WO2008041620A1 - Clutch control device for power transmission device for vehicle - Google Patents
Clutch control device for power transmission device for vehicle Download PDFInfo
- Publication number
- WO2008041620A1 WO2008041620A1 PCT/JP2007/068907 JP2007068907W WO2008041620A1 WO 2008041620 A1 WO2008041620 A1 WO 2008041620A1 JP 2007068907 W JP2007068907 W JP 2007068907W WO 2008041620 A1 WO2008041620 A1 WO 2008041620A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clutch
- amount
- connection
- fluid coupling
- transmission
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 120
- 230000008878 coupling Effects 0.000 claims abstract description 59
- 238000010168 coupling process Methods 0.000 claims abstract description 59
- 238000005859 coupling reaction Methods 0.000 claims abstract description 59
- 239000012530 fluid Substances 0.000 claims abstract description 58
- 230000007423 decrease Effects 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 18
- 230000001133 acceleration Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 2
- 230000008859 change Effects 0.000 description 17
- 230000035939 shock Effects 0.000 description 11
- 230000007246 mechanism Effects 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 241001634822 Biston Species 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- FFGPTBGBLSHEPO-UHFFFAOYSA-N carbamazepine Chemical compound C1=CC2=CC=CC=C2N(C(=O)N)C2=CC=CC=C21 FFGPTBGBLSHEPO-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/06—Control by electric or electronic means, e.g. of fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/104—Clutch
- F16D2500/10443—Clutch type
- F16D2500/1045—Friction clutch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/104—Clutch
- F16D2500/10443—Clutch type
- F16D2500/10487—Fluid coupling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/308—Signal inputs from the transmission
- F16D2500/30806—Engaged transmission ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/50—Problem to be solved by the control system
- F16D2500/502—Relating the clutch
- F16D2500/50245—Calibration or recalibration of the clutch touch-point
- F16D2500/50251—During operation
- F16D2500/50263—During standing still
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/50—Problem to be solved by the control system
- F16D2500/502—Relating the clutch
- F16D2500/50245—Calibration or recalibration of the clutch touch-point
- F16D2500/50266—Way of detection
- F16D2500/50269—Engine speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/70—Details about the implementation of the control system
- F16D2500/702—Look-up tables
- F16D2500/70252—Clutch torque
- F16D2500/70264—Stroke
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/70—Details about the implementation of the control system
- F16D2500/706—Strategy of control
- F16D2500/70605—Adaptive correction; Modifying control system parameters, e.g. gains, constants, look-up tables
Definitions
- Patent application title Clutch control device for vehicle power transmission device
- the present invention relates to a clutch for a vehicle power transmission device that is provided with a fluid coupling and an automatic clutch between an engine and a transmission, and that is configured such that the clutch is automatically connected / disengaged at the time of shifting to change the gear position of the transmission.
- the present invention relates to a control device. Background art
- AT vehicles have a power transmission device that combines a torque converter and a planetary gear mechanism, but some of the vehicle power transmission devices for easy drive use a parallel shaft gear mechanism type gear shift similar to a so-called manual vehicle. Some machines combine this with an automatic clutch.
- This vehicle is not equipped with a clutch petal, and the clutch control device automatically connects and disconnects the clutch in response to a shift command signal for switching the gear position.
- the shift command signal is output according to the running state of the vehicle from an electronic control device such as a computer.
- the clutch is automatically connected and disconnected by a signal when the shift lever is operated.
- a power transmission device in which a fluid coupling is interposed between the engine and an automatic clutch.
- a fluid coupling is interposed, especially in a diesel engine with a large torque in a region where the engine speed is small, it is possible to start using the slip between the fluid coupling pump and the turbine when starting the vehicle.
- a delicate clutch operation is not required when starting a manual vehicle, and a smooth start can be easily performed.
- engine torque fluctuations during idling are absorbed, and vibration and noise are reduced.
- a fluid coupling 2 is fastened to the rear of the diesel engine 1, and further via a clutch 3.
- a transmission 4 having a parallel shaft gear mechanism is connected.
- the output shaft 41 of the transmission 4 is provided with a center brake (parking brake) 42 that is operated when the vehicle is stopped in the middle of the force coupling to the propeller shaft that drives the wheels of the vehicle.
- a pump 21 that is integrated with the output shaft of the diesel engine 1 and a turbine 2 2 that is integrated with the input shaft 31 of the clutch 3 are disposed.
- the two are basically connected by a lock-up clutch 23 except when the vehicle is started, so that the output shaft of the diesel engine 1 is directly connected to the input shaft 31 of the clutch 3.
- the speed changer 4 is a normal parallel shaft gear mechanism type transmission in which a transmission sleeve is fitted to a gear spline formed integrally with a gear, and has a well-known sink opening mechanism including a sink opening kniter ring and the like. It is.
- the transmission 4 is shifted by a shift actuator 61 according to a shift command from the electronic control unit. In a vehicle without such an electronic control unit, the shift is performed by a shift lever operated by a driver.
- the clutch 3 in this device is a wet multi-plate clutch, and inside thereof, there are a large number of friction plates spline-fitted to the input shaft 3 2 and a large number of spline-fitted to the output shaft 3 3.
- the friction plates are alternately arranged.
- the clutch 3 includes a clutch control device 31. This control device cooperates with the engine control device 1 1 to which the amount of depression of the accelerator petal 62 is input at the time of shifting to change the gear position of the transmission 4. While controlling the amount of clutch 3 connected.
- connection amount of the clutch 3 is controlled by adjusting the hydraulic pressure acting on the biston that presses the friction plate disposed in the clutch 3 according to the duty ratio D of the pulse output from the clutch control device 31.
- D duty ratio of the pulse output from the clutch control device 31.
- the clutch 3 it is also possible to use a dry single plate clutch instead of the wet multi-plate clutch.
- the amount of connection is controlled by controlling the actuator that changes the clutch stroke.
- the clutch control device 3 1 includes a rotational speed sensor 5 1 for detecting the rotational speed of the input shaft 3 2 of the clutch 3 (the rotational speed of the turbine 2 2 of the fluid coupling 2), and the rotational speed of the output shaft 3 3 of the clutch 3 (
- the rotation speed sensor 5 2 for detecting the rotation speed of the input shaft of the transmission 4 and the rotation speed sensor 5 2 for detecting the rotation speed of the output shaft 4 1 of the transmission 4 are transmitted. Used to control connection volume.
- the clutch control device 31 gradually changes the amount of engagement of the clutch 3 in order to avoid a shift shock due to sudden torque transmission and engine stop. For example, when the clutch 3 is connected after the gear, the clutch control device 31 controls the duty ratio so that the connection amount of the clutch 3 is gradually increased.
- the diesel engine 1 is directly connected to the input shaft of the transmission 4.
- a shift shock may also occur when the clutch 3 is disengaged at the beginning of a shift.
- the engine drive torque is transmitted to the vehicle wheels, and the transmission system such as the transmission 4 is twisted by the drive torque, and the reaction torque acts on the vehicle body.
- the shift shock at the time of disconnection occurs when the drive torque is released with the rapid disconnection of the clutch 3 and the torsion etc. disappears instantaneously.
- diesel engines with large engine torque especially when the vehicle is running at low speed, there is a large shift shock that accompanies disconnection, and it is desirable to implement control that gradually reduces the amount of connection when clutch 3 is disengaged.
- the clutch control device 31 can execute accurate and quick clutch control by using the half-clutch learning value that is sequentially updated.
- the learning of the half-clutch state is generally performed in a vehicle equipped with an automatic clutch. For example, there is a known method of gradually increasing the clutch engagement amount and learning the connection amount at which the transmission input shaft starts rotating. Yes.
- a learning method for learning the amount of engagement of the clutch 3 in the half-clutch state in a power transmission device provided with a fluid coupling is described in Japanese Patent Application Laid-Open No. 2000-029525 as an example. Yes.
- the learning of the half-clutch state disclosed in this publication is performed when the vehicle is stopped. This is done by gearing in the transmission 4 and rotating the diesel engine 1.
- the wet multi-plate clutch 3 is disengaged, and the lock-up clutch 2 3 of the fluid coupling 2 is also disengaged.
- the turbine 2 2 of the fluid coupling 2 is dragged to the pump 21 even though the vehicle stops and the output shaft 3 3 of the wet multi-plate clutch 3 is stationary. It is rotating at the same rotational speed as the diesel engine 1.
- the output duty ratio of the clutch control device 31 is decreased and the amount of connection of the wet multi-plate clutch 3 is increased. Since the output shaft 3 3 of the wet multi-plate clutch 3 is stationary, the rotational speed of the turbine 2 2 integrated with the input shaft 3 2 of the wet multi-plate clutch 3 increases as the amount of connection increases and the amount of torque transmission increases. Will decline.
- the duty ratio when the rotational speed of the turbine 2 2 is reduced by a predetermined value (3,000 rpm in this example) with respect to the rotational speed of the diesel engine 1 (the rotational speed of the pump 21) is calculated as the half-clutch learning value.
- the duty ratio is stored in the clutch control device 31.
- the duty ratio output by the clutch control device 31 is gradually decreased to increase the amount of engagement of the clutch 3, that is, while the braking torque acting on the turbine 22 is gradually increased.
- the difference between the rotational speed and the rotational speed of the turbine 22 is detected, and the duty ratio when the difference reaches a predetermined value is defined as the half clutch start point.
- the difference between the two speeds increases as the transmission torque of the clutch 3 increases, but it does not accurately represent the transmission torque because of the difference in the speed.
- the rotational speed of the diesel engine 1 changes according to the load torque (transmission torque of the clutch 3), and the change situation also depends on the control method of fuel injection of the engine. For this reason, the predetermined value of the rotational speed difference that determines the half-clutch starting point needs to be changed according to various vehicle engines.
- An object of the present invention is to solve such a problem when learning a half-clutch state and to learn an accurate half-clutch starting point. Disclosure of the invention
- the present invention provides a vehicular power transmission device including a fluid coupling and a clutch that is automatically connected / disconnected, and uses a map that represents a torque transmission amount of the fluid coupling to provide a half-clutch state. It is to detect accurately. That is, the present invention, as described in claim 1,
- a clutch control device for a vehicle power transmission device in which a fluid coupling and a clutch are arranged between an engine and a transmission.
- the pump of the fluid coupling is connected to rotate integrally with the output shaft of the engine
- the turbine bin of the fluid coupling is connected to rotate integrally with the input shaft of the clutch
- the output shaft of the clutch is connected to the speed change Connected to the input shaft of the machine
- the clutch control device includes a learning device that learns a connection amount in a half-clutch state, and uses the learned connection amount to control the connection amount of the clutch.
- the learning device includes the fluid coupling.
- the speed is detected by the detecting means while gradually increasing the amount of connection after the clutch is cut, and the detected speed ratio is set to the detected speed ratio. Based on the calculation means, the torque transmission amount is calculated,
- connection amount when the calculated torque transmission amount reaches a predetermined value as the connection amount in the half-clutch state.
- the clutch control device is characterized by this.
