WO2008050637A1 - Moteur sans balai - Google Patents
Moteur sans balai Download PDFInfo
- Publication number
- WO2008050637A1 WO2008050637A1 PCT/JP2007/070173 JP2007070173W WO2008050637A1 WO 2008050637 A1 WO2008050637 A1 WO 2008050637A1 JP 2007070173 W JP2007070173 W JP 2007070173W WO 2008050637 A1 WO2008050637 A1 WO 2008050637A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brushless motor
- teeth
- steering
- motor
- magnet
- Prior art date
Links
- 238000004804 winding Methods 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 230000004907 flux Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000007665 sagging Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 101150005287 EPS1 gene Proteins 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0403—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
- H02K29/03—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/146—Stator cores with salient poles consisting of a generally annular yoke with salient poles
Definitions
- the present invention relates to a brushless motor used for a drive source of an electric power steering apparatus, and more particularly to a brushless motor designed to reduce both inductance and cogging torque.
- the brushless motor of Patent Document 1 is configured such that an auxiliary groove having a 1/2 slot pitch is provided at the tip of a tooth, and the number of slots is apparently doubled. Further, in the brushless motor of Patent Document 2, overhang portions are provided at both ends of the stator core to suppress the magnetic flux flowing from the end face of the stator core. As a result, the teeth tip to the stator core The amount of magnetic flux flowing in is increased, and the pseudo multi-slot effect by the auxiliary groove is improved.
- the rotor has a 2P structure and the stator has a 3P structure, and the auxiliary grooves are equally spaced from the center of the slot at angles ⁇ and 2 ⁇ at the tip of the teeth provided at a pitch of 4 ⁇ .
- An arrangement that reduces cogging is shown!
- Patent Document 1 No. 7-47981
- Patent Document 2 Japanese Patent Laid-Open No. 10-42531
- Patent Document 3 Japanese Patent Application Laid-Open No. 2004-194489
- An object of the present invention is to provide a brushless motor capable of efficiently exhibiting effects such as cogging torque reduction by an auxiliary groove while reducing inductance.
- the brushless motor of the present invention includes a rotor including a magnet and a stator including a plurality of teeth facing the magnet via an air gap, and the air gap is provided at a tip of the teeth.
- a brushless motor formed with a plurality of auxiliary grooves facing each other, the width S along the circumferential direction of the auxiliary grooves and the circumferential direction of the opening formed at the tip of the adjacent teeth. Ratio with width W along W / S force 0.9 ⁇ W / S ⁇ 1.1 And the angle between the center along the circumferential direction of the opening and the center axis along the circumferential direction of the auxiliary groove e w , and the angle between the centers M of the adjacent auxiliary grooves es and
- the ratio ⁇ sZ ⁇ w of the ⁇ s to the ⁇ w is 0 ⁇ 66 ⁇ s / ⁇ w ⁇ 0.965.
- W / S is set to 0.9 ⁇ W / S ⁇ 1.1
- ⁇ s / ⁇ w is set to a range of 0.66 ⁇ ⁇ s w ⁇ w ⁇ 0.965, thereby reducing inductance.
- Cogging can be kept small while improving the cogging robustness and the effect of armature reaction in the high output range can be reduced. For this reason, for example, when the brushless motor is used as a drive source of the electric power steering apparatus, the return of steering is improved by reducing cogging.
- due to the inductance reduction torque sagging at high loads is reduced, so that assist force is stabilized and steering feeling is improved.
- the ratio ⁇ sZ ⁇ w of ⁇ s to ⁇ w may be preferably set to 0.7 ⁇ s / ⁇ w ⁇ 0.9.
- the brushless motor may have a 6-pole 9-slot configuration in which the magnet has 6 poles and the number of slots formed between the teeth is 9. Furthermore, the brushless motor may be used as a drive source for the electric power steering apparatus.
- the rotor includes a magnet
- the stator includes a plurality of teeth facing the magnet through an air gap.
- the ratio W / S between the auxiliary groove width S and the opening width W between adjacent teeth is 0.9 ⁇ W / S ⁇ 1.1.
- the angle ⁇ w between the opening center Ml and the auxiliary groove center M2 and the angle between the adjacent auxiliary groove centers M2 ⁇ s ratio ⁇ s / ⁇ w is 0.66 ⁇ ⁇ s / ⁇ w ⁇ 0.965
- the brushless motor when used as a drive source of the electric power steering apparatus, the return of the steering is improved by reducing the cogging, and the smooth steering is achieved. Operation becomes possible.
