WO2007130793A2 - Procédé permettant d'obtenir une entrée commandant l'exécution d'un programme de jeu - Google Patents
Procédé permettant d'obtenir une entrée commandant l'exécution d'un programme de jeu Download PDFInfo
- Publication number
- WO2007130793A2 WO2007130793A2 PCT/US2007/067010 US2007067010W WO2007130793A2 WO 2007130793 A2 WO2007130793 A2 WO 2007130793A2 US 2007067010 W US2007067010 W US 2007067010W WO 2007130793 A2 WO2007130793 A2 WO 2007130793A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- controller
- information
- input
- input information
- value
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 85
- 230000006870 function Effects 0.000 claims description 26
- 238000012545 processing Methods 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 20
- 238000012935 Averaging Methods 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 abstract description 14
- 230000033001 locomotion Effects 0.000 description 47
- 230000001133 acceleration Effects 0.000 description 32
- 239000011295 pitch Substances 0.000 description 22
- 230000008901 benefit Effects 0.000 description 21
- 238000013507 mapping Methods 0.000 description 17
- 238000013461 design Methods 0.000 description 14
- 230000004044 response Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 238000012546 transfer Methods 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 10
- 238000004088 simulation Methods 0.000 description 10
- 230000009471 action Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000005236 sound signal Effects 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- PWPJGUXAGUPAHP-UHFFFAOYSA-N lufenuron Chemical compound C1=C(Cl)C(OC(F)(F)C(C(F)(F)F)F)=CC(Cl)=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F PWPJGUXAGUPAHP-UHFFFAOYSA-N 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 230000001934 delay Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 3
- 230000005355 Hall effect Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000013481 data capture Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 241000170006 Bius Species 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000004886 head movement Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000015607 signal release Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000007781 signaling event Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/005—Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
Definitions
- Patent Application 10/820,469 entitled “METHOD AND APPARATUS TO DETECT AND REMOVE AUDIO DISTURBANCES”, filed on April 7, 2004; and U.S. Patent Application No. 11/301,673, entitled “METHOD FOR USING RELATIVE HEAD AND HAND POSITIONS TO ENABLE A POINTING INTERFACE VIA CAMERA TRACKING", filed on December 12, 2005; U.S. Patent Application No. 11/165,473, entitled, "DELAY MATCHING IN
- the present invention generally relates to human-computer interfacing and specifically to processing multi-channel input for tracking the user manipulation of one or more controllers.
- Computer entertainment systems typically include a hand-held controller, game controller, or other controller.
- a user or player uses the controller to send commands or other instructions to the entertainment system to control a video game or other simulation being played.
- the controller may be provided with a manipulator which is operated by the user, such as a joy stick.
- the manipulated variable of the joy stick is converted from an analog value into a digital value, which is sent to the game machine main frame.
- the controller may also be provided with buttons that can be operated by the user.
- FIG. 1 is a pictorial diagram illustrating a video game system that operates in accordance with an embodiment of the present invention
- FIG. 2 is a perspective view of a controller made in accordance with an embodiment of the present invention.
- FIG. 3 is a three-dimensional schematic diagram illustrating an accelerometer that may be used in a controller according to an embodiment of the present invention
- FIG. 4 is a block diagram of a system for mixing various control inputs according to an embodiment of the present invention.
- FIG. 5A is a block diagram of a portion of the video game system of FIG. 1.
- FIG. 5B is a flow diagram of a method for tracking a controller of a video game system according to an embodiment of the present invention
- FIG. 5C is a flow diagram illustrating a method for utilizing position and/or orientation information during game play on a video game system according to an embodiment of the present invention.
- FIG. 6 is a block diagram illustrating a video game system according to an embodiment of the present invention.
- FIG. 7 is a block diagram of a cell processor implementation of the video game system according to an embodiment of the present invention.
- Various embodiments of the methods, apparatus, schemes and systems described herein provide for the detection, capture and tracking of the movements, motions and/or manipulations of the entire controller body itself by the user.
- the detected movements, motions and/or manipulations of the entire controller body by the user may be used as additional commands to control various aspects of the game or other simulation being played.
- an inertial sensor such as an accelerometer or gyroscope
- an image capture unit such as a digital camera
- tracking a controller with an inertial sensor are described, e.g., in US Patent Application 11/382,033, entitled "SYSTEM, METHOD, AND APPARATUS FOR THREE-DIMENSIONAL INPUT CONTROL" (Attorney Docket Number SCEA06INRT1), which is incorporated herein by reference.
- controller and/or the user may also be tracked acoustically using a microphone array and appropriate signal processing. Examples of such acoustic tracking are described in US Patent Application 11/381,721, which is incorporated herein by reference.
- Acoustic sensing, inertial sensing and image capture can be used individually or in any combination to detect many different types of motions of the controller, such as for example up and down movements, twisting movements, side to side movements, jerking movements, wand-like motions, plunging motions, etc.
- Such motions may correspond to various commands such that the motions are transferred into actions in a game.
- Detecting and tracking the user's manipulations of a game controller body can be used to implement many different types of games, simulations, etc., that allow the user to, for example, engage in a sword or lightsaber fight, use a wand to trace the shape of items, engage in many different types of sporting events, engage in on-screen fights or other encounters, etc.
- a game program may configured to track the motion of the controller and recognize certain prerecorded gestures from the tracked motion. Recognition of one or more of these gestures may trigger a change in the game state.
- controller path information obtained from these different sources may be mixed prior to analysis for gesture recognition.
- the tracking data from different sources e.g., acoustic, inertial and image capture
- a computer entertainment console 102 may be coupled to a television or other video display 104 to display the images of the video game or other simulation thereon.
- the game or other simulation may be stored on a DVD, CD, flash memory, USB memory, or other memory media 106 that is inserted into the console 102.
- a user or player 108 manipulates a game controller 110 to control the video game or other simulation.
- the game controller 110 includes an inertial sensor 112 that produces signals in response to the position, motion, orientation or change in orientation of the game controller 110.
- the game controller Attorney Docket #: SCEA06018WO00
- control input devices e.g., joysticks 111, buttons 113, Rl, Ll, and the like.
- the user 108 physically moves the controller 110.
- the controller 110 may be moved in any direction by the user 108, such as up, down, to one side, to the other side, twisted, rolled, shaken, jerked, plunged, etc.
- These movements of the controller 110 itself may be detected and captured by the camera 112 by way of tracking through analysis of signals from the inertial sensor 112 in a manner described below.
- the system 100 may optionally include a camera or other video image capturing device 114, which may be positioned so that the controller 110 is within the camera's field of view 116. Analysis of images from the image capturing device 114 may be used in conjunction with analysis of data from the inertial sensor 112.
- the controller 110 may optionally be equipped with light sources such as light emitting diodes (LEDs) 202, 204, 206, 208 to facilitate tracking by video analysis. These may be mounted to a body of the controller 110.
- LEDs light emitting diodes
- body is meant to describe the part of the game controller 110 that one would hold by hand (or wear if it were a wearable game controller).
- the console 102 may include an acoustic transducer, such as a microphone array 118.
- the controller 110 may also include an acoustic signal generator 210 (e.g., a speaker) to provide a source of sound to facilitate acoustic tracking of the controller 110 with the microphone array 118 and appropriate acoustic signal processing, e.g., as described in US Patent Application 11/381,724, which is incorporated herein by reference.
- an acoustic signal generator 210 e.g., a speaker
- appropriate acoustic signal processing e.g., as described in US Patent Application 11/381,724, which is incorporated herein by reference.
- signals from the inertial sensor 112 are used to generate position and orientation data for the controller 110.
- Such data may be used to calculate many physical aspects of the movement of the controller 110, such as for example its acceleration and velocity along any axis, its tilt, pitch, yaw, roll, as well as any telemetry points of the controller 110.
- telemetry generally refers to remote measurement and reporting of information of interest to a system or to the system's designer or operator.
- the ability to detect and track the movements of the controller 110 makes it possible to determine whether any predefined movements of the controller 110 are performed. That is, certain movement patterns or gestures of the controller 110 may be predefined and used as input commands for the game or other simulation. For example, a plunging downward gesture of the controller 110 may be defined as one command, a twisting gesture of the controller 110 may be defined as another command, a shaking gesture of the controller 110 may be defined as another command, and so on. In this way the manner in which the user 108 physically moves the controller 110 is used as another input for controlling the game, which provides a more stimulating and entertaining experience for the user.
- the inertial sensor 112 may be an accelerometer.
- FIG. 3 depicts an example of an accelerometer 300 in the form of a simple mass 302 elastically coupled at four points to a frame 304, e.g., by springs 306, 308, 310, 312.
- Pitch and roll axes lie in a plane that intersects the frame.
- a yaw axis Z is oriented perpendicular to the plane containing the pitch axis X and the roll axis Y.
- the frame 304 may be mounted to the controller 110 in any suitable fashion.
- the mass 302 may displace relative to the frame 304 and the springs 306, 308, 310, 312 may elongate or compress in a way that depends on the amount and direction of translational and/or rotational acceleration and/or the angle of pitch and/or roll and/or yaw.
- the displacement and of the mass 302 and/or compression or elongation of the springs 306, 308, 310, 312 may be sensed, e.g., with appropriate sensors 314, 316, 318, 320 and converted to signals that depend in known or determinable way on the amount acceleration of pitch and/or roll.
- Embodiments of the invention may include any number and type or combination of types of sensors.
- the sensors 314, 316, 318, 320 may be gap closing electrodes placed above the mass 302. A capacitance between the mass and each electrode changes as the position of the mass changes relative to each electrode. Each electrode may be connected to a circuit that produce a signal related to the capacitance (and therefore to the proximity) of the mass 302 relative to the electrode.
- the springs 306, 308, 310 Attorney Docket #: SCEA06018WO00
- 312 may include resistive strain gauge sensors that produce signals that are related to the compression or elongation of the springs.
