WO2008058199A1 - Couches d'électrocatalyseurs pour piles à combustible et leurs procédés de fabrication - Google Patents
Couches d'électrocatalyseurs pour piles à combustible et leurs procédés de fabrication Download PDFInfo
- Publication number
- WO2008058199A1 WO2008058199A1 PCT/US2007/083954 US2007083954W WO2008058199A1 WO 2008058199 A1 WO2008058199 A1 WO 2008058199A1 US 2007083954 W US2007083954 W US 2007083954W WO 2008058199 A1 WO2008058199 A1 WO 2008058199A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrocatalyst
- furfuryl alcohol
- cathode
- layer
- anode
- Prior art date
Links
- 239000010411 electrocatalyst Substances 0.000 title claims abstract description 137
- 239000000446 fuel Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 21
- 229920000368 omega-hydroxypoly(furan-2,5-diylmethylene) polymer Polymers 0.000 claims abstract description 39
- 239000012528 membrane Substances 0.000 claims abstract description 34
- 238000009792 diffusion process Methods 0.000 claims abstract description 14
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 claims description 174
- 239000000203 mixture Substances 0.000 claims description 30
- 229920000554 ionomer Polymers 0.000 claims description 26
- 239000003054 catalyst Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 18
- 230000000379 polymerizing effect Effects 0.000 claims description 8
- 238000005470 impregnation Methods 0.000 claims description 7
- 229910000531 Co alloy Inorganic materials 0.000 claims description 6
- CLBRCZAHAHECKY-UHFFFAOYSA-N [Co].[Pt] Chemical group [Co].[Pt] CLBRCZAHAHECKY-UHFFFAOYSA-N 0.000 claims description 6
- 229910001260 Pt alloy Inorganic materials 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims description 5
- 238000009826 distribution Methods 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000003880 polar aprotic solvent Substances 0.000 claims description 2
- 230000002378 acidificating effect Effects 0.000 claims 1
- 238000006116 polymerization reaction Methods 0.000 description 24
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 229920000557 Nafion® Polymers 0.000 description 13
- 235000012209 glucono delta-lactone Nutrition 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229910000510 noble metal Inorganic materials 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000005518 polymer electrolyte Substances 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- CRPUJAZIXJMDBK-UHFFFAOYSA-N camphene Chemical compound C1CC2C(=C)C(C)(C)C1C2 CRPUJAZIXJMDBK-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- SQNZJJAZBFDUTD-UHFFFAOYSA-N durene Chemical compound CC1=CC(C)=C(C)C=C1C SQNZJJAZBFDUTD-UHFFFAOYSA-N 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000002459 porosimetry Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- PXRCIOIWVGAZEP-UHFFFAOYSA-N Primaeres Camphenhydrat Natural products C1CC2C(O)(C)C(C)(C)C1C2 PXRCIOIWVGAZEP-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229930006739 camphene Natural products 0.000 description 1
- ZYPYEBYNXWUCEA-UHFFFAOYSA-N camphenilone Natural products C1CC2C(=O)C(C)(C)C1C2 ZYPYEBYNXWUCEA-UHFFFAOYSA-N 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 229920003936 perfluorinated ionomer Polymers 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007764 slot die coating Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical class FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present disclosure generally relates to electrocatalyst layers and electrochemical fuel cells, and to methods of making electrocatalyst layers for electrochemical fuel cells.
- Electrochemical fuel cells convert reactants, namely fuel and oxidant fluid streams, to generate electric power and reaction products.
- Electrochemical fuel cells generally employ a membrane electrode assembly (MEA) disposed between two separator plates that are substantially impermeable to the reactant fluid streams.
- the plates typically act as current collectors and provide support for the MEA.
- the plates may have reactant channels formed therein and act as flow field plates providing access for the reactant fluid streams, such as hydrogen gas and air, to the MEA and providing for the removal of reaction products formed during operation of the fuel cell.
- a number of fuel cells are electrically coupled in series to form a fuel cell stack.
- PEM polymer electrolyte membrane
- MEA solid polymer electrolyte or ion-exchange membrane
- the membrane acts both as a barrier for isolating the reactant streams from each other and as an electrical insulator between the two electrodes.
- a typical commercial PEM is a sulfonated perfluorocarbon membrane sold by E.I. Du Pont de Nemours and Company under the trade designation Nafion ® .
- the MEA further comprises two electrodes, each electrode disposed on opposing surfaces of the ion-exchange membrane.
