WO2008043811A1 - Staurosporine derivatives and radiation - Google Patents
Staurosporine derivatives and radiation Download PDFInfo
- Publication number
- WO2008043811A1 WO2008043811A1 PCT/EP2007/060830 EP2007060830W WO2008043811A1 WO 2008043811 A1 WO2008043811 A1 WO 2008043811A1 EP 2007060830 W EP2007060830 W EP 2007060830W WO 2008043811 A1 WO2008043811 A1 WO 2008043811A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- typically
- lower alkyl
- hydrogen
- radicals
- substituted
- Prior art date
Links
- HKSZLNNOFSGOKW-FYTWVXJKSA-N staurosporine Chemical class C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1[C@H]1C[C@@H](NC)[C@@H](OC)[C@]4(C)O1 HKSZLNNOFSGOKW-FYTWVXJKSA-N 0.000 title abstract description 10
- 230000005855 radiation Effects 0.000 title description 11
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 37
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 32
- 230000005865 ionizing radiation Effects 0.000 claims abstract description 31
- 238000011282 treatment Methods 0.000 claims abstract description 30
- 201000010099 disease Diseases 0.000 claims abstract description 26
- 230000002062 proliferating effect Effects 0.000 claims abstract description 25
- 208000002517 adenoid cystic carcinoma Diseases 0.000 claims abstract description 4
- 201000007416 salivary gland adenoid cystic carcinoma Diseases 0.000 claims abstract description 4
- -1 hydroxy, amino Chemical group 0.000 claims description 409
- 125000000217 alkyl group Chemical group 0.000 claims description 147
- 150000001875 compounds Chemical class 0.000 claims description 72
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 52
- 125000004432 carbon atom Chemical group C* 0.000 claims description 49
- 229910052739 hydrogen Inorganic materials 0.000 claims description 45
- 239000001257 hydrogen Substances 0.000 claims description 45
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 43
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 36
- 125000002252 acyl group Chemical group 0.000 claims description 33
- 150000003839 salts Chemical class 0.000 claims description 33
- 125000005037 alkyl phenyl group Chemical group 0.000 claims description 28
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 27
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 21
- 125000003545 alkoxy group Chemical group 0.000 claims description 21
- 125000000623 heterocyclic group Chemical group 0.000 claims description 20
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 19
- 125000005842 heteroatom Chemical group 0.000 claims description 16
- 150000002431 hydrogen Chemical class 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 229910052736 halogen Inorganic materials 0.000 claims description 15
- 150000002367 halogens Chemical class 0.000 claims description 15
- 125000003277 amino group Chemical group 0.000 claims description 14
- 125000002837 carbocyclic group Chemical group 0.000 claims description 14
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 claims description 13
- 125000005036 alkoxyphenyl group Chemical group 0.000 claims description 12
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 claims description 12
- 125000001931 aliphatic group Chemical group 0.000 claims description 9
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 9
- 239000000651 prodrug Substances 0.000 claims description 7
- 229940002612 prodrug Drugs 0.000 claims description 7
- 150000002148 esters Chemical class 0.000 claims description 6
- 241001465754 Metazoa Species 0.000 claims description 5
- 239000003814 drug Substances 0.000 claims description 5
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 5
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 3
- 229910052740 iodine Inorganic materials 0.000 claims description 2
- 201000009030 Carcinoma Diseases 0.000 abstract description 3
- 150000003254 radicals Chemical class 0.000 description 45
- 229910052757 nitrogen Inorganic materials 0.000 description 37
- 125000001424 substituent group Chemical group 0.000 description 26
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 25
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 125000003282 alkyl amino group Chemical group 0.000 description 20
- BMGQWWVMWDBQGC-IIFHNQTCSA-N midostaurin Chemical compound CN([C@H]1[C@H]([C@]2(C)O[C@@H](N3C4=CC=CC=C4C4=C5C(=O)NCC5=C5C6=CC=CC=C6N2C5=C43)C1)OC)C(=O)C1=CC=CC=C1 BMGQWWVMWDBQGC-IIFHNQTCSA-N 0.000 description 17
- 229950010895 midostaurin Drugs 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- 229920006395 saturated elastomer Polymers 0.000 description 15
- 229910052717 sulfur Inorganic materials 0.000 description 15
- 125000003118 aryl group Chemical group 0.000 description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 11
- 125000003342 alkenyl group Chemical group 0.000 description 11
- 125000001183 hydrocarbyl group Chemical group 0.000 description 11
- 230000004044 response Effects 0.000 description 11
- 239000011593 sulfur Substances 0.000 description 11
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 10
- 239000003112 inhibitor Substances 0.000 description 10
- 125000002015 acyclic group Chemical group 0.000 description 9
- 125000004414 alkyl thio group Chemical group 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- FSPQCTGGIANIJZ-UHFFFAOYSA-N 2-[[(3,4-dimethoxyphenyl)-oxomethyl]amino]-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide Chemical compound C1=C(OC)C(OC)=CC=C1C(=O)NC1=C(C(N)=O)C(CCCC2)=C2S1 FSPQCTGGIANIJZ-UHFFFAOYSA-N 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 102100020718 Receptor-type tyrosine-protein kinase FLT3 Human genes 0.000 description 8
- 101710151245 Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 description 8
- 125000004423 acyloxy group Chemical group 0.000 description 8
- 125000005115 alkyl carbamoyl group Chemical group 0.000 description 8
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 8
- 150000005840 aryl radicals Chemical class 0.000 description 8
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 8
- 125000004433 nitrogen atom Chemical group N* 0.000 description 8
- 125000002941 2-furyl group Chemical group O1C([*])=C([H])C([H])=C1[H] 0.000 description 7
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 7
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 7
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 7
- 125000001541 3-thienyl group Chemical group S1C([H])=C([*])C([H])=C1[H] 0.000 description 7
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 7
- 125000004471 alkyl aminosulfonyl group Chemical group 0.000 description 7
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 7
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 7
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 7
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 7
- 125000004230 chromenyl group Chemical group O1C(C=CC2=CC=CC=C12)* 0.000 description 7
- 125000002541 furyl group Chemical group 0.000 description 7
- 125000002883 imidazolyl group Chemical group 0.000 description 7
- 125000001041 indolyl group Chemical group 0.000 description 7
- 125000005956 isoquinolyl group Chemical group 0.000 description 7
- 125000000842 isoxazolyl group Chemical group 0.000 description 7
- 125000002950 monocyclic group Chemical group 0.000 description 7
- 125000004312 morpholin-2-yl group Chemical group [H]N1C([H])([H])C([H])([H])OC([H])(*)C1([H])[H] 0.000 description 7
- 125000004572 morpholin-3-yl group Chemical group N1C(COCC1)* 0.000 description 7
- 125000001624 naphthyl group Chemical group 0.000 description 7
- 125000002971 oxazolyl group Chemical group 0.000 description 7
- 125000004076 pyridyl group Chemical group 0.000 description 7
- 125000000246 pyrimidin-2-yl group Chemical group [H]C1=NC(*)=NC([H])=C1[H] 0.000 description 7
- 125000004527 pyrimidin-4-yl group Chemical group N1=CN=C(C=C1)* 0.000 description 7
- 125000000714 pyrimidinyl group Chemical group 0.000 description 7
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 7
- 125000005493 quinolyl group Chemical group 0.000 description 7
- 125000000335 thiazolyl group Chemical group 0.000 description 7
- 125000001544 thienyl group Chemical group 0.000 description 7
- 210000004881 tumor cell Anatomy 0.000 description 7
- 125000004174 2-benzimidazolyl group Chemical group [H]N1C(*)=NC2=C([H])C([H])=C([H])C([H])=C12 0.000 description 6
- 125000000389 2-pyrrolyl group Chemical group [H]N1C([*])=C([H])C([H])=C1[H] 0.000 description 6
- 125000001397 3-pyrrolyl group Chemical group [H]N1C([H])=C([*])C([H])=C1[H] 0.000 description 6
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 6
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 6
- 125000000168 pyrrolyl group Chemical group 0.000 description 6
- 125000004487 4-tetrahydropyranyl group Chemical group [H]C1([H])OC([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 125000005322 morpholin-1-yl group Chemical group 0.000 description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 5
- 125000006239 protecting group Chemical group 0.000 description 5
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 5
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 5
- 238000011277 treatment modality Methods 0.000 description 5
- 125000000143 2-carboxyethyl group Chemical group [H]OC(=O)C([H])([H])C([H])([H])* 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 125000005236 alkanoylamino group Chemical group 0.000 description 4
- 125000004466 alkoxycarbonylamino group Chemical group 0.000 description 4
- 125000005138 alkoxysulfonyl group Chemical group 0.000 description 4
- 239000003793 antidiarrheal agent Substances 0.000 description 4
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 4
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 4
- 229910052794 bromium Inorganic materials 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 4
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 125000004043 oxo group Chemical group O=* 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- 235000011007 phosphoric acid Nutrition 0.000 description 4
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical group C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical group [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 230000001028 anti-proliverative effect Effects 0.000 description 3
- 229940125714 antidiarrheal agent Drugs 0.000 description 3
- 125000002619 bicyclic group Chemical group 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 125000000392 cycloalkenyl group Chemical group 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 3
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 3
- 125000006413 ring segment Chemical group 0.000 description 3
- 125000004434 sulfur atom Chemical group 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 125000003396 thiol group Chemical class [H]S* 0.000 description 3
- 125000005505 thiomorpholino group Chemical group 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 description 2
- RXYPXQSKLGGKOL-UHFFFAOYSA-N 1,4-dimethylpiperazine Chemical compound CN1CCN(C)CC1 RXYPXQSKLGGKOL-UHFFFAOYSA-N 0.000 description 2
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 2
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 2
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 2
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 2
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 2
- 125000006201 3-phenylpropyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- HVBSAKJJOYLTQU-UHFFFAOYSA-N 4-aminobenzenesulfonic acid Chemical compound NC1=CC=C(S(O)(=O)=O)C=C1 HVBSAKJJOYLTQU-UHFFFAOYSA-N 0.000 description 2
- 125000004042 4-aminobutyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])N([H])[H] 0.000 description 2
- PBCZSGKMGDDXIJ-HQCWYSJUSA-N 7-hydroxystaurosporine Chemical compound N([C@H](O)C1=C2C3=CC=CC=C3N3C2=C24)C(=O)C1=C2C1=CC=CC=C1N4[C@H]1C[C@@H](NC)[C@@H](OC)[C@]3(C)O1 PBCZSGKMGDDXIJ-HQCWYSJUSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- 206010012735 Diarrhoea Diseases 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- 208000012766 Growth delay Diseases 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 102000038030 PI3Ks Human genes 0.000 description 2
- 108091007960 PI3Ks Proteins 0.000 description 2
- 239000002202 Polyethylene glycol Chemical class 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 208000024770 Thyroid neoplasm Diseases 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 125000006193 alkinyl group Chemical group 0.000 description 2
- 125000005530 alkylenedioxy group Chemical group 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 2
- 125000003828 azulenyl group Chemical group 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 2
- 125000001589 carboacyl group Chemical group 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 125000000490 cinnamyl group Chemical group C(C=CC1=CC=CC=C1)* 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 2
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical group C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 2
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- HKSZLNNOFSGOKW-UHFFFAOYSA-N ent-staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(C)O1 HKSZLNNOFSGOKW-UHFFFAOYSA-N 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 125000002795 guanidino group Chemical group C(N)(=N)N* 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 125000001841 imino group Chemical group [H]N=* 0.000 description 2
- 238000013383 initial experiment Methods 0.000 description 2
- 239000002050 international nonproprietary name Substances 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 2
- 231100000682 maximum tolerated dose Toxicity 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000011580 nude mouse model Methods 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 125000003356 phenylsulfanyl group Chemical group [*]SC1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 229920001223 polyethylene glycol Chemical class 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical group CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 201000001514 prostate carcinoma Diseases 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 235000003441 saturated fatty acids Nutrition 0.000 description 2
- 150000004671 saturated fatty acids Chemical class 0.000 description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- CGPUWJWCVCFERF-UHFFFAOYSA-N staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(OC)O1 CGPUWJWCVCFERF-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001302 tertiary amino group Chemical group 0.000 description 2
- 201000002510 thyroid cancer Diseases 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- WRRSFOZOETZUPG-FFHNEAJVSA-N (4r,4ar,7s,7ar,12bs)-9-methoxy-3-methyl-2,4,4a,7,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-ol;hydrate Chemical compound O.C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC WRRSFOZOETZUPG-FFHNEAJVSA-N 0.000 description 1
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 description 1
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- QBWLKDFBINPHFT-UHFFFAOYSA-L 1,3,2$l^{2}-benzodioxabismin-4-one;hydrate Chemical compound O.C1=CC=C2C(=O)O[Bi]OC2=C1 QBWLKDFBINPHFT-UHFFFAOYSA-L 0.000 description 1
- 101710175516 14 kDa zinc-binding protein Proteins 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- 125000004485 2-pyrrolidinyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])C1([H])* 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- 125000004575 3-pyrrolidinyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- WUBBRNOQWQTFEX-UHFFFAOYSA-N 4-aminosalicylic acid Chemical compound NC1=CC=C(C(O)=O)C(O)=C1 WUBBRNOQWQTFEX-UHFFFAOYSA-N 0.000 description 1
- LVRVABPNVHYXRT-BQWXUCBYSA-N 52906-92-0 Chemical compound C([C@H](N)C(=O)N[C@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(O)=O)C(C)C)C1=CC=CC=C1 LVRVABPNVHYXRT-BQWXUCBYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- PBCZSGKMGDDXIJ-UHFFFAOYSA-N 7beta-hydroxystaurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3C(O)NC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(C)O1 PBCZSGKMGDDXIJ-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 238000012371 Aseptic Filling Methods 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 125000004399 C1-C4 alkenyl group Chemical group 0.000 description 1
- 125000005914 C6-C14 aryloxy group Chemical group 0.000 description 1
- DTPPNWDAZYXHQL-UHFFFAOYSA-N COCC[O] Chemical compound COCC[O] DTPPNWDAZYXHQL-UHFFFAOYSA-N 0.000 description 1
- 101100268670 Caenorhabditis elegans acc-3 gene Proteins 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000001815 DL-alpha-tocopherol Nutrition 0.000 description 1
- 239000011627 DL-alpha-tocopherol Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- KOZFSFOOLUUIGY-SOLYNIJKSA-N K-252a Chemical compound C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1[C@H]1C[C@@](C(=O)OC)(O)[C@]4(C)O1 KOZFSFOOLUUIGY-SOLYNIJKSA-N 0.000 description 1
- ZHEHVZXPFVXKEY-RUAOOFDTSA-N KT 5720 Chemical compound C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1[C@@H]1C[C@](C(=O)OCCCCCC)(O)[C@@]4(C)O1 ZHEHVZXPFVXKEY-RUAOOFDTSA-N 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 102000002419 Motilin Human genes 0.000 description 1
- 101800002372 Motilin Proteins 0.000 description 1
- 101100335081 Mus musculus Flt3 gene Proteins 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- 208000003788 Neoplasm Micrometastasis Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 108010016076 Octreotide Proteins 0.000 description 1
- 239000008896 Opium Substances 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 229920002690 Polyoxyl 40 HydrogenatedCastorOil Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 229940123924 Protein kinase C inhibitor Drugs 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 231100000987 absorbed dose Toxicity 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- KIZWKTROWIIMNN-FYTWVXJKSA-N afn941 Chemical compound C1CCCC(N2C3=C45)=C1C3=C1C(=O)NCC1=C5C1=CC=CC=C1N4[C@@]1(C)O[C@@H]2C[C@@H](NC)[C@H]1OC KIZWKTROWIIMNN-FYTWVXJKSA-N 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 150000003797 alkaloid derivatives Chemical class 0.000 description 1
- 125000005741 alkyl alkenyl group Chemical group 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229960004909 aminosalicylic acid Drugs 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000001142 anti-diarrhea Effects 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000005002 aryl methyl group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001231 benzoyloxy group Chemical group C(C1=CC=CC=C1)(=O)O* 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- YBHILYKTIRIUTE-UHFFFAOYSA-N berberine Chemical compound C1=C2CC[N+]3=CC4=C(OC)C(OC)=CC=C4C=C3C2=CC2=C1OCO2 YBHILYKTIRIUTE-UHFFFAOYSA-N 0.000 description 1
- 229940093265 berberine Drugs 0.000 description 1
- QISXPYZVZJBNDM-UHFFFAOYSA-N berberine Natural products COc1ccc2C=C3N(Cc2c1OC)C=Cc4cc5OCOc5cc34 QISXPYZVZJBNDM-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229960000782 bismuth subsalicylate Drugs 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000007894 caplet Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- HDFRDWFLWVCOGP-UHFFFAOYSA-N carbonothioic O,S-acid Chemical compound OC(S)=O HDFRDWFLWVCOGP-UHFFFAOYSA-N 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 230000003021 clonogenic effect Effects 0.000 description 1
- 229960004126 codeine Drugs 0.000 description 1
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Natural products C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229960005493 difenoxin Drugs 0.000 description 1
- UFIVBRCCIRTJTN-UHFFFAOYSA-N difenoxin Chemical compound C1CC(C(=O)O)(C=2C=CC=CC=2)CCN1CCC(C#N)(C=1C=CC=CC=1)C1=CC=CC=C1 UFIVBRCCIRTJTN-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- HYPPXZBJBPSRLK-UHFFFAOYSA-N diphenoxylate Chemical compound C1CC(C(=O)OCC)(C=2C=CC=CC=2)CCN1CCC(C#N)(C=1C=CC=CC=1)C1=CC=CC=C1 HYPPXZBJBPSRLK-UHFFFAOYSA-N 0.000 description 1
- 229960004192 diphenoxylate Drugs 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical group 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 125000003976 glyceryl group Chemical class [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005844 heterocyclyloxy group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- UWYVPFMHMJIBHE-OWOJBTEDSA-N hydroxymaleic acid group Chemical group O/C(/C(=O)O)=C/C(=O)O UWYVPFMHMJIBHE-OWOJBTEDSA-N 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- 125000002962 imidazol-1-yl group Chemical group [*]N1C([H])=NC([H])=C1[H] 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 239000003978 infusion fluid Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- RDOIQAHITMMDAJ-UHFFFAOYSA-N loperamide Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)N(C)C)CCN(CC1)CCC1(O)C1=CC=C(Cl)C=C1 RDOIQAHITMMDAJ-UHFFFAOYSA-N 0.000 description 1
- 229960001571 loperamide Drugs 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 125000006518 morpholino carbonyl group Chemical group [H]C1([H])OC([H])([H])C([H])([H])N(C(*)=O)C1([H])[H] 0.000 description 1
- 239000000472 muscarinic agonist Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 229960002700 octreotide Drugs 0.000 description 1
- 229940005483 opioid analgesics Drugs 0.000 description 1
- 229960001027 opium Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- WLJNZVDCPSBLRP-UHFFFAOYSA-N pamoic acid Chemical compound C1=CC=C2C(CC=3C4=CC=CC=C4C=C(C=3O)C(=O)O)=C(O)C(C(O)=O)=CC2=C1 WLJNZVDCPSBLRP-UHFFFAOYSA-N 0.000 description 1
- 239000008414 paregoric Substances 0.000 description 1
- 229940069533 paregoric Drugs 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- 125000000587 piperidin-1-yl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 239000003881 protein kinase C inhibitor Substances 0.000 description 1
- 125000002112 pyrrolidino group Chemical group [*]N1C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 1
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007962 solid dispersion Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229950000244 sulfanilic acid Drugs 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000006633 tert-butoxycarbonylamino group Chemical group 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229940098465 tincture Drugs 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- 125000005147 toluenesulfonyl group Chemical group C=1(C(=CC=CC1)S(=O)(=O)*)C 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
- A61K31/553—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one oxygen as ring hetero atoms, e.g. loxapine, staurosporine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Definitions
- This invention relates to organic compounds, in particular to pharmaceutical compositions for use in combination with ionizing radiation for the delay of progression or treatment of a proliferative disease, especially a solid tumor disease.
- FLT-3 inhibitors especially staurosporine derivatives are effective when used in combination with ionizing radiation for the delay of progression or treatment of a proliferative disease, especially a solid tumor disease, especially a Carcinoma, especially Adenoid Cystic Carcinoma;
- the invention provides a method for the delay of progression or treatment of a proliferative disease, , especially a solid tumor disease, especially a Carcinoma, especially Adenoid Cystic Carcinoma in a subject in need of such treatment which comprises administering to the subject an effective amount of a staurosporine derivatives of formula
- R 1 and R 2 are, independently of one another, unsubstituted or substituted alkyl, hydrogen, halogen, hydroxy, etherified or esterified hydroxy, amino, mono- or disubstituted amino, cyano, nitro, mercapto, substituted mercapto, carboxy, esterified carboxy, carbamoyl, N-mono- or N,N-di-substituted carbamoyl, sulfo, substituted sulfonyl, aminosulfonyl or N- mono- or N,N-di-substituted aminosulfonyl;
- n and m are, independently of one another, a number from and including 0 to and including 4;
- n' and m' are, independently of one another, a number from and including 0 to and including 4;
- R 3 , R 4 , Re and Ri 0 are, independently of one another, hydrogen, -O " , acyl with up to 30 carbon atoms, an aliphatic, carbocyclic, or carbocyclic-aliphatic radical with up to 29 carbon atoms in each case, a heterocyclic or heterocyclic-aliphatic radical with up to 20 carbon atoms in each case, and in each case up to 9 heteroatoms, an acyl with up to 30 carbon atoms, wherein R 4 may also be absent;
- R 3 is acyl with up to 30 carbon atoms, R 4 is not an acyl
- p is 0 if R 4 is absent, or is 1 if R 3 and R 4 are both present and in each case are one of the aforementioned radicals;
- R 5 is hydrogen, an aliphatic, carbocyclic, or carbocyclic-aliphatic radical with up to 29 carbon atoms in each case, or a heterocyclic or heterocyclic-aliphatic radical with up to 20 carbon atoms in each case, and in each case up to 9 heteroatoms, or acyl with up to 30 carbon atoms;
- R 7 , R 6 and R 9 are acyl or -(lower alkyl) -acyl, unsubstituted or substituted alkyl, hydrogen, halogen, hydroxy, etherified or esterified hydroxy, amino, mono- or disubstituted amino, cyano, nitro, mercapto, substituted mercapto, carboxy,carbonyl, carbonyldioxy, esterified carboxy, carbamoyl, N-mono- or N,N-di-substituted carbamoyl, sulfo, substituted sulfonyl, aminosulfonyl or N-mono- or N,N-di-substituted aminosulfonyl;
- X stands for 2 hydrogen atoms; for 1 hydrogen atom and hydroxy; for O; or for hydrogen and lower alkoxy; - A -
- Z stands for hydrogen or lower alkyl
- the prefix "lower” indicates that the associated radical preferably has up to and including a maximum of 7 carbon atoms, especially up to and including a maximum of 4 carbon atoms.
