WO2007110970A1 - Method for calculating interface resistance - Google Patents
Method for calculating interface resistance Download PDFInfo
- Publication number
- WO2007110970A1 WO2007110970A1 PCT/JP2006/307161 JP2006307161W WO2007110970A1 WO 2007110970 A1 WO2007110970 A1 WO 2007110970A1 JP 2006307161 W JP2006307161 W JP 2006307161W WO 2007110970 A1 WO2007110970 A1 WO 2007110970A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode side
- resistance
- frequency
- fuel cell
- call
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04634—Other electric variables, e.g. resistance or impedance
- H01M8/04641—Other electric variables, e.g. resistance or impedance of the individual fuel cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention is a method for measuring the interface resistance at the time of operation of a fuel cell, specifically, calculating the interface resistance at the interface between the fuel electrode and the electrolyte and the interface resistance at the interface between the air electrode and the electrolyte. Regarding the method. Background art
- the fuel cell has a fuel cell unit configured such that an electrolyte is sandwiched between a fuel electrode and an air electrode.
- the fuel cell will be described with reference to FIG. Fig. 1'4 is a schematic diagram showing a fuel cell.
- the fuel cell 4 4 is formed so that the electrolyte 4 1 is sandwiched between the fuel electrode 4 2 and the air electrode 4 3.
- the resistance at the time of operation of the fuel cell 44 is mainly the ohmic resistance of the electrolyte 41 itself, the ohmic resistance of the fuel electrode 42 itself, the ohmic resistance of the air electrode 43 itself, The sum of the interface resistance at the interface between the fuel electrode 4 2 and the electrolyte 4 1 at the time and the interface resistance at the interface between the air electrode 4 3 and the electrolyte 4 1 during operation.
- the total of the ohmic resistance of the electrolyte 41 itself, the ohmic resistance of the fuel electrode 42 itself, and the ohmic resistance of the air electrode 43 itself is also referred to as the ohmic resistance Rb of the cell.
- the interface resistance at the electrode-electrolyte interface is also described as the fuel electrode-side interface resistance Ria, and the interface resistance at the air electrode-electrolyte interface is also described as the air electrode-side interface resistance Ric.
- the ohmic resistance of the fuel electrode 42 itself is applied to the electrolyte 41. It is obtained by measuring the resistance of the fuel electrode 42 before being bonded, or by preparing the fuel electrode 42 not bonded to the electrolyte 41 and measuring its resistance. . The same applies to the ohmic resistance of the electrolyte 41 itself and the ohmic resistance of the air electrode 43 itself.
- the fuel electrode side interface resistance R ia and the air electrode side interface resistance R ic are resistances at the interface between the fuel electrode 42 or the air electrode 43 and the electrolyte 41, so The resistance cannot be measured unless the electrode 4 2 or the air electrode 4 3 is joined to the electrolyte 4 1.
- FIG. 15 is a schematic diagram showing a conventional method for measuring interface resistance, and is a schematic diagram of a cross section of a cell for a fuel cell at the time of measuring interface resistance.
- the fuel cell 4 4 a is formed by sandwiching the electrolyte 4 1 a between the fuel electrode 4 2 a and the air electrode 4 3 a, and The reference electrode 5 1 is provided at the intermediate potential point 5 5 a.
- the position where the reference electrode 51 is installed is the side surface of the electrolyte 41a, and the middle point in the thickness direction of the electrolyte 41a.
- the resistance between the fuel electrode terminal 53 and the reference electrode 51 and the resistance between the reference electrode 51 and the air electrode terminal 54 under the same operating conditions as the fuel cell 44a. Measure the resistance of each.
- the fuel electrode side interface resistance R ia resistance 5 3 — 5 1 — (R ba + O. 5 R bs) (5)
- resistance 5 3 _ 5 1 represents the resistance between the fuel electrode terminal 5 3 and the reference electrode 51
- R ba represents the ohmic resistance of the fuel electrode 4 2 a
- R bs Represents the ohmic resistance of the electrolyte 41a.
- Air electrode side interface resistance R ic Resistance 5 i— 5 4 — (R bc + 0.5 R bs) (6)
- resistance 5 1 — 5 4 represents the resistance between the reference electrode 5 1 and the negative electrode terminal 5 4
- R bc represents the ohmic resistance of the air electrode 4 3 a
- R bs represents the ohmic resistance of the electrolyte 4 1 a.
- the intermediate potential point 55a refers to a point that bisects the ohmic resistance of the electrolyte 41a.
- the reference electrode can be installed without any problem as long as the thickness of the electrolyte is sufficient.
- the thickness of the electrolyte of the fuel cell currently in practical use is extremely thin, about 5 to 100 ⁇ m, the reference electrode is used as the electrolyte of the fuel cell currently in practical use. It was difficult to install. In other words, there is a problem that the interface resistance cannot be calculated in the case of fuel cell cells that are currently in practical use.
- the area and shape of the junction between the electrolyte 4 1 a and the fuel electrode 4 2 a are the same as those of the electrolyte 4 1 a and the air electrode. Since the area and shape of the junction with 4 3 a are the same, the potential change in the electrolyte 4 1 a is subject to up and down. That is, when the equipotential line 5 2 a in the electrolyte 4 1 a is shown, in the case of the fuel cell 4 4 a, the equipotential line 5 2 a is connected to the fuel electrode 4 2 a and the air electrode 4. 3 From a, spread in the shape of the top and bottom objects. Therefore, in the fuel cell 4 4 a, the intermediate potential point 55 a appears on the side surface of the electrolyte 41 a and is the intermediate point in the thickness direction of the electrolyte 41 a.
- Fig. 16 shows a fuel cell in which the area or shape of the junction between the electrolyte and the fuel electrode is not the same as the area or shape of the junction between the electrolyte and the air electrode It is typical sectional drawing.
- the area and shape of the junction between the electrolyte 4 1 b and the fuel electrode 4 2 b are the same as the junction between the electrolyte 4 1 b and the air electrode 4 3 b. It is not the same as the area and shape of the part.
- the equipotential line 5 2 b extends from the fuel electrode 4 2 b and the air electrode 4 3 b in a shape that is not vertically aligned.
- the intermediate potential point 55b does not appear on the side surface of the electrolyte 41b, but appears on the surface 56 where the fuel electrode 42b is joined, and
- the position where the intermediate potential point 5 5 b appears varies depending on the area or shape of the junction. Therefore, in the case of the fuel cell 4 4 b, the reference electrode cannot be installed at an accurate position. There was a problem that accurate interface resistance could not be measured.
- the problem of the present invention is that even if the thickness of the electrolyte of the fuel cell cell is small, or the area or shape of the junction between the electrolyte and the fuel electrode is the same as the area or shape of the junction between the electrolyte and the air electrode.
- An object of the present invention is to provide an interface resistance calculation method that can calculate the interface resistance even if they are not the same. Disclosure of the invention
- the present invention (1) is an interface resistance calculation method for calculating a fuel electrode side interface resistance R ia and an air electrode side interface resistance R ic during operation of a calculation target fuel cell.
- the complex impedance measurement of the calculation target fuel cell is performed under the first measurement condition and the second measurement condition that are different only in the gas composition of the fuel electrode side gas, and then the real number when the frequency in the first measurement condition is n Difference between the resistance value R 1 rn and the real resistance value R 2 rn when the frequency in the second measurement condition is n (1-2) rn in the following formula (1):
- the complex impedance measurement of the calculation target fuel cell is performed under the third measurement condition and the fourth measurement condition, which differ only in the gas composition of the air electrode side gas, and then the frequency in the third measurement condition is n
- the difference between the real part resistance value R 3 rn and the real part resistance value R 4 rn when the frequency in the fourth measurement condition is n ⁇ R (3 -4) rn is expressed by the following equation (2):
- R i c R r c (ma x) — R r c (m i n) (4)
- an interface resistance calculation step for obtaining an air electrode side interface resistance R ic, and a method for calculating the interface resistance comprising: Further, the present invention (2) is a method for calculating the interface resistance for calculating the fuel electrode side interface resistance R ia and the air electrode side interface resistance R ic during operation of the calculation target fuel cell.
- the complex impedance measurement of the calculation target fuel cell is performed under the first measurement condition and the second measurement condition that are different only in the gas composition of the fuel electrode side gas, and then the real number when the frequency in the first measurement condition is n
- the difference between the part resistance value R 1 rn and the real part resistance value R 2 rn when the frequency in the second measurement condition is n is R (1 ⁇ 2) rn as the following formula (1):
- An equivalent circuit having (i) a first resistor connected in series; (ii) a second resistor and a first capacitor connected in parallel; and (iii) a third resistor and a second capacitor connected in parallel.
- Fig. 1 is a schematic diagram of the call-call plot of the fuel cell for calculation consisting of two arcs.
- Fig. 2 shows the calculation consisting of three arcs. It is a schematic diagram of the Cole-Cole-plot of the target fuel cell.
- FIG. 3 is a schematic diagram of the call-call plot of the fuel cell for calculation when complex impedance is measured under the first measurement condition and the second measurement condition
- Fig. 4 is a real number.
- Part resistance difference first graph 14 and real part resistance difference second graph 1 4 1 is a schematic diagram
- FIG. 5 is a complex impedance measurement under the third measurement condition and the fourth measurement condition
- FIG. 6 is a diagram showing an equivalent circuit 21
- FIG. 7 is a diagram showing an equivalent circuit 30.
- FIG. Fig. 8 shows the call 1 plot for measurement 1
- Fig. 9 shows the call call for measurement 2.
- Fig. 10 shows the plot for call 2.
- Fig. 10 shows the call for measurement 3.
- Figure 1 shows the Cole 'plot
- Figure 1 shows the Cole Cole plot for measurement 4.
- FIG. 14 is a schematic diagram showing a fuel cell
- Fig. 15 is a schematic diagram showing a conventional interface resistance measurement method
- Yes Fig. 16 is a schematic diagram showing a fuel cell, where the area or shape of the junction between the electrolyte and the fuel electrode is not the same as the area or shape of the junction between the electrolyte and the air electrode.
- the method for measuring the interface resistance according to the first aspect of the present invention is a method for calculating the interface resistance by calculating the fuel electrode side interface resistance R ia and the air electrode side interface resistance R ic when the fuel cell for calculation is operated. Because
- the complex impedance measurement of the calculation target fuel cell is performed under the first measurement condition and the second measurement condition that are different only in the gas composition of the fuel electrode side gas, and then the real part when the frequency in the first measurement condition is n
- the difference between the resistance value R 1 rn and the real part resistance value R 2 rn when the frequency in the second measurement condition is n (R (1 ⁇ 2) rn is expressed by the following equation (1):
- the complex impedance measurement of the calculation target fuel cell is performed under the third measurement condition and the fourth measurement condition that are different only in the gas composition of the air electrode side gas, and then the frequency in the third measurement condition is n.
- the difference between the real part resistance R 3 rn at the time and the real part resistance R 4 rn when the frequency in the fourth measurement condition is n ⁇ R (3-4) rn is expressed by the following equation (2):
- R ia R ra max) — R ra (min) (3) is calculated to obtain the fuel electrode side interface resistance R ia, and then the calculation target fuel cell cell obtained in the first step is calculated.
- the maximum value R rc (max) of the real part resistance value and the minimum value R rc of the real part resistance value of the arc identified as the arc originating from the air electrode side interface in the third step The difference from (min) is the following formula (4):
- R i c R r c (max) ⁇ R r c (m i n) (4) to obtain the air electrode side interface resistance R i c, and a method for calculating the interface resistance.
- the calculation target fuel cell for the interface resistance calculation method is a fuel cell for which the interface resistance is calculated.
- the complex impedance of the calculated fuel cell is measured under the operating condition for calculating the interface resistance.
- the operating condition for calculating the interface resistance is a specific operating condition for which the interface resistance is desired to be calculated. That is, in the first step, first, the complex impedance measurement of the calculation target fuel cell is performed under a specific operating condition for which calculation of the interface resistance is desired.
- the operating conditions for calculating the interface resistance are the fuel concentration of the fuel electrode side gas, the oxygen concentration of the air electrode side gas, the operating temperature of the cell, the water vapor concentration of the fuel electrode side gas, the water vapor concentration of the air electrode side gas, etc. Consists of various elements.
- the operating conditions for calculating the interface resistance always include three elements: the gas composition of the fuel electrode side gas, the gas composition of the air electrode side gas, and the operating temperature of the cell.
- the calculation target fuel cell includes an electrolyte sandwiched between a fuel electrode and an air electrode.
- a solid oxide fuel cell a phosphoric acid fuel cell, a molten carbonate fuel cell, solid A polymer fuel cell is exemplified.
- the complex impedance measurement means that when a voltage is applied by applying a slight voltage AC component of 100 mV or less between the fuel electrode and the air electrode of the calculation target fuel cell, the AC component It is to measure the current and its phase difference when the frequency is changed from about 100 kHz to about 1 MHz.
- the method for performing the complex impedance measurement is not particularly limited as long as it is a complex impedance measurement method that is usually used for grasping the characteristics of the fuel cell.
- the complex impedance measurement is also called AC impedance measurement.
- the complex impedance measurement according to the second step and the complex impedance measurement according to the third step described later are the same as the complex impedance measurement according to the first step.
- FIG. 2 is a call of the cell for calculation target fuel cell consisting of three arcs.
- ⁇ Schematic diagram of call 'plot The call cell plot for the calculation target fuel cell obtained in the first step is the simplest of the two plots, as shown in Fig. 1.
- Cole ⁇ call 'plot 1 a consisting of 2 a and second arc 3 a.
- there are three arcs that is, the first arc 2 as shown in FIG. b, a call consisting of the second arc 3 b and the third arc 4. Coll.
- the first arc is counted from the side where the real part resistance value is small in the arc of the Cole-Cole 'plot of the calculation target fuel cell obtained in the first step, This refers to the first arc
- the second arc is counted from the side with the smaller real part resistance value in the arc of the Cole Cole plot of the fuel cell to be calculated obtained in the first step.
- One of the first arc and the second arc is an arc derived from the fuel electrode side interface, and the other is an arc derived from the air electrode side interface.
- the Cole-Cole-Plot curve of the calculation target fuel cell obtained by actually performing the complex impedance measurement rarely has the same shape as a perfect circular arc.
- the wording of arc is used.
- the complex impedance measurement of the calculation target fuel cell is performed under the first measurement condition and the second measurement condition that are different only in the gas composition of the fuel electrode side gas.
- the complex impedance measurement of the calculation target fuel cell is performed under the first measurement condition and the second measurement condition that are different only in the gas composition of the fuel electrode side gas. It means that the complex impedance measurement of the cell for the fuel cell to be calculated is performed under two measurement conditions in which only the gas composition of the fuel electrode side gas is fixed and only the gas composition of the fuel electrode side gas is changed. Specifically, for example, the hydrogen concentration of the fuel electrode side gas in the first measurement condition is set to 100 volume%, and the hydrogen concentration of the fuel electrode side gas in the second measurement condition is set to 10 volumes. / 0, and for the elements constituting the other measurement conditions, none of the first measurement condition and said second measurement conditions were the same, the complex Inpi of the calculated output target fuel cell - performing dance measurement.
- the measurement conditions related to the first measurement condition and the second measurement condition are as follows: fuel concentration in the fuel electrode side gas, oxygen concentration in the air electrode side gas, cell operating temperature, water vapor concentration in the fuel electrode side gas, air electrode It consists of various factors such as the water vapor concentration of the side gas.
- the measurement conditions always include three elements: the gas composition of the fuel electrode side gas, the gas composition of the air electrode side gas, and the operating temperature of the cell.
- FIG. 3 shows a schematic diagram of a call / call plot of the cell for the calculation target fuel cell under the first measurement condition or the second measurement condition.
- FIG. 3 shows the calculation target fuel cell in which the number of arcs of the call / call plot of the calculation target fuel cell obtained by performing the first step is two.
- the cell of the cell to be calculated is called a Cole plot
- the first measurement condition The call / call 'plot 1 1 of the calculation target fuel cell at 1 consists of a first arc 2c and a second arc 3c
- the calculation target fuel cell for the second measurement condition Cole ⁇ Cole 'Plot 1 2 consists of a first arc 2d and a second arc 3d.
- a point where the frequency in the Cole Cole 'plot 1 1 is 1 000 Hz is pointed E 1 and a point where the frequency in the Cole Cole' plot 1 2 is 100 OH z
- FIG. 4 shows a schematic diagram of the first real part resistance difference graph.
- the graph indicated by the symbol 14 is the real part resistance difference first graph 14, and the real part resistance difference first graph 14 is always compared to the other frequency ranges. (1 ⁇ .2) ⁇
- the real part resistance difference first graph 14 always has a peak 15.
- the frequency of the peak top 16 of the peak 15 is read from the real part resistance difference first draft 14, and the frequency obtained in the first step is obtained from the frequency value of the peak top 16.
- the cell for the fuel cell to be calculated 'Cole certify the arc originating from the fuel electrode side interface. For example, if the peak top frequency in the first real part resistance difference graph is X, the frequency of the call / call 'plot of the calculation target fuel cell obtained in the first step is The arc including the point X is identified as the arc originating from the fuel electrode side interface.
- the second step only the gas composition of the fuel electrode side gas is changed. Therefore, in the first graph of the real part resistance difference, the fact that the peak top exists at the frequency X means that the influence of the change on the fuel electrode side has an effect. Is the portion corresponding to the frequency region in the vicinity of frequency X in the Cole-Cole-Plot of the calculation target fuel cell, so that the calculation target fuel obtained in the first step is Call of battery cell. In the call plot, an arc including a point with a frequency X can be recognized as an arc originating from the fuel electrode side interface.
- the fuel contained in the fuel electrode side gas is not particularly limited, and examples thereof include hydrogen and methane.
- the complex impedance measurement of the calculation target fuel cell is performed under the third measurement condition and the fourth measurement condition that differ only in the gas composition of the air electrode side gas.
- the complex impedance measurement of the calculation target fuel cell is performed under the third measurement condition and the fourth measurement condition, which are different only in the gas composition of the air electrode side gas, among the elements constituting the measurement condition, It means that the complex impedance measurement of the calculation target fuel cell is performed under two measurement conditions in which only the gas composition of the air electrode side gas is fixed and only the gas composition of the air electrode side gas is changed.
- the oxygen concentration of the air electrode side gas under the third measurement condition is 100% by volume
- the oxygen concentration of the air electrode side gas under the fourth measurement condition is 10% by volume, etc.
- the complex impedance measurement of the calculation target fuel cell is performed with the third measurement condition and the fourth measurement condition being the same.
- the measurement conditions related to the third measurement condition and the fourth measurement condition are as follows: fuel concentration in the fuel electrode side gas, oxygen concentration in the air electrode side gas, cell operating temperature, water vapor concentration in the fuel electrode side gas, air electrode side It consists of various elements such as the water vapor concentration of the gas.
- the measurement conditions always include three elements: the gas composition of the fuel electrode side gas, the gas composition of the air electrode side gas, and the operating temperature of the cell.
- FIG. 5 shows a schematic diagram of the call-call-plot of the cell for calculation target fuel cell under the third measurement condition or the fourth measurement condition.