- the frame 304 may be gimbal mounted to the controller 110 so that the accelerometer 300 maintains a fixed orientation with respect to the pitch and/or roll and/or yaw axes.
- the controller axes X, Y, Z may be directly mapped to corresponding axes in real space without having to take into account a tilting of the controller axes with respect to the real space coordinate axes.
- a system 400 may include an inertial analyzer 402, an image analyzer 404 and an acoustic analyzer 406. Each of these analyzers receives signals from a sensed environment 401.
- the analyzers 402, 404, 406 may be implemented in hardware, in software (or firmware) or some combination of two or more of these.
- Each of the analyzers produces tracking information related the position and/or orientation of an object of interest.
- the object of interest may be the controller 110 referred to above.
- the image analyzer 404 may operate in connection with and to form fields below and with respect to methods described in US Patent Application 11/382,034 (Attorney Docket Number SCEA05082US00).
- the inertial analyzer 402 may operate in connection with and to form fields below and with respect to methods described in US Patent Application 11/382,033, entitled "SYSTEM, METHOD, AND APPARATUS FOR THREE-DIMENSIONAL INPUT CONTROL" (Attorney Docket Number SCEA06INRT1).
- the acoustic analyzer 406 may operate in connection with and to form fields below and with respect to methods described in US Patent Application 11/381,724.
- the analyzers 402, 404 and 406 may be regarded as being associated with different channels of inputs of position and/or orientation information.
- the Mixer 408 may accept multiple input channels and such channels may contain sample data characterizing the sensed environment 401, typically from the perspective of the channel.
- the position and/or orientation information generated by the inertial analyzer 402, image analyzer 404 and acoustic analyzer 406 can be coupled into the input of a mixer 408.
- the Mixer 408 and analyzers 402, 404, 406 may be queried by a game software program 410 and may be configured to interrupt game software in response to events. Events may include gesture Attorney Docket #: SCEA06018WO00
- the mixer 408 may operate in connection with and to form fields below and with respect to methods described herein.
- signals from different input channels may be analyzed by the inertial analyzer 402, image analyzer 404 and acoustic analyzer 406, respectively, to determine the motion and/or orientation of the controller 110 during play of a video game according to an inventive method.
- Such a method may be implemented as a series of processor executable program code instructions stored in a processor readable medium and executed on a digital processor.
- the video game system 100 may include on the console 102 having the inertial analyzer 402, image analyzer 404 and acoustic analyzer 406 implemented either in hardware or software.
- the analyzers 402, 404, 406 may be implemented as software instructions running on a suitable processor unit 502.
- the processor unit 502 may be a digital processor, e.g., a microprocessor of a type commonly used in video game consoles. A portion of the instructions may be stored in a memory 506.
- the inertial analyzer 402, image analyzer 404 and acoustic analyzer 406 may be implemented in hardware, e.g., as an application specific integrated circuit (ASIC).
- ASIC application specific integrated circuit
- Such analyzer hardware may be located on the controller 110 or on the console 102 or may be remotely located elsewhere.
- the analyzers 402, 404, 406 may be programmable in response to external signals e.g., from the processor 502 or some other remotely located source, e.g., connected by USB cable, wireless connection, or over a network.
- the inertial analyzer 402 may include or implement instructions that analyze the signals generated by the inertial sensor 112 and utilize information regarding position and/or orientation of the controller 110.
- the image analyzer 404 may implement instructions that analyze images captured by the image capture unit 114.
- the acoustic analyzer may implement instructions that analyze images captured by the microphone array 118. As shown in the flow diagram 510 of FIG. 5B these signals and/or images may be received by the analyzers 402, 404, 406 as indicated at block 512.
- the signals and/or images may be analyzed by the analyzers 402, 404, 406 to determine inertial tracking information 403, image tracking information 405 and acoustic tracking information Attorney Docket #: SCEA06018WO00
- the tracking information 403, 405, 407 may be related to one or more degrees of freedom. It is preferred that six degrees of freedom are tracked to characterize the manipulation of the controller 110 or other tracked object. Such degrees of freedom may relate to the controller tilt, yaw, roll and position, velocity or acceleration along the x, y and z-axis.
- the mixer 408 mixes the inertial information 403, image information 405 and acoustic information 407 to generate refined position and/or orientation information 409.
- the mixer 408 may apply different weights the inertial, image and acoustic tracking information 403, 405, 407 based on game or environmental conditions and the take a weighted average.
- the mixer 408 may include its own mixer analyzer 412 that analyzes the combined position/orientation information and generates its own resulting "mixer" information that involves combinations of the information generated by the other analyzers.
- the mixer 408 may assign a distribution value to the tracking information 403, 405, 407 from the analyzers 402, 404, 406. As noted above, certain sets of input control data may be averaged. In the present embodiment, however, the input control data is assigned a value prior to its being averaged whereby the input control data from some analyzers is of more analytical importance than from others.
- the mixer 408 may take on a number of functionalities in the context of the present system including observation, correction, stabilization, derivation, combination, routing, mixing, reporting, buffering, interrupting other processes and analysis. Such may be performed with respect to the tracking information 403, 405, 407 received from one or more of the analyzers 402, 404, 406. While each of the analyzers 402, 404, 406 may receive and/or derive certain tracking information, the mixer 408 may be implemented to optimize the use of the received tracking information 403, 405, 407 and generate refined tracking information 409.
- the analyzers 402, 404, 406 and mixer 408 are preferably configured to provide tracking information similar output formats. Tracking information parameters from any analyzer element 402, 404, 406 can be mapped to a single parameter in an analyzer. Alternatively, the mixer 408 may form tracking information for any of the analyzers 402, 404, 406 by processing one or more tracking information parameters from one or more of analyzers 402, 404, 406. The mixer may combine two or more elements of tracking information of the same Attorney Docket #: SCEA06018WO00
- the refined tracking information 409 may be utilized during play of a video game with the system 100 as indicated at block 518.
- the position and/or orientation information may be used in relation to gestures made by the user 108 during game play.
- the mixer 408 may operate in conjunction with the gesture recognizer 505 to associate at least one action in a game environment with one or more user actions from the user (e.g., manipulation of the controller in space).
- a path of the controller 110 may be tracked using the position and/or orientation information as indicated at block 522.
- the path may include a set of points representing a position of the center of mass of the controller with respect to some system of coordinates.
- Each position point may be represented by one or more coordinates, e.g., X, Y and Z coordinates in a Cartesian coordinate system.
- a time may be associated with each point on the path so that both the shape of the path and the progress of the controller along the path may be monitored.
- each point in the set may have associated with it data representing an orientation of the controller, e.g., one or more angles of rotation of the controller about its center of mass.
- each point on the path may have associated with it values of velocity and acceleration of the center of mass of the controller and rates of angular rotation and angular acceleration of the controller about its center of mass.
- the tracked path may be compared to one or more stored paths corresponding to known and/or pre-recorded gestures 508 that are relevant to the context of the video game being played.
- Recognizer 505 may be configured to recognize a user or process audio authenticated gestures, etc. For example, a user may be identified by the recognizer 505 through a gesture and that a gesture may be specific to a user. Such a specific gestures may recorded and included among the pre-recorded gestures 508 stored in memory 506.
- the recordation process may optionally store audio generated during recordation of a gesture.
- the sensed environment is sampled into a multi-channel analyzer and processed.
- the processor may reference gesture models to determine and authenticate and/or identify a user or objects based on voice or acoustic patterns and to a high degree of accuracy and performance.
- gestures include, but are not limited to throwing an object such as a ball, swinging an object such as a bat or golf club, pumping hand pump, opening or closing a door or window, turning steering wheel or other vehicle control, martial arts moves such as punches, sanding movements, wax on wax off, paint the house, shakes, rattles, rolls, football pitches, turning knob movements, 3D MOUSE movements, scrolling movements, movements with known profiles, any recordable movement, movements along any vector back and forth i.e.
- Each of these gestures may be pre-recorded from path data and stored as a time-based model. Comparison of the path and stored gestures may start with an assumption of a steady state if the path deviates from a steady state the path can be compared to the stored gestures by a process of elimination. If at block 526 there is no match, the analyzer may continue tracking the path of the controller 110 at block 522. If there is a sufficient match between the path (or a portion thereof) and a stored gesture the state of the game may be changed as indicated at 528. Changes of state of the game may include, but are not limited to interrupts, sending control signals, changing variables, etc.
- an analyzer 402, 404, 406, or 412 tracks movement of the controller 110. As long as the path of the controller 110 complies with a path defined in the stored gesture models 508, those gestures are possible "hits". If the path of the controller 110 deviates (within the noise tolerance setting) from any gesture model 508, that gesture model is removed from the hit list.
- Each gesture reference model includes a time-base in which the gesture is recorded.
- the analyzer 402, 404, 406, or 412 compares the controller path data to the stored gestures 508 at the appropriate time index. Occurrence of a steady state condition resets the clock. When deviating from steady state (i.e.
- the hit list is populated with all potential gesture models.
- the clock is started and movements of the controller are compared against the hit list. Again, the comparison is a walk through time. If any gesture in the hit list reaches the end of the gesture then it is a hit.
- the mixer 408 and/or individual analyzers 402, 404, 406, 412 may inform a game program when certain events occur. Examples of such events include the following:
- the analyzer may notify or interrupt routine within the game program when acceleration of the controller changes at the inflection points.
- the user 108 may use the controller 110 to control a game avatar representing a quarterback in a football simulation game.
- the analyzer may track the controller (representing the football) via a path generated from signals from the inertial sensor 112. A particular change in acceleration of the controller 110 may signal release of the football.
- the analyzer may trigger another routine within the program (e.g., a physics simulation package) to simulate the trajectory of the football based on the position, and/or velocity and/or orientation of the controller at the point of release.
- the analyzer may be configured by one or more inputs. Examples of such inputs include, but are not limited to:
- the noise level may be a reference tolerance used when analyzing jitter of the user's hands in the game.
- the sampling rate may refer to how often the analyzer samples the signals from the inertial sensor.