- the half-clutch learning device includes a detecting means for detecting a speed ratio which is a ratio of a pump rotation speed and a turbine rotation speed in a fluid coupling, and a relationship between the speed ratio and a torque transmission amount of the fluid coupling. And a calculation means for calculating a torque transmission amount using a map representing.
- the map is determined according to the characteristics of each fluid coupling. Even if the clutch or engine changes, the characteristics of torque transmission with respect to the speed ratio do not change. Therefore, it is possible to accurately obtain the torque transmission amount corresponding to the speed ratio, and it is possible to calculate the change in the torque transmission amount according to the connection amount regardless of the individual difference or aging of the clutch.
- the map is stored in the memory of the clutch control device, for example.
- the learning of the half-clutch state of the present invention is executed while gradually increasing the amount of connection after the clutch is disengaged while the output shaft of the clutch is stationary while the vehicle is stopped.
- the rotational speed gradually decreases. This point is the same as in the conventional learning shown in Patent Document 1, but the conventional learning method detects that the reduced rotational speed difference has reached a predetermined value and sets it as a half-clutch start point.
- a speed ratio that is a ratio between the rotational speed of the pump and the rotational speed of the turbine is detected, and the torque transmission amount itself is calculated from the speed ratio using a map to determine the half-clutch starting point.
- the half-clutch state can be grasped more accurately, and the characteristics of the torque transmission amount with respect to the speed ratio are uniquely determined according to the fluid coupling. Applicable to all engines. In some cases, the transmission torque at the half-clutch starting point can be easily adjusted according to, for example, the vehicle weight.
- the present invention detects a speed ratio that is a ratio between the rotational speed of the pump and the rotational speed of the turbine. Can also be measured.
- the conventional learning method in order to learn with a predetermined value of the difference in the rotational speed, it is necessary to increase the engine speed in advance when learning starts in anticipation of a decrease in the engine speed during learning.
- the learning according to the present invention can be executed with the engine speed set to be relatively low, so that it is possible to avoid a situation where the vehicle suddenly starts during learning. Since the learning device of the present invention can accurately grasp the connection amount in the half-clutch state as the torque transmission amount itself, the clutch control device provided with this enables quick clutch engagement / disengagement without a shift shock at the time of shifting. .
- the present invention can be implemented as a method for learning the amount of connection in the half-clutch state, and in this case, as described in claim 4, “A fluid coupling and a clutch are arranged between the engine and the transmission, the pump of the fluid coupling is connected to rotate integrally with the output shaft of the engine, and the turbine of the fluid coupling is connected to the input of the clutch.
- a learning method for learning a connection amount of the clutch in a half-clutch state wherein the clutch is connected to rotate integrally with a shaft, and the output shaft of the clutch is connected to an input shaft of the transmission. Because '
- the torque transmission amount is calculated using a map representing the relationship between the detected speed ratio and the torque transmission amount of the fluid coupling,
- connection amount when the calculated torque transmission amount reaches a predetermined value is memorized as the connection amount in the half-clutch state.
- the method for learning the amount of connection in the half-clutch state as described in claim 5, it is preferable that the method is executed in a state where the vehicle is stopped and a braking force is applied to the vehicle. In this way, sudden start of the vehicle can be prevented more reliably.
- FIG. 1 is a schematic diagram of a vehicle power transmission device to which a control device of the present invention is applied.
- Fig. 2 shows the characteristics of the torque and speed ratio of the fluid coupling.
- FIG. 3 is a flowchart showing the operation of the learning apparatus of the present invention.
- FIG. 4 is a diagram showing a control mode of the clutch connection amount according to the present invention.
- FIG. 5 is a diagram showing a conventional half-clutch learning value determination method.
- FIG. 1 Devices constituting the vehicle power transmission device to which the present invention is applied are shown in FIG. This is not a different device. That is, in the vehicle power transmission device, the fluid coupling 2 is fastened to the rear of the diesel engine 1 and is a clutch that automatically connects and disconnects. A transmission 4 having a parallel shaft gear mechanism is connected via a plate wet clutch 3. The pump 2 1 and the turbine 2 2 of the fluid coupling 2 are fastened by the lock-up clutch 2 3 except when both vehicles start, and the output shaft of the diesel engine 1 is directly connected to the input shaft of the wet multi-plate clutch 3. It will be in the state.
- the wet multi-plate clutch 3 includes a clutch control device 31, and the clutch control device 31 performs connection / disconnection while controlling the amount of connection of the wet multi-plate clutch 3 when the transmission 4 is shifted.
- the clutch control device 31 outputs a duty ratio: D, which is a command value for the amount of connection, and acts on the piston that presses the friction plate of the wet multi-plate clutch 3 accordingly.
- the amount of connection of the wet multi-plate clutch 3 is controlled by changing the hydraulic pressure.
- the clutch control device 31 includes a rotation speed signal of the pump 21 (engine speed signal from the engine control device 11) and a rotation speed signal of the turbine 22 (clutch input shaft from the rotation speed sensor 51). 3 Rotational speed signal (2) is input.
- a map indicating the characteristics of the speed ratio e of the fluid coupling 2 (ratio of the rotational speed of the turbine 22 to the rotational speed of the pump 21) and the torque transmission amount is stored as a memory. It is stored.
- This characteristic is known as the coefficient ⁇ representing the specific input torque, and is determined according to the individual fluid coupling, and as shown in Fig. 2, it increases as the speed ratio decreases.
- the torque transmission amount of the fluid coupling is obtained from the following equation after the torque coefficient.
- Torque transmission amount CX x X (Pump 2 1 speed) 2 : C is a constant
- the clutch control device 31 of the present invention includes the above map and also includes means for detecting a speed ratio e from the input rotation speed signal of the pump 21 and the rotation speed signal of the turbine 22, A half-clutch learning device is configured.
- a half-clutch learning device is configured.
- step 1 When you reach the B temple period to learn, you can determine in step 1 whether or not the vehicle is stopped, and if it is stopped, in step 2 whether or not the braking force is acting on the vehicle ⁇ Determine whether the foot brake or parking brake (center brake) is operated. Further, in step 3, it is determined whether the driver is depressing the accelerator pedal, that is, whether the diesel engine 1 is in an idle state. These judgments are learning This is done to ensure the safety of the vehicle inside and to prevent unexpected start. When it is confirmed that the vehicle is stopped, the brake is operated, and the engine is in an idle state, the conditions for executing the learning are in place and learning of the half-clutch starting point is started.
- the duty ratio output from the clutch control device 31 is set to 100%, and the wet multi-plate clutch 3 is disconnected (S 4).
- the state of the transmission 4 is detected.
- the transmission actuator 61 is operated to engage one of the gears of the transmission, for example, the fifth gear, and the transmission Set 4 to the gear-in state (S 5).
- the output shaft 4 of the transmission 4 1 is connected to the input shaft 33 integrated with the output shaft of the wet multi-plate clutch 3.
- the lock-up clutch 23 of the fluid coupling 2 is connected, it is disconnected so that the pump 21 and the turbine 22 of the fluid coupling 2 can freely rotate (S6).
- the duty ratio output from the clutch control device 31 is decreased by a small amount, for example, by 1% (S 6), and the connection amount of the wet multi-plate clutch 3 is increased.
- the wet multi-plate clutch 3 is completely disconnected, the braking torque does not substantially act on the turbine 22 integrated with the input shaft 3 2.
- the turbine 22 of the fluid coupling has almost the same rotational speed as the pump 21, and its speed ratio e is 1.
- the output shaft 33 of the wet multi-plate clutch 3 is connected to the output shaft 41 of the transmission 4, and remains stationary while the vehicle is stopped.
- connection amount of the wet multi-plate clutch 3 is increased, a braking torque force equal to the transmission torque at the connection amount is generated in the input shaft 3 2, that is, the turbine 2 2 of the fluid coupling, and the rotation speed and speed of the turbine 2 2 of the fluid coupling 2
- the ratio e decreases.
- the transmission torque of the wet multi-plate clutch 3 is equal to the torque transmission amount of the fluid coupling 2 when the speed ratio e decreases.
- step 8 every time the amount of connection of the wet multi-plate clutch 3 is increased, the speed ratio e is detected using the input rotation speed signal of the pump 21 and the rotation speed signal of the turbine 22. Then, in step 9, the torque coefficient ⁇ at the speed ratio e is obtained from the map stored in the memory of the clutch control device 31, and the torque transmission amount of the fluid coupling 2 is calculated by the above formula. As a result, the transmission torque of the wet multi-plate clutch 3 is calculated.
- Step 10 it is determined whether or not the calculated torque transmission amount is a force that has reached a predetermined value of the torque transmission amount corresponding to the half clutch starting point.
- the clutch control device 31 stores the duty ratio at that time as the duty ratio of the half clutch start point, updates the existing learning value, and stores it in the memory (S ll).
- the torque transmission amount corresponding to the half-clutch starting point is determined in advance by experiments or the like according to each vehicle on which such a power transmission device is mounted. It has been.
- the clutch control device 31 can be configured so that the predetermined value of the torque transmission amount can be changed.
- FIG. 4 shows a control mode of the engagement amount of the clutch 3 at the time of shifting by the clutch control device 31 of the present invention.
- the solid line in the figure shows the change in the connection amount when the clutch 3 is first disengaged during gear shifting.
- the clutch control device 31 outputs a pulse with a duty ratio of 0%, and the clutch 3 is in a fully connected state.
- the clutch control device 31 increases the output duty ratio to 100% and disconnects the clutch 3. To do.
- the duty ratio is first increased rapidly to obtain the connection amount at point A in the figure.
- Point A is the connection amount at which the clutch 3 is substantially completely connected, that is, the connection amount at which slip does not occur between the input and output shafts of the clutch 3, and is the connection amount at the end of the half-clutch state.
- the clutch control device 31 reduces the increased acceleration of the output duty ratio and gradually decreases the connection amount. As a result, the torsion accumulated in the power transmission system is not released instantaneously, and the shift shock associated with the disengagement of the clutch 3 is avoided.
- the clutch control device 3 1 increases the increasing rate of the duty ratio again to reach 100%.
- the half-clutch starting point obtained by the learning device of the present invention is equal to the transmission torque itself of the clutch 3, and the amount of connection is rapidly decreased immediately after reaching the point B, which is an accurate value. However, there is no shift shock.
- the reliability of the learned value is not sufficient, and as shown by the two-dot chain line in the figure, the range where the rate of decrease in the connection amount is low is set long so as to reliably avoid the shift shock Therefore, the time required for cutting could not be shortened.
- the broken line in the figure shows the change in the connection amount when the clutch 3 is connected after gear-in. Even at this time, the clutch control device 31 controls the change rate of the output duty ratio in a manner almost similar to that at the time of disconnection.
- the connection amount of clutch 3 is rapidly increased up to point B and gradually increased between point B and point A, thereby preventing shift shock and the like and achieving quick connection.
- the above control of the amount of connection of the clutch 3 at the time of shifting is such that the rate of change of the amount of connection from the start point B to the complete contact point A of the half-clutch is a moderate constant speed.
- the torque transmission amount of the power transmission system has a characteristic that increases as the difference between the rotational speed of the turbine 2 2 of the fluid coupling 2 and the rotational speed of the pump 21 increases.
