウム等の過硫酸塩;ベンゾィルパーオキサイド(BPO)、ラウロイルパー オキサイド、 tert ブチノレパーォキシラウレート、 tert ブチノレパーォキシモノカーボ ネート等の過酸化物等が挙げられる。これらは、 1種単独であるいは 2種以上を組み 合わせて用いることができる。上記重合開始剤の使用量は、上記ビュル系単量体 (b 1)全量に対し、通常、 0. ;!〜 1. 5質量%、好ましくは 0. 2〜0. 7質量%である。 尚、上記重合開始剤は、反応系に一括して、又は、連続的に添加することができる [0047] Examples of the polymerization initiator include organic peroxides such as cumene hydride mouth peroxide, diisopropylbenzene oxide mouth peroxide, and noramentan nanodropperoxide, and reductions such as sugar-containing pyrophosphate prescription and sulfoxylate prescription. Redox initiators combined with other agents; persulfates such as potassium persulfate; benzoyl peroxide (BPO), lauroyl peroxide, tert butinoreperoxylaurate, tert butinoreperoxy monocarbonate, etc. And the like. These can be used alone or in combination of two or more. The amount of the polymerization initiator used is usually from 0.2 to 0.7% by mass, preferably from 0.2 to 0.7% by mass, based on the total amount of the bull monomer (b 1). The polymerization initiator can be added to the reaction system all at once or continuously.
〇 Yes
[0048] 上記連鎖移動剤としては、ォクチルメルカプタン、 n ドデシルメルカプタン、 tert—
ドデシルメルカプタン、 n へキシルメルカプタン、 n へキサデシルメルカプタン、 n 一ピノーレン類、 a—メチルスチレンのダイマー等が挙げられる。これらは、 1種単独 であるいは 2種以上を組み合わせて用いることができる。上記連鎖移動剤の使用量 は、上記ビュル系単量体(bl)全量に対し、通常、 0. 05-2. 0質量%である。 [0048] Examples of the chain transfer agent include octyl mercaptan, n-dodecyl mercaptan, tert- Examples include dodecyl mercaptan, n-hexyl mercaptan, n-hexadecyl mercaptan, n-pinolenes, and a-methylstyrene dimer. These can be used alone or in combination of two or more. The amount of the chain transfer agent used is generally 0.05-2. 0% by mass with respect to the total amount of the bulle monomer (bl).
尚、上記連鎖移動剤は、反応系に一括して、又は、連続的に添加することができる The chain transfer agent can be added to the reaction system all at once or continuously.
〇 Yes
[0049] 上記乳化剤としては、ァユオン系界面活性剤及びノユオン系界面活性剤が挙げら れる。ァニオン系界面活性剤としては、高級アルコールの硫酸エステル;ドデシルべ ンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;ラウリル硫酸ナトリウ ム等の脂肪族スルホン酸塩;高級脂肪族カルボン酸塩、脂肪族リン酸塩等が挙げら れる。また、ノニオン系界面活性剤としては、ポリエチレングリコールのアルキルエス テル型化合物、アルキルエーテル型化合物等が挙げられる。これらは、 1種単独であ るいは 2種以上を組み合わせて用いることができる。上記乳化剤の使用量は、上記ビ 二ル系単量体(bl)全量に対し、通常、 0. 3〜5. 0質量%である。 [0049] Examples of the emulsifier include a canyon surfactant and a noion surfactant. Anionic surfactants include higher alcohol sulfates; alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate; aliphatic sulfonates such as sodium lauryl sulfate; higher aliphatic carboxylates and aliphatic phosphates. Salt and the like. Examples of nonionic surfactants include polyethylene glycol alkyl ester type compounds and alkyl ether type compounds. These can be used alone or in combination of two or more. The amount of the emulsifier used is usually 0.3 to 5.0% by mass with respect to the total amount of the vinyl monomer (bl).
[0050] 乳化重合は、ビュル系単量体 (bl)、重合開始剤等の種類に応じ、公知の条件で 行うこと力 Sできる。この乳化重合により得られたラテックスは、通常、凝固剤により凝固 させ、重合体成分を粉末状とし、その後、これを水洗、乾燥することによって精製され る。この凝固剤としては、塩化カルシウム、硫酸マグネシウム、塩化マグネシウム、塩 化ナトリウム等の無機塩;硫酸、塩酸等の無機酸;酢酸、乳酸等の有機酸等が用いら れる。 [0050] Emulsion polymerization can be carried out under known conditions depending on the type of the bull monomer (bl), the polymerization initiator and the like. The latex obtained by this emulsion polymerization is usually purified by coagulating with a coagulant to form a polymer component in powder form, and then washing and drying. As the coagulant, inorganic salts such as calcium chloride, magnesium sulfate, magnesium chloride and sodium chloride; inorganic acids such as sulfuric acid and hydrochloric acid; organic acids such as acetic acid and lactic acid are used.
尚、上記ゴム強化ビュル系樹脂 (A1)を 2種以上含有するゴム強化樹脂とする場合 には、各ラテックスから樹脂を単離した後、混合してもよいが、他の方法として、各樹 脂をそれぞれ含むラテックスの混合物を凝固する等の方法がある。 In the case of a rubber reinforced resin containing two or more kinds of the above rubber reinforced resin (A1), the resin may be isolated from each latex and then mixed. There are methods such as coagulating a mixture of latexes each containing fat.
[0051] 溶液重合、塊状重合及び塊状 懸濁重合による上記ゴム強化ビュル系樹脂 (A1) の製造方法は、公知の方法を適用することができる。 [0051] Known methods can be applied to the method for producing the rubber-reinforced bull resin (A1) by solution polymerization, bulk polymerization, and bulk suspension polymerization.
[0052] 上記ゴム強化ビュル系樹脂 (A1)のグラフト率は、通常、 10〜200質量%、好ましく は 15〜; 150質量%、より好ましくは 20〜; 100質量%である。グラフト率が 10質量%
未満では、本発明の放熱性樹脂組成物 [S]又は [T]を含む成形品の表面外観及び 耐衝撃性が低下することがある。一方、グラフト率が 200%を超えると、成形加工性が 低下することがある。 [0052] The graft ratio of the rubber-reinforced bull resin (A1) is usually 10 to 200% by mass, preferably 15 to 150% by mass, more preferably 20 to 100% by mass. Graft rate is 10% by mass If it is less than 1, the surface appearance and impact resistance of the molded product containing the heat-dissipating resin composition [S] or [T] of the present invention may be lowered. On the other hand, if the graft ratio exceeds 200%, the moldability may decrease.
[0053] ここで、グラフト率とは、上記ゴム強化ビュル系樹脂 (Al) 1グラム中の上記ゴム質重 合体(a)を Xグラム、該ゴム強化ビュル系樹脂 (Al) 1グラムをアセトンに溶解させた際 の不溶分を yグラムとしたときに、下記式により求められる値である。但し、該ゴム質重 合体(a)がアクリル系ゴムである場合には、アセトンの代わりにァセトニトリルを用いる [0053] Here, the graft ratio refers to X-gram of the rubbery polymer (a) in 1 gram of the rubber-reinforced bull resin (Al) and 1 gram of the rubber-reinforced bull resin (Al) in acetone. This is the value obtained from the following equation, where y grams is the insoluble content when dissolved. However, when the rubbery polymer (a) is an acrylic rubber, acetonitrile is used instead of acetone.
〇 Yes
グラフト率(質量0 /0) = { (y— χ) /χ} X 100 The graft ratio (mass 0/0) = {(y- χ) / χ} X 100
[0054] また、上記ゴム強化ビュル系樹脂 (A1)のアセトン (但し、上記ゴム質重合体(a)が アクリル系ゴムである場合には、ァセトニトリルを用いる。)に可溶な成分の極限粘度 [ ] (メチルェチルケトン中、 30°Cで測定)は、通常、 0. ;!〜 1 · 0dl/g、好ましくは 0. 2〜0· 9dl/g、より好ましくは 0· 3〜0· 7dl/gである。この極限粘度 [ ] ]が上記範 囲内であると、成形加工性に優れ、得られる成形品の耐衝撃性にも優れる。 [0054] Further, the intrinsic viscosity of a component soluble in acetone of the rubber-reinforced bull resin (A1) (however, when the rubbery polymer (a) is an acrylic rubber, acetonitrile is used). [] (Measured in methyl ethyl ketone at 30 ° C) is usually 0.;! To 1 · 0 dl / g, preferably 0.2 to 0 · 9 dl / g, more preferably 0 · 3 to 0 · 7dl / g. When the intrinsic viscosity []] is within the above range, the molding processability is excellent and the resulting molded article is excellent in impact resistance.
[0055] 尚、上記のグラフト率及び極限粘度 [ 7] ]は、上記ゴム強化ビュル系樹脂 (A1)を製 造する際に用いる、重合開始剤、連鎖移動剤、乳化剤、溶剤等の種類や量、更には 重合時間、重合温度等を調整することにより、容易に制御することができる。 [0055] The above-mentioned graft ratio and intrinsic viscosity [7] are the types of polymerization initiator, chain transfer agent, emulsifier, solvent, etc. used when the rubber-reinforced bull resin (A1) is produced. The amount can be easily controlled by adjusting the polymerization time, polymerization time, polymerization temperature and the like.
[0056] 上記(共)重合体 (A2)は、上記ゴム強化ビュル系樹脂 (A1)の製造に適用される 重合開始剤等を用いて、ビュル系単量体 (b2)を重合することにより製造することがで きる。重合方法は、溶液重合、塊状重合、乳化重合、懸濁重合等が好適であり、これ らの重合方法を組み合わせて用いてもよい。上記(共)重合体 (A2)は、重合開始剤 を用いる方法であってよいし、重合開始剤を用いない熱重合法であってもよぐまた、 この組み合わせを採用してもょレ、。 [0056] The (co) polymer (A2) is obtained by polymerizing the bull monomer (b2) using a polymerization initiator or the like applied to the production of the rubber-reinforced bull resin (A1). Can be manufactured. As the polymerization method, solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization and the like are suitable, and these polymerization methods may be used in combination. The (co) polymer (A2) may be a method using a polymerization initiator, a thermal polymerization method without using a polymerization initiator, or a combination thereof. .
[0057] 上記(共)重合体 (A2)のアセトンに可溶な成分の極限粘度 [ η ] (メチルェチルケト ン中、 30。Cで測定)は、通常、 0. 1~1. Odl/g、好ましくは 0. 15-0. 7dl/gで る。この極限粘度 [ 7] ]が上記範囲内であると、成形加工性に優れ、得られる成形品 の耐衝撃性にも優れる。尚、上記 (共)重合体 (A2)の極限粘度 [ 7] ]は、上記ゴム強 化ビュル系樹脂 (A1)の場合と同様、製造条件を調整することにより制御することが
できる。 [0057] The intrinsic viscosity [η] (in methyl ethyl ketone, 30. Measured at C) of the acetone-soluble component of the (co) polymer (A2) is usually 0.1 to 1. Odl / g, Preferably it is 0.15-0.7 dl / g. When the intrinsic viscosity [7] is within the above range, the molding processability is excellent and the resulting molded article is excellent in impact resistance. The intrinsic viscosity [7] of the (co) polymer (A2) can be controlled by adjusting the production conditions, as in the case of the rubber-reinforced resin (A1). it can.
[0058] 上記ゴム強化樹脂のアセトン (但し、上記ゴム強化ビュル系樹脂 (A1)の形成に用 いたゴム質重合体 ωがアクリル系ゴムである場合には、ァセトニトリルを用いる。)に 可溶な成分の極限粘度 [ 7] ] (メチルェチルケトン中、 30°Cで測定)は、通常、 0·;!〜 0. 8dl/g、好ましくは 0. 15-0. 7dl/gである。この極限粘度 [ 7] ]が上記範囲内で あると、成形加工性及び耐衝撃性の物性バランスに優れる。 [0058] Soluble in acetone of the rubber-reinforced resin (however, when the rubbery polymer ω used for forming the rubber-reinforced resin (A1) is an acrylic rubber, acetonitrile is used). The intrinsic viscosity [7]] of the component (measured in methyl ethyl ketone at 30 ° C) is usually from 0 ·;! To 0.8 dl / g, preferably 0.15-0. 7 dl / g. When this intrinsic viscosity [7] is within the above range, the balance between physical properties of molding processability and impact resistance is excellent.
[0059] 上記成分〔A〕が上記ゴム強化樹脂を含み、このゴム強化樹脂が、上記ゴム強化ビ ニル系樹脂 (A1)である場合、並びに、上記ゴム強化ビュル系樹脂 (A1)及び上記( 共)重合体 (A2)の混合物からなる場合、のいずれにおいても、本発明の放熱性樹 脂組成物 [S]又は [T]中の上記ゴム質重合体 (a)の含有量は、通常、;!〜 50質量% 、好ましくは 3〜40質量%、より好ましくは 3〜35質量%、特に好ましくは 5〜35質量 %である。このゴム質重合体(a)の含有量が上記範囲内にあれば、成形加工性に優 れ、本発明の放熱性樹脂組成物 [S]又は [Τ]を含む成形品は、耐衝撃性、表面外 観、剛性及び耐熱性に優れる。 [0059] When the component [A] includes the rubber-reinforced resin, and the rubber-reinforced resin is the rubber-reinforced vinyl resin (A1), the rubber-reinforced resin resin (A1) and the ( In any case where the mixture is made of a mixture of (co) polymer (A2), the content of the rubbery polymer (a) in the heat-dissipating resin composition [S] or [T] of the present invention is usually !!-50 mass%, preferably 3-40 mass%, more preferably 3-35 mass%, particularly preferably 5-35 mass%. If the content of the rubbery polymer (a) is within the above range, the molding processability is excellent, and the molded product containing the heat-dissipating resin composition [S] or [Τ] of the present invention has an impact resistance. Excellent surface appearance, rigidity and heat resistance.
[0060] 上記成分〔Α〕として、上記ゴム強化樹脂を用いる場合は、ゴム強化ビュル系樹脂( A1)の種類を選択することによって、多様な組成物とすることができる。 [0060] When the rubber-reinforced resin is used as the component [Α], various compositions can be obtained by selecting the type of the rubber-reinforced resin (A1).
[0061] 上記ポリカーボネート樹脂は、主鎖にカーボネート結合を有するものであれば、特 に限定されず、芳香族ポリカーボネートでもよいし、脂肪族ポリカーボネートでもよい 。また、これらを組み合わせて用いてもよい。本発明においては、成形加工性、耐衝 撃性、耐熱性の観点から、芳香族ポリカーボネートが好ましい。尚、上記ポリカーボネ ート樹脂は、末端が、 R— CO—基、 R'— O— CO—基 (R及び R'は、いずれも有機 基を示す。)に変性されたものであってもよい。このポリカーボネート樹脂は、 1種単独 であるいは 2種以上を組み合わせて用いることができる。 [0061] The polycarbonate resin is not particularly limited as long as it has a carbonate bond in the main chain, and may be an aromatic polycarbonate or an aliphatic polycarbonate. Moreover, you may use combining these. In the present invention, aromatic polycarbonate is preferred from the viewpoints of moldability, impact resistance, and heat resistance. The polycarbonate resin may have a terminal modified with an R—CO— group or an R′—O—CO— group (wherein R and R ′ each represents an organic group). Good. These polycarbonate resins can be used singly or in combination of two or more.
[0062] 上記芳香族ポリカーボネートとしては、芳香族ジヒドロキシ化合物及び炭酸ジエステ ルを溶融によりエステル交換 (エステル交換反応)して得られたもの、ホスゲンを用い た界面重縮合法により得られたもの、ピリジンとホスゲンとの反応生成物を用いたピリ ジン法により得られたもの等を用いることができる。 [0062] Examples of the aromatic polycarbonate include those obtained by melt transesterification (transesterification reaction) of an aromatic dihydroxy compound and carbonic acid diester, those obtained by an interfacial polycondensation method using phosgene, and pyridine. A product obtained by a pyridine method using a reaction product of phosgene and phosgene can be used.
[0063] 芳香族ジヒドロキシ化合物としては、分子内にヒドロキシル基を 2つ有する化合物で
あればよぐヒドロキノン、レゾルシノール等のジヒドロキシベンゼン、 4, 4 'ービフエノ ール、 2, 2—ビス(4—ヒドロキシフエ二ノレ)プロパン(以下、「ビスフエノーノレ A」という。 )、 2, 2—ビス(3, 5—ジブ口モー 4ーヒドロキシフエ二ノレ)プロパン、 2, 2—ビス(4ーヒ ドロキシフエ二ルー 3—メチルフエ二ノレ)プロパン、 2, 2—ビス(3— tert—ブチノレ一 4 —ヒドロキシフエ二ノレ)プロパン、 2, 2—ビス(3、 5—ジメチルー 4—ヒドロキシフエニル )プロパン、ビス(4—ヒドロキシフエ二ノレ)メタン、 1 , 1—ビス(p—ヒドロキシフエニル) ェタン、 2, 2—ビス(p—ヒドロキシフエ二ノレ)ブタン、 2, 2—ビス(p—ヒドロキシフエ二 ノレ)ペンタン、 1 , 1—ビス(p—ヒドロキシフエ二ノレ)シクロへキサン、 1 , 1—ビス(p—ヒ ドロキシフエ二ル)一 4—イソプロビルシクロへキサン、 1 , 1—ビス(p—ヒドロキシフエ 二ル)一 3, 3, 5—トリメチルシクロへキサン、 1 , 1—ビス(p—ヒドロキシフエ二ル)一 1 —フエニルェタン、 9, 9—ビス(p—ヒドロキシフエ二ノレ)フルオレン、 9, 9—ビス(p—ヒ ドロキシ一 3—メチルフエ二ノレ)フルオレン、 4, 4 ' - (p—フエ二レンジイソプロピリデン )ジフエノーノレ、 4, 4 '一(m—フエ二レンジイソプロピリデン)ジフエノーノレ、ビス(p—ヒ ドロキシフエ二ノレ)ォキシド、ビス(p—ヒドロキシフエ二ノレ)ケトン、ビス(p—ヒドロキシフ ェニノレ)エーテノレ、ビス(p—ヒドロキシフエニノレ)エステノレ、ビス(p—ヒドロキシフエニノレ )スノレフイド、ビス(p—ヒドロキシ一 3—メチルフエ二ノレ)スルフイド、ビス(p—ヒドロキシ フエ二ノレ)スルホン、ビス(3, 5—ジブロモ一 4—ヒドロキシフエ二ノレ)スルホン、ビス(p —ヒドロキシフエニル)スルホキシド等が挙げられる。これらは、 1種単独であるいは 2 種以上を組み合わせて用いることができる。 [0063] The aromatic dihydroxy compound is a compound having two hydroxyl groups in the molecule. Dihydrobenzene such as hydroquinone and resorcinol, 4,4'-biphenol, 2,2-bis (4-hydroxyphenol) propane (hereinafter referred to as “bisphenolenore A”), 2,2-bis (3,5-Dibu-Mole 4-Hydroxyphenol) Propane, 2,2-Bis (4-Hydroxyphenol 2-Lu 3-Methylphenol) Propane, 2,2-Bis (3-tert-Butinole 4-hydroxy Phenyleno) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) methane, 1,1-bis (p-hydroxyphenyl) ethane, 2,2-bis (p-hydroxyphenol) butane, 2,2-bis (p-hydroxyphenol) pentane, 1,1-bis (p-hydroxyphenol) cyclohexane, 1, 1 —Bis (p— Roxyphenyl) 1 4-Isoprovircyclohexane, 1,1-bis (p-hydroxyphenyl) 1,3,3,5-trimethylcyclohexane, 1,1-bis (p-hydroxyphenyl) ) 1 1-phenylethane, 9, 9-bis (p-hydroxyphenenole) fluorene, 9, 9-bis (p-hydroxy-1-3-methylphenenole) fluorene, 4, 4 '-(p-phenol) Range isopropylidene) diphenanol, 4, 4'-one (m-phenylene diisopropylidene) diphenol, bis (p-hydroxyphenenole) oxide, bis (p-hydroxyphenenole) ketone, bis (p-hydroxyl Enenore) etherenole, bis (p-hydroxyphenenole) estenore, bis (p-hydroxyphenenole) snoreido, bis (p-hydroxy-1-methylphenenole) sulfide, bis p- hydroxy-phenylene Honoré) sulfone, bis (3, 5-dibromo-one 4-hydroxy-phenylene Honoré) sulfone, bis (p - hydroxyphenyl) sulfoxide and the like. These can be used alone or in combination of two or more.
上記芳香族ヒドロキシ化合物のうち、 2つのベンゼン環の間に炭化水素基を有する 化合物が好ましい。尚、この化合物において、炭化水素基は、ハロゲン置換された炭 化水素基であってもよい。また、ベンゼン環は、そのベンゼン環に含まれる水素原子 力 Sハロゲン原子に置換されたものであってもよい。従って、上記化合物としては、ビス フエノーノレ A、 2, 2—ビス(3, 5—ジブ口モー 4ーヒドロキシフエ二ノレ)プロパン、 2, 2 —ビス(4—ヒドロキシフエニル一 3—メチルフエ二ノレ)プロパン、 2, 2—ビス(3— tert ーブチルー 4ーヒドロキシフエ二ノレ)プロパン、 2, 2—ビス(3、 5—ジメチルー 4ーヒド ロキシフエ二ノレ)プロパン、ビス(4—ヒドロキシフエ二ノレ)メタン、 1 , 1—ビス(p—ヒドロ キシフエニル)ェタン、 2, 2—ビス(p—ヒドロキシフエニル)ブタン等が挙げられる。こ
れらのうち、特にビスフエノーノレ Aが好ましい。 Of the above aromatic hydroxy compounds, compounds having a hydrocarbon group between two benzene rings are preferred. In this compound, the hydrocarbon group may be a halogen-substituted hydrocarbon group. The benzene ring may be substituted with a hydrogen atom force S halogen atom contained in the benzene ring. Therefore, the above compounds include bisphenol A, 2,2-bis (3,5-dib-mouthed 4-hydroxyphenol) propane, 2,2-bis (4-hydroxyphenyl-1-3-methylphenol) propane. 2,2-bis (3-tert-butyl-4-hydroxyphenol) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis (4-hydroxyphenol) methane, Examples include 1-bis (p-hydroxyphenyl) ethane and 2,2-bis (p-hydroxyphenyl) butane. This Of these, bisphenol A is particularly preferred.
[0065] 芳香族ポリカーボネートをエステル交換反応により得るために用いる炭酸ジエステ ノレとしては、ジメチノレカーボネート、ジェチノレカーボネート、ジー tert—ブチノレカーボ ネート、ジフエニルカーボネート、ジトリルカーボネート等が挙げられる。これらは、 1種 単独であるいは 2種以上を組み合わせて用いることができる。 [0065] Examples of the carbonic acid diesterate used for obtaining the aromatic polycarbonate by transesterification include dimethylolene carbonate, jetinole carbonate, di-tert-butinocarbonate, diphenyl carbonate, and ditolyl carbonate. These can be used alone or in combination of two or more.
[0066] 上記ポリカーボネート樹脂の粘度平均分子量は、通常、 15, 000-40, 000、好ま しく (ま 17, 000—30, 000、更 ίこ好ましく (ま 18, 000—28, 000である。尚、上記ポリ カーボネート樹脂は、全体としての粘度平均分子量が上記範囲にあるものであれば 、異なる粘度平均分子量を有するポリカーボネート樹脂の 2種以上を混合して用いて あよい。 [0066] The viscosity-average molecular weight of the polycarbonate resin is usually 15,000-40,000, preferably (17,000 to 30,000, more preferably 18,000 to 28,000). The polycarbonate resin may be used by mixing two or more polycarbonate resins having different viscosity average molecular weights as long as the viscosity average molecular weight as a whole is in the above range.