- the influence of the armature reaction in the high output range due to inductance reduction torque sagging at high loads is reduced, assist force is stabilized, and steering feeling can be improved.
- FIG. 1 is a cross-sectional view showing a configuration of an electric power steering device using a brushless motor according to the present invention.
- FIG. 2 is an axial sectional view showing a configuration of a brushless motor used in the electric power steering apparatus of FIG. 1.
- FIG. 3 is a cross-sectional view of the brushless motor of FIG. 2 in the radial direction.
- FIG. 4 is an explanatory diagram showing a configuration of teeth.
- FIG. 1 is according to the invention. It is sectional drawing which shows the structure of the electric power steering apparatus using a brushless motor.
- the electric power steering device (EPS) 1 shown in FIG. 1 has a column assist type structure that applies an operation assisting force to the steering shaft 2, and a brushless motor 3 (hereinafter abbreviated as a motor 3) according to the present invention. Used as a power source.
- EPS electric power steering device
- a steering wheel 4 is attached to the steering shaft 2.
- the steering force of the steering wheel 4 is transmitted to the tie rod 6 via a pinion and a rack shaft (not shown) arranged in the steering gear box 5.
- Wheels 7 are connected to both ends of the tie rod 6. As the steering wheel 4 is operated, the tie rod 6 is actuated, and the wheel 7 is steered to the left and right via a knuckle arm (not shown).
- the steering shaft 2 is provided with an assist motor unit 8 that is a steering force assist mechanism.
- the assist motor unit 8 is provided with a speed reduction mechanism unit 9 and a torque sensor 11.
- the speed reduction mechanism unit 9 is provided with a worm and a worm hoist not shown.
- the rotation of the motor 3 is decelerated and transmitted to the steering shaft 2 by the deceleration mechanism 9.
- the motor 3 and the torque sensor 11 are connected to a control unit (ECU) 12.
- ECU control unit
- the torque sensor 11 When the steering wheel 4 is operated and the steering shaft 2 rotates, the torque sensor 11 is activated.
- the ECU 12 appropriately supplies electric power to the motor 3 based on the torque detected by the torque sensor 11.
- the motor 3 When the motor 3 is operated, the rotation is transmitted to the steering shaft 2 via the speed reduction mechanism unit 9, and a steering assist force is applied.
- the steering shaft 2 is rotated by the steering assist force and the manual steering force, and this rotational motion is converted into a linear motion of the rack shaft by the rack 'and' pinion coupling in the steering gear box 5, and the wheel 7 is steered. Operation is performed.
- FIG. 2 is a sectional view in the axial direction showing the configuration of the motor 3.
- the motor 3 is an inner rotor type brushless motor having a stator 21 on the outside and a rotor 22 on the inside.
- the stator 21 includes a housing 23, a stator core 24 fixed to the inner peripheral side of the housing 23, and a winding 25 wound around the stator core 24.
- the housing 23 is formed in a bottomed cylindrical shape with iron or the like.
- a synthetic resin bracket 30 is attached to the opening of the housing 23.
- Stator core 24 is made of steel A large number of the teeth are stacked, and a plurality of teeth protrude from the inner peripheral side of the stator core 24.
- FIG. 3 is a cross-sectional view along the radial direction of the motor 3 of FIG.
- the stator core 24 is formed by a ring-shaped yoke portion 26 and a force 27 and a tooth 27 projecting inward from the yoke portion 26.
- Nine teeth 27 are provided.
- Slots 28 (9) are formed between the teeth 27, and the motor 3 has a 9-slot configuration.
- An auxiliary groove 20 is formed at the tip of each tooth 27.
- a winding 25 is wound around each tooth 27 in a concentrated manner. The winding 25 is accommodated in each slot 28. Winding 25 is connected to a battery (not shown) via power supply wiring 29.
- the winding 25 is supplied with trapezoidal phase currents (U, V, W) including harmonic components.
- the rotor 22 is disposed inside the stator 21, and has a configuration in which a rotating shaft 31, a rotor core 32, and a magnet 33 are arranged coaxially.
- a cylindrical rotor core 32 in which a large number of steel plates are stacked is attached to the outer periphery of the rotating shaft 31.
- a segment type magnet 33 is disposed on the outer periphery of the rotor core 32.
- An air gap 45 is formed between the magnet 33 and the teeth 27. The tips of the magnet 33 and the teeth 27 are opposed to each other through an air gap 45.
- the auxiliary groove 20 is formed facing the air gap 45.