- the difference may be detected, and if the speed difference is large, control may be performed to reduce the change rate of the clutch 3 engagement amount. In this case, fine control of the amount of connection in the half-clutch region is possible, and a quicker shift without shifting shock is achieved.
- the difference between the rotational speed of the turbine 22 and the rotational speed of the pump 21 is approximately inversely proportional to the vehicle speed. Therefore, it is possible to detect the vehicle speed instead of detecting the rotational speed difference between the two and change the change rate of the connection amount between point B and point A according to the vehicle speed.
- the present invention is a vehicle power transmission device that includes a clutch that is automatically connected to and disconnected from a fluid coupling between an engine and a transmission, and represents a torque transmission amount of the fluid coupling.
- the half-clutch state is accurately detected using the loop. Therefore, it is clear that the present invention can be used for a vehicle power transmission device having a fluid coupling and an automatic clutch.
- the present invention is not limited to the wet multi-plate clutch as in the above-described embodiment, and a dry single-plate clutch is used.
- the present invention can also be applied to a vehicle power transmission device that controls a provided clutch stroke. It is also obvious that the present invention can be applied to a vehicle in which a driver operates a shift lever to change speed.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
Abstract
A power transmission device for a vehicle, in which a clutch (3) automatically connected to and disconnected from a fluid coupling (2) is placed between an engine (1) and a transmission (4), wherein the power transmission device accurately learns a partial-clutch-engagement start point at which substantial torque transmission starts and controls the clutch by using the learned value. A clutch control device (31) has a learning device having a map for representing characteristics of the speed ratio and amount of torque transmission of the fluid coupling and also having speed ratio detection means. To learn the partial-clutch-engagement start point, the clutch (3) is first disengaged with the output shaft of the clutch (3) stopped while the vehicle is at a standstill, and then the amount of engagement of the clutch is gradually increased. This causes the rotation speed and speed ratio of a turbine (22) of the fluid coupling (2) to decrease gradually. Based on this speed ratio, the amount of torque transmission is calculated by using the map, and the amount of clutch engagement when the amount of torque transmission is at a predetermined value is learned as the partial-clutch-engagement start point. Because the amount of torque transmission itself is calculated, the learning value accurately represents the partial-clutch-engagement start point at which torque transmission starts.
Description
明細書 車両用動力伝達装置のクラツチ制御装置 技術分野 Patent application title: Clutch control device for vehicle power transmission device
本発明は、 エンジンと変速機との間に流体継手と自動クラッチとを備え、 変速機の変速 段を切り替える変速時にはクラッチが自動的に断続するように構成されている車両用動力 伝達装置のクラツチ制御装置に関するものである。 背景技術 The present invention relates to a clutch for a vehicle power transmission device that is provided with a fluid coupling and an automatic clutch between an engine and a transmission, and that is configured such that the clutch is automatically connected / disengaged at the time of shifting to change the gear position of the transmission. The present invention relates to a control device. Background art
近年の車両の動向として、 車両運転の容易化あるいは運転者の疲労軽減のため、 いわゆ る A T車に代表される、 イージードライブを目的とした車両用動力伝達装置の普及が進ん でいる。 A T車はトルクコンバータと遊星歯車機構とを組み合わせた動力伝達装置を有し ているが、 イージードライブのための車両用動力伝達装置の中には、 いわゆるマニュアル 車と同様な平行軸歯車機構式変速機を使用して、 これと自動クラッチとを組み合わせたも のがある。 この車両にはクラッチペタルが備えられておらず、 変速段を切り替える変速指 令信号によりクラツチ制御装置が自動的にクラツチを断接する。 変速指令信号は、 コンビ ユータ等の電子制御装置から車両の走行状態に応じて出力される。 運転者が変速レバーで 変速段を切り替える車両では、 変速レバーの操作時の信号により自動的なクラツチの断接 が行われる。 As a trend of vehicles in recent years, in order to facilitate vehicle driving or reduce driver fatigue, power transmission devices for vehicles for the purpose of easy drive, represented by so-called AT vehicles, have been spreading. AT vehicles have a power transmission device that combines a torque converter and a planetary gear mechanism, but some of the vehicle power transmission devices for easy drive use a parallel shaft gear mechanism type gear shift similar to a so-called manual vehicle. Some machines combine this with an automatic clutch. This vehicle is not equipped with a clutch petal, and the clutch control device automatically connects and disconnects the clutch in response to a shift command signal for switching the gear position. The shift command signal is output according to the running state of the vehicle from an electronic control device such as a computer. In a vehicle in which the driver switches the gear stage with the shift lever, the clutch is automatically connected and disconnected by a signal when the shift lever is operated.
最近では、ディーゼルエンジンを装備し平行軸歯車機構式変速機を用いた車両において、 エンジンと自動クラッチとの間に流体継手 (フルードカップリング) を介在させた動力伝 達装置が開発されている。 流体継手を介在させると、 特にエンジン回転数の小さい領域で トルクが大きいディーゼルエンジンでは、 車両の発進時において、 流体継手のポンプとタ 一ビンの間の滑りを利用した発進が可能となる。 つまり、 マニュアル車の発進時のごとき 微妙なクラッチ操作が不要となって、 スムースな発進が容易に行えると同時に、 アイドル 時等におけるエンジンのトルク変動が吸収され、 振動、 騒音も軽減される。 流体継手を介在させたこのような動力伝達装置について、 図 1の概略図に基づいて説明 する。 ディーゼルエンジン 1の後方には流体継手 2が締結され、 さらに、 クラッチ 3を介
して平行軸歯車機構を有する変速機 4が連結されている。 変速機 4の出力軸 4 1は、 車両 の車輪を駆動するプロペラシャフ卜に結合される力 そめ途中には車両停車時に作動させ るセンターブレ一キ (駐車ブレーキ) 4 2が設けられている。 Recently, in a vehicle equipped with a diesel engine and using a parallel shaft gear mechanism type transmission, a power transmission device has been developed in which a fluid coupling is interposed between the engine and an automatic clutch. When a fluid coupling is interposed, especially in a diesel engine with a large torque in a region where the engine speed is small, it is possible to start using the slip between the fluid coupling pump and the turbine when starting the vehicle. In other words, a delicate clutch operation is not required when starting a manual vehicle, and a smooth start can be easily performed. At the same time, engine torque fluctuations during idling are absorbed, and vibration and noise are reduced. Such a power transmission device with a fluid coupling interposed will be described with reference to the schematic diagram of FIG. A fluid coupling 2 is fastened to the rear of the diesel engine 1, and further via a clutch 3. Thus, a transmission 4 having a parallel shaft gear mechanism is connected. The output shaft 41 of the transmission 4 is provided with a center brake (parking brake) 42 that is operated when the vehicle is stopped in the middle of the force coupling to the propeller shaft that drives the wheels of the vehicle.
流体継手 2には、 ディーゼルエンジン 1の出力軸と一体となったポンプ 2 1と、 クラッ チ 3の入力軸 3 1と一体となったタービン 2 2とが配置される。 両者は、 車両の発進時以 外では基本的にはロックアップクラッチ 2 3によって連結され、 これにより、 ディーゼル エンジン 1の出力軸はクラッチ 3の入力軸 3 1と直結された状態となっている。 また、 変 速機 4は、 歯車に一体形成されたギアスプラインに変速スリ一ブを嚙合わせる通常の平行 軸歯車機構式変速機であって、 シンク口ナイザリング等からなる周知のシンク口機構を備 えている。 この変速機 4は、 電子制御装置からの変速の指令に応じて変速ァクチユエータ 6 1により変速が行われるが、 そうした電子制御装置のない車両では、 運転者の操作する 変速レバーにより変速が行われる。 In the fluid coupling 2, a pump 21 that is integrated with the output shaft of the diesel engine 1 and a turbine 2 2 that is integrated with the input shaft 31 of the clutch 3 are disposed. The two are basically connected by a lock-up clutch 23 except when the vehicle is started, so that the output shaft of the diesel engine 1 is directly connected to the input shaft 31 of the clutch 3. The speed changer 4 is a normal parallel shaft gear mechanism type transmission in which a transmission sleeve is fitted to a gear spline formed integrally with a gear, and has a well-known sink opening mechanism including a sink opening kniter ring and the like. It is. The transmission 4 is shifted by a shift actuator 61 according to a shift command from the electronic control unit. In a vehicle without such an electronic control unit, the shift is performed by a shift lever operated by a driver.
この装置におけるクラッチ 3は湿式多板クラッチであって、 その内部には、 入力軸 3 2 に対してスプライン嵌合された多数の摩擦板と、 出力軸 3 3に対してスプライン嵌合され た多数の摩擦板とが、 交互に配設されている。 クラッチ 3はクラッチ制御装置 3 1を備え ており、 この制御装置は、 変速機 4のギヤ段を切り替える変速時などにおいて、 アクセル ペタル 6 2の踏み込み量等が入力されるエンジン制御装置 1 1と連携しながら、 クラッチ 3の接続量の制御を実行する。 The clutch 3 in this device is a wet multi-plate clutch, and inside thereof, there are a large number of friction plates spline-fitted to the input shaft 3 2 and a large number of spline-fitted to the output shaft 3 3. The friction plates are alternately arranged. The clutch 3 includes a clutch control device 31. This control device cooperates with the engine control device 1 1 to which the amount of depression of the accelerator petal 62 is input at the time of shifting to change the gear position of the transmission 4. While controlling the amount of clutch 3 connected.
クラッチ 3の接続量は、 その内部に配設された摩擦板を押圧するビストンに作用する油 圧を、 クラッチ制御装置 3 1が出力するパルスのデューティ比: Dに応じて調節すること により制御される。 定常状態では、 デューティ比: D = 0 % (油圧最小規定値) でクラッ チ 3が接続し、 D= 1 0 0 % (油圧最大規定値) で切断されるように設定されている。 な お、 クラッチ 3としては、 湿式多板クラッチに代え乾式単版クラッチを使用することも可 能である。 このときはクラッチストロークを変更するァクチユエータを制御することによ り、 その接続量が制御されることとなる。 The connection amount of the clutch 3 is controlled by adjusting the hydraulic pressure acting on the biston that presses the friction plate disposed in the clutch 3 according to the duty ratio D of the pulse output from the clutch control device 31. The In the steady state, the clutch 3 is connected with a duty ratio of D = 0% (minimum hydraulic pressure specified value) and disconnected at D = 100% (maximum hydraulic pressure specified value). As the clutch 3, it is also possible to use a dry single plate clutch instead of the wet multi-plate clutch. At this time, the amount of connection is controlled by controlling the actuator that changes the clutch stroke.