[0067] 上記ポリカーボネート樹脂は、上記ゴム強化樹脂、又は、上記ゴム強化樹脂の調製 に用いられる上記(共)重合体 (Α2)、例えば、アクリロニトリル 'スチレン共重合体、ァ タリロニトリル. αーメチルスチレン共重合体、アクリロニトリル'スチレン'メタクリル酸メ チル共重合体等と組み合わせて、上記成分〔A〕として用いることができる。このときの ゴム強化樹脂としては、上記ゴム質重合体 (a)としてジェン系重合体を用いてなるゴ ム強化ビュル系樹脂(ジェン系ゴム強化ビュル系樹脂)を含むことが好ましレ、。 [0067] The polycarbonate resin may be the rubber reinforced resin or the (co) polymer (Α2) used in the preparation of the rubber reinforced resin, for example, acrylonitrile styrene copolymer, talaronitrile, α- methylstyrene copolymer. It can be used as the above component [A] in combination with a polymer, acrylonitrile 'styrene' methyl methacrylate copolymer or the like. The rubber reinforced resin at this time preferably includes a rubber reinforced resin (gen-based rubber reinforced resin) using a gen-based polymer as the rubber polymer (a).
[0068] 本発明の放熱性樹脂組成物 [S]において、上記成分〔Α〕が、上記ゴム強化樹脂及 び上記ポリカーボネート樹脂を含有する場合の含有割合は、これらの合計を 100質 量%とした場合、それぞれ、好ましくは 1〜80質量%及び 99〜20質量%であり、より 好ましくは;!〜 75質量%及び 99〜25質量%、更に好ましくは 5〜75質量%及び 95 〜25質量%、特に好ましくは 35〜75質量%及び 65〜25質量%である。この含有 割合が上記範囲にあれば、成形加工性に優れ、放熱性及び耐衝撃性に優れた成形 品を得ること力 Sでさる。 [0068] In the heat-dissipating resin composition [S] of the present invention, when the component [Α] contains the rubber-reinforced resin and the polycarbonate resin, the content ratio is 100% by mass. 1 to 80% by mass and 99 to 20% by mass, respectively, more preferably;! To 75% by mass and 99 to 25% by mass, more preferably 5 to 75% by mass and 95 to 25% by mass, respectively. %, Particularly preferably 35 to 75% by weight and 65 to 25% by weight. If this content ratio is within the above range, it is possible to obtain a molded product having excellent molding processability, heat dissipation and impact resistance by the force S.
[0069] また、本発明の放熱性樹脂組成物 [Τ]において、上記成分〔Α〕 、上記ゴム強化 樹脂及び上記ポリカーボネート樹脂を含有する場合の含有割合は、これらの合計を 100質量%とした場合、それぞれ、好ましくは 1〜80質量%及び 99〜20質量%であ り、より好ましくは 1〜75質量%及び 99〜25質量%、更に好ましくは 1〜65質量% 及び 99〜35質量%である。この含有割合が上記範囲にあれば、成形加工性、放熱
性、熱伝導性、耐衝撃性及び電磁波シールド性に優れる。 [0069] In the heat-dissipating resin composition [Τ] of the present invention, when the component [Α], the rubber-reinforced resin and the polycarbonate resin are contained, the content ratio thereof is 100% by mass. In this case, it is preferably 1 to 80% by mass and 99 to 20% by mass, more preferably 1 to 75% by mass and 99 to 25% by mass, still more preferably 1 to 65% by mass and 99 to 35% by mass, respectively. It is. If this content ratio is in the above range, moldability, heat dissipation Excellent in heat resistance, thermal conductivity, impact resistance, and electromagnetic shielding properties.
[0070] 上記ォレフィン系樹脂は、炭素数が 2以上の α—ォレフインからなる単量体単位を 含む重合体であれば、特に限定されない。好ましいォレフィン系樹脂は、炭素数 2〜 10の α—ォレフインからなる単量体単位を含む重合体である。従って、炭素数 2〜1 0の α—ォレフインからなる単量体単位の 1種以上を主として含む(共)重合体;炭素 数 2〜10の α—ォレフインからなる単量体単位の 1種以上と、この α—ォレフインと共 重合可能な化合物からなる単量体単位の 1種以上とを主として含む共重合体等が挙 げられる。これらは、 1種単独であるいは 2種以上を組み合わせて用いることができる [0070] The olefin-based resin is not particularly limited as long as it is a polymer including a monomer unit composed of α-olefin having 2 or more carbon atoms. A preferred olefin-based resin is a polymer containing a monomer unit composed of α-olefin having 2 to 10 carbon atoms. Therefore, (co) polymer mainly containing one or more monomer units composed of α-olefin having 2 to 10 carbon atoms; one or more monomer units composed of α-olefin having 2 to 10 carbon atoms And a copolymer mainly containing at least one monomer unit composed of a compound copolymerizable with α-olefin. These can be used alone or in combination of two or more.
[0071] 上記 α—ォレフインとしては、エチレン、プロピレン、ブテン一 1、ペンテン 1、へキ センー1、 3—メチルブテン 1、 4ーメチルペンテン 1、 3—メチルへキセン 1等が 挙げられる。これらは、 1種単独であるいは 2種以上を組み合わせて用いることができ る。また、これらのうち、エチレン、プロピレン、ブテン一 1、 3—メチルブテン 1及び 4 —メチルペンテン一 1が好ましい。 [0071] Examples of the α-olefin include ethylene, propylene, butene-1, pentene 1, hexene-1, 3-methylbutene 1, 4-methylpentene 1, 3-methylhexene 1, and the like. These can be used alone or in combination of two or more. Of these, ethylene, propylene, butene-1, 1, 3-methylbutene 1 and 4-methylpentene 1-1 are preferable.
[0072] また、上記ォレフィン系樹脂を構成する他の単量体単位の形成に用いられる化合 物としては、 4ーメチノレー 1 , 4一へキサジェン、 5—メチノレー 1 , 4一へキサジェン、 7 —メチル一 1 , 6 ォクタジェン、 1 , 9 デカジエン等の非共役ジェンが挙げられる。 これらは、 1種単独であるいは 2種以上を組み合わせて用いることができる。 [0072] In addition, compounds used for forming other monomer units constituting the olefin-based resin include 4-methinoleyl 1,4 monohexagen, 5-methinoleyl 1,4 monohexagen, 7-methyl. Non-conjugated gens such as 1, 6 octagens and 1, 9 decadienes. These can be used alone or in combination of two or more.
[0073] 上記ォレフィン系樹脂としては、ポリエチレン、ポリプロピレン、エチレン 'プロピレン 共重合体、ポリブテン 1、エチレン'ブテン 1共重合体等が挙げられる。これらのう ち、ポリエチレン、ポリプロピレン、プロピレン 'エチレン共重合体が好ましぐプロピレ ン単位を全単量体単位に対して、 50質量%以上含む重合体、即ち、ポリプロピレン、 エチレン 'プロピレン共重合体がより好ましい。 尚、上記エチレン 'プロピレン共重合 体としては、ランダム共重合体、ブロック共重合体等があるが、ランダム共重合体が特 に好ましい。 [0073] Examples of the olefin-based resin include polyethylene, polypropylene, ethylene'propylene copolymer, polybutene 1, ethylene'butene 1 copolymer, and the like. Of these, a polymer containing 50% by mass or more of propylene units preferred by polyethylene, polypropylene and propylene / ethylene copolymers with respect to all monomer units, that is, polypropylene, ethylene and propylene copolymers. Is more preferable. The ethylene / propylene copolymer includes a random copolymer and a block copolymer, and the random copolymer is particularly preferable.
[0074] 上記ォレフィン系樹脂は、結晶性であってよ!/、し、非晶性であってもよ!/、。好ましく は、室温下、 X線回折により、 20%以上の結晶化度を有するものである。 [0074] The olefin-based resin may be crystalline! /, And may be amorphous! /. Preferably, it has a crystallinity of 20% or more by X-ray diffraction at room temperature.
上記ォレフィン系樹脂の融点 (JIS K7121に準拠)は、好ましくは 40°C以上である
〇 The melting point (based on JIS K7121) of the olefin resin is preferably 40 ° C or higher. Yes
また、上記ォレフィン系樹脂の分子量は特に限定されないが、成形性の観点から、 メルトフローレート (JIS K7210に準拠。以下、「MFR」ともいう。)は、好ましくは 0. 0 ;!〜 500g/10分、より好まし <は 0. 05〜; lOOg/10分であり、各値に相当する分子 量を有するものが好ましい。 The molecular weight of the olefin-based resin is not particularly limited, but from the viewpoint of moldability, the melt flow rate (based on JIS K7210; hereinafter also referred to as “MFR”) is preferably 0.0;! To 500 g / 10 minutes, more preferred <0.05-; lOOg / 10 minutes, preferably those having a molecular weight corresponding to each value.
[0075] 上記ォレフィン系樹脂としては、アイオノマー、エチレン '酢酸ビュル共重合体、ェ チレン 'ビュルアルコール共重合体、環状ォレフィン共重合体、塩素化ポリエチレン 等を用いることもできる。 [0075] As the above-mentioned olefin-based resin, ionomers, ethylene 'butyl acetate copolymer, ethylene' butyl alcohol copolymer, cyclic olefin copolymer, chlorinated polyethylene, and the like can also be used.
[0076] 上記ポリエステル系樹脂は、分子の主鎖中にエステル結合を有する樹脂であれば 、特に限定されず、飽和ポリエステル樹脂であってよいし、不飽和ポリエステル樹脂 であってもよい。これらのうち、飽和ポリエステル樹脂が好ましい。また、単独重合ポリ エステルであってよいし、共重合ポリエステルであってもよい。更に、結晶性樹脂であ つてよいし、非晶性樹脂であってもよい。 [0076] The polyester resin is not particularly limited as long as it has an ester bond in the main chain of the molecule, and may be a saturated polyester resin or an unsaturated polyester resin. Of these, saturated polyester resins are preferred. Further, it may be a homopolymerized polyester or a copolyester. Further, it may be a crystalline resin or an amorphous resin.
[0077] 上記ポリエステル系樹脂は、例えば、ジカルボン酸成分とジヒドロキシ成分との重縮 合、ォキシカルボン酸成分又はラタトン成分の重縮合等により得られたものを用いる こと力 Sでさる。 [0077] The polyester resin is obtained by using, for example, a resin obtained by polycondensation of a dicarboxylic acid component and a dihydroxy component, polycondensation of an oxycarboxylic acid component or a rataton component, or the like.
上記ジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、ナフタレン ジカルボン酸(2, 6—ナフタレンジカルボン酸等)、ジフエニルジカルボン酸、ジフエ ニルエーテルジカルボン酸、ジフエニルメタンジカルボン酸、ジフエニルェタンジカル ボン酸、ジフエ二ルケトンジカルボン酸等の炭素数 8〜; 16程度の芳香族ジカルボン 酸又はその誘導体等、シクロへキサンジカルボン酸、へキサヒドロフタル酸、へキサヒ ドロイソフタル酸、へキサヒドロテレフタル酸、ハイミック酸等の炭素数 8〜; 12程度の脂 環式ジカルボン酸又はその誘導体等、アジピン酸、ピメリン酸、スベリン酸、ァゼライ ン酸、セバシン酸、ドデカンジカルボン酸、へキサデカンジカルボン酸、ダイマー酸等 の炭素数 2〜40程度の脂肪族ジカルボン酸又はその誘導体等が挙げられる。 Examples of the dicarboxylic acid component include terephthalic acid, isophthalic acid, phthalic acid, naphthalene dicarboxylic acid (2,6-naphthalenedicarboxylic acid, etc.), diphenyl dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylmethane dicarboxylic acid, diphenyl ether. Aromatic dicarboxylic acids having 8 to 16 carbon atoms, such as tandicarboxylic acid, diphenyl ketone dicarboxylic acid, etc., or their derivatives, cyclohexanedicarboxylic acid, hexahydrophthalic acid, hexahydroisophthalic acid, hexa Hydroterephthalic acid, hymic acid, etc. having 8 to 12 carbon atoms; alicyclic dicarboxylic acid having about 12 or its derivatives, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, hexadecanedicarboxylic acid Aliphatic dicarboxylic acids with 2 to 40 carbon atoms such as acids and dimer acids Its derivatives, and the like.
[0078] 尚、上記誘導体には、エステル形成可能な誘導体、例えば、ジメチルエステル等の 低級アルキルエステル、酸無水物、酸クロライド等の酸ノヽライド等が含まれる。 [0078] The derivatives include derivatives capable of forming an ester, for example, lower alkyl esters such as dimethyl ester, acid anhydrides such as acid anhydride and acid chloride, and the like.
これらジカルボン酸成分は、 1種単独であるいは 2種以上を組み合わせて用いるこ
と力 Sできる。 These dicarboxylic acid components can be used alone or in combination of two or more. And force S.
[0079] また、上記ジヒドロキシ成分としては、エチレングリコール、トリメチレングリコール、プ ロピレングリコーノレ、 1 , 3—ブタンジォーノレ、 1 , 4 ブタンジォーノレ、ネオペンチノレグ リコール、へキサンジオール、オクタンジオール、デカンジオール等の直鎖状又は分 岐鎖状の炭素数 2〜 12程度のアルキレンジオール等の脂肪族アルキレンジオール、 シクロへキサンジォーノレ、シクロへキサンジメタノーノレ、水素化ビスフエノーノレ A等の 脂環族ジオール、ハイドロキノン、レゾルシン、ジヒドロキシフエニル、ナフタレンジォ ール、ジヒドロキシジフエニルエーテル、ビスフエノール A、ビスフエノーノレ Aに対して エチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドが付加した付加 体(ジエトキシ化ビスフエノール A等)等の芳香族ジオール、ジエチレングリコール、ト リエチレングリコール、ポリオキシエチレングリコール、ジテトラメチレングリコール、ポリ テトラメチレンエーテノレグリコーノレ、ジプロピレングリコーノレ、トリプロピレングリコーノレ、 ポリオキシプロピレングリコール、ポリテトラメチレンエーテルグリコール等のポリオキシ アルキレングリコール等が挙げられる。 [0079] The dihydroxy component includes linear chains such as ethylene glycol, trimethylene glycol, propylene glycol, 1,3-butanediol, 1,4 butanediol, neopentinoglycol, hexanediol, octanediol, and decanediol. Or branched chain aliphatic alkylene diols such as alkylene diols having about 2 to 12 carbon atoms, cyclohexanediols, cyclohexane dimethanols, alicyclic diols such as hydrogenated bisphenol A, hydroquinone, resorcin, dihydroxy Adducts obtained by adding alkylene oxides such as ethylene oxide and propylene oxide to phenyl, naphthalenediol, dihydroxydiphenyl ether, bisphenol A, and bisphenol A (diethoxylated vinyl) Aromatic diols such as phenol A), diethylene glycol, triethylene glycol, polyoxyethylene glycol, ditetramethylene glycol, polytetramethylene etherol glycolol, dipropylene glycolol, tripropylene glycolol, polyoxypropylene glycol, poly And polyoxyalkylene glycols such as tetramethylene ether glycol.
[0080] 尚、上記ジヒドロキシ成分は、例えば、アルキル基、アルコキシ基、ハロゲン等の置 換体であってもよい。 [0080] The dihydroxy component may be, for example, a substitute such as an alkyl group, an alkoxy group, or a halogen.
これらジヒドロキシ成分は、 1種単独であるいは 2種以上を組み合わせて用いること ができる。 These dihydroxy components can be used alone or in combination of two or more.
[0081] 上記ォキシカルボン酸成分としては、ォキシ安息香酸、ォキシナフトェ酸、ジフエ二 レンォキシカルボン酸等のォキシカルボン酸及びその誘導体等が挙げられる。 [0081] Examples of the oxycarboxylic acid component include oxycarboxylic acids such as oxybenzoic acid, oxynaphthoic acid, and diphenyleneoxycarboxylic acid, and derivatives thereof.
これらォキシカルボン酸成分は、 1種単独であるいは 2種以上を組み合わせて用い ること力 Sでさる。 These oxycarboxylic acid components can be used alone or in combination of two or more.
[0082] 上記ラタトン成分としては、プロピオラタトン、ブチロラタトン、バレロラタトン、 ε—力 プロラタトン等が挙げられる。 [0082] Examples of the rataton component include propiolataton, butyrolataton, valerolataton, ε-force prolataton, and the like.
これらラタトン酸成分は、 1種単独であるいは 2種以上を組み合わせて用いることが できる。 These latatoic acid components can be used alone or in combination of two or more.
[0083] また、上記ポリエステル系樹脂が共重合ポリエステルである場合、その形成に用い られる共重合可能な単量体としては、エチレングリコール、プロピレングリコール、 1 ,
4 ブタンジオール等の直鎖状アルキレングリコール等のアルキレングリコール、ジェ チレングリコール等のポリ(ォキシーアルキレン)単位を含み、繰り返し数が 2〜4程度 のォキシアルキレン単位を有するポリオキシアルキレングリコール、アジピン酸、ピメリ ン酸、スベリン酸、ァゼライン酸、セバシン酸等の脂肪族ジカルボン酸、フタル酸、ィ ソフタル酸等の非対称構造の芳香族ジカルボン酸等が挙げられる。 [0083] When the polyester resin is a copolymerized polyester, the copolymerizable monomer used for the formation thereof may be ethylene glycol, propylene glycol, 1, 4 Polyoxyalkylene glycol and adipine having an alkylene glycol unit such as butanediol and other poly (oxyalkylene) units such as linear glycols such as linear alkylene glycols, and ethylene glycol, and having about 2 to 4 repeats Examples thereof include aliphatic dicarboxylic acids such as acid, pimelic acid, suberic acid, azelaic acid and sebacic acid, and aromatic dicarboxylic acids having an asymmetric structure such as phthalic acid and isophthalic acid.
更に、上記化合物以外に、必要に応じて、トリメリット酸、トリメシン酸、ピロメリット酸 等の多価カルボン酸、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の多 価アルコール等の多官能性単量体を併用してもよい。 Furthermore, in addition to the above compounds, polyfunctional monomers such as polyvalent carboxylic acids such as trimellitic acid, trimesic acid and pyromellitic acid, and polyhydric alcohols such as glycerin, trimethylolpropane and pentaerythritol, as necessary. May be used in combination.
[0084] 上記ポリエステル系樹脂としては、ポリエチレンテレフタレート(PET)、ポリプロピレ ンテレフタレート(PPT)、ポリブチレンテレフタレート(PBT)、ポリへキサメチレンテレ フタレート、ポリシクロへキサン一 1 , 4 ジメチルテレフタレート、ポリネオペンチルテ レフタレート等のポリアルキレンテレフタレート、ポリエチレンイソフタレート、ポリエチレ ンナフタレート、ポリブチレンナフタレート、ポリへキサメチレンナフタレート等のポリア ルキレンナフタレート等の単独重合ポリエステル、アルキレンテレフタレート単位及び /又はアルキレンナフタレート単位を主として含有する共重合ポリエステル、液晶ポリ エステル等が挙げられる。これらのうち、ポリブチレンテレフタレートが好ましい。また、 これらは、 1種単独であるいは 2種以上を組み合わせて用いることができる。 [0084] Examples of the polyester resin include polyethylene terephthalate (PET), polypropylene terephthalate (PPT), polybutylene terephthalate (PBT), polyhexamethylene terephthalate, polycyclohexane-1,4-dimethyl terephthalate, polyneopentyl. Polyalkylene terephthalate such as terephthalate, polyethylene isophthalate, polyethylene naphthalate, polybutylene naphthalate, polyalkylene naphthalate such as polyalkylene naphthalate, homopolymer polyester, alkylene terephthalate unit and / or alkylene naphthalate unit Mainly included are copolyesters and liquid crystal polyesters. Of these, polybutylene terephthalate is preferred. These can be used alone or in combination of two or more.
[0085] 上記ポリアミド系樹脂は、主鎖に酸アミド結合(一 CO— NH )を有する樹脂であれ ば、特に限定されない。上記ポリアミド系樹脂は、通常、環構造のラタタム又はアミノ 酸の重合、あるいは、ジカルボン酸及びジァミンの縮重合により製造される。従って、 このポリアミド系樹脂としては、ホモポリアミド、コポリアミド等を用いること力 Sできる。単 独で重合可能な単量体としては、 ε—力プロラタタム、アミノカプロン酸、ェナントラタ タム、 7 ァミノヘプタン酸、 11 アミノウンデカン酸、 9 アミノノナン酸、ピぺリドン等 が挙げられる。 [0085] The polyamide-based resin is not particularly limited as long as it is a resin having an acid amide bond (one CO-NH) in the main chain. The polyamide resin is usually produced by polymerization of ratata or amino acid having a ring structure, or condensation polymerization of dicarboxylic acid and diamine. Therefore, it is possible to use homopolyamide, copolyamide or the like as the polyamide resin. Monomers that can be polymerized alone include ε-force prolatatam, aminocaproic acid, enantholatatam, 7-aminoheptanoic acid, 11-aminoundecanoic acid, 9-aminononanoic acid, piperidone, and the like.
また、ジカルボン酸及びジァミンを縮重合させる場合のジカルボン酸としては、アジ ピン酸、セバシン酸、ドデカンジカルボン酸、グルタル酸、テレフタル酸、 2—メチルテ レフタル酸、イソフタル酸、ナフタレンジカルボン酸等が挙げられる。ジァミンとしては 、テトラメチレンジァミン、へキサメチレンジァミン、ノナメチレンジァミン、デカメチレン
ジァミン、ゥンデカメチレンジァミン、ドデカメチレンジァミン、パラフエ二レンジァミン、 メタフエ二レンジァミン等が挙げられる。 Examples of the dicarboxylic acid used for polycondensation of dicarboxylic acid and diamine include adipic acid, sebacic acid, dodecanedicarboxylic acid, glutaric acid, terephthalic acid, 2-methylterephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid. . Diamine includes tetramethylene diamine, hexamethylene diamine, nonamethylene diamine, decamethylene. Diamine, undecamethylenediamine, dodecamethylenediamine, paraphenylenediamine, metaphenylenediamine and the like.
[0086] 上記ポリアミド系樹月旨としては、ナイロン 4、 6、 7、 8、 11、 12、 6. 6、 6. 9、 6. 10、 6 . 11、 6. 12、 6T、 6/6. 6、 6/12、 6/6Τ、 6Τ/6Ι等カ挙げ、られる。 [0086] As the above-mentioned polyamide type lunar month, nylon 4, 6, 7, 8, 11, 12, 6. 6, 6. 9, 6. 10, 6.11, 6. 12, 6T, 6/6 6、6 / 12、6 / 6Τ 、 6Τ / 6Ι etc.
尚、ポリアミド系樹脂の末端は、カルボン酸、ァミン等で封止されていてもよい。カル ボン酸としては、カプロン酸、力プリル酸、力プリン酸、ラウリン酸、ミリスチン酸、パルミ チン酸、ステアリン酸、ベへニン酸等の脂肪族モノカルボン酸が挙げられる。また、ァ ミンとしては、へキシルァミン、ォクチルァミン、デシルァミン、ラウリルァミン、ミリスチ ルァミン、ノ ルミチルァミン、ステアリルァミン、ベへニルァミン等の脂肪族第 1級ァミン 等が挙げられる。 The terminal of the polyamide resin may be sealed with carboxylic acid, amine or the like. Examples of the carboxylic acid include aliphatic monocarboxylic acids such as caproic acid, strong prillic acid, strong purine acid, lauric acid, myristic acid, palmitic acid, stearic acid, and behenic acid. Examples of amines include aliphatic primary amines such as hexylamine, octylamine, decylamine, laurylamine, myristylamine, normitylamine, stearylamine, and behenylamine.