- the sampling rate may be set to oversample or average the signal.
- gearing generally refers to the ratio of controller movements to movements occurring within the game. Examples of such "gearing" in the context of control of a video game may be found in US Patent Application number 11/382,040, filed May 7, 2006, (Attorney Docket No.:SONYP058D), which is incorporated herein by reference.
- a mapping chain refers to a map of gesture models.
- the gesture model maps can be made for a specific input Channel (e.g., for path data generated from inertial sensor signals only) or for a hybrid Channel formed in a mixer unit.
- Three input Channels may be served by two or more different Analyzers that are similar to the inertial analyzer 402. Specifically, these may include: the inertial analyzer 402 as described herein, a video analyzer as described e.g., in US Patent Application 11/382,034, to inventors Gary M. Zalewski, entitled SCHEME FOR DETECTING AND TRACKING USER MANIPULATION OF A GAME CONTROLLER BODY (Attorney Docket
- tracking information may include, but is not limited to information regarding the following parameters individually or in any combination:
- Orientation of the controller 110 may be expressed in terms of pitch, roll or yaw angle with respect to some reference orientation, e.g., in radians). Rates of change of controller orientation (e.g., angular velocities or angular accelerations) may also be included in the position and/or orientation information.
- the inertial sensor 112 includes a gyroscopic sensor controller orientation information may be obtained directly in the form of one or more output values that are proportional to angles of pitch, roll or yaw.
- CONTROLLER POSITION e.g., Cartesian coordinates X 5 Y 5 Z of the controller 110 in some frame of reference
- the position and/or orientation information may be expressed in terms of coordinate systems other than Cartesian.
- Cartesian coordinates may be used for position, velocity and acceleration.
- Acceleration information with respect to the X, Y and Z axes may be obtained directly from an accelerometer type sensor, e.g., as described herein.
- the X, Y and Z accelerations may be integrated with respect to time from some initial instant to determine changes in X, Y and Z velocities. These velocities may be computed by adding the velocity changes to known values of the X-, Y-, and Z-velocities at the initial instant in time.
- the X, Y and Z velocities may be integrated with respect to time to determine X-, Y-, and Z- displacements of the controller.
- the X-, Y-, and Z-positions may be determined by adding the displacements to known X-, Y-, and Z-, positions at the initial instant.
- STEADY STATE Y/N - This particular information indicates whether the controller is in a steady state, which may be defined as any position, which may be subject to change too.
- the steady state position may be one wherein the controller is held in a more or less level orientation at a height roughly even with a user's waist.
- TIME SINCE LAST STEADY STATE generally refers to data related to how long a period of time has passed since a steady state (as referenced above) was last detected. That determination of time may, as previously noted, be calculated in real-time, processor cycles, or sampling periods.
- the Time Since Last Steady State data time may be important with regard to resetting tracking of a controller with regard to an initial point to ensure accuracy of character or object mapping in a game environment. This data may also be important with regard to determining available actions/gestures that might be subsequently executed in a game environment (both exclusively and inclusively).
- LAST GESTURE RECOGNIZED generally refers to the last gesture recognized either by the gesture recognizer 505 (which may be implemented in hardware or software.
- the identification of a last gesture recognized may be important with respect to the fact that a previous gesture may be related to the possible gestures that may be subsequently recognized or some other action that takes place in the game environment.
- the above outputs can be sampled at any time by a game program or software.
- the mixer 408 may assign a distribution value to the tracking information 403, 405, 407 from the analyzers 402, 404, 406. As noted above, certain sets of input control data may be averaged. In the present embodiment, however, the input control data is assigned a value prior to its being averaged whereby the input control data from some analyzers is of more analytical importance than from others.
- the mixer 408 may require tracking information related to acceleration and steady state.
- the mixer 408 would then receive the tracking information 403, 405, 407 as described above.
- the tracking information may include parameters relating to acceleration and steady state, e.g., as described above.
- the mixer 408 may assign distribution values to tracking information data set 403, 405, 407.
- the x- and y- acceleration parameters from the inertial analyzer 402 may be weighted at a value of 90%.
- the x- and y- acceleration data from the image analyzer 406, however, may be weighted at only 10%.
- the acoustic analyzer tracking information 407 as it pertains to acceleration parameters may be weighted at zero percent, that is, the data has no value.
- the Z-axis tracking information parameters from the inertial analyzer 402 may be weighted at 10% whereas the image analyzer Z-axis tracking information may be weighted at 90%.
- the acoustic analyzer tracking information 407 may, again, be weighted at 0% value but steady state tracking information from the acoustic analyzer 406 may be weighted at 100% with the remaining analyzer tracking information be weighted at 0%.
- the input control data may be averaged in conjunction with that weight to arrive at a weighted average input control data set that is subsequently analyzed by the gesture recognizer 505 and associated with a particular action in the game environment.
- the values associated may be pre-defined by the mixer 408 or by a particular game title.
- the values may also be the result of the mixer 408 identifying a particular quality of data coming from the various analyzers and thus making a dynamic adjustment as is further discussed below.
- the adjustment may also be the result of building a historical knowledge base of when particular data is of particular value in a particular environment and/or in response to the particularities of a given game title.
- the mixer 408 may be configured to operate dynamically during game play. For example, as the mixer 408 receives various input control data, it may recognize that certain data is consistently outside an acceptable range or quality of data or reflects corrupt data that may be indicative of a processing error at the related input device.
- the mixer 408 may dynamically reassign distribution weight to a particular set of data coming from a particular device such that more or less importance is given to particular input control data as described above.
- the game environment may change over the course of the game wherein the needs of a particular game change thus requiring a reassignment of value or need for particular input control data.
- the mixer 408 may recognize that certain data being passed on to the gesture recognizer 505 is being processed incorrectly, slowly, or not at all based on processing errors or feedback data that may be generated by the gesture recognizer 505. In response to this feedback or in recognition of these processing difficulties (e.g., while the image analysis data is within an acceptable range, errors result when an association is made by the gesture recognizer 505), the mixer 408 may adjust what input control data it seeks from what analyzer and when, if at all.
- the mixer 408 may further require certain analysis and processing of input control data by the proper analyzer before it is passed to the mixer 408, which may re-process the data (e.g., average the data) such that a further layer of assurance is made that the data passed to the gesture recognizer 505 will be processed effectively and appropriately.
- the data e.g., average the data
- the mixer 408 may recognize that certain data is corrupt, ineffective, or outside a particular variable and may call upon particular input control data or variable related to that data such that it may replace incorrect data or properly analyze and calculate certain data with respect to the necessary variables.
- a video game system 600 may include a processor 601 and a memory 602 (e.g., RAM, DRAM, ROM, and the like). In addition, the video game system 600 may have multiple processors 601 if parallel processing is to be implemented.
- the memory 602 includes data and game program code 604, which may include portions that are configured as described above. Specifically, the memory 602 may include inertial signal data 606 which may include stored controller path information as described above.
- the memory 602 may also contain stored gesture data 608, e.g., data representing one or more gestures relevant to the game program 604. Coded instructions executed on the processor 602 may implement a multi-input mixer 605, which may be configured and function as described above.
- the system 600 may also include well-known support functions 610, such as input/output (I/O) elements 611, power supplies (P/S) 612, a clock (CLK) 613 and cache 614.
- the apparatus 600 may optionally include a mass storage device 615 such as a disk drive, CD- ROM drive, tape drive, or the like to store programs and/or data.
- the controller may also optionally include a display unit 616 and user interface unit 618 to facilitate interaction between the controller 600 and a user.
- the display unit 616 may be in the form of a cathode ray tube (CRT) or flat panel screen that displays text, numerals, graphical symbols or images.
- the user interface 618 may include a keyboard, mouse, joystick, light pen or other device.
- the user interface 618 may include a microphone, video camera or other signal transducing device to provide for direct capture of a signal to be analyzed.
- the processor 601, memory 602 and other components of the system 600 may exchange signals (e.g., code instructions and data) with each other via a system bus 620 as shown in FIG. 6.
- a microphone array 622 may be coupled to the system 600 through the I/O functions 611.
- the microphone array may include between about 2 and about 8 microphones, preferably about 4 microphones with neighboring microphones separated by a distance of less than about 4 centimeters, preferably between about 1 centimeter and about 2 centimeters.
- the microphones in the array 622 are omni-directional microphones.
- An optional image capture unit 623 e.g., a digital camera
- One or more pointing actuators 625 that are mechanically coupled to the camera may exchange signals with the processor 601 via the I/O functions 611.
- I/O generally refers to any program, operation or device that transfers data to or from the system 600 and to or from a peripheral device. Every data transfer may be regarded as an output from one device and an input into another.
- Peripheral devices include input-only devices, such as keyboards and mouses, output-only devices, such as printers as well as devices such as a writable CD-ROM that can act as both an input and an output device.
- peripheral device includes external devices, such as a mouse, keyboard, printer, monitor, microphone, game controller, camera, external Zip drive or scanner as well as internal devices, such as a CD-ROM drive, CD-R drive or internal modem or other peripheral such as a flash memory reader/writer, hard drive.
- the apparatus 600 may be a video game unit, which may include a controller 630 coupled to the processor via the I/O functions 611 either through wires (e.g., a USB cable) or wirelessly.
- the controller 630 may have analog joystick controls 631 and conventional buttons 633 that provide control signals commonly used during playing of video games.
- Such video games may be implemented as processor readable data and/or instructions from the program 604 which may be stored in the memory 602 or other processor readable medium such as one associated with the mass storage device 615.
- the mixer 605 may receive inputs from the analog joystick controls 631 and the buttons 633.
- the joystick controls 631 may generally be configured so that moving a control stick left or right signals movement along the X axis, and moving it forward (up) or back (down) signals movement along the Y axis.
- joysticks that are configured for three-dimensional movement twisting the stick left (counter-clockwise) or right (clockwise) may signal movement along the Z axis.