- Lower alkyl is especially methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, or tert- butyl, and also pentyl, hexyl, or heptyl.
- Unsubstituted or substituted alkyl is preferably CrC 2 oalkyl, especially lower alkyl, typically methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, or tert-butyl, which is unsubstituted or substituted especially by halogen, such as fluorine, chlorine, bromine, or iodine, C 6 -Ci 4 aryl, such as phenyl or naphthyl, hydroxy, etherified hydroxy, such as lower alkoxy, phenyl-lower alkoxy or phenyloxy, esterified hydroxy, such as lower alkanoyloxy or benzoyloxy, amino, mono- or disubstituted amino, such as lower alkylamino, lower alkanoylamino, phenyl-lower alkylamino, N, N-di-lower alkylamino,
- Halogen is preferably fluorine, chlorine, bromine, or iodine, especially fluorine or chlorine.
- Etherified hydroxy is especially lower alkoxy, C 6 -Ci 4 aryloxy, such as phenyloxy, or C 6 - Ci 4 aryl-lower alkoxy, such as benzyloxy.
- Esterified hydroxy is preferably lower alkanoyloxy or C6-Ci 4 arylcarbonyloxy, such as benzoyloxy.
- Mono- or disubstituted amino is especially amino monosubstituted or disubstituted by lower alkyl, C 6 -Ci 4 aryl, C 6 -Ci 4 aryl-lower alkyl, lower alkanoyl, or C 6 -Ci 2 arylcarbonyl.
- Substituted mercapto is especially lower alkylthio, C 6 -C 14 arylthio, C 6 -C 14 aryl-lower alkylthio, lower alkanoylthio, or C 6 -C 14 aryl-lower alkanoylthio.
- Esterified carboxy is especially lower alkoxycarbonyl, C 6 -Ci 4 aryl-lower alkoxycarbonyl or C 6 - Ci 4 aryloxycarbonyl.
- N-Mono- or N,N-disubstituted carbamoyl is especially carbamoyl N-monosubstituted or N, N- disubstituted by lower alkyl, C 6 -Ci 4 aryl or C 6 -Ci 4 aryl-lower alkyl.
- Substituted sulfonyl is especially C 6 -Ci 4 arylsulfonyl, such as toluenesulfonyl, C 6 -Ci 4 aryl-lower alkanesulfonyl or lower alkanesulfonyl.
- N-Mono- or N,N-disubstituted aminosulfonyl is especially aminosulfonyl N-monosubstituted or N,N-disubstituted by lower alkyl, C 6 -Ci 4 aryl or C 6 -Ci 4 aryl-lower alkyl.
- C 6 -C 14 Aryl is an aryl radical with 6 to 14 carbon atoms in the ring system, such as phenyl, naphthyl, fluorenyl, or indenyl, which is unsubstituted or is substituted especially by halogen, such as fluorine, chlorine, bromine, or iodine, phenyl or naphthyl, hydroxy, lower alkoxy, phenyl-lower alkoxy, phenyloxy, lower alkanoyloxy, benzoyloxy, amino, lower alkylamino, lower alkanoylamino, phenyl-lower alkylamino, N, N-di-lower alkylamino, N,N-di-(phenyl-lower alkyl)amino, cyano, mercapto, lower alkylthio, carboxy, lower alkoxycarbonyl, carbamoyl, N- lower alkylcarbamoyl, N
- indices n and m are in each case preferably 1 , 2 or especially 0.
- compounds of formula I in which n and m are in each case 0 (zero) are especially preferred.
- Lower alkyl is, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl, and also n-pentyl, isopentyl, n-hexyl, isohexyl and n-heptyl; lower alkenyl is, for example, allyl, propenyl, isopropenyl, 2- or 3-methallyl and 2- or 3-butenyl; lower alkadienyl is, for example, 1-penta-2,4-dienyl; lower alkinyl is, for example, propargyl or 2-butinyl.
- the double bond is especially located in a position higher than the D-position in relation to the free valency.
- Substituents are especially the acyl radicals defined hereinbelow as substituents of R 0 , preferably free or esterified carboxy, such as carboxy or lower alkoxycarbonyl, cyano or di-lower alkylamino.
- a carbocyclic or carbocyclic-aliphatic radical R 3 , R 4 , R 8 or R 10 with up to 29 carbon atoms in each case is especially an aromatic, a cycloaliphatic, a cycloaliphatic-aliphatic, or an aromatic-aliphatic radical which is either present in unsubstituted form or substituted by radicals referred to hereinbelow as substituents of R 0 .
- aromatic radical (aryl radical) R3 or R 4 is most especially a phenyl, also a naphthyl, such as 1- or 2-naphthyl, a biphenylyl, such as especially 4-biphenylyl, and also an anthryl, fluorenyl and azulenyl, as well as their aromatic analogues with one or more saturated rings, which is either present in unsubstituted form or substituted by radicals referred to hereinbelow as substituents of R 0 .
- Preferred aromatic-aliphatic radicals are aryl-lower alkyl- and aryl-lower alkenyl radicals, e.g.
- phenyl- lower alkyl or phenyl-lower alkenyl with a terminal phenyl radical such as for example benzyl, phenethyl, 1-, 2-, or 3-phenylpropyl, diphenylmethyl (benzhydryl), trityl, and cinnamyl, and also 1- or 2-naphthylmethyl.
- aryl radicals carrying acyclic radicals such as lower alkyl, special mention is made of o-, m- and p-tolyl and xylyl radicals with variously situated methyl radicals.
- a cycloaliphatic radical R 3 , R 4 , Re or R 10 with up to 29 carbon atoms is especially a substituted or preferably unsubstituted mono-, bi-, or polycyclic cycloalkyl-, cycloalkenyl-, or cycloalkadienyl radical.
- Preference is for radicals with a maximum of 14, especially 12, ring- carbon atoms and 3- to 8-, preferably 5- to 7-, and most especially 6-member rings which can also carry one or more, for example two, aliphatic hydrocarbon radicals, for example those named above, especially the lower alkyl radicals, or other cycloaliphatic radicals as substituents.
- Preferred substituents are the acyclic substituents named hereinbelow for R 0 .
- a cycloaliphatic-aliphatic radical R3, R 4 , Re or R 10 with up to 29 carbon atoms is a radical in which an acyclic radical, especially one with a maximum of 7, preferably a maximum of 4 carbon atoms, such as especially methyl, ethyl, and vinyl, carries one or more cycloaliphatic radicals as defined hereinabove.
- an acyclic radical especially one with a maximum of 7, preferably a maximum of 4 carbon atoms, such as especially methyl, ethyl, and vinyl
- Preferred substituents are the acyclic substituents named herein below for R 0 .
- Heterocyclic radicals R 3 , R 4 , R 8 or R 10 with up to 20 carbon atoms each and up to 9 heteroatoms each are especially monocyclic, but also bi- or polycyclic, aza-, thia-, oxa-, thiaza-, oxaza-, diaza-, triaza-, or tetrazacyclic radicals of an aromatic character, as well as corresponding heterocyclic radicals of this type which are partly or most especially wholly saturated, these radicals - if need be - possibly carrying further acyclic, carbocyclic, or heterocyclic radicals and/or possibly mono-, di-, or polysubstituted by functional groups, preferably those named hereinabove as substituents of aliphatic hydrocarbon radicals.
- pyrryl for example 2-pyrryl or 3-pyrryl
- pyridyl for example 2-, 3-, or 4-pyridyl
- thienyl for example 2- or 3-thienyl
- furyl for example 2-furyl
- analogous bicyclic radicals with an oxygen, sulfur, or nitrogen atom are, for example, indolyl, typically 2- or 3-indolyl, quinolyl, typically 2- or 4-quinolyl, isoquinolyl, typically 3- or 5-isoquinolyl, benzofuranyl, typically 2-benzofuranyl, chromenyl, typically 3-chromenyl, or benzothienyl, typically 2- or 3- benzothienyl
- preferred monocyclic and bicyclic radicals with several heteroatoms are, for example, imidazolyl, typically 2-pyrryl or 3-pyrryl
- pyridyl for example 2-, 3-, or 4-pyridyl
- thienyl for example 2- or 3-thienyl
- furyl for example 2-fury
- radicals may also be considered, such as 2-tetrahydrofuryl, 2- or 3-pyrrolidinyl, 2-, 3-, or 4-piperidyl, and also 2-or 3-morpholinyl, 2- or 3-thiomorpholinyl, 2-piperazinyl and N-mono- or N,N'-bis-lower alkyl-2-piperazinyl radicals.
- These radicals may also carry one or more acyclic, carbocyclic, or heterocyclic radicals, especially those mentioned hereinabove.
- the free valency of the heterocyclic radicals R3 or R 4 must emanate from one of their carbon atoms.
- Heterocyclyl may be unsubstituted or substituted by one or more, preferably one or two, of the substituents named hereinbelow for R 0 .
- Heterocyclic-aliphatic radicals R 3 , R 4 , R 8 or R 10 especially lower alkyl radicals, especially with a maximum of 7, preferably a maximum of 4 carbon atoms, for example those named hereinabove, which carry one, two, or more heterocyclic radicals, for example those named in the preceding paragraph, the heterocyclic ring possibly being linked to the aliphatic chain also by one of its nitrogen atoms.
- a preferred heterocyclic-aliphatic radical Ri is, for example, imidazol-1-ylmethyl, 4-methylpiperazin-1-ylmethyl, piperazin-1-ylmethyl, 2-(morpholin-4- yl)ethyl and also pyrid-3-ylmethyl.
- Heterocyclyl may be unsubstituted or substituted by one or more, preferably one or two, of the substituents named hereinbelow for R 0 .
- a heteroaliphatic radical R 3 , R 4 , R 8 or R 10 with up to 20 carbon atoms each and up to 10 heteroatoms each is an aliphatic radical which, instead of one, two, or more carbon atoms, contains identical or different heteroatoms, such as especially oxygen, sulfur, and nitrogen.
- R 3 , R 4 , R 8 or R 10 apart from acyl, is lower alkyl, particularly methyl or ethyl; lower alkoxycarbonyl-lower alkyl, especially methoxycarbonylmethyl or 2-(tert- butoxycarbonyl)ethyl; carboxy-lower alkyl, especially carboxymethyl or 2-carboxyethyl; or cyano-lower alkyl, especially 2-cyanoethyl.
- An acyl radical R 3 , R 4 , R 6 , R7, Re, R9, or R 10 with up to 30 carbon atoms derives from a carboxylic acid, functionally modified if need be, an organic sulfonic acid, or a phosphoric acid, such as pyro- or orthophosphoric acid, esterified if need be.
- the hydrocarbyl (hydrocarbon radical) R 0 is an acyclic (aliphatic), carbocyclic, or carbocyclic- acyclic hydrocarbon radical, with up to 29 carbon atoms each, especially up to 18, and preferably up to 12 carbon atoms, and is saturated or unsaturated, unsubstituted or substituted. Instead of one, two, or more carbon atoms, it may contain identical or different heteroatoms, such as especially oxygen, sulfur, and nitrogen in the acyclic and/or cyclic part; in the latter case, it is described as a heterocyclic radical (heterocyclyl radical) or a hetero- cyclic-acyclic radical.
- Unsaturated radicals are those, which contain one or more, especially conjugated and/or isolated, multiple bonds (double or triple bonds).
- cyclic radicals includes also aromatic and non-aromatic radicals with conjugated double bonds, for example those wherein at least one 6-member carbocyclic or a 5- to 8-member heterocyclic ring contains the maximum number of non-cumulative double bonds.
- Carbocyclic radicals, wherein at least one ring is present as a 6-member aromatic ring (i.e. a benzene ring), are defined as aryl radicals.
- An acyclic unsubstituted hydrocarbon radical R 0 is especially a straight-chained or branched lower alkyl-, lower alkenyl-, lower alkadienyl-, or lower alkinyl radical.
- Lower alkyl R 0 is, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl, and also n-pentyl, isopentyl, n-hexyl, isohexyl and n-heptyl;
- lower alkenyl is, for example, allyl, propenyl, isopropenyl, 2- or 3-methallyl and 2- or 3-butenyl;
- lower alkadienyl is, for example, 1-penta-2,4-dienyl;
- lower alkinyl is, for example, propargyl or 2-butiny
- a carbocyclic hydrocarbon radical R 0 is especially a mono-, bi-, or polycyclic cycloalkyl-, cycloalkenyl-, or cycloalkadienyl radical, or a corresponding aryl radical. Preference is for radicals with a maximum of 14, especially 12, ring-carbon atoms and 3- to 8-, preferably 5- to 7-, and most especially 6-member rings which can also carry one or more, for example two, acyclic radicals, for example those named above, especially the lower alkyl radicals, or other carbocyclic radicals.
- Carbocyclic-acyclic radicals are those in which an acyclic radical, especially one with a maximum of 7, preferably a maximum of 4 carbon atoms, such as especially methyl, ethyl and vinyl, carries one or more carbocyclic, if need be aromatic radicals of the above definition. Special mention is made of cycloalkyl-lower and aryl-lower alkyl radicals, as well as their analogues which are unsaturated in the ring and/or chain, and which carry the ring at the terminal carbon atom of the chain.
- Cycloalkyl R 0 has most especially from 3 up to and including 10 carbon atoms and is, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl, as well as bicyclo[2,2,2]octyl, 2-bicyclo[2,2,1]heptyl, and adamantyl, which may also be substituted by 1 , 2, or more, for example lower, alkyl radicals, especially methyl radicals; cycloalkenyl is for example one of the monocyclic cycloalkyl radicals already named which carries a double bond in the 1-, 2-, or 3 position.
- Cycloalkyl-lower alkyl or -lower alkenyl is for example a - methyl, -1- or -2-ethyl, -1- or -2-vinyl, -1-, -2-, or -3-propyl or -allyl substituted by one of the above-named cycloalkyl radicals, those substituted at the end of the linear chain being preferred.
- An aryl radical R 0 is most especially a phenyl, also a naphthyl, such as 1- or 2-naphthyl, a biphenylyl, such as especially 4-biphenylyl, and also an anthryl, fluorenyl and azulenyl, as well as their aromatic analogues with one or more saturated rings.
- Preferred aryl-lower alkyl and -lower alkenyl radicals are, for example, phenyl-lower alkyl or phenyl-lower alkenyl with a terminal phenyl radical, such as for example benzyl, phenethyl, 1-, 2-, or 3-phenylpropyl, diphenylmethyl (benzhydryl), trityl, and cinnamyl, and also 1- or 2-naphthylmethyl.
- Aryl may be unsubstituted or substituted.
- Heterocyclic radicals including heterocyclic-acyclic radicals, are especially monocyclic, but also bi- or polycyclic, aza-, thia-, oxa-, thiaza-, oxaza-, diaza-, triaza-, or tetrazacyclic radicals of an aromatic character, as well as corresponding heterocyclic radicals of this type which are partly or most especially wholly saturated; if need be, for example as in the case of the above-mentioned carbocyclic or aryl radicals, these radicals may carry further acyclic, carbocyclic, or heterocyclic radicals and/or may be mono-, di-, or polysubstituted by functional groups.
- heterocyclic-acyclic radicals has for example the meaning indicated for the corresponding carbocyclic-acyclic radicals.
- they are unsubstituted or substituted monocyclic radicals with a nitrogen, oxygen, or sulfur atom, such as 2-aziridinyl, and especially aromatic radicals of this type, such as pyrrolyl, for example 2-pyrrolyl or 3-pyrrolyl, pyridyl, for example 2-, 3-, or 4-pyridyl, and also thienyl, for example 2- or 3-thienyl, or furyl, for example 2-furyl; analogous bicyclic radicals with an oxygen, sulfur, or nitrogen atom are, for example, indolyl, typically 2- or 3-indolyl, quinolyl, typically 2- or 4-quinolyl, isoquinolyl, typically 3- or 5-isoquinolyl, benzofuranyl, typically 2- benzofuranyl, chromenyl, typically 3-chromenyl, or benzothi
- radicals may also be considered, such as 2-tetrahydrofuryl, 4-tetrahydrofuryl, 2- or 3-pyrrolidyl, 2-, 3-, or 4-piperidyl, and also 2-or 3-morpholinyl, 2- or 3-thiomorpholinyl, 2- piperazinyl, and N,N'-bis-lower alkyl-2-piperazinyl radicals.
- These radicals may also carry one or more acyclic, carbocyclic, or heterocyclic radicals, especially those mentioned hereinabove.
- Heterocyclic-acyclic radicals are especially derived from acyclic radicals with a maximum of 7, preferably a maximum of 4 carbon atoms, for example those named hereinabove, and may carry one, two, or more heterocyclic radicals, for example those named hereinabove, the ring possibly being linked to the aliphatic chain also by one of its nitrogen atoms.
- a hydrocarbyl may be substituted by one, two, or more identical or different substituents (functional groups); one or more of the following substituents may be considered: lower alkyl; free, etherified and esterified hydroxyl groups; carboxy groups and esterified carboxy groups; mercapto- and lower alkylthio- and, if need be, substituted phenylthio groups; halogen atoms, typically chlorine and fluorine, but also bromine and iodine; halogen-lower alkyl groups; oxo groups which are present in the form of formyl (i.e.
- aldehydo aldehydo
- keto groups also as corresponding acetals or ketals; azido groups; nitro groups; cyano groups; primary, secondary and preferably tertiary amino groups, amino-lower alkyl, mono- or disubstituted amino-lower alkyl, primary or secondary amino groups protected by conventional protecting groups (especially lower alkoxycarbonyl, typically tert-butoxycarbonyl) lower alkylenedioxy, and also free or functionally modified sulfo groups, typically sulfamoyl or sulfo groups present in free form or as salts.
- protecting groups especially lower alkoxycarbonyl, typically tert-butoxycarbonyl
- the hydrocarbyl radical may also carry carbamoyl, ureido, or guanidino groups, which are free or which carry one or two substituents, and cyano groups.
- groups is taken to imply also an individual group.
- Halogen-lower alkyl contains preferably 1 to 3 halogen atoms; preferred is trifluoromethyl or chloromethyl.
- An etherified hydroxyl group present in the hydrocarbyl as substituent is, for example, a lower alkoxy group, typically the methoxy-, ethoxy-, propoxy-, isopropoxy-, butoxy-, and tert- butoxy group, which may also be substituted, especially by (i) heterocyclyl, whereby heterocyclyl can have preferably 4 to 12 ring atoms, may be unsaturated, or partially or wholly saturated, is mono- or bicyclic, and may contain up to three heteroatoms selected from nitrogen, oxygen, and sulfur, and is most especially pyrrolyl, for example 2-pyrrolyl or 3- pyrrolyl, pyridyl, for example 2-, 3- or 4-pyridyl, and also thienyl, for example 2- or 3-thienyl, or furyl, for example 2-furyl, indolyl, typically 2- or 3-indolyl, quinolyl, typically 2- or 4-quinolyl, isoquinolyl, typically 3- or
- Such etherified hydroxyl groups are also unsubstituted or substituted phenoxy radicals and phenyl-lower alkoxy radicals, such as especially benzyloxy, benzhydryloxy, and triphenylmethoxy (trityloxy), as well as heterocyclyloxy radicals, wherein heterocyclyl can have preferably 4 to 12 ring atoms, may be unsaturated, or partially or wholly saturated, is mono- or bicyclic, and may contain up to three heteroatoms selected from nitrogen, oxygen, and sulfur, and is most especially pyrrolyl, for example 2-pyrrolyl or 3-pyrrolyl, pyridyl, for example 2-, 3- or 4-pyridyl, and also thienyl, for example 2- or 3-thienyl, or furyl, for example 2-furyl, indolyl, typically 2- or 3- indolyl, quinolyl, typically 2- or 4-quinolyl, isoquinolyl, typically 3- or 5-isoquinoly
- Etherified hydroxyl groups in this context are taken to include silylated hydroxyl groups, typically for example tri-lower alkylsilyloxy, typically trimethylsilyloxy and dimethyl-tert- butylsilyloxy, or phenyldi-lower alkylsilyloxy and lower alkyl-diphenylsilyloxy.
- An esterified hydroxyl group present in the hydrocarbyl as a substituent is, for example, lower alkanoyloxy.
- a carboxyl group present in the hydrocarbyl as a substituent is one in which the hydrogen atom is replaced by one of the hydrocarbyl radicals characterised hereinabove, preferably a lower alkyl- or phenyl-lower alkyl radical; an example of an esterified carboxyl group is lower alkoxycarbonyl or phenyl-lower alkoxycarbonyl substituted if need be in the phenyl part, especially the methoxy, ethoxy, tert-butoxy, and benzyloxycarbonyl group, as well as a lactonised carboxyl group.
- a primary amino group -NH 2 as substituent of the hydrocarbyls may also be present in a form protected by a conventional protecting group.
- a secondary amino group carries, instead of one of the two hydrogen atoms, a hydrocarbyl radical, preferably an unsubstituted one, typically one of the above-named, especially lower alkyl, and may also be present in protected form.
- a tertiary amino group present in the hydrocarbyl as substituent carries 2 different or, preferably, identical hydrocarbyl radicals (including the heterocyclic radicals), such as the unsubstituted hydrocarbyl radicals characterised hereinabove, especially lower alkyl.
- a preferred amino group is one with the formula R 11 (R 12 )N-, wherein R 11 and R 12 are independently in each case hydrogen, unsubstituted acyclic CrC 7 -hydrocarbyl (such as especially CrC 4 alkyl or C 2 -C 4 alkenyl) or monocyclic aryl, aralkyl, or aralkenyl, substituted if necessary by Ci-C 4 -alkyl, C- ⁇ -C 4 -alkoxy, halogen, and/or nitro, and having a maximum of 10 carbon atoms, where the carbon-containing radicals may be interlinked through a carbon- carbon bond or an oxygen atom, a sulfur atom, or a nitrogen atom substituted if necessary by hydrocarbyl.