上記ポリアミド系樹脂は、 1種単独であるいは 2種以上を組み合わせて用いることが できる。 The above polyamide resins can be used singly or in combination of two or more.
[0087] 次に、上記成分〔Β〕は、外径 15〜100nmの炭素繊維部と、多数本の炭素繊維部 を接合する接合部とを備え、 3次元ネットワーク構造を有するものである。この成分〔B 〕は、 SEM又は TEMを用いて観察することにより、以下に示す特定の構造を確認す ること力 Sでさる。 [0087] Next, the component [Β] has a three-dimensional network structure including a carbon fiber part having an outer diameter of 15 to 100 nm and a joint part for joining a large number of carbon fiber parts. This component [B] can be observed with a force S to confirm the specific structure shown below by observing with SEM or TEM.
[0088] 上記成分〔B〕は、上記接合部を基に微細な炭素繊維部が複数延出した、嵩高く且 つ安定な構造体である。従って、上記成分〔B〕を、上記成分〔A〕とともに用いて、本 発明の放熱性樹脂組成物 [S]又は [T]を製造すると、この成分〔B〕の炭素繊維部が 切断等されることなぐ 3次元ネットワーク構造を維持したまま、マトリックス中に分散さ れる。また、上記成分〔A〕に対する上記成分〔B〕の含有割合が少量であっても、マト リックス中に、均一な広がりをもって配置することができる。 [0088] The component [B] is a bulky and stable structure in which a plurality of fine carbon fiber portions are extended based on the joint portion. Therefore, when the heat radiating resin composition [S] or [T] of the present invention is produced using the component [B] together with the component [A], the carbon fiber portion of the component [B] is cut or the like. It is distributed in the matrix while maintaining the 3D network structure. Further, even if the content ratio of the component [B] relative to the component [A] is small, the component [B] can be arranged with a uniform spread in the matrix.
本発明の放熱性樹脂組成物 [S]において、上記成分〔B〕が隣り合って存在すると 、全体に良好な熱伝導パスが形成されるので、熱伝導性が向上し、結果として放熱 性も向上する。本発明の組成物が、後述する黒鉛粒子〔C〕を含有する放熱性樹脂 組成物 [T]である場合には、この黒鉛粒子〔C〕が、上記成分〔B〕の空隙に配置する こととなり、全体に良好な熱伝導パスが形成されるので、熱伝導性が向上し、結果とし て放熱性も向上する。また、機械的特性及び電気的特性に関しても、成分〔B〕を均
一に配することができるため、特性向上が図れるものとなる。 In the heat-dissipating resin composition [S] of the present invention, when the component [B] is present adjacent to each other, a good heat conduction path is formed on the whole, so that the heat conductivity is improved, and as a result, heat dissipation is also achieved. improves. When the composition of the present invention is a heat-dissipating resin composition [T] containing graphite particles [C] described later, the graphite particles [C] are disposed in the voids of the component [B]. Thus, a good heat conduction path is formed on the whole, so that the heat conductivity is improved, and as a result, the heat dissipation is also improved. In addition, regarding the mechanical and electrical properties, the component [B] is balanced. Therefore, the characteristics can be improved.
[0089] 上記成分〔B〕を構成する炭素繊維部の断面形状は、好ましくは多角形である。また 、長さ(上記接合部からの長さ)は、特に限定されず、通常、 2〜50 111である。更に 、外径は 15〜; !OOnmであり、好ましくは 20〜70nmである。この外径が上記範囲に あれば、成形加工性及び耐衝撃性に優れる。尚、上記外径が 15nm未満であると、 炭素繊維部の断面が多角形状とならない。一方、炭素繊維部の物性上、直径が小さ いほど単位量あたりの本数が増えるとともに、炭素繊維部の軸方向への長さも長くな り、高い導電性が得られるため、 lOOnmを超える外径を有することは、樹脂等のマト リックスへ改質剤、添加剤として配される炭素繊維構造体として適当でない。尚、上 記外径の範囲で筒状のグラフエンシートが軸直角方向に積層したもの、即ち多層で あるものは曲がりにくぐ弾性、即ち変形後も元の形状に戻ろうとする性質が付与され るため、炭素繊維構造体が一旦圧縮された後においても、樹脂等のマトリックスに配 された後において、疎な構造を採りやすくなる。上記成分〔B〕を、例えば、 2, 400°C 以上の温度でァニール処理すると、積層したグラフエンシートの面間隔が狭まり、真 密度が 1. 89g/cm3から 2. lg/cm3に増加するとともに、炭素繊維部の軸直交断 面が多角形状となることから、この構造の炭素繊維部は、積層方向、及び、炭素繊維 部を構成する筒状のグラフエンシートの方向の両方において、緻密で欠陥の少ない ものとなるため、曲げ剛性が向上する。 [0089] The cross-sectional shape of the carbon fiber portion constituting the component [B] is preferably a polygon. In addition, the length (the length from the joint portion) is not particularly limited, and is usually 2 to 50 111. Furthermore, the outer diameter is 15 to! OOnm, preferably 20 to 70nm. If this outer diameter is in the above range, the moldability and impact resistance are excellent. If the outer diameter is less than 15 nm, the carbon fiber section does not have a polygonal cross section. On the other hand, due to the physical properties of the carbon fiber part, the smaller the diameter, the greater the number per unit amount and the longer the length of the carbon fiber part in the axial direction, resulting in higher conductivity. It is not suitable as a carbon fiber structure to be provided as a modifier or additive to a matrix such as a resin. In the above outer diameter range, cylindrical graph sheets that are laminated in the direction perpendicular to the axis, that is, those that are multi-layered, are given elasticity that is difficult to bend, that is, the property of returning to the original shape even after deformation. Therefore, even after the carbon fiber structure is once compressed, it becomes easy to adopt a sparse structure after being arranged in a matrix such as a resin. For example, when the above component [B] is annealed at a temperature of 2,400 ° C. or more, the surface spacing of the laminated graph sheets is reduced, and the true density is increased from 1.89 g / cm 3 to 2. lg / cm 3 . In addition to the increase, the carbon fiber part has a polygonal shape in the cross-section perpendicular to the axis of the carbon fiber part. Because it is dense and has few defects, bending rigidity is improved.
[0090] 上記炭素繊維部は、その外径が軸方向に沿って変化するものであることが望ましい 。このように、炭素繊維部の外径が軸方向に沿って一定でなぐ変化するものであると 、マトリックス中において、炭素繊維部に一種のアンカー効果が生じるものと思われ、 マトリックス中における移動が生じに《分散安定性が高まるものとなる。 [0090] The carbon fiber part desirably has an outer diameter that changes along the axial direction. In this way, if the outer diameter of the carbon fiber portion changes in a constant manner along the axial direction, it is considered that a kind of anchor effect occurs in the carbon fiber portion in the matrix, and the movement in the matrix is As a result, << dispersion stability increases.
[0091] また、複数の炭素繊維部どうしを接合する、上記接合部は、好ましくは、上記炭素 繊維部の外径より長レヽ径 (接合部から張り出した炭素繊維部を除レ、た物体としたとき の径)を有する部分である。上記構成であれば、上記成分〔A〕とともに本発明の放熱 性樹脂組成物 [S]及び [T]を製造した場合に、ある程度の剪断力が加わっても、 3次 元ネットワークを保持したままマトリックス中に分散させることができる。 [0091] In addition, the joining portion that joins a plurality of carbon fiber portions is preferably longer than the outer diameter of the carbon fiber portion (excluding the carbon fiber portion protruding from the joining portion) This is the part that has the diameter when With the above configuration, when the heat-dissipating resin compositions [S] and [T] of the present invention are produced together with the component [A], the three-dimensional network is maintained even if a certain amount of shearing force is applied. It can be dispersed in a matrix.
[0092] 上記成分〔B〕の円相当平均径(面積基準)は、好ましくは 50〜; 100 である。ここ
で、面積基準の円相当平均径とは、炭素繊維構造体を SEM等により撮影し、この撮 影画像において、各炭素繊維構造体の輪郭を、画像解析ソフトウェアを用いてなぞり 、輪郭内の面積を求め、各繊維構造体の円相当径を計算し、これを平均化したもの である。 [0092] The equivalent-circle average diameter (area basis) of the component [B] is preferably 50 to 100. here The area-equivalent circle-equivalent mean diameter means that the carbon fiber structure is photographed by SEM or the like, and the contour of each carbon fiber structure is traced by using image analysis software in this photographed image. The equivalent circle diameter of each fiber structure is calculated and averaged.
[0093] 上記成分〔B〕は、以下の方法により製造することができる。 [0093] The component [B] can be produced by the following method.
先ず、触媒の存在下、トルエン、キシレン等の炭化水素等、エタノール等のアルコ ール等の有機化合物原料を CVD法で化学熱分解して繊維構造体 (以下、「中間体」 という)を製造し、その後、更に高温熱処理することにより、上記成分〔B〕を製造するこ と力 Sできる。 First, in the presence of a catalyst, organic compound materials such as hydrocarbons such as toluene and xylene, alcohols such as ethanol, etc. are chemically pyrolyzed by CVD to produce a fiber structure (hereinafter referred to as “intermediate”). Thereafter, the above-mentioned component [B] can be produced by further high-temperature heat treatment.
[0094] 上記中間体の製造に用いる触媒としては、鉄、コバルト、モリブデン等の遷移金属; フエ口セン、酢酸の金属塩等の遷移金属化合物と、硫黄、又は、チォフェン、硫化鉄 等の硫黄化合物とからなる混合物が挙げられる。 [0094] Examples of the catalyst used for the production of the intermediate include transition metals such as iron, cobalt, and molybdenum; transition metal compounds such as metal salt of pheucene and acetic acid, and sulfur, or sulfur such as thiophene and iron sulfide. The mixture which consists of a compound is mentioned.
また、上記有機化合物原料としては、分解温度の異なる少なくとも 2種以上の有機 化合物を用いることが好ましレ、。 In addition, it is preferable to use at least two kinds of organic compounds having different decomposition temperatures as the organic compound raw material.
CVD法を行う場合の雰囲気ガスとしては、アルゴン、ヘリウム、キセノン等の不活性 ガス、水素ガス等が挙げられる。 Examples of the atmospheric gas when performing the CVD method include inert gases such as argon, helium, and xenon, and hydrogen gas.
[0095] 上記中間体は、公知の CVD装置を用い、有機化合物原料及び触媒の混合物を蒸 発させ、水素ガス等をキャリアガスとして反応炉内に導入し、 800-1 , 300°Cの温度 で熱分解することにより得られる。即ち、この熱分解により、外径が 15〜100nmの繊 維状体が、触媒を核として成長した粒状体に結合した、疎な 3次元構造を有する炭 素繊維構造体(中間体)が複数含まれる、数 cmから数十センチの大きさの集合体が 合成される。この集合体は、その他、未反応原料、非繊維状炭化物、タール分及び 触媒を含んでいる。 [0095] For the intermediate, a known CVD apparatus is used to evaporate a mixture of the organic compound raw material and the catalyst, and hydrogen gas or the like is introduced into the reaction furnace as a carrier gas, and the temperature is 800-1 300 ° C. It can be obtained by pyrolyzing. That is, by this pyrolysis, a plurality of carbon fiber structures (intermediates) having a sparse three-dimensional structure in which fibers having an outer diameter of 15 to 100 nm are bonded to granules grown using a catalyst as a nucleus. Contained aggregates of several centimeters to tens of centimeters are synthesized. This aggregate also contains unreacted raw materials, non-fibrous carbides, tar content and catalyst.
[0096] その後、上記集合体から、これら残留物を除去し、欠陥が少ない所期の炭素繊維 構造体を得るために、更に高温で熱処理される。 [0096] Thereafter, in order to remove these residues from the aggregate and obtain the desired carbon fiber structure with few defects, heat treatment is performed at a higher temperature.
例えば、上記集合体を、 800〜; 1 , 200°Cの温度で加熱して、未反応原料、タール 分等の揮発成分を除去し、 2, 400-3, 000°Cの温度でァニール処理することによ つて、繊維状体に含まれる触媒を蒸発及び除去するとともに、所期の炭素繊維構造
体が製造される。即ち、このァニール処理により、炭素原子からなるパッチ状のシート 片が、それぞれ結合して複数のグラフエンシート状の層を形成し、上記成分〔B〕の炭 素繊維部を構成する。また、このような高温熱処理前もしくは処理後において、炭素 繊維構造体の円相当平均径を数 cmに解砕処理する工程と、解砕処理された炭素 繊維構造体の円相当平均径を 50〜; 100 mに粉砕処理する工程とを備えることで、 所望の円相当平均径を有する炭素繊維構造体を得ることができる。尚、解砕処理の 代わりに、粉砕処理を行ってもよい。更に、上記炭素繊維構造体を複数有する集合 体を、使いやすい形、大きさ、嵩密度に造粒する処理を行ってもよい。反応時に形成 された上記構造を有効に活用するために、嵩密度が低い状態 (極力繊維が伸びきつ た状態で且つ空隙率が大きい状態)で、ァニール処理すると更に樹脂への導電性付 与に効果的である。 For example, the above aggregate is heated at a temperature of 800 to 1,200 ° C to remove volatile components such as unreacted raw materials and tars, and annealed at a temperature of 2,400-3,000 ° C. As a result, the catalyst contained in the fibrous body is evaporated and removed, and the desired carbon fiber structure is obtained. The body is manufactured. That is, by this annealing treatment, the patch-like sheet pieces made of carbon atoms are bonded to each other to form a plurality of graph-en-sheet-like layers, and constitute the carbon fiber portion of the component [B]. In addition, before or after such high-temperature heat treatment, a step of crushing the equivalent circle average diameter of the carbon fiber structure to several centimeters and a circle equivalent average diameter of the crushed carbon fiber structure of 50 to A carbon fiber structure having a desired circle-equivalent mean diameter can be obtained. Note that a pulverization process may be performed instead of the pulverization process. Furthermore, a process of granulating an aggregate having a plurality of carbon fiber structures into an easy-to-use shape, size, and bulk density may be performed. In order to make effective use of the structure formed during the reaction, annealing treatment in a state where the bulk density is low (a state where the fibers are stretched as much as possible and the porosity is large) further imparts conductivity to the resin. It is effective.
以上から、上記の製造方法により得られた上記成分〔B〕は、微細な炭素繊維部どう しが単に接合部に結合しているものではなぐ接合部において相互に強固に結合し ている。 From the above, the component [B] obtained by the above production method is firmly bonded to each other at the joint portion where the fine carbon fiber portions are not merely bonded to the joint portion.
本発明の放熱性樹脂組成物 [S]及び [T]は、上記成分〔B〕以外の炭素繊維構造 体を含有してもよい。 The heat-radiating resin composition [S] and [T] of the present invention may contain a carbon fiber structure other than the component [B].
[0097] 本発明の放熱性樹脂組成物 [S]及び [T]において、上記成分〔B〕の含有量は、上 記成分〔A〕を 100質量部とした場合に、;!〜 80質量部であり、好ましくは 2〜70質量 部、より好ましくは 5〜65質量部である。上記成分〔B〕の含有量が少なすぎると、熱 伝導性及び電磁波シールド性が十分でない場合がある。一方、上記含有量が多す ぎると、生産性、成形加工性及び成形品の表面外観性が低下する場合がある。 また、本発明の放熱性樹脂組成物 [S]及び [T]が、上記成分〔B〕以外の炭素繊維 構造体を含有する場合、その含有量は、上記成分〔A〕を 100質量部とした場合に、 通常、 20質量部以下である。 [0097] In the heat-dissipating resin composition [S] and [T] of the present invention, the content of the component [B] is as follows: when the component [A] is 100 parts by mass; Part, preferably 2 to 70 parts by weight, more preferably 5 to 65 parts by weight. If the content of the component [B] is too small, the thermal conductivity and electromagnetic wave shielding properties may not be sufficient. On the other hand, if the content is too large, productivity, moldability, and surface appearance of the molded product may deteriorate. When the heat-dissipating resin composition [S] and [T] of the present invention contains a carbon fiber structure other than the above component [B], the content thereof is 100 parts by mass of the above component [A]. In general, it is 20 parts by mass or less.
[0098] 本発明の放熱性樹脂組成物 [S]として、好ましい組成物の一例は、上記成分〔A〕 がゴム強化樹脂及びポリカーボネート樹脂を含むものであって、上記ポリカーボネー ト樹脂 50〜95質量%及び上記成分〔B〕 50〜5質量% (但し、これらの合計は 100質 量%である。)からなる混合物又は混練物 (溶融混練物)と、上記ゴム強化樹脂とが溶
融混練されてなり、上記ポリカーボネート樹脂及び上記ゴム強化樹脂の合計を 100 質量部とした場合に、上記成分〔B〕の含有量が;!〜 80質量部、好ましくは 2〜70質 量部、より好ましくは 5〜65質量部である組成物である。この方法による場合、特に、 上記ポリカーボネート樹脂及び上記成分〔B〕からなる混練物 (溶融混練物)を用いる ことが好ましぐ製造方法の詳細は、後述される。 [0098] As an example of a preferable composition as the heat-radiating resin composition [S] of the present invention, the component [A] includes a rubber-reinforced resin and a polycarbonate resin, and the polycarbonate resin 50 to 95 is used. The mixture or kneaded material (melt kneaded material) composed of 50% by mass and the above component [B] 50 to 5% by mass (however, the total of these is 100% by mass) and the rubber-reinforced resin are dissolved. When the total of the polycarbonate resin and the rubber-reinforced resin is 100 parts by mass, the content of the component [B] is;! To 80 parts by mass, preferably 2 to 70 parts by mass, More preferably, the composition is 5 to 65 parts by mass. In the case of this method, details of the production method in which it is particularly preferable to use a kneaded product (melt kneaded product) composed of the polycarbonate resin and the component [B] will be described later.
[0099] 次に、本発明の放熱性樹脂組成物 [S]の製造方法について、説明する。 [0099] Next, a method for producing the heat dissipating resin composition [S] of the present invention will be described.
本発明の放熱性樹脂組成物 [S]の製造方法 (以下、「本発明の第 1製造方法」とい う。)は、上記熱可塑性樹脂〔A〕 100質量部に対して、上記炭素繊維構造体〔B〕の 含有量が 1〜80質量部である放熱性樹脂組成物を製造する方法であって、上記熱 可塑性樹脂〔A〕の一部と、上記炭素繊維構造体〔B〕の少なくとも一部とを溶融混練 する第 1混合工程 (以下、「第 1混合工程 (1)」という。)と、この第 1混合工程 (I)により 得られた混練物(以下、「混練物 (1)」という。)と、上記熱可塑性樹脂〔A〕の残部と、 ( 必要に応じて用いられる)上記炭素繊維構造体〔B〕の残部とを、溶融混練する第 2混 合工程 (以下、「第 2混合工程 (1)」という。)と、を備えることを特徴とする。 The method for producing the heat-dissipating resin composition [S] of the present invention (hereinafter referred to as “the first production method of the present invention”) is based on the carbon fiber structure based on 100 parts by mass of the thermoplastic resin [A]. It is a method for producing a heat-dissipating resin composition having a body [B] content of 1 to 80 parts by weight, comprising at least a part of the thermoplastic resin [A] and the carbon fiber structure [B]. A first mixing step (hereinafter referred to as “first mixing step (1)”) in which a part of the mixture is melt-kneaded, and a kneaded product (hereinafter referred to as “kneaded product (1)” obtained by the first mixing step (I). ) "), The remaining portion of the thermoplastic resin [A], and the remaining portion of the carbon fiber structure [B] (used as necessary) are mixed and kneaded (hereinafter referred to as" the second mixing step "). "Second mixing step (1)").
本発明の第 1製造方法において、添加剤を用いる場合は、第 1混合工程 (I)及び第 2混合工程 (I)の!/、ずれで用いてもよぐ両方で用いてもよ!/、。 In the first production method of the present invention, when an additive is used, it can be used in both the first mixing step (I) and the second mixing step (I)! ,.
[0100] 上記第 1混合工程 (I)において溶融混練する原料は、上記成分〔A〕の一部と、上 記成分〔B〕の少なくとも一部とを含む。 [0100] The raw material to be melt-kneaded in the first mixing step (I) includes a part of the component [A] and at least a part of the component [B].
上記成分〔B〕の使用量は、一部であってよいし、全量であってもよい。上記第 1混 合工程 (I)において用いる成分〔B〕の使用量は、放熱性樹脂組成物 [S]に含有させ る上記成分〔B〕の全量を 100質量%として、好ましくは 50〜; 100質量%、より好ましく は 70〜100質量%、更に好ましくは 90〜100質量%である。上記成分〔B〕の使用量 が多いほど、第 2混合工程後に得られる樹脂組成物 [S]の放熱性に優れる。 The amount of the component [B] used may be a part or the total amount. The amount of the component [B] used in the first mixing step (I) is preferably from 50 to 100% by weight based on the total amount of the component [B] to be contained in the heat-dissipating resin composition [S]. 100 mass%, More preferably, it is 70-100 mass%, More preferably, it is 90-100 mass%. The greater the amount of component [B] used, the better the heat dissipation of the resin composition [S] obtained after the second mixing step.
また、上記成分〔A〕の使用量については、放熱性樹脂組成物 [S]に含有させる上 記成分〔A〕として、 1種のみ用いる場合、及び、 2種以上を用いる場合、のいずれに おいても、上記成分〔A〕を全量用いるのではなぐその一部を使用する。その割合は 、放熱性樹脂組成物 [S]に含有させる上記成分〔B〕の使用量によって選択される。 上記第 1混合工程 (I)における溶融混練を効率よく進めるために、上記の成分〔A〕及
び〔B〕の使用割合は、上記第 1混合工程 (I)で用いられる成分〔A〕 100質量部に対 して、通常、上記成分〔B〕が 5〜; 100質量部の範囲に入るように選択される。 In addition, the amount of the component [A] used is any of the above-mentioned component [A] to be contained in the heat-dissipating resin composition [S], when only one type is used, or when two or more types are used. However, a part of the above component [A] is used instead of the total amount. The proportion is selected depending on the amount of the component [B] used in the heat-dissipating resin composition [S]. In order to efficiently advance the melt-kneading in the first mixing step (I), the above-mentioned components [A] and The amount of [B] used is usually in the range of 5 to 100 parts by mass of the above component [B] with respect to 100 parts by mass of the component [A] used in the first mixing step (I). Selected as
上記成分〔A〕が 1種のみの熱可塑性樹脂である場合、ゴム強化樹脂、ポリカーボネ ート樹脂、ォレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂等を用いることが できる。 When the component [A] is only one kind of thermoplastic resin, rubber reinforced resin, polycarbonate resin, olefin resin, polyester resin, polyamide resin and the like can be used.
また、上記成分〔A〕が 2種以上の熱可塑性樹脂を含む場合、本発明の第 1製造方 法に好適な組合せの例は、以下に示される。 In addition, when the component [A] contains two or more thermoplastic resins, examples of combinations suitable for the first production method of the present invention are shown below.
(1)ゴム強化樹脂及びポリカーボネート樹脂 (1) Rubber reinforced resin and polycarbonate resin
(2)ゴム強化樹脂及びポリエステル系樹脂 (2) Rubber reinforced resin and polyester resin
(3)ポリエステル系樹脂及びポリカーボネート樹脂 (3) Polyester resin and polycarbonate resin
上記第 1混合工程 (I)における混練方法は、原料を、押出機、バンバリ一ミキサー、 ニーダー、ロール、フィーダ一ルーダー等により混練する方法等とすることができる。 混練条件に関し、原料の投入方法は、特に限定されず、各成分を一括配合した後、 混練機に供給してよいし、多段配合等分割して混練機に供給してもよい。また、混練 温度は、上記成分〔A〕の種類、上記の成分〔A〕及び〔B〕の配合割合等により、適宜 、選択される。 The kneading method in the first mixing step (I) may be a method of kneading the raw materials with an extruder, a Banbury mixer, a kneader, a roll, a feeder ruder, or the like. With respect to the kneading conditions, the raw material charging method is not particularly limited, and the components may be mixed and then supplied to the kneader, or may be divided into multiple stages and supplied to the kneader. The kneading temperature is appropriately selected according to the type of the component [A], the blending ratio of the components [A] and [B], and the like.