- These three axis - X Y and Z - are often referred to as roll, pitch, and yaw, respectively, particularly in relation to an aircraft.
- the game controller 630 may include a communications interface operable to conduct digital communications with at least one of the processor 602, a game controller 630 or both.
- the communications interface may include a universal asynchronous receiver transmitter ("UART").
- UART universal asynchronous receiver transmitter
- the UART may be operable to receive a control signal for controlling an operation of a tracking device, or for transmitting a signal from the tracking device for communication with another device.
- the communications interface includes a universal serial bus (“USB”) controller.
- USB controller may be operable to receive a Attorney Docket #: SCEA06018WO00
- control signal for controlling an operation of the tracking device, or for transmitting a signal from the tracking device for communication with another device.
- the controller 630 may include one or more inertial sensors 632, which may provide position and/or orientation information to the processor 601 via an inertial signal. Orientation information may include angular information such as a tilt, roll or yaw of the controller 630.
- the inertial sensors 632 may include any number and/or combination of accelerometers, gyroscopes or tilt sensors.
- the inertial sensors 632 include tilt sensors adapted to sense orientation of the game controller 630 with respect to tilt and roll axes, a first accelerometer adapted to sense acceleration along a yaw axis and a second accelerometer adapted to sense angular acceleration with respect to the yaw axis.
- An accelerometer may be implemented, e.g., as a MEMS device including a mass mounted by one or more springs with sensors for sensing displacement of the mass relative to one or more directions. Signals from the sensors that are dependent on the displacement of the mass may be used to determine an acceleration of the game controller 630.
- Such techniques may be implemented by instructions from the game program 604 which may be stored in the memory 602 and executed by the processor 601.
- an accelerometer suitable as the inertial sensor 632 may be a simple mass elastically coupled at three or four points to a frame, e.g., by springs.
- Pitch and roll axes lie in a plane that intersects the frame, which is mounted to the game controller 630.
- the mass will displace under the influence of gravity and the springs will elongate or compress in a way that depends on the angle of pitch and/or roll.
- the displacement and of the mass can be sensed and converted to a signal that is dependent on the amount of pitch and/or roll.
- Angular acceleration about the yaw axis or linear acceleration along the yaw axis may also produce characteristic patterns of compression and/or elongation of the springs or motion of the mass that can be sensed and converted to signals that are dependent on the amount of angular or linear acceleration.
- Such an accelerometer device can measure tilt, roll angular acceleration about the yaw axis and linear acceleration along the yaw axis by tracking movement of the mass or compression and expansion forces of the springs.
- resistive strain gauge material including resistive strain gauge material, photonic sensors, magnetic sensors, hall-effect devices, piezoelectric devices, capacitive sensors, and the like.
- the game controller 630 may include one or more light sources 634, such as light emitting diodes (LEDs).
- the light sources 634 may be used to distinguish one controller from the other.
- one or more LEDs can accomplish this by flashing or holding an LED pattern code.
- 5 LEDs can be provided on the game controller 630 in a linear or two-dimensional pattern. Although a linear array of LEDs is preferred, the
- LEDs may alternatively, be arranged in a rectangular pattern or an arcuate pattern to facilitate determination of an image plane of the LED array when analyzing an image of the LED pattern obtained by the image capture unit 623.
- the LED pattern codes may also be used to determine the positioning of the game controller 630 during game play. For instance, the LEDs can assist in identifying tilt, yaw and roll of the controllers. This detection pattern can assist in providing a better user/feel in games, such as aircraft flying games, etc.
- the image capture unit 623 may capture images containing the game controller 630 and light sources 634. Analysis of such images can determine the location and/or orientation of the game controller. Such analysis may be implemented by program code instructions 604 stored in the memory 602 and executed by the processor 601.
- the light sources 634 may be placed on two or more different sides of the game controller 630, e.g., on the front and on the back (as shown in phantom). Such placement allows the image capture unit 623 to obtain images of the light sources 634 for different orientations of the game controller 630 depending on how the game controller 630 is held by a user.
- the light sources 634 may provide telemetry signals to the processor 601, e.g., in pulse code, amplitude modulation or frequency modulation format. Such telemetry signals may indicate which joystick buttons are being pressed and/or how hard such buttons are being pressed. Telemetry signals may be encoded into the optical signal, e.g., by pulse coding, pulse width modulation, frequency modulation or light intensity (amplitude) modulation. The processor 601 may decode the telemetry signal from the optical signal and execute a game command in response to the decoded telemetry signal. Telemetry signals may be decoded from analysis of images of the game controller 630 obtained by the image capture unit 623.
- the apparatus 600 may include a separate optical sensor dedicated to receiving telemetry signals from the lights sources 634.
- a separate optical sensor dedicated to receiving telemetry signals from the lights sources 634.
- the use of LEDs in conjunction with determining an intensity amount in interfacing with a computer program is described, e.g., in US Patent Application Number 11/429,414, to Richard L. Marks et al., entitled "Computer Image and Audio Processing of Intensity and Input Devices for Attorney Docket #: SCEA06018WO00
- the processor 601 may use the inertial signals from the inertial sensor 632 in conjunction with optical signals from light sources 634 detected by the image capture unit 623 and/or sound source location and characterization information from acoustic signals detected by the microphone array 622 to deduce information on the location and/or orientation of the controller 630 and/or its user.
- "acoustic radar" sound source location and characterization may be used in conjunction with the microphone array 622 to track a moving voice while motion of the game controller is independently tracked (through the inertial sensor 632 and or light sources 634).
- acoustic radar select a pre-calibrated listening zone is selected at runtime and sounds originating from sources outside the pre-calibrated listening zone are filtered out.
- the pre-calibrated listening zones may include a listening zone that corresponds to a volume of focus or field of view of the image capture unit 623.
- Examples of acoustic radar are described in detail in US Patent Application number 11/381,724, to Xiadong Mao entitled “METHODS AND APPARATUS FOR TARGETED SOUND DETECTION AND CHARACTERIZATION", filed May 4, 2006, which is incorporated herein by reference. Any number of different combinations of different modes of providing control signals to the processor 601 may be used in conjunction with embodiments of the present invention.
- Such techniques may be implemented by program code instructions 604 which may be stored in the memory 602 and executed by the processor 601 and may optionally include one or more instructions that direct the one or more processors to select a pre-calibrated listening zone at runtime and filter out sounds originating from sources outside the pre-calibrated listening zone.
- the pre-calibrated listening zones may include a listening zone that corresponds to a volume of focus or field of view of the image capture unit 623.
- the program 604 may optionally include one or more instructions that direct the one or more processors to produce a discrete time domain input signal x m (t) from microphones M 0 ...M M , of the microphone array 622, determine a listening sector, and use the listening sector in a semi-blind source separation to select the finite impulse response filter coefficients to Attorney Docket #: SCEA06018WO00
- the program 604 may also include instructions to apply one or more fractional delays to selected input signals x m (t) other than an input signal xo(t) from a reference microphone Mo. Each fractional delay may be selected to optimize a signal to noise ratio of a discrete time domain output signal y(t) from the microphone array. The fractional delays may be selected to such that a signal from the reference microphone M 0 is first in time relative to signals from the other microphone(s) of the array.
- the program 604 may include one or more instructions which, when executed, cause the system 600 to select a pre-calibrated listening sector that contains a source of sound. Such instructions may cause the apparatus to determine whether a source of sound lies within an initial sector or on a particular side of the initial sector. If the source of sound does not lie within the default sector, the instructions may, when executed, select a different sector on the particular side of the default sector. The different sector may be characterized by an attenuation of the input signals that is closest to an optimum value. These instructions may, when executed, calculate an attenuation of input signals from the microphone array 622 and the attenuation to an optimum value.
- the instructions may, when executed, cause the apparatus 600 to determine a value of an attenuation of the input signals for one or more sectors and select a sector for which the attenuation is closest to an optimum value. Examples of such a technique are described, e.g., in US Patent Application 11/381,725, to Xiadong Mao, entitled “METHODS AND APPARATUS FOR TARGETED SOUND DETECTION” filed May 4, 2006, the disclosures of which are incorporated herein by reference.
- Signals from the inertial sensor 632 may provide part of a tracking information input and signals generated from the image capture unit 623 from tracking the one or more light sources 634 may provide another part of the tracking information input.
- signals generated from the image capture unit 623 from tracking the one or more light sources 634 may provide another part of the tracking information input.
- such "mixed mode" signals may be used in a football type video game in which a Quarterback pitches the ball to the right after a head fake head movement to the Attorney Docket #: SCEA06018WO00
- the microphone array 622 in conjunction with "acoustic radar" program code can track the user's voice.
- the image capture unit 623 can track the motion of the user's head or track other commands that do not require sound or use of the controller.
- the sensor 632 may track the motion of the game controller (representing the football).
- the image capture unit 623 may also track the light sources 634 on the controller 630. The user may release of the "ball" upon reaching a certain amount and/or direction of acceleration of the game controller 630 or upon a key command triggered by pressing a button on the controller 630.
- an inertial signal e.g., from an accelerometer or gyroscope may be used to determine a location of the controller 630.
- an acceleration signal from an accelerometer may be integrated once with respect to time to determine a change in velocity and the velocity may be integrated with respect to time to determine a change in position. If values of the initial position and velocity at some time are known then the absolute position may be determined using these values and the changes in velocity and position.
- the inertial sensor 632 may be subject to a type of error known as "drift" in which errors that accumulate over time can lead to a discrepancy D between the position of the joystick
- Embodiments of the present invention allow a number of ways to deal with such errors.
- the drift may be cancelled out manually by re-setting the initial position of the controller 630 to be equal to the current calculated position.
- a user may use one or more of the buttons on the controller 630 to trigger a command to re-set the initial position.
- image-based drift may be implemented by re-setting the current position to a position determined from an image obtained from the image capture unit 623 as a reference.
- image-based drift compensation may be implemented manually, e.g., when the user triggers one or more of the buttons on the game controller 630.