クラッチ制御装置 3 1には、 クラッチ 3の入力軸 3 2の回転数 (流体継手 2のタービン 2 2の回転数) を検出する回転数センサ 5 1、 クラッチ 3の出力軸 3 3の回転数 (変速機 4の入力軸回転数) を検出する回転数センサ 5 2及び変速機 4の出力軸 4 1の回転数を検 出する回転数センサ 5 3によって検出されたそれぞれの回転数信号が伝達され、 接続量の 制御に使用される。
変速時においては、 急激なトルク伝達による変速ショックゃエンジンストップを避ける ため、 クラッチ制御装置 3 1はクラッチ 3の接続量を徐々に変化させる。 例えば、 ギヤィ ンの後クラッチ 3を接続させる場合には、 クラッチ制御装置 3 1は、 クラッチ 3の接続量 を徐々に増大させるようデューティ比を制御する。 クラッチ 3は、 いわゆる半クラッチ状 態で滑りながら次第にエンジン回転数と変速機 4の入力軸回転数とを一致させ、 クラッチ が完接 (D = 0 %) したときは滑り量はゼロとなって、 ディーゼルエンジン 1は変速機 4 の入力軸と直結された状態となる。 The clutch control device 3 1 includes a rotational speed sensor 5 1 for detecting the rotational speed of the input shaft 3 2 of the clutch 3 (the rotational speed of the turbine 2 2 of the fluid coupling 2), and the rotational speed of the output shaft 3 3 of the clutch 3 ( The rotation speed sensor 5 2 for detecting the rotation speed of the input shaft of the transmission 4 and the rotation speed sensor 5 2 for detecting the rotation speed of the output shaft 4 1 of the transmission 4 are transmitted. Used to control connection volume. At the time of shifting, the clutch control device 31 gradually changes the amount of engagement of the clutch 3 in order to avoid a shift shock due to sudden torque transmission and engine stop. For example, when the clutch 3 is connected after the gear, the clutch control device 31 controls the duty ratio so that the connection amount of the clutch 3 is gradually increased. While clutch 3 slips in the so-called half-clutch state, it gradually matches the engine speed with the input shaft speed of transmission 4, and when the clutch is fully engaged (D = 0%), the slip amount becomes zero. The diesel engine 1 is directly connected to the input shaft of the transmission 4.
また、 変速の始めにおレ、てクラッチ 3を切断する際にも変速ショックが生じることがあ る。 通常走行時にはエンジンの駆動トルクが車両の車輪まで伝達され、 変速機 4等の伝動 系に駆動トルクによる捩りが発生し車体にはその反作用のトルクが作用している。 切断時 の変速ショックは、 クラッチ 3の急速な切断に伴い駆動トルクが開放され、 捩り等が瞬時 に消失することによって発生するものである。 エンジントルクの大きいディーゼルェンジ ンでは、 殊に車両の低速時においては切断に伴う変速ショックが大きく、 クラッチ 3を切 断する際にも接続量を徐々に減少させる制御を実施することが望ましい。 ところで、 実際のクラッチ 3では、 半クラッチ状態に達する以前の接続量領域では、 断 の状態から油圧を上昇させても伝達トルクが殆ど増加しないので、 迅速な断接のためには その領域を短時間で通過させる必要がある。 そして、 個々の車両に実際に装備される湿式 多板クラッチ 3には多少なりとも個体差が存在し、 同じクラッチでも経年変化を起こすた め、 半クラッチ状態が開始される接続量はクラッチに応じて変わってくる。 したがって、 半クラッチ開始時点における油圧の値、 換言すれば、 実質的なトルク伝達が始まる接続量 となるデューティ比は、 個々の車両で定期的に学習する必要がある。 クラッチ制御装置 3 1は、 逐次更新される半クラッチ学習値を用いることにより、 正確かつ迅速なクラッチ制 御を実行することが可能となる。 A shift shock may also occur when the clutch 3 is disengaged at the beginning of a shift. During normal travel, the engine drive torque is transmitted to the vehicle wheels, and the transmission system such as the transmission 4 is twisted by the drive torque, and the reaction torque acts on the vehicle body. The shift shock at the time of disconnection occurs when the drive torque is released with the rapid disconnection of the clutch 3 and the torsion etc. disappears instantaneously. In diesel engines with large engine torque, especially when the vehicle is running at low speed, there is a large shift shock that accompanies disconnection, and it is desirable to implement control that gradually reduces the amount of connection when clutch 3 is disengaged. By the way, in the actual clutch 3, since the transmission torque hardly increases even if the hydraulic pressure is increased from the disconnected state in the connection amount region before reaching the half clutch state, the region is shortened for quick connection / disconnection. Need to pass in time. In addition, there are some individual differences in the wet multi-plate clutch 3 that is actually installed in each vehicle, and even with the same clutch, the secular change occurs, so the connection amount at which the half-clutch state is started depends on the clutch. Change. Therefore, the value of the hydraulic pressure at the start of the half-clutch, in other words, the duty ratio, which is the connection amount at which substantial torque transmission starts, needs to be learned periodically for each vehicle. The clutch control device 31 can execute accurate and quick clutch control by using the half-clutch learning value that is sequentially updated.
半クラッチ状態の学習は、 自動クラッチを備えた車両では一般的に実施され、 例えば、 クラッチの接続量を徐々に増加し、 変速機入力軸が回転を始める接続量を学習する方法が 知られている。 また、 流体継手を備えた動力伝達装置における、 クラッチ 3の半クラッチ 状態の接続量を学習する学習方法は、 一例として特開 2 0 0 2— 2 9 5 5 2 9号公報に記 載されている。 この公報に開示された半クラッチ状態の学習は、 車両の停止時において、
変速機 4をギヤインさせディーゼルエンジン 1を回転させて行われる。 湿式多板クラッチ 3は断とされ、 流体継手 2のロックアップクラッチ 2 3も断とされている。 The learning of the half-clutch state is generally performed in a vehicle equipped with an automatic clutch. For example, there is a known method of gradually increasing the clutch engagement amount and learning the connection amount at which the transmission input shaft starts rotating. Yes. In addition, a learning method for learning the amount of engagement of the clutch 3 in the half-clutch state in a power transmission device provided with a fluid coupling is described in Japanese Patent Application Laid-Open No. 2000-029525 as an example. Yes. The learning of the half-clutch state disclosed in this publication is performed when the vehicle is stopped. This is done by gearing in the transmission 4 and rotating the diesel engine 1. The wet multi-plate clutch 3 is disengaged, and the lock-up clutch 2 3 of the fluid coupling 2 is also disengaged.
湿式多板クラッチ 3が切断されているので、 車両が停車し湿式多板クラッチ 3の出力軸 3 3が静止しているにもかかわらず、 流体継手 2のタービン 2 2はポンプ 2 1に引きずら れてほぼディーゼルエンジン 1と同一の回転数で回転している。 図 5に示されるように、 この状態からクラツチ制御装置 3 1の出力デューティ比を減少して湿式多板クラッチ 3の 接続量を増やす。 湿式多板クラッチ 3の出力軸 3 3は静止しているから、 接続量が増加し トルク伝達量が増加するにつれて、 湿式多板クラッチ 3の入力軸 3 2と一体のタービン 2 2の回転数'は低下する。 そして、 ディーゼルエンジン 1の回転数 (ポンプ 2 1の回転数) に対しタービン 2 2の回転数が所定値 (この例では 3 0 0 r p m) 低下したときのデュ一 ティ比を、 半クラッチ学習値デューティ比としてクラッチ制御装置 3 1に記憶させる。 上述の半クラッチ学習方法では、 クラッチ制御装置 3 1が出力するデューティ比を次第 に低下させクラッチ 3の接続量を増加させながら、 つまり、 タービン 2 2に作用する制動 トルクを次第に増大させながら、エンジン回転数とタービン 2 2の回転数との差を検出し、 その差が所定値になったときのデューティ比を半クラッチ開始点とする。 両者の回転数の 差は、 クラッチ 3の伝達トルクの増加に応じて増大するものではあるが、 回転数の差であ るから伝達トルクを正確に表すものではない。 また、 ディーゼルエンジン 1の回転数は負 荷トルク (クラッチ 3の伝達トルク) に応じて変化し、 その変化状況はエンジンの燃料噴 射の制御方法によっても異なる。 そのため、 半クラッチ開始点を決定する回転数差の所定 値は、 各種の車両のエンジンに応じて変える必要がある。 Since the wet multi-plate clutch 3 is disconnected, the turbine 2 2 of the fluid coupling 2 is dragged to the pump 21 even though the vehicle stops and the output shaft 3 3 of the wet multi-plate clutch 3 is stationary. It is rotating at the same rotational speed as the diesel engine 1. As shown in FIG. 5, from this state, the output duty ratio of the clutch control device 31 is decreased and the amount of connection of the wet multi-plate clutch 3 is increased. Since the output shaft 3 3 of the wet multi-plate clutch 3 is stationary, the rotational speed of the turbine 2 2 integrated with the input shaft 3 2 of the wet multi-plate clutch 3 increases as the amount of connection increases and the amount of torque transmission increases. Will decline. Then, the duty ratio when the rotational speed of the turbine 2 2 is reduced by a predetermined value (3,000 rpm in this example) with respect to the rotational speed of the diesel engine 1 (the rotational speed of the pump 21) is calculated as the half-clutch learning value. The duty ratio is stored in the clutch control device 31. In the half-clutch learning method described above, the duty ratio output by the clutch control device 31 is gradually decreased to increase the amount of engagement of the clutch 3, that is, while the braking torque acting on the turbine 22 is gradually increased. The difference between the rotational speed and the rotational speed of the turbine 22 is detected, and the duty ratio when the difference reaches a predetermined value is defined as the half clutch start point. The difference between the two speeds increases as the transmission torque of the clutch 3 increases, but it does not accurately represent the transmission torque because of the difference in the speed. In addition, the rotational speed of the diesel engine 1 changes according to the load torque (transmission torque of the clutch 3), and the change situation also depends on the control method of fuel injection of the engine. For this reason, the predetermined value of the rotational speed difference that determines the half-clutch starting point needs to be changed according to various vehicle engines.
また、 クラツチ 3の接続量が増えディーゼルエンジン 1の負荷トルクが増加するとその 回転数が低下するから、 半クラッチ開始点を学習する際には、 その低下を見込んでェンジ ン回転数を予め高めておかなければならない。 し力、し、 エンジン回転数を高く設定して作 動させたときは、 エンジン出力トルクが増加して停車中の車両が不意に発進してしまう虞 れが強まることになる。 Also, as the clutch 3 connection amount increases and the load torque of the diesel engine 1 increases, its rotational speed decreases, so when learning the half-clutch starting point, increase the engine rotational speed in advance in anticipation of the decrease. I have to leave. If the engine speed is set to a high value, the engine output torque will increase and there is a greater risk that the parked vehicle will start unexpectedly.
本発明の課題は、 半クラツチ状態を学習するときのこうした問題を解決して正確な半ク ラッチ開始点の学習を可能とすることにある。 発明の開示
上記の課題に鑑み、 本発明は、 流体継手と自動的に断接されるクラッチとを備えた車両 用動力伝達装置において、 流体継手のトルク伝達量を表すマップを利用して半クラツチ状 態を正確に検出するものである。すなわち、本発明は、請求め範囲第 1項に記載のように、An object of the present invention is to solve such a problem when learning a half-clutch state and to learn an accurate half-clutch starting point. Disclosure of the invention In view of the above problems, the present invention provides a vehicular power transmission device including a fluid coupling and a clutch that is automatically connected / disconnected, and uses a map that represents a torque transmission amount of the fluid coupling to provide a half-clutch state. It is to detect accurately. That is, the present invention, as described in claim 1,
「エンジンと変速機との間に流体継手及びクラツチが配置された車両用動力伝達装置のク ラッチ制御装置であって “A clutch control device for a vehicle power transmission device in which a fluid coupling and a clutch are arranged between an engine and a transmission.