- the magnets 33 are attached to a magnet holder 34 fixed to the rotating shaft 31, and six magnets 33 are arranged along the circumferential direction. That is, the motor 3 has a 6-pole 9-slot (6P9S) configuration.
- the ratio W / S between the groove width S of the auxiliary groove 20 and the opening width W of the teeth 27 is 0.9 ⁇ W / S ⁇ 1.1 while adopting such a 6P9S configuration. It is set to be.
- FIG. 4 is an explanatory view showing the configuration of the tooth 27. As shown in FIG. 4, the groove width S is the width dimension along the circumferential direction of the auxiliary groove 20, and the opening width W is the tip of the adjacent tooth 27. It is the gap dimension along the circumferential direction of the opening 46 formed in the section.
- the auxiliary groove 20 is not evenly arranged at the tip of the tooth 27, and the auxiliary groove 20 is set as follows while setting W / S within the above-mentioned range. It is provided in a range. That is, the angle between the center M of the opening 46 and the center M of the auxiliary groove 20 is ⁇ w
- auxiliary grooves 20 are formed so that the relationship 5 is established.
- ⁇ s / ⁇ w is set to 0 ⁇ 66 ⁇ ⁇ s / ⁇ w
- the range was set to ⁇ 0 ⁇ 965 (frame A in Fig. 4).
- the inductance is suppressed, the influence of the armature reaction on the high output side can be reduced, and the torque sag at the time of high load can also be reduced.
- One end of the rotating shaft 31 is supported by a bearing 35 press-fitted into the bottom of the housing 23 so as to rotate.
- the other end of the rotating shaft 31 is rotatably supported by a bearing 36 attached to the bracket 30.
- a spline portion 37 is formed at the end of the rotating shaft 31 (left end in FIG. 2).
- the rotating shaft 31 is connected to the worm shaft of the speed reduction mechanism portion 9 by a joint member (not shown) attached to the spline portion 37.
- a worm is formed on the worm shaft. The worm is engaged with a worm wheel fixed to the steering shaft 2 at the speed reduction mechanism section 9.
- the resolver 41 includes a resolver stator 42 fixed to the bracket 30 side and a resolver rotor 43 fixed to the port 22 side.
- a coil 44 is wound around the resolver stator 42, and an excitation coil and a detection coil are provided.
- Resor A resolver rotor 43 fixed to the left end of the magnet holder 34 is disposed inside the stator 42.
- the resolver rotor 43 has a structure in which metal plates are laminated, and convex portions are formed in three directions.
- the resolver rotor 43 When the rotating shaft 31 rotates, the resolver rotor 43 also rotates in the resolver stator 42. A high frequency signal is applied to the exciting coil of the resolver stator 42, and the phase of the signal output from the detection coil changes due to the proximity of the convex portion. The rotational position of the rotor 22 is detected by comparing the detection signal with the reference signal. Then, based on the rotational position of the rotor 22, the current to the winding 25 is appropriately switched, and the rotor 22 is rotationally driven.
- the cogging torque which is a pulsation when no power is passed, is reduced as compared with the conventional brushless motor. For this reason, the return of the steering is improved, and a smooth steering operation is possible. For example, when turning the steering wheel when turning right and then returning the steering wheel for straight ahead, the driver generally does not apply any force to the steering wheel. At this time, the EPS does not assist the steering force (no power is supplied), and if the cogging of the motor is large at this time, there is a possibility that the steering stops midway and does not return smoothly to the straight position. .
- the motor 3 can reduce the cogging torque and the inductance, the torque sagging at high loads is reduced, the assist force is stabilized, and deterioration of the steering feeling is suppressed.
- ⁇ s / ⁇ w is set in the range of 0 ⁇ 66 ⁇ ⁇ s / ⁇ w ⁇ 0.965.
- ⁇ s / 6 w in order to reduce cogging torque, etc. It is more preferable to set ⁇ s / 6 w within the range of 0 ⁇ 7 ⁇ s / ⁇ w ⁇ 0.9 (frame ⁇ in Fig. 4).
- a 6-pole 9-slot motor has been described as an example of the motor 3.
- the motor configuration is not limited to this, and the present invention is applicable to a 2-pole 3-slot integral multiple motor. Is applicable.
- the force using an inner rotor type brushless motor has been shown.
- the present invention can also be applied to an outer rotor type brushless motor in which a rotor is arranged outside the stator.