- FIG. 5 shows the calculation target fuel cell in which the number of arcs of the call / call plot of the calculation target fuel cell obtained by performing the first step is 2 and the third measurement condition and This is a call / call 'plot of the fuel cell to be calculated when complex impedance is measured under the fourth measurement condition, and a call / call of the cell for the fuel cell to be calculated under the third measurement condition.
- Plot 17 consists of a first arc 2 e and a second arc 3 e, and the call cell call of the calculation target fuel cell under the fourth measurement condition 'plot 1 8 shows the first arc 2 f and second arc 3 f.
- the point where the frequency in the Cole Cole 'plot 1 7 is 1 000 Hz is pointed G 1
- the point in the Cole Cole' plot 1 8 is the point where the frequency is 1000 Hz.
- G 2 the real part resistance value R 3 r of the point G 1 from the Cole-Cole plot 17. . .
- the real part resistance value R 4 r 1000 of the point G 2 is obtained.
- the difference (R 3 ri .. One R4 r 100.
- the calculation of AR (3-4) rn is based on the change in AR (3-4) rn with respect to the frequency change, and the entire area of Cole Cole Plot 1 7 and Cole Cole Cole 'Plot 1 8 It is sufficient that the frequency interval is such that it can be observed over a range of intervals, and ⁇ R (3 ⁇ 4) rn corresponding to each frequency at a constant interval may be obtained, or the frequency interval may not be constant. Good.
- FIG. 4 shows a schematic diagram of the second resistance difference second graph.
- the graph denoted by reference numeral 141 is the real part resistance difference second graph 141, and the real part resistance difference second graph 141 is always compared to other frequency ranges.
- the real part resistance difference second graph 1 4 1 always has a peak 1 5 1. Then, the frequency of the peak top 16 1 of the peak 1 51 is read from the second resistance difference second graph 141, and the frequency value of the peak top 1 61 1 is obtained in the first step. In addition, the arc derived from the air electrode side interface is identified in the call / call plot of the fuel cell to be calculated.
- the frequency of the Cole-Cole 'plot of the calculation target fuel cell obtained in the first step is: An arc including a point where y is y is recognized as an arc derived from the air electrode side interface.
- the fact that the frequency top has the peak top means that the air electrode side changes. Is the portion corresponding to the frequency region in the vicinity of the frequency y in the Cole-Cole-Plot of the calculation target fuel cell, so that the calculation target fuel obtained in the first step is In the Cole-Cole 'plot of the battery cell, the arc including the point where the frequency is y can be recognized as the arc originating from the air electrode side interface.
- the interface resistance calculation step will be described with reference to FIG.
- the first arc 2a of the Cole Cole plot 1a is an arc originating from the fuel electrode side interface
- the circular arc 3a is recognized as an arc originating from the air electrode side interface.
- the intersection of the first arc 2a and the horizontal axis that is, the point where the resistance value of the imaginary part of the first arc 2a is "0" is point A 1
- the intersection of the first arc 2a and the second arc 3a is the point B1, the intersection of the second arc 3a and the horizontal axis, that is, the imaginary part resistance of the second arc 3a.
- the R ra (min) is the real part resistance value of the point A 1
- the R ra (max) is the point B 1
- R c (min) is the real part resistance value of the point B 1
- R rc (max) is the real part resistance value of the point C 1.
- the call / call plot of the calculation target fuel cell obtained by performing the first step is composed of three arcs
- the first arc 2b of the Cole-Cole 'plot 1b is an arc originating from the fuel electrode side interface
- the second arc 3 It is assumed that b is an arc derived from the air electrode side interface.
- the call call plot of the calculation target fuel cell obtained by performing the first step is composed of four arcs
- the arc is on the side where the real part resistance value is larger than the third arc. Since the relationship between the first arc, the second arc, and the third arc does not change only by increasing, the call plot of the calculation target fuel cell obtained by performing the first step is The same as the case of three circles.
- the method for measuring the interface resistance according to the second aspect of the present invention is to calculate the interface resistance by calculating the fuel electrode side interface resistance Ria and the air electrode side interface resistance Ric when the fuel cell for calculation is operated.
- the complex impedance measurement of the calculation target fuel cell is performed under the third measurement condition and the fourth measurement condition that are different only in the gas composition of the air electrode side gas, and then the frequency in the third measurement condition is n.
- the difference ⁇ R (3-4) rn between the real part resistance value R 3 rn and the real part resistance value R 4 rn when the frequency in the fourth measurement condition is n is expressed by the following equation (2):
- An equivalent circuit having (i) a first resistor connected in series; (ii) a second resistor and a first capacitor connected in parallel; and (iii) a third resistor and a second capacitor connected in parallel.
- the first step, the second step and the third step according to the method for measuring the interfacial resistance according to the second aspect of the present invention are the first step and the second step according to the method for measuring the interfacial resistance according to the first aspect of the present invention. And it is the same as that of a 3rd process.
- the equivalent circuit is constructed.
- the first When the call “call” plot of the cell for the fuel cell to be calculated obtained in the step is the call “call” plot 1 a shown in FIG. 1, that is, the calculation obtained in the first step.
- the equivalent circuit to be constructed is the equivalent circuit 21 shown in Fig. 6.
- the equivalent circuit 21 includes (i) a first resistor 22a, (ii) a second resistor 24a and a first capacitor 23a connected in parallel, and (iii) connected in parallel.
- the third resistor 2 6 a and the second capacitor 2 5 a are connected in series.
- fitting is performed between the equivalent circuit 21 and the cornole-conore plot 1 a of the senore for the calculation target fuel cell obtained in the first step.
- input the circuit diagram of the equivalent circuit, the resistance value of the resistor in the equivalent circuit, the capacitance value of the capacitor in the equivalent circuit, and the reactance and calculate the Cole Cole plot and output the shape Use existing software that can.
- the existing software used for the fitting is not particularly limited, and examples thereof include Z V i e w2 -E qu i v a l nt-C i rc u i ts.
- the fitting is performed by first softening the circuit diagram of the equivalent circuit 21, the initial value of the first resistor 2 2 a, the initial value of the second resistor 24 a, and the initial value of the first capacitor 23 a Value, the initial value of the third resistor 26a, the initial value of the second capacitor 25a, and the input value necessary for the calculation of reactance, etc., and then changing the input value little by little
- the calculation by the software is repeated, and the shape of the call / call plot obtained by the calculation by the software is changed to the call / call plot of the calculation target fuel cell obtained in the first step. This is done by approximating the shape of the G.
- the shape of the call ⁇ call ⁇ plot obtained by the calculation in the software is the same as that of the cell for the fuel cell to be calculated obtained in the first step.
- the input value when it matches or substantially matches the shape of the mouthpiece is obtained as the input value at the time of fitting.
- the relationship between the equivalent circuit 21 and the Cole-Cole 'plot ⁇ a of the calculation target fuel cell obtained in the first step will be described by the second step and the third step.
- the second resistance 24 a is a fuel electrode side interface resistance Ria
- the first capacitor 23 a is a capacitor component at the fuel electrode side interface
- the third resistance 26 a is an air electrode side interface resistance.
- the second capacitor 25 a corresponds to the capacitor component at the air electrode side interface, respectively.
- the first arc 2a of the Cole-Cole plot 1a is an arc derived from the air electrode side interface
- the second arc 3a Is identified as a circular arc originating from the fuel electrode side interface
- the second resistance 24 a is the air electrode side interface resistance R ic
- the first capacitor 23 a is the capacitor component of the air electrode side interface.
- the third resistor 26 a corresponds to the fuel electrode side interface resistance R ia
- the second capacitor 25 a corresponds to the capacitor component on the fuel electrode side interface.
- the input value of the second resistance 24 a is the fuel electrode side interface resistance Ria
- the input value of the third resistance 26 a is the air electrode side interface resistance R ic.
- the fitting The input value of the second resistance 24 a is the air electrode side interface resistance R ic
- the input value of the third resistance 26 a is the fuel electrode side interface resistance R ia .
- the equivalent circuit to be constructed is the equivalent circuit 30 shown in FIG.
- the equivalent circuit 30 includes (i) a first resistor 2 2 b, (ii) a second resistor 2 4 b connected in parallel and a first capacitor 2 3 b, (iii) connected in parallel.
- the third resistor 26b and the second capacitor 25b, and (iv) the fourth resistor 28b and the third capacitor 27b connected in parallel are connected in series.
- the fitting is performed by first applying the soft circuit diagram of the equivalent circuit 30, the initial value of the first resistor 2 2 b, the initial value of the second resistor 24 b, and the first capacitor 23 b
- Initial value initial value of the third resistor 26b, initial value of the second capacitor 25b, initial value of the fourth resistor 28b, initial value of the third capacitor 27b, reactance
- the Cole-Cole plot of the calculation target fuel cell obtained in the first step is composed of two arcs, except that the input values necessary for the calculation are input. The input value at the time of fitting and fitting is obtained.
- the relationship between the equivalent circuit 30 and the call cell call 'plot 1 b of the fuel cell to be calculated obtained in the first step will be described by the second step and the third step.
- the second resistance 24 b is the fuel electrode side interface resistance Ria
- the first capacitor 23 b is the capacitor component of the fuel electrode side interface
- the third resistance 26 b is the air electrode side interface resistance.
- the second capacitor 25 b corresponds to the capacitor component at the air electrode side interface.
- the second process and the third process (4) the call ⁇
- the first arc 2b of Cole 'plot 1b is an arc derived from the air electrode side interface and the second arc 3b is an arc derived from the fuel electrode side interface
- the second arc 3b The resistance 24 b is the air electrode side interface resistance R ic
- the first capacitor 23 b is the capacitor component of the air electrode side interface
- the third resistance 26 b is the fuel electrode side interface resistance R ia
- the second capacitor 25 b corresponds to the capacitor component on the fuel electrode side interface.
- the input value of the second resistance 24 b is the fuel electrode side interface resistance R ia
- the input value of the third resistance 26 b is the air electrode side interface resistance R ic.
- the fitting Of the input values at the time the input value of the second resistance 24 b is the air electrode side interface resistance R ic, and the input value of the third resistance 26 b is the fuel electrode side interface resistance R ia .
- the call / call plot of the calculation target fuel cell obtained in the first step is composed of four or more arcs, the equivalent shown in FIG. 7 regardless of the number of arcs. Fitting with circuit 30 can be performed.
- the call of the cell for calculation target fuel cell obtained in the first step is Cole plot (1)
- the first measurement condition and the second measurement condition are measurement conditions that differ only in the fuel concentration in the fuel electrode side gas
- the third measurement condition and the fourth measurement condition in the third step are Preferably, the measurement conditions are different only in the oxygen concentration in the air electrode side gas.
- the first measurement condition and the second measurement condition in the second step are measurement conditions that differ only in the hydrogen concentration in the fuel electrode side gas
- the third measurement condition and in the third step It is particularly preferable that the fourth measurement condition is a measurement condition in which only the oxygen concentration in the air electrode side gas is different.
- the first measurement condition and the second measurement condition in the second step Are the measurement conditions that differ only in the water vapor concentration in the fuel electrode side gas
- the third measurement condition and the fourth measurement condition in the third step are the oxygen conditions in the air electrode side gas. More preferably, the measurement conditions differ only in concentration.
- the complex impedance measurement of the cell for the fuel cell to be calculated and the The temperature at which the complex impedance measurement of the calculation target fuel battery cell in the third step is not particularly limited and is appropriately selected depending on the type of cell and the operating conditions, and is usually from 1 to 120 ° C. Yes, for example, in the case of a solid oxide fuel cell, the temperature is from 600 to 120 ° C.
- the first step and the third step are carried out to perform the first step. It is possible to reliably identify the interface from which the first arc and the second arc in the call plot of the calculation target fuel cell obtained in the process are derived. Therefore, the interface of the first aspect of the present invention According to the calculation method of the resistance and the calculation method of the interface resistance according to the second aspect of the present invention, the fuel electrode side interface resistance and the resistance when the calculation target fuel cell is operated under a specific operating condition desired to be calculated. The air electrode side interface resistance can be calculated.
- a slurry for forming a fuel electrode containing a mixed powder of nickel oxide (N i O) and scandiaceria stabilized zirconia (10 S c 1 C e SZ) having a mixing ratio of 50:50 was prepared, Using the slurry for forming the fuel electrode, a slurry layer for forming the fuel electrode with a film thickness of 100 ⁇ m was formed by screen printing. After drying, the slurry was fired at 1400 ° C for 5 hours to produce a fuel electrode.
- the complex impedance of the fuel cell A is determined under the conditions that the operating temperature of the cell is 100 ° C. and the gas composition is the hydrogen concentration of the fuel electrode side gas and the oxygen concentration of the air electrode side gas shown in Table 1.
- Measurement mode potentiostat, set voltage: 0.0 V, current range: 10 A, delay time: 0.1 sec, number of sweep measurement data: 50 times, integration number: 10 times maximum frequency: 1 0 0 k H Z, minimum frequency:. 0 1 H z, sinusoidal voltage:. 0 0 3 V rms, EM measurement time: 5 seconds, the polarization retention time:. 0 were measured at 2 seconds.
- the results are shown in Tables 2-5.
- Cole-Cole 'plots for measurements 1 to 4 are shown in Figs.
- the operating condition for calculating the interfacial resistance in the first process is set as measurement 1
- the first measurement condition in the second process is measured 4
- the second measurement condition is measured 2
- the third measurement condition in the third process is measured 1
- the fourth measurement condition is set as measurement 2
- the real part resistance difference No. 2 -Draft and real part resistance difference second graph was obtained. The results are shown in Tables 6 and 12. .
- the second arc 32 which is the arc including the point of frequency 1 OH z, is the arc originating from the air electrode side among the arcs in the call, call, and plot of measurement 1 in Fig. 8. It can be recognized that there is.
- the equivalent circuit shown in Fig. 7 was constructed. From the result of the above-mentioned arc recognition, in FIG. 7, the second resistance 24 b corresponds to the fuel electrode side interface resistance R i a, and the third resistance 26 b corresponds to the air electrode side interface resistance R i c. Next, using the existing software ZV ie w2—Equivalent—Circuits, fitting was performed with the call-call-plot of measurement 1 shown in Fig. 8, and the call 'call' plot shown in Fig. 13 was obtained. . The input value of the second resistor 24b in the case of the Cole-Cole-plot shown in Figure 1 is 0.99697.
- the input value of the third resistor 26 b was 0.555527 ⁇ . Accordingly, the fuel cell A has a gas composition with a hydrogen concentration of 10 0 on the fuel electrode side.
- the fuel electrode side interface resistance of the fuel cell A Is 0.969 76 ⁇ , interface resistance on the air electrode side R ic is 0.5 552
- the interfacial resistance of the fuel cell can be ascertained under operating conditions, so that it is easy to construct a power generation system having the fuel cell.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Fuel Cell (AREA)
Abstract
A method for calculating interface resistance in which the complex impedance of a cell for a calculation object fuel cell is measured under measurement conditions where only the gas composition of fuel pole side gas is different and measurement conditions where only the gas composition of air pole side gas is different to obtain a graph of real part resistance difference, a decision is then made from which of the fuel pole side interface and the air pole side interface an arc in the call call plot of the cell for calculation object fuel cell is derived under work condition, fuel pole side interface resistance Ria and air pole side interface resistance Ric are determined from the call call plot or determined by performing fitting on the call call plot and an equivalent circuit. The interface resistance can be calculated even if the thickness of electrolyte in the cell for fuel cell is small or the area or profile at the joint is not identical on the fuel pole side and the air pole side.
Description
明細書 Specification
界面抵抗の算出方法 技術分野 Interfacial resistance calculation method
' 本発明は、 燃料電池用セルの作動時の界面抵抗を測定する方法、 具体 的には、 燃料極と電解質との界面の界面抵抗及び空気極と電解質との界 面の界面抵抗を算出する方法に関する。 背景技術 '' The present invention is a method for measuring the interface resistance at the time of operation of a fuel cell, specifically, calculating the interface resistance at the interface between the fuel electrode and the electrolyte and the interface resistance at the interface between the air electrode and the electrolyte. Regarding the method. Background art
燃料電池は、 電解質を燃料極及び空気極で挟み込みようにして構成さ れている燃料電池用セルを有する。 該燃料電池用セルについて、 第 1 4 図を参照して説明する。 第 1 '4図は、 燃料電池用セルを示す模式図であ る。 第 1 4図中、 燃料電池用セル 4 4は、 電解質 4 1を、 燃料極 4 2及 び空気極 4 3で挟み込むようにして形成されている。 The fuel cell has a fuel cell unit configured such that an electrolyte is sandwiched between a fuel electrode and an air electrode. The fuel cell will be described with reference to FIG. Fig. 1'4 is a schematic diagram showing a fuel cell. In FIG. 14, the fuel cell 4 4 is formed so that the electrolyte 4 1 is sandwiched between the fuel electrode 4 2 and the air electrode 4 3.
該燃料電池用セル 4 4の作動時の抵抗値は、 燃料電池用セルの性能に 係る重要な要素の 1つであるので、 該燃料電池用セル 4 4の作動時の抵 抗値を把握することは重要である。 該燃料電池用セル 4 4の作動時の抵 抗は、 主に、 該電解質 4 1自身のオーム抵抗、 該燃料極 4 2自身のォー ム抵抗、 該空気極 4 3自身のオーム抵抗、 作動時の該燃料極 4 2と該電 解質 4 1 との界面の界面抵抗及び作動時の該空気極 4 3と該電解質 4 1 との界面の界面抵抗の合算値である。 なお、 以下、 該電解質 4 1自身の オーム抵抗、 該燃料極 4 2自身のオーム抵抗及ぴ該空気極 4 3自身のォ ーム抵抗の合計を、 セルのオーム抵抗 R bとも記載し、 燃料極と電解質 との界面の界面抵抗を、 燃料極側界面抵抗 R i aとも記載し、 空気極と 電解質との界面の界面抵抗を、 空気極側界面抵抗 R i cとも記載する。 上記抵抗のうち、 該燃料極 4 2自身のオーム抵抗は、 該電解質 4 1に
接合される前の該燃料極 4 2の抵抗を測定すること、 あるいは、 該電解 質 4 1に接合されていない該燃料極 4 2を作製して、 その抵抗を測定す ることにより、 求められる。 また、 該電解質 4 1自身のオーム抵抗及ぴ 該空気極 4 3自身のオーム抵抗についても同様である。 Since the resistance value of the fuel cell 4 4 during operation is one of the important factors related to the performance of the fuel cell 4, the resistance value during operation of the fuel cell 4 4 is grasped. That is important. The resistance at the time of operation of the fuel cell 44 is mainly the ohmic resistance of the electrolyte 41 itself, the ohmic resistance of the fuel electrode 42 itself, the ohmic resistance of the air electrode 43 itself, The sum of the interface resistance at the interface between the fuel electrode 4 2 and the electrolyte 4 1 at the time and the interface resistance at the interface between the air electrode 4 3 and the electrolyte 4 1 during operation. Hereinafter, the total of the ohmic resistance of the electrolyte 41 itself, the ohmic resistance of the fuel electrode 42 itself, and the ohmic resistance of the air electrode 43 itself is also referred to as the ohmic resistance Rb of the cell. The interface resistance at the electrode-electrolyte interface is also described as the fuel electrode-side interface resistance Ria, and the interface resistance at the air electrode-electrolyte interface is also described as the air electrode-side interface resistance Ric. Of the above resistances, the ohmic resistance of the fuel electrode 42 itself is applied to the electrolyte 41. It is obtained by measuring the resistance of the fuel electrode 42 before being bonded, or by preparing the fuel electrode 42 not bonded to the electrolyte 41 and measuring its resistance. . The same applies to the ohmic resistance of the electrolyte 41 itself and the ohmic resistance of the air electrode 43 itself.