前記流体継手のポンプが前記エンジンの出力軸と一体に回転するよう連結され、 前記流体 継手のタ一ビンが前記クラッチの入力軸と一体に回転するよう連結され、 前記クラッチの 出力軸が前記変速機の入力軸と連結されており、 さらに、 The pump of the fluid coupling is connected to rotate integrally with the output shaft of the engine, the turbine bin of the fluid coupling is connected to rotate integrally with the input shaft of the clutch, and the output shaft of the clutch is connected to the speed change Connected to the input shaft of the machine,
前記クラッチ制御装置が、 半クラッチ状態の接続量を学習する学習装置を有し、 学習した 接続量を使用して前記クラツチの接続量を制御するクラツチ制御装置において、 前記学習装置は、 前記流体継手におけるポンプの回転数とタ一ビンの回転数との比である 速度比を検出する検出手段と、 前記速度比と前記流体継手のトルク伝達量との関係を表す マップを有するトルク伝達量の演算手段とを備えており、 The clutch control device includes a learning device that learns a connection amount in a half-clutch state, and uses the learned connection amount to control the connection amount of the clutch. The learning device includes the fluid coupling. A detection means for detecting a speed ratio, which is a ratio between the rotational speed of the pump and the rotational speed of the turbine bin, and calculation of a torque transmission amount having a map representing a relationship between the speed ratio and the torque transmission amount of the fluid coupling Means and
車両が停車し前記クラツチの出力軸が静止している状態で、 前記クラツチを切断した後、 徐々にその接続量を増加させながら前記検出手段により速度比を検出するとともに、 検出 された速度比に基づき前記演算手段により トルク伝達量を演算し、 After the vehicle is stopped and the output shaft of the clutch is stationary, the speed is detected by the detecting means while gradually increasing the amount of connection after the clutch is cut, and the detected speed ratio is set to the detected speed ratio. Based on the calculation means, the torque transmission amount is calculated,
演算されたトルク伝達量が所定値に達した時の接続量を半クラツチ状態の接続量として記 憶するよう構成されている」 It is configured to memorize the connection amount when the calculated torque transmission amount reaches a predetermined value as the connection amount in the half-clutch state. ''
ことを特徴とするクラッチ制御装置となっている。 本発明における半クラッチ状態の学習装置は、 流体継手におけるポンプの回転数とター ビンの回転数との比である速度比を検出する検出手段と、 速度比と流体継手のトルク伝達 量との関係を表すマップを使用してトルク伝達量を演算する演算手段とを備えている。 そ のマップは、 個々の流体継手の特性に応じて決定されるもので、 クラッチやエンジンが変 わったとしても速度比に対するトルク伝達量の特性は変化しない。 したがって、 速度比に 対応するトルク伝達量を正確に求めることが可能であって、 クラッチの個体差あるいは経 年変化にかかわらず、 接続量に応じたトルク伝達量の変化を演算することができる。 本発 明の学習装置では、 マップは例えばクラッチ制御装置のメモリに格納されている。 The clutch control device is characterized by this. The half-clutch learning device according to the present invention includes a detecting means for detecting a speed ratio which is a ratio of a pump rotation speed and a turbine rotation speed in a fluid coupling, and a relationship between the speed ratio and a torque transmission amount of the fluid coupling. And a calculation means for calculating a torque transmission amount using a map representing. The map is determined according to the characteristics of each fluid coupling. Even if the clutch or engine changes, the characteristics of torque transmission with respect to the speed ratio do not change. Therefore, it is possible to accurately obtain the torque transmission amount corresponding to the speed ratio, and it is possible to calculate the change in the torque transmission amount according to the connection amount regardless of the individual difference or aging of the clutch. In the learning device of the present invention, the map is stored in the memory of the clutch control device, for example.
本発明の半クラツチ状態の学習は、 車両の停車中にクラツチの出力軸が静止している状 態で、 クラッチを切断した後、 徐々にその接続量を増加させながら実行される。 学習時に
は、 ロックアップクラッチが切断されており、 接続量の増加につれて流体継手のタービン に作用する制動トルクが強まるため、 その回転数は次第に低下する。 この点は特許文献 1 に示される従来の学習と同様であるが、 従来の学習法では低下した回転数の差が所定値に 達したことを検出して半クラッチ開始点とするのに対し、 本発明では、 ポンプの回転数と タービンの回転数との比である速度比を検出し、 この速度比からマップを用いてトルク伝 達量そのものを演算し半クラッチ開始点を決定する。 その結果、 半クラッチ状態をより的 確に捉えることができ、 また、 速度比に対するトルク伝達量の特性は流体継手に応じて一 義的に決定されるので、出力、制御方法等の異なる各種のエンジンに共通して適用できる。 場合によっては、 半クラッチ開始点の伝達トルクを、 例えば車両重量等に応じて調整する ことも容易にできる。 The learning of the half-clutch state of the present invention is executed while gradually increasing the amount of connection after the clutch is disengaged while the output shaft of the clutch is stationary while the vehicle is stopped. When learning Since the lock-up clutch is disengaged and the braking torque acting on the turbine of the fluid coupling increases as the amount of connection increases, the rotational speed gradually decreases. This point is the same as in the conventional learning shown in Patent Document 1, but the conventional learning method detects that the reduced rotational speed difference has reached a predetermined value and sets it as a half-clutch start point. In the present invention, a speed ratio that is a ratio between the rotational speed of the pump and the rotational speed of the turbine is detected, and the torque transmission amount itself is calculated from the speed ratio using a map to determine the half-clutch starting point. As a result, the half-clutch state can be grasped more accurately, and the characteristics of the torque transmission amount with respect to the speed ratio are uniquely determined according to the fluid coupling. Applicable to all engines. In some cases, the transmission torque at the half-clutch starting point can be easily adjusted according to, for example, the vehicle weight.
さらに、 本発明は、 ポンプの回転数とタービンの回転数との比である速度比を検出する ものであって、 速度比は、 ポンプの回転数すなわちエンジン回転数が比較的低い状態であ つても測定が可能である。 従来の学習法では、 回転数の差の所定値を確保して学習するに は、 学習中におけるエンジン回転数の低下を見込んで、 学習を始めるときはエンジン回転 数を予め高めておかなければならない。 これに対し、 本発明の学習は、 エンジン回転数を 比較的低く設定して実行できる関係上、 学習中に突発的に車両が発進する事態を回避する ことができる。 本発明の学習装置は、 半クラツチ状態の接続量をトルク伝達量自体として的確に把握で きるので、 これを設けたクラッチ制御装置では、 変速に際して変速ショックのない迅速な クラッチの断続が可能となる。 例えば、 請求の範囲第 2項に記載の発明のように、 変速機 の変速時にクラツチを切断するとき、 学習値として記憶された接続量に達した時に接続量 の低下速度を増大させるよう制御すると迅速な切断が可能となり、 また、 請求の範囲第 3 項に記載の発明のように、 変速機の変速時に切断されたクラッチを接続するとき、 記憶さ れた接続量に達するまでは接続量の増加速度を増大させると迅速な接続ができることにな る。 これに対し、 従来の学習法による学習値を用いる場合は、 学習値の不正確さに起因す る変速ショックを避けるため、 操作速度が低い期間を長めに設定せざるを得なかった。 本発明は、 半クラッチ状態の接続量の学習方法として実施することが可能であって、 こ の場合には、 請求の範囲第 4項に記載のとおり、
「エンジンと変速機との間に流体継手及びクラツチが配置されており、 前記流体継手のポ ンプが前記エンジンの出力軸と一体に回転するよう連結され、 前記流体継手のタービンが 前記クラッチの入力軸と一体に回転するよう連結され、 さらに、 前記クラッチの出力軸が 前記変速機の入力軸と連結された車両用動力伝達装置における、 前記クラツチの半クラッ チ状態の接続量を学習する学習方法であって、 ' Furthermore, the present invention detects a speed ratio that is a ratio between the rotational speed of the pump and the rotational speed of the turbine. Can also be measured. In the conventional learning method, in order to learn with a predetermined value of the difference in the rotational speed, it is necessary to increase the engine speed in advance when learning starts in anticipation of a decrease in the engine speed during learning. . On the other hand, the learning according to the present invention can be executed with the engine speed set to be relatively low, so that it is possible to avoid a situation where the vehicle suddenly starts during learning. Since the learning device of the present invention can accurately grasp the connection amount in the half-clutch state as the torque transmission amount itself, the clutch control device provided with this enables quick clutch engagement / disengagement without a shift shock at the time of shifting. . For example, as in the invention described in claim 2, when the clutch is disconnected at the time of shifting of the transmission, when the connection amount stored as the learning value is reached, control is performed to increase the decrease rate of the connection amount. It is possible to quickly disconnect, and as in the invention described in claim 3 of the claim, when connecting a clutch that is disconnected at the time of shifting of the transmission, the connection amount is reduced until the stored connection amount is reached. Increasing the speed increases the speed of connection. On the other hand, when using the learning value obtained by the conventional learning method, the period during which the operation speed is low had to be set longer in order to avoid shift shock caused by the inaccuracy of the learning value. The present invention can be implemented as a method for learning the amount of connection in the half-clutch state, and in this case, as described in claim 4, “A fluid coupling and a clutch are arranged between the engine and the transmission, the pump of the fluid coupling is connected to rotate integrally with the output shaft of the engine, and the turbine of the fluid coupling is connected to the input of the clutch. A learning method for learning a connection amount of the clutch in a half-clutch state, wherein the clutch is connected to rotate integrally with a shaft, and the output shaft of the clutch is connected to an input shaft of the transmission. Because '
車両が停車し前記クラツチの出力軸が静止している状態で、 前記クラツチを切断した後、 徐々にその接続量を増加させながら前記流体継手におけるポンプの回転数とタービンの回 転数との比である速度比を検出し、 After the vehicle is stopped and the output shaft of the clutch is stationary, the clutch is disconnected, and then the ratio of the rotational speed of the pump in the fluid coupling and the rotational speed of the turbine is increased while gradually increasing the amount of connection. Detects the speed ratio,
検出された前記速度比と前記流体継手のトルク伝達量との関係を表すマップを使用してト ルク伝達量を演算し、 The torque transmission amount is calculated using a map representing the relationship between the detected speed ratio and the torque transmission amount of the fluid coupling,
演算されたトルク伝達量が所定値に達した時の接続量を半クラツチ状態の接続量として記 憶する」 The connection amount when the calculated torque transmission amount reaches a predetermined value is memorized as the connection amount in the half-clutch state. ''
ことを特徴とする半クラッチ状態の接続量の学習方法となる。 このように、 本発明を学習 方法の発明として実施したときも、 上述の効果が同様に達成される。 This is a method for learning the amount of connection in the half-clutch state. As described above, when the present invention is implemented as a learning method invention, the above-described effects are similarly achieved.