- image-based drift compensation may be implemented automatically, e.g., at regular intervals of time or in Attorney Docket #: SCEA06018WO00
- program code instructions 604 may be stored in the memory 602 and executed by the processor 601.
- the signal from the inertial sensor 632 may be oversampled and a sliding average may be computed from the oversampled signal to remove spurious data from the inertial sensor signal.
- a sliding average may be computed from the oversampled signal to remove spurious data from the inertial sensor signal.
- other data sampling and manipulation techniques may be used to adjust the signal from the inertial sensor to remove or reduce the significance of spurious data. The choice of technique may depend on the nature of the signal, computations to be performed with the signal, the nature of game play or some combination of two or more of these. Such techniques may be implemented by instructions of the program 604 which may be stored in the memory 602 and executed by the processor 601.
- the processor 601 may perform analysis of inertial signal data 606 as described above in response to the data 606 and program code instructions of a program 604 stored and retrieved by the memory 602 and executed by the processor module 601. Code portions of the program 604 may conform to any one of a number of different programming languages such as Assembly, C++, JAVA or a number of other languages.
- the processor module 601 forms a general-purpose computer that becomes a specific purpose computer when executing programs such as the program code 604.
- the program code 604 is described herein as being implemented in software and executed upon a general purpose computer, those skilled in the art will realize that the method of task management could alternatively be implemented using hardware such as an application specific integrated circuit (ASIC) or other hardware circuitry. As such, it should be understood that embodiments of the invention can be implemented, in whole or in part, in software, hardware or some combination of both.
- ASIC application specific integrated circuit
- the program code 604 may include a set of processor readable instructions that implement a method having features in common with the method 510 of FIG 5B and the method 520 of FIG. 5C or some combination of two or more of these.
- the program code 604 may generally include one or more instructions that direct the one or more processors to analyze signals from the inertial sensor 632 to generate position and/or orientation information and utilize the information during play of a video game.
- the program code 604 may optionally include processor executable instructions including one or more instructions which, when executed cause the image capture unit 623 to monitor a field of view in front of the image capture unit 623, identify one or more of the light sources 634 within the field of view, detect a change in light emitted from the light source(s) 634; and in response to detecting the change, triggering an input command to the processor 601.
- processor executable instructions including one or more instructions which, when executed cause the image capture unit 623 to monitor a field of view in front of the image capture unit 623, identify one or more of the light sources 634 within the field of view, detect a change in light emitted from the light source(s) 634; and in response to detecting the change, triggering an input command to the processor 601.
- the program code 604 may optionally include processor executable instructions including one or more instructions which, when executed, use signals from the inertial sensor and signals generated from the image capture unit from tracking the one or more light sources as inputs to a game system, e.g., as described above.
- the program code 604 may optionally include processor executable instructions including one or more instructions which, when executed compensate for drift in the inertial sensor 632.
- the program code 604 may optionally include processor executable instructions including one or more instructions which, when executed adjust the gearing and mapping of controller manipulations to game a environment.
- processor executable instructions including one or more instructions which, when executed adjust the gearing and mapping of controller manipulations to game a environment.
- Such a feature allows a user to change the "gearing" of manipulations of the game controller 630 to game state.
- a 45 degree rotation of the game controller 630 may be geared to a 45 degree rotation of a game object.
- this 1 : 1 gearing ratio may be modified so that an X degree rotation (or tilt or yaw or "manipulation") of the controller translates to a Y rotation (or tilt or yaw or "manipulation”) of the game object.
- Gearing may be 1 : 1 ratio, 1 :2 ratio, 1:X ratio or X:Y ratio, where X and Y can take on arbitrary values.
- mapping of input channel to game control may also be modified over time or instantly. Modifications may comprise changing gesture trajectory models, modifying the location, scale, threshold of gestures, etc. Such mapping may be programmed, random, tiered, staggered, etc., to provide a user with a dynamic range of manipulatives. Modification of the mapping, gearing or ratios can be adjusted by the game program 604 according to game play, game state, through a user modifier button (key pad, etc.) located on the game controller 630, or broadly in response to the input channel.
- the input channel may include, but may not be limited to elements of user audio, audio generated by controller, tracking audio generated by the controller, Attorney Docket #: SCEA06018WO00
- controller button state video camera output
- controller telemetry data including accelerometer data, tilt, yaw, roll, position, acceleration and any other data from sensors capable of tracking a user or the user manipulation of an object.
- the game program 604 may change the mapping or gearing over time from one scheme or ratio to another scheme, respectively, in a predetermined time-dependent manner.
- Gearing and mapping changes can be applied to a game environment in various ways.
- a video game character may be controlled under one gearing scheme when the character is healthy and as the character's health deteriorates the system may gear the controller commands so the user is forced to exacerbate the movements of the controller to gesture commands to the character.
- a video game character who becomes disoriented may force a change of mapping of the input channel as users, for example, may be required to adjust input to regain control of the character under a new mapping.
- Mapping schemes that modify the translation of the input channel to game commands may also change during gameplay. This translation may occur in various ways in response to game state or in response to modifier commands issued under one or more elements of the input channel.
- Gearing and mapping may also be configured to influence the configuration and/or processing of one or more elements of the input channel.
- a sound emitter 636 e.g., a speaker, a buzzer, a horn or a pipe, may be mounted to the joystick controller 630.
- the sound emitter may be detachably mounted to a "body" of the joystick controller 630.
- the sound emitter 636 may provide an audio signal that can be detected by the microphone array 622 and used by the program code 604 to track the position of the game controller 630.
- the sound emitter 636 may also be used to provide an additional "input channel" from the game controller 630 to the processor 601.
- Audio signals from the sound emitter 636 may be periodically pulsed to provide a beacon for the acoustic radar to track location.
- the audio signals (pulsed or otherwise) may be audible or ultrasonic.
- the acoustic radar may track the user manipulation of the game controller 630 and where such manipulation tracking may include information about the position and orientation (e.g., pitch, roll or yaw angle) of the game controller 630.
- the pulses may be triggered at an appropriate duty cycle as one skilled in the art is capable of applying. Pulses may be initiated based on a control signal arbitrated from the system.
- the system 600 (through the program code 604) Attorney Docket #: SCEA06018WO00
- controller 601 may coordinate the dispatch of control signals amongst two or more joystick controllers 630 coupled to the processor 601 to assure that multiple controllers can be tracked.
- the mixer 605 may be configured to obtain input for controlling execution of the game program 604 using inputs received from conventional controls on the game controller 630, e.g., analog joystick controls 631 and buttons 633. Specifically receiving the mixer 605 may receive controller input information from the controller 630.
- the controller input information may include at least one of a) information for identifying a current position of a user-movable control stick of the game controller in relation to a rest position of the control stick, or b) information identifying whether a switch included in the game controller is active.
- the mixer 605 may further receive supplementary input information from an environment in which the controller 630 is being used.
- the supplementary input information may include one or more of i) information obtained from an image capture device in the environment (e.g., image capture unit 623); and/or ii) information from an inertial sensor associated with at least one of the game controller or a use (e.g., inertial sensor 632); and/or iii) acoustic information obtained from an acoustic transducer in the environment (e.g., from the microphone array 622, possibly in conjunction with an acoustic signal generated by the sound emitter 636).
- the controller input information may also include information identifying whether a pressure-sensitive button is active.
- the mixer 605 may obtain a combined input for controlling the execution of the game program 604 by processing the controller input information and the supplementary input information to yield the combined input.
- the combined input may include individual merged inputs for controlling respective individual functions during execution of the game program 604. At least some of the individual merged inputs may be obtained by merging the controller input information relative to a particular individual function and the supplementary input information relative to the particular individual function.
- the combined input may include merged input for controlling a function during execution of the game program 604, and at least some of the merged input may be obtained by merging the controller input information relative to the function and the supplementary input information relative to the function. In such cases the merging may be performed by averaging a value representative of the controller input information with a value representative of the supplementary input information.
- the value of the controller input information may be averaged in a one-to-one ratio Attorney Docket #: SCEA06018WO00
- controller input information and the supplementary input information may each be each assigned different weights and averaging may be performed as a weighted average of the values of controller input information and supplementary input information in accordance with the assigned weights.
- a value of a first one of the controller input information or the supplementary input information may be utilized as modifying input to the game program for modifying control over a still active function activated in accordance with at least one of a second one of the controller input information or the supplementary input information.
- the supplementary input information may include inertial sensor information obtained by operation of the inertial sensor 632 and/or orientation information representative of an orientation of a user-movable object.
- the supplementary input information includes information indicative of at least one of a position or an orientation of a user- movable object.
- the user-movable object may refer to the controller 630 or an article mounted to a body of the controller 630 and the supplementary input information includes information indicative of an orientation of the user-movable object.
- orientation information may include information indicative of at least one of pitch, yaw or roll.
- the combined input may be obtained by merging a value of controller input information representative of a position of a control stick (e.g., one of the analog joysticks 631, with a value of the supplementary input information representative of the orientation of the user-movable object.
- the user-movable object may include an object mounted to the game controller 630 and/or the game controller 630, and the combined input may reflect an enhanced pitch up input when the control stick is moved backward while the pitch is increased to a positive (nose-up) value.
- the combined input may reflect an enhanced pitch down input when the control stick is moved forward while the pitch is decreased to a negative (nose-down) value.
- the combined input may be obtained by assigning the value of the controller input information representative of a position of the control stick as coarse control information and assigning the value of the supplementary input information representative of the orientation of the user-movable object as fine control information.
- the combined input may be obtained by assigning the value of the controller input information identifying Attorney Docket #: SCEA06018WO00
- the combined input may be obtained by assigning the value of the supplementary input information representative of the orientation of the user-movable object as coarse control information and assigning the value of the controller input information representative of a position of the control stick as fine control information.