[0101] 次に、上記第 2混合工程 (I)において溶融混練する原料は、上記第 1混合工程 (I) により得られた混練物 (I)と、上記成分〔A〕の残部と、上記成分〔B〕の残部とを含む。 尚、上記第 1混合工程 (I)において、放熱性樹脂組成物 [S]に含有させる全量の上 記成分〔B〕が用いられた場合には、上記原料は、上記混練物 (I)と、上記成分〔A〕 の残部とを含む。混練方法及び条件は、上記第 1混合工程 (I)と同様とすることがで きる。 [0101] Next, the raw materials to be melt kneaded in the second mixing step (I) are the kneaded product (I) obtained in the first mixing step (I), the remainder of the component [A], and the above And the remainder of component [B]. In the first mixing step (I), when the total amount of the component [B] to be contained in the heat-dissipating resin composition [S] is used, the raw material is mixed with the kneaded product (I). And the remainder of the component [A]. The kneading method and conditions can be the same as those in the first mixing step (I).
[0102] 上記のように、本発明の第 1製造方法において、第 1混合工程 (I)及び第 2混合ェ 程 (I)を備えることにより、上記成分〔B〕の分散性に優れた放熱性樹脂組成物 [S]を 製造すること力 Sでき、放熱性、耐衝撃性、成形加工性、電磁波シールド性、生産性及 びノヽンドリング性が更に優れた成形品を得ることができる。 [0102] As described above, the first production method of the present invention includes the first mixing step (I) and the second mixing step (I), thereby dissipating heat with excellent dispersibility of the component [B]. Can produce a molded product that is further superior in heat dissipation, impact resistance, molding processability, electromagnetic wave shielding properties, productivity, and nodling properties.
尚、本発明の第 1製造方法において、上記成分〔A〕として、 2種以上の熱可塑性樹 脂を用いる場合には、ある 1種の(同一の)樹脂は、上記の第 1混合工程 (I)及び第 2
混合工程 (I)の両方に分割して使用するのではなぐいずれか一方の混合工程に全 量を使用することが好ましい。但し、上記成分〔A〕に含まれる複数の樹脂の構成割 合に差がある場合、例えば、 2種の樹脂 (第 1樹脂及び第 2樹脂)を用い、これらの構 成割合が 1 : 9等の場合には、上記方法に限定されない。 In the first production method of the present invention, when two or more kinds of thermoplastic resins are used as the component [A], one kind (the same) resin is used in the first mixing step ( I) and 2nd It is preferable to use the entire amount in either one of the mixing steps, rather than dividing it into both of the mixing steps (I). However, when there is a difference in the composition ratio of the plurality of resins contained in the component [A], for example, two kinds of resins (first resin and second resin) are used, and the composition ratio thereof is 1: 9. In such a case, the method is not limited to the above method.
また、上記成分〔A〕として、ポリカーボネート樹脂等の、上記成分〔B〕に対して相溶 性の高い熱可塑性樹脂を用いる場合には、本発明の第 1製造方法の上記第 1混合 工程 (I)において、該熱可塑性樹脂を用いることが特に好ましい。 When a thermoplastic resin having high compatibility with the component [B], such as a polycarbonate resin, is used as the component [A], the first mixing step of the first production method of the present invention ( In I), it is particularly preferable to use the thermoplastic resin.
本発明の第 1製造方法において、好ましくは、上記第 1混合工程 (I)として、上記成 分〔B〕を全量使用し、上記成分〔A〕及び上記成分〔B〕の使用割合を、それぞれ、 50 〜95質量%及び 50〜5質量% (但し、これらの合計は 100質量%である。)として溶 融混練し、上記第 2混合工程 (I)として、上記第 1混合工程 (I)により得られた混練物 (I)と、上記成分〔A〕の残部と、を溶融混練する方法である。 In the first production method of the present invention, preferably, as the first mixing step (I), the whole amount of the component [B] is used, and the usage ratios of the component [A] and the component [B] are respectively set. 50 to 95% by mass and 50 to 5% by mass (however, the total of these is 100% by mass), and the second mixing step (I) is the first mixing step (I). This is a method of melt-kneading the kneaded product (I) obtained by the above and the remainder of the component [A].
この方法をより具体的に例示すると、上記第 1混合工程 (I)において、上記成分〔B〕 を全量使用し、上記成分〔八〕50〜95質量%(好ましくは60〜95質量%、より好まし くは 65〜90質量%)及び上記成分〔B〕5〜50質量% (好ましくは 5〜40質量%、より 好ましくは 10〜35質量%) (但し、これらの合計は 100質量%である。)を溶融混練し 、ペレット、マスターバッチ等の混練物(I)とした後、上記第 2混合工程 (I)において、 この混練物(1) 100質量部と、残部である上記成分〔A〕0. ;!〜 4, 950質量部(好まし くは 0. ;!〜 4, 000質量部、より好ましくは 0. ;!〜 3, 000質量部)とを溶融混練する方 法である。上記第 1混合工程 (I)において、上記成分〔B〕の含有量が 5質量%未満で は、放熱性樹脂組成物 [S]の熱伝導率及び電磁波シールド性が十分に得られな!/ヽ 場合がある。一方、上記含有量が 50質量%を超えると、混練物 (I)の製造が困難に なる場合がある。また、上記第 2混合工程 (I)においては、最終的に、上記成分〔A〕 の全量 100質量部に対して、上記成分〔B〕の含有量が;!〜 80質量部である組成物と なるように、上記成分〔A〕の使用量が選択される力 S、上記混練物(1) 100質量部に対 する上記成分〔A〕の使用量が少なすぎる場合、成形加工性及び耐衝撃性が十分で ない場合がある。一方、上記使用量が多すぎると、放熱性樹脂組成物 [S]の熱伝導 率及び電磁波シールド性が十分に得られない場合がある。
[0104] 本発明の放熱性樹脂組成物 [S]の他の製造方法 (以下、「本発明の第 2製造方法」 という。)は、上記のゴム強化樹脂及びポリカーボネート樹脂を所定割合で含む熱可 塑性樹脂〔A〕 100質量部に対して、上記炭素繊維構造体〔B〕の含有量が;!〜 80質 量部である放熱性樹脂組成物 [S 1]を製造する方法であって、上記ポリカーボネート 樹脂と、上記炭素繊維構造体〔B〕の少なくとも一部とを溶融混練する第 1混合工程( 以下、「第 1混合工程 (Π)」という。)と、この第 1混合工程 (II)により得られた混練物( 以下、「混練物 (Π)」という。)と、上記ゴム強化樹脂と、(必要に応じて用いられる)上 記炭素繊維構造体〔B〕の残部と、を溶融混練する第 2混合工程 (以下、「第 2混合ェ 程 (11)」という。)と、を備えることを特徴とする。 To illustrate this method more specifically, in the first mixing step (I), the total amount of the component [B] is used, and the component [8] is 50 to 95% by mass (preferably 60 to 95% by mass, more (Preferably 65 to 90% by mass) and the above component [B] 5 to 50% by mass (preferably 5 to 40% by mass, more preferably 10 to 35% by mass) (however, the total of these is 100% by mass) In the second mixing step (I), and 100 parts by mass of the kneaded product (1) and the remaining component [ A] 0.! To 4,950 parts by mass (preferably 0 .;! To 4,000 parts by mass, more preferably 0.;! To 3,000 parts by mass). is there. In the first mixing step (I), if the content of the component [B] is less than 5% by mass, the heat conductivity and electromagnetic wave shielding property of the heat-dissipating resin composition [S] cannot be sufficiently obtained! /が あ る There is a case. On the other hand, when the content exceeds 50% by mass, it may be difficult to produce the kneaded product (I). Further, in the second mixing step (I), finally, a composition in which the content of the component [B] is from! To 80 parts by mass with respect to 100 parts by mass of the total amount of the component [A]. Thus, if the amount of the component [A] used is selected as S, and the amount of the component [A] used relative to 100 parts by mass of the kneaded product (1) is too small, the molding processability and resistance Impact may not be sufficient. On the other hand, if the amount used is too large, the heat conductivity and electromagnetic wave shielding properties of the heat-dissipating resin composition [S] may not be sufficiently obtained. [0104] Another method for producing the heat-dissipating resin composition [S] of the present invention (hereinafter referred to as "the second production method of the present invention") is a heat containing the rubber-reinforced resin and the polycarbonate resin in a predetermined ratio. A method for producing a heat dissipating resin composition [S1] in which the content of the carbon fiber structure [B] is from! To 80 parts by mass with respect to 100 parts by mass of the plastic resin [A]. A first mixing step (hereinafter referred to as “first mixing step (Π)”) in which the polycarbonate resin and at least a part of the carbon fiber structure [B] are melt-kneaded, and the first mixing step ( The kneaded product obtained by II) (hereinafter referred to as “kneaded product (ii)”), the rubber-reinforced resin, and the balance of the carbon fiber structure [B] (used as necessary); And a second mixing step (hereinafter referred to as “second mixing step (11)”).
本発明の第 2製造方法において、添加剤を用いる場合は、第 1混合工程 (II)及び 第 2混合工程 (II)の!/、ずれで用いてもよぐ両方で用いてもよ!/、。 In the second production method of the present invention, when an additive is used, it may be used in the first mixing step (II) and the second mixing step (II)! ,.
[0105] 本発明の第 2製造方法において、上記成分〔A〕として用いるゴム強化樹脂及びポリ カーボネート樹脂の使用割合は、溶融混練性の観点から、これらの合計を 100質量 %とした場合に、それぞれ、 20〜80質量%及び 80〜20質量%、好ましくは 20〜75 質量%及び 80〜25質量%、より好ましくは 25〜75質量%及び 75〜25質量%であ [0105] In the second production method of the present invention, the use ratio of the rubber-reinforced resin and the polycarbonate resin used as the component [A] is, from the viewpoint of melt kneadability, when the total of these is 100% by mass, 20 to 80% by mass and 80 to 20% by mass, preferably 20 to 75% by mass and 80 to 25% by mass, more preferably 25 to 75% by mass and 75 to 25% by mass, respectively.
[0106] 上記第 1混合工程 (II)において溶融混練する原料は、上記ポリカーボネート樹脂と 、上記成分〔B〕の少なくとも一部とを含む。 [0106] The raw material to be melt-kneaded in the first mixing step (II) includes the polycarbonate resin and at least a part of the component [B].
上記成分〔B〕の使用量は、一部であってよいし、全量であってもよい。上記第 1混 合工程 (II)において用いる成分〔B〕の使用量は、放熱性樹脂組成物 [S1]に含有さ せる上記成分〔B〕の全量を 100質量%として、好ましくは 50〜; 100質量%、より好ま しくは 70〜; 100質量%、更に好ましくは 90〜; 100質量%である。上記成分〔B〕の使 用量が多!/、ほど、得られる放熱性樹脂組成物 [S 1]の放熱性に優れる。 The amount of the component [B] used may be a part or the total amount. The amount of the component [B] used in the first mixing step (II) is preferably from 50 to 100% by weight based on the total amount of the component [B] contained in the heat-dissipating resin composition [S1]. 100% by mass, more preferably 70 to 100% by mass, and still more preferably 90 to 100% by mass. The higher the amount of component [B] used, the better the heat dissipation of the resulting heat-dissipating resin composition [S 1].
また、上記ポリカーボネート樹脂については、通常、全量使用されるが、特に、上記 第 2混合工程 (II)において用いるゴム強化樹脂の使用量よりも過剰の場合には、一 部のポリカーボネート樹脂を上記第 2混合工程 (II)において用いてもよい。即ち、上 記第 1混合工程 (II)における溶融混練を効率よく進めるために、上記ポリカーボネー ト樹脂及び上記成分〔B〕の使用割合は、第 1混合工程 (II)で用いられる上記ポリ力
ーボネート樹脂 100質量部に対して、通常、上記成分〔B〕が 5〜; 100質量部の範囲 に入るように選択される。 In addition, the polycarbonate resin is usually used in the whole amount. However, particularly when the amount of the rubber-reinforced resin used in the second mixing step (II) is excessive, a part of the polycarbonate resin is added. You may use in 2 mixing process (II). That is, in order to efficiently promote the melt-kneading in the first mixing step (II), the usage ratio of the polycarbonate resin and the component [B] is the same as the poly force used in the first mixing step (II). The amount of the component [B] is usually 5 to 100 parts by mass with respect to 100 parts by mass of the boronate resin.
上記第 1混合工程 (II)の混練方法は、上記第 1混合工程 (I)と同様とすることができ る。また、混練温度 (ま、通常、 240〜320°C、好ましく (ま 260〜300°Cである。 The kneading method of the first mixing step (II) can be the same as that of the first mixing step (I). The kneading temperature (usually 240 to 320 ° C, preferably 260 to 300 ° C).
[0107] 次に、上記第 2混合工程 (II)において溶融混練する原料は、上記第 1混合工程 (II )により得られた混練物(II)と、上記ゴム強化樹脂とを含む。尚、上記のように、上記 第 1混合工程 (II)において、上記ポリカーボネート樹脂を全量使用しなかった場合は 、その残部を含む。混練方法は、上記第 1混合工程 (Π)と同様とすることができる。ま た、混練温度は、通常、 230〜280。C、好ましくは 240〜260。Cである。 Next, the raw material to be melt-kneaded in the second mixing step (II) includes the kneaded product (II) obtained in the first mixing step (II) and the rubber-reinforced resin. As described above, in the first mixing step (II), when the entire amount of the polycarbonate resin is not used, the remainder is included. The kneading method can be the same as in the first mixing step (ii). The kneading temperature is usually 230 to 280. C, preferably 240-260. C.
[0108] 本発明の第 2製造方法によれば、上記成分〔A〕が上記ゴム強化樹脂及び上記ポリ カーボネート樹脂である態様において、第 1混合工程 (II)及び第 2混合工程 (II)を備 えることにより、上記成分〔B〕の分散性に優れた放熱性樹脂組成物 [S1]を製造する ことができ、放熱性、耐衝撃性、成形加工性、電磁波シールド性、生産性及びハンド リング性が更に優れた成形品を得ることができる。特に、上記成分〔B〕及び上記ポリ カーボネート樹脂の間の相溶性に優れると考えられるため、第 2混合工程 (II)におけ る溶融混練を円滑に進めることができ、放熱性に優れた樹脂組成物 [S 1]を製造する こと力 Sでさる。 [0108] According to the second production method of the present invention, in the embodiment where the component [A] is the rubber-reinforced resin and the polycarbonate resin, the first mixing step (II) and the second mixing step (II) are performed. By preparing, a heat-dissipating resin composition [S1] excellent in dispersibility of the component [B] can be produced, and heat dissipation, impact resistance, molding processability, electromagnetic wave shielding properties, productivity, and hand It is possible to obtain a molded product with further excellent ringability. In particular, since it is considered that the compatibility between the component [B] and the polycarbonate resin is excellent, the melt kneading in the second mixing step (II) can proceed smoothly, and the resin has excellent heat dissipation. Manufacture the composition [S 1].
[0109] 本発明の第 2製造方法において、好ましくは、上記第 1混合工程 (II)として、上記 成分〔B〕を全量使用し、上記ポリカーボネート樹脂及び上記成分〔B〕の使用割合を 、それぞれ、 50〜95質量%及び 50〜5質量% (但し、これらの合計は 100質量%で ある。)として溶融混練し、上記第 2混合工程 (II)として、上記第 1混合工程 (II)により 得られた混練物と、上記ゴム強化樹脂と、を溶融混練する方法である。 [0109] In the second production method of the present invention, preferably, as the first mixing step (II), the entire amount of the component [B] is used, and the usage ratios of the polycarbonate resin and the component [B] are respectively determined. 50 to 95% by mass and 50 to 5% by mass (however, the total of these is 100% by mass), and as the second mixing step (II), the first mixing step (II) This is a method of melt-kneading the obtained kneaded product and the rubber-reinforced resin.
この方法をより具体的に例示すると、上記第 1混合工程 (I)において、上記成分〔B〕 を全量使用し、上記ポリカーボネート樹脂 50〜95質量% (好ましくは 60〜95質量% 、より好ましくは 65〜90質量%)及び上記成分〔B〕5〜50質量% (好ましくは 5〜40 質量%、より好ましくは 10〜35質量%) (但し、これらの合計は 100質量%である。 ) を溶融混練し、ペレット、マスターバッチ等の混練物(II)とした後、上記第 2混合工程 (II)において、この混練物(II) 100質量部と、上記ゴム強化樹脂 0. ;!〜 4, 950質量
部(好ましくは 0. ;!〜 4, 000質量部、より好ましくは 0. ;!〜 3, 000質量部)とを溶融 混練する方法である。上記第 1混合工程 (II)において、上記成分〔B〕の含有量が 5 質量%未満では、放熱性樹脂組成物 [S1]の熱伝導率及び電磁波シールド性が十 分に得られない場合がある。一方、上記含有量が 50質量%を超えると、混練物(II) の製造が困難になる場合がある。また、上記第 2混合工程 (II)においては、上記ポリ カーボネート樹脂及びゴム強化樹脂の合計量 100質量部に対して、上記成分〔B〕の 含有量が 1〜80質量部である組成物となるように、上記ゴム強化樹脂の使用量が選 択されるが、上記混練物(II) 100質量部に対する上記ゴム強化樹脂の使用量が少 なすぎる場合、成形加工性及び耐衝撃性が十分でない場合がある。一方、上記使用 量が多すぎると、放熱性樹脂組成物 [S1]の熱伝導率及び電磁波シールド性が十分 に得られない場合がある。 To illustrate this method more specifically, in the first mixing step (I), the total amount of the component [B] is used, and the polycarbonate resin is 50 to 95% by mass (preferably 60 to 95% by mass, more preferably 65 to 90% by mass) and the above component [B] 5 to 50% by mass (preferably 5 to 40% by mass, more preferably 10 to 35% by mass) (however, the total of these is 100% by mass). After melt-kneading into a kneaded product (II) such as pellets and masterbatch, in the second mixing step (II), 100 parts by mass of the kneaded product (II) and the rubber-reinforced resin 0.; 950 mass Part (preferably 0.;! To 4,000 parts by mass, more preferably 0.;! To 3,000 parts by mass). In the first mixing step (II), if the content of the component [B] is less than 5% by mass, the heat dissipation resin composition [S1] may not have sufficient thermal conductivity and electromagnetic shielding properties. is there. On the other hand, when the content exceeds 50% by mass, it may be difficult to produce the kneaded product (II). Further, in the second mixing step (II), a composition in which the content of the component [B] is 1 to 80 parts by mass with respect to 100 parts by mass of the total amount of the polycarbonate resin and the rubber reinforced resin; Thus, the amount of the rubber-reinforced resin used is selected. However, if the amount of the rubber-reinforced resin used is too small relative to 100 parts by mass of the kneaded product (II), the moldability and impact resistance are sufficient. It may not be. On the other hand, if the amount used is too large, the heat conductivity and electromagnetic wave shielding properties of the heat-dissipating resin composition [S1] may not be sufficiently obtained.
[0110] 本発明の放熱性樹脂組成物 [S]は、 目的、用途等に応じ、添加剤を含有したものと すること力 Sできる。この添加剤としては、充填剤、熱安定剤、酸化防止剤、紫外線吸 収剤、難燃剤、老化防止剤、可塑剤、滑剤、抗菌剤、着色剤等が挙げられる。 [0110] The heat-dissipating resin composition [S] of the present invention can be made to contain additives depending on the purpose and application. Examples of the additive include a filler, a heat stabilizer, an antioxidant, an ultraviolet absorber, a flame retardant, an antiaging agent, a plasticizer, a lubricant, an antibacterial agent, and a coloring agent.
[0111] 充填剤としては、重質炭酸カルシウム、軽微性炭酸カルシウム、極微細活性化炭酸 カルシウム、特殊炭酸カルシウム、塩基性炭酸マグネシウム、カオリンクレー、焼結ク レー、ノ イロフィライトクレー、シラン処理クレー、合成ケィ酸カルシウム、合成ケィ酸 マグネシウム、合成ケィ酸ァノレミニゥム、炭酸マグネシウム、水酸化マグネシウム、力 ォリン、セリサイト、タルク、微粉タルク、ウォラストナイト、ゼォライト、ゾノトライト、ァス ベスト、 PMF (Processed Mineral Fiber)、胡粉、セピオライト、チタン酸カリウム 、エレスタダイト、石膏繊維、ガラスバルン、シリカバルン、ハイド口タルサイト、フライア シュバルン、シラスバルン、カーボン系バルン、硫酸バリウム、硫酸アルミニウム、硫酸 カルシウム、二硫化モリブデン等が挙げられる。これらは、 1種単独であるいは 2種以 上を組み合わせて用いることができる。 [0111] Fillers include heavy calcium carbonate, light calcium carbonate, ultrafine activated calcium carbonate, special calcium carbonate, basic magnesium carbonate, kaolin clay, sintered clay, neurophyllite clay, silane treatment Clay, Synthetic calcium silicate, Synthetic magnesium catenate, Synthetic quinolate, Magnesium carbonate, Magnesium hydroxide, Ferrine, Sericite, Talc, Fine talc, Wollastonite, Zeolite, Zonolite, Asbestos, PMF (Processed Mineral Fiber), pepper, sepiolite, potassium titanate, elestadite, gypsum fiber, glass balun, silica balun, hydrite talcite, flyer schbaln, carbon balun, barium sulfate, aluminum sulfate, calcium sulfate, molybdenum disulfide Or the like. These can be used alone or in combination of two or more.
上記充填剤の含有量は、上記成分〔A〕を 100質量部とした場合、通常、 1〜30質 量部、好ましくは 2〜25質量部、より好ましくは 2〜20質量部である。 The content of the filler is usually 1 to 30 parts by mass, preferably 2 to 25 parts by mass, more preferably 2 to 20 parts by mass when the component [A] is 100 parts by mass.
[0112] 熱安定剤としては、ホスファイト類、ヒンダードフエノール類、チォエーテル類が挙げ られる。これらは、 1種単独であるいは 2種以上を組み合わせて用いることができる。
上記熱安定剤の含有量は、上記成分〔A〕を 100質量部とした場合、通常、 0. 01 〜 5質量部である。 [0112] Examples of the heat stabilizer include phosphites, hindered phenols, and thioethers. These can be used alone or in combination of two or more. The content of the heat stabilizer is usually 0.01 to 5 parts by mass when the component [A] is 100 parts by mass.
[0113] 酸化防止剤としては、ホスファイト類、ヒンダードアミン類、ハイドロキノン類、ヒンダ一 ドフエノール類、硫黄含有化合物等が挙げられる。これらは、 1種単独であるいは 2種 以上を組み合わせて用いることができる。 [0113] Examples of the antioxidant include phosphites, hindered amines, hydroquinones, hindered phenols, sulfur-containing compounds and the like. These can be used alone or in combination of two or more.
上記酸化防止剤の含有量は、上記成分〔A〕を 100質量部とした場合、通常、 0. 0 ;!〜 5質量部、好ましくは 0. 05〜3質量部、より好ましくは 0. ;!〜 2質量部である。 The content of the antioxidant is usually from 0.0;! To 5 parts by mass, preferably from 0.05 to 3 parts by mass, more preferably from 0.00 when the component [A] is 100 parts by mass. ! ~ 2 parts by mass.