半クラッチ状態の接続量の学習方法においては、 請求の範囲第 5項に記載のように、 車 両が停車し、 かつ、 車両にブレーキ力が作用している状態で実行することが好ましい。 こ うすると、 突発的な車両の発進を、 より確実に防止できる。 図面の簡単な説明 In the method for learning the amount of connection in the half-clutch state, as described in claim 5, it is preferable that the method is executed in a state where the vehicle is stopped and a braking force is applied to the vehicle. In this way, sudden start of the vehicle can be prevented more reliably. Brief Description of Drawings
図 1は、 本発明の制御装置が適用される車两用動力伝達装置の概略図である。 FIG. 1 is a schematic diagram of a vehicle power transmission device to which a control device of the present invention is applied.
図 2は、 流体継手のトルクと速度比の特性を示す図である。 Fig. 2 shows the characteristics of the torque and speed ratio of the fluid coupling.
図 3は、 本発明の学習装置に作動を示すフローチヤ一トである。 FIG. 3 is a flowchart showing the operation of the learning apparatus of the present invention.
図 4は、 本発明によるクラツチ接続量の制御態様を示す図である。 FIG. 4 is a diagram showing a control mode of the clutch connection amount according to the present invention.
図 5は、 従来の半クラツチ学習値の決定方法を示す図である。 発明を実施するための最良の形態 FIG. 5 is a diagram showing a conventional half-clutch learning value determination method. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面に基づいて、 本発明を実施した車両用動力伝達装置のクラッチ制御装置につ いて説明するが、 本発明が適用される車両用動力伝達装置を構成する機器は、 図 1に示す 従来の装置と格別異なるものではない。 すなわち、 車両用動力伝達装置では、 ディーゼル エンジン 1の後方に流体継手 2が締結され、 さらに、 自動的に断接するクラッチである多
板湿式クラッチ 3を介して、 平行軸歯車機構を有する変速機 4が連結されている。 流体継 手 2のポンプ 2 1とタービン 2 2は、 車两の発進時以外ではロックアップクラッチ 2 3に よって締結されて、 ディ一ゼルェンジン 1の出力軸が湿式多板クラッチ 3の入力軸と直結 された状態となる。 Hereinafter, a clutch control device for a vehicle power transmission device embodying the present invention will be described with reference to the drawings. Devices constituting the vehicle power transmission device to which the present invention is applied are shown in FIG. This is not a different device. That is, in the vehicle power transmission device, the fluid coupling 2 is fastened to the rear of the diesel engine 1 and is a clutch that automatically connects and disconnects. A transmission 4 having a parallel shaft gear mechanism is connected via a plate wet clutch 3. The pump 2 1 and the turbine 2 2 of the fluid coupling 2 are fastened by the lock-up clutch 2 3 except when both vehicles start, and the output shaft of the diesel engine 1 is directly connected to the input shaft of the wet multi-plate clutch 3. It will be in the state.
湿式多板クラッチ 3はクラッチ制御装置 3 1を備えており、 クラッチ制御装置 3 1は、 変速機 4の変速時等において湿式多板クラッチ 3の接続量を制御しながらその断接を行わ せる。 従来のクラッチ制御装置と同様に、 クラッチ制御装置 3 1は接続量の指令値となる デューティ比: Dを出力し、 これに応じて、 湿式多板クラッチ 3の摩擦板を押圧するビス トンに作用する油圧が変化することにより、 湿式多板クラッチ 3の接続量が制御される。 また、 クラッチ制御装置 3 1には、 ポンプ 2 1の回転数信号 (エンジン制御装置 1 1から のエンジン回転数信号) 及びタービン 2 2の回転数信号 (回転数センサ 5 1からのクラッ チ入力軸 3 2の回転数信号) が入力される。 本発明のクラッチ制御装置 3 1には、 流体継手 2の速度比 e (ポンプ 2 1の回転数に対 するタービン 2 2の回転数の比) とトルク伝達量との特性を示すマップがメモリとして格 納されている。 この特性は比入力トルクを表す係数 τとして周知のものであって、 個々の 流体継手に応じて決定され、 図 2に示すように、 速度比の減少に応じて増加する特性とな つている。 流体継手のトルク伝達量はトルク係数てから次式によって求められる。 The wet multi-plate clutch 3 includes a clutch control device 31, and the clutch control device 31 performs connection / disconnection while controlling the amount of connection of the wet multi-plate clutch 3 when the transmission 4 is shifted. Like the conventional clutch control device, the clutch control device 31 outputs a duty ratio: D, which is a command value for the amount of connection, and acts on the piston that presses the friction plate of the wet multi-plate clutch 3 accordingly. The amount of connection of the wet multi-plate clutch 3 is controlled by changing the hydraulic pressure. In addition, the clutch control device 31 includes a rotation speed signal of the pump 21 (engine speed signal from the engine control device 11) and a rotation speed signal of the turbine 22 (clutch input shaft from the rotation speed sensor 51). 3 Rotational speed signal (2) is input. In the clutch control device 31 of the present invention, a map indicating the characteristics of the speed ratio e of the fluid coupling 2 (ratio of the rotational speed of the turbine 22 to the rotational speed of the pump 21) and the torque transmission amount is stored as a memory. It is stored. This characteristic is known as the coefficient τ representing the specific input torque, and is determined according to the individual fluid coupling, and as shown in Fig. 2, it increases as the speed ratio decreases. The torque transmission amount of the fluid coupling is obtained from the following equation after the torque coefficient.
トルク伝達量 =CX て X (ポンプ 2 1の回転数) 2 : Cは定数 Torque transmission amount = CX x X (Pump 2 1 speed) 2 : C is a constant
本発明のクラッチ制御装置 3 1は上記のマップを備えるとともに、 入力されたポンプ 2 1の回転数信号及びタービン 2 2の回転数信号から速度比 eを検出する手段を備えており、 これらは、 半クラッチ状態の学習装置を構成する。 ここで、 本発明の学習装置における半クラツチ開始点の学習手順及び学習の際の車両用 動力伝達装置の作動について、 図 3のフローチャートを参照して説明する。 The clutch control device 31 of the present invention includes the above map and also includes means for detecting a speed ratio e from the input rotation speed signal of the pump 21 and the rotation speed signal of the turbine 22, A half-clutch learning device is configured. Here, the learning procedure of the half clutch start point in the learning device of the present invention and the operation of the vehicle power transmission device at the time of learning will be described with reference to the flowchart of FIG.
学習すべき B寺期に到達したときには、ステップ 1で車両が停車しているか否かを判断し、 停車しているときは、 ステップ 2で車両にブレーキ力が作用しているか否力 \ つまり、 足 踏みブレーキ又は駐車ブレーキ (センターブレーキ) が操作されているかどうかを判断す る。 さらに、 ステップ 3では運転者がアクセルペダルを踏み込んでいるかどう力、、 つまり ディーゼルエンジン 1がアイドル状態であるかどうかを判断する。 これらの判断は、 学習
中の車両の安全性を確保し不測の発進を防止するために行われるものである。 車両が停車 中でブレーキが操作されており、 しかもエンジンがアイドル状態にあることが確認される と、 学習を実行する条件が整ったこととなり、 半クラッチ開始点の学習を開始する。 この学習では、 まずクラッチ制御装置 3 1の出力するデューティ比を 1 0 0 %として、 湿式多板クラッチ 3を切断する (S 4 )。 同時に、 変速機 4の状態を検知し、 変速機 4が二 ユートラルであるときは、 変速ァクチユエータ 6 1を操作して変速機のいずれかのギヤ、 例えば 5速のギヤを嚙み合わせ、 変速機 4をギヤインの状態とする (S 5 )。 これにより、 変速機 4の出力軸 4 1力 湿式多板クラッチ 3の出力軸と一体となった入力軸 3 3と連結 される。 また、 流体継手 2のロックアップクラッチ 2 3が接続されているときはこれを切 断し、 流体継手 2のポンプ 2 1とタービン 2 2とが自由に回転できるようにする (S 6 )。 次いで、 クラッチ制御装置 3 1の出力するデューティ比を少量ずつ、 例えば 1 %ずつ減 少させ (S 6 )、 湿式多板クラッチ 3の接続量を増加させる。 湿式多板クラッチ 3が完全に 切断されているときは、 その入力軸 3 2と一体のタービン 2 2には制動トルクが実質的に 作用しない。このときは流体継手のタービン 2 2はポンプ 2 1とほぼ同一の回転数となり、 その速度比 eは 1である。 ところで、 湿式多板クラッチ 3の出力軸 3 3は変速機 4の出力 軸 4 1と連結され、 車両の停車中は静止状態を保持する。 そのため、 湿式多板クラッチ 3 の接続量を増加すると、 その接続量における伝達トルクと等しい制動トルク力 入力軸 3 2すなわち流体継手のタービン 2 2に生じ、 流体継手のタービン 2 2の回転数及び速度比 eは低下する。 換言すると、 湿式多板クラッチ 3の伝達トルクは、 速度比 eが低下したと きの流体継手 2のトルク伝達量に等しい。 When you reach the B temple period to learn, you can determine in step 1 whether or not the vehicle is stopped, and if it is stopped, in step 2 whether or not the braking force is acting on the vehicle \ Determine whether the foot brake or parking brake (center brake) is operated. Further, in step 3, it is determined whether the driver is depressing the accelerator pedal, that is, whether the diesel engine 1 is in an idle state. These judgments are learning This is done to ensure the safety of the vehicle inside and to prevent unexpected start. When it is confirmed that the vehicle is stopped, the brake is operated, and the engine is in an idle state, the conditions for executing the learning are in place and learning of the half-clutch starting point is started. In this learning, first, the duty ratio output from the clutch control device 31 is set to 100%, and the wet multi-plate clutch 3 is disconnected (S 4). At the same time, the state of the transmission 4 is detected. When the transmission 4 is in the neutral position, the transmission actuator 61 is operated to engage one of the gears of the transmission, for example, the fifth gear, and the transmission Set 4 to the gear-in state (S 5). As a result, the output shaft 4 of the transmission 4 1 is connected to the input shaft 33 integrated with the output shaft of the wet multi-plate clutch 3. Further, when the lock-up clutch 23 of the fluid coupling 2 is connected, it is disconnected so that the pump 21 and the turbine 22 of the fluid coupling 2 can freely rotate (S6). Next, the duty ratio output from the clutch control device 31 is decreased by a small amount, for example, by 1% (S 6), and the connection amount of the wet multi-plate clutch 3 is increased. When the wet multi-plate clutch 3 is completely disconnected, the braking torque does not substantially act on the turbine 22 integrated with the input shaft 3 2. At this time, the turbine 22 of the fluid coupling has almost the same rotational speed as the pump 21, and its speed ratio e is 1. By the way, the output shaft 33 of the wet multi-plate clutch 3 is connected to the output shaft 41 of the transmission 4, and remains stationary while the vehicle is stopped. Therefore, if the connection amount of the wet multi-plate clutch 3 is increased, a braking torque force equal to the transmission torque at the connection amount is generated in the input shaft 3 2, that is, the turbine 2 2 of the fluid coupling, and the rotation speed and speed of the turbine 2 2 of the fluid coupling 2 The ratio e decreases. In other words, the transmission torque of the wet multi-plate clutch 3 is equal to the torque transmission amount of the fluid coupling 2 when the speed ratio e decreases.