- the combined input may also be obtained by assigning the value of the controller input information identifying whether a switch of the game controller is active as fine control information and assigning the value of the supplementary input information representative of the orientation of the user-movable object as coarse control information. In any or all of these cases, the combined input may be representative of the value of the coarse control information as adjusted a relatively small amount in accordance with the fine control information.
- the combined input may be obtained by additively combining a value represented by the controller input information with a value represented by the supplementary input information such that the combined input presents a signal having a higher or lower value to the game program 604 than either of the values of the controller input information or the supplementary input information taken alone.
- the combined input may alternatively present a signal having a smoothed value to the game program 604, the smoothed value signal being subject to change more slowly with time than either of the values of the controller input information or the supplementary input information taken alone.
- the combined input may also present a high definition signal having increased signal content to the game program. The high definition signal may be subject to change more rapidly with time than either of the values of the controller input information or the supplementary input information taken alone.
- embodiments of the present invention are described in terms of examples related to a video game controller 630 games, embodiments of the invention, including the system 600 may be used on any user manipulated body , molded object, knob, structure, etc, with inertial sensing capability and inertial sensor signal transmission capability, wireless or otherwise.
- embodiments of the present invention may be implemented on parallel processing systems.
- Such parallel processing systems typically include two or more processor elements that are configured to execute parts of a program in parallel using separate Attorney Docket #: SCEA06018WO00
- FIG. 7 illustrates a type of cell processor 700 according to an embodiment of the present invention.
- the cell processor 700 may be used as the processor 601 of FIG. 6 or the processor 502 of FIG. 5A.
- the cell processor 700 includes a main memory 702, power processor element (PPE) 704, and a number of synergistic processor elements (SPEs) 706.
- the cell processor 700 includes a single PPE 704 and eight SPE 706. In such a configuration, seven of the SPE 706 may be used for parallel processing and one may be reserved as a back-up in case one of the other seven fails.
- a cell processor may alternatively include multiple groups of PPEs (PPE groups) and multiple groups of SPEs (SPE groups).
- PPE groups groups of PPEs
- SPE groups groups of SPEs
- hardware resources can be shared between units within a group.
- the SPEs and PPEs must appear to software as independent elements.
- embodiments of the present invention are not limited to use with the configuration shown in FIG. 7.
- the main memory 702 typically includes both general-purpose and nonvolatile storage, as well as special-purpose hardware registers or arrays used for functions such as system configuration, data-transfer synchronization, memory-mapped I/O, and I/O subsystems.
- a video game program 703 may be resident in main memory 702.
- the memory 702 may also contain signal data 709.
- the video program 703 may include inertial, image and acoustic analyzers and a mixer configured as described with respect to FIGs. 4, 5A, 5B or 5C above or some combination of these.
- the program 703 may run on the PPE.
- the program 703 may be divided up into multiple signal processing tasks that can be executed on the SPEs and/or PPE.
- the PPE 704 may be a 64-bit PowerPC Processor Unit (PPU) with associated caches Ll and L2.
- the PPE 704 is a general-purpose processing unit, which can access system management resources (such as the memory-protection tables, for example). Hardware resources may be mapped explicitly to a real address space as seen by the PPE. Therefore, the PPE can address any of these resources directly by using an appropriate effective address value.
- a primary function of the PPE 704 is the management and allocation of tasks for the SPEs 706 in the cell processor 700.
- the cell processor 700 may have multiple PPEs organized into PPE groups, of which there may be more than one. These PPE groups may Attorney Docket #: SCEA06018WO00
- the cell processor 700 may include two or more groups SPEs.
- the SPE groups may also share access to the main memory 702. Such configurations are within the scope of the present invention.
- Each SPE 706 is includes a synergistic processor unit (SPU) and its own local storage area LS.
- the local storage LS may include one or more separate areas of memory storage, each one associated with a specific SPU.
- Each SPU may be configured to only execute instructions (including data load and data store operations) from within its own associated local storage domain. In such a configuration, data transfers between the local storage LS and elsewhere in the system 700 may be performed by issuing direct memory access (DMA) commands from the memory flow controller (MFC) to transfer data to or from the local storage domain (of the individual SPE).
- DMA direct memory access
- MFC memory flow controller
- the SPUs are less complex computational units than the PPE 704 in that they do not perform any system management functions.
- the SPU generally have a single instruction, multiple data (SIMD) capability and typically process data and initiate any required data transfers (subject to access properties set up by the PPE) in order to perform their allocated tasks.
- SIMD single instruction, multiple data
- the purpose of the SPU is to enable applications that require a higher computational unit density and can effectively use the provided instruction set.
- a significant number of SPEs in a system managed by the PPE 704 allow for cost- effective processing over a wide range of applications.
- Each SPE 706 may include a dedicated memory flow controller (MFC) that includes an associated memory management unit that can hold and process memory-protection and access-permission information.
- MFC provides the primary method for data transfer, protection, and synchronization between main storage of the cell processor and the local storage of an SPE.
- An MFC command describes the transfer to be performed. Commands for transferring data are sometimes referred to as MFC direct memory access (DMA) commands (or MFC DMA commands).
- DMA direct memory access
- Each MFC may support multiple DMA transfers at the same time and can maintain and process multiple MFC commands.
- Each MFC DMA data transfer command request may involve both a local storage address (LSA) and an effective address (EA).
- LSA local storage address
- EA effective address
- the local storage address may directly address only the local storage area of its associated SPE.
- the effective address may have a more general application, e.g., it may be able to reference main storage, including all the SPE local storage areas, if they are aliased into the real address space.
- the SPEs 706 and PPE 704 may include signal notification registers that are tied to signaling events.
- the PPE 704 and SPEs 706 may be coupled by a star topology in which the PPE 704 acts as a router to transmit messages to the SPEs 706.
- each SPE 706 and the PPE 704 may have a one-way signal notification register referred to as a mailbox.
- the mailbox can be used by an SPE 706 to host operating system (OS) synchronization.
- OS operating system
- the cell processor 700 may include an input/output (I/O) function 708 through which the cell processor 700 may interface with peripheral devices, such as a microphone array 712 and optional image capture unit 713 and a game controller 730.
- the game controller unit may include an inertial sensor 732, and light sources 734.
- an Element Interconnect Bus 710 may connect the various components listed above. Each SPE and the PPE can access the bus 710 through a bus interface units BIU.
- the cell processor 700 may also includes two controllers typically found in a processor: a Memory Interface Controller MIC that controls the flow of data between the bus 710 and the main memory 702, and a Bus Interface Controller BIC, which controls the flow of data between the I/O 708 and the bus 710.
- a Memory Interface Controller MIC that controls the flow of data between the bus 710 and the main memory 702
- a Bus Interface Controller BIC which controls the flow of data between the I/O 708 and the bus 710.
- the cell processor 700 may also include an internal interrupt controller HC.
- the HC component manages the priority of the interrupts presented to the PPE.
- the HC allows interrupts from the other components the cell processor 700 to be handled without using a main system interrupt controller.
- the HC may be regarded as a second level controller.
- the main system interrupt controller may handle interrupts originating external to the cell processor.
- certain computations such as the fractional delays described above, may be performed in parallel using the PPE 704 and/or one or more of the SPE 706.