- R 11 and R 12 are independently in each case hydrogen, unsubstituted acyclic CrC 7 -hydrocarbyl (such as especially CrC 4 alkyl or C 2 -C 4 alkenyl) or monocyclic
- di-lower alkylamino typically dimethylamino or diethylamino, pyrrolidino, imidazol-1-yl, piperidino, piperazino, 4-lower alkylpiperazino, morpholino, thiomorpholino and piperazino or 4-methylpiperazino, as well as diphenylamino and dibenzylamino substituted if need be, especially in the phenyl part, for example by lower- alkyl, lower-alkoxy, halogen, and/or nitro; of the protected groups, especially lower alkoxy- carbonylamino, typically tert-butoxycarbonylamino, phenyl-lower alkoxycarbonylamino, typically 4-methoxybenzyloxycarbonylamino, and 9-fluorenyl
- Amino-lower alkyl is most especially substituted in the 1 -position of the lower alkyl chain by amino and is especially aminomethyl.
- Mono- or disubstituted amino-lower alkyl is amino-lower alkyl substituted by one or two radicals, wherein amino-lower alkyl is most especially substituted by amino in the 1 -position of the lower alkyl chain and is especially aminomethyl; the amino substituents here are preferably (if 2 substituents are present in the respective amino group independently of one another) from the group comprising lower alkyl, such as especially methyl, ethyl or n-propyl, hydroxy-lower alkyl, typically 2-hydroxyethyl, C 3 -C 8 cycloalkyl, especially cyclohexyl, amino- lower alkyl, typically 3-aminopropyl or 4-aminobutyl, N-mono- or N,N-di(lower alkyl)-amino- lower alkyl, typically 3-(N,N-dimethylamino)propyl, amino, N-mono- or N,N-di-lower alkyla
- Disubstituted amino-lower alkyl is also a 5 or 6-membered, saturated or unsaturated heterocyclyl bonded to lower alkyl via a nitrogen atom (preferably in the 1 -position) and having 0 to 2, especially 0 or 1 , other heteroatoms selected from oxygen, nitrogen, and sulfur, which is unsubstituted or substituted, especially by one or two radicals from the group comprising lower alkyl, typically methyl, and also oxo.
- Preferred here is pyrrolidino (1- pyrrolidinyl), piperidino (1-piperidinyl), piperazino (1-piperazinyl), 4-lower alkylpiperazino, typically 4-methylpiperazino, imidazolino (1-imidazolyl), morpholino (4-morpholinyl), or also thiomorpholino, S-oxo-thiomorpholino, or S,S-dioxothiomorpholino. Lower alkylenedioxy is especially methylenedioxy.
- a carbamoyl group carrying one or two substituents is especially aminocarbonyl (carbamoyl) which is substitiuted by one or two radicals at the nitrogen; the amino substituents here are preferably (if 2 substituents are present in the respective amino group independently of one another) from the group comprising lower alkyl, such as especially methyl, ethyl or n-propyl, hydroxy-lower alkyl, typically 2-hydroxyethyl, C 3 -C 8 cycloalkyl, especially cyclohexyl, amino- lower alkyl, typically 3-aminopropyl or 4-aminobutyl, N-mono- or N,N-di(lower alkyl)-amino- lower alkyl, typically 3-(N,N-dimethylamino)propyl, amino, N-mono- or N,N-di-lower alkylamino and N-mono- or N,N-di-(hydroxy-lower alky
- Preferred here is pyrrolidino (1-pyrrolidinyl), piperidino (1-piperidinyl), piperazino (1-piperazinyl), 4-lower al- kylpiperazino, typically 4-methylpiperazino, imidazolino (1-imidazolyl), morpholino (4-morpho- linyl), or also thiomorpholino, S-oxo-thiomorpholino, or S,S-dioxothiomorpholino.
- acyl derived from an organic sulfonic acid which is designated Ac 2
- Ac 2 is especially one with the subformula R°-SO 2 -, wherein R 0 is a hydrocarbyl as defined above in the general and specific meanings, the latter also being generally preferred here.
- R 0 is a hydrocarbyl as defined above in the general and specific meanings, the latter also being generally preferred here.
- Especially preferred is lower alkylphenylsulfonyl, especially 4-toluenesulfonyl.
- Preferred compounds according to the invention are, for example, those wherein R 0 has the following preferred meanings: lower alkyl, especially methyl or ethyl, amino-lower alkyl, wherein the amino group is unprotected or is protected by a conventional amino protecting group - especially by lower alkoxycarbonyl, typically tert-lower alkoxycarbonyl, for example tert-butoxycarbonyl - e.g.
- Preferred acyl radicals Ac 1 are acyl radicals of a carboxylic acid which are characterised by the subformula R°-CO-, wherein R 0 has one of the above general and preferred meanings of the hydrocarbyl radical R 0 .
- Especially preferred radicals R 0 here are lower alkyl, especially methyl or ethyl, amino-lower alkyl, wherein the amino group is unprotected or protected by a conventional amino protecting group, especially by lower alkoxycarbonyl, typically tert-lower alkoxycarbonyl, for example tert-butoxycarbonyl, e.g.
- a further preferred Acyl Ac 1 is derived from monoesters of carbonic acid and is characterised by the subformula R°-O-CO-.
- the lower alkyl radicals, especially tert-butyl, are especially preferred hydrocarbyl radicals R 0 in these derivatives.
- a preferred acyl Ac 2 of subformula R°-SO 2 - wherein R 0 is a hydrocarbyl as defined in the above general and specific meanings, is lower alkylphenylsulfonyl, typically 4- toluenesulfonyl. If p is 0, the nitrogen atom bonding R 3 is uncharged. If p is 1 , then R 4 must also be present, and the nitrogen atom bonding R 3 and R 4 (quaternary nitrogen) is then positively charged.
- Z is especially lower alkyl, most especially methyl or hydrogen.
- the compounds of the invention may also be present in the form of pharmaceutically, i.e. physiologically, acceptable salts, provided they contain salt-forming groups.
- pharmaceutically unacceptable salts may also be used.
- therapeutic use only pharmaceutically acceptable salts are used, and these salts are preferred.
- compounds of formula I having free acid groups may exist as a salt, preferably as a physiologically acceptable salt with a salt-forming basic component.
- a salt-forming basic component may be primarily metal or ammonium salts, such as alkali metal or alkaline earth metal salts, for example sodium, potassium, magnesium or calcium salts, or ammonium salts with ammonia or suitable organic amines, especially tertiary monoamines and heterocyclic bases, for example triethylamine, tri-(2-hydroxyethyl)- amine, N-ethylpiperidine or N,N'-dimethylpiperazine.
- Compounds of the invention having a basic character may also exist as addition salts, especially as acid addition salts with inorganic and organic acids, but also as quaternary salts.
- compounds which have a basic group, such as an amino group, as a substituent may form acid addition salts with common acids.
- Suitable acids are, for example, hydrohalic acids, e.g.
- hydrochloric and hydrobromic acid sulfuric acid, phosphoric acid, nitric acid or perchloric acid, or aliphatic, alicyclic, aromatic or heterocyclic carboxylic or sulfonic acids, such as formic, acetic, propionic, succinic, glycolic, lactic, malic, tartaric, citric, fumaric, maleic, hydroxymaleic, oxalic, pyruvic, phenylacetic, benzoic, p-aminobenzoic, anthranilic, p-hydroxybenzoic, salicylic, p-aminosalicylic acid, pamoic acid, methanesulfonic, ethanesulfonic, hydroxyethanesulfonic, ethylenedisulfonic, halobenzenesulfonic, toluenesulfonic, naphthalenesulfonic acids or sulfanilic acid, and also methionine, tryptophan,
- any reference hereinbefore and hereinafter to the free compounds is to be understood as referring also to the corresponding salts, and the solvates thereof, for example hydrates, as appropriate and expedient.
- R 1 and R 2 independently of each other are lower alkyl, lower alkyl substituted by halogen, C 6 - Ci 4 aryl, hydroxy, lower alkoxy, phenyl-lower alkoxy, phenyloxy, lower alkanoyloxy, benzoyloxy, amino, lower alkylamino, lower alkanoylamino, phenyl-lower alkylamino, N,N-di- lower alkylamino, N,N-di-(phenyl-lower alkyl)amino, cyano, mercapto, lower alkylthio, carboxy, lower alkoxycarbonyl, carbamoyl, N-lower alkylcarbamoyl, N,N-di-lower alkyl- carbamoyl, sulfo, lower alkanesulfonyl, lower alkoxysulfonyl, aminosulfonyl, N-lower - alkylami
- n and m are independently of each other 0 or 1 or 2, preferably 0;
- R3, R 4 , Re, R-io are independently of each other hydrogen, lower alkyl, lower alkenyl or lower alkadienyl, which are each unsubstituted or monosubstituted or polysubsituted, preferably monosubstituted or disubstituted by a substituent independently selected from lower alkyl; hydroxy; lower alkoxy, which may be unsubstituted or mono-, di-, or trisubstituted by (i) heterocyclyl with 4 to 12 ring atoms, which may be unsaturated, wholly saturated, or partly saturated, is monocyclic or bicyclic and may contain up to three heteroatoms selected from nitrogen, oxygen and sulfur, and is most especially pyrrolyl, for example 2-pyrrolyl or 3- pyrrolyl, pyridyl, for example 2-, 3- or 4-pyridyl, or in a broader sense also thienyl, for example 2- or 3-thienyl, or furyl, for example
- phenyl, naphthyl, phenyl-lower alkyl or phenyl-lower alkenyl with a terminal phenyl radical which is unsubstituted or monosubstituted or disubstituted by the radicals named above as substituents of lower alkyl, lower alkenyl or lower alkadienyl;
- heterocyclyl-lower alkyl wherein heterocyclyl is pyrrolyl, for example 2-pyrrolyl or 3- pyrrolyl, pyridyl, for example 2-, 3- or 4-pyridyl, or in a broader sense also thienyl, for example 2- or 3-thienyl, or furyl, for example 2-furyl, indolyl, typically 2- or 3-indolyl, quinolyl, typically 2- or 4-quinolyl, isoquinolyl, typically 3- or 5-isoquinolyl, benzofuranyl, typically 2- benzofuranyl, chromenyl, typically 3-chromenyl, benzothienyl, typically 2- or 3-benzothienyl; imidazolyl, typically 1- or 2-imidazolyl, pyrimidinyl, typically 2-or 4-pyrimidinyl, oxazolyl, typically 2-oxazolyl, isoxazolyl, typically 3-isoxazolyl, thiazolyl, typically
- R 4 may also be absent for the compound of formula II;
- R 4 is absent for compounds of formula II, hydrogen or CH 3 for compounds of formula I, and
- R 0 in the said radicals has the following meanings: substituted or unsubstituted lower alkyl, especially methyl or ethyl, amino-lower alkyl hydroxy-lower alkyl, wherein the amino group is unprotected or is protected by a conventional amino protecting group - especially by lower alkoxycarbonyl, typically tert-lower alkoxycarbonyl, for example tert-butoxycarbonyl - e.g.
- p is 0 if R 4 is absent, or is 1 if R 3 and R 4 are both present and in each case are one of the aforementioned radicals (for compounds of formula II);
- R 5 is hydrogen or lower alkyl, especially hydrogen
- X stands for 2 hydrogen atoms, for O, or for 1 hydrogen atom and hydroxy; or for 1 hydrogen atom and lower alkoxy; Z is hydrogen or especially lower alkyl, most especially methyl;
- either the two bonds characterised by wavy lines are preferably absent in ring A and replaced by 4 hydrogen atoms, and the two wavy lines in ring B each, together with the respective parallel bond, signify a double bond;
- n 0;
- R 3 and R 4 are independently of each other
- lower alkyl unsubstituted or mono- or disubstituted, especially monosubstituted, by radicals selected independently of one another from carboxy; lower alkoxycarbonyl; and cyano;;
- R 4 is hydrogen or -CH 3 .
- R 3 is as defined above or preferably R 3 is,
- R 0 is lower alkyl; amino-lower alkyl, wherein the amino group is present in unprotected form or is protected by lower alkoxycarbonyl; tetrahydropyranyloxy-lower alkyl; phenyl; imidazolyl-lower alkoxyphenyl; carboxyphenyl; lower alkoxycarbonylphenyl; halogen-lower alkylphenyl; imidazol-1-ylphenyl; pyrrolidino- lower alkylphenyl; piperazino-lower alkylphenyl; (4-lower alkylpiperazinomethyl)phenyl; morpholino-lower alkylphenyl; piperazinocarbonylphenyl; or (4-lower alkylpiperazino)phenyl;
- acyl of the subformula R°HN-C( W)-, wherein W is oxygen and R 0 has the following meanings: morpholino-lower alkyl, phenyl, lower alkoxyphenyl, carboxyphenyl, or lower alkoxycarbonylphenyl;
- R 3 is lower alkylphenylsulfonyl, typically 4-toluenesulfonyl;
- R 5 is hydrogen or lower alkyl, especially hydrogen
- X stands for 2 hydrogen atoms or for O
- Z is methyl or hydrogen; or a salt thereof, if at least one salt-forming group is present.
- n 0;
- R 3 and R 4 are independently of each other
- lower alkyl unsubstituted or mono- or disubstituted, especially monosubstituted, by radicals selected independently of one another from carboxy; lower alkoxycarbonyl; and cyano; whereby R 4 may also be absent;
- R 4 is absent
- R 3 is acyl from the subformula R°-CO, wherein R 0 is lower alkyl, especially methyl or ethyl; amino-lower alkyl, wherein the amino group is unprotected or protected by lower alkoxy- carbonyl, typically tert-lower alkoxycarbonyl, for example tert-butoxycarbonyl, e.g.
- acyl of the subformula R°HN-C( W)-, wherein W is oxygen and R 0 has the following preferred meanings: morpholino-lower alkyl, typically 2-morpholinoethyl, phenyl, lower alkoxyphenyl, typically 4-methoxyphenyl or 4-ethoxyphenyl, carboxyphenyl, typically 4- carboxyphenyl, or lower alkoxycarbonylphenyl, typically 4-ethoxycarbonylphenyl;
- alkylphenylsulfonyl typically 4-toluenesulfonyl
- p is 0 if R 4 is absent, or is 1 if R 3 and R 4 are both present and in each case are one of the aforementioned radicals;
- R 5 is hydrogen or lower alkyl, especially hydrogen
- X stands for 2 hydrogen atoms or for O
- Z is methyl or hydrogen
- N-ethyl-1 ,2,3,4-tetrahydrostaurosporine N-tosyl-1 ,2,3,4-tetrahydrostaurosporine;
- N-carboxymethyl-1 ,2,3,4-tetrahydrostaurosporine N-terephthaloylmethyl ester-1 ,2,3,4-tetrahydrostaurosporine; N-terephthaloyl-1 ,2,3,4-tetrahydrostaurosporine;
- N-benzoyl-1 ,2,3,4-tetrahydrostaurosporine N,N-dimethyl -1 ,2,3,4-tetrahydrostaurosporinium iodide;
- X 1 hydrogen and 1 hydroxy atom
- R 1 , R 2 , R 5 H
- R 3 CH 3
- Z CH 3
- R 4 is selected from -(CH 2 ) 2 OH; -CH 2 CH(OH)CH 2 OH; -CO(CH 2 ) 2 CO 2 Na; -(CH 2 ) 3 CO 2 H; - COCH 2 N(CH 3 ) 2 ;
- R 4 is selected from N-[0-(tetrahydropyran-4-yl )-D-lactoyl]; N-[2-(tetrahydro-pyran-4-yloxy)-acetyl)]
- CAS CHEMICAL ABSTRACTS registry number
- the preferred STAUROSPORINE DERIVATIVE is N- [(9S, 10R, 11 R, 13R)-2,3, 10,1 1 ,12,13-hexahydro-10-methoxy-9-methyl-1 -oxo-9, 13-epoxy- 1 H,9H-diindolo[1 ,2,3-gh:3',2', 1 '-lm]pyrrolo[3,4-j][1 ,7]benzodiazonin-11 -y ⁇ ]-N- methylbenzamide of the formula (VII):
- Compound of formula VII is also known as MIDOSTAURIN [International Nonproprietary Name] or PKC412.
- MIDOSTAURIN is a derivative of the naturally occurring alkaloid staurosporine, and has been specifically described in the European patent No. 0 296 1 10 published on December 21 , 1988, as well as in US patent No. 5;093,330 published on March 3, 1992, and Japanese Patent No. 2 708 047.
- the invention provides the use of a compound of formula I (or pharmaceutically acceptable salt or prodrug ester thereof) for the preparation of a medicament for use in combination with ionizing radiation in the treatment of a proliferative disease.
- the invention provides use of a compound of formula I (or pharmaceutically acceptable salt or prodrug ester thereof) in combination with ionizing radiation for the treatment of a proliferative disease, especially a solid tumor.
- the invention provides a compound of formula I (or pharmaceutically acceptable salt or prodrug ester thereof) as active ingredient for use in combination with ionizing radiation for the treatment of a proliferative disease, especially a solid tumor.
- the invention provides a package comprising a compound of formula I (or pharmaceutically acceptable salt or prodrug ester thereof) together with instructions for the use in combination with ionizing radiation for the treatment of a proliferative disease, especially a solid tumor.
- delay of progression means administration of the combination to patients being in an early phase of the proliferative disease to be treated.
- solid tumor disease comprises, but is not restricted to glioma, thyroid cancer, breast cancer, ovarian cancer, cancer of the colon and generally the Gl tract, cervix cancer, lung cancer, in particular small-cell lung cancer, and non-small-cell lung cancer, head and neck cancer, bladder cancer, cancer of the prostate or Kaposi's sarcoma.
- the tumor disease to be treated is glioma, cancer of the prostate or thyroid cancer.
- the present combination inhibits the growth of solid tumors, but also liquid tumors. Furthermore, depending on the tumor type and the particular combination used, a decrease of the tumor volume can be obtained.
- the combinations disclosed herein are also suited to prevent the metastatic spread of tumors and the growth or development of micrometastases.
- Combination refers to administration of an amount of a compound of formula I in combination with administration of an amount of ionizing radiation such that there is a synergistic effect which would not be obtained if a compound of formula I is administered without separate, simultaneous or sequential administration of ionizing radiation.
- administration of ionizing radiation can be continuous, sequential or sporadic.
- an effect which would not be obtained if there is administered ionizing radiation without the separate, simultaneous or sequential administration of a compound of formula I wherein administration can be continuous, sequential or sporadic
- combination refers to administration of an amount of a compound of formula I in combination with administration of an amount of ionizing radiation such that there is a synergistic antiproliferative effect and/ or a clonogenic cell killing effect that would not be obtained if
- the compound of formula I is administered without prior, simultaneous or subsequent administration of ionizing radiation. Wherein administration can be continuous, sequential or sporadic;
- ionising radiation means ionising radiation that occurs as either electromagnetic rays (such as X-rays and gamma rays) or particles (such as alpha and beta particles). Ionising radiation is provided in, but not limited to, radiation therapy and is known in the art (Hellman, Principles of Radiation Therapy, Cancer, in Principles and Practice of Oncology, 248-275 (Devita et al., ed., 4 th Ed., V1 , 1993).
- proliferative diseases like solid tumor diseases
- drugs with different mechanisms of action may be combined.
- any combination of drugs having different mode of action does not necessarily lead to combinations with advantageous effects.
- compounds of formula I and pharmaceutically acceptable salts and prodrug derivatives are preferably used in the form of pharmaceutical preparations that contain the relevant therapeutically effective amount of active ingredient optionally together with or in admixture with inorganic or organic, solid or liquid, pharmaceutically acceptable carriers which are suitable for administration.
- each patient receives doses of ionizing radiation during the same period and the compound of formula I.
- the ionizing radiation is given as a pre-treatment, i.e. before the treatment with the COMBINATION OF THE INVENTION is started; the ionizing radiation alone is administered to the patient for a defined period of time, e.g. daily administration of the ionizing radiation alone for two or three days or weeks.
- the precise dosage of the FLT-3 inhibitor and the HDAI to be employed for treating the diseasesand conditions mentioned hereinbefore depends upon several factors including the host, the nature and the severity of the condition being treated, the mode of administration.
- satisfactory results are achieved when the FLT- 3 inhibitor is administered parenterally, e.g., intraperitoneal ⁇ , intravenously, intramuscularly, subcutaneously, intratumorally, or rectally, or enterally, e.g., orally, preferably intravenously or, preferably orally, intravenously at a daily dosage of 0.1 to 10 mg/kg body weight, preferably 1 to 5 mg/kg body weight.
- a preferred intravenous daily dosage is 0.1 to 10 mg/kg body weight or, for most larger primates, a daily dosage of 200-300 mg.
- a typical intravenous dosage is 3 to 5 mg/kg, three to five times a week.
- the FLT-3 inhibitors are administered orally, by dosage forms such as microemulsions, soft gels or solid dispersions in dosages up to about 250 mg/day, in particular 225 mg/day, administered once, twice or three times daily.
- a small dose is administered initially and the dosage is gradually increased until the optimal dosage for the host under treatment is determined.
- the upper limit of dosage is that imposed by side effects and can be determined by trial for the host being treated.
- the FLT-3 inhibitors and the HDAI compounds may be combined with one or more pharmaceutically acceptable carriers and, optionally, one or more other conventional pharmaceutical adjuvants and administered enterally, e.g. orally, in the form of tablets, capsules, caplets, etc. or parenterally, e.g., intraperitoneal ⁇ or intravenously, in the form of sterile injectable solutions or suspensions.
- enteral and parenteral compositions may be prepared by conventional means.
- the infusion solutions according to the present invention are preferably sterile. This may be readily accomplished, e.g. by filtration through sterile filtration membranes. Aseptic formation of any composition in liquid form, the aseptic filling of vials and/or combining a pharmaceutical composition of the present invention with a suitable diluent under aseptic conditions are well known to the skilled addressee.
- the FLT-3 inhibitors and HDAI compounds may be formulated into enteral and parenteral pharmaceutical compositions containing an amount of the active substance that is effective for treating the diseases and conditions named hereinbefore, such compositions in unit dosage form and such compositions comprising a pharmaceutically acceptable carrier.
- compositions of FLT-3 inhibitors are described in the European patents No. 0 296 110, No. 0 657 164, No. 0 296 110, No.O 733 372, No.O 711 556, No.O 711 557.
- compositions of FLT-3 inhibitors are described in the European patent No. 0 657 164 published on June 14, 1995.
- the described pharmaceutical compositions comprise a solution or dispersion of compounds of formula I such as MIDOSTAURIN in a saturated polyalkylene glycol glyceride, in which the glycol glyceride is a mixture of glyceryl and polyethylene glycol esters of one or more C8-C18 saturated fatty acids.
- Composition A A:
- Gelucire 44/14 (82 parts) is melted by heating to 60° C.
- Powdered MIDOSTAURIN (18 parts) is added to the molten material.