一方、 該燃料極側界面抵抗 R i a及ぴ該空気極側界面抵抗 R i cは、 該燃料極 4 2又は該空気極 4 3と該電解質 4 1 との界面の抵抗なので、 実際に、 該燃料極 4 2又ほ該空気極 4 3を該電解質 4 1に接合した状態 でなければ、 抵抗を測定することはできない。 On the other hand, the fuel electrode side interface resistance R ia and the air electrode side interface resistance R ic are resistances at the interface between the fuel electrode 42 or the air electrode 43 and the electrolyte 41, so The resistance cannot be measured unless the electrode 4 2 or the air electrode 4 3 is joined to the electrolyte 4 1.
そこで、 従来の界面抵抗の測定方法について、 第 1 5図を参照して説 明する。 第 1 5図は、 従来の界面抵抗の測定方法を示す模式図であり、 界面抵抗測定時の燃料電池用セルの断面の模式図である。 先ず、 電解質 4 1 aに燃料極 4 2 a及ぴ空気極 4 3 aを接合する前のそれぞれのォー ム抵抗、 すなわち、 該電解質 4 1 aのオーム抵抗、 該燃料極 4 2 aのォ ーム抵抗及ぴ空気極 4 3 aのオーム抵抗を測定する。 次いで、 第 1 5図 に示すように、 該電解質 4 1 aを該燃料極 4 2 a及ぴ該空気極 4 3 aで 挟み込むようにして、 燃料電池用セル 4 4 aを形成させ、 更に、 中間電 位点 5 5 aに、 参照極 5 1を設ける。 通常、 該参照極 5 1が設置される 位置は、 該電解質 4 1 aの側面であり、 該電解質 4 1 aの厚み方向の中 間点である。次いで、該燃料電池用セル 4 4 aの作動条件と同じ条件で、 燃料極端子 5 3と該参照極 5 1 との間の抵抗及ぴ該参照極 5 1と空気極 端子 5 4との間の抵抗をそれぞれ測定する。 そして、 下記式 (5 ) : 該燃料極側界面抵抗 R i a =抵抗 5 3— 5 1 — (R b a + O . 5 R b s ) ( 5 ) Therefore, a conventional method for measuring interface resistance will be described with reference to FIG. FIG. 15 is a schematic diagram showing a conventional method for measuring interface resistance, and is a schematic diagram of a cross section of a cell for a fuel cell at the time of measuring interface resistance. First, the respective ohmic resistances before joining the fuel electrode 4 1a and the air electrode 4 3a to the electrolyte 4 1a, that is, the ohmic resistance of the electrolyte 4 1a, the resistance of the fuel electrode 4 2a, Measure the ohmic resistance and the ohmic resistance of the air electrode 4 3 a. Next, as shown in FIG. 15, the fuel cell 4 4 a is formed by sandwiching the electrolyte 4 1 a between the fuel electrode 4 2 a and the air electrode 4 3 a, and The reference electrode 5 1 is provided at the intermediate potential point 5 5 a. Usually, the position where the reference electrode 51 is installed is the side surface of the electrolyte 41a, and the middle point in the thickness direction of the electrolyte 41a. Next, the resistance between the fuel electrode terminal 53 and the reference electrode 51 and the resistance between the reference electrode 51 and the air electrode terminal 54 under the same operating conditions as the fuel cell 44a. Measure the resistance of each. And the following formula (5): the fuel electrode side interface resistance R ia = resistance 5 3 — 5 1 — (R ba + O. 5 R bs) (5)
(式中、 抵抗 5 3 _ 5 1は、 該燃料極端子 5 3と該参照極 5 1との間の抵抗 を示し、 R b aは、 該燃料極 4 2 aのオーム抵抗を示し、 R b sは、 該 電解質 4 1 aのオーム抵抗を示す。 )
より、 該燃料極側界面抵抗 R i aを算出し、 下記式 (6 ) : (Wherein, resistance 5 3 _ 5 1 represents the resistance between the fuel electrode terminal 5 3 and the reference electrode 51, R ba represents the ohmic resistance of the fuel electrode 4 2 a, and R bs Represents the ohmic resistance of the electrolyte 41a.) From the fuel electrode side interface resistance R ia, the following equation (6):
該空気極側界面抵抗 R i c =抵抗 5 i— 5 4— ( R b c + 0 . 5 R b s ) ( 6 ) Air electrode side interface resistance R ic = Resistance 5 i— 5 4 — (R bc + 0.5 R bs) (6)
(式中、 抵抗 5 1— 5 4は、 該参照極 5 1と該窣気極端子 5 4との間の抵抗 を示し、 R b cは、 該空気極 4 3 aのオーム抵抗を^し、 R b sは、 該 電解質 4 1 aのオーム抵抗を示す。 ) (Wherein, resistance 5 1 — 5 4 represents the resistance between the reference electrode 5 1 and the negative electrode terminal 5 4, and R bc represents the ohmic resistance of the air electrode 4 3 a, R bs represents the ohmic resistance of the electrolyte 4 1 a.)
より、 該空気極側界面抵抗 R i cを算出する。 なお、 該中間電位点 5 5 aとは、 該電解質 4 1 aのオーム抵抗を二分する点を指す。 Thus, the air electrode side interface resistance R ic is calculated. The intermediate potential point 55a refers to a point that bisects the ohmic resistance of the electrolyte 41a.
上記のような従来の界面抵抗の算出方法では、 該電解質の厚みが十分 あれば、 何の支障もなく、 該参照極を設置することができる。 し力 し、 現在実用されている燃料電池用セルの電解質の厚みは、 5〜 1 0 0 μ m 程度と、 極めて薄いため、 現在実用されている燃料電池用セルの電解質 に、 該参照極を設置することが困難であった。 すなわち、 現在実用され ている燃料電池用セルの場合、 界面抵抗を算出することができないとい う問題があった。 In the conventional method for calculating the interfacial resistance as described above, the reference electrode can be installed without any problem as long as the thickness of the electrolyte is sufficient. However, since the thickness of the electrolyte of the fuel cell currently in practical use is extremely thin, about 5 to 100 μm, the reference electrode is used as the electrolyte of the fuel cell currently in practical use. It was difficult to install. In other words, there is a problem that the interface resistance cannot be calculated in the case of fuel cell cells that are currently in practical use.
また、 第 1 5図に示す該燃料電池用セル 4 4 aの場合、 該電解質 4 1 aと該燃料極 4 2 a との接合部の面積及び形状が、 該電解質 4 1 aと該 空気極 4 3 a との接合部の面積及ぴ形状と同じなので、 該電解質 4 1 a 中の電位の変化は、 上下対象になる。 すなわち、 該電解質 4 1 a中の等 電位線 5 2 aを示すと、 該燃料電池用セル 4 4 aの場合、 該等電位線 5 2 aが、 該燃料極 4 2 a及び該空気極 4 3 aから、 上下対象の形状で広 がる。そのため、該燃料電池用セル 4 4 aでは、該中間電位点 5 5 aは、 該電解質 4 1 aの側面に現れ、 且つ該電解質 4 1 aの厚み方向の中間点 になる。 Further, in the case of the fuel cell 4 4 a shown in FIG. 15, the area and shape of the junction between the electrolyte 4 1 a and the fuel electrode 4 2 a are the same as those of the electrolyte 4 1 a and the air electrode. Since the area and shape of the junction with 4 3 a are the same, the potential change in the electrolyte 4 1 a is subject to up and down. That is, when the equipotential line 5 2 a in the electrolyte 4 1 a is shown, in the case of the fuel cell 4 4 a, the equipotential line 5 2 a is connected to the fuel electrode 4 2 a and the air electrode 4. 3 From a, spread in the shape of the top and bottom objects. Therefore, in the fuel cell 4 4 a, the intermediate potential point 55 a appears on the side surface of the electrolyte 41 a and is the intermediate point in the thickness direction of the electrolyte 41 a.
第 1 6図は、 電解質と燃料極との接合部の面積又は形状が、 電解質と 空気極との接合部の面積又は形状と同じではない燃料電池用セルを示す
模式的な断面図である。 第 1 6図中、 燃料電池用セル 4 4 bでは、 電解 質 4 1 bと燃料極 4 2 bとの接合部の面積及び形状は、 該電解質 4 1 b と空気極 4 3 bとの接合部の面積及び形状と同じではない。 この場合、 等電位線 5 2 bは、 該燃料極 4 2 b及び該空気極 4 3 bから、 上下非対 象の形状で広がる。 そのため、 該燃料電池用セル 4 4 bでは、 中間電位 点 5 5 bは、 該電解質 4 1 bの側面には現れず、 該燃料極 4 2 bが接合 されている面 5 6に現れ、 そして、 該接合部の面積又は形状により、 該 中間電位点 5 5 bの現れる位置は変わるので、 該燃料電池用セル 4 4 b の場合、 正確な位置に、 該参照極を設置することができず、 正確な界面 抵抗を測定できないという問題があった。 Fig. 16 shows a fuel cell in which the area or shape of the junction between the electrolyte and the fuel electrode is not the same as the area or shape of the junction between the electrolyte and the air electrode It is typical sectional drawing. In FIG. 16, in the fuel cell 4 4 b, the area and shape of the junction between the electrolyte 4 1 b and the fuel electrode 4 2 b are the same as the junction between the electrolyte 4 1 b and the air electrode 4 3 b. It is not the same as the area and shape of the part. In this case, the equipotential line 5 2 b extends from the fuel electrode 4 2 b and the air electrode 4 3 b in a shape that is not vertically aligned. Therefore, in the fuel cell 44b, the intermediate potential point 55b does not appear on the side surface of the electrolyte 41b, but appears on the surface 56 where the fuel electrode 42b is joined, and The position where the intermediate potential point 5 5 b appears varies depending on the area or shape of the junction. Therefore, in the case of the fuel cell 4 4 b, the reference electrode cannot be installed at an accurate position. There was a problem that accurate interface resistance could not be measured.
従って、 本発明の課題は、 燃料電池用セルの電解質の厚みが小さくて も、 あるいは、 電解質と燃料極との接合部の面積又は形状が、 電解質と 空気極との接合部の面積又は形状と同じでなくても、 界面抵抗を算出す ることができる界面抵抗の算出方法を提供することにある。 発明の開示 Therefore, the problem of the present invention is that even if the thickness of the electrolyte of the fuel cell cell is small, or the area or shape of the junction between the electrolyte and the fuel electrode is the same as the area or shape of the junction between the electrolyte and the air electrode. An object of the present invention is to provide an interface resistance calculation method that can calculate the interface resistance even if they are not the same. Disclosure of the invention
本発明 (1 ) は、 算出対象燃料電池用セルの作動時の燃料極側界面抵 抗 R i a及び空気極側界面抵抗 R i cを算出する界面抵抗の算出方法で あって、 The present invention (1) is an interface resistance calculation method for calculating a fuel electrode side interface resistance R ia and an air electrode side interface resistance R ic during operation of a calculation target fuel cell.
界面抵抗の算出を行う作動条件で、 該算出対象燃料電池用セルの複素ィ ンピーダンス測定を行い、該算出対象燃料電池用セルのコール ·コール · プロットを得る第一工程と、 A first step of obtaining a Cole-Cole plot of the calculation target fuel cell by performing a complex impedance measurement of the calculation target fuel cell under an operating condition for calculating the interface resistance;
燃料極側ガスのガス組成のみが異なる第一測定条件及び第二測定条件で、 該算出対象燃料電池用セルの複素インピーダンス測定を行い、 次いで、 該第一測定条件における周波数が nの時の実数部抵抗値 R 1 r nと該第 二測定条件における周波数が nの時の実数部抵抗値 R 2 r nとの差厶 R
( 1 - 2) r nを下記式 (1) : The complex impedance measurement of the calculation target fuel cell is performed under the first measurement condition and the second measurement condition that are different only in the gas composition of the fuel electrode side gas, and then the real number when the frequency in the first measurement condition is n Difference between the resistance value R 1 rn and the real resistance value R 2 rn when the frequency in the second measurement condition is n (1-2) rn in the following formula (1):
Δ R (1 - 2) r n=R l r n-R 2 r n ( 1) により計算し、 周波数毎の (1— 2) r nを求め、 次いで、 横軸を 周波数、 縦軸を AR (1— 2) r nとして、 周波数毎の A R (1— 2) r nをプロットし、 実数部抵抗値差第一グラフを得、 次いで、 該実数部 抵抗値差第一グラフ中のピーク トップの周波数から、 該第一工程で得ら れた該算出対象燃料電池用セルのコール · コール ·プロット中の円弧の うち、 燃料極側界面に由来する円弧を認定する第二工程と、 Δ R (1-2) rn = R lr nR 2 rn (1) to calculate (1— 2) rn for each frequency, then the horizontal axis is frequency and the vertical axis is AR (1— 2) rn Plot AR (1−2) rn for each frequency to obtain the first real part resistance value difference graph, and then from the peak top frequency in the first real part resistance value difference graph, the first step A second step of certifying an arc derived from the fuel electrode side interface among the arcs in the call-call-plot of the fuel cell to be calculated obtained in
該空気極側ガスのガス組成のみが異なる第三測定条件及ぴ第四測定条件 で、 該算出対象燃料電池用セルの複素インピーダンス測定を行い、 次い で、 該第三測定条件における周波数が nの時の実数部抵抗値 R 3 r nと 該第四測定条件における周波数が nの時の実数部抵抗値 R 4 r nとの差 厶 R (3 -4) r nを下記式 (2) : The complex impedance measurement of the calculation target fuel cell is performed under the third measurement condition and the fourth measurement condition, which differ only in the gas composition of the air electrode side gas, and then the frequency in the third measurement condition is n The difference between the real part resistance value R 3 rn and the real part resistance value R 4 rn when the frequency in the fourth measurement condition is n 厶 R (3 -4) rn is expressed by the following equation (2):
Δ R (3 -4) r n=R 3 r n-R4 r n (2) により計算し、 周波数毎の AR (3— 4) r nを求め、 次いで、 横軸に 周波数、 縦軸に AR (3 -4) r nをプロットして実数部抵抗値差第二 グラフを得、 次いで、 該実数部抵抗値差第二グラフ中のピーク トップの 周波数から、 該第一工程で得られた該算出対象燃料電池用セルのコ一 ル · コール .プロット中の円弧のうち、 空気極側界面に由来する円弧を 認定する第三工程と、 Δ R (3 -4) rn = R 3 r n-R4 rn (2) to calculate AR (3 — 4) rn for each frequency, then frequency on the horizontal axis and AR (3- 4) Plot rn to obtain a real part resistance difference second graph, and then calculate the target fuel cell obtained in the first step from the peak top frequency in the real part resistance difference second graph. Cell call and call for the cell The third step of certifying the arc originating from the air electrode side interface among the arcs in the plot,
該第一工程で得られた該算出対象燃料電池用セルのコール · コール ·プ ロット中、 該第二工程で燃料極側界面に由来する円弧であると認定した 円弧の実数部抵抗値の最大値 R r a (ma x) と実数部抵抗値の最小値 R r a (m i n) との差を、 下記式 (3) : The maximum of the resistance value of the real part of the arc that is recognized as the arc derived from the fuel electrode side interface in the second step in the call / call / plot of the fuel cell to be calculated obtained in the first step The difference between the value R ra (max) and the minimum value R ra (min) of the real part resistance is expressed by the following equation (3):
R i a =R r a (ma x) -R r a (m i n) (3) R i a = R r a (max) -R r a (m i n) (3)
により計算して、 燃料極側界面抵抗 R i aを求め、 次いで、 該第一工程
で得られた該算出対象燃料電池用セルのコール ' コール 'プロット中、 該第三工程で空気極側界面に由来する円弧であると認定した円弧の実数 部抵抗値の最大値 R r c (ma x) と実数部抵抗値の最小値 R r c (m i n) との差を、 下記式 (4) : To calculate the fuel electrode side interface resistance R ia, and then the first step During the call 'call' plot of the fuel cell to be calculated obtained in step 3, the maximum resistance R rc (ma of the real part of the arc that was identified as the arc derived from the air electrode side interface in the third step x) and the difference between the real part resistance value R rc (min) and the following equation (4):
R i c =R r c (ma x) — R r c (m i n) (4) R i c = R r c (ma x) — R r c (m i n) (4)
により計算し、 空気極側界面抵抗 R i cを求める界面抵抗計算工程と、 を有することを特徴とする界面抵抗の算出方法を提供するものである。 また、 本発明 (2) は、 算出対象燃料電池用セルの作動時の燃料極側 界面抵抗 R i a及び空気極側界面抵抗 R i cを算出する界面抵抗の算出 方法であって、 And an interface resistance calculation step for obtaining an air electrode side interface resistance R ic, and a method for calculating the interface resistance, comprising: Further, the present invention (2) is a method for calculating the interface resistance for calculating the fuel electrode side interface resistance R ia and the air electrode side interface resistance R ic during operation of the calculation target fuel cell.