- Each fractional delay calculation may be run as one or more separate tasks that different SPE 706 may take as they become available.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- User Interface Of Digital Computer (AREA)
- Position Input By Displaying (AREA)
- Image Analysis (AREA)
- Processing Or Creating Images (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200780025400.6A CN101484221B (zh) | 2006-05-04 | 2007-04-14 | 获得用于控制游戏程序的运行的输入 |
US13/670,387 US9174119B2 (en) | 2002-07-27 | 2012-11-06 | Controller for providing inputs to control execution of a program when inputs are combined |
Applications Claiming Priority (92)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/429,047 | 2006-05-04 | ||
US11/381,729 | 2006-05-04 | ||
US11/381,721 US8947347B2 (en) | 2003-08-27 | 2006-05-04 | Controlling actions in a video game unit |
USPCT/US2006/017483 | 2006-05-04 | ||
US11/381,727 | 2006-05-04 | ||
US11/381,727 US7697700B2 (en) | 2006-05-04 | 2006-05-04 | Noise removal for electronic device with far field microphone on console |
US11/418,989 | 2006-05-04 | ||
US11/418,988 | 2006-05-04 | ||
US11/381,724 | 2006-05-04 | ||
US11/381,724 US8073157B2 (en) | 2003-08-27 | 2006-05-04 | Methods and apparatus for targeted sound detection and characterization |
US11/381,725 | 2006-05-04 | ||
US11/429,047 US8233642B2 (en) | 2003-08-27 | 2006-05-04 | Methods and apparatuses for capturing an audio signal based on a location of the signal |
US11/381,728 US7545926B2 (en) | 2006-05-04 | 2006-05-04 | Echo and noise cancellation |
US11/429,414 | 2006-05-04 | ||
US11/429,414 US7627139B2 (en) | 2002-07-27 | 2006-05-04 | Computer image and audio processing of intensity and input devices for interfacing with a computer program |
US11/418,988 US8160269B2 (en) | 2003-08-27 | 2006-05-04 | Methods and apparatuses for adjusting a listening area for capturing sounds |
US11/418,989 US8139793B2 (en) | 2003-08-27 | 2006-05-04 | Methods and apparatus for capturing audio signals based on a visual image |
US11/429,133 | 2006-05-04 | ||
PCT/US2006/017483 WO2006121896A2 (fr) | 2005-05-05 | 2006-05-04 | Ecoute selective de source sonore conjuguee a un traitement informatique interactif |
US11/381,725 US7783061B2 (en) | 2003-08-27 | 2006-05-04 | Methods and apparatus for the targeted sound detection |
US11/381,729 US7809145B2 (en) | 2006-05-04 | 2006-05-04 | Ultra small microphone array |
US11/381,728 | 2006-05-04 | ||
US11/429,133 US7760248B2 (en) | 2002-07-27 | 2006-05-04 | Selective sound source listening in conjunction with computer interactive processing |
US11/381,721 | 2006-05-04 | ||
US79803106P | 2006-05-06 | 2006-05-06 | |
US29/259,350 USD621836S1 (en) | 2006-05-06 | 2006-05-06 | Controller face with tracking sensors |
US11/382,036 US9474968B2 (en) | 2002-07-27 | 2006-05-06 | Method and system for applying gearing effects to visual tracking |
US11/382,031 | 2006-05-06 | ||
US11/382,036 | 2006-05-06 | ||
US11/382,032 | 2006-05-06 | ||
US29/259,350 | 2006-05-06 | ||
US60/798,031 | 2006-05-06 | ||
US11/382,038 US7352358B2 (en) | 2002-07-27 | 2006-05-06 | Method and system for applying gearing effects to acoustical tracking |
US11/382,035 | 2006-05-06 | ||
US11/382,034 US20060256081A1 (en) | 2002-07-27 | 2006-05-06 | Scheme for detecting and tracking user manipulation of a game controller body |
US29/259,348 | 2006-05-06 | ||
US11/382,032 US7850526B2 (en) | 2002-07-27 | 2006-05-06 | System for tracking user manipulations within an environment |
US11/382,031 US7918733B2 (en) | 2002-07-27 | 2006-05-06 | Multi-input game control mixer |
US29259349 | 2006-05-06 | ||
US11/382,037 US8313380B2 (en) | 2002-07-27 | 2006-05-06 | Scheme for translating movements of a hand-held controller into inputs for a system |
US11/382,038 | 2006-05-06 | ||
US11/382,033 | 2006-05-06 | ||
US11/382,033 US8686939B2 (en) | 2002-07-27 | 2006-05-06 | System, method, and apparatus for three-dimensional input control |
US29/259,349 | 2006-05-06 | ||
US11/382,037 | 2006-05-06 | ||
US29259348 | 2006-05-06 | ||
US11/382,035 US8797260B2 (en) | 2002-07-27 | 2006-05-06 | Inertially trackable hand-held controller |
US11/382,034 | 2006-05-06 | ||
US11/382,040 US7391409B2 (en) | 2002-07-27 | 2006-05-07 | Method and system for applying gearing effects to multi-channel mixed input |
US11/382,041 US7352359B2 (en) | 2002-07-27 | 2006-05-07 | Method and system for applying gearing effects to inertial tracking |
US11/382,040 | 2006-05-07 | ||
US11/382,043 US20060264260A1 (en) | 2002-07-27 | 2006-05-07 | Detectable and trackable hand-held controller |
US11/382,039 US9393487B2 (en) | 2002-07-27 | 2006-05-07 | Method for mapping movements of a hand-held controller to game commands |
US11/382,041 | 2006-05-07 | ||
US11/382,043 | 2006-05-07 | ||
US11/382,039 | 2006-05-07 | ||
US29246765 | 2006-05-08 | ||
US29246766 | 2006-05-08 | ||
US29/246,744 USD630211S1 (en) | 2006-05-08 | 2006-05-08 | Video game controller front face |
US29/246,768 USD571806S1 (en) | 2006-05-08 | 2006-05-08 | Video game controller |
US29/246,767 | 2006-05-08 | ||
US29/246,762 | 2006-05-08 | ||
US11/382,250 | 2006-05-08 | ||
US29/246,763 | 2006-05-08 | ||
US29/246,743 USD571367S1 (en) | 2006-05-08 | 2006-05-08 | Video game controller |
US11/382,256 US7803050B2 (en) | 2002-07-27 | 2006-05-08 | Tracking device with sound emitter for use in obtaining information for controlling game program execution |
US29/246,766 | 2006-05-08 | ||
US11/382,258 | 2006-05-08 | ||
US29/246,765 | 2006-05-08 | ||
US29246762 | 2006-05-08 | ||
US11/382,252 US10086282B2 (en) | 2002-07-27 | 2006-05-08 | Tracking device for use in obtaining information for controlling game program execution |
US29/246,768 | 2006-05-08 | ||
US29/246,743 | 2006-05-08 | ||
US11/382,259 US20070015559A1 (en) | 2002-07-27 | 2006-05-08 | Method and apparatus for use in determining lack of user activity in relation to a system |
US29/246,744 | 2006-05-08 | ||
US11/382,251 | 2006-05-08 | ||
US29/246,764 USD629000S1 (en) | 2006-05-08 | 2006-05-08 | Game interface device with optical port |
US29/246,759 | 2006-05-08 | ||
US29/246,767 USD572254S1 (en) | 2006-05-08 | 2006-05-08 | Video game controller |
US11/382,251 US20060282873A1 (en) | 2002-07-27 | 2006-05-08 | Hand-held controller having detectable elements for tracking purposes |
US11/382,258 US7782297B2 (en) | 2002-07-27 | 2006-05-08 | Method and apparatus for use in determining an activity level of a user in relation to a system |
US29246763 | 2006-05-08 | ||
US11/382,256 | 2006-05-08 | ||
US11/382,252 | 2006-05-08 | ||
US29/246,764 | 2006-05-08 | ||
US11/430,594 US20070260517A1 (en) | 2006-05-08 | 2006-05-08 | Profile detection |
US29246759 | 2006-05-08 | ||
US11/430,593 US20070261077A1 (en) | 2006-05-08 | 2006-05-08 | Using audio/visual environment to select ads on game platform |
US11/430,593 | 2006-05-08 | ||
US11/382,259 | 2006-05-08 | ||
US11/430,594 | 2006-05-08 | ||
US11/382,250 US7854655B2 (en) | 2002-07-27 | 2006-05-08 | Obtaining input for controlling execution of a game program |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US29/246,764 Continuation-In-Part USD629000S1 (en) | 2002-07-27 | 2006-05-08 | Game interface device with optical port |
US11/430,594 Continuation-In-Part US20070260517A1 (en) | 2002-07-27 | 2006-05-08 | Profile detection |
US11/382,250 Continuation US7854655B2 (en) | 2002-07-27 | 2006-05-08 | Obtaining input for controlling execution of a game program |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/382,032 Continuation-In-Part US7850526B2 (en) | 2002-07-27 | 2006-05-06 | System for tracking user manipulations within an environment |
US13/670,387 Continuation-In-Part US9174119B2 (en) | 2002-07-27 | 2012-11-06 | Controller for providing inputs to control execution of a program when inputs are combined |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007130793A2 true WO2007130793A2 (fr) | 2007-11-15 |
WO2007130793A3 WO2007130793A3 (fr) | 2008-12-11 |
Family
ID=46469882
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/067010 WO2007130793A2 (fr) | 2002-07-27 | 2007-04-14 | Procédé permettant d'obtenir une entrée commandant l'exécution d'un programme de jeu |
PCT/US2007/067005 WO2007130792A2 (fr) | 2006-05-04 | 2007-04-19 | Système, procédé et appareil de commande d'entrée tridimensionnel |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/067005 WO2007130792A2 (fr) | 2006-05-04 | 2007-04-19 | Système, procédé et appareil de commande d'entrée tridimensionnel |
Country Status (3)
Country | Link |
---|---|
JP (3) | JP2009535173A (fr) |
CN (2) | CN102989174B (fr) |
WO (2) | WO2007130793A2 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2458297A (en) * | 2008-03-13 | 2009-09-16 | In2Games Ltd | Pointing device |
US8351958B2 (en) | 2008-07-15 | 2013-01-08 | Panasonic Corporation | Mobile device and method for identifying location thereof |
GB2533394A (en) * | 2014-12-19 | 2016-06-22 | Gen Electric | Method and system for generating a control signal for a medical device |
EP2446942A4 (fr) * | 2009-06-25 | 2017-06-21 | Samsung Electronics Co., Ltd. | Procédé et dispositif de traitement de monde virtuel |
EP3417919A1 (fr) * | 2017-06-23 | 2018-12-26 | Kabushiki Kaisha Toshiba | Dispositif de dérivation de la matrice de transformation, appareil d'estimation de position, procédé de dérivation de matrice de transformation et procédé d'estimation de position |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10279254B2 (en) * | 2005-10-26 | 2019-05-07 | Sony Interactive Entertainment Inc. | Controller having visually trackable object for interfacing with a gaming system |