[0114] 紫外線吸収剤としては、ベンゾフエノン類、ベンゾトリアゾール類、サリチル酸エステ ノレ類、金属錯塩類等が挙げられる。これらは、 1種単独であるいは 2種以上を組み合 わせて用いることができる。上記の紫外線吸収剤の含有量は、上記成分〔A〕を 100 質量部とした場合、通常、 0. 0;!〜 10質量部、好ましくは 0. 05〜5質量部、より好ま しくは 0. ;!〜 5質量部である。 [0114] Examples of the ultraviolet absorber include benzophenones, benzotriazoles, salicylic ester, and metal complex salts. These can be used singly or in combination of two or more. The content of the ultraviolet absorber is usually 0.0;! To 10 parts by mass, preferably 0.05 to 5 parts by mass, more preferably 0, when the component [A] is 100 parts by mass. ; ~~ 5 parts by mass.
[0115] 難燃剤としては、有機系難燃剤、無機系難燃剤、反応系難燃剤等が挙げられる。こ れらは、 1種単独であるいは 2種以上を組み合わせて用いることができる。 [0115] Examples of the flame retardant include organic flame retardants, inorganic flame retardants, and reactive flame retardants. These can be used alone or in combination of two or more.
[0116] 上記有機系難燃剤としては、臭素化エポキシ系樹脂、臭素化アルキルトリアジン化 合物、臭素化ビスフエノール系エポキシ樹脂、臭素化ビスフエノール系フエノキシ樹 脂、臭素化ビスフエノール系ポリカーボネート樹脂、臭素化ポリスチレン樹脂、臭素化 架橋ポリスチレン樹脂、臭素化ビスフエノールシアヌレート樹脂、臭素化ポリフエユレ ンエーテル、デカブロモジフエニルオキサイド、テトラブロモビスフエノーノレ A及びその オリゴマー等のハロゲン系難燃剤;トリメチルホスフェート、トリェチルホスフェート、トリ プロピノレホスフエート、トリブチノレホスフェート、トリペンチノレホスフェート、トリへキシノレ ホスフェート、トリシクロへキシノレホスフェート、トリフエニノレホスフェート、トリクレジノレホ スフェート、トリキシレニノレホスフェート、クレジノレジフエニノレホスフェート、ジクレジノレフ ェニノレホスフェート、ジメチノレエチノレホスフェート、メチノレジブ'チノレホスフェート、ェチ ノレジプロピルホスフェート、ヒドロキシフエニルジフエニルホスフェート等のリン酸エス テルや、これらを各種置換基で変性した化合物、各種の縮合型のリン酸エステル化 合物、リン元素及び窒素元素を含むホスファゼン誘導体等のリン系難燃剤;ポリテトラ フルォロエチレン等が挙げられる。これらは、 1種単独であるいは 2種以上を組み合
わせて用いることができる。 [0116] Examples of the organic flame retardant include brominated epoxy resin, brominated alkyltriazine compound, brominated bisphenol epoxy resin, brominated bisphenol phenol resin, brominated bisphenol polycarbonate resin, Halogenated flame retardants such as brominated polystyrene resin, brominated crosslinked polystyrene resin, brominated bisphenol cyanurate resin, brominated polyphenol ether, decabromodiphenyl oxide, tetrabromobisphenol A and oligomers thereof; trimethyl phosphate, Triethyl phosphate, Tripropinorephosphate, Tributinorephosphate, Tripentinorephosphate, Trihexinorephosphate, Tricyclohexinorephosphate, Tripheninophosphate, Tricredinole phosphate Phosphate esters such as fete, trixyleninophosphate, credinoresinenophosphate, dicresinorefeninophosphate, dimethylenoretinophosphate, methinoresive chinorephosphate, ethenoresipropyl phosphate, hydroxyphenyl diphenyl phosphate And compounds obtained by modifying these with various substituents, various condensed phosphoric ester compounds, phosphorus-based flame retardants such as phosphazene derivatives containing a phosphorus element and a nitrogen element; polytetrafluoroethylene, and the like. These can be used alone or in combination of two or more. Can be used together.
[0117] 上記無機系難燃剤としては、水酸化アルミニウム、酸化アンチモン、水酸化マグネ シゥム、ホウ酸亜鉛、ジルコニウム系、モリブデン系、スズ酸亜鉛、グァニジン塩、シリ コーン系、ホスファゼン系化合物等が挙げられる。これらは、 1種単独であるいは 2種 以上を組み合わせて用いることができる。 [0117] Examples of the inorganic flame retardant include aluminum hydroxide, antimony oxide, magnesium hydroxide, zinc borate, zirconium-based, molybdenum-based, zinc stannate, guanidine salt, silicone-based, and phosphazene-based compounds. It is done. These can be used alone or in combination of two or more.
[0118] 上記反応系難燃剤としては、テトラブロモビスフエノール A、ジブロモフエノールダリ シジルエーテル、臭素化芳香族トリァジン、トリブロモフエノール、テトラブロモフタレ ート、テトラクロ口無水フタル酸、ジブロモネオペンチルグリコール、ポリ(ペンタブロモ ベンジルポリアタリレート)、クロレンド酸(へット酸)、無水クロレンド酸(無水へット酸)、 臭素化フエノールグリシジルエーテル、ジブ口モクレジルグリシジルエーテル等が挙 げられる。これらは、 1種単独であるいは 2種以上を組み合わせて用いることができる [0118] Examples of the reactive flame retardant include tetrabromobisphenol A, dibromophenol daricidyl ether, brominated aromatic triazine, tribromophenol, tetrabromophthalate, tetrachlorophthalic anhydride, dibromoneopentyl glycol , Poly (pentabromobenzyl polytalylate), chlorendic acid (hett acid), chlorendic anhydride (hett acid anhydride), brominated phenol glycidyl ether, dib-mouthed mocresyl glycidyl ether, and the like. These can be used alone or in combination of two or more.
〇 Yes
[0119] 上記難燃剤の含有量は、上記成分〔A〕を 100質量部とした場合、通常、 1〜30質 量部、好ましくは 3〜25質量部、より好ましくは 5〜20質量部である。 [0119] The content of the flame retardant is usually 1 to 30 parts by mass, preferably 3 to 25 parts by mass, more preferably 5 to 20 parts by mass when the component [A] is 100 parts by mass. is there.
[0120] 本発明の放熱性樹脂組成物に難燃剤を含有させる場合には、難燃助剤を用いるこ とが好ましい。この難燃助剤としては、三酸化二アンチモン、四酸化二アンチモン、五 酸化二アンチモン、アンチモン酸ナトリウム、酒石酸アンチモン等のアンチモン化合 物や、ホウ酸亜鉛、メタホウ酸バリウム、水和アルミナ、酸化ジルコニウム、ポリリン酸 アンモニゥム、酸化スズ、酸化鉄等が挙げられる。これらは、 1種単独であるいは 2種 以上を組み合わせて用いることができる。また、難燃性を改良するために、シリコーン オイルを配合することができる。 [0120] When the heat-radiating resin composition of the present invention contains a flame retardant, it is preferable to use a flame retardant aid. These flame retardant aids include antimony trioxide, antimony tetroxide, antimony pentoxide, sodium antimonate, antimony tartrate and other antimony compounds, zinc borate, barium metaborate, hydrated alumina, zirconium oxide. And ammonium polyphosphate, tin oxide, iron oxide and the like. These can be used alone or in combination of two or more. Silicone oil can be added to improve flame retardancy.
[0121] 老化防止剤としては、ナフチルァミン系化合物、ジフエニルァミン系化合物、 p—フ ェニレンジアミン系化合物、キノリン系化合物、ヒドロキノン誘導体系化合物、モノフエ ノール系化合物、ビスフエノール系化合物、トリスフヱノール系化合物、ポリフエノール 系化合物、チォビスフエノール系化合物、ヒンダードフエノール系化合物、亜リン酸ェ ステル系化合物、イミダゾール系化合物、ジチォ力ルバミン酸ニッケル塩系化合物、 リン酸系化合物等が挙げられる。これらは、 1種単独であるいは 2種以上を組み合わ せて用いることができる。
上記老化防止剤の含有量は、上記成分〔A〕を 100質量部とした場合、通常、 0. 0 ;!〜 10質量部、好ましくは 0. 05〜5質量部、より好ましくは 0. ;!〜 5質量部である。 [0121] Anti-aging agents include naphthylamine compounds, diphenylamine compounds, p-phenylenediamine compounds, quinoline compounds, hydroquinone derivative compounds, monophenol compounds, bisphenol compounds, trisphenol compounds, polyphenol compounds. Examples thereof include compounds, thiobisphenol compounds, hindered phenol compounds, phosphorous acid ester compounds, imidazole compounds, dithiouric acid nickel salt compounds, and phosphoric acid compounds. These can be used alone or in combination of two or more. The content of the anti-aging agent is usually 0.0;! To 10 parts by weight, preferably 0.05 to 5 parts by weight, more preferably 0. ! ~ 5 parts by mass.
[0122] 可塑剤としては、ジメチルフタレート、ジェチルフタレート、ジブチルフタレート、ジィ ソブチルフタレート、ジォクチルフタレート、ブチルォクチルフタレート、ジー(2—ェチ ノレへキシル)フタレート、ジイソォクチルフタレート、ジイソデシルフタレート等のフタノレ 酸エステル類;ジメチルアジペート、ジイソブチルアジペート、ジー(2—ェチルへキシ ル)アジペート、ジイソォクチルアジペート、ジイソデシルアジペート、ォクチルデシル アジペート、ジー(2—ェチルへキシル)ァゼレート、ジイソォクチルァゼレート、ジイソ ブチノレセバゲート、ジブチノレセバゲート、ジー(2—ェチノレへキシノレ)セバゲート、ジィ ソォクチルセバゲート等の脂肪酸エステル類;トリメリット酸イソデシルエステル、トリメリ ット酸ォクチルエステル、トリメリット酸 n ォクチルエステル、トリメリット酸イソノニルェ ステル等のトリメリット酸エステル類;ジー(2—ェチルへキシル)フマレート、ジェチレ ングリコールモノォレート、グリセリルモノリシノレート、トリラウリノレホスフェート、トリステ ァリルホスフェート、トリー(2—ェチルへキシル)ホスフェート、エポキシ化大豆油、ポ リエ一テルエステル等が挙げられる。これらは、 1種単独であるいは 2種以上を組み 合わせて用いることができる。 [0122] Examples of the plasticizer include dimethyl phthalate, jetyl phthalate, dibutyl phthalate, disobutyl phthalate, dioctyl phthalate, butyl octyl phthalate, di (2-ethynolehexyl) phthalate, diisooctyl phthalate, Phthanolates such as diisodecyl phthalate; dimethyl adipate, diisobutyl adipate, di (2-ethylhexyl) adipate, diisooctyl adipate, diisodecyl adipate, octyldecyl adipate, di (2-ethylhexyl) azelate, diisooctyl Fatty acid esters such as azelate, diisobutinorebagate, dibutinorebaevagate, di (2-ethinorehexinole) sebagate, dioctylsebagate; trimellitic acid isodecyl ester, trimelli Trimellitic acid esters such as octyl octyl ester, trimellitic acid n octyl ester, and isononyl ester of trimellitic acid; G (2-ethylhexyl) fumarate, jetylene glycol monooleate, glyceryl monoricinoleate, Examples include trilaurinole phosphate, tristearyl phosphate, tri (2-ethylhexyl) phosphate, epoxidized soybean oil, and polyester ester. These can be used alone or in combination of two or more.
上記可塑剤の含有量は、上記成分〔A〕を 100質量部とした場合、通常、 0. 5〜20 質量部、好ましくは 1〜; 15質量部、より好ましくは 1〜; 10質量部である。 The content of the plasticizer is usually 0.5 to 20 parts by mass, preferably 1 to 15 parts by mass, more preferably 1 to 10 parts by mass when the component [A] is 100 parts by mass. is there.
[0123] 上記滑剤としては、脂肪酸エステル、炭化水素樹脂、パラフィン、高級脂肪酸、ォキ シ脂肪酸、脂肪酸アミド、アルキレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸低級ァ ルコールエステル、脂肪酸多価アルコールエステル、脂肪酸ポリダリコールエステル [0123] Examples of the lubricant include fatty acid ester, hydrocarbon resin, paraffin, higher fatty acid, oxy fatty acid, fatty acid amide, alkylene bis fatty acid amide, aliphatic ketone, fatty acid lower alcohol ester, fatty acid polyhydric alcohol ester, fatty acid. Polydaricol ester
、脂肪族アルコール、多価アルコール、ポリダリコール、ポリグリセロール、金属石鹼、 シリコーン、変性シリコーン等が挙げられる。これらは、 1種単独であるいは 2種以上を 組み合わせて用いることができる。 , Aliphatic alcohol, polyhydric alcohol, polydaricol, polyglycerol, metal sarcophagus, silicone, modified silicone, and the like. These can be used alone or in combination of two or more.
上記滑剤の含有量は、上記成分〔A〕を 100質量部とした場合に、通常、 0. ;!〜 5質 量部である。 The content of the lubricant is usually 0.;! To 5 parts by mass when the component [A] is 100 parts by mass.
[0124] 抗菌剤としては、銀系ゼオライト、銀—亜鉛系ゼオライト等のゼォライト系抗菌剤、 錯体化銀 シリカゲル等のシリカゲル系抗菌剤、ガラス系抗菌剤、リン酸カルシウム
系抗菌剤、リン酸ジルコニウム系抗菌剤、銀 ケィ酸アルミン酸マグネシウム等のケィ 酸塩系抗菌剤、酸化チタン系抗菌剤、セラミック系抗菌剤、ウイスカ一系抗菌剤等の 無機系抗菌剤;ホルムアルデヒド放出剤、ハロゲン化芳香族化合物、ロードプロパル ギル誘導体、イソシアナト化合物、イソチアゾリノン誘導体、トリノ、ロメチルチオ化合物 、第四アンモニゥム塩、ビグアニド化合物、アルデヒド類、フエノール類、ピリジンォキ シド、カルバニリド、ジフヱニルエーテル、カルボン酸、有機金属化合物等の有機系 抗菌剤;無機 ·有機ハイブリッド抗菌剤;天然抗菌剤等が挙げられる。これらは、 1種 単独であるいは 2種以上を組み合わせて用いることができる。 [0124] Examples of antibacterial agents include zeolite zeolites such as silver zeolite and silver-zinc zeolite, silica gel antibacterial agents such as complexed silver silica gel, glass antibacterial agents, and calcium phosphate. Inorganic antibacterial agents such as antibacterial agents, zirconium phosphate antibacterial agents, silicate antibacterial agents such as silver magnesium aluminate, titanium oxide antibacterial agents, ceramic antibacterial agents, whisker antibacterial agents, etc. Release agent, halogenated aromatic compound, rhodopropargyl derivative, isocyanato compound, isothiazolinone derivative, torino, romethylthio compound, quaternary ammonium salt, biguanide compound, aldehydes, phenols, pyridine oxide, carbanilide, diphenyl ether, Organic antibacterial agents such as carboxylic acids and organometallic compounds; inorganic / organic hybrid antibacterial agents; natural antibacterial agents and the like. These can be used alone or in combination of two or more.
上記抗菌剤の含有量は、上記成分〔A〕を 100質量部とした場合、通常、 0. 01〜1 0質量部、好ましくは 0. 05〜5質量部、より好ましくは 0. ;!〜 5質量部である。 The content of the antibacterial agent is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, more preferably 0. 5 parts by mass.
[0125] 上記着色剤としては、有機染料、無機顔料、有機顔料等が挙げられる。これらは、 1 種単独で、あるいは 2種以上を組み合わせて用いることができる。 [0125] Examples of the colorant include organic dyes, inorganic pigments, and organic pigments. These can be used alone or in combination of two or more.
[0126] 本発明の放熱性樹脂組成物 [S]の熱伝導性は、上記成分〔A〕のみに比して優れ て高ぐ下記実施例に示す方法により得られる熱伝導率の好ましい下限値は lW/ ( m'K)であり、より好ましくは 2· 5W/ (m.K)、更に好ましくは 3W/ (m.K)である。 また、好ましい上限値は 100W/ (m'K)であり、より好ましくは 50W/ (m'K)である 。この熱伝導率が小さすぎると、十分な放熱性が得られず、例えば、熱源から発生す る熱の移動速度が遅くなり、熱源付近の冷却が進みにくくなる場合がある。 [0126] The heat conductivity of the heat-dissipating resin composition [S] of the present invention is superior to that of the component [A] alone, and is preferably lower than the lower limit of the thermal conductivity obtained by the method shown in the following examples. Is lW / (m'K), more preferably 2.5 W / (mK), and even more preferably 3W / (mK). A preferable upper limit is 100 W / (m′K), and more preferably 50 W / (m′K). If this thermal conductivity is too small, sufficient heat dissipation cannot be obtained. For example, the movement speed of heat generated from the heat source may be slow, and cooling in the vicinity of the heat source may be difficult to proceed.
[0127] 本発明の放熱性樹脂組成物 [S]のシャルピー衝撃強さは、好ましくは 3. 5kj/m2 以上、より好ましくは 5kj/m2以上、更に好ましくは 6kj/m2以上である。このシャル ピー衝撃強さが小さすぎると、耐衝撃性が不十分となり、衝撃強度が要求される用途 への展開が制限される場合がある。 [0127] The Charpy impact strength of the heat-dissipating resin composition [S] of the present invention is preferably 3.5 kj / m 2 or more, more preferably 5 kj / m 2 or more, and further preferably 6 kj / m 2 or more. . If this Charpy impact strength is too small, the impact resistance will be insufficient, and there are cases where the development to applications requiring impact strength is restricted.
[0128] 本発明の放熱性樹脂組成物 [S]のメルトマスフローレートは、好ましくは 4g/10分 以上、より好ましくは 5g/10分以上、更に好ましくは 6g/10分以上である。このメノレ トマスフローレートが小さすぎると、流動性が十分ではなぐ成形加工性が低下し、使 用する製品形状の自由度が制限される場合がある。 [0128] The melt mass flow rate of the heat-dissipating resin composition [S] of the present invention is preferably 4 g / 10 min or more, more preferably 5 g / 10 min or more, and further preferably 6 g / 10 min or more. If the menoret mass flow rate is too small, the moldability will not be sufficient if the fluidity is insufficient, and the degree of freedom in the shape of the product used may be limited.
[0129] 更に、本発明の放熱性樹脂組成物 [S]は、電磁波シールド性にも優れ、 100MHz における電磁波シールド性は、好ましくは 25dB以上、より好ましくは 30dB以上、更
に好ましく (ま 30〜60dB、特に好ましく (ま 30〜55dBである。 [0129] Furthermore, the heat-dissipating resin composition [S] of the present invention has excellent electromagnetic shielding properties, and the electromagnetic shielding properties at 100 MHz are preferably 25 dB or more, more preferably 30 dB or more. (30 to 60 dB, particularly preferably (30 to 55 dB).
[0130] 本発明の放熱性樹脂組成物 [S]において、熱伝導率が 3W/ (m ' K)以上であり、 シャルピー衝撃強さが 5kj/m2以上であり、メルトマスフローレートが 5g/10分以上 である性能を備えることで、放熱性、成形加工性及び耐衝撃性のバランスを高度に 発揮する成形品を得ることができる。このような成形品を与える組成物の構成の一例 としては、ゴム強化樹脂及びポリカーボネート樹脂を含む上記成分〔A〕と、上記成分 〔B〕とを含有し、且つ、ゴム強化樹脂及びポリカーボネート樹脂の含有割合が、それ ぞれ、好ましくは 25〜75質量%及び 75〜25質量%、特に好ましくは 35〜75質量 %及び 65〜25質量% (但し、これらの合計は 100質量%である。)の態様である。 [0130] In the heat-dissipating resin composition [S] of the present invention, the thermal conductivity is 3 W / (m ′ K) or more, the Charpy impact strength is 5 kj / m 2 or more, and the melt mass flow rate is 5 g / By providing the performance of 10 minutes or more, it is possible to obtain a molded product that exhibits a high balance of heat dissipation, molding processability and impact resistance. As an example of the composition of the composition that gives such a molded article, it contains the above-mentioned component [A] containing a rubber-reinforced resin and a polycarbonate resin, and the above-mentioned component [B], and the rubber-reinforced resin and the polycarbonate resin. The content is preferably 25 to 75% by mass and 75 to 25% by mass, particularly preferably 35 to 75% by mass and 65 to 25% by mass, respectively (however, the total of these is 100% by mass). It is an aspect.
[0131] 次に、本発明の放熱性樹脂組成物 [T]に含有される上記成分〔C〕は、種類、形状 、大きさ(アスペクト比、重量平均粒子径等)等について、特に限定されない。種類と しては、 a 黒鉛及び /3—黒鉛のいずれでもよい。また、これらを組み合わせてもよ い。更に、天然黒鉛及び人造黒鉛のいずれでもよい。また、これらを組み合わせても よい。 [0131] Next, the component [C] contained in the heat-dissipating resin composition [T] of the present invention is not particularly limited with respect to the type, shape, size (aspect ratio, weight average particle diameter, etc.), and the like. . The type may be either a graphite or / 3—graphite. These may be combined. Furthermore, either natural graphite or artificial graphite may be used. These may be combined.
天然黒鉛としては、レーザーラマン測定により、 lseocnT1あたりの波長において バンドが認められないものであれば、特に限定されず、鱗片状黒鉛、塊状黒鉛及び 土壌黒鉛が挙げられる。 The natural graphite is not particularly limited as long as no band is observed at the wavelength per lseocnT 1 by laser Raman measurement, and examples thereof include flaky graphite, massive graphite, and soil graphite.
更に、上記成分〔c〕の形状は、粉状、粒状、板状、鱗片状、帯状、柱状、錐状、針 状等とすること力 sでさる。 Furthermore, the shape of the component [c] is controlled by the force s such as powder, granule, plate, scale, strip, column, cone, needle or the like.
また、上記成分〔C〕の大きさについて、アスペクト比は、好ましくは 1〜20であり、重 量平均粒子径は、好ましくは;!〜 200 mである。 In addition, with respect to the size of the component [C], the aspect ratio is preferably 1 to 20, and the weight average particle size is preferably;! To 200 m.
[0132] 上記成分〔C〕の好まし!/、例は、以下の通りである。 [0132] Preferred examples of the component [C] are as follows.
[ 1 ]アスペクト比が 10〜20であり、重量平均粒子径が 10〜200 111であり、且つ、固 定炭素量が 98質量%以上である黒鉛粒子 (以下、「黒鉛粒子 (C l)」という。)。 [1] Graphite particles having an aspect ratio of 10 to 20, a weight average particle diameter of 10 to 200 111, and a fixed carbon content of 98% by mass or more (hereinafter referred to as “graphite particles (Cl)”. That said.)
[2]アスペクト比が 3以下であり、重量平均粒子径が 1〜 70 であり、且つ、固定炭 素量が 98質量%以上である黒鉛粒子 (以下、「黒鉛粒子 (C2)」という。)。 [2] Graphite particles having an aspect ratio of 3 or less, a weight average particle diameter of 1 to 70, and a fixed carbon content of 98% by mass or more (hereinafter referred to as “graphite particles (C2)”). .
[0133] 上記黒鉛粒子(C 1 )及び (C2)において、各物性が、上記範囲にあることにより、放 熱性及び熱伝導性が一段と優れる。特に、成形品とした場合に、その成形方法によ
る流れ方向及び直角方向において、熱伝導率の差が小さくなる。 [0133] In the graphite particles (C 1) and (C2), since the physical properties are in the above ranges, the heat release and thermal conductivity are further improved. In particular, when a molded product is used, The difference in thermal conductivity is small in the flow direction and the perpendicular direction.