界面抵抗の算出を行う作動条件で、 該算出対象燃料電池用セルの複素ィ ンピーダンス測定を行い、該算出対象燃料電池用セルのコール'コール · プロットを得る第一工程と、 A first step of performing a complex impedance measurement of the calculation target fuel cell under an operating condition for calculating an interface resistance and obtaining a Cole-Cole plot of the calculation target fuel cell;
燃料極側ガスのガス組成のみが異なる第一測定条件及び第二測定条件で、 該算出対象燃料電池用セルの複素インピーダンス測定を行い、 次いで、 該第一測定条件における周波数が nの時の実数部抵抗値 R 1 r nと該第 二測定条件における周波数が nの時の実数部抵抗値 R 2 r nとの差厶 R ( 1— 2) r nを下記式 (1) : The complex impedance measurement of the calculation target fuel cell is performed under the first measurement condition and the second measurement condition that are different only in the gas composition of the fuel electrode side gas, and then the real number when the frequency in the first measurement condition is n The difference between the part resistance value R 1 rn and the real part resistance value R 2 rn when the frequency in the second measurement condition is n is R (1− 2) rn as the following formula (1):
厶 R (l— 2) r n = R l r n-R 2 r n (1) 厶 R (l— 2) r n = R l r n-R 2 r n (1)
により計算し、 周波数毎の AR ( 1 - 2) r nを求め、 次いで、 横軸を 周波数、 縦軸を (1 - 2) r nとして、 周波数毎の AR (1— 2) r nをプロットし、 実数部抵抗値差第一グラフを得、 次いで、 該実数部 抵抗値差第一グラフ中のピーク トップの周波数から、 該第一工程で得ら れた該算出対象燃料電池用セルのコール · コール ·プロット中の円弧の うち、 燃料極側界面に由来する円弧を認定する第二工程と、 Calculate AR (1-2) rn for each frequency, then plot the AR (1 — 2) rn for each frequency, with the horizontal axis representing frequency and the vertical axis representing (1-2) rn. The resistance value difference first graph is obtained, and then, from the peak top frequency in the real part resistance value difference first graph, the cell of the calculation target fuel cell obtained in the first step is called Of the arcs in the plot, the second step of certifying arcs originating from the fuel electrode side interface,
該空気極側ガスのガス組成のみが異なる第三測定条件及び第四測定条件
で、 該算出対象燃料電池用セルの複素インピーダンス測定を行い、 次い で、 該第三測定条件における周波数が nの時の実数部抵抗値 R 3 r nと 該第四測定条件における周波数が nの時の実数部抵抗値 R 4 r nとの差 厶 R (3 -4) r nを下記式 (2) : Third measurement condition and fourth measurement condition differing only in gas composition of the air electrode side gas Then, the complex impedance measurement of the calculation target fuel cell is performed, and then the real part resistance value R 3 rn when the frequency under the third measurement condition is n and the frequency under the fourth measurement condition is n Difference between real part resistance R 4 rn and R (3 -4) rn in the following formula (2):
Δ R ( 3 - 4 ) r n=R 3 r n-R4 r n (2) により計算し、 周波数毎の (3 -4) r nを求め、 次いで、 横軸に 周波数、 縦軸に (3 -4) r nをプロッ トして実数部抵抗値差第二 グラフを得、 次いで、 該実数部抵抗値差第ニグ 7フ中のピーク トップの 周波数から、 該第一工程で得られた該算出対象燃料電池用セルのコ一 ル · コール ·プロット中の円弧のうち、 空気極側界面に由来する円弧を 認定する第三工程と、 Δ R (3-4) rn = R 3 r n-R4 rn (2) Calculate (3 -4) rn for each frequency, then frequency on the horizontal axis and (3 -4) on the vertical axis rn is plotted to obtain a second graph of the real part resistance difference, and then the calculation target fuel cell obtained in the first step is obtained from the peak top frequency in the real part resistance difference No. 7 The third step to certify the arc originating from the air electrode side interface among the arcs in the cell call, call, plot,
直列に接続された ( i ) 第一抵抗、 ( i i ) 並列に接続された第二抵抗 及び第一コンデンサー、 並びに ( i i i ) 並列に接続された第三抵抗及 び第二コンデンサーを有する等価回路と、 該第一工程で得られた該算出 対象燃料電池用セルのコール · コール ' プロッ トとのフイツティングを 行い、 燃料極側界面抵抗 R i a及び空気極側界面抵抗 R i cを求めるフ イツティング工程と、 An equivalent circuit having (i) a first resistor connected in series; (ii) a second resistor and a first capacitor connected in parallel; and (iii) a third resistor and a second capacitor connected in parallel. The fitting step of fitting the fuel cell for the calculation target cell obtained in the first step with the Cole-Cole 'plot to obtain the fuel electrode side interface resistance Ria and the air electrode side interface resistance Ric When,
を有することを特徴とする界面抵抗の算出方法を提供するものである。 本発明によれば、 燃料電池用セルの電解質の厚みが小さくても、 ある いは、 電解質と燃料極との接合部の面積又は形状が、 電解質と空気極と の接合部の面積又は形状と同じでなくても、 界面抵抗を算出できる界面 抵抗の算出方法を提供することができる。 図面の簡単な説明 It is intended to provide a method for calculating an interface resistance characterized by comprising: According to the present invention, even if the thickness of the electrolyte of the fuel cell is small, or the area or shape of the junction between the electrolyte and the fuel electrode is the same as the area or shape of the junction between the electrolyte and the air electrode. Even if they are not the same, it is possible to provide a method for calculating the interface resistance that can calculate the interface resistance. Brief Description of Drawings
第 1図は、 2つの円弧からなる該算出対象燃料電池用セルのコール . コール .プロットの模式図であり、 第 2図は、 3つの円弧からなる該算
出対象燃料電池用セルのコール · コール ·プロットの模式図であり、 第Fig. 1 is a schematic diagram of the call-call plot of the fuel cell for calculation consisting of two arcs. Fig. 2 shows the calculation consisting of three arcs. It is a schematic diagram of the Cole-Cole-plot of the target fuel cell.
3図は、 該第一測定条件及び該第二測定条件で、 複素インピーダンス測 定した時の該算出対象燃料電池用セルのコール ' コール .プロットの模 式図であり、 第 4図は、 実数部抵抗差第一グラフ 1 4及び実数部抵抗差 第二グラフ 1 4 1を示す模式図であり、 第 5図は、 該第三測定条件及び 該第四測定条件で、 複素インピーダンス測定した時の該算出対象燃料電 池用セルのコール . コール ' プロッ トの模式図であり、 第 6図は、 等価 回路 2 1を示す図であり、 第 7図は、 等価回路 3 0を示す図であり、 第 8図は、測定 1のコール'コール.プロットを示す図であり、第 9図は、 測定 2のコール . コール 'プロットを示す図であり、 第 1 0図は、 測定 3のコール · コール 'プロットを示す図であり、 第 1 1図は、 測定 4の コール . コール .プロットを示す図であり、 第 1 2図は、 実数部抵抗値 差第一ダラフ及び実数部抵抗値差第二グラフを示すグラフであり、 第 1 3図は、 実施例 1におけるフイツティング工程で得られたフイツティン グ時のコール . コール 'プロットを示す図であり、 第 1 4図は、 燃料電 池用セルを示す模式図であり、 第 1 5図は、 従来の界面抵抗の測定方法 を示す模式図であり、 第 1 6図は、 電解質と燃料極との接合部の面積又 は形状が、 電解質と空気極との接合部の面積又は形状と同じではなレ、燃 料電池用セルを示す模式的な断面図である。 発明を実施するための最良の形態 Fig. 3 is a schematic diagram of the call-call plot of the fuel cell for calculation when complex impedance is measured under the first measurement condition and the second measurement condition, and Fig. 4 is a real number. Part resistance difference first graph 14 and real part resistance difference second graph 1 4 1 is a schematic diagram, FIG. 5 is a complex impedance measurement under the third measurement condition and the fourth measurement condition FIG. 6 is a diagram showing an equivalent circuit 21 and FIG. 7 is a diagram showing an equivalent circuit 30. FIG. Fig. 8 shows the call 1 plot for measurement 1, Fig. 9 shows the call call for measurement 2. Fig. 10 shows the plot for call 2. Fig. 10 shows the call for measurement 3. Figure 1 shows the Cole 'plot, Figure 1 shows the Cole Cole plot for measurement 4. A drawing, Fuitsutin first 2 figure is a graph showing a first Darafu and real part resistance difference second graph real resistance value difference, the first 3 figures obtained in Fuitsutingu step in Example 1 Fig. 14 is a schematic diagram showing a fuel cell, and Fig. 15 is a schematic diagram showing a conventional interface resistance measurement method. Yes, Fig. 16 is a schematic diagram showing a fuel cell, where the area or shape of the junction between the electrolyte and the fuel electrode is not the same as the area or shape of the junction between the electrolyte and the air electrode. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第一の形態の界面抵抗の測定方法は、 算出対象燃料電池用セ ルの作動時の燃料極側界面抵抗 R i a及び空気極側界面抵抗 R i cを算 出する界面抵抗の算出方法であって、 The method for measuring the interface resistance according to the first aspect of the present invention is a method for calculating the interface resistance by calculating the fuel electrode side interface resistance R ia and the air electrode side interface resistance R ic when the fuel cell for calculation is operated. Because
界面抵抗の算出を行う作動条件で、 該算出対象燃料電池用セルの複素ィ ンピーダンス測定を行い、該算出対象燃料電池用セルのコール 'コール .
プロットを得る第一工程と、 Under the operating conditions for calculating the interface resistance, the complex impedance measurement of the calculation target fuel cell is performed, and the call of the calculation target fuel cell is called 'call. A first step of obtaining a plot;
燃料極側ガスのガス組成のみが異なる第一測定条件及び第二測定条件で 該算出対象燃料電池用セルの複素インピーダンス測定を行い、 次いで、 該第一測定条件における周波数が nの時の実数部抵抗値 R 1 r nと該第 二測定条件における周波数が nの時の実数部抵抗値 R 2 r nとの差厶 R (1— 2) r nを下記式 (1) : The complex impedance measurement of the calculation target fuel cell is performed under the first measurement condition and the second measurement condition that are different only in the gas composition of the fuel electrode side gas, and then the real part when the frequency in the first measurement condition is n The difference between the resistance value R 1 rn and the real part resistance value R 2 rn when the frequency in the second measurement condition is n (R (1−2) rn is expressed by the following equation (1):
△ R ( l— 2) r n = R l r n-R 2 r n (1) により計算し、 周波数毎の (1 - 2) r nを求め、 次いで、 横軸を 周波数、 縦軸を (1 - 2) r nとして、 周波数毎の AR (1— 2) r nをプロットし、 実数部抵抗値差第一グラフを得、 次いで、 該実数部 抵抗値差第一グラフ中のピーク トップの周波数から、 該第一工程で得ら れた該算出対象燃料電池用セルのコール . コール ·プロット中の円弧の うち、 燃料極側界面に由来する.円弧を認定する第二工程と、 △ R (l− 2) rn = R lr nR 2 rn Calculate (1-2) rn for each frequency, then set the horizontal axis to frequency and the vertical axis to (1-2) rn Plot AR (1−2) rn for each frequency to obtain a real part resistance difference first graph, and then from the peak top frequency in the real part resistance difference first graph, The obtained call of the fuel cell to be calculated is derived from the fuel electrode side interface among the arcs in the call plot, and the second step of certifying the arc,
該空気極側ガスのガス組成のみが異なる第三測定条件及び第四測定条件 で、 該算出対象燃料電池用セルの複素インピーダンス測定を行い、 次い で、 該第三測定条件における周波数が nの時の実数部抵抗値 R 3 r nと 該第四測定条件における周波数が nの時の実数部抵抗値 R 4 r nとの差 厶 R (3— 4) r nを下記式 (2) : The complex impedance measurement of the calculation target fuel cell is performed under the third measurement condition and the fourth measurement condition that are different only in the gas composition of the air electrode side gas, and then the frequency in the third measurement condition is n. The difference between the real part resistance R 3 rn at the time and the real part resistance R 4 rn when the frequency in the fourth measurement condition is n 厶 R (3-4) rn is expressed by the following equation (2):
厶 R (3 -4) r n=R 3 r n-R4 r n (2) により計算し、 周波数毎の (3 -4) r nを求め、 次いで、 横軸に 周波数、 縦軸に (3 -4) r nをプロットして実数部抵抗値差第二 グラフを得、 次いで、 該実数部抵抗値差第二グラフ中のピーク トップの 周波数から、 該第一工程で得られた該算出対象燃料電池用セルのコー ル · コール ·プロッ ト中の円弧のうち、 空気極側界面に由来する円弧を 認定する第三工程と、 厶 R (3 -4) rn = R 3 r n-R4 rn Calculate (3 -4) rn for each frequency, then frequency on the horizontal axis and (3 -4) on the vertical axis rn is plotted to obtain a second real part resistance value difference graph, and then from the peak top frequency in the second real part resistance value difference graph, the fuel cell for calculation cell obtained in the first step A third process for certifying arcs originating from the air electrode side interface among the arcs in the call, call, and plot
該第一工程で得られた該算出対象燃料電池用セルのコール · コール ·プ
ロット中、 該第二工程で燃料極側界面に由来する円弧であると認定した 円弧の実数部抵抗値の最大値 R r a (ma x) と実数部抵抗値の最小値 R r a (m i n) との差を、 下記式 (3) : The call of the cell for the fuel cell to be calculated obtained in the first step In the lot, the maximum value R ra (max) of the real part resistance value of the arc and the minimum value R ra (min) of the real part resistance value of the arc that was recognized as the arc derived from the fuel electrode side interface in the second process The difference between the following formula (3):
R i a =R r a ma x) — R r a (m i n) (3) により計算して、 燃料極側界面抵抗 R i aを求め、 次いで、 該第一工程 で得られた該算出対象燃料電池用セルのコール . コール .プロット中、 該第三工程で空気極側界面に由来する円弧であると認定した円弧の実数 部抵抗値の最大値 R r c (ma x) と実数部抵抗値の最小値 R r c (m i n) との差を、 下記式 (4) : R ia = R ra max) — R ra (min) (3) is calculated to obtain the fuel electrode side interface resistance R ia, and then the calculation target fuel cell cell obtained in the first step is calculated. During the Cole Cole plot, the maximum value R rc (max) of the real part resistance value and the minimum value R rc of the real part resistance value of the arc identified as the arc originating from the air electrode side interface in the third step The difference from (min) is the following formula (4):
R i c =R r c (ma x) -R r c (m i n) (4) により計算し、 空気極側界面抵抗 R i cを求める界面抵抗計算工程と、 を有する界面抵抗の算出方法である。 R i c = R r c (max) −R r c (m i n) (4) to obtain the air electrode side interface resistance R i c, and a method for calculating the interface resistance.
本発明の第一の形態の界面抵抗の算出方法に係る算出対象燃料電池用 セルとは、 界面抵抗の算出の対象となる燃料電池用セルのことである。 該第一工程では、 先ず、 界面抵抗の算出を行う作動条件で、 該算出対 象燃料電池用セルの複素インピーダンス測定を行う。 The calculation target fuel cell for the interface resistance calculation method according to the first aspect of the present invention is a fuel cell for which the interface resistance is calculated. In the first step, first, the complex impedance of the calculated fuel cell is measured under the operating condition for calculating the interface resistance.
該界面抵抗の算出を行う作動条件とは、 界面抵抗の算出を欲する特定 の作動条件のことである。 つまり、 該第一工程では、 先ず、 界面抵抗の 算出を欲する特定の作動条件で、 該算出対象燃料電池用セルの複素ィン ピーダンス測定を行う。 The operating condition for calculating the interface resistance is a specific operating condition for which the interface resistance is desired to be calculated. That is, in the first step, first, the complex impedance measurement of the calculation target fuel cell is performed under a specific operating condition for which calculation of the interface resistance is desired.
該界面抵抗の算出を行う作動条件は、 燃料極側ガスの燃料濃度、 空気 極側ガスの酸素濃度、 セルの作動温度、 燃料極側ガスの水蒸気濃度、 空 気極側ガスの水蒸気濃度等の種々の要素から構成される。 そして、 該界 面抵抗の算出を行う作動条件は、 必ず、 燃料極側ガスのガス組成、 空気 極側ガスのガス組成及ぴセルの作動温度の 3要素を含んでいる。 The operating conditions for calculating the interface resistance are the fuel concentration of the fuel electrode side gas, the oxygen concentration of the air electrode side gas, the operating temperature of the cell, the water vapor concentration of the fuel electrode side gas, the water vapor concentration of the air electrode side gas, etc. Consists of various elements. The operating conditions for calculating the interface resistance always include three elements: the gas composition of the fuel electrode side gas, the gas composition of the air electrode side gas, and the operating temperature of the cell.
該算出対象燃料電池用セルとしては、 電解質を燃料極及び空気極で挟
み込んで形成される燃料電池用のセルであれば、 特に制限されず、 例え ば、 固体酸化物形燃料電池用セル、 リン酸形燃料電池用セル、 溶融炭酸 塩形燃料電池用セル、 固体高分子形燃料電池用セルが挙げられる。 The calculation target fuel cell includes an electrolyte sandwiched between a fuel electrode and an air electrode. For example, a solid oxide fuel cell, a phosphoric acid fuel cell, a molten carbonate fuel cell, solid A polymer fuel cell is exemplified.
該複素インピーダンス測定とは、 該算出対象燃料電池用セルの燃料極 と空気極の間に、 1 0 0 mV以下の僅かな電圧の交流成分を乗せて電圧 を印加する際に、 該交流成分の周波数を 1 0 0 k H z程度から 1 m H z 程度まで変化させた時の、 電流及びその位相差を測定することである。 該複素インピーダンス測定を行う方法と.しては、 通常、 燃料電池の特性 の把握のために用いられる複素ィンピーダンス測定の方法であれば、 特 に制限されない。 なお、 該複素インピーダンス測定は、 交流インピーダ ンス測定とも呼ばれている。 また、 後述する該第二工程に係る複素イン ピーダンス測定及ぴ該第三工程に係る複素インピーダンス測定は、 該第 一工程に係る複素インピーダンス測定と同様である。 The complex impedance measurement means that when a voltage is applied by applying a slight voltage AC component of 100 mV or less between the fuel electrode and the air electrode of the calculation target fuel cell, the AC component It is to measure the current and its phase difference when the frequency is changed from about 100 kHz to about 1 MHz. The method for performing the complex impedance measurement is not particularly limited as long as it is a complex impedance measurement method that is usually used for grasping the characteristics of the fuel cell. The complex impedance measurement is also called AC impedance measurement. Further, the complex impedance measurement according to the second step and the complex impedance measurement according to the third step described later are the same as the complex impedance measurement according to the first step.
そして、 該複素インピーダンス測定を行い得られる電流及びその位相 差を基に、 周波数を変化させた時の周波数毎の実数部抵抗値 Ζ ' ( Ω ) 及び虚数部抵抗値 Z " ( Ω ) を、 横軸を実数部抵抗値 Z ' 、 縦軸を虚数 部抵抗値 Z " として、 プロットして、 該算出対象燃料電池用セルのコー ル . コール .プロットを得る。 なお、 該算出対象燃料電池用セルのコー ル.コール.プロットを得る方法は、複素平面表示法とも呼ばれている。 該第一工程で得られる該算出対象燃料電池用セルのコール · コール . プロットを、 第 1図及び第 2図を参照して説明する。 第 1図は、 2つの 円弧からなる該算出対象燃料電池用セルのコール · コール · プロッ トの 模式図であり、 第 2図は、 3つの円弧からなる該算出対象燃料電池用セ ルのコール · コール 'プロッ トの模式図である。 該第一工程で得られる 該算出対象燃料電池用セルのコール ' コール ·プロットうち、 最も単純 な形のものは、 第 1図に示すように、 2つの円弧、 すなわち、 第一円弧
2 a及ぴ第二円弧 3 aからなるコール · コール 'プロット 1 aである。 また、 該第一工程で得られる該算出対象燃料電池用セルのコール . コー ル 'プロットとしては、 他に、 第 2図に示すように、 3つの円弧、 すな わち、 第一円弧 2 b、 第二円弧 3 b及び第三円弧 4からなるコール . コ 一ル .プロット l bや、 4つ以上の円弧、 すなわち、 第一円弧及ぴ第二 円弧並びに第一円弧及び第二円弧以外の 2以上の円弧からなるコール . コール ·プロットが挙げられる。 該第一工程で得られる該算出対象燃料 電池用セルのコール · コール ·プロットの多くは、 2つ又は 3つの円弧 からなる。 Then, based on the current obtained by performing the complex impedance measurement and its phase difference, the real part resistance value Ζ ′ (Ω) and the imaginary part resistance value Z ″ (Ω) for each frequency when the frequency is changed, The horizontal axis is plotted with the real part resistance value Z ′, and the vertical axis is plotted with the imaginary part resistance value Z ″ to obtain a call call plot of the calculation target fuel cell. The method of obtaining the call call plot of the calculation target fuel cell is also called the complex plane display method. The call-call plot of the calculation target fuel cell obtained in the first step will be described with reference to FIG. 1 and FIG. Fig. 1 is a schematic diagram of the call cell plot of the calculation target fuel cell consisting of two arcs. Fig. 2 is a call of the cell for calculation target fuel cell consisting of three arcs. · Schematic diagram of call 'plot. The call cell plot for the calculation target fuel cell obtained in the first step is the simplest of the two plots, as shown in Fig. 1. Cole · call 'plot 1 a consisting of 2 a and second arc 3 a. In addition, as a call call plot of the calculation target fuel cell obtained in the first step, there are three arcs, that is, the first arc 2 as shown in FIG. b, a call consisting of the second arc 3 b and the third arc 4. Coll. Plot lb or more than four arcs, ie, other than the first and second arcs and the first and second arcs Call consisting of two or more arcs. Cole plot. Many of the Cole-Cole-Plots of the calculation target fuel cell obtained in the first step are composed of two or three arcs.