- the force S shown in the example in which the control method according to the present invention is applied to a column assist type EPS motor, the rack assist type in which the motor is arranged coaxially with the rack shaft, and the rack shaft are combined. It can also be applied to a pinion assist type EPS motor that applies auxiliary force to the pinion gear.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Power Steering Mechanism (AREA)
- Brushless Motors (AREA)
Abstract
Le moteur sans balai (3) selon l'invention est équipé d'un rotor (22) possédant un aimant (33), et d'un stator (21) possédant des dents (27) faisant face à l'aimant (33) à travers un entrefer (45). Aux extrémités avant des dents (27), plusieurs rainures auxiliaires (20) qui font face à l'entrefer (45) sont formées. Un rapport W/S entre la largeur de rainure (S) de la rainure auxiliaire (20) et la largeur d'ouverture (W) d'une section d'ouverture (46) entre les dents adjacentes (27) satisfait les inéquations suivantes : 0,9 ≤ W/S ≤ 1,1. Un rapport ϑs/ϑw entre un angle (ϑw) entre le centre (M1) de la section d'ouverture (46) et le centre (M2) de la rainure auxiliaire (20) et un angle (ϑs) entre les centres (M2) des rainures auxiliaires adjacentes (20) est défini à l'intérieur de la plage suivante : 0,66 ≤ ϑs/ϑw ≤ 0,965.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008540947A JPWO2008050637A1 (ja) | 2006-10-25 | 2007-10-16 | ブラシレスモータ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-289499 | 2006-10-25 | ||
JP2006289499 | 2006-10-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008050637A1 true WO2008050637A1 (fr) | 2008-05-02 |
Family
ID=39324436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/070173 WO2008050637A1 (fr) | 2006-10-25 | 2007-10-16 | Moteur sans balai |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2008050637A1 (fr) |
WO (1) | WO2008050637A1 (fr) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010172063A (ja) * | 2009-01-20 | 2010-08-05 | Mitsuba Corp | アウターロータ型ブラシレスモータ |
JP2010187491A (ja) * | 2009-02-13 | 2010-08-26 | Mitsuba Corp | ブラシレスモータ |
JP2011188685A (ja) * | 2010-03-10 | 2011-09-22 | Mitsubishi Electric Corp | 永久磁石型電動機 |
JP2011250667A (ja) * | 2010-05-27 | 2011-12-08 | Kazuhiko Goto | 回転電機の鉄心 |
WO2012032591A1 (fr) * | 2010-09-06 | 2012-03-15 | 三菱電機株式会社 | Machine électrique tournante du type à aimant permanent et dispositif de direction assistée utilisant cette machine |
CN104038010A (zh) * | 2013-03-06 | 2014-09-10 | 阿斯莫株式会社 | 电动机 |
JP2014176128A (ja) * | 2013-03-06 | 2014-09-22 | Asmo Co Ltd | モータ |
JP2014209847A (ja) * | 2014-07-09 | 2014-11-06 | 三菱電機株式会社 | 永久磁石型回転電機及びそれを用いた電動パワーステアリング装置 |
US9800100B2 (en) | 2014-06-06 | 2017-10-24 | Mitsubishi Electric Corporation | Permanent magnet motor and driving apparatus-integrated permanent magnet motor |
KR20180027021A (ko) * | 2016-09-05 | 2018-03-14 | 엘지이노텍 주식회사 | 스테이터 및 이를 포함하는 모터 |
CN109391098A (zh) * | 2018-10-14 | 2019-02-26 | 西安航天动力测控技术研究所 | 一种低转矩波动的力矩电机结构设计方法 |
CN109643915A (zh) * | 2016-09-05 | 2019-04-16 | Lg伊诺特有限公司 | 定子和包括定子的马达 |
KR20190128450A (ko) * | 2018-05-08 | 2019-11-18 | 엘지이노텍 주식회사 | 모터 |