- the resulting mixture is homogenised and the dispersion obtained is introduced into hard gelatin capsules of different size, so that some contain a 25mg dosage and others a 75mg dosage of the MIDOSTAURIN.
- the resulting capsules are suitable for oral administration.
- Composition B is a composition of Composition B:
- Gelucire 44/14 (86 parts) is melted by heating to 60° C. Powdered MIDOSTAURIN (14 parts) is added to the molten material. The mixture is homogenised and the dispersion obtained is introduced into hard gelatin capsules of different size, so that some contain a 25mg dosage and others a 75mg dosage of the MIDOSTAURIN. The resulting capsules are suitable for oral administration.
- Gelucire 44/14 available commercially from Gattefosse is a mixture of esters of C8-C18 saturated fatty acids with glycerol and a polyethylene glycol having a molecular weight of about 1500, the specifications for the composition of the fatty acid component being, by weight, 4-10% caprylic acid, 3-9% capric acid, 40-50% lauric acid, 14-24% myristic acid, A- 14% palmitic acid and 5-15% stearic acid.
- Gelucire formulation consists of: Gelucire (44/14): 47 g MIDOSTAURIN: 3.Og filled into a 60 mL Twist off flask
- a preferred example of soft gel will contain the following Microemulsion:
- a therapeutically effective amount of each combination partner of the COMBINATION OF THE INVENTION may be administered simultaneously or sequentially and in any order, and the components may be administered separately or as a fixed combination.
- the method of delay of progression or treatment of a proliferative disease according to the invention may comprise (i) administration of the first combination partner and (ii) administration of the second combination partner, wherein administration of a combination partner may be simultaneous or sequential in any order, in jointly therapeutically effective amounts, preferably in synergistically effective amounts, e.g. in daily or weekly dosages corresponding to the amounts described herein.
- the individual combination partners of the COMBINATION OF THE INVENTION can be administered separately at different times during the course of therapy or concurrently.
- administering also encompasses the use of a pro-drug of a compound of formula I that converts in vivo to the combination partner as such.
- the instant invention is therefore to be understood as embracing all such regimes of simultaneous or alternating treatment and the term "administering" is to be interpreted accordingly.
- the dosage of ionizing radiation and a compound of formula I in relation to each other is preferably in a ratio that is synergistic.
- the particular mode of administration and the dosage of a compound of formula I may be selected by the attending physician taking into account the particulars of the patient, especially age, weight, life style, activity level, etc.
- the dosage of a compound of formula I may depend on various factors, such as effectiveness and duration of action of the active ingredient, mode of administration, effectiveness and duration of action of the ionizing radiation and/or sex, age, weight and individual condition of the subject to be treated.
- the dosage of ionizing radiation may depend on various factors, such as effectiveness and duration of action of the ionizing radiation, mode of administration, location of administration, effectiveness and duration of action of the compound of formula I and/or sex, age, weight and individual condition of the subject to be treated.
- the dosage of ionizing radiation is generally defined in terms of radiation absorbed dose, time and fraction, and must be carefully defined by the attending physician.
- the combination comprises N- [(9S, 10R, 11 R, 13R)-2,3, 10,1 1 ,12,13-hexahydro-10-methoxy-9-methyl-1 -oxo-9, 13-epoxy- 1 H,9H-diindolo[1 ,2,3-gh:3',2', 1 '-lm]pyrrolo[3,4-j][1 ,7]benzodiazonin-11 -y ⁇ ]-N- methylbenzamide of the formula (VII):
- the present invention relates to a method of treating a warm-blooded animal having a proliferative disease comprising administering to the animal a COMBINATION OF THE INVENTION in a way that is jointly therapeutically effective against a proliferative disease and in which the combination partners can also be present in the form of their pharmaceutically acceptable salts.
- the present invention pertains to the use of a COMBINATION OF THE INVENTION for the delay of progression or treatment of a proliferative disease and for the preparation of a medicament for the delay of progression or treatment of a proliferative disease.
- an antidiarrheal agent is administered together with the COMBINATION OF THE INVENTION in order to prevent, control or eliminate diarrhoea that is sometimes associated with the administration of a compound of formula I.
- the present invention also relates to a method of preventing or controlling diarrhoea associated with administering a compound of formula I, which comprises administering an effective amount of an antidiarrhea agent to the patient receiving treatment with the COMBINATION OF THE INVENTION.
- Antidiarrheal agents and protocols for their administration are known to those skilled in the art.
- Antidiarrheal agents suitable for use in the inventive methods and compositions include, but are not limited to, natural opiods, such as tincture of opium, paregoric, and codeine, synthetic opioids, such as diphenoxylate, difenoxin and loperamide, bismuth subsalicylate, octreotide (e.g. available as SAN DOSTATI NTM), motilin antagonists and traditional antidiarrheal remedies, such as kaolin, pectin, berberine and muscarinic agents.
- natural opiods such as tincture of opium, paregoric, and codeine
- synthetic opioids such as diphenoxylate, difenoxin and loperamide, bismuth subsalicylate, octreotide (e.g. available as SAN DOSTATI NTM)
- motilin antagonists e.g. available as SAN DOSTATI NTM
- Determination of the response to treatment with fractionated doses of ionizing irradiation in solid tumor xenografts is derived from ACC3-tumor cells, using nude mice as tumor carriers.
- nude mice are injected subcutaneously with tumor cells.
- Measurable tumors derived from the respective tumor cells form within a tumor cell dependent time period - from 7 days (aggressive tumors) up to 3-4 weeks (slowly growing tumors).
- Tumor volumes are determined from caliper measurements according to the formula (Lxl2/2), and tumors are allowed to expand to a minimal volume of at least 0.175cm3 +/-15% prior to any treatment.
- the animals are treated with a single or repetitive dose of the chemical agent (applied according to the substance-dependent best mode of application) in combination with a single or multiple fractions of locoregional applied irradiation (3Gy/ fraction). Tumor volume measurements are performed on a daily basis to determine treatment response.
- a 4x3 Gy and 4x5Gy fractionation radiation regimen is used. These tumors show a strong response to both fractionated radiation regimens, leading even to partial regression, as usually only observed with highly radiation-sensitive tumors.
- the 4x3Gy regimen even induces a stronger response than the 4x5Gy regimen.
- tumor regression only starts 3-4 days after the end of treatment.
- apoptosis prone tumor cells e.g. p53- wildtype, E1A/ras transformed MEFS
- ACC3-tumors might be highly dependent on a functional tumor vasculature, and radiation-induced damage of the tumor vasculature will only affect the tumor growth response with a certain time delay. Future in vivo experiments in combination with histological analysis will carefully investigate this highly interesting observation.
- ACC- representative ACC-3 cell line can be regarded as a highly radioresistant tumor cell line when compared to established tumor cell lines derived from various other tumor entities.
- most of the different antisignaling agents tested require high dosage to induce an antiproliferative effect and have only an additive antiproliferative effect when applied in combination with irradiation.
- the only clinically relevant compound tested which shows a slight supra-additive effect in terms of proliferation and clonogenicity when combined with IR (proliferation, clonogenicity) is the protein kinase C inhibitor ⁇ /-[(9S,1 OR, 11 R, 13R)-2,3,10,1 1 ,12,13-hexahydro-10- methoxy-9-methyl-1 -oxo-9, 13-epoxy-1 /-/,9/-/-diindolo[1 ,2,3-gh:3',2', 1 '-lm]pyrrolo[3,4- j][1 ,7]benzodiazonin-11-yl]- ⁇ /-methylbenzamide.
- tumors derived from the "in vitro-radioresistant" ACC3- cell line show a strong growth delay response even to a low-dose treatment regimen of ionizing radiation alone. These results suggest a strong involvement of the tumor microenvironment on the treatment response.
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
This invention relates to staurosporine derivatives are effective when used in combination with ionizing radiation for the delay of progression or treatment of a proliferative disease, especially a solid tumor disease, especially a Carcinoma, especially Adenoid Cystic Carcinoma.
Description
STAUROSPORINE DERIVATIVES AND RADIATION
This invention relates to organic compounds, in particular to pharmaceutical compositions for use in combination with ionizing radiation for the delay of progression or treatment of a proliferative disease, especially a solid tumor disease.
We have now found that certain the FLT-3 inhibitors especially staurosporine derivatives are effective when used in combination with ionizing radiation for the delay of progression or treatment of a proliferative disease, especially a solid tumor disease, especially a Carcinoma, especially Adenoid Cystic Carcinoma;
Accordingly the invention provides a method for the delay of progression or treatment of a proliferative disease, , especially a solid tumor disease, especially a Carcinoma, especially Adenoid Cystic Carcinoma in a subject in need of such treatment which comprises administering to the subject an effective amount of a staurosporine derivatives of formula
wherein (II) is the partially hydrogenated derivative of compound (I),
wherein R1 and R2, are, independently of one another, unsubstituted or substituted alkyl, hydrogen, halogen, hydroxy, etherified or esterified hydroxy, amino, mono- or disubstituted amino, cyano, nitro, mercapto, substituted mercapto, carboxy, esterified carboxy, carbamoyl, N-mono- or N,N-di-substituted carbamoyl, sulfo, substituted sulfonyl, aminosulfonyl or N- mono- or N,N-di-substituted aminosulfonyl;
n and m are, independently of one another, a number from and including 0 to and including 4;
n' and m' are, independently of one another, a number from and including 0 to and including 4;
R3, R4, Re and Ri0 are, independently of one another, hydrogen, -O ", acyl with up to 30 carbon atoms, an aliphatic, carbocyclic, or carbocyclic-aliphatic radical with up to 29 carbon atoms in each case, a heterocyclic or heterocyclic-aliphatic radical with up to 20 carbon atoms in each case, and in each case up to 9 heteroatoms, an acyl with up to 30 carbon atoms, wherein R4 may also be absent;
or if R3 is acyl with up to 30 carbon atoms, R4 is not an acyl;
p is 0 if R4 is absent, or is 1 if R3 and R4 are both present and in each case are one of the aforementioned radicals;
R5 is hydrogen, an aliphatic, carbocyclic, or carbocyclic-aliphatic radical with up to 29 carbon atoms in each case, or a heterocyclic or heterocyclic-aliphatic radical with up to 20 carbon atoms in each case, and in each case up to 9 heteroatoms, or acyl with up to 30 carbon atoms;
R7, R6 and R9 are acyl or -(lower alkyl) -acyl, unsubstituted or substituted alkyl, hydrogen, halogen, hydroxy, etherified or esterified hydroxy, amino, mono- or disubstituted amino, cyano, nitro, mercapto, substituted mercapto, carboxy,carbonyl, carbonyldioxy, esterified carboxy, carbamoyl, N-mono- or N,N-di-substituted carbamoyl, sulfo, substituted sulfonyl, aminosulfonyl or N-mono- or N,N-di-substituted aminosulfonyl;
X stands for 2 hydrogen atoms; for 1 hydrogen atom and hydroxy; for O; or for hydrogen and lower alkoxy;
- A -
Z stands for hydrogen or lower alkyl;
and either the two bonds characterised by wavy lines are absent in ring A and replaced by 4 hydrogen atoms, and the two wavy lines in ring B each, together with the respective parallel bond, signify a double bond;
or the two bonds characterised by wavy lines are absent in ring B and replaced by a total of 4 hydrogen atoms, and the two wavy lines in ring A each, together with the respective parallel bond, signify a double bond;
or both in ring A and in ring B all of the 4 wavy bonds are absent and are replaced by a total of 8 hydrogen atoms;
or a salt thereof, if at least one salt-forming group is present.
The general terms and definitions used hereinbefore and hereinafter preferably have the following meanings for the staurosporine derivatives:
The prefix "lower" indicates that the associated radical preferably has up to and including a maximum of 7 carbon atoms, especially up to and including a maximum of 4 carbon atoms.
Lower alkyl is especially methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, or tert- butyl, and also pentyl, hexyl, or heptyl.
Unsubstituted or substituted alkyl is preferably CrC2oalkyl, especially lower alkyl, typically methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, or tert-butyl, which is unsubstituted or substituted especially by halogen, such as fluorine, chlorine, bromine, or iodine, C6-Ci4aryl, such as phenyl or naphthyl, hydroxy, etherified hydroxy, such as lower alkoxy, phenyl-lower alkoxy or phenyloxy, esterified hydroxy, such as lower alkanoyloxy or benzoyloxy, amino, mono- or disubstituted amino, such as lower alkylamino, lower alkanoylamino, phenyl-lower alkylamino, N, N-di-lower alkylamino, N,N-di-(phenyl-lower alkyl)amino, cyano, mercapto, substituted mercapto, such as lower alkylthio, carboxy, esterified carboxy, such as lower alkoxycarbonyl, carbamoyl, N-mono- or N,N-disubstituted carbamoyl, such as N-lower alkylcarbamoyl or N, N-di-lower alkylcarbamoyl, sulfo, substituted sulfo, such as lower alkanesulfonyl or lower alkoxysulfonyl, aminosulfonyl or N-mono- or N,N-disubstituted aminosulfonyl, such as N-lower alkylaminosulfonyl or N, N-di-lower alkylaminosulfonyl.
Halogen is preferably fluorine, chlorine, bromine, or iodine, especially fluorine or chlorine.
Etherified hydroxy is especially lower alkoxy, C6-Ci4aryloxy, such as phenyloxy, or C6- Ci4aryl-lower alkoxy, such as benzyloxy.
Esterified hydroxy is preferably lower alkanoyloxy or C6-Ci4arylcarbonyloxy, such as benzoyloxy.
Mono- or disubstituted amino is especially amino monosubstituted or disubstituted by lower alkyl, C6-Ci4aryl, C6-Ci4aryl-lower alkyl, lower alkanoyl, or C6-Ci2arylcarbonyl.
Substituted mercapto is especially lower alkylthio, C6-C14arylthio, C6-C14aryl-lower alkylthio, lower alkanoylthio, or C6-C14aryl-lower alkanoylthio.
Esterified carboxy is especially lower alkoxycarbonyl, C6-Ci4aryl-lower alkoxycarbonyl or C6- Ci4aryloxycarbonyl.
N-Mono- or N,N-disubstituted carbamoyl is especially carbamoyl N-monosubstituted or N, N- disubstituted by lower alkyl, C6-Ci4aryl or C6-Ci4aryl-lower alkyl.
Substituted sulfonyl is especially C6-Ci4arylsulfonyl, such as toluenesulfonyl, C6-Ci4aryl-lower alkanesulfonyl or lower alkanesulfonyl.
N-Mono- or N,N-disubstituted aminosulfonyl is especially aminosulfonyl N-monosubstituted or N,N-disubstituted by lower alkyl, C6-Ci4aryl or C6-Ci4aryl-lower alkyl.
C6-C14Aryl is an aryl radical with 6 to 14 carbon atoms in the ring system, such as phenyl, naphthyl, fluorenyl, or indenyl, which is unsubstituted or is substituted especially by halogen, such as fluorine, chlorine, bromine, or iodine, phenyl or naphthyl, hydroxy, lower alkoxy, phenyl-lower alkoxy, phenyloxy, lower alkanoyloxy, benzoyloxy, amino, lower alkylamino, lower alkanoylamino, phenyl-lower alkylamino, N, N-di-lower alkylamino, N,N-di-(phenyl-lower alkyl)amino, cyano, mercapto, lower alkylthio, carboxy, lower alkoxycarbonyl, carbamoyl, N- lower alkylcarbamoyl, N, N-di-lower alkylcarbamoyl, sulfo, lower alkanesulfonyl, lower alkoxysulfonyl, aminosulfonyl, N-lower alkylaminosulfonyl, or N, N-di-lower alkylamino- sulfonyl.
The indices n and m are in each case preferably 1 , 2 or especially 0. In general, compounds of formula I in which n and m are in each case 0 (zero) are especially preferred.
An aliphatic carbohydrate radical R3, R4, Re or R10 with up to 29 carbon atoms, which is substituted by acyclic substituents and preferably has a maximum of 18, especially a maximum of 12, and as a rule not more than 7 carbon atoms, may be saturated or unsaturated and is especially an unsubstituted or a straight-chain or branched lower alkyl, lower alkenyl, lower alkadienyl, or lower alkinyl radical substituted by acyclic substituents. Lower alkyl is, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl, and also n-pentyl, isopentyl, n-hexyl, isohexyl and n-heptyl; lower alkenyl is, for example, allyl, propenyl, isopropenyl, 2- or 3-methallyl and 2- or 3-butenyl; lower alkadienyl is, for example, 1-penta-2,4-dienyl; lower alkinyl is, for example, propargyl or 2-butinyl. In corresponding unsaturated radicals, the double bond is especially located in a position higher than the D-position in relation to the free valency. Substituents are especially the acyl radicals defined hereinbelow as substituents of R0, preferably free or esterified carboxy, such as carboxy or lower alkoxycarbonyl, cyano or di-lower alkylamino.
A carbocyclic or carbocyclic-aliphatic radical R3, R4, R8 or R10 with up to 29 carbon atoms in each case is especially an aromatic, a cycloaliphatic, a cycloaliphatic-aliphatic, or an aromatic-aliphatic radical which is either present in unsubstituted form or substituted by radicals referred to hereinbelow as substituents of R0. An aromatic radical (aryl radical) R3 or R4 is most especially a phenyl, also a naphthyl, such as 1- or 2-naphthyl, a biphenylyl, such as especially 4-biphenylyl, and also an anthryl, fluorenyl and azulenyl, as well as their aromatic analogues with one or more saturated rings, which is either present in unsubstituted form or substituted by radicals referred to hereinbelow as substituents of R0. Preferred aromatic-aliphatic radicals are aryl-lower alkyl- and aryl-lower alkenyl radicals, e.g. phenyl- lower alkyl or phenyl-lower alkenyl with a terminal phenyl radical, such as for example benzyl, phenethyl, 1-, 2-, or 3-phenylpropyl, diphenylmethyl (benzhydryl), trityl, and cinnamyl, and also 1- or 2-naphthylmethyl. Of aryl radicals carrying acyclic radicals, such as lower alkyl, special mention is made of o-, m- and p-tolyl and xylyl radicals with variously situated methyl radicals.
A cycloaliphatic radical R3, R4, Re or R10 with up to 29 carbon atoms is especially a substituted or preferably unsubstituted mono-, bi-, or polycyclic cycloalkyl-, cycloalkenyl-, or cycloalkadienyl radical. Preference is for radicals with a maximum of 14, especially 12, ring-
carbon atoms and 3- to 8-, preferably 5- to 7-, and most especially 6-member rings which can also carry one or more, for example two, aliphatic hydrocarbon radicals, for example those named above, especially the lower alkyl radicals, or other cycloaliphatic radicals as substituents. Preferred substituents are the acyclic substituents named hereinbelow for R0.
A cycloaliphatic-aliphatic radical R3, R4, Re or R10 with up to 29 carbon atoms is a radical in which an acyclic radical, especially one with a maximum of 7, preferably a maximum of 4 carbon atoms, such as especially methyl, ethyl, and vinyl, carries one or more cycloaliphatic radicals as defined hereinabove. Special mention is made of cycloalkyl-lower alkyl radicals, as well as their analogues which are unsaturated in the ring and/or in the chain, but are non- aromatic, and which carry the ring at the terminal carbon atom of the chain. Preferred substituents are the acyclic substituents named herein below for R0.
Heterocyclic radicals R3, R4, R8 or R10 with up to 20 carbon atoms each and up to 9 heteroatoms each are especially monocyclic, but also bi- or polycyclic, aza-, thia-, oxa-, thiaza-, oxaza-, diaza-, triaza-, or tetrazacyclic radicals of an aromatic character, as well as corresponding heterocyclic radicals of this type which are partly or most especially wholly saturated, these radicals - if need be - possibly carrying further acyclic, carbocyclic, or heterocyclic radicals and/or possibly mono-, di-, or polysubstituted by functional groups, preferably those named hereinabove as substituents of aliphatic hydrocarbon radicals. Most especially they are unsubstituted or substituted monocyclic radicals with a nitrogen, oxygen, or sulfur atom, such as 2-aziridinyl, and especially aromatic radicals of this type, such as pyrryl, for example 2-pyrryl or 3-pyrryl, pyridyl, for example 2-, 3-, or 4-pyridyl, and also thienyl, for example 2- or 3-thienyl, or furyl, for example 2-furyl; analogous bicyclic radicals with an oxygen, sulfur, or nitrogen atom are, for example, indolyl, typically 2- or 3-indolyl, quinolyl, typically 2- or 4-quinolyl, isoquinolyl, typically 3- or 5-isoquinolyl, benzofuranyl, typically 2-benzofuranyl, chromenyl, typically 3-chromenyl, or benzothienyl, typically 2- or 3- benzothienyl; preferred monocyclic and bicyclic radicals with several heteroatoms are, for example, imidazolyl, typically 2- or 4-imidazolyl, pyrimidinyl, typically 2-or 4-pyrimidinyl, oxazolyl, typically 2-oxazolyl, isoxazolyl, typically 3-isoxazolyl, or thiazolyl, typically 2- thiazolyl, and benzimidazolyl, typically 2-benzimidazolyl, benzoxazolyl, typically 2- benzoxazolyl, or quinazolyl, typically 2-quinazolinyl. Appropriate partially or, especially,
completely saturated analogous radicals may also be considered, such as 2-tetrahydrofuryl, 2- or 3-pyrrolidinyl, 2-, 3-, or 4-piperidyl, and also 2-or 3-morpholinyl, 2- or 3-thiomorpholinyl, 2-piperazinyl and N-mono- or N,N'-bis-lower alkyl-2-piperazinyl radicals. These radicals may also carry one or more acyclic, carbocyclic, or heterocyclic radicals, especially those mentioned hereinabove. The free valency of the heterocyclic radicals R3 or R4 must emanate from one of their carbon atoms. Heterocyclyl may be unsubstituted or substituted by one or more, preferably one or two, of the substituents named hereinbelow for R0.
Heterocyclic-aliphatic radicals R3, R4, R8 or R10 especially lower alkyl radicals, especially with a maximum of 7, preferably a maximum of 4 carbon atoms, for example those named hereinabove, which carry one, two, or more heterocyclic radicals, for example those named in the preceding paragraph, the heterocyclic ring possibly being linked to the aliphatic chain also by one of its nitrogen atoms. A preferred heterocyclic-aliphatic radical Ri is, for example, imidazol-1-ylmethyl, 4-methylpiperazin-1-ylmethyl, piperazin-1-ylmethyl, 2-(morpholin-4- yl)ethyl and also pyrid-3-ylmethyl. Heterocyclyl may be unsubstituted or substituted by one or more, preferably one or two, of the substituents named hereinbelow for R0.