なお、 本発明において、 該第一円弧とは、 該第一工程で得られる該算 出対象燃料電池用セルのコール · コール 'プロットの円弧のうち、 実数 部抵抗値が小さい側から数えて、 1番目の円弧を指し、該第二円弧とは、 該第一工程で得られる該算出対象燃料電池用セルのコール · コール .プ ロットの円弧のうち、 実数部抵抗値が小さい側から数えて、 2番目の円 弧を指す。そして、該第一円弧及び該第二円弧のうちのいずれか一方が、 燃料極側界面に由来する円弧であり、 他方が空気極側界面に由来する円 弧である。 In the present invention, the first arc is counted from the side where the real part resistance value is small in the arc of the Cole-Cole 'plot of the calculation target fuel cell obtained in the first step, This refers to the first arc, and the second arc is counted from the side with the smaller real part resistance value in the arc of the Cole Cole plot of the fuel cell to be calculated obtained in the first step. , Refers to the second arc. One of the first arc and the second arc is an arc derived from the fuel electrode side interface, and the other is an arc derived from the air electrode side interface.
なお、 実際に該複素インピーダンス測定を行って得られる該算出対象 燃料電池用セルのコール · コール ·プロットの曲線が、 真円の円弧と同 —の形状になることは殆どなく、 真円の円弧に類似した形状となるが、 本発明では、 円弧の文言を用いた。 Note that the Cole-Cole-Plot curve of the calculation target fuel cell obtained by actually performing the complex impedance measurement rarely has the same shape as a perfect circular arc. However, in the present invention, the wording of arc is used.
第 1図中、 該コール ' コール 'プロット 1 aでは、 実数部抵抗値が小 さくなる程、 高周波数になり、 すなわち、 矢印 5の方向に向かって高周 波数になり、 一方、 実数部抵抗値が大きくなる程、 低周波数になり、 す なわち、 矢印 6の方向に向かって低周波数になる。 また、 3以上の円弧 からなる該算出対象燃料電池用セルのコール · コール 'プロットの場合
も同様に、 実数部抵抗値が小さくなる程、 高周波数になり、 一方、 実数 部抵抗値が大きくなる程、 低周波数になる。 In Fig. 1, in the call 'call' plot 1a, the smaller the real part resistance value, the higher the frequency, that is, the higher the frequency in the direction of arrow 5, while the real part resistance. The higher the value, the lower the frequency, that is, the lower the frequency in the direction of arrow 6. In the case of the call / call 'plot of the target fuel cell consisting of three or more arcs Similarly, the lower the real part resistance, the higher the frequency, while the higher the real part resistance, the lower the frequency.
該第二工程では、 先ず、 燃料極側ガスのガス組成のみが異なる第一測 定条件及び第二測定条件で、 該算出対象燃料電池用セルの複素ィンピー ダンス測定を行う。 In the second step, first, the complex impedance measurement of the calculation target fuel cell is performed under the first measurement condition and the second measurement condition that are different only in the gas composition of the fuel electrode side gas.
該燃料極側ガスのガス組成のみが異なる第一測定条件及び第二測定条 件で、該算出対象燃料電池用セルの複素ィンピーダンス測定を行うとは、 測定条件を構成する要素のうち、 該燃料極側ガスのガス組成以外は固定 し、 該燃料極側ガスのガス組成のみを代えた 2つの測定条件で、 該算出 対象燃料電池用セルの複素インピーダンス測定を行うことを指す。 具体 的には、 例えば、 該第一測定条件の燃料極側ガスの水素濃度を 1 0 0体 積%とし、該第二測定条件の燃料極側ガスの水素濃度を 1 0体積。 /0とし、 他の測定条件を構成する要素については、 該第一測定条件及び該第二測 定条件のいずれも同一にして、 該算出対象燃料電池用セルの複素インピ —ダンス測定を行う。 該第一測定条件及ぴ該第二測定条件に係る測定条 件は、 燃料極側ガスの燃料濃度、 空気極側ガスの酸素濃度、 セルの作動 温度、 燃料極側ガスの水蒸気濃度、 空気極側ガスの水蒸気濃度等の種々 の要素から構成される。 そして、 該測定条件は、 必ず、 燃料極側ガスの ガス組成、 空気極側ガスのガス組成及ぴセルの作動温度の 3要素を含ん でいる。 The complex impedance measurement of the calculation target fuel cell is performed under the first measurement condition and the second measurement condition that are different only in the gas composition of the fuel electrode side gas. It means that the complex impedance measurement of the cell for the fuel cell to be calculated is performed under two measurement conditions in which only the gas composition of the fuel electrode side gas is fixed and only the gas composition of the fuel electrode side gas is changed. Specifically, for example, the hydrogen concentration of the fuel electrode side gas in the first measurement condition is set to 100 volume%, and the hydrogen concentration of the fuel electrode side gas in the second measurement condition is set to 10 volumes. / 0, and for the elements constituting the other measurement conditions, none of the first measurement condition and said second measurement conditions were the same, the complex Inpi of the calculated output target fuel cell - performing dance measurement. The measurement conditions related to the first measurement condition and the second measurement condition are as follows: fuel concentration in the fuel electrode side gas, oxygen concentration in the air electrode side gas, cell operating temperature, water vapor concentration in the fuel electrode side gas, air electrode It consists of various factors such as the water vapor concentration of the side gas. The measurement conditions always include three elements: the gas composition of the fuel electrode side gas, the gas composition of the air electrode side gas, and the operating temperature of the cell.
第 3図に、 該第一測定条件又は該第二測定条件での該算出対象燃料電 池用セルのコール ' コール .プロットの模式図を示す。 第 3図は、 該第 一工程を行い得られる該算出対象燃料電池用セルのコール · コール ·プ ロットの円弧の数が 2となる該算出対象燃料電池用セルを、 該第一測定 条件及ぴ該第二測定条件で、 複素インピーダンス測定した時の該算出対 象燃料電池用セルのコール ' コール ·プロットであり、 該第一測定条件
での該算出対象燃料電池用セルのコール · コール 'プロット 1 1は、 第 一円弧 2 c及び第二円弧 3 cからなり、 また、 該第二測定条件での該算 出対象燃料電池用セルのコール · コール 'プロット 1 2は、 第一円弧 2 d及び第二円弧 3 dからなる。 FIG. 3 shows a schematic diagram of a call / call plot of the cell for the calculation target fuel cell under the first measurement condition or the second measurement condition. FIG. 3 shows the calculation target fuel cell in which the number of arcs of the call / call plot of the calculation target fuel cell obtained by performing the first step is two. In the second measurement condition, when the complex impedance is measured, the cell of the cell to be calculated is called a Cole plot, and the first measurement condition The call / call 'plot 1 1 of the calculation target fuel cell at 1 consists of a first arc 2c and a second arc 3c, and the calculation target fuel cell for the second measurement condition Cole · Cole 'Plot 1 2 consists of a first arc 2d and a second arc 3d.
次いで、 該第一測定条件における周波数が nの時の該実数部抵抗値 R 1 r nと該第二測定条件における周波数が nの時の該実数部抵抗値 R 2 r nとの差 AR (1 - 2) r nを下記式 (1) : Next, a difference AR (1 − between the real part resistance value R 1 rn when the frequency under the first measurement condition is n and the real part resistance value R 2 rn when the frequency under the second measurement condition is n 2) rn with the following formula (1):
Δ R ( 1 - 2 ) r n=R l r n-R 2 r n (1) Δ R (1-2) r n = R l r n-R 2 r n (1)
により計算し、 周波数毎の AR (1 - 2) r nを求める。 Calculate AR (1-2) rn for each frequency.
具体的には、 例えば、 該コール · コール 'プロット 1 1中の周波数が 1 000 H zの点を点 E 1、 該コール · コール 'プロット 1 2中の周波 数が 100 OH zの点を点 E 2とすると、 該コール · コール 'プロット 1 1力 ら、 該点 E 1の実数部抵抗値 R 1 r 。。。を、 該コール · コール · プロット 1 2から、該点 E 2の実数部抵抗値 R 2 r 10。。を求める。次い で、該点 E 1の実数部抵抗値 R 1 rェ。。。と、該点 E 2の実数部抵抗値 R 2 Γ ι。。。の差 (R l 。。。一 1^ 21^。。。) を計算し、 周波数が 1 00 0 H zの時の Δ R (1 -2) r 。。。を求める。 このような、 該 Δ R (1 — 2 ) r nの計算を、 該コール · コール 'プロット 1 1及び該コール · コール 'プロット 1 2の全域に亘つて行い、 周波数毎の Δ R (1 - 2) r nを求める。 なお、 該 (1— 2) r nの計算は、 周波数の変化に 対する Δ R ( 1 - 2 ) r nの変化を、 該コール · コール ·プロット 1 1 及ぴ該コール · コール 'プロット 1 2の全域に亘つて観察できるような 周波数の間隔で行われればよく、一定間隔の周波数毎に対応する A.R ( 1 一 2) r nを求めてもよいし、 あるいは、 周波数の間隔が一定でなくて もよい。 Specifically, for example, a point where the frequency in the Cole Cole 'plot 1 1 is 1 000 Hz is pointed E 1 and a point where the frequency in the Cole Cole' plot 1 2 is 100 OH z Assuming E 2, the Cole-Cole 'plot 1 1 force and the real part resistance value R 1 r of the point E 1. . . From the Cole-Cole plot 1 2, the real part resistance R 2 r 10 of the point E 2. . Ask for. Next, the real part resistance R 1 r of the point E 1. . . And the real part resistance R 2 Γ ι of the point E 2. . . The difference (R l .. 1 1 ^ 21 ^ ..) is calculated and Δ R (1 -2) r when the frequency is 1 00 0 H z. . . Ask for. The calculation of Δ R (1 — 2) rn is performed over the entire area of the Cole-Cole 'plot 1 1 and the Cole-Cole' plot 1 2, and Δ R (1-2 for each frequency is calculated. ) Find rn. The calculation of (1−2) rn is based on the change in Δ R (1-2) rn with respect to the change in frequency. It is sufficient that the frequency interval is such that it can be observed over a range of frequencies, and AR (1 1 2) rn corresponding to each frequency at a constant interval may be obtained, or the frequency interval may not be constant. .
次いで、 横軸を周波数、 縦軸を (1 - 2) r nとして、 周波数毎
の A R ( 1 - 2 ) r nをプロットし、実数部抵抗値差第一グラフを得る。 第 4図に、 該実数部抵抗差第一グラフの模式図を示す。 第 4図中、 符 号 1 4で示すグラフが、 実数部抵抗差第一グラフ 1 4であり、 該実数部 抵抗差第一グラフ 1 4には、 必ず、 他の周波数域に比べ、 該 A R ( 1— .2 ) · r nの変化量が大きくなる周波数域が存在する。 すなわち、 該実数 部抵抗差第一グラフ 1 4には、 必ず、 ピーク 1 5が存在する。 そして、 該ピーク 1 5のピーク トップ 1 6の周波数を、 該実数部抵抗差第一ダラ フ 1 4から読み取り、 該ピーク トップ 1 6の周波数の値から、 該第一ェ 程で得られた該算出対象燃料電池用セルのコール ' コール . プロッ トの うち、 燃料極側界面に由来する円弧を認定する。 例えば、 該実数部抵抗 差第一グラフの該ピーク トップの周波数が Xであったとすると、 該第一 工程で得られた該算出対象燃料電池用セルのコール · コール 'プロッ ト のうち、 周波数が Xである点を含む円弧を、'燃料極側界面に由来する円 弧と認定する。 Then, the horizontal axis is frequency and the vertical axis is (1-2) rn. Plot AR (1-2) rn and obtain the first real resistance difference graph. FIG. 4 shows a schematic diagram of the first real part resistance difference graph. In FIG. 4, the graph indicated by the symbol 14 is the real part resistance difference first graph 14, and the real part resistance difference first graph 14 is always compared to the other frequency ranges. (1− .2) · There is a frequency range where the amount of change of rn increases. That is, the real part resistance difference first graph 14 always has a peak 15. Then, the frequency of the peak top 16 of the peak 15 is read from the real part resistance difference first draft 14, and the frequency obtained in the first step is obtained from the frequency value of the peak top 16. Call the cell for the fuel cell to be calculated 'Cole. Of the plot, certify the arc originating from the fuel electrode side interface. For example, if the peak top frequency in the first real part resistance difference graph is X, the frequency of the call / call 'plot of the calculation target fuel cell obtained in the first step is The arc including the point X is identified as the arc originating from the fuel electrode side interface.
該第二工程では、燃料極側ガスのガス組成のみを変化させているので、 該実数部抵抗差第一グラフにおいて、 周波数 Xに該ピーク トップがある ということは、 燃料極側の変化の影響を強く受けるのは、 該算出対象燃 料電池用セルのコール · コール ·プロット中、 周波数 X近辺の周波数域 に対応する部分であるといえるので、 該第一工程で得られた該算出対象 燃料電池用セルのコール . コール ·プロットのうち、 周波数が Xである 点を含む円弧を、燃料極側界面に由来する円弧と認定することができる。 該燃料極側ガス中に含まれる燃料としては、 特に制限されず、 水素、 メタン等が挙げられる。 In the second step, only the gas composition of the fuel electrode side gas is changed. Therefore, in the first graph of the real part resistance difference, the fact that the peak top exists at the frequency X means that the influence of the change on the fuel electrode side has an effect. Is the portion corresponding to the frequency region in the vicinity of frequency X in the Cole-Cole-Plot of the calculation target fuel cell, so that the calculation target fuel obtained in the first step is Call of battery cell. In the call plot, an arc including a point with a frequency X can be recognized as an arc originating from the fuel electrode side interface. The fuel contained in the fuel electrode side gas is not particularly limited, and examples thereof include hydrogen and methane.
該第三工程では、 先ず、 空気極側ガスのガス組成のみが異なる第三測 定条件及び第四測定条件で、 該算出対象燃料電池用セルの複素インピー ダンス測定を行う。
該空気極側ガスのガス組成のみが異なる第三測定条件及ぴ第四測定条 件で、該算出対象燃料電池用セルの複素インピーダンス測定を行うとは、 測定条件を構成する要素のうち、 該空気極側ガスのガス組成以外は固定 し、 該空気極側ガスのガス組成のみを代えた 2つの測定条件で、 該算出 対象燃料電池用セルの複素インピーダンス測定を行うことを指す。 具体 的には、 例えば、 該第三測定条件の空気極側ガスの酸素濃度を 1 0 0体 積%とし、該第四測定条件の空気極側ガスの酸素濃度を 1 0体積%とし、 他の測定条件を構成する要素については、 該第三測定条件及び該第四測 定条件のいずれも同一にして、 該算出対象燃料電池用セルの複素インピ —ダンス測定を行う。 該第三測定条件及び該第四測定条件に係る測定条 件は、 燃料極側ガスの燃料濃度、 空気極側ガスの酸素濃度、 セルの作動 温度、 燃料極側ガスの水蒸気濃度、 空気極側ガスの水蒸気濃度等の種々 の要素から構成される。 そして、 該測定条件は、 必ず、 燃料極側ガスの ガス組成、 空気極側ガスのガス組成及びセルの作動温度の 3要素を含ん でいる。 In the third step, first, the complex impedance measurement of the calculation target fuel cell is performed under the third measurement condition and the fourth measurement condition that differ only in the gas composition of the air electrode side gas. The complex impedance measurement of the calculation target fuel cell is performed under the third measurement condition and the fourth measurement condition, which are different only in the gas composition of the air electrode side gas, among the elements constituting the measurement condition, It means that the complex impedance measurement of the calculation target fuel cell is performed under two measurement conditions in which only the gas composition of the air electrode side gas is fixed and only the gas composition of the air electrode side gas is changed. Specifically, for example, the oxygen concentration of the air electrode side gas under the third measurement condition is 100% by volume, the oxygen concentration of the air electrode side gas under the fourth measurement condition is 10% by volume, etc. With respect to the elements constituting the measurement condition, the complex impedance measurement of the calculation target fuel cell is performed with the third measurement condition and the fourth measurement condition being the same. The measurement conditions related to the third measurement condition and the fourth measurement condition are as follows: fuel concentration in the fuel electrode side gas, oxygen concentration in the air electrode side gas, cell operating temperature, water vapor concentration in the fuel electrode side gas, air electrode side It consists of various elements such as the water vapor concentration of the gas. The measurement conditions always include three elements: the gas composition of the fuel electrode side gas, the gas composition of the air electrode side gas, and the operating temperature of the cell.
第 5図に、 該第三測定条件又は該第四測定条件での該算出対象燃料電 池用セルのコール . コール .プロットの模式図を示す。 第 5図は、 該第 一工程を行い得られる該算出対象燃料電池用セルのコール · コール ·プ ロットの円弧の数が 2となる該算出対象燃料電池用セルを、 該第三測定 条件及ぴ該第四測定条件で、 複素インピーダンス測定した時の該算出対 象燃料電池用セルのコール · コール 'プロットであり、 該第三測定条件 での該算出対象燃料電池用セルのコール · コール 'プロット 1 7は、 第 一円弧 2 e及び第二円弧 3 eからなり、 また、 該第四測定条件での該算 出対象燃料電池用セルのコール · コール 'プロット 1 8は、 第一円弧 2 f 及ぴ第二円弧 3 f からなる。 FIG. 5 shows a schematic diagram of the call-call-plot of the cell for calculation target fuel cell under the third measurement condition or the fourth measurement condition. FIG. 5 shows the calculation target fuel cell in which the number of arcs of the call / call plot of the calculation target fuel cell obtained by performing the first step is 2 and the third measurement condition and This is a call / call 'plot of the fuel cell to be calculated when complex impedance is measured under the fourth measurement condition, and a call / call of the cell for the fuel cell to be calculated under the third measurement condition. Plot 17 consists of a first arc 2 e and a second arc 3 e, and the call cell call of the calculation target fuel cell under the fourth measurement condition 'plot 1 8 shows the first arc 2 f and second arc 3 f.