CN111033946A (zh) * | 2017-08-28 | 2020-04-17 | Lg伊诺特有限公司 | 定子和包括定子的马达 |
WO2021079577A1 (fr) * | 2019-10-25 | 2021-04-29 | 梨木 政行 | Moteur et dispositif de commande associé |
GB2608834A (en) * | 2021-07-13 | 2023-01-18 | Dyson Technology Ltd | A stator core |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08308198A (ja) * | 1995-05-08 | 1996-11-22 | Nippon Seiko Kk | ブラシレスモータ |
JPH1042531A (ja) * | 1996-05-24 | 1998-02-13 | Matsushita Electric Ind Co Ltd | 電動機 |
JP2003061272A (ja) * | 2001-08-09 | 2003-02-28 | Mitsubishi Electric Corp | 永久磁石型回転電機及び電動パワーステアリング装置 |
JP2004194489A (ja) * | 2002-12-13 | 2004-07-08 | Mitsuba Corp | ブラシレスモータ |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004096803A (ja) * | 2002-08-29 | 2004-03-25 | Mitsubishi Electric Corp | 永久磁石同期モータ |
-
2007
- 2007-10-16 WO PCT/JP2007/070173 patent/WO2008050637A1/fr active Application Filing
- 2007-10-16 JP JP2008540947A patent/JPWO2008050637A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08308198A (ja) * | 1995-05-08 | 1996-11-22 | Nippon Seiko Kk | ブラシレスモータ |
JPH1042531A (ja) * | 1996-05-24 | 1998-02-13 | Matsushita Electric Ind Co Ltd | 電動機 |
JP2003061272A (ja) * | 2001-08-09 | 2003-02-28 | Mitsubishi Electric Corp | 永久磁石型回転電機及び電動パワーステアリング装置 |
JP2004194489A (ja) * | 2002-12-13 | 2004-07-08 | Mitsuba Corp | ブラシレスモータ |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010172063A (ja) * | 2009-01-20 | 2010-08-05 | Mitsuba Corp | アウターロータ型ブラシレスモータ |
JP2010187491A (ja) * | 2009-02-13 | 2010-08-26 | Mitsuba Corp | ブラシレスモータ |
JP2011188685A (ja) * | 2010-03-10 | 2011-09-22 | Mitsubishi Electric Corp | 永久磁石型電動機 |
JP2011250667A (ja) * | 2010-05-27 | 2011-12-08 | Kazuhiko Goto | 回転電機の鉄心 |
WO2012032591A1 (fr) * | 2010-09-06 | 2012-03-15 | 三菱電機株式会社 | Machine électrique tournante du type à aimant permanent et dispositif de direction assistée utilisant cette machine |
JPWO2012032591A1 (ja) * | 2010-09-06 | 2013-12-12 | 三菱電機株式会社 | 永久磁石型回転電機及びそれを用いた電動パワーステアリング装置 |
JP5645940B2 (ja) * | 2010-09-06 | 2014-12-24 | 三菱電機株式会社 | 永久磁石型回転電機及びそれを用いた電動パワーステアリング装置 |
US9172278B2 (en) | 2010-09-06 | 2015-10-27 | Mitsubishi Electric Corporation | Permanent magnet type rotary electric machine and electric power steering apparatus using the same |
US10734852B2 (en) | 2013-03-06 | 2020-08-04 | Asmo Co., Ltd. | Motor |
CN104038010A (zh) * | 2013-03-06 | 2014-09-10 | 阿斯莫株式会社 | 电动机 |
JP2014176128A (ja) * | 2013-03-06 | 2014-09-22 | Asmo Co Ltd | モータ |
US9800102B2 (en) | 2013-03-06 | 2017-10-24 | Asmo Co., Ltd. | Dual rotor core motor with reduced flux leakage |
US9800100B2 (en) | 2014-06-06 | 2017-10-24 | Mitsubishi Electric Corporation | Permanent magnet motor and driving apparatus-integrated permanent magnet motor |
JP2014209847A (ja) * | 2014-07-09 | 2014-11-06 | 三菱電機株式会社 | 永久磁石型回転電機及びそれを用いた電動パワーステアリング装置 |
KR20180027021A (ko) * | 2016-09-05 | 2018-03-14 | 엘지이노텍 주식회사 | 스테이터 및 이를 포함하는 모터 |
KR102673752B1 (ko) * | 2016-09-05 | 2024-06-10 | 엘지이노텍 주식회사 | 스테이터 및 이를 포함하는 모터 |
CN109643915A (zh) * | 2016-09-05 | 2019-04-16 | Lg伊诺特有限公司 | 定子和包括定子的马达 |
EP3509187A4 (fr) * | 2016-09-05 | 2019-09-11 | LG Innotek Co., Ltd. | Stator et moteur le comprenant |