A heteroaliphatic radical R3, R4, R8 or R10 with up to 20 carbon atoms each and up to 10 heteroatoms each is an aliphatic radical which, instead of one, two, or more carbon atoms, contains identical or different heteroatoms, such as especially oxygen, sulfur, and nitrogen. An especially preferred arrangement of a heteroaliphatic radical Ri takes the form of oxa- alkyl radicals in which one or more carbon atoms are replaced in a preferably linear alkyl by oxygen atoms preferably separated from one another by several (especially 2) carbon atoms so that they form a repeating group, if need be multi-repeating group (0-CH2-CH2- )q, wherein q = 1 to 7.
Especially preferred as R3, R4, R8 or R10, apart from acyl, is lower alkyl, particularly methyl or ethyl; lower alkoxycarbonyl-lower alkyl, especially methoxycarbonylmethyl or 2-(tert- butoxycarbonyl)ethyl; carboxy-lower alkyl, especially carboxymethyl or 2-carboxyethyl; or cyano-lower alkyl, especially 2-cyanoethyl.
An acyl radical R3, R4, R6, R7, Re, R9, or R10with up to 30 carbon atoms derives from a carboxylic acid, functionally modified if need be, an organic sulfonic acid, or a phosphoric acid, such as pyro- or orthophosphoric acid, esterified if need be.
An acyl designated Ac1 and derived from a carboxylic acid, functionally modified if need be, is especially one of the subformula Y-C(=W)-, wherein W is oxygen, sulfur, or imino and Y is hydrogen, hydrocarbyl R0 with up to 29 carbon atoms, hydrocarbyloxy R°-O-, an amino group or a substituted amino group, especially one of the formula R0HN- or R0R0N- (wherein the R0 radicals may be identical or different from one another).
The hydrocarbyl (hydrocarbon radical) R0 is an acyclic (aliphatic), carbocyclic, or carbocyclic- acyclic hydrocarbon radical, with up to 29 carbon atoms each, especially up to 18, and preferably up to 12 carbon atoms, and is saturated or unsaturated, unsubstituted or substituted. Instead of one, two, or more carbon atoms, it may contain identical or different heteroatoms, such as especially oxygen, sulfur, and nitrogen in the acyclic and/or cyclic part; in the latter case, it is described as a heterocyclic radical (heterocyclyl radical) or a hetero- cyclic-acyclic radical.
Unsaturated radicals are those, which contain one or more, especially conjugated and/or isolated, multiple bonds (double or triple bonds). The term cyclic radicals includes also aromatic and non-aromatic radicals with conjugated double bonds, for example those wherein at least one 6-member carbocyclic or a 5- to 8-member heterocyclic ring contains the maximum number of non-cumulative double bonds. Carbocyclic radicals, wherein at least one ring is present as a 6-member aromatic ring (i.e. a benzene ring), are defined as aryl radicals.
An acyclic unsubstituted hydrocarbon radical R0 is especially a straight-chained or branched lower alkyl-, lower alkenyl-, lower alkadienyl-, or lower alkinyl radical. Lower alkyl R0 is, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl, and also n-pentyl, isopentyl, n-hexyl, isohexyl and n-heptyl; lower alkenyl is, for example, allyl, propenyl, isopropenyl, 2- or 3-methallyl and 2- or 3-butenyl; lower alkadienyl is, for example, 1-penta-2,4-dienyl; lower alkinyl is, for example, propargyl or 2-butinyl. In corresponding unsaturated radicals, the double bond is especially located in a position higher than the D- position in relation to the free valency.
A carbocyclic hydrocarbon radical R0 is especially a mono-, bi-, or polycyclic cycloalkyl-, cycloalkenyl-, or cycloalkadienyl radical, or a corresponding aryl radical. Preference is for radicals with a maximum of 14, especially 12, ring-carbon atoms and 3- to 8-, preferably 5- to 7-, and most especially 6-member rings which can also carry one or more, for example two, acyclic radicals, for example those named above, especially the lower alkyl radicals, or other carbocyclic radicals. Carbocyclic-acyclic radicals are those in which an acyclic radical, especially one with a maximum of 7, preferably a maximum of 4 carbon atoms, such as especially methyl, ethyl and vinyl, carries one or more carbocyclic, if need be aromatic radicals of the above definition. Special mention is made of cycloalkyl-lower and aryl-lower alkyl radicals, as well as their analogues which are unsaturated in the ring and/or chain, and which carry the ring at the terminal carbon atom of the chain.
Cycloalkyl R0 has most especially from 3 up to and including 10 carbon atoms and is, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl, as well as bicyclo[2,2,2]octyl, 2-bicyclo[2,2,1]heptyl, and adamantyl, which may also be substituted by 1 , 2, or more, for example lower, alkyl radicals, especially methyl radicals; cycloalkenyl is for example one of the monocyclic cycloalkyl radicals already named which carries a double bond in the 1-, 2-, or 3 position. Cycloalkyl-lower alkyl or -lower alkenyl is for example a - methyl, -1- or -2-ethyl, -1- or -2-vinyl, -1-, -2-, or -3-propyl or -allyl substituted by one of the above-named cycloalkyl radicals, those substituted at the end of the linear chain being preferred.
An aryl radical R0 is most especially a phenyl, also a naphthyl, such as 1- or 2-naphthyl, a biphenylyl, such as especially 4-biphenylyl, and also an anthryl, fluorenyl and azulenyl, as well as their aromatic analogues with one or more saturated rings. Preferred aryl-lower alkyl and -lower alkenyl radicals are, for example, phenyl-lower alkyl or phenyl-lower alkenyl with a terminal phenyl radical, such as for example benzyl, phenethyl, 1-, 2-, or 3-phenylpropyl, diphenylmethyl (benzhydryl), trityl, and cinnamyl, and also 1- or 2-naphthylmethyl. Aryl may be unsubstituted or substituted.
Heterocyclic radicals, including heterocyclic-acyclic radicals, are especially monocyclic, but also bi- or polycyclic, aza-, thia-, oxa-, thiaza-, oxaza-, diaza-, triaza-, or tetrazacyclic radicals of an aromatic character, as well as corresponding heterocyclic radicals of this type which are partly or most especially wholly saturated; if need be, for example as in the case of the above-mentioned carbocyclic or aryl radicals, these radicals may carry further acyclic, carbocyclic, or heterocyclic radicals and/or may be mono-, di-, or polysubstituted by functional groups. The acyclic part in heterocyclic-acyclic radicals has for example the meaning indicated for the corresponding carbocyclic-acyclic radicals. Most especially they are unsubstituted or substituted monocyclic radicals with a nitrogen, oxygen, or sulfur atom, such as 2-aziridinyl, and especially aromatic radicals of this type, such as pyrrolyl, for example 2-pyrrolyl or 3-pyrrolyl, pyridyl, for example 2-, 3-, or 4-pyridyl, and also thienyl, for example 2- or 3-thienyl, or furyl, for example 2-furyl; analogous bicyclic radicals with an oxygen, sulfur, or nitrogen atom are, for example, indolyl, typically 2- or 3-indolyl, quinolyl, typically 2- or 4-quinolyl, isoquinolyl, typically 3- or 5-isoquinolyl, benzofuranyl, typically 2- benzofuranyl, chromenyl, typically 3-chromenyl, or benzothienyl, typically 2- or 3- benzothienyl; preferred monocyclic and bicyclic radicals with several heteroatoms are, for example, imidazolyl, typically 2-imidazolyl, pyrimidinyl, typically 2-or 4-pyrimidinyl, oxazolyl, typically 2-oxazolyl, isoxazolyl, typically 3-isoxazolyl, or thiazolyl, typically 2-thiazolyl, and benzimidazolyl, typically 2-benzimidazolyl, benzoxazolyl, typically 2-benzoxazolyl, or quinazolyl, typically 2-quinazolinyl. Appropriate partially or, especially, completely saturated analogous radicals may also be considered, such as 2-tetrahydrofuryl, 4-tetrahydrofuryl, 2- or 3-pyrrolidyl, 2-, 3-, or 4-piperidyl, and also 2-or 3-morpholinyl, 2- or 3-thiomorpholinyl, 2- piperazinyl, and N,N'-bis-lower alkyl-2-piperazinyl radicals. These radicals may also carry one or more acyclic, carbocyclic, or heterocyclic radicals, especially those mentioned hereinabove. Heterocyclic-acyclic radicals are especially derived from acyclic radicals with a
maximum of 7, preferably a maximum of 4 carbon atoms, for example those named hereinabove, and may carry one, two, or more heterocyclic radicals, for example those named hereinabove, the ring possibly being linked to the aliphatic chain also by one of its nitrogen atoms.
As already mentioned, a hydrocarbyl (including a heterocyclyl) may be substituted by one, two, or more identical or different substituents (functional groups); one or more of the following substituents may be considered: lower alkyl; free, etherified and esterified hydroxyl groups; carboxy groups and esterified carboxy groups; mercapto- and lower alkylthio- and, if need be, substituted phenylthio groups; halogen atoms, typically chlorine and fluorine, but also bromine and iodine; halogen-lower alkyl groups; oxo groups which are present in the form of formyl (i.e. aldehydo) and keto groups, also as corresponding acetals or ketals; azido groups; nitro groups; cyano groups; primary, secondary and preferably tertiary amino groups, amino-lower alkyl, mono- or disubstituted amino-lower alkyl, primary or secondary amino groups protected by conventional protecting groups (especially lower alkoxycarbonyl, typically tert-butoxycarbonyl) lower alkylenedioxy, and also free or functionally modified sulfo groups, typically sulfamoyl or sulfo groups present in free form or as salts. The hydrocarbyl radical may also carry carbamoyl, ureido, or guanidino groups, which are free or which carry one or two substituents, and cyano groups. The above use of the word "groups" is taken to imply also an individual group.
Halogen-lower alkyl contains preferably 1 to 3 halogen atoms; preferred is trifluoromethyl or chloromethyl.
An etherified hydroxyl group present in the hydrocarbyl as substituent is, for example, a lower alkoxy group, typically the methoxy-, ethoxy-, propoxy-, isopropoxy-, butoxy-, and tert- butoxy group, which may also be substituted, especially by (i) heterocyclyl, whereby heterocyclyl can have preferably 4 to 12 ring atoms, may be unsaturated, or partially or wholly saturated, is mono- or bicyclic, and may contain up to three heteroatoms selected from nitrogen, oxygen, and sulfur, and is most especially pyrrolyl, for example 2-pyrrolyl or 3-
pyrrolyl, pyridyl, for example 2-, 3- or 4-pyridyl, and also thienyl, for example 2- or 3-thienyl, or furyl, for example 2-furyl, indolyl, typically 2- or 3-indolyl, quinolyl, typically 2- or 4-quinolyl, isoquinolyl, typically 3- or 5-isoquinolyl, benzofuranyl, typically 2-benzofuranyl, chromenyl, typically 3-chromenyl, benzothienyl, typically 2- or 3-benzothienyl; imidazolyl, typically 1- or 2-imidazolyl, pyrimidinyl, typically 2-or 4-pyrimidinyl, oxazolyl, typically 2-oxazolyl, isoxazolyl, typically 3-isoxazolyl, thiazolyl, typically 2-thiazolyl, benzimidazolyl, typically 2-benzimidazo- IyI, benzoxazolyl, typically 2-benzoxazolyl, quinazolyl, typically 2-quinazolinyl, 2- tetrahydrofuryl, 4-tetrahydrofuryl, 2- or 4-tetrahydropyranyl, 1-, 2- or 3-pyrrolidyl, 1-, 2-, 3-, or 4-piperidyl, 1-, 2-or 3-morpholinyl, 2- or 3-thiomorpholinyl, 2-piperazinyl or N,N'-bis-lower alkyl-2-piperazinyl; and also (ii) by halogen atoms, for example mono-, di-, or polysubstituted especially in the 2-position, as in the 2,2,2-trichloroethoxy, 2-chloroethoxy, or 2-iodoethoxy radical, or (iii) by hydroxy or (iv) lower alkoxy radicals, each preferably monosubstituted, especially in the 2-position, as in the 2-methoxyethoxy radical. Such etherified hydroxyl groups are also unsubstituted or substituted phenoxy radicals and phenyl-lower alkoxy radicals, such as especially benzyloxy, benzhydryloxy, and triphenylmethoxy (trityloxy), as well as heterocyclyloxy radicals, wherein heterocyclyl can have preferably 4 to 12 ring atoms, may be unsaturated, or partially or wholly saturated, is mono- or bicyclic, and may contain up to three heteroatoms selected from nitrogen, oxygen, and sulfur, and is most especially pyrrolyl, for example 2-pyrrolyl or 3-pyrrolyl, pyridyl, for example 2-, 3- or 4-pyridyl, and also thienyl, for example 2- or 3-thienyl, or furyl, for example 2-furyl, indolyl, typically 2- or 3- indolyl, quinolyl, typically 2- or 4-quinolyl, isoquinolyl, typically 3- or 5-isoquinolyl, benzofuranyl, typically 2-benzofuranyl, chromenyl, typically 3-chromenyl, benzothienyl, typically 2- or 3-benzothienyl; imidazolyl, typically 1- or 2-imidazolyl, pyrimidinyl, typically 2- or 4-pyrimidinyl, oxazolyl, typically 2-oxazolyl, isoxazolyl, typically 3-isoxazolyl, thiazolyl, typically 2-thiazolyl, benzimidazolyl, typically 2-benzimidazolyl, benzoxazolyl, typically 2- benzoxazolyl, quinazolyl, typically 2-quinazolinyl, 2-tetrahydrofuryl, 4-tetrahydrofuryl, 2- or 4- tetrahydropyranyl, 1-, 2- or 3-pyrrolidyl, 1-, 2-, 3-, or 4-piperidyl, 1-, 2-or 3-morpholinyl, 2- or 3-thiomorpholinyl, 2-piperazinyl or N,N'-bis-lower alkyl-2-piperazinyl; such as especially 2- or 4-tetrahydropyranyloxy.
Etherified hydroxyl groups in this context are taken to include silylated hydroxyl groups, typically for example tri-lower alkylsilyloxy, typically trimethylsilyloxy and dimethyl-tert- butylsilyloxy, or phenyldi-lower alkylsilyloxy and lower alkyl-diphenylsilyloxy.
An esterified hydroxyl group present in the hydrocarbyl as a substituent is, for example, lower alkanoyloxy.
A carboxyl group present in the hydrocarbyl as a substituent is one in which the hydrogen atom is replaced by one of the hydrocarbyl radicals characterised hereinabove, preferably a lower alkyl- or phenyl-lower alkyl radical; an example of an esterified carboxyl group is lower alkoxycarbonyl or phenyl-lower alkoxycarbonyl substituted if need be in the phenyl part, especially the methoxy, ethoxy, tert-butoxy, and benzyloxycarbonyl group, as well as a lactonised carboxyl group.
A primary amino group -NH2 as substituent of the hydrocarbyls may also be present in a form protected by a conventional protecting group. A secondary amino group carries, instead of one of the two hydrogen atoms, a hydrocarbyl radical, preferably an unsubstituted one, typically one of the above-named, especially lower alkyl, and may also be present in protected form.
A tertiary amino group present in the hydrocarbyl as substituent carries 2 different or, preferably, identical hydrocarbyl radicals (including the heterocyclic radicals), such as the unsubstituted hydrocarbyl radicals characterised hereinabove, especially lower alkyl.
A preferred amino group is one with the formula R11(R12)N-, wherein R11 and R12 are independently in each case hydrogen, unsubstituted acyclic CrC7-hydrocarbyl (such as especially CrC4alkyl or C2-C4alkenyl) or monocyclic aryl, aralkyl, or aralkenyl, substituted if necessary by Ci-C4-alkyl, C-ι-C4-alkoxy, halogen, and/or nitro, and having a maximum of 10 carbon atoms, where the carbon-containing radicals may be interlinked through a carbon- carbon bond or an oxygen atom, a sulfur atom, or a nitrogen atom substituted if necessary by hydrocarbyl. In such a case, they form a nitrogen-containing heterocyclic ring with the
nitrogen atom of the amino group. The following are examples of especially preferred disubstituted amino groups: di-lower alkylamino, typically dimethylamino or diethylamino, pyrrolidino, imidazol-1-yl, piperidino, piperazino, 4-lower alkylpiperazino, morpholino, thiomorpholino and piperazino or 4-methylpiperazino, as well as diphenylamino and dibenzylamino substituted if need be, especially in the phenyl part, for example by lower- alkyl, lower-alkoxy, halogen, and/or nitro; of the protected groups, especially lower alkoxy- carbonylamino, typically tert-butoxycarbonylamino, phenyl-lower alkoxycarbonylamino, typically 4-methoxybenzyloxycarbonylamino, and 9-fluorenylmethoxycarbonylamino.
Amino-lower alkyl is most especially substituted in the 1 -position of the lower alkyl chain by amino and is especially aminomethyl.
Mono- or disubstituted amino-lower alkyl is amino-lower alkyl substituted by one or two radicals, wherein amino-lower alkyl is most especially substituted by amino in the 1 -position of the lower alkyl chain and is especially aminomethyl; the amino substituents here are preferably (if 2 substituents are present in the respective amino group independently of one another) from the group comprising lower alkyl, such as especially methyl, ethyl or n-propyl, hydroxy-lower alkyl, typically 2-hydroxyethyl, C3-C8cycloalkyl, especially cyclohexyl, amino- lower alkyl, typically 3-aminopropyl or 4-aminobutyl, N-mono- or N,N-di(lower alkyl)-amino- lower alkyl, typically 3-(N,N-dimethylamino)propyl, amino, N-mono- or N,N-di-lower alkylamino and N-mono- or N,N-di-(hydroxy-lower alkyl)amino.
Disubstituted amino-lower alkyl is also a 5 or 6-membered, saturated or unsaturated heterocyclyl bonded to lower alkyl via a nitrogen atom (preferably in the 1 -position) and having 0 to 2, especially 0 or 1 , other heteroatoms selected from oxygen, nitrogen, and sulfur, which is unsubstituted or substituted, especially by one or two radicals from the group comprising lower alkyl, typically methyl, and also oxo. Preferred here is pyrrolidino (1- pyrrolidinyl), piperidino (1-piperidinyl), piperazino (1-piperazinyl), 4-lower alkylpiperazino, typically 4-methylpiperazino, imidazolino (1-imidazolyl), morpholino (4-morpholinyl), or also thiomorpholino, S-oxo-thiomorpholino, or S,S-dioxothiomorpholino.
Lower alkylenedioxy is especially methylenedioxy.
A carbamoyl group carrying one or two substituents is especially aminocarbonyl (carbamoyl) which is substitiuted by one or two radicals at the nitrogen; the amino substituents here are preferably (if 2 substituents are present in the respective amino group independently of one another) from the group comprising lower alkyl, such as especially methyl, ethyl or n-propyl, hydroxy-lower alkyl, typically 2-hydroxyethyl, C3-C8cycloalkyl, especially cyclohexyl, amino- lower alkyl, typically 3-aminopropyl or 4-aminobutyl, N-mono- or N,N-di(lower alkyl)-amino- lower alkyl, typically 3-(N,N-dimethylamino)propyl, amino, N-mono- or N,N-di-lower alkylamino and N-mono- or N,N-di-(hydroxy-lower alkyl)amino; disubstituted amino in aminocarbamoyl is also a 5 or 6-membered, saturated or unsaturated heterocyclyl with a bonding nitrogen atom and 0 to 2, especially 0 or 1 , other heteroatoms selected from oxygen, nitrogen, and sulfur, which is unsubstituted or substituted, especially by one or two radicals from the group comprising lower alkyl, typically methyl, and also oxo. Preferred here is pyrrolidino (1-pyrrolidinyl), piperidino (1-piperidinyl), piperazino (1-piperazinyl), 4-lower al- kylpiperazino, typically 4-methylpiperazino, imidazolino (1-imidazolyl), morpholino (4-morpho- linyl), or also thiomorpholino, S-oxo-thiomorpholino, or S,S-dioxothiomorpholino.
An acyl derived from an organic sulfonic acid, which is designated Ac2, is especially one with the subformula R°-SO2-, wherein R0 is a hydrocarbyl as defined above in the general and specific meanings, the latter also being generally preferred here. Especially preferred is lower alkylphenylsulfonyl, especially 4-toluenesulfonyl.
An acyl derived from a phosphoric acid, esterified if necessary, which is designated Ac3 , is especially one with the subformula R°O(R°O)P(=O)-, wherein the radicals R0 are, independently of one another, as defined in the general and specific meanings indicated above.
Reduced data on substituents given hereinbefore and hereinafter are considered to be preferences.
Preferred compounds according to the invention are, for example, those wherein R0 has the following preferred meanings: lower alkyl, especially methyl or ethyl, amino-lower alkyl, wherein the amino group is unprotected or is protected by a conventional amino protecting group - especially by lower alkoxycarbonyl, typically tert-lower alkoxycarbonyl, for example tert-butoxycarbonyl - e.g. aminomethyl, R1S-, R- or preferably S-1-aminoethyl, tert- butoxycarbonylaminomethyl or R1S-, R-, or preferably S-1-(tert-butoxycarbonylamino)ethyl, carboxy-lower alkyl, typically 2-carboxyethyl, lower alkoxycarbonyl-lower alkyl, typically 2- (tert-butoxycarbonyl)ethyl, cyano-lower alkyl, typically 2-cyanoethyl, tetrahydropyranyloxy- lower alkyl, typically 4-(tetrahydropyranyl)-oxymethyl, morpholino-lower alkyl, typically 2- (morpholino)ethyl, phenyl, lower alkylphenyl, typically 4-methylphenyl, lower alkoxyphenyl, typically 4-methoxyphenyl, imidazolyl-lower alkoxyphenyl, typically 4-[2-(imidazol-1- yl)ethyl)oyxphenyl, carboxyphenyl, typically 4-carboxyphenyl, lower alkoxycarbonylphenyl, typically 4-ethoxycarbonylphenyl or 4-methoxyphenyl, halogen-lower alkylphenyl, typically 4- chloromethylphenyl, pyrrolidinophenyl, typically 4-pyrrolidinophenyl, imidazol-1-ylphenyl, typically 4-(imidazolyl-1-yl)phenyl, piperazinophenyl, typically 4-piperazinophenyl, (4-lower alkylpiperazino)phenyl, typically 4-(4-methylpiperazino)phenyl, morpholinophenyl, typically 4- morpholinophenyl, pyrrolidino-lower alkylphenyl, typically 4-pyrrolidinomethylphenyl, imidazol-1-yl-lower alkylphenyl, typically 4-(imidazolyl-1-ylmethyl)phenyl, piperazino-lower alkylphenyl, typically 4-piperazinomethylphenyl, (4-lower alkylpiperazinomethyl)-phenyl, typically 4-(4-methylpiperazinomethyl)phenyl, morpholino-lower alkylphenyl, typically 4- morpholinomethylphenyl, piperazinocarbonylphenyl, typically 4-piperazinocarbonylphenyl, or (4-lower alkyl-piperazino)phenyl, typically 4-(4-methylpiperazino)phenyl.