次いで、 該第三測定条件における周波数が nの時の該実数部抵抗値 R
3 r nと該第四測定条件における周波数が nの時の該実数部抵抗値 R4 r nとの差 AR (3— 4) r nを下記式 (2) : Next, the real part resistance value R when the frequency in the third measurement condition is n The difference AR (3-4) rn between 3 rn and the real part resistance R4 rn when the frequency in the fourth measurement condition is n is expressed by the following equation (2):
Δ R (3 -4) r n=R 3 r n-R4 r n (2) Δ R (3 -4) r n = R 3 r n-R4 r n (2)
により計算し、 周波数毎の AR (3-4) r nを求める。 Calculate AR (3-4) rn for each frequency.
具体的には、 例えば、 該コール · コール 'プロット 1 7中の周波数が 1 000 H zの点を点 G 1、 該コール · コール 'プロット 1 8中の周波 数が 1000 H zの点を点 G 2とすると、 該コール · コール ·プロット 1 7から、 該点 G 1の実数部抵抗値 R 3 r 。。。を、 該コール ·コール · プロット 1 8から、該点 G 2の実数部抵抗値 R 4 r 1000を求める。次い で、該点 G 1の実数部抵抗値 R 3 r 。。。と、該点 G 2の実数部抵抗値 R 4 r i。。。の差 (R 3 r i。。。一 R4 r 100。) を計算し、 周波数が 1 00 0 H zの時の Δ R ( 3 - 4 ) r 1。。。を求める。 このような、 該 Δ R (3 — 4 ) r nの計算を、 該コール · コール ·プロット 1 7及び該コール · コール ·プロット 1 8の全域に亘つて行い、 周波数毎の (3 -4) r nを求める。 なお、 該 AR (3— 4) r nの計算は、 周波数の変化に 対する AR (3-4) r nの変化を、 該コール · コール ·プロット 1 7 及ぴ該コール · コール 'プロット 1 8の全域に亘つて観察できるような 周波数の間隔で行われればよく、一定間隔の周波数毎に対応する Δ R ( 3 —4) r nを求めてもよいし、 あるいは、 周波数の間隔が一定でなくて もよい。 Specifically, for example, the point where the frequency in the Cole Cole 'plot 1 7 is 1 000 Hz is pointed G 1, and the point in the Cole Cole' plot 1 8 is the point where the frequency is 1000 Hz. Assuming G 2, the real part resistance value R 3 r of the point G 1 from the Cole-Cole plot 17. . . From the Cole-Cole plot 18, the real part resistance value R 4 r 1000 of the point G 2 is obtained. Next, the real part resistance value R 3 r of the point G 1. . . And the real part resistance R 4 ri of the point G 2. . . The difference (R 3 ri .. One R4 r 100. ) Is calculated and Δ R (3-4) r 1 when the frequency is 1 00 0 Hz. . . Ask for. This calculation of Δ R (3 — 4) rn is performed over the entire area of the Cole-Cole plot 17 and the Cole-Cole plot 1 8 to obtain (3 -4) rn for each frequency. Ask for. The calculation of AR (3-4) rn is based on the change in AR (3-4) rn with respect to the frequency change, and the entire area of Cole Cole Plot 1 7 and Cole Cole Cole 'Plot 1 8 It is sufficient that the frequency interval is such that it can be observed over a range of intervals, and Δ R (3 −4) rn corresponding to each frequency at a constant interval may be obtained, or the frequency interval may not be constant. Good.
次いで、 横軸を周波数、 縦軸を AR (3-4) r nとして、 周波数毎 の厶 R (3_4) r nをプロットし、実数部抵抗値差第二グラフを得る。 第 4図に、 該実数部抵抗差第二グラフの模式図を示す。 第 4図中、 符 号 141で示すグラフが、 実数部抵抗差第二グラフ 14 1であり、 該実 数部抵抗差第二グラフ 141には、 必ず、 他の周波数域に比べ、 該 Next, plot the 厶 R (3_4) rn for each frequency, with the horizontal axis representing frequency and the vertical axis representing AR (3-4) rn, to obtain the second real part resistance difference graph. FIG. 4 shows a schematic diagram of the second resistance difference second graph. In FIG. 4, the graph denoted by reference numeral 141 is the real part resistance difference second graph 141, and the real part resistance difference second graph 141 is always compared to other frequency ranges.
(3— 4) r nの変化量が大きくなる周波数域が存在する。 すなわち、
該実数部抵抗差第二グラフ 1 4 1には、必ず、ピーク 1 5 1が存在する。 そして、 該ピーク 1 5 1のピーク トップ 1 6 1の周波数を、 該実数部抵 抗差第二グラフ 14 1から読み取り、 該ピーク トップ 1 6 1の周波数の 値から、 該第一工程で得られた該算出対象燃料電池用セルのコール . コ —ル ·プロットのうち、 空気極側界面に由来する円弧を認定する。 例え ば、 該実数部抵抗差第二グラフの該ピーク トップの周波数が yであった とすると、 該第一工程で得られた該算出対象燃料電池用セルのコール · コール 'プロットのうち、 周波数が yである点を含む円弧を、 空気極側 界面に由来する円弧と認定する。 (3-4) There is a frequency range where the amount of change in rn increases. That is, The real part resistance difference second graph 1 4 1 always has a peak 1 5 1. Then, the frequency of the peak top 16 1 of the peak 1 51 is read from the second resistance difference second graph 141, and the frequency value of the peak top 1 61 1 is obtained in the first step. In addition, the arc derived from the air electrode side interface is identified in the call / call plot of the fuel cell to be calculated. For example, if the frequency of the peak top of the second resistance difference second graph is y, the frequency of the Cole-Cole 'plot of the calculation target fuel cell obtained in the first step is: An arc including a point where y is y is recognized as an arc derived from the air electrode side interface.
該第三工程では、空気極側ガスのガス組成のみを変化させているので、 該実数部抵抗差第二グラフにおいて、 周波数 yに該ピーク トップがある ということは、 空気極側の変化の影響を強く受けるのは、 該算出対象燃 料電池用セルのコール · コール ·プロット中、 周波数 y近辺の周波数域 に対応する部分であるといえるので、 該第一工程で得られた該算出対象 燃料電池用セルのコール · コール 'プロットのうち、 周波数が yである 点を含む円弧を、空気極側界面に由来する円弧と認定することができる。 該界面抵抗計算工程では、 該第一工程で得られた該算出対象燃料電池 用セルのコール · コール .プロット中、 該第二工程で燃料極側界面に由 来する円弧であると認定した円弧の実数部抵抗値の最大値 R r a (ma x) と実数部抵抗値の最小値 R r a (m i n) との差を、 下記式 (3) : R i a = R r a (ma x) — R r a (m i n) (3) In the third step, only the gas composition of the air electrode side gas is changed. Therefore, in the real part resistance difference second graph, the fact that the frequency top has the peak top means that the air electrode side changes. Is the portion corresponding to the frequency region in the vicinity of the frequency y in the Cole-Cole-Plot of the calculation target fuel cell, so that the calculation target fuel obtained in the first step is In the Cole-Cole 'plot of the battery cell, the arc including the point where the frequency is y can be recognized as the arc originating from the air electrode side interface. In the interfacial resistance calculation step, the arc determined as the arc originating in the fuel electrode side interface in the second step in the Cole-Cole plot of the calculation target fuel cell obtained in the first step The difference between the maximum real part resistance value R ra (max) and the minimum real part resistance value R ra (min) is given by the following equation (3): R ia = R ra (max) — R ra (min) (3)
により計算し、 燃料極側界面抵抗 R i aを求め、 該第一工程で得られた 該算出対象燃料電池用セルのコール · コール ·プロット中、 該第三工程 で空気極側界面に由来する円弧であると認定した円弧の実数部抵抗値の 最大値 R r c (ma ) と実数部抵抗値の最小値 R r c (m i n) との 差を、 下記式 (4) :
R i c = R r c (ma x) — R r c (m i n) ( 4 ) To calculate the fuel electrode side interface resistance R ia, and the arc derived from the air electrode side interface in the third step during the Cole-Cole plot of the calculation target fuel cell obtained in the first step The difference between the maximum real part resistance value R rc (ma) and the minimum real part resistance value R rc (min) of the arc certified as R ic = R rc (max) — R rc (min) (4)
により計算し、 空気極側界面抵抗 R i cを求める。 To calculate the air electrode side interface resistance R ic.
該界面抵抗計算工程について、 第 1図を参照して説明する。 該第二ェ 程及ぴ該第三工程を行った結果、 該コール . コール 'プロット 1 aのう ち、 該第一円弧 2 aが、 燃料極側界面に由来する円弧であり、 該第二円 弧 3 aが、 空気極側界面に由来する円弧であると認定したとして説明す る。 該コール · コール 'プロット 1 a中、 該第一円弧 2 aと横軸との交 点、 すなわち、 該第一円弧 2 aのうちの虚数部抵抗値が 「0」 となる点 を点 A 1、 該第一円弧 2 aと該第二円弧 3 a との交点を点 B 1、 該第二 円弧 3 aと横軸との交点、 すなわち、 該第二円弧 3 aのうちの虚数部抵 抗値が 「0」 となる点を点 C 1とすると、 この場合は、 該 R r a (m i n) は該点 A 1の実数部抵抗値であり、 該 R r a (ma x) は該点 B 1 の実数部抵抗値であり、 該 R c (m i n) は該点 B 1の実数部抵抗値で あり、 該 R r c (ma x) は該点 C 1の実数部抵抗値である。 そして、 上記式 (3) により、 該燃料極側界面抵抗 R i aを求め、 また、 上記式 (4) により、 該空気極側界面抵抗 R i cを求める。 The interface resistance calculation step will be described with reference to FIG. As a result of performing the second step and the third step, the first arc 2a of the Cole Cole plot 1a is an arc originating from the fuel electrode side interface, It is assumed that the circular arc 3a is recognized as an arc originating from the air electrode side interface. In the Cole Cole 'plot 1a, the intersection of the first arc 2a and the horizontal axis, that is, the point where the resistance value of the imaginary part of the first arc 2a is "0" is point A 1 The intersection of the first arc 2a and the second arc 3a is the point B1, the intersection of the second arc 3a and the horizontal axis, that is, the imaginary part resistance of the second arc 3a. Assuming that the point where the value is “0” is the point C 1, in this case, the R ra (min) is the real part resistance value of the point A 1, and the R ra (max) is the point B 1 R c (min) is the real part resistance value of the point B 1, and R rc (max) is the real part resistance value of the point C 1. Then, the fuel electrode side interface resistance R i a is obtained from the above equation (3), and the air electrode side interface resistance R i c is obtained from the above equation (4).
また、 該第一工程を行い得られる該算出対象燃料電池用セルのコー ル · コール 'プロットが、 3つの円弧からなる場合について、 第 2図を 参照して説明する。該第二工程及ぴ該第三工程を行つた結果、該コール · コール 'プロット 1 bのうち、 該第一円弧 2 bが、 燃料極側界面に由来 する円弧であり、 該第二円弧 3 bが、 空気極側界面に由来する円弧であ ると認定したとして説明する。 該コール · コール 'プロット l b中、 該 第一円弧 2 bと横軸との交点、 すなわち、 該第一円弧 2 bのうちの虚数 部抵抗値が 「0」 となる点を点 A2、 該第一円弧 2 bと該第二円弧 3 b との交点を点 B 2、 該第二円弧 3 bと該第三円弧 4との交点を点 C 2と すると、 この場合は、 該 R r a (m i n) は該点 A 2の実数部抵抗値で
あり、該 R r a (ma x) は該点 B 2の実数部抵抗値であり、該 R c (m i n) は該点 B 2の実数部抵抗値であり、 該 R r c (ma x) は該点 C 2の実数部抵抗値である。 そして、 上記式 (3) により、 該燃料極側界 面抵抗 R i aを求め、 また、 上記式 (4) により、 該空気極側界面抵抗 R i cを求める。 The case where the call / call plot of the calculation target fuel cell obtained by performing the first step is composed of three arcs will be described with reference to FIG. As a result of performing the second step and the third step, the first arc 2b of the Cole-Cole 'plot 1b is an arc originating from the fuel electrode side interface, and the second arc 3 It is assumed that b is an arc derived from the air electrode side interface. In the Cole-Cole plot lb, the intersection of the first arc 2b and the horizontal axis, that is, the point where the imaginary part resistance value of the first arc 2b is “0” is the point A2, the second If the intersection of one arc 2b and the second arc 3b is point B2, and the intersection of the second arc 3b and the third arc 4 is point C2, then in this case R ra (min ) Is the real part resistance at point A 2. R ra (max) is the real part resistance value of the point B 2, the R c (min) is the real part resistance value of the point B 2, and the R rc (max) is This is the real part resistance at point C2. Then, the fuel electrode side interface resistance R ia is obtained from the above equation (3), and the air electrode side interface resistance R ic is obtained from the above equation (4).
また、 該第一工程を行い得られる該算出対象燃料電池用セルのコー ル . コール .プロットが、 4つの円弧からなる場合は、 該第三円弧より 実数部抵抗値が大きい側に、 円弧が増えるだけで、 該第一円弧、 該第二 円弧及ぴ該第三円弧の関係は変わらないので、 該第一工程を行い得られ る該算出対象燃料電池用セルのコール ' コール .プロットが、 3つの円 弧からなる場合と同様である。 In addition, when the call call plot of the calculation target fuel cell obtained by performing the first step is composed of four arcs, the arc is on the side where the real part resistance value is larger than the third arc. Since the relationship between the first arc, the second arc, and the third arc does not change only by increasing, the call plot of the calculation target fuel cell obtained by performing the first step is The same as the case of three circles.
本発明の第二の形態の界面抵抗の測定方法は、 算出対象燃料電池用セ ルの作動時の燃料極側界面抵抗 R i a及ぴ空気極側界面抵抗 R i cを算 出する界面抵抗の算出方法であって、 The method for measuring the interface resistance according to the second aspect of the present invention is to calculate the interface resistance by calculating the fuel electrode side interface resistance Ria and the air electrode side interface resistance Ric when the fuel cell for calculation is operated. A method,
界面抵抗の算出を行う作動条件で、 該算出対象燃料電池用セルの複素ィ ンピーダンス測定を行い、該算出対象燃料電池用セルのコール'コール · プロットを得る第一工程と、 A first step of performing a complex impedance measurement of the calculation target fuel cell under an operating condition for calculating an interface resistance and obtaining a Cole-Cole plot of the calculation target fuel cell;
燃料極側ガスのガス組成のみが異なる第一測定条件及ぴ第二測定条件で、 該算出対象燃料電池用セルの複素インピーダンス測定を行い、 次いで、 該第一測定条件における周波数が nの時の実数部抵抗値 R 1 r nと該第 二測定条件における周波数が nの時の実数部抵抗値 R 2 r nとの差 AR (1 - 2) r nを下記式 (1) : Under the first measurement condition and the second measurement condition where only the gas composition of the fuel electrode side gas is different, the complex impedance measurement of the cell for the fuel cell to be calculated is performed, and then when the frequency in the first measurement condition is n The difference AR (1-2) rn between the real part resistance value R 1 rn and the real part resistance value R 2 rn when the frequency in the second measurement condition is n is expressed by the following equation (1):
厶 R (l— 2) r n=R l r n-R 2 r n (1 ) 厶 R (l— 2) r n = R l r n-R 2 r n (1)
により計算し、 周波数毎の AR (1 - 2) r nを求め、 次いで、 横軸を 周波数、 縦軸を A R (1 - 2) r nとして、 周波数毎の AR (1 - 2) r nをプロットし、 実数部抵抗値差第一グラフを得、 次いで、 該実数部
抵抗値差第一グラフ中のピーク トップの周波数から、 該第一工程で得ら れた該算出対象燃料電池用セルのコール · コール 'プロット中の円弧の うち、 燃料極側界面に由来する円弧を認定する第二工程と、 Calculate AR (1-2) rn for each frequency, then plot AR (1-2) rn for each frequency, with the horizontal axis representing frequency and the vertical axis representing AR (1-2) rn. Real part resistance value difference first graph is obtained, then the real part Difference in resistance value From the peak top frequency in the first graph, among the arcs in the Cole-Cole 'plot of the calculation target fuel cell obtained in the first step, the arc derived from the fuel electrode side interface A second process to certify,
該空気極側ガスのガス組成のみが異なる第三測定条件及び第四測定条件 で、 該算出対象燃料電池用セルの複素インピーダンス測定を行い、 次い で、 該第三測定条件における周波数が nの時の実数部抵抗値 R 3 r nと 該第四測定条件における周波数が nの時の実数部抵抗値 R 4 r nとの差 Δ R (3— 4) r nを下記式 (2) : The complex impedance measurement of the calculation target fuel cell is performed under the third measurement condition and the fourth measurement condition that are different only in the gas composition of the air electrode side gas, and then the frequency in the third measurement condition is n. The difference Δ R (3-4) rn between the real part resistance value R 3 rn and the real part resistance value R 4 rn when the frequency in the fourth measurement condition is n is expressed by the following equation (2):
厶 R (3— 4) r n=R 3 r n-R 4 r n (2) 厶 R (3— 4) r n = R 3 r n-R 4 r n (2)
' により計算し、 周波数毎の AR (3 -4) r nを求め、 次いで、 横軸に 周波数、 縦軸に AR (3 -4) r ηをプロットして実数部抵抗値差第二 グラフを得、 次いで、 該実数部抵抗値差第二グラフ中のピーク トップの 周波数から、 該第一工程で得られた該算出対象燃料電池用セルのコー ル . コール ·プロット中の円弧のうち、 空気極側界面に由来する円弧を 認定する第三工程と、 '' To find AR (3 -4) rn for each frequency, then plot the frequency on the horizontal axis and AR (3 -4) r η on the vertical axis to obtain the second real part resistance difference graph Then, from the frequency of the peak top in the second resistance value difference second graph, the call of the calculation target fuel cell obtained in the first step. Of the arcs in the call plot, the air electrode A third step to certify the arc originating from the side interface;
直列に接続された ( i ) 第一抵抗、 ( i i ) 並列に接続された第二抵抗 及び第一コンデンサー、 並びに ( i i i ) 並列に接続された第三抵抗及 ぴ第二コンデンサーを有する等価回路と、 該第一工程で得られた該算出 対象燃料電池用セルのコール · コール 'プロットとのフィッティングを 行い、 燃料極側界面抵抗 R i a及ぴ空気極側界面抵抗 R i cを求めるフ ィッティング工程と、 An equivalent circuit having (i) a first resistor connected in series; (ii) a second resistor and a first capacitor connected in parallel; and (iii) a third resistor and a second capacitor connected in parallel. A fitting step of fitting the cell for the calculation target fuel cell obtained in the first step with the Cole-Cole 'plot to obtain the fuel electrode side interface resistance Ria and the air electrode side interface resistance Ric; ,
を有する界面抵抗の算出方法である。 It is the calculation method of the interface resistance which has this.