- Each electrode typically comprises a porous, electrically conductive substrate, such as carbon fiber paper or carbon cloth, which provides structural support to the membrane and serves as a gas diffusion layer.
- the gas diffusion layer also contains a sublayer of carbon particles with an optional binder.
- the electrodes further comprise an electrocatalyst, disposed between the membrane and the gas diffusion layers, which is typically a precious metal composition (e.g., platinum metal black or an alloy thereof) and may be provided on a suitable electrocatalyst support (e.g., fine platinum particles supported on a carbon black support).
- the electrocatalyst may also contain an ionomer to improve proton conduction through the electrode.
- the electrode typically contains a hydrophobic material such as polytetrafluoroethylene (PTFE) to impart water management properties to the electrode.
- PTFE polytetrafluoroethylene
- Water management is a key property of the electrode because water is produced during fuel cell operation. Without adequate water removal, the product water may accumulate, creating performance losses due to increased mass transport losses, particularly at high current densities where a relatively large amount of water is produced.
- PTFE has been limited when used in electrocatalyst compositions containing an ionomer because PTFE is hydrophobic in nature and does not uniformly mix with the ionomer, which is hydrophilic.
- the high sintering temperatures required for PTFE to "flow" into the fluid diffusion layer and/or the electrocatalyst damages or destroys most ionomers.
- membrane electrode assembly comprises: an anode having an anode gas diffusion layer and an anode electrocatalyst layer; a cathode having a cathode gas diffusion layer and a cathode electrocatalyst layer; and a proton exchange membrane disposed between the anode and the cathode; wherein at least one of the anode electrocatalyst layer and the cathode electrocatalyst layers comprises polyfurfuryl alcohol.
- the cathode electrocatalyst layer comprises a platinum alloy catalyst and an ionomer. In other embodiments, the distribution of polyfurfuryl alcohol is non-uniform.
- a method of making an electrode for an electrochemical fuel cell comprises the steps of: applying an electrocatalyst composition to a sheet material; adding monomeric furfuryl alcohol to the electrocatalyst composition; and polymerizing the monomeric furfuryl alcohol after adding monomeric furfuryl alcohol and applying the catalyst composition.
- FIG. 1 is a schematic illustration of a membrane electrode assembly.
- Figure 2 is a graph showing polarization curves for fuel cells having a platinum electrocatalyst and a platinum-cobalt alloy electrocatalyst for the cathode electrode, both in combination with a Nafion ® ionomer.
- FIG 1 shows a schematic illustration of an exemplary membrane electrode assembly 10 (“MEA").
- MEAs typically include electrocatalyst layers 12,14 disposed between gas diffusion layers 16,18 (“GDL”) and a proton exchange membrane 20 (“PEM”).
- Electrocatalyst layers 12,14 usually contain an electrocatalyst, such as a noble metal, non-noble metal, and/or alloys thereof, combined with an ionomer to increase proton conductivity within the electrocatalyst layers.
- GDLs 16,18 typically includes a substrate 22,24, such as carbon fiber paper, and an optional sublayer 26,28, such as a layer comprising carbonaceous particles and a binder, for example, PTFE and/or an ionomer.
- electrocatalyst layer an important property of the electrocatalyst layer is water management because it has a large influence on performance. If the electrocatalyst layer cannot adequately remove excess product water, fuel cell performance will be adversely affected due to excessive mass transport losses, particularly when operating with air as the oxidant at high current densities where large amounts of water are produced. In particular, it has been found that certain electrocatalysts, such as platinum-cobalt alloy electrocatalysts, have lower kinetic losses than pure platinum catalysts. This performance gain is not realized, however, with increasing current densities.
- the anode electrocatalyst was platinum on a graphite support and the loading was 0.1 mg Pt/cm 2 .
- the membrane was NRE211, a Nafion ® -based polymer electrolyte membrane supplied by E.I. Du Pont de Nemours and Company.
- the cathode electrocatalyst for one of the MEAs was platinum on a graphite support and mixed with a Nafion ® binder, while the cathode electrocatalyst for the other MEA was a platinum- cobalt alloy on a graphite support and mixed with a Nafion ® binder. Both of these cathodes had a loading of 0.4 mg Pt/cm 2 . At 1.0 A/cm 2 , the testing conditions were as follows:
- electrocatalyst layers having a platinum-cobalt alloy tend to have higher mass transport loss at high current densities than electrocatalyst layers containing pure platinum due to water retention.