Preferred acyl radicals Ac1 are acyl radicals of a carboxylic acid which are characterised by the subformula R°-CO-, wherein R0 has one of the above general and preferred meanings of the hydrocarbyl radical R0. Especially preferred radicals R0 here are lower alkyl, especially methyl or ethyl, amino-lower alkyl, wherein the amino group is unprotected or protected by a conventional amino protecting group, especially by lower alkoxycarbonyl, typically tert-lower alkoxycarbonyl, for example tert-butoxycarbonyl, e.g. aminomethyl, R1S-, R-, or preferably S-
1-aminoethyl, tert-butoxycarbonylaminomethyl or R1S-, R-, or preferably S-1-(tert- butoxycarbonylamino)ethyl, carboxy-lower alkyl, typically 2-carboxyethyl, lower alkoxycarbonyl-lower alkyl, typically 2-(tert-butoxycarbonyl)ethyl, tetrahydropyranyloxy-lower alkyl, typically 4-(tetrahydropyranyl)oxymethyl, phenyl, imidazolyl-lower alkoxyphenyl, typically 4-[2-(imidazol-1-yl)ethyl]oyxphenyl, carboxyphenyl, typically 4-carboxyphenyl, lower alkoxycarbonylphenyl, typically 4-ethoxycarbonylphenyl, halogen-lower alkylphenyl, typically 4-chloromethylphenyl, imidazol-1-ylphenyl, typically 4-(imidazolyl-1-yl)phenyl, pyrrolidino- lower alkylphenyl, typically 4-pyrrolidinomethylphenyl, piperazino-lower alkylphenyl, typically 4-piperazinomethylphenyl, (4-lower alkylpiperazinomethyl)phenyl, typically 4-(4-methyl- piperazinomethyl)phenyl, morpholino-lower alkylphenyl, typically 4-morpholinomethylphenyl, piperazinocarbonylphenyl, typically 4-piperazinocarbonylphenyl, or (4-lower alkylpiperazino)- phenyl, typically 4-(4-methylpiperazino)phenyl.
A further preferred Acyl Ac1 is derived from monoesters of carbonic acid and is characterised by the subformula R°-O-CO-. The lower alkyl radicals, especially tert-butyl, are especially preferred hydrocarbyl radicals R0 in these derivatives.
Another preferred Acyl Ac1 is derived from amides of carbonic acid (or also thiocarbonic acid) and is characterised by the formula R°HN-C(=W)- or R°R°N-C(=W)-, wherein the radicals R0 are, independently of one another, as defined above and W is sulfur and especially oxygen. In particular, compounds are preferred wherein Ac1 is a radical of formula R°HN-C(=W)-, wherein W is oxygen and R0 has one of the following preferred meanings: morpholino-lower alkyl, typically 2-morpholinoethyl, phenyl, lower alkoxyphenyl, typically 4-methoxyphenyl or 4- ethoxyphenyl, carboxyphenyl, typically 4-carboxyphenyl, or lower alkoxycarbonylphenyl, typically 4-ethoxycarbonylphenyl.
A preferred acyl Ac2 of subformula R°-SO2-, wherein R0 is a hydrocarbyl as defined in the above general and specific meanings, is lower alkylphenylsulfonyl, typically 4- toluenesulfonyl.
If p is 0, the nitrogen atom bonding R3 is uncharged. If p is 1 , then R4 must also be present, and the nitrogen atom bonding R3 and R4 (quaternary nitrogen) is then positively charged.
The definitions for an aliphatic, carbocyclic, or carbocyclic-aliphatic radical with up to 29 carbon atoms each, or for a heterocyclic or heterocyclic-aliphatic radical with up to 20 carbon atoms each and up to 9 heteroatoms each, or acyl with up to 30 carbon atoms each, preferably match the definitions given for the corresponding radicals R3 and R4. Especially preferred is R5 lower alkyl, especially methyl, or most especially hydrogen.
Z is especially lower alkyl, most especially methyl or hydrogen.
If the two bonds indicated by wavy lines are missing in ring A, then no double bonds (tetra- hydrogenated derivatives) are present between the carbon atoms characterised in formula I by the numbers 1 , 2, 3, and 4, but only single bonds, whereas ring B is aromatic (double bonds between the carbon atoms characterised in formula I by 8 and 9 and those characterised by 10 and 11 ). If the two bonds indicated by wavy lines are missing in ring B, then no double bonds (tetra-hydrogenated derivatives) are present between the carbon atoms characterised in formula I by the numbers 8, 9, 10, and 11 , but only single bonds, whereas ring A is aromatic (double bonds between the carbon atoms characterised in formula I by 1 and 2 and those characterised by 3 and 4). If the total of four bonds indicated by wavy lines are missing in rings A and B, and are replaced by a total of 8 hydrogen atoms, then no double bonds (octa-hydrogenated derivatives) are present between the carbon atoms numbered 1 , 2, 3, 4, 8, 9, 10, and 1 1 in formula I, but only single bonds.
By their nature, the compounds of the invention may also be present in the form of pharmaceutically, i.e. physiologically, acceptable salts, provided they contain salt-forming groups. For isolation and purification, pharmaceutically unacceptable salts may also be used.
For therapeutic use, only pharmaceutically acceptable salts are used, and these salts are preferred.
Thus, compounds of formula I having free acid groups, for example a free sulfo, phosphoryl or carboxyl group, may exist as a salt, preferably as a physiologically acceptable salt with a salt-forming basic component. These may be primarily metal or ammonium salts, such as alkali metal or alkaline earth metal salts, for example sodium, potassium, magnesium or calcium salts, or ammonium salts with ammonia or suitable organic amines, especially tertiary monoamines and heterocyclic bases, for example triethylamine, tri-(2-hydroxyethyl)- amine, N-ethylpiperidine or N,N'-dimethylpiperazine.
Compounds of the invention having a basic character may also exist as addition salts, especially as acid addition salts with inorganic and organic acids, but also as quaternary salts. Thus, for example, compounds which have a basic group, such as an amino group, as a substituent may form acid addition salts with common acids. Suitable acids are, for example, hydrohalic acids, e.g. hydrochloric and hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid or perchloric acid, or aliphatic, alicyclic, aromatic or heterocyclic carboxylic or sulfonic acids, such as formic, acetic, propionic, succinic, glycolic, lactic, malic, tartaric, citric, fumaric, maleic, hydroxymaleic, oxalic, pyruvic, phenylacetic, benzoic, p-aminobenzoic, anthranilic, p-hydroxybenzoic, salicylic, p-aminosalicylic acid, pamoic acid, methanesulfonic, ethanesulfonic, hydroxyethanesulfonic, ethylenedisulfonic, halobenzenesulfonic, toluenesulfonic, naphthalenesulfonic acids or sulfanilic acid, and also methionine, tryptophan, lysine or arginine, as well as ascorbic acid.
In view of the close relationship between the compounds (especially of formula I) in free form and in the form of their salts, including those salts that can be used as intermediates, for example in the purification or identification of the novel compounds, and of their solvates, any reference hereinbefore and hereinafter to the free compounds is to be understood as referring also to the corresponding salts, and the solvates thereof, for example hydrates, as appropriate and expedient.
The compounds of formula A, B, C, D, I, II, III, IV, V or Vl especially those wherein R5 is hydrogen, possess valuable pharmacological properties.
In the case of the groups of radicals or compounds mentioned hereinbefore and hereinafter, general definitions may, insofar as appropriate and expedient, be replaced by the more specific definitions stated hereinbefore and hereinafter.
Preference is given to a compounds of formula I, II, III, IV, V, Vl wherein
R1 and R2 independently of each other are lower alkyl, lower alkyl substituted by halogen, C6- Ci4aryl, hydroxy, lower alkoxy, phenyl-lower alkoxy, phenyloxy, lower alkanoyloxy, benzoyloxy, amino, lower alkylamino, lower alkanoylamino, phenyl-lower alkylamino, N,N-di- lower alkylamino, N,N-di-(phenyl-lower alkyl)amino, cyano, mercapto, lower alkylthio, carboxy, lower alkoxycarbonyl, carbamoyl, N-lower alkylcarbamoyl, N,N-di-lower alkyl- carbamoyl, sulfo, lower alkanesulfonyl, lower alkoxysulfonyl, aminosulfonyl, N-lower - alkylaminosulfonyl or N,N-di-lower alkylaminosulfonyl; halogen; lower alkoxy; C6-C14aryloxy; C6-Ci4aryl-lower alkoxy; lower alkanoyloxy; C6-Ci4arylcarbonyloxy; amino monosubstituted or disubstituted by lower alkyl, C6-Ci4aryl, C6-Ci4aryl-lower alkyl, lower alkanoyl or C6-Ci2aryl- carbonyl; cyano; nitro; mercapto; lower alkylthio; C6-Ci4arylthio; C6-Ci4aryl-lower alkylthio; lower alkanoylthio; C6-Ci4aryl-lower alkanoylthio; carboxy; lower alkoxycarbonyl, C6-Ci4aryl- lower alkoxycarbonyl; C6-Ci4aryloxycarbonyl; carbamoyl; carbamoyl N-mono- or N, N- disubstituted by lower alkyl, C6-Ci4aryl or C6-Ci4aryl-lower alkyl; sulfo; C6-Ci4arylsulfonyl; C6- Ci4aryl-lower alkanesulfonyl; lower alkanesulfonyl; or aminosulfonyl N-mono- or N, N- disubstituted by lower alkyl, C6-Ci4aryl or C6-Ci4aryl-lower alkyl, wherein C6-Ci4aryl is an aryl radical with 6 to 12 carbon atoms in the ring system, which may be unsubstituted or substituted by halogen, phenyl or naphthyl, hydroxy, lower alkoxy, phenyl-lower alkoxy, phenyloxy, lower alkanoyloxy, benzoyloxy, amino, lower alkylamino, lower alkanoylamino, phenyl-lower alkylamino, N, N-di-lower alkylamino, N,N-di-(phenyl-lower alkyl)amino, cyano, mercapto, lower alkylthio, carboxy, lower alkoxycarbonyl, carbamoyl, N-lower alkyl-
carbamoyl, N,N-di-lower alkylcarbamoyl, sulfo, lower alkanesulfonyl, lower alkoxysulfonyl, aminosulfonyl, N-lower alkylaminosulfonyl or N,N-di-lower alkylaminosulfonyl;
n and m are independently of each other 0 or 1 or 2, preferably 0;
R3, R4, Re, R-io are independently of each other hydrogen, lower alkyl, lower alkenyl or lower alkadienyl, which are each unsubstituted or monosubstituted or polysubsituted, preferably monosubstituted or disubstituted by a substituent independently selected from lower alkyl; hydroxy; lower alkoxy, which may be unsubstituted or mono-, di-, or trisubstituted by (i) heterocyclyl with 4 to 12 ring atoms, which may be unsaturated, wholly saturated, or partly saturated, is monocyclic or bicyclic and may contain up to three heteroatoms selected from nitrogen, oxygen and sulfur, and is most especially pyrrolyl, for example 2-pyrrolyl or 3- pyrrolyl, pyridyl, for example 2-, 3- or 4-pyridyl, or in a broader sense also thienyl, for example 2- or 3-thienyl, or furyl, for example 2-furyl, indolyl, typically 2- or 3-indolyl, quinolyl, typically 2- or 4-quinolyl, isoquinolyl, typically 3- or 5-isoquinolyl, benzofuranyl, typically 2- benzofuranyl, chromenyl, typically 3-chromenyl, benzothienyl, typically 2- or 3-benzothienyl; imidazolyl, typically 1- or 2-imidazolyl, pyrimidinyl, typically 2-or 4-pyrimidinyl, oxazolyl, typically 2-oxazolyl, isoxazolyl, typically 3-isoxazolyl, thiazolyl, typically 2-thiazolyl, benzimidazolyl, typically 2-benzimidazolyl, benzoxazolyl, typically 2-benzoxazolyl, quinazolyl, typically 2-quinazolinyl, 2-tetrahydrofuryl, 4-tetrahydrofuryl, 4-tetrahydropyranyl, 1-, 2- or 3- pyrrolidyl, 1-, 2-, 3-, or 4-piperidyl, 1-, 2-or 3-morpholinyl, 2- or 3-thiomorpholinyl, 2- piperazinyl or N,N'-bis-lower alkyl-2-piperazinyl, (ii) by halogen, (iii) by hydroxy or (iv) by lower alkoxy; phenoxy; phenyl-lower alkoxy; heterocyclyloxy, wherein heterocyclyl is pyrrolyl, for example 2-pyrrolyl or 3-pyrrolyl, pyridyl, for example 2-, 3- or 4-pyridyl, or in a broader sense also thienyl, for example 2- or 3-thienyl, or furyl, for example 2-furyl, indolyl, typically 2- or 3-indolyl, quinolyl, typically 2- or 4-quinolyl, isoquinolyl, typically 3- or 5-isoquinolyl, benzofuranyl, typically 2-benzofuranyl, chromenyl, typically 3-chromenyl, benzothienyl, typically 2- or 3-benzothienyl; imidazolyl, typically 1- or 2-imidazolyl, pyrimidinyl, typically 2-or 4-pyrimidinyl, oxazolyl, typically 2-oxazolyl, isoxazolyl, typically 3-isoxazolyl, thiazolyl, typically 2-thiazolyl, benzimidazolyl, typically 2-benzimidazolyl, benzoxazolyl, typically 2- benzoxazolyl, quinazolyl, typically 2-quinazolinyl, 2-tetrahydrofuryl, 4-tetrahydrofuryl, 2- or 4- tetrahydropyranyl, 1-, 2- or 3-pyrrolidyl, 1-, 2-, 3-, or 4-piperidyl, 1-, 2-or 3-morpholinyl, 2- or
3-thiomorpholinyl, 2-piperazinyl or N,N'-bis-lower alkyl-2-piperazinyl, such as especially 2- or 4-tetrahydropyranyloxy; lower alkanoyloxy; carboxy; lower alkoxycarbonyl; phenyl-lower alkoxycarbonyl; mercapto; lower alkylthio; phenylthio; halogen; halogen-lower alkyl; oxo (except in the 1 -position, because otherwise acyl); azido; nitro; cyano; amino; mono-lower alkylamino; di-lower alkylamino; pyrrolidino; imidazol-1-yl; piperidino; piperazino; 4-lower alkylpiperazino; morpholino; thiomorpholino; diphenylamino or dibenzylamino unsubstituted or substituted in the phenyl part by lower alkyl, lower alkoxy, halogen and/or nitro; lower alkoxycarbonylamino; phenyl-lower alkoxycarbonylamino unsubstituted or substituted in the phenyl part by lower alkyl or lower alkoxy; fluorenylmethoxycarbonylamino; amino-lower alkyl; monosubstituted or disubstituted amino-lower alkyl, wherein the amino substituent is selected from lower alkyl, hydroxy-lower alkyl, Cs-Cβcycloalkyl, amino-lower alkyl, N-mono- or N,N-di(-lower alkyl)amino-lower alkyl, amino, N-mono- or N,N-di-lower alkylamino and N- mono- or N,N-di-(hydroxy-lower alkyl)amino; pyrrolidino-lower alkyl; piperidino-lower alkyl; piperazino-lower alkyl; 4-lower alkylpiperazino-lower alkyl; imidazol-1-yl-lower alkyl; morpholino-lower alkyl; thiomorpholino-lower alkyl; S-oxo-thiomorpholino-lower alkyl; S, S- dioxothiomorpholino-lower alkyl; lower alkylendioxy; sulfamoyl; sulfo; carbamoyl; ureido; guanidino; cyano; aminocarbonyl (carbamoyl) and aminocarbonyloxy, which are substituted by one or two radicals on the nitrogen, wherein the amino substituents are selected independently of one another from the group comprising lower alkyl, hydroxy-lower alkyl, C3- Cβcycloalkyl, amino-lower alkyl, N-mono- or N,N-di(-lower alkyl)amino-lower alkyl, amino, N- mono- or N,N-di-lower alkylamino and N-mono- or N,N-di-(hydroxy-lower alkyl)amino; pyrrolidinocarbonyl; piperidinocarbonyl; piperazinocarbonyl; 4-lower alkylpiperazinocarbonyl; imidazolinocarbonyl; morpholinocarbonyl; thiomorpholinocarbonyl; S-oxo-thio- morpholinocarbonyl; and S,S-dioxothiomorpholino;
phenyl, naphthyl, phenyl-lower alkyl or phenyl-lower alkenyl with a terminal phenyl radical, which is unsubstituted or monosubstituted or disubstituted by the radicals named above as substituents of lower alkyl, lower alkenyl or lower alkadienyl;
or heterocyclyl-lower alkyl, wherein heterocyclyl is pyrrolyl, for example 2-pyrrolyl or 3- pyrrolyl, pyridyl, for example 2-, 3- or 4-pyridyl, or in a broader sense also thienyl, for example 2- or 3-thienyl, or furyl, for example 2-furyl, indolyl, typically 2- or 3-indolyl, quinolyl,
typically 2- or 4-quinolyl, isoquinolyl, typically 3- or 5-isoquinolyl, benzofuranyl, typically 2- benzofuranyl, chromenyl, typically 3-chromenyl, benzothienyl, typically 2- or 3-benzothienyl; imidazolyl, typically 1- or 2-imidazolyl, pyrimidinyl, typically 2-or 4-pyrimidinyl, oxazolyl, typically 2-oxazolyl, isoxazolyl, typically 3-isoxazolyl, thiazolyl, typically 2-thiazolyl, benzimidazolyl, typically 2-benzimidazolyl, benzoxazolyl, typically 2-benzoxazolyl, quinazolyl, typically 2-quinazolinyl, 2-tetrahydrofuryl, 4-tetrahydrofuryl, 2- or 4-tetrahydropyranyl, 1-, 2- or 3-pyrrolidyl, 1-, 2-, 3-, or 4-piperidyl, 1-, 2-or 3-morpholinyl, 2- or 3-thiomorpholinyl, 2- piperazinyl or N,N'-bis-lower alkyl-2-piperazinyl, which in each case are unsubstituted or monosubstituted or disubstituted by the radicals named above as substituents of lower alkyl, lower alkenyl, or lower alkadienyl;
or acyl of the subformula Y-C(=W)-, wherein W is oxygen and Y is hydrogen, R0, R°-O-, R0HN-, or R0R0N- (wherein the radicals R0 may be the same or different),
or
acyl of the subformula R°-SO2-,
whereby R4 may also be absent for the compound of formula II;
or
R4 is absent for compounds of formula II, hydrogen or CH3 for compounds of formula I, and
R3 is acyl of the subformula Y-C(=W)-, wherein W is oxygen and Y is hydrogen, R0, R°-O-, R0HN-, or R0R0N- (wherein the radicals R0 may be the same or different),
or
is acyl of the subformula R°-SO2-,
wherein R0 in the said radicals has the following meanings: substituted or unsubstituted lower alkyl, especially methyl or ethyl, amino-lower alkyl hydroxy-lower alkyl, wherein the amino group is unprotected or is protected by a conventional amino protecting group - especially by lower alkoxycarbonyl, typically tert-lower alkoxycarbonyl, for example tert-butoxycarbonyl - e.g. aminomethyl, R1S-, R- or preferably S-1-aminoethyl, tert-butoxycarbonylaminomethyl or R1S-, R-, or preferably S-1-(tert-butoxycarbonylamino)ethyl, carboxy-lower alkyl, typically 2- carboxyethyl, lower alkoxycarbonyl-lower alkyl, typically 2-(tert-butoxycarbonyl)ethyl, cyano- lower alkyl, typically 2-cyanoethyl, tetrahydropyranyloxy-lower alkyl, typically 4- (tetrahydropyranyl)oxymethyl, morpholino-lower alkyl, typically 2-(morpholino)ethyl, phenyl, lower alkylphenyl, typically 4-methylphenyl, lower alkoxyphenyl, typically 4-methoxyphenyl, imidazolyl-lower alkoxyphenyl, typically 4-[2-(imidazol-1-yl)ethyl)oxyphenyl, carboxyphenyl, typically 4-carboxyphenyl, lower alkoxycarbonylphenyl, typically 4-ethoxycarbonylphenyl or 4-methoxyphenyl, halogen-lower alkylphenyl, typically 4-chloromethylphenyl, pyrrolidino- phenyl, typically 4-pyrrolidinophenyl, imidazol-1-ylphenyl, typically 4-(imidazolyl-1-yl)phenyl, piperazinophenyl, typically 4-piperazinophenyl, (4-lower alkylpiperazino)phenyl, typically 4- (4-methylpiperazino)phenyl, morpholinophenyl, typically 4-morpholinophenyl, pyrrolidino- lower alkylphenyl, typically 4-pyrrolidinomethylphenyl, imidazol-1-yl-lower alkylphenyl, typically 4-(imidazolyl-1-ylmethyl)phenyl, piperazino-lower alkylphenyl, typically 4-piper- azinomethylphenyl, (4-lower alkylpiperazinomethyl)-phenyl, typically 4-(4-methylpiper- azinomethyl)phenyl, morpholino-lower alkylphenyl, typically 4-morpholinomethylphenyl, piperazinocarbonylphenyl, typically 4-piperazinocarbonylphenyl, or (4-lower alkylpiperazino)- phenyl, typically 4-(4-methylpiperazino)phenyl.
p is 0 if R4 is absent, or is 1 if R3 and R4 are both present and in each case are one of the aforementioned radicals (for compounds of formula II);
R5 is hydrogen or lower alkyl, especially hydrogen,
X stands for 2 hydrogen atoms, for O, or for 1 hydrogen atom and hydroxy; or for 1 hydrogen atom and lower alkoxy;
Z is hydrogen or especially lower alkyl, most especially methyl;
and for compounds for formula II, either the two bonds characterised by wavy lines are preferably absent in ring A and replaced by 4 hydrogen atoms, and the two wavy lines in ring B each, together with the respective parallel bond, signify a double bond;
or also the two bonds characterised by wavy lines are absent in ring B and replaced by a total of 4 hydrogen atoms, and the two wavy lines in ring A each, together with the respective parallel bond, signify a double bond;
or both in ring A and in ring B all of the 4 wavy bonds are absent and are replaced by a total of 8 hydrogen atoms;
or a salt thereof, if at least one salt-forming group is present.