JP2019527016A (ja) * | 2016-09-05 | 2019-09-19 | エルジー イノテック カンパニー リミテッド | ステーターおよびこれを含むモーター |
JP7198807B2 (ja) | 2017-08-28 | 2023-01-04 | エルジー イノテック カンパニー リミテッド | ステータおよびこれを含むモータ |
CN111033946A (zh) * | 2017-08-28 | 2020-04-17 | Lg伊诺特有限公司 | 定子和包括定子的马达 |
JP2020532263A (ja) * | 2017-08-28 | 2020-11-05 | エルジー イノテック カンパニー リミテッド | ステータおよびこれを含むモータ |
EP3678281A4 (fr) * | 2017-08-28 | 2021-05-26 | LG Innotek Co., Ltd. | Stator et moteur le comprenant |
US11316389B2 (en) | 2017-08-28 | 2022-04-26 | Lg Innotek Co., Ltd. | Stator and motor including same |
CN111033946B (zh) * | 2017-08-28 | 2022-09-13 | Lg伊诺特有限公司 | 定子和包括定子的马达 |
US11876403B2 (en) | 2017-08-28 | 2024-01-16 | Lg Innotek Co., Ltd. | Stator and motor including same |
US11637462B2 (en) | 2017-08-28 | 2023-04-25 | Lg Innotek Co., Ltd. | Stator and motor including same |
KR102756514B1 (ko) * | 2018-05-08 | 2025-01-21 | 엘지이노텍 주식회사 | 모터 |
KR20190128450A (ko) * | 2018-05-08 | 2019-11-18 | 엘지이노텍 주식회사 | 모터 |
KR102570802B1 (ko) * | 2018-05-08 | 2023-08-25 | 엘지이노텍 주식회사 | 모터 |
KR20230127182A (ko) * | 2018-05-08 | 2023-08-31 | 엘지이노텍 주식회사 | 모터 |
CN109391098A (zh) * | 2018-10-14 | 2019-02-26 | 西安航天动力测控技术研究所 | 一种低转矩波动的力矩电机结构设计方法 |
JP7406739B2 (ja) | 2019-10-25 | 2023-12-28 | 政行 梨木 | モータとその制御装置 |
JP2021069223A (ja) * | 2019-10-25 | 2021-04-30 | 梨木 政行 | モータとその制御装置 |
WO2021079577A1 (fr) * | 2019-10-25 | 2021-04-29 | 梨木 政行 | Moteur et dispositif de commande associé |
GB2608834A (en) * | 2021-07-13 | 2023-01-18 | Dyson Technology Ltd | A stator core |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008050637A1 (ja) | 2010-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008050637A1 (fr) | Moteur sans balai | |
JP3875188B2 (ja) | 電動モータ装置 | |
US7595577B2 (en) | Brushless motor and electric power steering apparatus incorporating the same | |
JP6411833B2 (ja) | ブラシレスモータ | |
US8116946B2 (en) | Electric power steering device | |
CN101536292B (zh) | 无刷电机及无刷电机的控制方法 | |
WO2016002334A1 (fr) | Système de direction assistée électrique | |
JP2001275325A (ja) | 電動パワーステアリング装置 | |
JP5897298B2 (ja) | ブラシレスモータ制御方法及びブラシレスモータ制御装置並びにブラシレスモータ並びに電動パワーステアリング装置 | |
JP5168882B2 (ja) | 電動パワーステアリング装置 | |
JP2008301601A (ja) | ブラシレスモータ | |
JP4366823B2 (ja) | パワーステアリング用ブラシレスモータの制御装置 | |
CN101385230B (zh) | 无刷电动机控制方法以及无刷电动机 | |
JP2008172983A (ja) | ブラシレスモータ制御方法及びブラシレスモータ制御装置並びにブラシレスモータ | |
JP5688925B2 (ja) | ブラシレスモータ制御方法及びブラシレスモータ制御装置 | |
JP2010183648A (ja) | 永久磁石回転電機及びそれを用いた電動車両 | |
US7902709B2 (en) | Brush-less motor and electric power steering device having brush-less motor | |
JP2006121821A (ja) | シンクロナスリラクタンスモータおよびシンクロナスリラクタンスモータを搭載した電動ステアリング装置 | |
US7893580B2 (en) | Positioning mechanism of resolver and electrically-driven power steering apparatus | |
JP6838840B2 (ja) | ブラシレスモータ及び電動パワーステアリング装置用モータ | |
JP2004159462A (ja) | モータ装置 | |
JP5144994B2 (ja) | 電動モータ | |
JP2004023905A (ja) | ブラシレスモータ | |
JP2008011675A (ja) | ブラシレスモータ及び電動パワーステアリング装置 | |
JP2009189102A (ja) | ブラシレス直流モータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07829907 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008540947 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07829907 Country of ref document: EP Kind code of ref document: A1 |