WO2009063996A1 (fr) | 2007-11-15 | 2009-05-22 | Seiko Epson Corporation | Composition d'encre |
US8419545B2 (en) * | 2007-11-28 | 2013-04-16 | Ailive, Inc. | Method and system for controlling movements of objects in a videogame |
US20090221368A1 (en) * | 2007-11-28 | 2009-09-03 | Ailive Inc., | Method and system for creating a shared game space for a networked game |
CN102265241B (zh) * | 2008-10-27 | 2014-10-29 | 索尼电脑娱乐公司 | 带有可配置模式的球形端部控制器 |
JP5534729B2 (ja) * | 2009-07-16 | 2014-07-02 | 株式会社タイトー | 二重円指標を利用した画面座標位置検出方法および画面座標位置検出装置ならびにガンゲーム装置 |
CN106984041B (zh) * | 2011-02-11 | 2021-07-06 | 漳州市舟锋电子科技有限公司 | 一种人机互动控制系统 |
US20120277001A1 (en) * | 2011-04-28 | 2012-11-01 | Microsoft Corporation | Manual and Camera-based Game Control |
US9116555B2 (en) | 2011-11-23 | 2015-08-25 | Sony Computer Entertainment America Llc | Gaming controller |
US8672765B2 (en) * | 2012-03-13 | 2014-03-18 | Sony Computer Entertainment America Llc | System and method for capturing and sharing console gaming data |
US10960300B2 (en) | 2011-11-23 | 2021-03-30 | Sony Interactive Entertainment LLC | Sharing user-initiated recorded gameplay with buffered gameplay |
US8870654B2 (en) * | 2011-11-23 | 2014-10-28 | Sony Computer Entertainment America Llc | Gaming controller |
US10525347B2 (en) | 2012-03-13 | 2020-01-07 | Sony Interactive Entertainment America Llc | System and method for capturing and sharing console gaming data |
US10486064B2 (en) | 2011-11-23 | 2019-11-26 | Sony Interactive Entertainment America Llc | Sharing buffered gameplay in response to an input request |
CN103974752B (zh) | 2011-12-19 | 2016-05-18 | 英派尔科技开发有限公司 | 用于基于姿势的游戏的暂停和重新开始方案 |
JP5869142B2 (ja) | 2012-10-15 | 2016-02-24 | 株式会社ソニー・コンピュータエンタテインメント | 操作デバイス |
JP5939553B2 (ja) | 2012-10-15 | 2016-06-22 | 株式会社ソニー・インタラクティブエンタテインメント | 操作デバイス |
BR112017023929A2 (pt) * | 2015-06-17 | 2018-07-17 | Crown Equip Corp | processo implantado por computador para controlar desempenho de veículo industrial, e, sistema para monitoramento e modificação dinâmica de veículo industrial |
WO2017157427A1 (fr) * | 2016-03-16 | 2017-09-21 | Huawei Technologies Co., Ltd. | Procédé et appareil de traitement de signal audio pour traiter un signal audio d'entrée |
RU2642394C1 (ru) * | 2017-05-05 | 2018-01-24 | Андрей Валерьевич Груздев | Устройство контроля системы движений |
JP6957218B2 (ja) * | 2017-06-12 | 2021-11-02 | 株式会社バンダイナムコエンターテインメント | シミュレーションシステム及びプログラム |
KR102480310B1 (ko) * | 2017-11-06 | 2022-12-23 | 삼성전자주식회사 | 디스플레이 장치 및 그 제어 방법 |
WO2025083780A1 (fr) * | 2023-10-17 | 2025-04-24 | 任天堂株式会社 | Procédé de traitement de jeu, programme de jeu et système de jeu |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0461761B1 (fr) * | 1990-05-18 | 1994-06-22 | British Aerospace Public Limited Company | Senseurs inertiels |
US5181181A (en) | 1990-09-27 | 1993-01-19 | Triton Technologies, Inc. | Computer apparatus input device for three-dimensional information |
US6069594A (en) * | 1991-07-29 | 2000-05-30 | Logitech, Inc. | Computer input device with multiple switches using single line |
JP3907213B2 (ja) * | 1992-09-11 | 2007-04-18 | 伸壹 坪田 | ゲーム制御装置 |
JPH07284166A (ja) * | 1993-03-12 | 1995-10-27 | Mitsubishi Electric Corp | 遠隔操作装置 |
US6022274A (en) * | 1995-11-22 | 2000-02-08 | Nintendo Co., Ltd. | Video game system using memory module |
JP3756955B2 (ja) | 1996-03-05 | 2006-03-22 | 株式会社セガ | コントローラ及び電子装置 |
US5992233A (en) * | 1996-05-31 | 1999-11-30 | The Regents Of The University Of California | Micromachined Z-axis vibratory rate gyroscope |
JPH1021000A (ja) * | 1996-06-28 | 1998-01-23 | Sumitomo Metal Ind Ltd | 信号入力装置 |
US6400374B2 (en) * | 1996-09-18 | 2002-06-04 | Eyematic Interfaces, Inc. | Video superposition system and method |
US6720949B1 (en) * | 1997-08-22 | 2004-04-13 | Timothy R. Pryor | Man machine interfaces and applications |
JPH11253656A (ja) | 1998-03-09 | 1999-09-21 | Omron Corp | ゲームコントローラのアタッチメント |
JP4805433B2 (ja) * | 1999-03-31 | 2011-11-02 | 株式会社カプコン | 信号入力装置および規制部材 |
US6417836B1 (en) * | 1999-08-02 | 2002-07-09 | Lucent Technologies Inc. | Computer input device having six degrees of freedom for controlling movement of a three-dimensional object |
JP3847058B2 (ja) * | 1999-10-04 | 2006-11-15 | 任天堂株式会社 | ゲームシステム及びそれに用いられるゲーム情報記憶媒体 |
US6489948B1 (en) * | 2000-04-20 | 2002-12-03 | Benny Chi Wah Lau | Computer mouse having multiple cursor positioning inputs and method of operation |
JP2002090384A (ja) * | 2000-09-13 | 2002-03-27 | Microstone Corp | 運動センサの構造および内部接続方法 |
JP3611807B2 (ja) * | 2001-07-19 | 2005-01-19 | コナミ株式会社 | ビデオゲーム装置、ビデオゲームにおける擬似カメラ視点移動制御方法及びプログラム |
JP2003131796A (ja) * | 2001-10-22 | 2003-05-09 | Sony Corp | 情報入力装置、および情報入力方法、並びにコンピュータ・プログラム |
WO2003088204A1 (fr) * | 2002-04-12 | 2003-10-23 | Obermeyer Henry K | Manette a axes multiples et moyen transducteur associe |
JP4179162B2 (ja) * | 2003-12-26 | 2008-11-12 | 株式会社セガ | 情報処理装置、ゲーム装置、画像生成方法、ゲーム画像生成方法 |
JP2006031515A (ja) * | 2004-07-20 | 2006-02-02 | Vodafone Kk | 移動体通信端末、アプリケーションプログラム、画像表示制御装置及び画像表示制御方法 |
JP4610971B2 (ja) * | 2004-09-07 | 2011-01-12 | 任天堂株式会社 | ゲームプログラム |
-
2007
- 2007-04-14 WO PCT/US2007/067010 patent/WO2007130793A2/fr active Application Filing
- 2007-04-14 CN CN201210496712.8A patent/CN102989174B/zh active Active
- 2007-04-14 CN CN201210037498.XA patent/CN102580314B/zh active Active
- 2007-04-19 WO PCT/US2007/067005 patent/WO2007130792A2/fr active Application Filing
- 2007-04-19 JP JP2009509932A patent/JP2009535173A/ja active Pending
- 2007-05-02 JP JP2007121964A patent/JP4553917B2/ja active Active
-
2009
- 2009-08-07 JP JP2009185086A patent/JP5465948B2/ja active Active
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2458297A (en) * | 2008-03-13 | 2009-09-16 | In2Games Ltd | Pointing device |
GB2458297B (en) * | 2008-03-13 | 2012-12-12 | Performance Designed Products Ltd | Pointing device |
US8351958B2 (en) | 2008-07-15 | 2013-01-08 | Panasonic Corporation | Mobile device and method for identifying location thereof |
EP2446942A4 (fr) * | 2009-06-25 | 2017-06-21 | Samsung Electronics Co., Ltd. | Procédé et dispositif de traitement de monde virtuel |
US9987553B2 (en) | 2009-06-25 | 2018-06-05 | Samsung Electronics Co., Ltd. | Virtual world processing device and method |
GB2533394A (en) * | 2014-12-19 | 2016-06-22 | Gen Electric | Method and system for generating a control signal for a medical device |
EP3417919A1 (fr) * | 2017-06-23 | 2018-12-26 | Kabushiki Kaisha Toshiba | Dispositif de dérivation de la matrice de transformation, appareil d'estimation de position, procédé de dérivation de matrice de transformation et procédé d'estimation de position |
US10657658B2 (en) | 2017-06-23 | 2020-05-19 | Kabushiki Kaisha Toshiba | Transformation matrix deriving device, position estimation apparatus, transformation matrix deriving method, and position estimation method |
Also Published As
Publication number | Publication date |
---|---|
JP2009535173A (ja) | 2009-10-01 |
WO2007130793A3 (fr) | 2008-12-11 |
JP5465948B2 (ja) | 2014-04-09 |
WO2007130792A2 (fr) | 2007-11-15 |
CN102580314B (zh) | 2015-05-20 |
JP2009254888A (ja) | 2009-11-05 |
JP2007296367A (ja) | 2007-11-15 |
CN102580314A (zh) | 2012-07-18 |
CN102989174A (zh) | 2013-03-27 |
JP4553917B2 (ja) | 2010-09-29 |
CN102989174B (zh) | 2016-06-29 |
WO2007130792A3 (fr) | 2008-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7854655B2 (en) | Obtaining input for controlling execution of a game program | |
US7850526B2 (en) | System for tracking user manipulations within an environment | |
US7918733B2 (en) | Multi-input game control mixer | |
US7737944B2 (en) | Method and system for adding a new player to a game in response to controller activity | |
US10086282B2 (en) | Tracking device for use in obtaining information for controlling game program execution | |
US8839279B2 (en) | Gesture cataloging and recognition | |
US9174119B2 (en) | Controller for providing inputs to control execution of a program when inputs are combined | |
WO2007130793A2 (fr) | Procédé permettant d'obtenir une entrée commandant l'exécution d'un programme de jeu | |
US8313380B2 (en) | Scheme for translating movements of a hand-held controller into inputs for a system | |
US20070015559A1 (en) | Method and apparatus for use in determining lack of user activity in relation to a system | |
US20060287085A1 (en) | Inertially trackable hand-held controller | |
US20060287084A1 (en) | System, method, and apparatus for three-dimensional input control | |
WO2007130872A2 (fr) | Procédé et appareil pour déterminer un manque ou niveau d'activité d'un utilisateur, et/ou ajouter un nouveau joueur par rapport à un système | |
EP2012891B1 (fr) | Procede et appareil pour determiner un manque ou niveau d'activite d'un utilisateur, et/ou ajouter un nouveau joueur par rapport a un systeme | |
WO2007130791A2 (fr) | Mélangeur de commande de jeu à entrées multiples | |
EP1852164A2 (fr) | Obtention d'entrées pour commander l'exécution d'un programme de jeux | |
KR101020510B1 (ko) | 다중 입력 게임 제어 믹서 | |
KR101020509B1 (ko) | 프로그램의 실행을 제어하기 위한 입력을 획득하는 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780025400.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07760951 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087029705 Country of ref document: KR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07760951 Country of ref document: EP Kind code of ref document: A2 |