上記アスペクト比は、電子顕微鏡等により縦横の各長さを測定し、算出することがで きる。上記重量平均粒子径は、レーザー回折法、光散乱法等により測定することがで きる。尚、本発明に係る「重量平均粒子径」は、粒度分布を測定して得られた、累積 重量が 50%であるときの粒子径(D )を意味する。また、固定炭素量は、 JIS M85 The aspect ratio can be calculated by measuring each length in the vertical and horizontal directions using an electron microscope or the like. The weight average particle diameter can be measured by a laser diffraction method, a light scattering method, or the like. The “weight average particle diameter” according to the present invention means the particle diameter (D) obtained by measuring the particle size distribution when the cumulative weight is 50%. The amount of fixed carbon is JIS M85.
50 50
11に準じて測定することができる。 It can be measured according to 11.
上記の黒鉛粒子(C1)及び (C2)は、組み合わせて用いることができる。 The above graphite particles (C1) and (C2) can be used in combination.
[0134] 上記黒鉛粒子(C1)のアスペクト比は、 10〜20であり、好ましくは 12〜; 18である。 [0134] The aspect ratio of the graphite particles (C1) is 10 to 20, preferably 12 to 18;
重量平均粒子径 (ま、 10〜200〃111であり、好ましく (ま 15〜 80〃 mである。また、固 定炭素量は、 98質量%以上であり、好ましくは 98. 5質量%以上、より好ましくは 99 質量%以上である。 Weight average particle diameter (10 to 200 to 111, preferably 15 to 80 to m. The amount of fixed carbon is 98% by mass or more, preferably 98.5% by mass or more. More preferably, it is 99 mass% or more.
[0135] また、上記黒鉛粒子(C1)について、粒度分布を測定して得られた、累積重量が、 それぞれ、 20%及び 80%であるときの粒子径 D 及び D の比 D /Ό は、好まし [0135] Further, for the graphite particles (C1), the ratio D / Ό of the particle diameters D and D when the cumulative weights obtained by measuring the particle size distribution are 20% and 80%, respectively, is Like
20 80 80 20 くは 2〜; 12であり、より好ましくは 2. 5〜; 10である。上記比 D /Ό 力 ¾未満の黒鉛 20 80 80 20 or 2 to 12, more preferably 2.5 to 10. Graphite with ratio D / reducing force less than ¾
80 20 80 20
粒子を用いると、放熱性樹脂組成物 [τ]の製造が困難な場合があり、熱伝導率が十 分でない場合がある。一方、比 D /Ό 力 S 12を超えると、耐衝撃性及び表面外観性 If particles are used, it may be difficult to produce the heat-dissipating resin composition [τ], and the thermal conductivity may be insufficient. On the other hand, if the ratio D / repulsive force S 12 is exceeded, impact resistance and surface appearance
80 20 80 20
が十分でない場合がある。 May not be enough.
[0136] 上記黒鉛粒子(C1)の形状としては、鱗片状黒鉛が好ましい。 [0136] The shape of the graphite particles (C1) is preferably flake graphite.
上記黒鉛粒子(C1)は、 1種単独であるいは 2種以上を組み合わせて用いることが できる。 The graphite particles (C1) can be used singly or in combination of two or more.
[0137] また、上記黒鉛粒子(C2)のアスペクト比は、 3以下であり、好ましくは 1〜3である。 [0137] The aspect ratio of the graphite particles (C2) is 3 or less, preferably 1 to 3.
重量平均粒子径は、 10〜70 111でぁり、好ましくは15〜60 111でぁる。固定炭素 量は、 98質量%以上であり、好ましくは 98. 5質量%以上、更に好ましくは 99質量% 以上である。 The weight average particle diameter is 10 to 70 111, preferably 15 to 60 111. The amount of fixed carbon is 98% by mass or more, preferably 98.5% by mass or more, and more preferably 99% by mass or more.
尚、上記黒鉛粒子(C2)について、粒度分布を測定して得られた、累積重量が、そ れぞれ、 20%及び 80%であるときの粒子径 D 及び D の比 D /Ό は、特に限定 For the above graphite particles (C2), the ratio D / Ό of the particle diameters D and D when the cumulative weights obtained by measuring the particle size distribution are 20% and 80%, respectively, is Especially limited
20 80 80 20 20 80 80 20
されない。 Not.
上記黒鉛粒子(C2)の形状としては、球状黒鉛が好まし!/、。
上記黒鉛粒子(C2)は、 1種単独であるいは 2種以上を組み合わせて用いることが できる。 As the shape of the graphite particles (C2), spherical graphite is preferred! /. The graphite particles (C2) can be used singly or in combination of two or more.
[0138] 本発明の放熱性樹脂組成物 [T]において、上記成分〔C〕の含有量は、上記成分〔 A〕を 100質量部とした場合に、好ましくは 10〜300質量部であり、より好ましくは 10 〜; 150質量部、更に好ましくは 10〜; 100質量部、特に好ましくは 10〜50質量部であ る。上記成分〔C〕の含有量が少なすぎると、熱伝導性及び電磁波シールド性が十分 でない場合がある。一方、上記成分〔C〕が多すぎると、生産性、成形加工性及び成 形品の表面外観性が低下する場合がある。 [0138] In the heat-dissipating resin composition [T] of the present invention, the content of the component [C] is preferably 10 to 300 parts by mass when the component [A] is 100 parts by mass, More preferably 10 to 150 parts by mass, still more preferably 10 to 100 parts by mass, particularly preferably 10 to 50 parts by mass. If the content of the component [C] is too small, the thermal conductivity and electromagnetic wave shielding properties may not be sufficient. On the other hand, if the amount of the component [C] is too large, productivity, molding processability and surface appearance of the molded product may be deteriorated.
[0139] 上記成分〔C〕 、上記黒鉛粒子(C1)である場合、及び、上記黒鉛粒子(C2)であ る場合について説明する。上記成分〔C〕として上記黒鉛粒子 (C1)を用いた場合、上 記黒鉛粒子(C2)に比べて、熱伝導性により優れた放熱性樹脂組成物が得られる。 一方、上記成分〔C〕として上記黒鉛粒子 (C2)を用いた場合、上記黒鉛粒子 (C1)に 比べて、成形加工性及び耐衝撃性により優れた放熱性樹脂組成物が得られる。 従って、上記成分〔C〕が、上記の黒鉛粒子(C1)及び (C2)の両方を含むとき、放 熱性、成形加工性、耐衝撃性、熱伝導性及び電磁波シールド性の全てが高度に発 揮される放熱性樹脂組成物を得ることができる。そのような好ましレ、黒鉛粒子(C1)及 び (C2)の含有割合は、その合計を 100質量%とした場合に、それぞれ、;!〜 99質量 %及び 99〜;!質量%、より好ましくは 5〜95質量%及び 95〜5質量%、更に好ましく は 10〜90質量%及び 90〜; 10質量%である。 [0139] The case where the component [C] is the graphite particles (C1) and the case of the graphite particles (C2) will be described. When the graphite particles (C1) are used as the component [C], a heat-dissipating resin composition having better thermal conductivity than the graphite particles (C2) can be obtained. On the other hand, when the graphite particles (C2) are used as the component [C], a heat-dissipating resin composition superior in molding processability and impact resistance compared to the graphite particles (C1) can be obtained. Therefore, when the component [C] contains both of the above graphite particles (C1) and (C2), all of heat release, molding processability, impact resistance, thermal conductivity and electromagnetic wave shielding properties are highly developed. A heat-dissipating heat-dissipating resin composition can be obtained. The preferred content of graphite particles (C1) and (C2) is:! ~ 99 mass% and 99 ~;! Mass%, respectively, when the total is 100 mass%. Preferably they are 5-95 mass% and 95-5 mass%, More preferably, they are 10-90 mass% and 90-; 10 mass%.
[0140] 上記成分〔C〕として、上記の黒鉛粒子(C1)及び (C2)を含む本発明の放熱性樹 脂組成物 [T]並びにその成形品中に含まれる成分〔C〕は、公知の方法により作製し た試験片に対し、電子顕微鏡等により観察することにより、アスペクト比及び平均粒 子径はり詳細には、数平均粒子径)を求めることができる。上記のアスペクト比及び 平均粒子径は、通常、それぞれ、配合前の成分〔C〕のアスペクト比及び重量平均粒 子径と同様である。 [0140] The heat-dissipating resin composition [T] of the present invention containing the above graphite particles (C1) and (C2) as the component [C], and the component [C] contained in the molded product thereof are known. The aspect ratio and the average particle diameter (specifically, the number average particle diameter) can be determined by observing the test piece prepared by this method with an electron microscope or the like. The above aspect ratio and average particle diameter are usually the same as the aspect ratio and weight average particle diameter of the component [C] before blending, respectively.
[0141] また、本発明の放熱性樹脂組成物 [T]において、上記成分〔B〕及び上記成分〔C〕 の含有割合は、これらの含有量の合計を 100質量%とした場合に、それぞれ、好まし くは 20〜95質量%及び 80〜5質量%、より好ましくは 40〜90質量%及び 60〜10
質量%、特に好ましくは 50〜90質量%及び 50〜; 10質量%である。上記成分〔B〕及 び〔C〕の含有割合が上記範囲にあれば、放熱性に優れ、且つ、成形加工性及び耐 衝撃性のバランスに優れ、更には熱伝導性及び電磁波シールド性にも優れる。 [0141] In the heat-dissipating resin composition [T] of the present invention, the content ratios of the component [B] and the component [C] are as follows when the total of these contents is 100% by mass: 20 to 95% by weight and preferably 80 to 5% by weight, more preferably 40 to 90% by weight and 60 to 10% by weight. % By weight, particularly preferably 50 to 90% by weight and 50 to 10% by weight. If the content ratio of the above components [B] and [C] is in the above range, the heat dissipation is excellent, the balance between molding processability and impact resistance is excellent, and furthermore, the thermal conductivity and electromagnetic wave shielding properties are also achieved. Excellent.
[0142] 本発明の放熱性樹脂組成物 [T]として好ましい組成物は、以下に例示される。 [0142] Preferred compositions for the heat-dissipating resin composition [T] of the present invention are exemplified below.
[i]成分〔A〕がゴム強化樹脂であり、成分〔C〕が黒鉛粒子(C1)及び/又は (C2)で ある糸且成物。 [i] A yarn and composition in which component [A] is a rubber-reinforced resin and component [C] is graphite particles (C1) and / or (C2).
[ii]成分〔A〕がポリカーボネート樹脂であり、成分〔C〕が黒鉛粒子(C1)及び/又は( C2)である組成物。 [ii] A composition wherein component [A] is a polycarbonate resin and component [C] is graphite particles (C1) and / or (C2).
[iii]成分〔A〕がゴム強化樹脂及びポリカーボネート樹脂 (好ましい含有割合;;!〜 80 質量%及び 99〜20質量%)であり、成分〔C〕が黒鉛粒子(C1)及び/又は(C2)で ある糸且成物。 [iii] Component [A] is a rubber-reinforced resin and a polycarbonate resin (preferred content ratio;;! to 80 mass% and 99 to 20 mass%), and component [C] is graphite particles (C1) and / or (C2 ) Is a thread and a composition.
[0143] 本発明の放熱性樹脂組成物 [T]もまた、充填剤、熱安定剤、酸化防止剤、紫外線 吸収剤、難燃剤、老化防止剤、可塑剤、滑剤、抗菌剤、着色剤等の添加剤を含有し たものとすること力 Sできる。上記成分〔A〕に対する各添加剤の含有量は、上記放熱性 樹脂組成物 [S]と同様とすることができる。 [0143] The heat-dissipating resin composition [T] of the present invention is also a filler, heat stabilizer, antioxidant, ultraviolet absorber, flame retardant, anti-aging agent, plasticizer, lubricant, antibacterial agent, colorant, etc. It is possible to make it contain the additive. The content of each additive relative to the component [A] can be the same as that of the heat-dissipating resin composition [S].
[0144] 本発明の放熱性樹脂組成物 [T]の熱伝導性は、上記成分〔A〕のみに比して優れ て高ぐ下記実施例に示す方法により得られる熱伝導率の好ましい下限値は 1. 5W / (m.K)であり、より好ましくは 2· 5W/ (m.K)、更に好ましくは 3W/ (m.K)、特 に好ましくは 3· 5W/ (m'K)である。また、好ましい上限値は 100W/ (m'K)であり 、より好ましくは 50W/ (m*K)である。この熱伝導率が小さすぎると、十分な放熱性 が得られず、例えば、熱源力 発生する熱の移動速度が遅くなり、熱源付近の冷却 が進みにくくなる場合がある。 [0144] The heat conductivity of the heat-dissipating resin composition [T] of the present invention is superior to that of the above-mentioned component [A] alone. The preferred lower limit of the thermal conductivity obtained by the method shown in the following Examples Is 1.5 W / (mK), more preferably 2.5 W / (mK), still more preferably 3 W / (mK), and particularly preferably 3.5 W / (m'K). A preferable upper limit is 100 W / (m′K), and more preferably 50 W / (m * K). If this thermal conductivity is too small, sufficient heat dissipation cannot be obtained. For example, the movement speed of the heat generated by the heat source may be slow, and cooling near the heat source may not proceed easily.
[0145] 本発明の放熱性樹脂組成物 [T]のシャルピー衝撃強さは、上記成分〔A〕の種類、 上記成分〔B〕の種類及びその含有量、並びに、上記成分〔C〕の種類及びその含有 量による力 好ましくは 1. Okj/m2以上、より好ましくは 3. Okj/m2以上、更に好ま しくは 3. 5kj/m2以上、特に好ましくは 5kj/m2以上である。このシャルピー衝撃強 さが小さすぎると、耐衝撃性が不十分となり、衝撃強度が要求される用途への展開が 制限される場合がある。上記シャルピー衝撃強さは、例えば、上記好ましい態様 [i]
〜[iii]において、得ること力 Sできる。 [0145] The Charpy impact strength of the heat-dissipating resin composition [T] of the present invention is the type of the component [A], the type and content of the component [B], and the type of the component [C]. And the force depending on the content thereof is preferably 1. Okj / m 2 or more, more preferably 3. Okj / m 2 or more, further preferably 3.5 kj / m 2 or more, and particularly preferably 5 kj / m 2 or more. If the Charpy impact strength is too small, the impact resistance will be insufficient, and there are cases where the development to applications requiring impact strength is restricted. The Charpy impact strength is, for example, the preferred embodiment [i] In [iii], it is possible to obtain power S.
[0146] 本発明の放熱性樹脂組成物 [T]のメルトマスフローレート(IS01133に準じ、温度 [0146] Melt mass flow rate of heat-dissipating resin composition [T] of the present invention (in accordance with IS01133, temperature
240°C、荷重 196Nで測定)は、上記成分〔A〕の種類、上記成分〔B〕の種類及びそ の含有量、並びに、上記成分〔C〕の種類及びその含有量によるが、好ましくは 3g/l 0分以上、より好ましくは 4g/10分以上、更に好ましくは 5g/10分以上である。この メルトマスフローレートが小さすぎると、流動性が十分ではなぐ成形加工性が低下し 、使用する製品形状の自由度が制限される場合がある。上記メルトマスフローレート は、例えば、上記好ましい態様 [i]〜[iii]において、得ること力 Sできる。 240 ° C and load 196N) depends on the type of component [A], the type and content of component [B], and the type and content of component [C]. 3 g / l 0 min or more, more preferably 4 g / 10 min or more, still more preferably 5 g / 10 min or more. If the melt mass flow rate is too small, moldability that is not sufficient for fluidity is deteriorated, and the degree of freedom of product shape to be used may be limited. The melt mass flow rate can be obtained, for example, in the preferred embodiments [i] to [iii].
[0147] 更に、本発明の放熱性樹脂組成物 [T]は、電磁波シールド性にも優れ、 100MHz における電磁波シールド性は、好ましくは 15dB以上、より好ましくは 20dB以上、更 に好ましくは 25dB以上、より更に好ましくは 30dB以上である。上限は、通常、 60dB である。 [0147] Further, the heat-dissipating resin composition [T] of the present invention is also excellent in electromagnetic shielding properties, and the electromagnetic shielding properties at 100 MHz are preferably 15 dB or more, more preferably 20 dB or more, and further preferably 25 dB or more. More preferably, it is 30 dB or more. The upper limit is usually 60 dB.
[0148] 本発明の放熱性樹脂組成物 [T]は、各種押出機、バンバリ一ミキサー、ニーダー、 ロール、フィーダ一ルーダー等に、成分〔A〕、〔B〕及び〔C〕等の原料成分を投入し、 加熱下で混練することにより製造することができる。また、この組成物 [T]は、上記本 発明の放熱性樹脂組成物 [S] (放熱性樹脂組成物 [S 1]を含む)、成分〔C〕等を混 練する方法、放熱性樹脂組成物 [S]、成分〔A〕及び〔C〕等を混練する方法、放熱性 樹脂組成物 [S]の製造方法を改良した方法等により製造することもできる。原料成分 の使用方法は特に限定されず、各々の成分を一括配合して混練してもよぐ多段、分 割配合して混練してもよい。 [0148] The heat-dissipating resin composition [T] of the present invention is a raw material component such as components [A], [B] and [C] in various extruders, Banbury mixers, kneaders, rolls, feeder rulers, etc. And can be produced by kneading under heating. Further, this composition [T] is a method of kneading the heat-dissipating resin composition [S] of the present invention (including the heat-dissipating resin composition [S1]), the component [C], etc. It can also be produced by a method of kneading the composition [S], components [A] and [C], a modified method of the heat-dissipating resin composition [S], and the like. The method of using the raw material components is not particularly limited, and each component may be mixed and kneaded in multiple steps, or may be mixed and mixed.
[0149] 本発明の成形品は、上記本発明の放熱性樹脂組成物 [S]若しくは [T]、又はそれ らの構成成分を、射出成形装置、シート押出成形装置、異形押出成形装置、中空成 形装置、圧縮成形装置、真空成形装置、発泡成形装置、ブロー成形装置、射出圧 縮成形装置、ガスアシスト成形装置、ウォーターアシスト成形装置等公知の成形装置 で加工することにより製造すること力 Sできる。即ち、本発明の成形品は、上記本発明 の放熱性樹脂組成物 [S]又は [Τ]を含む。そして、上記のように、成分〔Α〕、〔Β〕及 び〔C〕を含む、即ち、放熱性樹脂組成物 [T]を含む成形品を、電子顕微鏡等により 観察することにより、成分〔C〕のアスペクト比及び平均粒子径はり詳細には、数平均
粒子径)を求めることができる。得られたアスペクト比及び平均粒子径は、通常、それ ぞれ、配合前の成分〔c〕のアスペクト比及び重量平均粒子径と同様である。 [0149] The molded article of the present invention comprises the above heat-dissipating resin composition [S] or [T] of the present invention, or a component thereof, an injection molding apparatus, a sheet extrusion molding apparatus, a profile extrusion molding apparatus, a hollow Manufacturing force by processing with known molding equipment such as molding equipment, compression molding equipment, vacuum molding equipment, foam molding equipment, blow molding equipment, injection compression molding equipment, gas assist molding equipment, water assist molding equipment S it can. That is, the molded product of the present invention contains the heat-dissipating resin composition [S] or [Τ] of the present invention. Then, as described above, the molded product containing the components [Α], [Β] and [C], that is, containing the heat-dissipating resin composition [T] is observed with an electron microscope or the like, and the component [ C) aspect ratio and average particle diameter Particle diameter) can be obtained. The obtained aspect ratio and average particle diameter are usually the same as the aspect ratio and weight average particle diameter of the component [c] before blending, respectively.
[0150] 上記成形装置を用いて放熱性樹脂組成物 [S]を加工する場合、成形温度及び金 型温度は、上記成分〔A〕の種類、上記の成分〔A〕及び〔B〕の含有割合等によって選 択される。また、放熱性樹脂組成物 [T]を加工する場合、成形温度及び金型温度は 、上記成分〔A〕の種類、上記の成分〔A〕、〔B〕及び〔C〕の含有割合等によって選択 される。 [0150] When the heat-dissipating resin composition [S] is processed using the molding apparatus, the molding temperature and the mold temperature include the type of the component [A], the content of the components [A] and [B]. It is selected according to the ratio. Further, when processing the heat-dissipating resin composition [T], the molding temperature and the mold temperature depend on the type of the component [A], the content ratio of the components [A], [B] and [C], etc. Selected.
例えば、上記成分〔A〕がゴム強化樹脂を含有する場合には、成形時のシリンダー 温度は、通常、 220〜300°C、好ましくは 230〜280°Cである。また、金型温度は、通 常、 50〜80。Cである。 For example, when the component [A] contains a rubber reinforced resin, the cylinder temperature during molding is usually 220 to 300 ° C, preferably 230 to 280 ° C. The mold temperature is usually 50-80. C.
上記成分〔A〕がポリカーボネート樹脂を含有する場合には、成形時のシリンダー温 度は、通常、 240〜320°C、好ましくは 260〜300°Cである。また、金型温度は、通常 、 50〜80。Cである。 When the component [A] contains a polycarbonate resin, the cylinder temperature at the time of molding is usually 240 to 320 ° C, preferably 260 to 300 ° C. The mold temperature is usually 50-80. C.
更に、上記成分〔A〕がゴム強化樹脂及びポリカーボネート樹脂を含有する場合に は、成形時のシリンダー温度は、通常、 230〜280°C、好ましくは 240〜260°Cであ る。また、金型温度は、通常、 50〜80°Cである。 Further, when the component [A] contains a rubber-reinforced resin and a polycarbonate resin, the cylinder temperature at the time of molding is usually 230 to 280 ° C, preferably 240 to 260 ° C. The mold temperature is usually 50 to 80 ° C.
尚、上記のいずれの場合にも、成形品が大型である場合には、一般に、シリンダー 温度を、上記温度より高めに設定して製造される。 In any of the above cases, when the molded product is large, the cylinder temperature is generally set higher than the above temperature.
[0151] 本発明の成形品は、上記本発明の放熱性樹脂組成物 [S]若しくは [T]、又は、他 の熱可塑性樹脂組成物 (ABS樹脂、ォレフィン系樹脂、ポリカーボネート樹脂、ポリ アミド樹脂、ポリエステル樹脂等を含む組成物)からなる部材が、表面等に配設され たものとすること力 Sできる。このような物品は、 2色成形を含む多色成形装置等を用い て製造すること力できる。また、アルミユウム、銅等の金属製部材と一体化した物品と することあでさる。 [0151] The molded product of the present invention is the above heat-dissipating resin composition [S] or [T] of the present invention, or other thermoplastic resin composition (ABS resin, olefin resin, polycarbonate resin, polyamide resin). It is possible to force the member made of a composition comprising a polyester resin or the like to be disposed on the surface or the like. Such an article can be manufactured using a multicolor molding apparatus including two-color molding. It can also be an article integrated with a metal member such as aluminum or copper.
[0152] 本発明の成形品は、 目的、用途等に応じて、任意の場所に、貫通孔、溝、凹部等を 備えてもよい。薄肉部を備える場合には、その厚さは、好ましくは lmm以上、より好ま しくは 2mm以上である。 [0152] The molded product of the present invention may be provided with a through hole, a groove, a concave portion, and the like at an arbitrary place in accordance with the purpose and application. When the thin portion is provided, the thickness is preferably 1 mm or more, more preferably 2 mm or more.