本発明の第二の形態の界面抵抗の測定方法に係る第一工程、 第二工程 及び第三工程は、 本発明の第一の形態の界面抵抗の測定方法に係る第一 工程、 第二工程及び第三工程と同様である。 The first step, the second step and the third step according to the method for measuring the interfacial resistance according to the second aspect of the present invention are the first step and the second step according to the method for measuring the interfacial resistance according to the first aspect of the present invention. And it is the same as that of a 3rd process.
該フィッティング工程では、 先ず、 該等価回路を構築する。 該第一ェ
程で得られた該算出対象燃料電池用セルのコール 'コール'プロットが、 第 1図に示す該コール'コール'プロット 1 aであった場合、すなわち、 該第一工程で得られた該算出対象燃料電池用セルのコール · コール ·プ ロットが 2つの円弧からなる場合、 構築する等価回路は、 第 6図に示す 等価回路 2 1である。 第 6図中、 該等価回路 2 1は、 ( i ) 第一抵抗 2 2 a、 ( i i ) 並列に接続された第二抵抗 24 a及び第一コンデンサー 2 3 a、 並びに ( i i i ) 並列に接続された第三抵抗 2 6 a及ぴ第ニコ ンデンサー 2 5 aが、 直列に接続されている。 In the fitting step, first, the equivalent circuit is constructed. The first When the call “call” plot of the cell for the fuel cell to be calculated obtained in the step is the call “call” plot 1 a shown in FIG. 1, that is, the calculation obtained in the first step. When the Cole-Cole-Plot of the target fuel cell consists of two arcs, the equivalent circuit to be constructed is the equivalent circuit 21 shown in Fig. 6. In FIG. 6, the equivalent circuit 21 includes (i) a first resistor 22a, (ii) a second resistor 24a and a first capacitor 23a connected in parallel, and (iii) connected in parallel. The third resistor 2 6 a and the second capacitor 2 5 a are connected in series.
次いで、 該等価回路 2 1と、 該第一工程で得られた該算出対象燃料電 池用セノレのコーノレ · コーノレ · プロット 1 a とのフイツティングを行う。 該フィッティングには、 等価回路の回路図、 等価回路中の抵抗の抵抗 値、 等価回路中のコンデンサーの容量値、 リアクタンスを入力すること により、 コール . コール 'プロットを計算し、 その形状を出力すること ができる既存のソフトを使用する。 該フィッティングに使用される既存 のソフトとしては、 特に制限されず、 Z V i e w2 -E q u i v a l e n t— C i r c u i t s等が挙げられる。 Next, fitting is performed between the equivalent circuit 21 and the cornole-conore plot 1 a of the senore for the calculation target fuel cell obtained in the first step. For the fitting, input the circuit diagram of the equivalent circuit, the resistance value of the resistor in the equivalent circuit, the capacitance value of the capacitor in the equivalent circuit, and the reactance, and calculate the Cole Cole plot and output the shape Use existing software that can. The existing software used for the fitting is not particularly limited, and examples thereof include Z V i e w2 -E qu i v a l nt-C i rc u i ts.
該フィッティングは、 先ず、 該ソフトに、 該等価回路 2 1の回路図、 並びに該第一抵抗 2 2 aの初期値、 該第二抵抗 24 aの初期値、 該第一 コンデンサー 2 3 aの初期値、 該第三抵抗 2 6 aの初期値、 該第二コン —デンサー 2 5 aの初期値、 及びリアクタンス等の計算に必要な入力値を 入力し、 次いで、 該入力値を少しずつ変えながら、 該ソフトでの計算を 繰り返して、 該ソフトでの計算により得られるコール · コール ·プロッ トの形状を、 該第一工程で得られた該算出対象燃料電池用セルのコー ル · コール .プロッ トの形状に近づけることにより行われる。 そして、 該ソフトでの計算により得られるコール · コール ·プロットの形状が、 該第一工程で得られた該算出対象燃料電池用セルのコール · コール ·プ
口ットの形状と一致又は略一 ¾した時の入力値を、 フイツティング時の 入力値として求める。 The fitting is performed by first softening the circuit diagram of the equivalent circuit 21, the initial value of the first resistor 2 2 a, the initial value of the second resistor 24 a, and the initial value of the first capacitor 23 a Value, the initial value of the third resistor 26a, the initial value of the second capacitor 25a, and the input value necessary for the calculation of reactance, etc., and then changing the input value little by little The calculation by the software is repeated, and the shape of the call / call plot obtained by the calculation by the software is changed to the call / call plot of the calculation target fuel cell obtained in the first step. This is done by approximating the shape of the G. The shape of the call · call · plot obtained by the calculation in the software is the same as that of the cell for the fuel cell to be calculated obtained in the first step. The input value when it matches or substantially matches the shape of the mouthpiece is obtained as the input value at the time of fitting.
該等価回路 2 1と該第一工程で得られた該算出対象燃料電池用セルの コール · コール 'プロット丄 aとの関係を説明すると、 該第二工程及ぴ 該第三工程により、 ( 1 ) 該コール · コール 'プロット 1 aの該第一円 弧 2 aが燃料極側界面に由来する円弧であり、 該第二円弧 3 aが空気極 側界面に由来する円弧であると認定した場合、 該第二抵抗 2 4 aは燃料 極側界面抵抗 R i aに、 該第一コンデンサー 2 3 aは燃料極側界面のコ ンデンサ一成分に、 該第三抵抗 2 6 aは空気極側界面抵抗 R i cに、 該 第二コンデンサー 2 5 aは空気極側界面のコンデンサー成分に、 それぞ れ相当する。 また、該第二工程及ぴ該第三工程により、 (2 )該コール · コール ·プロット 1 aの該第一円弧 2 aが空気極側界面に由来する円弧 であり、 該第二円弧 3 aが燃料極側界面に由来する円弧であると認定し た場合、 該第二抵抗 2 4 aは空気極側界面抵抗 R i cに、 該第一コンデ ンサー 2 3 aは空気極側界面のコンデンサー成分に、 該第三抵抗 2 6 a は燃料極側界面抵抗 R i aに、 該第二コンデンサー 2 5 aは燃料極側界 面のコンデンサー成分に、 それぞれ相当する。 The relationship between the equivalent circuit 21 and the Cole-Cole 'plot 丄a of the calculation target fuel cell obtained in the first step will be described by the second step and the third step. ) When the first arc 2a of the Cole Cole 'plot 1a is an arc derived from the fuel electrode side interface, and the second arc 3a is an arc derived from the air electrode side interface The second resistance 24 a is a fuel electrode side interface resistance Ria, the first capacitor 23 a is a capacitor component at the fuel electrode side interface, and the third resistance 26 a is an air electrode side interface resistance. The second capacitor 25 a corresponds to the capacitor component at the air electrode side interface, respectively. Further, by the second step and the third step, (2) the first arc 2a of the Cole-Cole plot 1a is an arc derived from the air electrode side interface, and the second arc 3a Is identified as a circular arc originating from the fuel electrode side interface, the second resistance 24 a is the air electrode side interface resistance R ic, and the first capacitor 23 a is the capacitor component of the air electrode side interface. The third resistor 26 a corresponds to the fuel electrode side interface resistance R ia, and the second capacitor 25 a corresponds to the capacitor component on the fuel electrode side interface.
従って、 上記 (1 ) 該第一円弧 2 aが燃料極側界面に由来する円弧で あり、 該第二円弧 3 aが空気極側界面に由来する円弧であると認定した 場合は、 該フィッティング時の入力値のうち、 該第二抵抗 2 4 aの入力 値が、 燃料極側界面抵抗 R i aであり、 該第三抵抗 2 6 aの入力値が、 空気極側界面抵抗 R i cである。 また、 上記 (2 ) 該第一円弧 2 aが空 気極側界面に由来する円弧であり、 該第二円弧 3 aが燃料極側界面に由 来する円弧であると認定した場合、該フィッティング時の入力値のうち、 該第二抵抗 2 4 aの入力値が、 空気極側界面抵抗 R i cあり、 該第三抵 抗 2 6 aの入力値が、 燃料極側界面抵抗 R i aである。
また、 該第一工程で得られた該算出対象燃料電池用セルのコール ' コ ール ·プロットが、 第 2図に示す該コール · コール 'プロット 1 bであ つた場合、 すなわち、 該第一工程で得られた該算出対象燃料電池用セル のコール · コール ·プロットが 3つの円弧からなる場合、 構築する等価 回路は、 第 7図に示す等価回路 3 0である。 第 7図中、 該等価回路 3 0 は、 ( i ) 第一抵抗 2 2 b、 ( i i ) 並列に接続された第二抵抗 2 4 b 及び第一コンデンサー 2 3 b、 ( i i i ) 並列に接続された第三抵抗 2 6 b及ぴ第二コンデンサー 2 5 b、 並びに ( i v ) 並列に接続された第 四抵抗 2 8 b及ぴ第三コンデンサー 2 7 bが、 直列に接続されている。 該フィッティングは、 先ず、 該ソフトに、 該等価回路 3 0の回路図、 並びに該第一抵抗 2 2 bの初期値、 該第二抵抗 2 4 bの初期値、 該第一 コンデンサー 2 3 bの初期値、 該第三抵抗 2 6 bの初期値、 該第ニコン デンサ一 2 5 bの初期値、 該第四抵抗 2 8 bの初期値、 該第三コンデン サー 2 7 bの初期値、 リアクタンス等の計算に必要な入力値を入力する 以外は、 前述した、 該第一工程で得られた該算出対象燃料電池用セルの コール · コール .プロットが 2つの円弧からなる場合と同様の方法で行 レ、、 フィッティング時の入力値を求める。 Therefore, (1) If it is determined that the first arc 2a is an arc derived from the fuel electrode side interface and the second arc 3a is an arc derived from the air electrode side interface, Among the input values, the input value of the second resistance 24 a is the fuel electrode side interface resistance Ria, and the input value of the third resistance 26 a is the air electrode side interface resistance R ic. (2) If it is determined that the first arc 2a is an arc derived from the air electrode side interface and the second arc 3a is an arc derived from the fuel electrode side interface, the fitting The input value of the second resistance 24 a is the air electrode side interface resistance R ic, and the input value of the third resistance 26 a is the fuel electrode side interface resistance R ia . In addition, when the call / call plot of the calculation target fuel cell obtained in the first step is the call / call plot 1b shown in FIG. 2, that is, the first call When the Cole-Cole-plot of the calculation target fuel cell obtained in the process consists of three arcs, the equivalent circuit to be constructed is the equivalent circuit 30 shown in FIG. In FIG. 7, the equivalent circuit 30 includes (i) a first resistor 2 2 b, (ii) a second resistor 2 4 b connected in parallel and a first capacitor 2 3 b, (iii) connected in parallel. The third resistor 26b and the second capacitor 25b, and (iv) the fourth resistor 28b and the third capacitor 27b connected in parallel are connected in series. The fitting is performed by first applying the soft circuit diagram of the equivalent circuit 30, the initial value of the first resistor 2 2 b, the initial value of the second resistor 24 b, and the first capacitor 23 b Initial value, initial value of the third resistor 26b, initial value of the second capacitor 25b, initial value of the fourth resistor 28b, initial value of the third capacitor 27b, reactance In the same manner as described above, the Cole-Cole plot of the calculation target fuel cell obtained in the first step is composed of two arcs, except that the input values necessary for the calculation are input. The input value at the time of fitting and fitting is obtained.
該等価回路 3 0と該第一工程で得られた該算出対象燃料電池用セルの コール . コール 'プロット 1 b との関係を説明すると、 該第二工程及ぴ 該第三工程により、 (3 ) 該コール ' コール 'プロット 1 bの該第一円 弧 2 bが燃料極側界面に由来する円弧であり、 該第二円弧 3 bが空気極 側界面に由来する円弧であると認定した場合、 該第二抵抗 2 4 bは燃料 極側界面抵抗 R i aに、 該第一コンデンサー 2 3 bは燃料極側界面のコ ンデンサ一成分に、 該第三抵抗 2 6 bは空気極側界面抵抗 R i cに、 該 第二コンデンサー 2 5 bは空気極側界面のコンデンサー成分に、 それぞ れ相当する。 また、該第二工程及ぴ該第三工程により、 (4 )該コール ·
コール 'プロット 1 bの該第一円弧 2 bが空気極側界面に由来する円弧 であり、 該第二円弧 3 bが燃料極側界面に由来する円弧であると認定し た場合、 該第二抵抗 2 4 bは空気極側界面抵抗 R i cに、 該第一コンデ ンサー 2 3 bは空気極側界面のコンデンサー成分に、 該第三抵抗 2 6 b は燃料極側界面抵抗 R i aに、 該第二コンデンサー 2 5 bは燃料極側界 面のコンデンサー成分に、 それぞれ相当する。 The relationship between the equivalent circuit 30 and the call cell call 'plot 1 b of the fuel cell to be calculated obtained in the first step will be described by the second step and the third step. ) When it is determined that the first arc 2b of the call 'call' plot 1b is an arc derived from the fuel electrode side interface and the second arc 3b is an arc derived from the air electrode side interface The second resistance 24 b is the fuel electrode side interface resistance Ria, the first capacitor 23 b is the capacitor component of the fuel electrode side interface, and the third resistance 26 b is the air electrode side interface resistance. The second capacitor 25 b corresponds to the capacitor component at the air electrode side interface. In addition, by the second process and the third process, (4) the call · When it is determined that the first arc 2b of Cole 'plot 1b is an arc derived from the air electrode side interface and the second arc 3b is an arc derived from the fuel electrode side interface, the second arc 3b The resistance 24 b is the air electrode side interface resistance R ic, the first capacitor 23 b is the capacitor component of the air electrode side interface, the third resistance 26 b is the fuel electrode side interface resistance R ia, The second capacitor 25 b corresponds to the capacitor component on the fuel electrode side interface.
従って、 上記 (3 ) 該第一円弧 2 bが燃料極側界面に由来する円弧で あり、 該第二円弧 3 bが空気極側界面に由来する円弧であると認定した 場合は、 該フィッティング時の入力値のうち、 該第二抵抗 2 4 bの入力 値が、 燃料極側界面抵抗 R i aであり、 該第三抵抗 2 6 bの入力値が、 空気極側界面抵抗 R i cである。 また、 上記 (4 ) 該第一円弧 2 bが空 気極側界面に由来する円弧であり、 該第二円弧 3 bが燃料極側界面に由 来する円弧であると認定した場合、該フィッティング時の入力値のうち、 該第二抵抗 2 4 bの入力値が、 空気極側界面抵抗 R i cあり、 該第三抵 抗 2 6 bの入力値が、 燃料極側界面抵抗 R i aである。 Therefore, (3) when it is determined that the first arc 2 b is an arc derived from the fuel electrode side interface and the second arc 3 b is an arc derived from the air electrode side interface, Among these input values, the input value of the second resistance 24 b is the fuel electrode side interface resistance R ia, and the input value of the third resistance 26 b is the air electrode side interface resistance R ic. (4) If it is determined that the first arc 2b is an arc derived from the air electrode side interface and the second arc 3b is an arc derived from the fuel electrode side interface, the fitting Of the input values at the time, the input value of the second resistance 24 b is the air electrode side interface resistance R ic, and the input value of the third resistance 26 b is the fuel electrode side interface resistance R ia .
また、 該第一工程で得られた該算出対象燃料電池用セルのコール ' コ ール ·プロットが 4つ以上の円弧からなる場合は、 円弧の数に係らず、 第 7図に示す該等価回路 3 0とのフィッティングを行うことができる。 本発明の第一の形態の界面抵抗の算出方法及び本発明の第二の形態の 界面抵抗の算出方法では、 該第一工程で得られた該算出対象燃料電池用 セルのコール . コール ·プロット中の該第一円弧及ぴ該第二円弧が、 燃 料極側界面又は空気極側界面のいずれに由来する円弧なのかを判断し易 くなる点で、 (1 ) 該第二工程における該第一測定条件及ぴ該第二測定 条件が、 該燃料極側ガス中の燃料濃度のみが異なる測定条件であり、 且 っ該第三工程における該第三測定条件及ぴ該第四測定条件が、 該空気極 側ガス中の酸素濃度のみが異なる測定条件であることが好ましく、 ( 2 )
該第二工程における該第一測定条件及ぴ該第二測定条件が、 該燃料極側 ガス中の水素濃度のみが異なる測定条件であり、 且つ該第三工程におけ る該第三測定条件及ぴ該第四測定条件が、 該空気極側ガス中の酸素濃度 のみが異なる測定条件であることが特に好ましく、 (3 ) 該第二工程に おける該第一測定条件及ぴ該第二測定条件が、 該燃料極側ガス中の水蒸 気濃度のみが異なる測定条件であり、 且つ該第三工程における該第三測 定条件及ぴ該第四測定条件が、 該空気極側ガス中の酸素濃度のみが異な る測定条件であることが更に好ましい。 In addition, when the call / call plot of the calculation target fuel cell obtained in the first step is composed of four or more arcs, the equivalent shown in FIG. 7 regardless of the number of arcs. Fitting with circuit 30 can be performed. In the calculation method of the interfacial resistance according to the first aspect of the present invention and the interfacial resistance calculation method according to the second aspect of the present invention, the call of the cell for calculation target fuel cell obtained in the first step. Cole plot (1) In the second step, it is easy to determine whether the first arc and the second arc are from the fuel electrode side interface or the air electrode side interface. The first measurement condition and the second measurement condition are measurement conditions that differ only in the fuel concentration in the fuel electrode side gas, and the third measurement condition and the fourth measurement condition in the third step are Preferably, the measurement conditions are different only in the oxygen concentration in the air electrode side gas. (2) The first measurement condition and the second measurement condition in the second step are measurement conditions that differ only in the hydrogen concentration in the fuel electrode side gas, and the third measurement condition and in the third step It is particularly preferable that the fourth measurement condition is a measurement condition in which only the oxygen concentration in the air electrode side gas is different. (3) The first measurement condition and the second measurement condition in the second step Are the measurement conditions that differ only in the water vapor concentration in the fuel electrode side gas, and the third measurement condition and the fourth measurement condition in the third step are the oxygen conditions in the air electrode side gas. More preferably, the measurement conditions differ only in concentration.
また、 本発明の第一の形態の界面抵抗の算出方法及び本発明の第二の 形態の界面抵抗の算出方法では、 該第二工程おける該算出対象燃料電池 用セルの複素インピーダンス測定及ぴ該第三工程おける該算出対象燃料 電池用セルの複素インピーダンス測定を行う温度は、 特に制限されず、 セルの種類、作動条件により、適宜選択され、通常、一 1 0〜 1 2 0 0 °C であり、 例えば、 固体酸化物形燃料電池用セルの場合、 6 0 0〜1 2 0 0 °Cである。 Further, in the calculation method of the interfacial resistance of the first aspect of the present invention and the calculation method of the interfacial resistance of the second aspect of the present invention, the complex impedance measurement of the cell for the fuel cell to be calculated and the The temperature at which the complex impedance measurement of the calculation target fuel battery cell in the third step is not particularly limited and is appropriately selected depending on the type of cell and the operating conditions, and is usually from 1 to 120 ° C. Yes, for example, in the case of a solid oxide fuel cell, the temperature is from 600 to 120 ° C.