Particular preference is given to a compound of formula I wherein;
m and n are each 0;
R3 and R4 are independently of each other
hydrogen,
lower alkyl unsubstituted or mono- or disubstituted, especially monosubstituted, by radicals selected independently of one another from carboxy; lower alkoxycarbonyl; and cyano;;
or
R4 is hydrogen or -CH3, and
R3 is as defined above or preferably R3 is,
acyl of the subformula R°-CO, wherein R0 is lower alkyl; amino-lower alkyl, wherein the amino group is present in unprotected form or is protected by lower alkoxycarbonyl; tetrahydropyranyloxy-lower alkyl; phenyl; imidazolyl-lower alkoxyphenyl; carboxyphenyl; lower alkoxycarbonylphenyl; halogen-lower alkylphenyl; imidazol-1-ylphenyl; pyrrolidino- lower alkylphenyl; piperazino-lower alkylphenyl; (4-lower alkylpiperazinomethyl)phenyl; morpholino-lower alkylphenyl; piperazinocarbonylphenyl; or (4-lower alkylpiperazino)phenyl;
or is acyl of the subformula R°-O-CO-, wherein R0 is lower alkyl;
or is acyl of the subformula R°HN-C(=W)-, wherein W is oxygen and R0 has the following meanings: morpholino-lower alkyl, phenyl, lower alkoxyphenyl, carboxyphenyl, or lower alkoxycarbonylphenyl;
or R3 is lower alkylphenylsulfonyl, typically 4-toluenesulfonyl;
further specific examples of preferred R3 groups are described below for the preferred compounds of formula II,
R5 is hydrogen or lower alkyl, especially hydrogen,
X stands for 2 hydrogen atoms or for O;
Z is methyl or hydrogen;
or a salt thereof, if at least one salt-forming group is present.
Particular preference is given to a compound of formula Il wherein
m and n are each 0;
R3 and R4 are independently of each other
hydrogen,
lower alkyl unsubstituted or mono- or disubstituted, especially monosubstituted, by radicals selected independently of one another from carboxy; lower alkoxycarbonyl; and cyano; whereby R4 may also be absent;
or
R4 is absent, and
R3 is acyl from the subformula R°-CO, wherein R0 is lower alkyl, especially methyl or ethyl; amino-lower alkyl, wherein the amino group is unprotected or protected by lower alkoxy- carbonyl, typically tert-lower alkoxycarbonyl, for example tert-butoxycarbonyl, e.g. aminomethyl, R1S-, R-, or preferably S-1-aminoethyl, tert-butoxycarbonylaminomethyl or R1S- , R-, or preferably S-1-(tert-butoxycarbonylamino)ethyl; tetrahydropyranyloxy-lower alkyl, typically 4-(tetrahydropyranyl)oxymethyl; phenyl; imidazolyl-lower alkoxyphenyl, typically 4- [2-(imidazol-1-yl)ethyl)oyxphenyl; carboxyphenyl, typically 4-carboxyphenyl; lower alkoxycarbonylphenyl, typically 4-methoxy- or 4-ethoxycarbonylphenyl; halogen-lower alkylphenyl, typically 4-chloromethylphenyl; imidazol-1-ylphenyl, typically 4-(imidazolyl-1-yl)- phenyl; pyrrolidino-lower alkylphenyl, typically 4-pyrrolidinomethylphenyl; piperazino-lower alkylphenyl, typically 4-piperazinomethylphenyl; (4-lower alkylpiperazinomethyl)phenyl, typically 4-(4-methylpiperazinomethyl)phenyl; morpholino-lower alkylphenyl, typically 4- morpholinomethylphenyl; piperazinocarbonylphenyl, typically 4-piperazinocarbonylphenyl; or (4-lower alkylpiperazino)phenyl, typically 4-(4-methylpiperazino)phenyl;
or is acyl of the subformula R°-O-CO-, wherein R0 is lower alkyl;
or is acyl of the subformula R°HN-C(=W)-, wherein W is oxygen and R0 has the following preferred meanings: morpholino-lower alkyl, typically 2-morpholinoethyl, phenyl, lower alkoxyphenyl, typically 4-methoxyphenyl or 4-ethoxyphenyl, carboxyphenyl, typically 4- carboxyphenyl, or lower alkoxycarbonylphenyl, typically 4-ethoxycarbonylphenyl;
or is lower alkylphenylsulfonyl, typically 4-toluenesulfonyl;
p is 0 if R4 is absent, or is 1 if R3 and R4 are both present and in each case are one of the aforementioned radicals;
R5 is hydrogen or lower alkyl, especially hydrogen,
X stands for 2 hydrogen atoms or for O;
Z is methyl or hydrogen;
and either the two bonds characterised by wavy lines are preferably absent in ring A and replaced by 4 hydrogen atoms, and the two wavy lines in ring B each, together with the respective parallel bond, signify a double bond;
or also the two bonds characterised by wavy lines are absent in ring B and replaced by a total of 4 hydrogen atoms, and the two wavy lines in ring A each, together with the respective parallel bond, signify a double bond;
or both in ring A and in ring B all of the 4 wavy bonds are absent and are replaced by a total of 8 hydrogen atoms;
or a salt thereof, if at least one salt-forming group is present.
Most especially preferred compounds of formula Il are selected from;
8,9,10,1 1-Tetrahydrostaurosporine;
N-[4-(4-methylpiperaziN-1-ylmethyl)benzoyl]-1 ,2,3,4-tetrahydrostaurosporine; N-(4-chloromethylbenzoyl)-1 ,2,3,4-tetrahydrostaurosporine;
N-(4-(pyrrolidin-1-ylmethyl)benzoyl)-1 ,2,3,4-tetrahydrostaurosporine;
N-(4-(morpholin-4-ylmethyl)benzoyl)-1 ,2,3,4-tetrahydrostaurosporine;
N-(4-(piperazin-1-ylmethyl)benzoyl)-1 ,2,3,4-tetrahydrostaurosporine;
N-ethyl-1 ,2,3,4-tetrahydrostaurosporine; N-tosyl-1 ,2,3,4-tetrahydrostaurosporine;
N-triflouroacetyl-1 ,2,3,4-tetrahydrostaurosporine;
N-[4-(2-imidazol-1-yl-ethoxy)benzoyl]-1 ,2,3,4-tetrahydrostaurosporine;
N-methoxycarbonylmethyl-1 ,2,3,4-tetrahydrostaurosporine;
N-carboxymethyl-1 ,2,3,4-tetrahydrostaurosporine; N-terephthaloylmethyl ester-1 ,2,3,4-tetrahydrostaurosporine;
N-terephthaloyl-1 ,2,3,4-tetrahydrostaurosporine;
N-(4-ethylpiperazinylcarbonylbenzoyl)-1 ,2,3,4-tetrahydrostaurosporine;
N-(2-cyanoethyl)-1 ,2,3,4-tetrahydrostaurosporine;
N-benzoyl-1 ,2,3,4-tetrahydrostaurosporine; N,N-dimethyl -1 ,2,3,4-tetrahydrostaurosporinium iodide;
N-BOC-glycyl-1 ,2,3,4-tetrahydrostaurosporine;
N-glycyl-1 ,2,3,4-tetrahydrostaurosporine;
N-(3-(tert-butoxycarbonyl)propyl)-1 ,2,3,4-tetrahydrostaurosporine;
N-(3-carboxypropyl)-1 ,2,3,4-tetrahydrostaurosporine; N-(4-imidazol-1-yl)benzoyl]-1 ,2,3,4-tetrahydrostaurosporine;
N-[(tetrahydro-2h-pyran-4-yloxy)acetyl]-1 ,2,3,4-tetrahydrostaurosporine;
N-BOC-l-alanyl-1 ,2,3,4-tetrahydrostaurosporine;
N-l-alanyl-1 ,2,3,4-tetrahydrostaurosporine hydrochloride;
N-methyl-1 ,2,3,4-tetrahydro-6-methylstaurosporine; N-(4-carboxyphenylaminocarbonyl)-1 ,2,3,4-tetrahydrostaurosporine;
N-(4-ethylphenylaminocarbonyl)-1 ,2,3,4-tetrahydrostaurosporine;
N-(N-phenylaminocarbonyl)-1 ,2,3,4-tetrahydrostaurosporine;
N-(N-[2-(1-morpholino)ethyl]aminocarbonyl)-1 ,2,3,4-tetrahydrostaurosporine;
N-(N-[4-methoxyphenyl]aminocarbonyl)-1 ,2,3,4-tetrahydrostaurosporine; 1 ,2,3,4-tetrahydro-6-methylstaurosporine;
N-BOC-1 ,2,3,4-tetrahydrostaurosporine;
N-BOC-1 ,2,3,4-tetrahydro-6-methylstaurosporine;
N-BOC-1 ,2,3,4-tetrahydro-6-methyl-7-oxo-staurosporine;
1 ,2,3,4,8,9, 10, 11 -octahydrostaurosporine;
or a pharmaceutically acceptable salt thereof, if at least one salt-forming group is present.
Most especially preferred is the compound of formula I designated 1 ,2,3,4-tetrahydro- staurosporine, or a (particularly pharmaceutically acceptable) salt thereof (here, m und n in formula I are 0, R3 is hydrogen, R4 is absent, provided no salt is present (p = 0), or is hydrogen if a salt is present (p = 1 ), R5 is hydrogen, the two bonds represented by wavy lines are absent in Ring A and are replaced by a total of 4 hydrogen atoms and the two bonds represented by wavy lines in Ring B are in each case a double bond together with the parallel bonds, X stands for 2 hydrogen atoms, and Z is methyl).
Most especially preferred are the compounds of formula A wherein;
A) X= O; R1, R2, R5 = H; Q= -(CH2)2-O-CH(CH2)OH-(CH2)2-
B) X= O; R1, R2, R5 = H; Q= -(CH2)2-O-CH(CH2N(CH3)2)-(CH2)2-
Most especially preferred are the compounds of formula I wherein;
A) X= 2 hydrogen atoms; R11R2, R3, R5 = H; R4= CH3; Z=CH3 (staurosporine)
B) X= 1 hydrogen and 1 hydroxy atoms in (R) or (S) isomeric form; Ri,R2, R3,R5 = H; R4= CH3; Z=CH3 (UCN-01 and UCN-02)
C) X= 2 hydrogen atoms; R11R2, R5 = H; R4= CH3; R3,= benzoyl; Z=CH3 (CGP41251 or PKC412 or MIDOSTAURIN) D) X= O; R11R2, R5 = H; R3,= CH3; R4= ethyloxycarbonyl; Z=CH3 (NA 382 ; CAS= 143086-33-
3)
E) X= 1 hydrogen and 1 hydroxy atom; R1, R2, R5 = H; R3= CH3; Z=CH3; and R4 is selected from -(CH2)2OH; -CH2CH(OH)CH2OH; -CO(CH2)2CO2Na; -(CH2)3CO2H; - COCH2N(CH3)2;
F) X= 2 hydrogen atoms; R1, R2, R5 = H; R3= CH3; Z=CH3; and R4 is selected from N-[O- (tetrahydropyran-4-yl )-D-lactoyl]; N-[2-methyl-2-(tetrahydropyran-4-yloxy)-propionyl; N- [0-(tetrahydropyran-4-yl )-L-lactoyl]; N-[0-(tetrahydropyran-4-yl )-D-lactoyl]; N-[2- (tetrahydro-pyran-4-yloxy)-acetyl)] G) X=O; R1, R2, R5 = H; R3= CH3; Z=CH3; and R4 is selected from N-[0-(tetrahydropyran-4-yl )-D-lactoyl]; N-[2-(tetrahydro-pyran-4-yloxy)-acetyl)]
H) X=1 hydrogen and 1 hydroxy atom ; R1, R2, R5 = H; R3= CH3; Z=CH3; and R4 is selected from N-[0-(tetrahydropyran-4-yl )-D-lactoyl]; N-[2-(tetrahydro-pyran-4-yloxy)-acetyl)]
The abbreviation "CAS" means the CHEMICAL ABSTRACTS registry number.
The most preferred compounds of formula I e.g. MIDOSTAURIN [International Nonproprietary Name] are covered and have been specifically described by the European patent No. O 296 110 published on December 21 , 1988, as well as in US patent No. 5;093,330 published on March 3, 1992, and Japanese Patent No. 2 708 047. Other preferred compounds are covered and described by the patent applications WO 95/32974 and WO 95/32976 both published on December 7, 1995. All the compounds described in these documents are incorporated into the present application by reference.
Most especially preferred are the compounds of formula III wherein;
A) X= 2 hydrogen atoms; Ri1R2, R5 = H; R6= CH3; R7= methyloxycarbonyl; Z=H (2- methyl K252a)
B) X= 2 hydrogen atoms; Ri1R2, R5, Re = H; R7= methyloxycarbonyl; Z= H (K-252a) C) X= 2 hydrogen atoms; Ri1R2, R5, R6 = H; R7= methyloxycarbonyl; Z= CH3 (KT-5720)
Most especially preferred are the compounds of formula IV wherein;
A) X= O; R1, R2, R5 = H; R9= CH2-NMe2; R8= CH3 ; m'=n'=2
B) X= O; R1, R2, R5 = H; R9= CH2-NH2; R8= CH3 ; m'=2; n'=1 (Ro-31-8425; CAS=151342- 35-7)
Most especially preferred are the compounds of formula V wherein;
A) X= O; R1, R2, R5 = H; R8= CH3; R10= -(CH2)3-NH2; (Ro-31-7549; CAS=I 38516-31 )
B) X= O; R1, R2, R5 = H; R8= CH3; R10= -(CH2)3-S-(C=NH)-NH2; (Ro-31-8220 ; CAS= 125314-64-9))
C) X= O; R1, R2, R5 = H; R8= CH3; R1O= -CH3;
Most especially preferred are the compounds of formula Vl wherein;
A) X= 2 hydrogen atoms; R11R2, R5 = H; R4= CH3; Z=CH3 ; R3 selected from methyl or (C1- C10)alkyl, arylmethyl, C6H2CH2-
STAUROSPORINE DERIVATIVES and their manufacturing process have been specifically described in many prior documents, well known by the man skilled in the art.
Compounds of formula A, B, C, D and their manufacturing process have for instance, been described in the European patents No. 0 657 458 published on June 14, 1995, in the European patents No. 0 624 586 published on November 17, 1994, in the European patents No. 0 470 490 published on February 12, 1992, in the European patents No. 0 328 026 published on August 16, 1989, in the European patents No. 0 384 349 published on August 29, 1990, as well as in many publications such as Barry M. Trost* and Weiping Tang Org. Lett., 3(21 ), 3409-341 1.
Compounds of formula I and their manufacturing processes have specifically been described in the European patents No. 0 296 110 published on December 21 , 1988, as well as in US patent No. 5;093,330 published on March 3, 1992, and Japanese Patent No. 2 708 047. Compounds of formula I having a tetrahydropyran-4-yl )-lactoyl substitution on R4 have been described in the European patent No. 0 624 590 published on November 17, 1994. Other compounds have been described in the European patent No. 0 575 955 published December 29, 1993, European patent No. 0 238 01 1 published on September 23, 1987 (UCN-OI ), International patent application EP98/04141 published as WO99/02532 on July 03, 1998.
Compounds of formula Il and their manufacturing processes have specifically been described in the European patents No. 0 296 1 10 published on December 21 , 1988, as well as in US patent No. 5;093,330 published on March 3, 1992, and Japanese Patent No. 2 708 047.
Compounds of formula III and their manufacturing processes have specifically been described in the patent applications claiming the priority of the US patent application US 920102 filed on July 24, 1992. (i.e European patents No. 0 768 312 published on April 16, 1997, No. 1 002 534 published May 24, 2000, No. 0 651 754 published on May 10, 1995).
Compounds of formula IV and their manufacturing processes have specifically been described in the patent applications claiming the priority of the British patent applications GB
9309602 and GB 9403249 respectively filed on May 10, 1993, and on February 21 , 1994. (i.e European patents No. 0 624 586 published on November 17, 1994, No. 1 002 534 published May 24, 2000, No. 0 651 754 published on May 10, 1995).
Compounds of formula V and their manufacturing processes have specifically been described in the patent applications claiming the priority of the British patent applications GB 8803048, GB 8827565, GB 8904161 and GB 8928210 respectively filed on February 10, 1988, November 25, 1988, February 23, 1989 and December 13, 1989. (i.e European patents No. 0 328 026 published on August 16, 1989, and No. 0 384 349 published August 29, 1990).
Compounds of formula Vl and their manufacturing processes have specifically been described in the patent applications claiming the priority of the US patent applications 07/777,395 (Con), filed on October 10, 1991 (i.e International patent application WO 93/07153 published on April 15, 1993).
In each case where citations of patent applications or scientific publications are given in particular for the STAUROSPORINE DERIVATIVE compounds, the subject-matter of the final products, the pharmaceutical preparations and the claims are hereby incorporated into the present application by reference to these publications.
The structure of the active agents identified by code nos., generic or trade names may be taken from the actual edition of the standard compendium "The Merck Index" or from databases, e.g. Patents International (e.g. IMS World Publications). The corresponding content thereof is hereby incorporated by reference.
The preferred STAUROSPORINE DERIVATIVE according to the invention is N- [(9S, 10R, 11 R, 13R)-2,3, 10,1 1 ,12,13-hexahydro-10-methoxy-9-methyl-1 -oxo-9, 13-epoxy- 1 H,9H-diindolo[1 ,2,3-gh:3',2', 1 '-lm]pyrrolo[3,4-j][1 ,7]benzodiazonin-11 -y\]-N- methylbenzamide of the formula (VII):
or a salt thereof, (hereinafter: "Compound of formula VII or MIDOSTAURIN").
Compound of formula VII is also known as MIDOSTAURIN [International Nonproprietary Name] or PKC412.
MIDOSTAURIN is a derivative of the naturally occurring alkaloid staurosporine, and has been specifically described in the European patent No. 0 296 1 10 published on December 21 , 1988, as well as in US patent No. 5;093,330 published on March 3, 1992, and Japanese Patent No. 2 708 047.
Further the invention provides the use of a compound of formula I (or pharmaceutically acceptable salt or prodrug ester thereof) for the preparation of a medicament for use in combination with ionizing radiation in the treatment of a proliferative disease.
In a further aspect the invention provides use of a compound of formula I (or pharmaceutically acceptable salt or prodrug ester thereof) in combination with ionizing radiation for the treatment of a proliferative disease, especially a solid tumor.
In yet further aspect the invention provides a compound of formula I (or pharmaceutically acceptable salt or prodrug ester thereof) as active ingredient for use in combination with ionizing radiation for the treatment of a proliferative disease, especially a solid tumor.
In still yet further aspect the invention provides a package comprising a compound of formula I (or pharmaceutically acceptable salt or prodrug ester thereof) together with instructions for the use in combination with ionizing radiation for the treatment of a proliferative disease, especially a solid tumor.
The term "delay of progression" as used herein means administration of the combination to patients being in an early phase of the proliferative disease to be treated.
The term "solid tumor disease" as used herein comprises, but is not restricted to glioma, thyroid cancer, breast cancer, ovarian cancer, cancer of the colon and generally the Gl tract, cervix cancer, lung cancer, in particular small-cell lung cancer, and non-small-cell lung cancer, head and neck cancer, bladder cancer, cancer of the prostate or Kaposi's sarcoma. In one preferred embodiment of the invention, the tumor disease to be treated is glioma, cancer of the prostate or thyroid cancer. The present combination inhibits the growth of solid tumors, but also liquid tumors. Furthermore, depending on the tumor type and the particular combination used, a decrease of the tumor volume can be obtained. The combinations disclosed herein are also suited to prevent the metastatic spread of tumors and the growth or development of micrometastases.
Combination refers to administration of an amount of a compound of formula I in combination with administration of an amount of ionizing radiation such that there is a synergistic effect which would not be obtained if a compound of formula I is administered without separate, simultaneous or sequential administration of ionizing radiation. Wherein administration of ionizing radiation can be continuous, sequential or sporadic. Or an effect which would not be obtained if there is administered ionizing radiation without the separate, simultaneous or
sequential administration of a compound of formula I, wherein administration can be continuous, sequential or sporadic
Preferably combination refers to administration of an amount of a compound of formula I in combination with administration of an amount of ionizing radiation such that there is a synergistic antiproliferative effect and/ or a clonogenic cell killing effect that would not be obtained if
a) The compound of formula I is administered without prior, simultaneous or subsequent administration of ionizing radiation. Wherein administration can be continuous, sequential or sporadic;
b) There is administration of ionizing radiation without the prior, simultaneous or subsequent administration of a compound of formula I. Where in administration can be continuous, sequential or sporadic.
The term "ionising radiation" referred to above and hereinafter means ionising radiation that occurs as either electromagnetic rays (such as X-rays and gamma rays) or particles (such as alpha and beta particles). Ionising radiation is provided in, but not limited to, radiation therapy and is known in the art (Hellman, Principles of Radiation Therapy, Cancer, in Principles and Practice of Oncology, 248-275 (Devita et al., ed., 4th Ed., V1 , 1993).
The nature of proliferative diseases like solid tumor diseases is multifactorial. Under certain circumstances, drugs with different mechanisms of action may be combined. However, just considering any combination of drugs having different mode of action does not necessarily lead to combinations with advantageous effects.
In the combination of the invention, compounds of formula I and pharmaceutically acceptable salts and prodrug derivatives are preferably used in the form of pharmaceutical preparations that contain the relevant therapeutically effective amount of active ingredient optionally together with or in admixture with inorganic or organic, solid or liquid, pharmaceutically acceptable carriers which are suitable for administration.
In a preferred embodiment, each patient receives doses of ionizing radiation during the same period and the compound of formula I.
In an alternative embodiment, the ionizing radiation is given as a pre-treatment, i.e. before the treatment with the COMBINATION OF THE INVENTION is started; the ionizing radiation alone is administered to the patient for a defined period of time, e.g. daily administration of the ionizing radiation alone for two or three days or weeks.