ステップ 8では、 湿式多板クラッチ 3の接続量を増加させる度に、 入力されたポンプ 2 1の回転数信号とタービン 2 2の回転数信号とを用いて速度比 eを検出する。 そして、 ス テツプ 9では、 クラッチ制御装置 3 1のメモリに格納されたマップによってその速度比 e におけるトルク係数 τを求め、 前述の式により流体継手 2のトルク伝達量を演算する。 そ の結果、 湿式多板クラッチ 3の伝達トルクが演算されることとなる。 In step 8, every time the amount of connection of the wet multi-plate clutch 3 is increased, the speed ratio e is detected using the input rotation speed signal of the pump 21 and the rotation speed signal of the turbine 22. Then, in step 9, the torque coefficient τ at the speed ratio e is obtained from the map stored in the memory of the clutch control device 31, and the torque transmission amount of the fluid coupling 2 is calculated by the above formula. As a result, the transmission torque of the wet multi-plate clutch 3 is calculated.
ステップ 1 0では、 演算されたトルク伝達量が、 半クラッチ開始点に相当するトルク伝 達量の所定値に達した力、否かを判定する。 所定値に到達した時点で、 クラッチ制御装置 3 1は、 そのときのデューティ比を半クラッチ開始点のデューティ比として記憶し、 既存の 学習値を更新してメモリに格納する (S l l )。 なお、 半クラッチ開始点に相当するトルク 伝達量は、 このような動力伝達装置が搭載される各車両に応じて、 実験等により予め定め
られている。 場合によっては、 このトルク伝達量の所定値が変更可能であるようクラッチ 制御装置 3 1を構成することもできる。 図 4には、 本発明のクラッチ制御装置 3 1による、 変速時におけるクラッチ 3の接続量 の制御態様を示す。 図の実線は、 変速時にまずクラッチ 3を切り離すときの接続量の変化 を示すものである。 In Step 10, it is determined whether or not the calculated torque transmission amount is a force that has reached a predetermined value of the torque transmission amount corresponding to the half clutch starting point. When the predetermined value is reached, the clutch control device 31 stores the duty ratio at that time as the duty ratio of the half clutch start point, updates the existing learning value, and stores it in the memory (S ll). The torque transmission amount corresponding to the half-clutch starting point is determined in advance by experiments or the like according to each vehicle on which such a power transmission device is mounted. It has been. In some cases, the clutch control device 31 can be configured so that the predetermined value of the torque transmission amount can be changed. FIG. 4 shows a control mode of the engagement amount of the clutch 3 at the time of shifting by the clutch control device 31 of the present invention. The solid line in the figure shows the change in the connection amount when the clutch 3 is first disengaged during gear shifting.
車両の通常走行時には、 クラッチ制御装置 3 1はデューティ比 0 %のパルスを出力し、 クラッチ 3は完接状態にある。 クラッチ制御装置 3 1に車両に搭載されたコンピュータ等 の電子制御装置から変速指令が入力されると、 クラッチ制御装置 3 1は出力するデューテ ィ比を 1 0 0 %まで増加させ、 クラッチ 3を切断する。 このときは始めにデューティ比を 急速に増加して図の A点の接続量とする。 A点は、実質的にクラッチ 3が完接する接続量、 つまり、 クラッチ 3の入出力軸の間に滑りが生じなくなる接続量であり、 半クラッチ状態 の終わりとなる接続量である。 接続量が A点となった後は、 クラッチ制御装置 3 1は出力 するデューティ比の增加速度を低下させ、 徐々に接続量を減少させる。 これにより、 動力 伝達系統に蓄積されている捩れが瞬時に開放されることはなく、 クラッチ 3の切断に伴う 変速ショックが回避される。 During normal driving of the vehicle, the clutch control device 31 outputs a pulse with a duty ratio of 0%, and the clutch 3 is in a fully connected state. When a shift command is input from an electronic control device such as a computer mounted on the vehicle to the clutch control device 31, the clutch control device 31 increases the output duty ratio to 100% and disconnects the clutch 3. To do. In this case, the duty ratio is first increased rapidly to obtain the connection amount at point A in the figure. Point A is the connection amount at which the clutch 3 is substantially completely connected, that is, the connection amount at which slip does not occur between the input and output shafts of the clutch 3, and is the connection amount at the end of the half-clutch state. After the connection amount reaches point A, the clutch control device 31 reduces the increased acceleration of the output duty ratio and gradually decreases the connection amount. As a result, the torsion accumulated in the power transmission system is not released instantaneously, and the shift shock associated with the disengagement of the clutch 3 is avoided.
クラッチ制御装置 3 1の出力するデューティ比が増加し、 接続量が B点、 すなわち本発 明の学習装置により学習された半クラッチ開始点の接続量、 まで減少したときは、 クラッ チ制御装置 3 1は再びデューティ比の増加速度を増大させて 1 0 0 %に達するようにする。 本発明の学習装置により得られた半クラッチ開始点は、 クラッチ 3の伝達トルクそのもの に等しレ、正確な値である力、ら、 B点に達した直後に急速に接続量を減少させても変速ショ ックは生じない。 一方、 従来のクラッチ制御装置では学習値の信頼性が十分でなく、 図の 2点鎖線で示すように、 変速ショックを確実に避けるよう接続量の低下速度が低い範囲を 長く設定していた関係で、 切断に要する時間を短縮できなかった。 When the duty ratio output by the clutch control device 3 1 increases and the connection amount decreases to point B, that is, the connection amount of the half clutch start point learned by the learning device of the present invention, the clutch control device 3 1 increases the increasing rate of the duty ratio again to reach 100%. The half-clutch starting point obtained by the learning device of the present invention is equal to the transmission torque itself of the clutch 3, and the amount of connection is rapidly decreased immediately after reaching the point B, which is an accurate value. However, there is no shift shock. On the other hand, with the conventional clutch control device, the reliability of the learned value is not sufficient, and as shown by the two-dot chain line in the figure, the range where the rate of decrease in the connection amount is low is set long so as to reliably avoid the shift shock Therefore, the time required for cutting could not be shortened.
図の破線は、 ギヤインの後、 クラッチ 3を接続するときの接続量の変化を示すものであ る。 このときにおいてもクラッチ制御装置 3 1は、 出力するデューティ比の変化速度を切 断のときとほぼ同様の態様で制御する。 クラッチ 3の接続量は、 B点までは急速に増加さ せ、 B点と A点の間では徐々に增加させることにより、 変速ショック等を防止するととも に迅速な接続が達成される。
変速時における上記のクラッチ 3の接続量の制御は、 半クラッチの開始点 B点から完接 点 A点までの接続量の変化速度を、 緩やかな一定速度とするものである。 これに対し、 B 点と A点との間の接続量の変化速度をトルク伝達量に応じて変更するように制御すること も可能である。 例えば、 動力伝達系統のトルク伝達量は、 流体継手 2のタービン 2 2の回 転数とポンプ 2 1の回転数との差が大きくなれば増加する特性を有しているので、 両者の 回転数差を検出し、 回転数差が大きいときはクラッチ 3の接続量の変化速度を小さくする ように制御してもよい。 この場合には、 半クラッチ領域における接続量のきめ細かな制御 が可能となり、 変速ショックがない、 より迅速な変速が達成される。 The broken line in the figure shows the change in the connection amount when the clutch 3 is connected after gear-in. Even at this time, the clutch control device 31 controls the change rate of the output duty ratio in a manner almost similar to that at the time of disconnection. The connection amount of clutch 3 is rapidly increased up to point B and gradually increased between point B and point A, thereby preventing shift shock and the like and achieving quick connection. The above control of the amount of connection of the clutch 3 at the time of shifting is such that the rate of change of the amount of connection from the start point B to the complete contact point A of the half-clutch is a moderate constant speed. On the other hand, it is also possible to control so that the change rate of the connection amount between point B and point A is changed according to the torque transmission amount. For example, the torque transmission amount of the power transmission system has a characteristic that increases as the difference between the rotational speed of the turbine 2 2 of the fluid coupling 2 and the rotational speed of the pump 21 increases. The difference may be detected, and if the speed difference is large, control may be performed to reduce the change rate of the clutch 3 engagement amount. In this case, fine control of the amount of connection in the half-clutch region is possible, and a quicker shift without shifting shock is achieved.
また、車両の発進時で車速が非常に小さいとき(例えば 1 O KmZ h以下)にあっては、 タービン 2 2の回転数とポンプ 2 1の回転数との差は略車速に反比例する。 そのため、 両 者の回転数差を検出する代わりに車速を検出し、 車速に対応して B点と A点との間の接続 量の変化速度を変更することもできる。 産業上の利用可能性 Further, when the vehicle speed is very low (for example, 1 O KmZ h or less) at the start of the vehicle, the difference between the rotational speed of the turbine 22 and the rotational speed of the pump 21 is approximately inversely proportional to the vehicle speed. Therefore, it is possible to detect the vehicle speed instead of detecting the rotational speed difference between the two and change the change rate of the connection amount between point B and point A according to the vehicle speed. Industrial applicability
以上詳述したように、 本発明は、 エンジンと変速機との間に流体継手と自動的に断接さ れるクラツチとを備えた車両用動力伝達装置において、 流体継手のトルク伝達量を表すマ ップを利用して半クラッチ状態を正確に検出するものである。 したがって、 本発明は、 流 体継手と自動クラッチとを有する車両用動力伝達装置に利用できるのは明らかであって、 上述の実施例のような湿式多板クラツチに限らず、 乾式単板クラツチを備えクラツチスト ロークを制御する車両用動力伝達装置にも適用可能である。 また、 運転者が変速レバーを 操作して変速する車両に対しても適用できることは明白である。
As described above in detail, the present invention is a vehicle power transmission device that includes a clutch that is automatically connected to and disconnected from a fluid coupling between an engine and a transmission, and represents a torque transmission amount of the fluid coupling. The half-clutch state is accurately detected using the loop. Therefore, it is clear that the present invention can be used for a vehicle power transmission device having a fluid coupling and an automatic clutch. The present invention is not limited to the wet multi-plate clutch as in the above-described embodiment, and a dry single-plate clutch is used. The present invention can also be applied to a vehicle power transmission device that controls a provided clutch stroke. It is also obvious that the present invention can be applied to a vehicle in which a driver operates a shift lever to change speed.