- incorporation of a hydrophobic additive, which is compatible with the catalyst layer components, into such an electrocatalyst layer decreases water retention and enhances fuel cell performance at high current densities.
- Polyfurfuryl alcohol (PFA) has been found to be a particularly suitable hydrophobic additive for electrocatalyst layers for electrochemical fuel cells because it polymerizes at a temperature below the decomposition temperature of most ionomers, such as Nafion ® .
- the literature has shown that Nafion ® membranes for direct methanol fuel cells have been made by in-situ acid-catalyzed polymerization of furfuryl alcohol within Nafion ® structures.
- PFA when PFA is employed in the electrocatalyst layer having an ionomer, PFA imparts at least partial hydrophobicity within its relatively hydrophilic ionomer network, thus altering the water management properties of the electrocatalyst layer. Furthermore, ion conductivity should not be affected if PFA exists in the appropriate amounts. PFA may also enhance the tensile and/or adhesive strength between the electrocatalyst and the ionomer in the electrocatalyst layer (thereby decreasing dimensional change of the electrocatalyst layer due to hydration/dehydration), and may prevent cracks from forming on the surface of the electrocatalyst layer.
- PFA is uniformly distributed within the electrocatalyst layer. In other embodiments, PFA is non-uniformly distributed within the electrocatalyst layer.
- concentration of PFA through the thickness of the electrocatalyst layer may be varied in the z-direction (i.e., from the PEM to the GDL). Additionally, or alternatively, the concentration of the PFA in the electrocatalyst layer may be varied in the xy-direction (i.e., with respect to a surface of the electrocatalyst layer), for example, from an inlet of the fuel cell to the outlet of the fuel cell.
- PFA may also be in a layer form, for example, as a layer between the electrocatalyst layer and the PEM or as a layer between the electrocatalyst layer and the GDL to enhance its hydrophobic properties.
- PFA may be uniformly or non-uniformly distributed in the xy-direction.
- the amount of PFA in the resulting electrode after polymerization may range from, for example, about 0.1 wt% of the total ionomer in the electrocatalyst layer to about 20 wt% of the total ionomer in the electrocatalyst layer, depending on its penetration into the ionomer of the electrocatalyst layer. For example, if PFA is dispersed within the electrocatalyst layer, then the amount of PFA in the resulting electrode after polymerization is preferably less than 8 wt% of the total ionomer in the electrocatalyst layer.
- the amount of PFA in the resulting electrode after polymerization may be higher, for example, less than 20 wt% of the total ionomer in the electrocatalyst layer, thereby forming a gradient in hydrophobicity in the z-direction of the electrocatalyst layer.
- the electrocatalyst composition typically comprises an electrocatalyst, such as a noble metal, for example, platinum, ruthenium, and iridium; a non-noble metal, for example, cobalt, nickel, iron, chromium, and tungsten; or combinations or alloys thereof.
- the electrocatalyst is a platinum-cobalt alloy.
- the electrocatalyst may be a non-noble metal, such as those described in published U.S. Appl. No. 2004/0096728.
- the electrocatalyst may be supported on an electrically conductive material, such as a carbonaceous or graphitic support material, for example, a carbon black or carbide, or other oxidatively stable supports.
- the electrocatalyst composition may optionally include a pore former, such as methyl cellulose, durene, camphene, camphor, and naphthalene, that is removed in the process of making the electrocatalyst layer to increase the porosity thereof.
- the electrocatalyst composition may optionally contain an ionomer, such as, but not limited to, a perfluorinated ionomer, a partially fluorinated ionomer, or a non- fluorinated ionomer; and an optional solvent, for example, a polar aprotic solvent, such as N-methylpyrrolidinone, dimethylsulfoxide, and N,N-dimethylacetamide.
- the electrocatalyst composition may optionally include other additives, such as carbonaceous particles and carbon nanotubes and/or nanofibres.
- monomeric furfuryl alcohol is mixed with the electrocatalyst composition by any method known in the art, such as stirring, shear mixing, microfluidizing, and ultrasonic mixing.
- the monomeric furfuryl alcohol may be employed in the form of a neat solution or dispersed in a solvent, such as isopropanol, ethanol, methanol, deionized water, or mixtures thereof, before adding to the electrocatalyst composition.
- a solvent such as isopropanol, ethanol, methanol, deionized water, or mixtures thereof.
- an acid catalyst may be added to the electrocatalyst composition to induce and/or enhance the polymerization process.