As mentioned above the precise dosage of the FLT-3 inhibitor and the HDAI to be employed for treating the diseasesand conditions mentioned hereinbefore depends upon several factors including the host, the nature and the severity of the condition being treated, the mode of administration. However, in general, satisfactory results are achieved when the FLT- 3 inhibitor is administered parenterally, e.g., intraperitoneal^, intravenously, intramuscularly, subcutaneously, intratumorally, or rectally, or enterally, e.g., orally, preferably intravenously or, preferably orally, intravenously at a daily dosage of 0.1 to 10 mg/kg body weight, preferably 1 to 5 mg/kg body weight. In human trials a total dose of 225 mg/day was most presumably the Maximum Tolerated Dose (MTD). A preferred intravenous daily dosage is 0.1 to 10 mg/kg body weight or, for most larger primates, a daily dosage of 200-300 mg. A typical intravenous dosage is 3 to 5 mg/kg, three to five times a week.
Most preferably, the FLT-3 inhibitors, especially MIDOSTAURIN, are administered orally, by dosage forms such as microemulsions, soft gels or solid dispersions in dosages up to about 250 mg/day, in particular 225 mg/day, administered once, twice or three times daily.
Usually, a small dose is administered initially and the dosage is gradually increased until the optimal dosage for the host under treatment is determined. The upper limit of dosage is that imposed by side effects and can be determined by trial for the host being treated.
The FLT-3 inhibitors and the HDAI compounds may be combined with one or more pharmaceutically acceptable carriers and, optionally, one or more other conventional pharmaceutical adjuvants and administered enterally, e.g. orally, in the form of tablets, capsules, caplets, etc. or parenterally, e.g., intraperitoneal^ or intravenously, in the form of sterile injectable solutions or suspensions. The enteral and parenteral compositions may be prepared by conventional means.
The infusion solutions according to the present invention are preferably sterile. This may be readily accomplished, e.g. by filtration through sterile filtration membranes. Aseptic formation of any composition in liquid form, the aseptic filling of vials and/or combining a
pharmaceutical composition of the present invention with a suitable diluent under aseptic conditions are well known to the skilled addressee.
The FLT-3 inhibitors and HDAI compounds may be formulated into enteral and parenteral pharmaceutical compositions containing an amount of the active substance that is effective for treating the diseases and conditions named hereinbefore, such compositions in unit dosage form and such compositions comprising a pharmaceutically acceptable carrier.
Examples of useful compositions of FLT-3 inhibitors are described in the European patents No. 0 296 110, No. 0 657 164, No. 0 296 110, No.O 733 372, No.O 711 556, No.O 711 557.
The preferred compositions of FLT-3 inhibitors are described in the European patent No. 0 657 164 published on June 14, 1995. The described pharmaceutical compositions comprise a solution or dispersion of compounds of formula I such as MIDOSTAURIN in a saturated polyalkylene glycol glyceride, in which the glycol glyceride is a mixture of glyceryl and polyethylene glycol esters of one or more C8-C18 saturated fatty acids.
Two manufacture processes of such compositions of FLT-3 inhibitors are described hereafter.
Composition A:
Gelucire 44/14 (82 parts) is melted by heating to 60° C. Powdered MIDOSTAURIN (18 parts) is added to the molten material. The resulting mixture is homogenised and the dispersion obtained is introduced into hard gelatin capsules of different size, so that some contain a 25mg dosage and others a 75mg dosage of the MIDOSTAURIN. The resulting capsules are suitable for oral administration.
Composition B:
Gelucire 44/14 (86 parts) is melted by heating to 60° C. Powdered MIDOSTAURIN (14 parts) is added to the molten material. The mixture is homogenised and the dispersion obtained is introduced into hard gelatin capsules of different size, so that some contain a 25mg dosage and others a 75mg dosage of the MIDOSTAURIN. The resulting capsules are suitable for oral administration.
Gelucire 44/14 available commercially from Gattefosse; is a mixture of esters of C8-C18 saturated fatty acids with glycerol and a polyethylene glycol having a molecular weight of about 1500, the specifications for the composition of the fatty acid component being, by weight, 4-10% caprylic acid, 3-9% capric acid, 40-50% lauric acid, 14-24% myristic acid, A- 14% palmitic acid and 5-15% stearic acid.
A preferred example of Gelucire formulation consists of: Gelucire (44/14): 47 g MIDOSTAURIN: 3.Og filled into a 60 mL Twist off flask
A preferred example of soft gel will contain the following Microemulsion:
Cornoil glycerides 85. 0 mg
Polyethylenglykol 400 128 .25 mg
Cremophor RH 40 213 .75 mg
MIDOSTAURIN 25 .0 mg
DL alpha Tocopherol 0 .5 mg
Ethanol absolute 33.9 mg
Total 486.4 mg
However, it should be clearly understood that it is for purposes of illustration only.
In particular, a therapeutically effective amount of each combination partner of the COMBINATION OF THE INVENTION may be administered simultaneously or sequentially and in any order, and the components may be administered separately or as a fixed combination. For example, the method of delay of progression or treatment of a proliferative disease according to the invention may comprise (i) administration of the first combination partner and (ii) administration of the second combination partner, wherein administration of a combination partner may be simultaneous or sequential in any order, in jointly therapeutically effective amounts, preferably in synergistically effective amounts, e.g. in daily or weekly dosages corresponding to the amounts described herein. The individual combination partners of the COMBINATION OF THE INVENTION can be administered separately at different times during the course of therapy or concurrently. Furthermore, the term administering also encompasses the use of a pro-drug of a compound of formula I that
converts in vivo to the combination partner as such. The instant invention is therefore to be understood as embracing all such regimes of simultaneous or alternating treatment and the term "administering" is to be interpreted accordingly.
The dosage of ionizing radiation and a compound of formula I in relation to each other is preferably in a ratio that is synergistic.
The particular mode of administration and the dosage of a compound of formula I may be selected by the attending physician taking into account the particulars of the patient, especially age, weight, life style, activity level, etc.
The dosage of a compound of formula I may depend on various factors, such as effectiveness and duration of action of the active ingredient, mode of administration, effectiveness and duration of action of the ionizing radiation and/or sex, age, weight and individual condition of the subject to be treated.
The dosage of ionizing radiation may depend on various factors, such as effectiveness and duration of action of the ionizing radiation, mode of administration, location of administration, effectiveness and duration of action of the compound of formula I and/or sex, age, weight and individual condition of the subject to be treated. The dosage of ionizing radiation is generally defined in terms of radiation absorbed dose, time and fraction, and must be carefully defined by the attending physician.
In one preferred embodiment of the invention the combination comprises N- [(9S, 10R, 11 R, 13R)-2,3, 10,1 1 ,12,13-hexahydro-10-methoxy-9-methyl-1 -oxo-9, 13-epoxy- 1 H,9H-diindolo[1 ,2,3-gh:3',2', 1 '-lm]pyrrolo[3,4-j][1 ,7]benzodiazonin-11 -y\]-N- methylbenzamide of the formula (VII):
or a salt thereof and ionizing radiation.
Moreover, the present invention relates to a method of treating a warm-blooded animal having a proliferative disease comprising administering to the animal a COMBINATION OF THE INVENTION in a way that is jointly therapeutically effective against a proliferative disease and in which the combination partners can also be present in the form of their pharmaceutically acceptable salts.
Furthermore, the present invention pertains to the use of a COMBINATION OF THE INVENTION for the delay of progression or treatment of a proliferative disease and for the preparation of a medicament for the delay of progression or treatment of a proliferative disease.
In one embodiment of the invention, an antidiarrheal agent is administered together with the COMBINATION OF THE INVENTION in order to prevent, control or eliminate diarrhoea that is sometimes associated with the administration of a compound of formula I. Thus, the present invention also relates to a method of preventing or controlling diarrhoea associated with administering a compound of formula I, which comprises administering an effective amount of an antidiarrhea agent to the patient receiving treatment with the COMBINATION OF THE INVENTION. Antidiarrheal agents and protocols for their administration are known to those skilled in the art. Antidiarrheal agents suitable for use in the inventive methods and compositions include, but are not limited to, natural opiods, such as tincture of opium, paregoric, and codeine, synthetic opioids, such as diphenoxylate, difenoxin and loperamide,
bismuth subsalicylate, octreotide (e.g. available as SAN DOSTATI NTM), motilin antagonists and traditional antidiarrheal remedies, such as kaolin, pectin, berberine and muscarinic agents.
The following example is intended to illustrate the invention and are not to be construed as being limitations thereon.
Example 1
Determination of the response to treatment with fractionated doses of ionizing irradiation in solid tumor xenografts is derived from ACC3-tumor cells, using nude mice as tumor carriers. In this system, nude mice are injected subcutaneously with tumor cells. Measurable tumors derived from the respective tumor cells form within a tumor cell dependent time period - from 7 days (aggressive tumors) up to 3-4 weeks (slowly growing tumors). Tumor volumes are determined from caliper measurements according to the formula (Lxl2/2), and tumors are allowed to expand to a minimal volume of at least 0.175cm3 +/-15% prior to any treatment. The animals are treated with a single or repetitive dose of the chemical agent (applied according to the substance-dependent best mode of application) in combination with a single or multiple fractions of locoregional applied irradiation (3Gy/ fraction). Tumor volume measurements are performed on a daily basis to determine treatment response.
A 4x3 Gy and 4x5Gy fractionation radiation regimen is used. These tumors show a strong response to both fractionated radiation regimens, leading even to partial regression, as usually only observed with highly radiation-sensitive tumors. The 4x3Gy regimen even induces a stronger response than the 4x5Gy regimen. However this difference could be due to the small group size used in this preliminary initial in vivo experiments. Interestingly, tumor regression only starts 3-4 days after the end of treatment. In previous in vivo experiments with radiosensitive, apoptosis prone tumor cells (e.g. p53- wildtype, E1A/ras transformed MEFS) a strong tumor size reduction is observed even during the 4 day- treatment period. The delayed response observed with the ACC3- derived tumors and the radioresistant in vitro phenotype suggests a mechanism different from radiation-induced tumor cell apoptosis. A possible explanation is that ACC3-tumors might be highly dependent on a functional tumor vasculature, and radiation-induced damage of the tumor vasculature will only affect the tumor growth response with a certain time delay. Future in vivo
experiments in combination with histological analysis will carefully investigate this highly interesting observation. Based on our in vitro experiments the combined treatment modality of I R in combination with Λ/-[(9S, 1 OR, 11 R, 13R)-2,3, 10, 11 , 12, 13-hexahydro-10-methoxy-9- methyl-1 -oxo-9, 13-epoxy-1 H,9/-/-diindolo[1 ,2,3-gh:3',2\ 1 '-lm]pyrrolo[3,4-j][1 ,7]benzodiazonin- 11-yl]-Λ/-methylbenzamide is most promising. Based on these initial experiments we performed in vivo experiments using a combined treatment modality of IR (3x1 Gy) combined with PKC412 (3x100mg/kg). Even with this minimal treatment regimen we observed a growth delay response to both IR and Λ/-[(9S,10/?,1 1R,13R)-2,3,10,11 ,12,13-hexahydro-10- methoxy-9-methyl-1 -oxo-9, 13-epoxy-1 H,9H-diindolo[1 ,2,3-gh:3',2', 1 '-lm]pyrrolo[3,4- j][1 ,7]benzodiazonin-11-yl]-Λ/-methylbenzamide alone and an enhanced effect as part of a combined treatment modality. Again, the treatment response to IR was strongest
after a latency of up to 9 days after treatment start. Future experiments will investigate the treatment response on the histological level. Current results suggest a strong effect on the level of tumor angiogenesis. Therefore a combined treatment modality using IR in combination with inhibitors of angiogenesis is planned.
Summary
Based on our results the ACC- representative ACC-3 cell line can be regarded as a highly radioresistant tumor cell line when compared to established tumor cell lines derived from various other tumor entities. Likewise most of the different antisignaling agents tested require high dosage to induce an antiproliferative effect and have only an additive antiproliferative effect when applied in combination with irradiation.
The only clinically relevant compound tested which shows a slight supra-additive effect in terms of proliferation and clonogenicity when combined with IR (proliferation, clonogenicity) is the protein kinase C inhibitor Λ/-[(9S,1 OR, 11 R, 13R)-2,3,10,1 1 ,12,13-hexahydro-10- methoxy-9-methyl-1 -oxo-9, 13-epoxy-1 /-/,9/-/-diindolo[1 ,2,3-gh:3',2', 1 '-lm]pyrrolo[3,4- j][1 ,7]benzodiazonin-11-yl]-Λ/-methylbenzamide. This supra-additive effect is already observed at low submicromolar concentrations of Λ/-[(9S, 10R, 11 R, 13R)-2,3, 10,11 ,12,13- hexahydro-10-methoxy-9-methyl-1 -oxo-9, 13-epoxy-1 /-/,9/-/-diindolo[1 ,2,3-gh:3',2', 1 '- lm]pyrrolo[3,4-j][1 ,7]benzodiazonin-11-yl]-Λ/-methylbenzamide. Interestingly, N- [(9S, 10R, 11 R, 13R)-2,3, 10,1 1 ,12,13-hexahydro-10-methoxy-9-methyl-1 -oxo-9, 13-epoxy- 1 H,9H-diindolo[1 ,2,3-gh:3',2', 1 '-lm]pyrrolo[3,4-j][1 ,7]benzodiazonin-11 -y\]-N- methylbenzamide also effectively downregulates the PI3K/Akt-pathway (but downstream of
plasma membrane-located receptor tyrosine kinases and not on the level of the PI3K)) and initial experiments indicate that Λ/-[(9S,1 OR, 1 1 R, 13R)-2,3,10,11 ,12,13-hexa hydro- 10- methoxy-9-methyl-1 -oxo-9, 13-epoxy-1 /-/,9/-/-diindolo[1 ,2,3-gh:3',2', 1 '-lm]pyrrolo[3,4- j][1 ,7]benzodiazonin-11-yl]-Λ/-methylbenzamide can overcome the high apoptotic threshold in ACC3- cells (not shown). Surprisingly tumors derived from the "in vitro-radioresistant" ACC3- cell line show a strong growth delay response even to a low-dose treatment regimen of ionizing radiation alone. These results suggest a strong involvement of the tumor microenvironment on the treatment response. Our in vivo experiments with IR/ N- [(9S, 10R, 11 R, 13R)-2,3, 10,1 1 ,12,13-hexahydro-10-methoxy-9-methyl-1 -oxo-9, 13-epoxy- 1 H,9H-diindolo[1 ,2,3-gh:3',2', 1 '-lm]pyrrolo[3,4-j][1 ,7]benzodiazonin-11 -yl]-Λ/- methylbenzamide indicate that this combined treatment modality is very promising and should therefore be analyzed in further detail.
Claims
1. A method for treating a proliferative disease in a subject in need of such treatment, wherein the method comprises administering;
(a) A compound selected from the compounds of formula,
or or wherein R1 and R2, are, independently of one another, unsubstituted or substituted alkyl, hydrogen, halogen, hydroxy, etherified or esterified hydroxy, amino, mono- or disubstituted amino, cyano, nitro, mercapto, substituted mercapto, carboxy, esterified carboxy, carbamoyl, N-mono- or N,N-di-substituted carbamoyl, sulfo, substituted sulfonyl, aminosulfonyl or N- mono- or N,N-di-substituted aminosulfonyl;
n and m are, independently of one another, a number from and including 0 to and including 4;
n' and m' are, independently of one another, a number from and including 1 to and including 4;
R3, R4, Re and R10 are, independently of one another, hydrogen, an aliphatic, carbocyclic, or carbocyclic-aliphatic radical with up to 29 carbon atoms in each case, a heterocyclic or heterocyclic-aliphatic radical with up to 20 carbon atoms in each case, and in each case up to 9 heteroatoms, an acyl with up to 30 carbon atoms, wherein R4 may also be absent;
or R3 is acyl with up to 30 carbon atoms and R4 not an acyl;
p is 0 if R4 is absent, or is 1 if R3 and R4 are both present and in each case are one of the aforementioned radicals;
R5 is hydrogen, an aliphatic, carbocyclic, or carbocyclic-aliphatic radical with up to 29 carbon atoms in each case, or a heterocyclic or heterocyclic-aliphatic radical with up to 20 carbon atoms in each case, and in each case up to 9 heteroatoms, or acyl with up to 30 carbon atoms;
R7, R6 and R9 are acyl or -(lower alkyl) -acyl, unsubstituted or substituted alkyl, hydrogen, halogen, hydroxy, etherified or esterified hydroxy, amino, mono- or disubstituted amino, cyano, nitro, mercapto, substituted mercapto, carboxy, carbonyl, carbonyldioxy, esterified carboxy, carbamoyl, N-mono- or N,N-di-substituted carbamoyl, sulfo, substituted sulfonyl, aminosulfonyl or N-mono- or N,N-di-substituted aminosulfonyl; X stands for 2 hydrogen atoms; for 1 hydrogen atom and hydroxy; for O; or for hydrogen and lower alkoxy;
Z stands for hydrogen or lower alkyl;
and either the two bonds characterised by wavy lines are absent in ring A and replaced by 4 hydrogen atoms, and the two wavy lines in ring B each, together with the respective parallel bond, signify a double bond;
or the two bonds characterised by wavy lines are absent in ring B and replaced by a total of 4 hydrogen atoms, and the two wavy lines in ring A each, together with the respective parallel bond, signify a double bond;
or both in ring A and in ring B all of the 4 wavy bonds are absent and are replaced by a total of 8 hydrogen atoms;
or a salt thereof, if at least one salt-forming group is present in combination with
(b) ionizing radiation.
2. A method according to claim 1 which comprises administering
(a) a compound of formula I formula I,
wherein m and n are each 0; R3 and R4 are independently of each other hydrogen, lower alkyl unsubstituted or mono- or disubstituted, especially monosubstituted, by radicals selected independently of one another from carboxy; lower alkoxycarbonyl; and cyano; or
R4 is hydrogen or -CH3, and
R3 is acyl of the subformula R°-CO, wherein R0 is lower alkyl; amino-lower alkyl, wherein the amino group is present in unprotected form or is protected by lower alkoxycarbonyl; tetrahydropyranyloxy-lower alkyl; phenyl; imidazolyl-lower alkoxyphenyl; carboxyphenyl; lower alkoxycarbonylphenyl; halogen-lower alkylphenyl; imidazol-1-ylphenyl; pyrrolidino- lower alkylphenyl; piperazino-lower alkylphenyl; (4-lower alkylpiperazinomethyl)phenyl; morpholino-lower alkylphenyl; piperazinocarbonylphenyl; or (4-lower alkylpiperazino)phenyl;
or is acyl of the subformula R°-O-CO-, wherein R0 is lower alkyl;
or is acyl of the subformula R°HN-C(=W)-, wherein W is oxygen and R0 has the following meanings: morpholino-lower alkyl, phenyl, lower alkoxyphenyl, carboxyphenyl, or lower alkoxycarbonylphenyl;
or R3 is lower alkylphenylsulfonyl, typically 4-toluenesulfonyl;
R5 is hydrogen or lower alkyl,
X stands for 2 hydrogen atoms or for O;
Z is methyl or hydrogen;
or a salt thereof, if at least one salt-forming group is present in combination with
(b) ionizing radiation.
3. A method according to claim 1 or 2 which comprises administering
(a) Λ/-[(9S,10R,11 R,13R)-2,3,10,1 1 ,12,13-hexahydro-10-methoxy-9-methyl-1-oxo-9,13- epoxy-1 H,9H-diindolo[1 ,2,3-gh:3',2',1'-lm]pyrrolo[3,4-j][1 ,7]benzodiazonin-11-yl]-Λ/- methylbenzamide, in combination with
(b) ionizing radiation.
4. A method according to claims 1 , 2 or 3 wherein subject is a warm-blooded animal having a proliferative disease comprising administering to the animal a combination according to any of claims 1 , 2 or 3 in a way that is jointly therapeutically effective against a proliferative disease.
5. A method according to any of claims 1 to 4 which comprises administering a quantity which is jointly therapeutically effective against a proliferative disease of a compound of formula I and at least one pharmaceutically acceptable carrier for use in combination with ionizing radiation.
6. A method according to claim 1 , 2, 3, 4 or 5 for the delay of progression of a proliferative disease in a subject in need of such treatment.
7. A method according to claim 1 , 2, 3, 4 or 5 for the treatment of a proliferative disease.
8. Use of a compound of formula I according to claim 1 , 2 or 3 for the preparation of a medicament for use in combination with ionizing radiation for the delay of progression or treatment of a proliferative disease.
9. A method according to claims 6, 7 or 8 wherein the proliferative disease is a solid tumor.
10. A method according to claims 6, 7 or 8 wherein the proliferative disease is an Adenoid Cystic Carcinoma.
11. A package comprising a compound of formula I in which A represents O or NRN, wherein RN is hydrogen or lower alkyl, R is hydrogen or lower alkyl, and Z is O or a bond (or pharmaceutically acceptable salt or prodrug ester thereof), together with instructions for the use in combination with ionizing radiation for the treatment of a proliferative disease.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06122180 | 2006-10-12 | ||
EP06122180.0 | 2006-10-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008043811A1 true WO2008043811A1 (en) | 2008-04-17 |
Family
ID=37762408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/060830 WO2008043811A1 (en) | 2006-10-12 | 2007-10-11 | Staurosporine derivatives and radiation |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008043811A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005027910A1 (en) * | 2003-08-25 | 2005-03-31 | Dana-Farber Cancer Institute Inc. | Method of treating mixed lineage leukemia gene-rearranged acute lymphoblastic leukemias |
-
2007
- 2007-10-11 WO PCT/EP2007/060830 patent/WO2008043811A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005027910A1 (en) * | 2003-08-25 | 2005-03-31 | Dana-Farber Cancer Institute Inc. | Method of treating mixed lineage leukemia gene-rearranged acute lymphoblastic leukemias |
Non-Patent Citations (4)
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7973031B2 (en) | Staurosporine derivatives as inhibitors of FLT3 receptor tyrosine kinase activity | |
AU2004244747B2 (en) | Staurosporine derivatives for hypereosinophilic syndrome | |
AU2004262927B2 (en) | Combinations comprising staurosporines | |
CA2785950A1 (en) | New use of staurosporine derivatives | |
CA2629478C (en) | Staurosporine derivatives for use in alveolar rhabdomyosarcoma | |
WO2008043811A1 (en) | Staurosporine derivatives and radiation | |
WO2006021456A1 (en) | Combination comprising a staurosporine and a cyp3a4 inhibitor | |
AU2005313556B2 (en) | Use of staurosporine derivatives for the treatment of multiple Myeloma | |
MX2008006287A (en) | Staurosporine derivatives for use in alveolar rhabdomyosarcoma. | |
AU2008202050A1 (en) | Combinations comprising staurosporines | |
AU2008201869A1 (en) | Staurosporine derivatives for hypereosinophilic syndrome |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07821197 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07821197 Country of ref document: EP Kind code of ref document: A1 |