Claims
請求の範囲 エンジンと変速機との間に流体継手及びクラツチが配置された車両用動力伝達装置の クラッチ制御装置であって、 A clutch control device for a vehicle power transmission device in which a fluid coupling and a clutch are arranged between an engine and a transmission,
前記流体継手のポンプが前記エンジンの出力軸と一体に回転するよう連結され、前記 流体継手のタービンが前記クラッチの入力軸と一体に回転するよう連結され、前記ク ラッチの出力軸が前記変速機の入力軸と連結されており、 さらに、 The pump of the fluid coupling is connected to rotate integrally with the output shaft of the engine, the turbine of the fluid coupling is connected to rotate integrally with the input shaft of the clutch, and the output shaft of the clutch is connected to the transmission. Connected to the input shaft, and
前記クラッチ制御装置が、 半クラッチ状態の接続量を学習する学習装置を有し、 学習 した接続量を使用して前記クラツチの接続量を制御するクラツチ制御装置において、 前記学習装置は、前記流体継手におけるポンプの回転数とタ一ビンの回転数との比で ある速度比を検出する検出手段と、前記速度比と前記流体継手のトルク伝達量との関 係を表すマップを有するトルク伝達量の演算手段とを備えており、 The clutch control device includes a learning device that learns a connection amount in a half-clutch state, and uses the learned connection amount to control the connection amount of the clutch. The learning device includes the fluid coupling. Detecting means for detecting a speed ratio, which is a ratio between the rotational speed of the pump and the rotational speed of the turbine bin, and a torque transmission amount having a map representing a relationship between the speed ratio and the torque transmission amount of the fluid coupling. Computing means,
車両が停車し前記クラツチの出力軸が諍止している状態で、前記クラツチを切断した 後、徐々にその接続量を増加させながら前記検出手段により速度比を検出するととも に、 検出された速度比に基づき前記演算手段により トルク伝達量を演算し、 演算されたトルク伝達量が所定値に達した時の接続量を半クラツチ状態の接続量と して記憶するよう構成されていることを特徴とするクラッチ制御装置。 After the vehicle is stopped and the output shaft of the clutch is stopped, the clutch is disconnected, and then the speed ratio is detected by the detecting means while gradually increasing the connection amount, and the detected speed is detected. The torque transmission amount is calculated by the calculation means based on the ratio, and the connection amount when the calculated torque transmission amount reaches a predetermined value is stored as the connection amount in the half-clutch state. A clutch control device.
変速機の変速時にクラッチを切断するときは、 クラッチ制御装置が、 前記学習装置に より記憶された接続量よりも接続側の一定の範囲では接続量の低下速度を減少させ、 記憶された接続量に達した時は接続量の低下速度を増大させる第 1項に記載の車両用 動力伝達装置のクラツチ制御装置。 When the clutch is disengaged during the shift of the transmission, the clutch control device reduces the rate of decrease in the connection amount within a certain range on the connection side from the connection amount stored by the learning device, and the stored connection amount. The clutch control device for a power transmission device for a vehicle according to item 1, wherein the rate of decrease in the connection amount is increased when the value reaches the value.
変速機の変速時に切断されたクラッチを接続するときは、 クラッチ制御装置が、 前記 学習装置により記憶された接続量に達するまでは接続量の增加速度を増大させ、 記憶 された接続量に達した時は接続量の増加速度を減少させる第 1項又は第 2項に記載の 車両用動力伝達装置のクラツチ制御装置。 When connecting a clutch that has been disconnected at the time of shifting the transmission, the clutch control device increases the increased acceleration of the connection amount until the connection amount stored by the learning device is reached, and the stored connection amount is reached. The clutch control device for a vehicle power transmission device according to claim 1 or 2, wherein the connection speed is increased at a reduced time.
エンジンと変速機との間に流体継手及びクラッチが配置されており、 前記流体継手の ポンプが前記エンジンの出力軸と一体に回転するよう連結され、 前記流体継手のター ビンが前記クラッチの入力軸と一体に回転するよう連結され、 さらに、 前記クラッチ の出力軸が前記変速機の入力軸と連結された車両用動力伝達装置における、 前記クラ ツチの半クラツチ状態の接続量を学習する学習方法であって、
車両が停車し前記クラッチの出力軸が静止している状態で、 前記クラツチを切断した 後、 徐々にその接続量を増加させながら前記流体継手におけるポンプの回転数とター ビンの回転数との比である速度比を検出し、 A fluid coupling and a clutch are arranged between the engine and the transmission, a pump of the fluid coupling is connected to rotate integrally with an output shaft of the engine, and a turbine of the fluid coupling is connected to an input shaft of the clutch And a learning method for learning a connection amount of the clutch in a half-clutch state in a vehicle power transmission device in which the output shaft of the clutch is connected to the input shaft of the transmission. There, While the vehicle is stopped and the output shaft of the clutch is stationary, after the clutch is disconnected, the ratio of the rotational speed of the pump in the fluid coupling and the rotational speed of the turbine is gradually increased while increasing the connection amount. Detects the speed ratio,
検出された前記速度比と前記流体継手のトルク伝達量との関係を表すマップを使用し てトルク伝達量を演算し、 Calculate the torque transmission amount using a map representing the relationship between the detected speed ratio and the torque transmission amount of the fluid coupling,
演算されたトルク伝達量が所定値に達した時の接続量を半クラツチ状態の接続量とし て記憶することを特徴とする半クラツチ状態の接続量の学習方法。 A method of learning a connection amount in a half-clutch state, wherein the connection amount when the calculated torque transmission amount reaches a predetermined value is stored as a connection amount in a half-clutch state.
半クラッチ状態の接続量の学習は、 車両が停車し、 力、つ、 車両にブレーキ力が作用し ている状態で実行される第 4項に記載の学習方法。
5. The learning method according to item 4, wherein the connection amount learning in the half-clutch state is performed in a state where the vehicle is stopped and the force and the braking force are applied to the vehicle.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006266767A JP4179368B2 (en) | 2006-09-29 | 2006-09-29 | Clutch control device for vehicle power transmission device |
JP2006-266767 | 2006-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008041620A1 true WO2008041620A1 (en) | 2008-04-10 |
Family
ID=39268479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/068907 WO2008041620A1 (en) | 2006-09-29 | 2007-09-20 | Clutch control device for power transmission device for vehicle |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4179368B2 (en) |
WO (1) | WO2008041620A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2107264A1 (en) * | 2008-04-04 | 2009-10-07 | Peugeot Citroen Automobiles SA | Method for automatically determining the biting point of a clutch by teach programming |
EP2107263A1 (en) * | 2008-04-04 | 2009-10-07 | Peugeot Citroen Automobiles SA | Method for automatically determining the biting point of a clutch by teach programming |
WO2010026348A1 (en) * | 2008-09-05 | 2010-03-11 | Peugeot Citroën Automobiles SA | Method for finding a clutch slip point of a hybrid vehicle |
US8262539B2 (en) | 2008-10-22 | 2012-09-11 | Kabushiki Kaisha F.C.C. | Power transmitting apparatus |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5462542B2 (en) * | 2009-07-17 | 2014-04-02 | 株式会社三井三池製作所 | Reclaimer |
JP5496854B2 (en) * | 2010-11-01 | 2014-05-21 | ジヤトコ株式会社 | Vehicle control device |
JP6119159B2 (en) * | 2012-09-21 | 2017-04-26 | アイシン精機株式会社 | Clutch control device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08128526A (en) * | 1994-10-31 | 1996-05-21 | Aisin Aw Co Ltd | Control device for automatic transmission |
JP2002295529A (en) * | 2001-03-28 | 2002-10-09 | Isuzu Motors Ltd | Method of practising torque point of clutch |
-
2006
- 2006-09-29 JP JP2006266767A patent/JP4179368B2/en not_active Expired - Fee Related
-
2007
- 2007-09-20 WO PCT/JP2007/068907 patent/WO2008041620A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08128526A (en) * | 1994-10-31 | 1996-05-21 | Aisin Aw Co Ltd | Control device for automatic transmission |
JP2002295529A (en) * | 2001-03-28 | 2002-10-09 | Isuzu Motors Ltd | Method of practising torque point of clutch |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2107264A1 (en) * | 2008-04-04 | 2009-10-07 | Peugeot Citroen Automobiles SA | Method for automatically determining the biting point of a clutch by teach programming |
EP2107263A1 (en) * | 2008-04-04 | 2009-10-07 | Peugeot Citroen Automobiles SA | Method for automatically determining the biting point of a clutch by teach programming |
FR2929673A1 (en) * | 2008-04-04 | 2009-10-09 | Peugeot Citroen Automobiles Sa | METHOD FOR AUTOMATICALLY DETERMINING THE LATCHING POINT OF A CLUTCH BY LEARNING |
FR2929672A1 (en) * | 2008-04-04 | 2009-10-09 | Peugeot Citroen Automobiles Sa | METHOD FOR AUTOMATICALLY DETERMINING THE LATCHING POINT OF A CLUTCH BY LEARNING |
WO2010026348A1 (en) * | 2008-09-05 | 2010-03-11 | Peugeot Citroën Automobiles SA | Method for finding a clutch slip point of a hybrid vehicle |
FR2935767A1 (en) * | 2008-09-05 | 2010-03-12 | Peugeot Citroen Automobiles Sa | METHOD FOR LEARNING A TRAPPING POINT OF A CLUTCH FOR A HYBRID VEHICLE |
US8262539B2 (en) | 2008-10-22 | 2012-09-11 | Kabushiki Kaisha F.C.C. | Power transmitting apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP4179368B2 (en) | 2008-11-12 |
JP2008082528A (en) | 2008-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7160225B2 (en) | Method, device and use thereof for operating a motor vehicle | |
KR100261005B1 (en) | Engine Control Method Used for Vehicle Clutch Control | |
JP3560363B2 (en) | Automatic clutch control method for starting and ending a coasting phase of a vehicle | |
US20020086769A1 (en) | Arrangement for operating the clutch in the power train of a motor vehicle | |
WO2000032960A1 (en) | Gear type automatic transmission and car using the gear type automatic transmission | |
WO2008041620A1 (en) | Clutch control device for power transmission device for vehicle | |
JP2010025214A (en) | Fluid transmission device and power transmission device for vehicle having friction clutch | |
CN1582372A (en) | Method for a shift control of a power shift transmission | |
US7149616B2 (en) | Control apparatus and method for vehicle | |
CN103925313A (en) | Control apparatus for vehicle | |
CN100480530C (en) | Control device and method for vehicle automatic clutch | |
US6755766B2 (en) | Vehicle power transmission device | |
EP3822517B1 (en) | Control system and control method for vehicle | |
JP4496201B2 (en) | Control device for shifting of power transmission device for vehicle | |
JP3724491B2 (en) | Engine control device for vehicle power transmission device | |
JP4621969B2 (en) | Control device for automatic transmission | |
JP4858052B2 (en) | Shift clutch control device in vehicle power transmission device | |
JP2005280559A (en) | Vehicular start control device | |
JP2010096235A (en) | Control device of clutch | |
JP4432314B2 (en) | Brake device mounted on a vehicle | |
WO2005010407A1 (en) | Shift control device of automatic transmission | |
JP4360221B2 (en) | Control device for vehicle power transmission device | |
JPH11193732A (en) | Vehicle with idling speed controller | |
JP3142171B2 (en) | Shift control method for automatic transmission for vehicle | |
US8177687B2 (en) | Power transmission device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07828651 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07828651 Country of ref document: EP Kind code of ref document: A1 |