[0153] 上記放熱性樹脂組成物は、成形加工性、衝撃強度、熱伝導性及び電磁波シール
ド性に優れ、熱及び電磁波の発生源となる電子部品を内蔵するパーソナルコンビュ ータ、携帯電話等のハウジング、電子部品を実装する基板、放熱及び電磁波シール ド性が要求されるパネル、 CPUのヒートシンク、放熱フィン、ファン、パッキン等の材料 として好適である。 [0153] The heat-dissipating resin composition comprises molding processability, impact strength, thermal conductivity, and electromagnetic wave sealing. Personal computer with built-in electronic components that generate heat and electromagnetic waves, housings for mobile phones, substrates for mounting electronic components, panels that require heat dissipation and electromagnetic shielding, and CPU It is suitable as a material for heat sinks, radiating fins, fans, packings, etc.
実施例 Example
[0154] 以下に、実施例を挙げ、本発明を更に詳細に説明するが、本発明の主旨を超えな い限り、本発明は力、かる実施例に限定されるものではない、尚、下記において、部及 び%は、特に断らない限り、質量基準である。 [0154] Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples unless it exceeds the gist of the present invention. Unless otherwise specified, parts and percentages are on a mass basis.
[0155] 1.原料成分 [0155] 1. Raw material components
放熱性樹脂組成物の製造に用いた原料成分を以下に示す。 The raw material components used in the production of the heat radiating resin composition are shown below.
[0156] 1— 1 ·成分〔A〕 [0156] 1-1 component (A)
(1)ジェン系ゴム強化ビュル系樹脂 (A— 1) (1) Gen-based rubber reinforced Bull resin (A— 1)
ジェン系ゴム質重合体として、重量平均分子量 280nm及びトルエン不溶分 80% のポリブタジエンゴム粒子を含むラテックスの存在下に、スチレン及びアクリロニトリル を乳化重合して得られた、ポリブタジエンゴムの含有量が 41. 5%、スチレン単位量 力 3. 5%、及び、アクリロニトリル単位量が 15%であるジェン系ゴム強化ビュル系樹 脂を用いた。このジェン系ゴム強化ビュル系樹脂のグラフト率は 55%であり、アセトン 可溶分の極限粘度 [ 7] ] (メチルェチルケトン中、 30°Cで測定)は 0· 45dl/gである。 The content of polybutadiene rubber obtained by emulsion polymerization of styrene and acrylonitrile in the presence of latex containing polybutadiene rubber particles having a weight average molecular weight of 280 nm and toluene-insoluble content of 80% as a gen-based rubbery polymer is 41. A gen-based rubber reinforced bull resin with 5% styrene unit strength of 3.5% and acrylonitrile unit content of 15% was used. The graft rate of this gen-based rubber-reinforced bulle resin is 55%, and the intrinsic viscosity [7]] (measured in methyl ethyl ketone at 30 ° C) of acetone-soluble component is 0 · 45 dl / g.
[0157] (2)アクリロニトリル 'スチレン樹脂 (A— 2) [0157] (2) Acrylonitrile 'styrene resin (A-2)
スチレン単位量が 74. 5%、及び、アクリロニトリル単位量が 25. 5%である共重合 体を用いた。極限粘度 [ 7] ] (メチルェチルケトン中、 30°Cで測定)は 0· 60dl/gであ A copolymer having a styrene unit amount of 74.5% and an acrylonitrile unit amount of 25.5% was used. Intrinsic viscosity [7]] (measured in methyl ethyl ketone at 30 ° C) is 0 · 60dl / g
[0158] (3)ポリカーボネート樹脂 (A— 3) [0158] (3) Polycarbonate resin (A— 3)
三菱エンジニアリングプラスチックス社製の「NOVAREX 7022PJ」(商品名)を用 いた。 GPCによる粘度平均分子量は 22, 000である。 “NOVAREX 7022PJ” (trade name) manufactured by Mitsubishi Engineering Plastics was used. The viscosity average molecular weight by GPC is 22,000.
[0159] (4)ABS樹脂 (A— 4) [0159] (4) ABS resin (A— 4)
テクノポリマー社製の「テクノ ABS 330」(商品名)を用いた。 “Techno ABS 330” (trade name) manufactured by Techno Polymer Co., Ltd. was used.
[0160] 1 2·成分〔B〕
ナノカーボンテクノロジーズ社製の炭素繊維構造体「MWNT(Malti Wall Carb on)」(商品名)を用いた。炭素繊維部の外径は 20〜60nm、円相当平均径(面積基 準)は数〜数十 mである。 [0160] 1 2 · Component [B] A carbon fiber structure “MWNT (Malti Wall Carbon)” (trade name) manufactured by Nano Carbon Technologies was used. The outer diameter of the carbon fiber part is 20 to 60 nm, and the average equivalent circle diameter (area standard) is several to several tens of meters.
[0161] 1 3.成分〔C〕 [0161] 1 3. Ingredient [C]
(1)鱗片状黒鉛 (C 1) (1) flaky graphite (C 1)
中越黒鉛工業所社製、「HF— 150A」(商品名)を用いた。アスペクト比は 16、重量 平均粒子径は 161 m、固定炭素量は 99. 8%である。また、 D /Ό は 2. 7であ “HF-150A” (trade name) manufactured by Chuetsu Graphite Industries Co., Ltd. was used. The aspect ratio is 16, the weight average particle size is 161 m, and the fixed carbon content is 99.8%. And D / Ό is 2.7
80 20 80 20
(2)球状黒鉛 (C 2) (2) Spheroidal graphite (C 2)
中越黒鉛工業所社製、「WF— 015」(商品名)を用いた。アスペクト比は 1、重量平 均粒子径は 16. 8μΐ ^固定炭素量は 99. 7%である。また、 D /Ό は 1. 7である “WF-015” (trade name) manufactured by Chuetsu Graphite Industries Co., Ltd. was used. The aspect ratio is 1, the weight average particle size is 16.8μΐ ^ the fixed carbon content is 99.7%. And D / Ό is 1.7
80 20 80 20
〇 Yes
[0162] 1-4.直線状炭素繊維 (Ε— 1) [0162] 1-4. Linear carbon fiber (Ε— 1)
比較例のために、昭和電工社製の気相法炭素繊維「VGCF」(商品名)を用いた。 平均繊維径は 150nm、平均繊維長は 10 μ mである。 As a comparative example, a vapor grown carbon fiber “VGCF” (trade name) manufactured by Showa Denko KK was used. The average fiber diameter is 150 nm and the average fiber length is 10 μm.
[0163] 1-5.マスターバッチ [0163] 1-5. Masterbatch
(l)MB-l (l) MB-l
上記ポリカーボネート樹脂 (A— 3) 80%と、上記成分〔B〕20%とを、 280°Cで溶融 混練して得られたマスターバッチを用いた。 A master batch obtained by melting and kneading 80% of the polycarbonate resin (A-3) and 20% of the component [B] at 280 ° C. was used.
[0164] (2)MB— 2 [0164] (2) MB— 2
上記八83樹脂(八ー4)85%と、上記成分〔B〕15%とを、 260°Cで溶融混練して得 られたマスターバッチを用いた。 A master batch obtained by melt-kneading 85% of the above 883 resin (8-4) and 15% of the above component [B] at 260 ° C. was used.
[0165] (3)MB— 3 [0165] (3) MB— 3
上記 ABS樹脂 (A—4)90%と、上記成分〔B〕10%とを、 260°Cで溶融混練して得 られたマスターバッチを用いた。 A master batch obtained by melting and kneading 90% of the ABS resin (A-4) and 10% of the component [B] at 260 ° C. was used.
[0166] 1— 6.添加剤 [0166] 1— 6. Additive
(1)難燃剤 (FR) (1) Flame retardant (FR)
大八化学社製の芳香族縮合リン酸エステル系難燃剤「PX— 200」(商品名)を用い
た。 Using aromatic condensed phosphate ester flame retardant “PX-200” (trade name) manufactured by Daihachi Chemical Co., Ltd. It was.
(2)酸化防止剤 (AO— 1) (2) Antioxidant (AO— 1)
アデ力社製のホスファイト系酸化防止剤「アデカスタブ PEP— 36」(商品名)を用い た。 The phosphite antioxidant “ADK STAB PEP-36” (trade name) manufactured by Ade Riki Co., Ltd. was used.
(3)酸化防止剤 (AO— 2) (3) Antioxidant (AO-2)
アデ力社製のヒンダードフエノール系酸化防止剤「アデカスタブ AO— 60」(商品名 )を用いた。 The hindered phenolic antioxidant “Adekastab AO-60” (trade name) manufactured by Ade Riki Co., Ltd. was used.
[0167] 2.放熱性樹脂組成物の評価項目 [0167] 2. Evaluation items of heat-dissipating resin composition
(1)熱伝導率 (1) Thermal conductivity
放熱性樹脂組成物からなるペレットを用い、その溶融物を、直径 10mm及び長さ 5 0mmの円柱形のキヤビティ空間を有する金型(金型温度; 50〜80°C)の、下面中心 に位置するゲートから射出成形し、直径 10mm及び長さ 50mmの円柱体を作製した 。その後、長さ方向のほぼ中央部において、厚さが 1. 5mmの円板となるように切り 出し、これを試験片(直径 10mm及び厚さ 1. 5mm)とした。放熱性樹脂組成物の流 動方向の熱伝導率を測定するために、この試験片における上面及び下面の各表面 にプローブを当て、アルバック理工社製のレーザーフラッシュ法熱定数測定装置「T R— 7000R型)を用い、室温(25°C)における熱伝導率を測定した。測定値の単位は 、 W/ (m.K)である。 Using pellets made of a heat-dissipating resin composition, the melt is located at the center of the bottom surface of a mold (mold temperature: 50 to 80 ° C) with a cylindrical cavity space with a diameter of 10 mm and a length of 50 mm. A cylinder with a diameter of 10 mm and a length of 50 mm was produced by injection molding from the gate. After that, it was cut out in a substantially central part in the length direction so as to be a disc having a thickness of 1.5 mm, and this was used as a test piece (diameter 10 mm and thickness 1.5 mm). In order to measure the thermal conductivity in the flow direction of the heat-dissipating resin composition, a probe is applied to each of the upper and lower surfaces of this test piece, and the laser flash method thermal constant measuring device “TR-7000R” manufactured by ULVAC-RIKO. The thermal conductivity at room temperature (25 ° C.) was measured using a mold, and the unit of the measured value was W / (mK).
[0168] (2)シャルピー衝撃強さ [0168] (2) Charpy impact strength
試験片を、 JSW社製の射出成形機「J— 100E型」を用いて作製し、 IS0179に準じ て、下記条件でシャルピー衝撃強さ(Edgewise Impact,ノッチ付き)を測定した。 測定値の単位は、 kj/m2である。 A test piece was produced using an injection molding machine “J-100E type” manufactured by JSW, and Charpy impact strength (Edgewise Impact, with notch) was measured according to IS0179 under the following conditions. The unit of measurement value is kj / m 2 .
試験片タイプ ; Type 1 Specimen type; Type 1
ノッチタイプ ; Type A Notch type; Type A
荷重 ; 2J Load ; 2J
温度 ; 室温 Temperature; room temperature
[0169] (3)表面固有抵抗 [0169] (3) Surface resistivity
試験片(直径 lOOmmX厚さ 2mmの円板)を、東芝機械社製の射出成形機「IS25
EP型」を用いて作製し、 JIS K6911— 1995に準じて測定した。尚、抵抗値は、そ の値により、表 1に示す各測定器を使い分けて測定した。抵抗値の単位は、 Ωである The test piece (diameter lOOmmX thickness 2mm disc) is manufactured by Toshiba Machine Co., Ltd. EP type "was prepared and measured according to JIS K6911-1995. The resistance value was measured by using each measuring instrument shown in Table 1 according to the value. The unit of resistance is Ω
[0171] (4)引張伸び [0171] (4) Tensile elongation
試験片を、 JSW社製の射出成形機「J— 100E型」を用いて作製し、 IS0527に準じ 、島津製作所製の精密万能試験機「オートグラフ AG5000E型」を用いて測定した。 測定値の単位は、% (歪み)である。 A test piece was prepared using an injection molding machine “J-100E type” manufactured by JSW, and measured using a precision universal testing machine “Autograph AG5000E type” manufactured by Shimadzu Corporation according to IS0527. The unit of measurement is% (distortion).
[0172] (5)メルトマスフローレート [0172] (5) Melt mass flow rate
ISO 1133に準じ、測定温度 240°C、荷重 98N及び 196Nの条件で測定した。測定 値の単位は、 g/10分である。 According to ISO 1133, measurement was performed under the conditions of a measurement temperature of 240 ° C and a load of 98N and 196N. The unit of measurement is g / 10 minutes.
[0173] (6)熱変形温度 [0173] (6) Thermal deformation temperature
試験片を、 JSW社製の射出成形機「J— 100E型」を用いて作製し、 IS075に準じ、 荷重 1. 80MPaの条件で測定した。測定値の単位は、 °Cである。 A test piece was prepared using an injection molding machine “J-100E type” manufactured by JSW, and measured under a load of 1.80 MPa in accordance with IS075. The unit of measurement is ° C.
[0174] (7)電磁波シールド性 [0174] (7) Electromagnetic shielding
アドバンテスト社製のスペクトラムアナライザ「R3361A型」、及び、「TR1730A型」 を用い、 100MHzの周波数における電磁波の反射性を測定し、電磁波シールド性 を評価した。測定値の単位は、 dBである。試験片は、長さ 150mm X幅 150mmX 厚さ 3mmの平板型キヤビティを有する金型を用い、射出成形により作製した。 Using the spectrum analyzer “R3361A type” and “TR1730A type” manufactured by Advantest Corporation, the electromagnetic wave reflectivity at a frequency of 100 MHz was measured, and the electromagnetic wave shielding property was evaluated. The unit of measurement is dB. The test piece was prepared by injection molding using a mold having a flat plate type cavity of 150 mm length × 150 mm width × 3 mm thickness.
尚、一般に、電磁波シールド効果とは、入射電磁波エネルギーをどの程度減衰さ せることができるかの指標であり、 目安は、以下の通りである。 In general, the electromagnetic shielding effect is an index of how much incident electromagnetic wave energy can be attenuated, and the standard is as follows.
0〜; !OdB;電磁波シールド効果はほとんどな!/、。
10〜30dB;電磁波シールド効果として最低限度。 0 ~;! OdB; almost no electromagnetic shielding effect! /. 10 to 30 dB; minimum level of electromagnetic shielding effect.
30〜60dB;電磁波シールド効果は平均レベル。 30-60dB; electromagnetic wave shielding effect is an average level.
60〜90dB;電磁波シールド効果がかなりあり。 60-90dB; There is a considerable electromagnetic shielding effect.
90dB以上 ;電磁波シールド効果として最高級。 90dB or more: Highest grade of electromagnetic shielding effect.
[0175] (8)熱籠もり試験 [0175] (8) Thermal fogging test
温度 25°Cの部屋に、対流の影響を防止するため、高さ lm、幅 lmのアクリル樹脂 製カバーを設置し、その中心部に、図 1に示すような、ポリカーボネート(PC)製枠部 材 (符号 1)で構成された枠体の 4面 (底面、天面、両側面)に評価に供する平板 (符 号 2) ( 150mm X 150mm X 3mm)を装入して、立方体の箱を形成した。尚、この箱 の前後 2面は PC製の壁面にて構成されている。そして、箱の底面の中心にシリコン ゴムヒーター(符号 3) (lOOmmX lOOmm X l . 7mm)を設置し、シリコンゴムヒータ 一(符号 3)に電圧 40V(32W)で通電し、 60分後、図 1における各測定点 (T1;シリ コンゴムヒーターの表面、 T2 ;底面の裏側で、側面より 10mm離れた位置、 T3 ;天面 内側から 75. Omm下方で、側面より 10mm離れた位置)の温度を測定した。 To prevent the influence of convection in a room at a temperature of 25 ° C, an acrylic resin cover with a height of lm and a width of lm is installed, and a polycarbonate (PC) frame as shown in Fig. 1 is installed at the center. Insert the flat plate (symbol 2) (150mm x 150mm x 3mm) to be used for evaluation into the four sides (bottom, top, and both sides) of the frame composed of the material (symbol 1). Formed. The front and rear surfaces of this box are made of PC walls. Then, install a silicone rubber heater (reference 3) (lOOmmXlOOmm X l.7mm) in the center of the bottom of the box, energize the silicon rubber heater 1 (reference 3) at a voltage of 40V (32W), and after 60 minutes, Temperature at each measurement point in T1 (T1; silicon rubber heater surface, T2; back side of bottom surface, 10 mm away from side surface, T3: 75.Omm below top surface, 10 mm away from side surface) Was measured.
この熱籠もり試験において、 T2が高ぐ T1及び T3が低いほど、放熱性が良好であ る。樹脂の熱伝導率が高ければ、ヒーターから発生した熱を伝導しやすいため、 T2 の温度が上昇しやすい。また、外部への放熱性に優れるほど、箱内における熱籠もり が生じに《、 T3の温度は低くなる。更に、樹脂の熱伝導率が高ぐ放熱性に優れる ほど、ヒーターから発生する熱は奪われやすくなるため、 T1の温度は低下しやすい。 In this thermal cloud test, the heat dissipation is better as T2 is higher and T1 and T3 are lower. If the thermal conductivity of the resin is high, the heat generated from the heater is easy to conduct, so the T2 temperature tends to rise. In addition, the better the heat dissipation to the outside, the more heat is trapped in the box, and the T3 temperature becomes lower. Furthermore, the higher the heat conductivity of the resin and the better the heat dissipation, the more easily the heat generated from the heater is taken away, so the temperature of T1 tends to decrease.
[0176] 3.放熱性樹脂組成物の製造及び評価 (I) [0176] 3. Production and Evaluation of Heat Dissipating Resin Composition (I)
実施例 1 1 9及び比較例 1 1 3 Example 1 1 9 and Comparative Example 1 1 3
表 2及び表 3の原料成分を、ヘンシェルミキサーにより混合した後、二軸押出機を用 いて溶融混練(シリンダー温度 240 280°C)した。次いで、ペレット化し、放熱性樹 脂組成物を得た。得られた樹脂組成物について、各種評価を行い、その結果を表 2 及び表 3に併記した。 The raw material components in Table 2 and Table 3 were mixed using a Henschel mixer and then melt-kneaded (cylinder temperature 240 280 ° C) using a twin screw extruder. Subsequently, it pelletized and the heat-radiating resin composition was obtained. Various evaluations were performed on the obtained resin compositions, and the results are shown in Tables 2 and 3.
[0177] [表 2]
〔〕 [0177] [Table 2] []
表 2 Table 2
*1 A— 1、A_2及び A— 4の合計量である。 *2 成分〔A〕 100部に対する割合である。
* 1 The total amount of A—1, A_2 and A—4. * 2 Percentage for 100 parts of component [A].
表 3 Table 3
A— 1、 A— 2及び A— 4の合計量である。 The total amount of A-1, A-2 and A-4.
成分〔A〕 1 00部に対する割合である。 Ingredient [A] is a ratio with respect to 100 parts.
[0179] 表 3より、比較例 1 1は、成分〔B〕を含有しない例であり、熱伝導率が低ぐ熱籠も り試験結果も十分でなぐ放熱性に劣っていた。比較例 1 2は、成分〔B〕の含有量 1S 成分〔A〕 100部に対し、 0. 5部と少ない例であり、熱伝導率が低ぐ熱籠もり試験 結果も十分でなぐ放熱性に劣っていた。比較例 1 3は、成分〔B〕の代わりに直線 状炭素繊維 (E— 1)を用いた例であり、熱伝導率が低ぐ熱籠もり試験結果も十分で なぐ放熱性に劣っていた。また、流動性にも劣っていた。 [0179] From Table 3, Comparative Example 11 was an example containing no component [B], and the heat conductivity was low and the heat dissipation test result was insufficient, and the heat dissipation was inferior. Comparative Example 12 is an example where the content of component [B] is as small as 0.5 parts per 100 parts of 1S component [A], and the heat dissipation test results with a low thermal conductivity and sufficient heat dissipation It was inferior to. Comparative Example 13 is an example in which linear carbon fiber (E-1) was used in place of component [B], and the heat dissipation test result with low thermal conductivity was insufficient and the heat dissipation was inferior. . Moreover, it was also inferior in fluidity.
[0180] 一方、表 2より、実施例 1一;!〜 1 3、 1 5及び 1 7〜;!一 9は、熱伝導率に優れ 、熱籠もり試験結果も良好なことから放熱性に優れていた。更に、成形加工性及び耐 衝撃性のバランス、電磁波シールド性に優れていた。特に実施例 1 1及び 1 2は 、放熱性、成形加工性及び耐衝撃性のバランスが高度に発揮されていた。 [0180] On the other hand, from Table 2, Examples 1 1 ;! to 1 3, 1 5 and 17 to;! 1 9 are excellent in heat conductivity and also have good heat dissipation test results. It was excellent. Furthermore, it was excellent in the balance of molding processability and impact resistance and electromagnetic shielding properties. In particular, Examples 11 and 12 exhibited a high balance of heat dissipation, molding processability and impact resistance.
また、実施例 1 2及び実施例 1 5は、いずれも、成分〔B〕の含有量が 13. 6%で
ある例であり、ポリカーボネート樹脂(PC)を含むマスターバッチを用いた実施例 1 2のほうが、 ABS樹脂を含むマスターバッチを用いた実施例 1 5よりも熱伝導性に 優れること力 S分力、る。これは、成分〔B〕の相溶性力 S、 ABS系樹脂におけるよりもポリ力 ーボネート樹脂におけるほうが高いためと推測される。 Further, in both Example 12 and Example 15, the content of the component [B] is 13.6%. As an example, Example 1 2 using a masterbatch containing polycarbonate resin (PC) has better thermal conductivity than Example 15 using a masterbatch containing ABS resin. The This is presumed to be due to the higher compatibility of component [B] in the strength of S and the strength of the polycarbonate resin than in the ABS resin.
難燃剤を配合した実施例 1—7は、難燃性 V— 0を達成した。 Examples 1-7 containing a flame retardant achieved flame retardancy V-0.
[0181] 4.放熱性樹脂組成物の製造及び評価 (II) [0181] 4. Production and evaluation of heat-dissipating resin composition (II)
実施例 2—;!〜 2— 8及び比較例 2—;!〜 2— 3 Example 2 — ;! ~ 2-8 and Comparative Example 2 — ;! ~ 2-3
表 4〜表 6の原料成分を、ヘンシェルミキサーにより混合した後、二軸押出機を用い て溶融混練(シリンダー温度 240〜280°C)した。次いで、ペレット化し、放熱性樹脂 組成物を得た。得られた樹脂組成物について、各種評価を行い、その結果を表 4〜 表 6に併記した。 The raw material components shown in Table 4 to Table 6 were mixed by a Henschel mixer and then melt-kneaded (cylinder temperature 240 to 280 ° C) using a twin screw extruder. Subsequently, it pelletized and the heat-radiating resin composition was obtained. Various evaluation was performed about the obtained resin composition, and the result was written together in Table 4-Table 6. FIG.
[0182] [表 4]
[0182] [Table 4]
表 4 Table 4
成分〔A〕 1 00部に対する割合である。 Ingredient [A] is a ratio with respect to 100 parts.
成分〔B〕及び成分〔C〕の合計を 1 00%とした。 The sum of component [B] and component [C] was 100%.
5]
表 5 Five] Table 5
* 1 成分〔A〕 100部に対する割合である。 * 1 Percentage of 100 parts of component [A].
*2 成分〔B〕及び成分〔G〕の合計を 100%とした。 * 2 The total of component [B] and component [G] was 100%.
6]
表 6 6] Table 6
* 1 成分!: A〕1 00部に対する割合である。 * 1 component !: A] The ratio to 100 parts.
* 2 成分〔B〕及び成分〔C〕の合計を 1 00%とした。 * 2 The total of component [B] and component [C] was 100%.