- the electrocatalyst composition may be applied onto a sheet material by any method known in the art, such as knife-coating, slot-die coating, dip-coating, microgravure coating, spraying, and screen-printing.
- the sheet material is the surface of the electrocatalyst layer.
- the sheet material may be a transfer material such as polytetrafluoroethylene, polyester, and polyimide sheet materials that can be used to decal transfer the electrocatalyst layer to a surface of the GDL to form a gas diffusion electrode, or to a surface of the PEM to form a catalyst-coated membrane (CCM).
- CCM catalyst-coated membrane
- the electrocatalyst composition may be applied onto a surface of the sheet material to form an electrocatalyst layer, and then monomeric furfuryl alcohol is applied onto a surface of the electrocatalyst layer by any method known in the art, such as those described above.
- monomeric furfuryl alcohol may also be applied to the surface of the sheet material before application of the electrocatalyst composition.
- the monomeric furfuryl alcohol and electrocatalyst layer may be subjected to impregnation conditions prior to polymerization to create a non-uniform distribution of furfuryl alcohol in the electrocatalyst layer, for example, a gradient of furfuryl alcohol through the thickness of the electrocatalyst layer.
- monomeric furfuryl alcohol may be homogeneously impregnated into the electrocatalyst layer by using a sufficient amount of monomeric furfuryl alcohol and/or subjecting the monomeric furfuryl alcohol and electrocatalyst layer to the appropriate impregnation conditions.
- Impregnation of the monomeric furfuryl alcohol into the electrocatalyst layer may be controlled by varying the amount of furfuryl alcohol and/or the impregnation conditions, such as the impregnation temperature and time, to achieve the desired gradient through the thickness of the electrocatalyst layer.
- Polymerization of the monomeric furfuryl alcohol may occur before and/or during bonding of the MEA.
- the monomeric furfuryl alcohol may be polymerized during or after application to the sheet material, and before assembling the MEA.
- polymerization occurs simultaneously with bonding of the MEA components by assembling an MEA with an electrocatalyst layer containing monomeric (unpolymerized) furfuryl alcohol and then subjecting the MEA to bonding conditions that are similar to the required polymerization conditions.
- the monomeric furfuryl alcohol may be partially polymerized during or after application to the sheet material, and then further polymerized during MEA bonding.
- the polymerization conditions may include a polymerization temperature, for example, heating to a temperature of between about 80°C and about 140°C, and a polymerization time of about 5 seconds to about 15 minutes.
- the polymerization time will be dependent on the polymerization temperature and the amount of furfuryl alcohol. For instance, the polymerization time from about 5 to 10 minutes for a low polymerization temperature and a high amount of furfuryl alcohol, but may range from about 1 to 2 minutes for a high polymerization temperature and a low amount of furfuryl alcohol.
- the furfuryl alcohol may be cross-linked by exposure to ultraviolet rays, for example, by exposure to a mercury lamp.
- the amount of furfuryl alcohol and/or degree of polymerization of the furfuryl alcohol in or on the electrocatalyst layer is non-uniform in the xy-direction to preferentially control the hydrophobic properties in different regions of the fuel cell.
- a higher concentration of monomeric furfuryl alcohol and/or a greater degree of polymerization of the monomeric furfuryl alcohol may be employed in regions of the electrocatalyst layer that tends to be wetter during fuel cell operation (for example, the outlet region of the fuel cell in comparison to the inlet region) to improve water removal therefrom.
- the loading of the electrocatalyst composition with monomeric furfuryl alcohol may be varied when it is applied to the sheet material.
- the loading of monomeric furfuryl alcohol may be varied when it is applied to the electrocatalyst layer.
- the polymerization conditions may be varied along the xy-direction of the electrocatalyst layer to vary the degree of polymerization.
- an ionomer layer may also be employed between the PEM and electrocatalyst layer and/or between the electrocatalyst layer and GDL.
- the ionomer layer may also contain monomeric furfuryl alcohol and then polymerized after application to a surface of the PEM and/or the electrocatalyst layer, for example, polymerizing immediately after application or polymerizing during MEA bonding.
- the ionomer layer may be applied by any method known in the art, such as those described above, and may be uniform or non-uniform with respect to the planar surface of the catalyst layer.
- An electrocatalyst composition is made by mixing 662 grams of 10% by weight Nafion ® solution with 132 grams of a platinum-containing catalyst powder, 2 grams of monomeric furfuryl alcohol, 6 grams of isopropanol, and 290 grams of de- ionized water. The mixture is then mixed using an ultrasonic mixer and then sprayed onto a fluid diffusion layer comprising a carbon fiber paper and a microporous carbonaceous layer. The resulting electrode is then subjected to a temperature of about 140°C for about 2 to 10 minutes to polymerize the monomeric furfuryl alcohol, thereby producing an electrode with PFA.