[0185] 表 6より、比較例 2— 1及び 2— 2は、成分〔C〕を含有しない例であり、熱伝導率が低 ぐ電磁波シールド効果に劣っていた。比較例 2— 3も、成分〔C〕を含有しない例であ るが、熱伝導率が低ぐまた、流動性が十分でなかった。 [0185] From Table 6, Comparative Examples 2-1 and 2-2 are examples containing no component [C], and the heat conductivity was low and the electromagnetic wave shielding effect was poor. Comparative Examples 2-3 are also examples not containing the component [C], but the thermal conductivity was low and the fluidity was not sufficient.
[0186] 一方、表 4及び表 5より、実施例 2— ;!〜 2— 8は、熱伝導率に優れ、熱籠もり試験結 果も良好なことから放熱性に優れていた。更に、成形加工性及び耐衝撃性のバラン ス、熱伝導性及び電磁波シールド性に優れて!/、た。
[0187] 尚、放熱性に優れ、且つ、成形加工性及び耐衝撃性のバランスに優れ、更には熱 伝導性及び電磁波シールド性にも優れた放熱性樹脂組成物として、 〔A〕熱可塑性 樹脂、〔B'〕炭素繊維構造体、及び、〔C〕黒鉛粒子、を含有し、上記炭素繊維構造体 〔Β'〕及び上記黒鉛粒子〔C〕の含有量が、上記熱可塑性樹脂〔A〕を 100質量部とし た場合に、それぞれ、;!〜 80質量部及び 10〜300質量部である組成物を用いること ができる。 [0186] On the other hand, from Table 4 and Table 5, Examples 2— ;! to 2-8 were excellent in heat dissipation due to their excellent thermal conductivity and good results of the hot flash test. Furthermore, it has excellent moldability and impact resistance balance, thermal conductivity and electromagnetic shielding properties. [0187] In addition, as a heat-dissipating resin composition having excellent heat dissipation, a good balance between molding processability and impact resistance, and also excellent in thermal conductivity and electromagnetic wave shielding properties, [A] thermoplastic resin , [B ′] carbon fiber structure, and [C] graphite particles, the content of the carbon fiber structure [Β ′] and the graphite particles [C] is the thermoplastic resin [A] When 100 parts by mass is used, compositions of !! to 80 parts by mass and 10 to 300 parts by mass, respectively, can be used.
上記炭素繊維構造体〔B'〕としては、外径が限定されない炭素繊維部 (例えば、 10 Onmより大きい外径を有する炭素繊維部;外径が 15〜; !OOnmの範囲にある炭素繊 維部と、 lOOnmより大きい炭素繊維部とが混在したもの等)と、多数本の炭素繊維部 を接合する接合部とを備える構造体等を用いることができる。 Examples of the carbon fiber structure [B ′] include a carbon fiber portion whose outer diameter is not limited (for example, a carbon fiber portion having an outer diameter larger than 10 Onm; an outer diameter of 15 to; carbon fiber in the range of OOnm. And a structure having a bonding portion for bonding a large number of carbon fiber portions can be used.
好まし!/ヽ熱可塑性樹脂〔A〕及び黒鉛粒子〔C〕の種類及び含有割合は、本発明の 放熱性樹脂組成物と同様である。また、好ましい炭素繊維構造体〔B'〕の含有割合 は、本発明の放熱性樹脂組成物に含有される炭素繊維構造体〔B〕と同様とすること ができる。 The types and content ratios of the preferred! / ヽ thermoplastic resin [A] and the graphite particles [C] are the same as those of the heat dissipating resin composition of the present invention. Further, the preferable content ratio of the carbon fiber structure [B ′] can be the same as that of the carbon fiber structure [B] contained in the heat-dissipating resin composition of the present invention.
産業上の利用可能性 Industrial applicability
[0188] 本発明の放熱性樹脂組成物は、成形加工性及び耐衝撃性のバランスに優れること から、適用する製品の形状の自由度が高い。また、金属材料よりも放熱性に優れ、電 磁波シールド性にも優れた成形品とすることができる。従って、ハウジング、基板、パ ネル、ヒートシンク、加熱フィン、ファン、パッキン等として用いることができる。これらの 部材は、回路基板、チップ、サーマルヘッド、モーター等の電子部品;テレビ、ラジオ 、カメラ、ビデオカメラ、オーディオ、ビデオ、照明具等の電子機器等に好適であり、 電子部品等から熱を外部に逃がすためのハウジング、ヒートシンク及びファン;ォー ディォバックパネル;液晶、プラズマテレビ等の表示板固定部材等に好適である。
[0188] Since the heat-dissipating resin composition of the present invention is excellent in the balance between moldability and impact resistance, the degree of freedom of the shape of the product to be applied is high. In addition, it is possible to obtain a molded product that is more excellent in heat dissipation than a metal material and excellent in electromagnetic wave shielding properties. Therefore, it can be used as a housing, a substrate, a panel, a heat sink, a heating fin, a fan, a packing, and the like. These members are suitable for electronic components such as circuit boards, chips, thermal heads, motors, etc .; electronic devices such as televisions, radios, cameras, video cameras, audios, videos, lighting fixtures, etc. Suitable for housing, heat sink and fan for escape to outside; audio back panel; display plate fixing member such as liquid crystal and plasma television.
Claims
請求の範囲 The scope of the claims
[1] 〔A〕熱可塑性樹脂、及び、〔B〕外径 15〜; !OOnmの炭素繊維部と、多数本の該炭 素繊維部を接合する接合部とを備え、 3次元ネットワーク構造を有する炭素繊維構造 体、を含有し、 [1] [A] a thermoplastic resin, and [B] an outer diameter of 15 to; a carbon fiber part of OOnm and a joint part for joining a large number of carbon fiber parts, and having a three-dimensional network structure A carbon fiber structure having,
上記炭素繊維構造体〔B〕の含有量は、上記熱可塑性樹脂〔A〕を 100質量部とした 場合に、;!〜 80質量部であることを特徴とする放熱性樹脂組成物。 The heat-dissipating resin composition is characterized in that the content of the carbon fiber structure [B] is from! To 80 parts by mass when the thermoplastic resin [A] is 100 parts by mass.
[2] 上記熱可塑性樹脂〔A〕が、ゴム質重合体の存在下に、芳香族ビュル化合物を含 むビュル系単量体 (bl)を重合して得られたゴム強化ビュル系樹脂、又は、該ゴム強 化ビュル系樹脂と、ビュル系単量体 (b2)の(共)重合体とからなる混合物、であるゴ ム強化樹脂、及び、ポリカーボネート樹脂を含有し、且つ、該ゴム強化樹脂及び該ポ リカーボネート樹脂の含有割合が、これらの含有量の合計を 100質量%とした場合に 、それぞれ、;!〜 80質量%及び 99〜20質量%である請求項 1に記載の放熱性樹脂 組成物。 [2] The thermoplastic resin [A] is a rubber-reinforced bull resin obtained by polymerizing a bull monomer (bl) containing an aromatic bull compound in the presence of a rubber polymer, or A rubber-reinforced resin that is a mixture of the rubber-reinforced bulle resin and a (co) polymer of the bulur monomer (b2), and a polycarbonate resin, and the rubber-reinforced resin And the content ratio of the polycarbonate resin is, respectively, !!-80 mass% and 99-20 mass% when the total of these contents is 100 mass%, respectively. Resin composition.
[3] 上記ポリカーボネート樹脂 50〜95質量%及び上記炭素繊維構造体〔B〕50〜5質 量% (但し、これらの合計は 100質量%である。)からなる混合物又は混練物と、上記 ゴム強化樹脂とが溶融混練されてなり、上記ポリカーボネート樹脂及び上記ゴム強化 樹脂の合計を 100質量部とした場合に、上記炭素繊維構造体〔B〕の含有量が;!〜 8 0質量部である請求項 2に記載の放熱性樹脂組成物。 [3] A mixture or kneaded material comprising 50 to 95% by mass of the polycarbonate resin and 50 to 5% by mass of the carbon fiber structure [B] (however, the total of these is 100% by mass) and the rubber When the total of the polycarbonate resin and the rubber reinforced resin is 100 parts by mass, the content of the carbon fiber structure [B] is from! To 80 parts by mass. The heat-radiating resin composition according to claim 2.
[4] 更に、難燃剤を含有し、該難燃剤の含有量が、上記熱可塑性樹脂〔A〕を 100質量 部とした場合に、;!〜 30質量部である請求項 1乃至 3のいずれかに記載の放熱性樹 脂組成物。 [4] The composition according to any one of claims 1 to 3, further comprising a flame retardant, wherein the content of the flame retardant is from! To 30 parts by mass when the thermoplastic resin [A] is 100 parts by mass. A heat-dissipating resin composition according to claim 1.
[5] 熱伝導率が 3W/ (m'K)以上である請求項 1乃至 4のいずれかに記載の放熱性 樹脂組成物。 [5] The heat-dissipating resin composition according to any one of claims 1 to 4, wherein the heat conductivity is 3 W / (m′K) or more.
[6] シャルピー衝撃強さが 5kj/m2以上であり、且つ、メルトマスフローレートが 5g/10 分以上である請求項 1乃至 5のいずれかに記載の放熱性樹脂組成物。 6. The heat-dissipating resin composition according to any one of claims 1 to 5, wherein the Charpy impact strength is 5 kj / m 2 or more and the melt mass flow rate is 5 g / 10 minutes or more.
[7] 100MHzの周波数における電磁波シールド性が 30dB以上である請求項 1乃至 6 の!/、ずれかに記載の放熱性樹脂組成物。 7. The heat-dissipating resin composition according to any one of claims 1 to 6, wherein the electromagnetic wave shielding property at a frequency of 100 MHz is 30 dB or more.
[8] 請求項 1に記載の放熱性樹脂組成物の製造方法であって、
上記熱可塑性樹脂〔A〕の一部と、上記炭素繊維構造体〔B〕の少なくとも一部とを 溶融混練する第 1混合工程と、 [8] A method for producing the heat-dissipating resin composition according to claim 1, A first mixing step of melt-kneading a part of the thermoplastic resin [A] and at least a part of the carbon fiber structure [B];
上記第 1混合工程により得られた混練物と、上記熱可塑性樹脂〔A〕の残部と、上記 炭素繊維構造体〔B〕の残部とを、溶融混練する第 2混合工程と、 A second mixing step in which the kneaded product obtained in the first mixing step, the remainder of the thermoplastic resin [A], and the remainder of the carbon fiber structure [B] are melt-kneaded;
を備えることを特徴とする放熱性樹脂組成物の製造方法。 A process for producing a heat-dissipating resin composition, comprising:
上記第 1混合工程において、上記炭素繊維構造体〔B〕を全量使用し、上記熱可塑 性樹脂〔A〕及び上記炭素繊維構造体〔B〕の使用割合が、それぞれ、 50〜95質量 %及び 50〜5質量% (但し、これらの合計は 100質量%である。)であり、且つ、 上記第 2混合工程において、上記第 1混合工程により得られた混練物と、上記熱可 塑性樹脂〔A〕の残部と、を溶融混練する請求項 8に記載の放熱性樹脂組成物の製 造方法。 In the first mixing step, the total amount of the carbon fiber structure [B] is used, and the usage ratio of the thermoplastic resin [A] and the carbon fiber structure [B] is 50 to 95% by mass and 50 to 5% by mass (however, the total of these is 100% by mass), and in the second mixing step, the kneaded product obtained in the first mixing step and the thermoplastic resin [ The method for producing a heat-dissipating resin composition according to claim 8, wherein the remainder of A] is melt-kneaded.
請求項 2に記載の放熱性樹脂組成物の製造方法であって、 A method for producing a heat-dissipating resin composition according to claim 2,
上記ポリカーボネート樹脂と、上記炭素繊維構造体〔B〕の少なくとも一部とを溶融 混練する第 1混合工程と、 A first mixing step of melt-kneading the polycarbonate resin and at least a part of the carbon fiber structure [B];
上記第 1混合工程により得られた混練物と、上記ゴム強化樹脂と、上記炭素繊維構 造体〔B〕の残部と、を溶融混練する第 2混合工程と、 A second mixing step of melt-kneading the kneaded product obtained in the first mixing step, the rubber-reinforced resin, and the remainder of the carbon fiber structure [B],
を備えることを特徴とする放熱性樹脂組成物の製造方法。 A process for producing a heat-dissipating resin composition, comprising:
上記第 1混合工程において、上記炭素繊維構造体〔B〕を全量使用し、上記ポリ力 ーボネート樹脂及び上記炭素繊維構造体〔B〕の使用割合が、それぞれ、 50〜95質 量%及び 50〜5質量% (但し、これらの合計は 100質量%である。)であり、且つ、 上記第 2混合工程において、上記第 1混合工程により得られた混練物と、上記ゴム 強化樹脂と、を溶融混練する請求項 10に記載の放熱性樹脂組成物の製造方法。 更に、〔C〕黒鉛粒子を含有し、該黒鉛粒子〔C〕の含有量が、上記熱可塑性樹脂〔 A〕を 100質量部とした場合に、 10〜300質量部である請求項 1乃至 7のいずれかに 記載の放熱性樹脂組成物。 In the first mixing step, the total amount of the carbon fiber structure [B] is used, and the usage ratios of the polycarbonate resin and the carbon fiber structure [B] are 50 to 95% by mass and 50 to 50%, respectively. In the second mixing step, the kneaded product obtained in the first mixing step and the rubber-reinforced resin are melted. The method for producing a heat-dissipating resin composition according to claim 10, wherein the heat-dissipating resin composition is kneaded. Furthermore, it contains [C] graphite particles, and the content of the graphite particles [C] is 10 to 300 parts by mass when the thermoplastic resin [A] is 100 parts by mass. The heat-radiating resin composition according to any one of the above.
上記黒鉛粒子〔C〕が、アスペクト比が 10〜20であり、重量平均粒子径が 10〜200 であり、且つ、固定炭素量が 98質量%以上である黒鉛粒子(C1)である請求項 12に記載の放熱性樹脂組成物。
[14] 上記黒鉛粒子 (C1)の形状が鱗片状である請求項 13に記載の放熱性樹脂組成物13. The graphite particles [C] are graphite particles (C1) having an aspect ratio of 10 to 20, a weight average particle diameter of 10 to 200, and a fixed carbon content of 98% by mass or more. The heat-dissipating resin composition described in 1. 14. The heat dissipating resin composition according to claim 13, wherein the graphite particles (C1) have a scaly shape.
〇 Yes
[15] 上記黒鉛粒子(C1)の粒度分布を測定して得られた、累積重量が、それぞれ、 20 %及び 80%であるときの粒子径 D 及び D の比 D /Ό 力 ¾〜; 12である請求項 1 [15] Ratio of particle diameters D and D when cumulative weights obtained by measuring the particle size distribution of the graphite particles (C1) are 20% and 80%, respectively. Claim 1
20 80 80 20 20 80 80 20
3又は 14に記載の放熱性樹脂組成物。 The heat dissipating resin composition according to 3 or 14.
[16] 上記黒鉛粒子〔C〕が、アスペクト比が 3以下であり、重量平均粒子径が;!〜 70 111 であり、且つ、固定炭素量が 98質量%以上である黒鉛粒子(C2)である請求項 12に 記載の放熱性樹脂組成物。 [16] The graphite particles [C] are graphite particles (C2) having an aspect ratio of 3 or less, a weight average particle diameter of !! to 70 111, and a fixed carbon content of 98% by mass or more. The heat-radiating resin composition according to claim 12.
[17] 上記黒鉛粒子〔C〕が、上記黒鉛粒子 (C1)及び上記黒鉛粒子 (C2)を含む請求項 [17] The graphite particle [C] includes the graphite particle (C1) and the graphite particle (C2).
13乃至 16のいずれかに記載の放熱性樹脂組成物。 The heat dissipating resin composition according to any one of 13 to 16.
[18] 上記炭素繊維構造体〔B〕及び上記黒鉛粒子〔C〕の含有割合が、これらの含有量 の合計を 100質量%とした場合に、それぞれ、 20〜95質量%及び 80〜5質量%で ある請求項 12乃至 17のいずれ力、 1項に記載の放熱性樹脂組成物。 [18] The content ratio of the carbon fiber structure [B] and the graphite particles [C] is 20 to 95% by mass and 80 to 5% by mass, respectively, when the total of these contents is 100% by mass. The heat-dissipating resin composition according to any one of claims 12 to 17, which is%.
[19] 請求項 1乃至 7及び請求項 12乃至 18のいずれかに記載の放熱性樹脂組成物を 含むことを特徴とする成形品。
[19] A molded article comprising the heat-dissipating resin composition according to any one of claims 1 to 7 and claims 12 to 18.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006317749A JP2008127552A (en) | 2006-11-24 | 2006-11-24 | Heat-dissipating resin composition, manufacturing method thereof, and molded article therefrom |
JP2006-317750 | 2006-11-24 | ||
JP2006317750 | 2006-11-24 | ||
JP2006-317749 | 2006-11-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008062844A1 true WO2008062844A1 (en) | 2008-05-29 |
Family
ID=39429774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/072583 WO2008062844A1 (en) | 2006-11-24 | 2007-11-21 | Radiating resin compositions, process for producing the same, and molded article |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008062844A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010038704A1 (en) * | 2008-09-30 | 2010-04-08 | 保土谷化学工業株式会社 | Conductive resin composite material |
JP2012057158A (en) * | 2010-09-03 | 2012-03-22 | Sk Innovation Co Ltd | Resin composition for sheet |
WO2012043640A1 (en) * | 2010-09-30 | 2012-04-05 | 宇部興産株式会社 | Polyamide resin composition and molded article comprising same |
JP2012072340A (en) * | 2010-09-30 | 2012-04-12 | Ube Industries Ltd | Polyamide resin composition |
JP2013256579A (en) * | 2012-06-12 | 2013-12-26 | Teijin Ltd | Heat conductive polycarbonate resin composition |
JP2013256578A (en) * | 2012-06-12 | 2013-12-26 | Teijin Ltd | Heat conductive polycarbonate resin composition |
WO2015190324A1 (en) * | 2014-06-10 | 2015-12-17 | 株式会社カネカ | Heat-conductive resin composition |
CN107408543A (en) * | 2015-02-10 | 2017-11-28 | 日本瑞翁株式会社 | Heat conduction sheet and manufacturing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005062835A (en) * | 2003-07-08 | 2005-03-10 | Canon Inc | Lens barrel |
JP2006016553A (en) * | 2004-07-02 | 2006-01-19 | Canon Inc | Resin composition, molding and lens barrel molded by using the same |
JP2006306960A (en) * | 2005-04-27 | 2006-11-09 | Teijin Chem Ltd | Resin composition containing carbon nanotube, and concentrate for compounding carbon nanotube |
JP2007246878A (en) * | 2005-11-02 | 2007-09-27 | Sanyo Chem Ind Ltd | Nano-dispersed inorganic filler-containing antistatic resin composition |
-
2007
- 2007-11-21 WO PCT/JP2007/072583 patent/WO2008062844A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005062835A (en) * | 2003-07-08 | 2005-03-10 | Canon Inc | Lens barrel |
JP2006016553A (en) * | 2004-07-02 | 2006-01-19 | Canon Inc | Resin composition, molding and lens barrel molded by using the same |
JP2006306960A (en) * | 2005-04-27 | 2006-11-09 | Teijin Chem Ltd | Resin composition containing carbon nanotube, and concentrate for compounding carbon nanotube |
JP2007246878A (en) * | 2005-11-02 | 2007-09-27 | Sanyo Chem Ind Ltd | Nano-dispersed inorganic filler-containing antistatic resin composition |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010038704A1 (en) * | 2008-09-30 | 2010-04-08 | 保土谷化学工業株式会社 | Conductive resin composite material |
JP2010108925A (en) * | 2008-09-30 | 2010-05-13 | Hodogaya Chem Co Ltd | Conductive resin composite material |
JP2012057158A (en) * | 2010-09-03 | 2012-03-22 | Sk Innovation Co Ltd | Resin composition for sheet |
US9177692B2 (en) | 2010-09-30 | 2015-11-03 | Ube Industries, Ltd. | Polyamide resin composition and molded article comprising the same |
JP2012072340A (en) * | 2010-09-30 | 2012-04-12 | Ube Industries Ltd | Polyamide resin composition |
EP2623562A1 (en) * | 2010-09-30 | 2013-08-07 | Ube Industries, Ltd. | Polyamide resin composition and molded article comprising same |
EP2623562A4 (en) * | 2010-09-30 | 2015-01-21 | Ube Industries | POLYAMIDE RESIN COMPOSITION AND FORM ARTICLES THEREWITH |
WO2012043640A1 (en) * | 2010-09-30 | 2012-04-05 | 宇部興産株式会社 | Polyamide resin composition and molded article comprising same |
US9624416B2 (en) | 2010-09-30 | 2017-04-18 | Ube Industries, Ltd. | Polyamide resin composition and molded article comprising the same |
JP2013256579A (en) * | 2012-06-12 | 2013-12-26 | Teijin Ltd | Heat conductive polycarbonate resin composition |
JP2013256578A (en) * | 2012-06-12 | 2013-12-26 | Teijin Ltd | Heat conductive polycarbonate resin composition |
WO2015190324A1 (en) * | 2014-06-10 | 2015-12-17 | 株式会社カネカ | Heat-conductive resin composition |
JPWO2015190324A1 (en) * | 2014-06-10 | 2017-04-20 | 株式会社カネカ | Thermally conductive resin composition |
CN107408543A (en) * | 2015-02-10 | 2017-11-28 | 日本瑞翁株式会社 | Heat conduction sheet and manufacturing method thereof |
EP3258489A4 (en) * | 2015-02-10 | 2018-10-03 | Zeon Corporation | Heat transfer sheet and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008150595A (en) | Radiating resin composition and molded article | |
JP5225558B2 (en) | Thermally conductive resin composition and molded product | |
JP5352946B2 (en) | Heat dissipation housing | |
WO2008062844A1 (en) | Radiating resin compositions, process for producing the same, and molded article | |
CN109415557B (en) | Polycarbonate-based polymer composition with enhanced thermal conductivity and ductility and use thereof | |
WO2006126606A1 (en) | Heat-conductive resin composition and molded item containing the same | |
JP5341772B2 (en) | Conductive thermoplastic resin composition and plastic molded article | |
US8915617B2 (en) | Thermally conductive thermoplastic for light emitting diode fixture assembly | |
EP2166038B1 (en) | Flame-retardant polycarbonate resin composition and molded article thereof | |
JP2007224265A (en) | Thermoconductive resin composition and molded article | |
Inuwa et al. | Characterization and mechanical properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites | |
JP5352947B2 (en) | Heat dissipation chassis | |
CN106605310A (en) | LED lamp heat sink for vehicles | |
WO2012043219A1 (en) | Thermoplastic resin composition and molded item formed from same | |
CN108026643A (en) | Laser direct forming polyester resin composition | |
You et al. | Highly thermally conductive and mechanically robust polyamide/graphite nanoplatelet composites via mechanochemical bonding techniques with plasma treatment | |
JP2007070608A (en) | Magnesium oxide filler for compounding in resin and heat-conductive resin composition containing the same | |
JP6229796B2 (en) | Thermally conductive resin composition | |
WO2008015775A1 (en) | Heat dissipating chassis and heat dissipating case | |
JPWO2014024743A1 (en) | Insulating high thermal conductivity thermoplastic resin composition | |
JPH11302481A (en) | Styrenic resin composition and semiconductor conveyor jig | |
CN105473661A (en) | Thermally-conductive polycarbonate resin composition and molded product formed therefrom | |
JP2008033147A (en) | Toner case | |
JP2007238917A (en) | Thermally conductive resin composition and molded product | |
CN107418197B (en) | Heat-conducting nylon engineering plastic and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07832313 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07832313 Country of ref document: EP Kind code of ref document: A1 |