- a solution of monomeric furfuryl alcohol is prepared by mixing 6 grams of monomeric furfuryl alcohol with 12 grams of isopropanol and 6 grams of de-ionized water. The solution is then sprayed onto the cathode electrocatalyst layer of a CCM. The monomeric furfuryl alcohol is allowed to penetrate into the cathode electrocatalyst layer for about 1 hour at 20 0 C. After penetration, the CCM is heated to about 140 0 C for about 2 to about 10 minutes to polymerize the monomeric furfuryl alcohol, thereby producing a CCM with PFA in the cathode electrocatalyst layer.
- a solution of monomeric furfuryl alcohol was prepared by mixing 6 grams of monomeric furfuryl alcohol (98% Lancaster) with 12 grams of isopropanol and 6 grams of de-ionized water. The solution was then sprayed at room temperature onto a GDL having a sublayer containing carbon black and Nafion ® on one surface of the substrate. The sprayed GDL was then placed onto a hot plate at 140 0 C for about 10 minutes to polymerize the furfuryl alcohol. The final loading of PFA was about 45wt%.
- the polymerized GDL was then subjected to a mercury intrusion porosimetry test using the Autopore III supplied by Micromeritics Instrument Corporation, and a series of through-plane permeability tests using the 58-21 Roughness and Air Permeance Tester supplied by Testing Machines (TMI Inc.). (A through-hole was bored through the bottom jig of the tester and a rubber seal was placed around the test piece so that air was forced from the top jig to the bottom jig through the test piece.)
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inert Electrodes (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002668895A CA2668895A1 (fr) | 2006-11-08 | 2007-11-07 | Couches d'electrocatalyseurs pour piles a combustible et leurs procedes de fabrication |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86487706P | 2006-11-08 | 2006-11-08 | |
US60/864,877 | 2006-11-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008058199A1 true WO2008058199A1 (fr) | 2008-05-15 |
Family
ID=39105896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/083954 WO2008058199A1 (fr) | 2006-11-08 | 2007-11-07 | Couches d'électrocatalyseurs pour piles à combustible et leurs procédés de fabrication |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR20090082457A (fr) |
CN (1) | CN101558519A (fr) |
CA (1) | CA2668895A1 (fr) |
WO (1) | WO2008058199A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111540882A (zh) * | 2020-06-04 | 2020-08-14 | 湖北亿纬动力有限公司 | 一种负极极片、其制备方法和用途 |
CN114566653A (zh) * | 2021-09-08 | 2022-05-31 | 中自环保科技股份有限公司 | 一种非均匀催化剂层、膜电极及其制备方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109585858B (zh) * | 2018-10-08 | 2021-06-15 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | 一种具有疏水性的燃料电池气体扩散层的制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5500292A (en) * | 1992-03-09 | 1996-03-19 | Hitachi, Ltd. | Polymer electrolyte hydrogen-oxygen fuel cell where the polymer electrolyte has a water repellency gradient and a catalytically active component concentration gradiem across oxygen electrode |
JPH09283153A (ja) * | 1996-04-09 | 1997-10-31 | Ishikawajima Harima Heavy Ind Co Ltd | 固体高分子電解質型燃料電池 |
US6087032A (en) * | 1998-08-13 | 2000-07-11 | Asahi Glass Company Ltd. | Solid polymer electrolyte type fuel cell |
US6300000B1 (en) * | 1999-06-18 | 2001-10-09 | Gore Enterprise Holdings | Fuel cell membrane electrode assemblies with improved power outputs and poison resistance |
EP1217680A2 (fr) * | 1994-12-07 | 2002-06-26 | Japan Gore-Tex, Inc. | Ensemble membrane échange d'ions-électrode pour cellule électrochimique |
EP1295968A1 (fr) * | 2000-06-06 | 2003-03-26 | Nagakazu Furuya | Electrode a diffusion gazeuse, procede de fabrication similaire et pile a combustible l'utilisant |
US20060024562A1 (en) * | 2003-11-26 | 2006-02-02 | Hitachi Maxell, Ltd. | Power generating element for liquid fuel cell, method for producing the same, and liquid fuel cell using the same |
-
2007
- 2007-11-07 WO PCT/US2007/083954 patent/WO2008058199A1/fr active Application Filing
- 2007-11-07 CA CA002668895A patent/CA2668895A1/fr not_active Abandoned
- 2007-11-07 CN CNA2007800458342A patent/CN101558519A/zh active Pending
- 2007-11-07 KR KR1020097011524A patent/KR20090082457A/ko not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5500292A (en) * | 1992-03-09 | 1996-03-19 | Hitachi, Ltd. | Polymer electrolyte hydrogen-oxygen fuel cell where the polymer electrolyte has a water repellency gradient and a catalytically active component concentration gradiem across oxygen electrode |
EP1217680A2 (fr) * | 1994-12-07 | 2002-06-26 | Japan Gore-Tex, Inc. | Ensemble membrane échange d'ions-électrode pour cellule électrochimique |
JPH09283153A (ja) * | 1996-04-09 | 1997-10-31 | Ishikawajima Harima Heavy Ind Co Ltd | 固体高分子電解質型燃料電池 |
US6087032A (en) * | 1998-08-13 | 2000-07-11 | Asahi Glass Company Ltd. | Solid polymer electrolyte type fuel cell |
US6300000B1 (en) * | 1999-06-18 | 2001-10-09 | Gore Enterprise Holdings | Fuel cell membrane electrode assemblies with improved power outputs and poison resistance |
EP1295968A1 (fr) * | 2000-06-06 | 2003-03-26 | Nagakazu Furuya | Electrode a diffusion gazeuse, procede de fabrication similaire et pile a combustible l'utilisant |
US20060024562A1 (en) * | 2003-11-26 | 2006-02-02 | Hitachi Maxell, Ltd. | Power generating element for liquid fuel cell, method for producing the same, and liquid fuel cell using the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111540882A (zh) * | 2020-06-04 | 2020-08-14 | 湖北亿纬动力有限公司 | 一种负极极片、其制备方法和用途 |
CN114566653A (zh) * | 2021-09-08 | 2022-05-31 | 中自环保科技股份有限公司 | 一种非均匀催化剂层、膜电极及其制备方法 |
CN114566653B (zh) * | 2021-09-08 | 2023-01-31 | 中自环保科技股份有限公司 | 一种非均匀催化剂层、膜电极及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101558519A (zh) | 2009-10-14 |
KR20090082457A (ko) | 2009-07-30 |
CA2668895A1 (fr) | 2008-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11031604B2 (en) | Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst | |
US5702755A (en) | Process for preparing a membrane/electrode assembly | |
JP3723081B2 (ja) | 燃料電池の膜/電極アセンブリ | |
US5882810A (en) | Active layer for membrane electrode assembly | |
EP2991142B1 (fr) | Catalyseur, couche de catalyseur pour électrode ayant recours audit catalyseur, assemblage membrane-électrodes et pile à combustile | |
JP7385014B2 (ja) | 膜電極接合体 | |
US20160064744A1 (en) | Catalyst and electrode catalyst layer for fuel cell having the catalyst | |
JP2017054819A (ja) | 固体高分子電解質およびその製造方法 | |
CA2910242C (fr) | Catalyseur et couche de catalyseur a electrode, ensemble d'electrode a membrane et pile a combustible employant le catalyseur | |
US8257825B2 (en) | Polymer electrode membrane for fuel, and membrane-electrode assembly and fuel cell system comprising the same | |
Ebenezer et al. | Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H2–O2 proton exchange membrane fuel cells | |
US20240304827A1 (en) | Coaxial nanowire electrode | |
EP1171924A2 (fr) | Ensemble ameliore d'electrodes a membrane con u pour pile a combustion | |
JP4987857B2 (ja) | 重合体分散物及び電気触媒インク | |
KR102765489B1 (ko) | 촉매화된 막 | |
Scott | Membrane electrode assemblies for polymer electrolyte membrane fuel cells | |
WO2008058199A1 (fr) | Couches d'électrocatalyseurs pour piles à combustible et leurs procédés de fabrication | |
JP5458774B2 (ja) | 電解質膜−電極接合体 | |
Xing et al. | Ionomeric Binders for High Temperature Proton Exchange Membrane Fuel Cells | |
JP2007128665A (ja) | 燃料電池用電極触媒層、および、それを用いた膜電極接合体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780045834.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07844954 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2252/CHENP/2009 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2668895 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1712/KOLNP/2009 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097011524 Country of ref document: KR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07844954 Country of ref document: EP Kind code of ref document: A1 |