従来より、 作動時の作動条件で、 燃料電池用セルの複素インピーダン ス測定を行い、 コール · コール 'プロットを得ることは知られていた。 しかし、 得られたコール · コール ·プロット中の円弧が、 燃料極側界面 に由来するものなのか、 空気極側界面に由来するものなのかを判断する ことはできなかった。 そのため、 作動時の燃料極側界面抵抗及ぴ空気極 側界面抵抗を算出することはできなかつた。 Conventionally, it has been known to obtain a Cole-Cole plot by measuring the complex impedance of a fuel cell cell under the operating conditions during operation. However, it was not possible to determine whether the obtained arc in the Cole-Cole plot originated from the fuel electrode side interface or the air electrode side interface. Therefore, the fuel electrode side interface resistance and the air electrode side interface resistance during operation could not be calculated.
一方、 本発明の第一の形態の界面抵抗の算出方法及び本発明の第二の 形態の界面抵抗の算出方法では、 該第二工程及ぴ該-第三工程を行うこと により、 該第一工程で得られた該算出対象燃料電池用セルのコール ' コ 一ル ·プロット中の第一円弧及び第二円弧が、 いずれの界面に由来する ものなのかを、 確実に認定できる。 従って、 本発明の第一の形態の界面
抵抗の算出方法及び本発明の第二の形態の界面抵抗の算出方法によれば 算出を欲する特定の作動条件で、 該算出対象燃料電池用セルを作動させ た時の、 燃料極側界面抵抗及ぴ空気極側界面抵抗を算出することができ る。 On the other hand, in the calculation method of the interfacial resistance according to the first aspect of the present invention and the interfacial resistance calculation method according to the second aspect of the present invention, the first step and the third step are carried out to perform the first step. It is possible to reliably identify the interface from which the first arc and the second arc in the call plot of the calculation target fuel cell obtained in the process are derived. Therefore, the interface of the first aspect of the present invention According to the calculation method of the resistance and the calculation method of the interface resistance according to the second aspect of the present invention, the fuel electrode side interface resistance and the resistance when the calculation target fuel cell is operated under a specific operating condition desired to be calculated. The air electrode side interface resistance can be calculated.
次に、 実施例を挙げて本発明を更に具体的に説明するが、 これは単に 例示であって、 本発明を制限するものではない。 EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.
(実施例) (Example)
(実施例 1 ) (Example 1)
(セルの作製) (Manufacture of cells)
混合比率が 50 : 50の酸化^ッケル (N i O) とスカンジアセリァ 安定化ジルコニァ (10 S c 1 C e S Z) の混合粉体を含有する燃料極 形成用スラリーを調製し、 次いで、 該燃料極形成用スラリーを用いて、 スクリーン印刷法にて、 膜厚が 100 μ mの燃料極形成用スラリ一層を 形成させ、 乾燥後、 1400°Cで 5時間焼成し、 燃料極を作製した。 ·酸化ニッケル;平均粒径 0. 8 μπι A slurry for forming a fuel electrode containing a mixed powder of nickel oxide (N i O) and scandiaceria stabilized zirconia (10 S c 1 C e SZ) having a mixing ratio of 50:50 was prepared, Using the slurry for forming the fuel electrode, a slurry layer for forming the fuel electrode with a film thickness of 100 μm was formed by screen printing. After drying, the slurry was fired at 1400 ° C for 5 hours to produce a fuel electrode. · Nickel oxide; average particle size 0.8 μπι
•スカンジァセリァ安定化ジルコユア ; ジルコニァ中のスカンジァの含 有量 1 Omo 1 %、 セリアの含有量 1 mo 1 %、 平均粒径 0. 6 /^m 次いで、 燃料極層形成用スラリーの調製に用いたスカンジアセリァ安 定化ジルコニァ (l O S c l C e S Z) を含有する電解質形成用スラリ 一を調製し、 次いで、 燃料極層の表面に、 該電解質形成用スラリーを、 スクリーン印刷法にて、 膜厚が 0. 3mmとなるように塗布し、 乾燥さ せた後、 1400°Cで 5時間焼成し、電解質が形成された燃料極を得た。 次いで、 ランタンストロンチウムマンガネート (L n0. 8 S r 0. 2M !! 。O3) を含有する空気極形成用スラリーを調製し、 次いで、該電解 質の表面に、 該空気極形成用スラリーを、 スクリーン印刷法にて、 膜厚 が 1 00 mとなるように塗布し、 乾燥させた後、 1 200°Cで 3時間
焼成し、 燃料電池用セル A,を製造した。 • Scandiaceria stabilized zirconia; content of scandia in zirconia 1 Omo 1%, ceria content 1 mo 1%, average particle size 0.6 / ^ m A slurry for forming an electrolyte containing scandiaceria-stabilized zirconia (l OS cl C e SZ) was prepared, and the electrolyte-forming slurry was formed on the surface of the fuel electrode layer by a screen printing method. The coating was applied to a thickness of 0.3 mm, dried, and then fired at 1400 ° C. for 5 hours to obtain a fuel electrode on which an electrolyte was formed. Then, lanthanum strontium manganate (L n 0. 8 S r 0. 2 M !! .O 3) to prepare a cathode-forming slurry containing, then the surface of the electrolyte, for the air Kikyoku formed The slurry was applied by screen printing to a film thickness of 100 m, dried, and then 1 200 ° C for 3 hours Firing was carried out to produce a fuel cell A.
(複素インピーダンス測定) (Complex impedance measurement)
該燃料電池用セル Aの複素インピーダンスを、 セルの作動温度が 1 0 0 0 °C、 ガス組成が第 1表に示す燃料極側ガスの水素濃度及び空気極側 ガスの酸素濃度の条件下、 測定モード: ポテンションスタツ ト、 設定電. 位: 0 . 0 V、 電流レンジ: 1 0 A、 遅延時間: 0 . 1秒、 掃引測定デ ータ数: 5 0回、 積分回数: 1 0回、 最大周波数: 1 0 0 k H Z、 最小 周波数: 0 . 1 H z、 正弦波電圧: 0 . 0 3 V r m s、 E M測定時間: 5秒、 分極保持時間: 0 . 2秒で測定した。 その結果を第 2表〜第 5表 に示す。 また、 測定 1〜4のコール · コール 'プロットを第 8図〜第 1 1図に示す。 The complex impedance of the fuel cell A is determined under the conditions that the operating temperature of the cell is 100 ° C. and the gas composition is the hydrogen concentration of the fuel electrode side gas and the oxygen concentration of the air electrode side gas shown in Table 1. Measurement mode: potentiostat, set voltage: 0.0 V, current range: 10 A, delay time: 0.1 sec, number of sweep measurement data: 50 times, integration number: 10 times maximum frequency: 1 0 0 k H Z, minimum frequency:. 0 1 H z, sinusoidal voltage:. 0 0 3 V rms, EM measurement time: 5 seconds, the polarization retention time:. 0 were measured at 2 seconds. The results are shown in Tables 2-5. Also, Cole-Cole 'plots for measurements 1 to 4 are shown in Figs.
そして、 第一工程の界面抵抗の算出を行う作動条件を測定 1とし、 第 二工程の第一測定条件を測定 4、 第二測定条件を測定 2、 第三工程の第 三測定条件を測定 1、 第四測定条件を測定 2として、 実数部抵抗値差第 —ダラフ及ぴ実数部抵抗値差第二グラフを求めた。 その結果を第 6表及 び第 1 2図に示す。.
ez Then, the operating condition for calculating the interfacial resistance in the first process is set as measurement 1, the first measurement condition in the second process is measured 4, the second measurement condition is measured 2, and the third measurement condition in the third process is measured 1 Using the fourth measurement condition as measurement 2, the real part resistance difference No. 2 -Draft and real part resistance difference second graph was obtained. The results are shown in Tables 6 and 12. . ez
l9l .0£/900∑df/X3d 0Z.6011/Z.00J OAV
οε l9l .0 £ / 900∑df / X3d 0Z.6011 / Z.00J OAV οε
挲 ε绻 l9l.0C/900Zdf/X3d 0L60U/L00Z OAV
00+300-2 10-3S82 挲 ε 绻 l9l.0C / 900Zdf / X3d 0L60U / L00Z OAV 00 + 300-2 10-3S82
ιο-ョ ε9·ι 00+ョ 86· I 10-ョ is'e ιο-yo ε9 · ι 00 + yo 86 · I 10-yo is'e
10-38 ' 1· 00+3961 ιο -ョ εε 10-38 '1 00 + 3961 ιο--εε
10- 3 6' I 00+3861 10- 3 6 'I 00 + 3861
00+31.6Ί I.0-3899 00 + 31.6Ί I.0-3899
10-az.e'z 00+3i8'l 10-3118 10-az.e'z 00 + 3i8'l 10-3118
10-3S9'3 00+3^81 00+300' I 10-3S9'3 00 + 3 ^ 81 00 + 300 'I
10-3UZ 00+3081 00+3821 10-3UZ 00 + 3081 00 + 3821
10-3Z.8'Z 00+3S乙 ·1 00+3291 10-3Z.8'Z 00 + 3S B1 00 + 3291
10-3867 • 00+3 ·1 00+3ん 8' I lo-a^oe 00+399' l 00+3 ιε·2 ιο-3ζ.ο-ε 00+319' I 00+3387 10-3867 • 00 + 3 1 00 + 3 8 'I lo-a ^ oe 00 + 399' l 00 + 3 ιε · 2 ιο-3ζ.ο-ε 00 + 319 'I 00 + 3387
ΙΟ-360'δ 00+399' t 00+3 IS'8 ΙΟ-360'δ 00 + 399 't 00 + 3 IS'8
ΙΟ-390'ε 00+329' I οο+3εε' ιο-3Ζθ'ε 00+ョん 00+3 S ΙΟ-390'ε 00 + 329 'I οο + 3εε' ιο-3Ζθ'ε 00+
10-3867 00+ョ ει 00+3899 10-3867 00 + yo ει 00 + 3899
10-326Z 00+36ε-1 00+3 U'8 , 10-326Z 00 + 36ε-1 00 + 3 U'8,
10 -ョ 8·Ζ 00+3991 ΙΟ+300'l 10 -yo 8ΖΖ 00 + 3991 ΙΟ + 300'l
10-318Ζ 00+3 ιε-ι ιο+3εζ ι 10-318Ζ 00 + 3 ιε-ι ιο + 3εζ ι
[0-3 LZ 00+382' 1 10+329Ί [0-3 LZ 00 + 382 '1 10 + 329Ί
00+3ΡΖΊ. 10+3/.81 00 + 3ΡΖΊ. 10 + 3 / .81
10-3Z.9"2 00+302' 1 10+3 ιε-ζ 10-3Z.9 "2 00 + 302 '1 10 + 3 ιε-ζ
10-389'2 00+3乙に I· 10+3983 10-389'2 00 + 3
10-3S9"2 00+ΙΐΙΊ- 10+319 ε 10-3S9 "2 00 + ΙΐΙΊ- 10 + 319 ε
10- 3S9マ 00+360" 1 ιο+3εε 10- 3S9 00 + 360 "1 ιο + 3εε
10-3Z.92 00+3901 10+3 S'S 10-3Z.92 00 + 3901 10 + 3 S'S
10-3^52 00+3901 10+38S9 10-3 ^ 52 00 + 3901 10 + 38S9
L0-31S'Z 10-3266 io+a '8 L0-31S'Z 10-3266 io + a '8
10 -ョ 9fr'Z 10-3.96 20+300' I 10 -yo 9fr'Z 10-3.96 20 + 300 'I
10- 3 W-3 ZG 20+3921 10- 3 W-3 ZG 20 + 3921
10 -ョ Z [0-3 63 Ζ0+3Ζ9Ί. 10 -yo Z (0-3 63 Ζ0 + 3Ζ9Ί.
[0-ΈίΖΖ 10-38S8 Z0+3.81 [0-ΈίΖΖ 10-38S8 Z0 + 3.81
10-38 Γ2 10-39Ζ8 20+3 ιεζ 10-38 Γ2 10-39Ζ8 20 + 3 ιεζ
10- 301マ 10-396 Z0+3S8Z 10-301 10-396 Z0 + 3S8Z
10-3 ΙΟ'Ζ 10-3L9L 10-3 ΙΟ'Ζ 10-3L9L
10-3Z61 10-31YL ζο+ョ εε 10-3Z61 10-31YL ζο + εεε
10-318' I 10— 3S ん 10-318 'I 10-3S
10-316'9 20+38S9 10-316'9 20 + 38S9
ΙΟ-319'Ι. 10-3699 20+3 U'8 ΙΟ-319'Ι. 10-3699 20 + 3 U'8
10-309' I 10 -ョ8 9 CO+3001 10-309 'I 10 -yo 8 9 CO + 3001
10-380' I 10-36乙' S εο+3ΐ.ε2 10-380 'I 10-36B' S εο + 3ΐ.ε2
- 3 6 10-3^99 εθ+3883 -3 6 10-3 ^ 99 εθ + 3883
20-3298 10 -ョ OS'S εο+3ΐ3ε 20-3298 10 -yo OS'S εο + 3ΐ3ε
30-399'Z. 10-38C"9 εο+3εε zo -ョ οε·9 1.0-382'S εο+ョ 30-399'Z. 10-38C "9 εο + 3εε zo-οε 9 1.0-382'S εο +
Ι.0-3ΖΓ9 εθ+389'9 Ι.0-3ΖΓ9 εθ + 389'9
10-3903 εο+3"·8 10-3903 εο + 3 "· 8
20-399' I 10-300'9 1Ό+300Ί 20-399 'I 10-300'9 1Ό + 300Ί
ε¾[ιϊί 峯 绻 ε¾ [ιϊί 峯 绻
T9l.0C/900Zdf/X3d 0.60ΪΪ/.00Ζ OAV
5表 T9l.0C / 900Zdf / X3d 0.60ΪΪ / .00Ζ OAV 5 tables
(円弧の認定) (Certified arc)
第 1 2図中、 実数部抵抗値差第一グラフのピーク トップは、 周波数 1 00H z付近であるので、 周波数 1 00H z近辺に、 燃料極側の変化の 影響が強く出ていることがわかった。 そして、 第 2表から、 第 8図の測 定 1のコール · コール 'プロット中の円弧のうち、 周波数 1 00 H zの 点を含む円弧である第一円弧 31が、 燃料極側に由来する円弧であると 認定できる。 同様に、 実数部抵抗値差第二グラフのピーク トップは、 周 波数 1 0 H z付近であるので、 周波数 1 0H z近辺に、 空気極側の変化 の影響が強く出ていることがわかった。 そして、 第 2表かち、 第 8図の 測定 1のコール · コール ·プロット中の円弧のうち、 周波数 1 OH zの 点を含む円弧である第二円弧 32が、 空気極側に由来する円弧であると 認定できる。 In Fig. 12, since the peak top of the first resistance difference graph in the real part is near the frequency of 100 Hz, it can be seen that the influence of the change on the fuel electrode side is strongly around the frequency of 100 Hz. It was. From Table 2, the first arc 31 that is the arc including the point with the frequency of 100 Hz out of the arcs in the measurement 1 call and call 'plot of Fig. 8 is derived from the fuel electrode side. Can be recognized as an arc. Similarly, since the peak top of the second resistance value difference graph in the real part is near the frequency of 10 Hz, it was found that the influence of the change on the air electrode side is strongly around the frequency of 10 Hz. . Then, from Table 2, the second arc 32, which is the arc including the point of frequency 1 OH z, is the arc originating from the air electrode side among the arcs in the call, call, and plot of measurement 1 in Fig. 8. It can be recognized that there is.
(フイツティング工程) (Fitting process)
第 7図に示す等価回路を構築した。 上記円弧の認定結果から、 第 7図 中、 第二抵抗 24 bが燃料極側界面抵抗 R i aに相当し、 第三抵抗 26 bが空気極側界面抵抗 R i cの相当する。 次いで、 既存ソフト Z V i e w2— E q u i v a l e n t— C i r c u i t sを用いて、 第 8図に 示す測定 1のコール · コール ·プロットとのフイツティングを行い、 第 1 3図に示すコール'コール'プロットを得た。第 1 3図に示すコール · コール ·プロットとなる時の第二抵抗 24 bの入力値は、 0. 9697 The equivalent circuit shown in Fig. 7 was constructed. From the result of the above-mentioned arc recognition, in FIG. 7, the second resistance 24 b corresponds to the fuel electrode side interface resistance R i a, and the third resistance 26 b corresponds to the air electrode side interface resistance R i c. Next, using the existing software ZV ie w2—Equivalent—Circuits, fitting was performed with the call-call-plot of measurement 1 shown in Fig. 8, and the call 'call' plot shown in Fig. 13 was obtained. . The input value of the second resistor 24b in the case of the Cole-Cole-plot shown in Figure 1 is 0.99697.
6 Ωであり、 第三抵抗 26 bの入力値は、 0. 55527 Ωであった。 従って、 該燃料電池用セル Aを、 燃料極側のガス組成が水素濃度 1 0The input value of the third resistor 26 b was 0.555527 Ω. Accordingly, the fuel cell A has a gas composition with a hydrogen concentration of 10 0 on the fuel electrode side.
0%、 空気極側のガス組成が酸素濃度 1 0%、 セルの作動温度が 1 00 0°Cの作動条件で作動させた時、 該燃料電池用セル Aの燃料極側界面抵 抗 R i aは 0. 969 76 Ω、 空気極側界面抵抗 R i cは 0. 5 552When operated under the operating conditions of 0%, gas composition on the air electrode side with oxygen concentration of 10%, and cell operating temperature of 100 ° C, the fuel electrode side interface resistance of the fuel cell A Is 0.969 76 Ω, interface resistance on the air electrode side R ic is 0.5 552
7 Ωである。
(符号の説明) 7 Ω. (Explanation of symbols)
a、 1 b、 1 1、 1 2、 1 7、 1 8 nール · コール ·プロッ ト a、 2 b、 2 c、 2 d、 2 e、 2 f 、 3 1 第一円弧 a, 1 b, 1 1, 1 2, 1 7, 1 8 n Cole plot a, 2 b, 2 c, 2 d, 2 e, 2 f, 3 1 1st arc
a、 3 b、 3 c、 3 d、 3 e、 3 f 、 3 2 第二円弧 a, 3 b, 3 c, 3 d, 3 e, 3 f, 3 2 second arc
第三円弧 3rd arc
4 実数部抵抗差第一 -グラフ 4 Real part resistance difference 1-graph
4 1 実数部抵抗差第二 :グラフ 4 1 Real part resistance difference 2: Graph
5、 1 5 1 ピーク 5, 1 5 1 peak
6、 1 6 1 ピーク トップ 6, 1 6 1 Peak top
等価回路 Equivalent circuit
b 第一抵抗 b First resistance
b 第一コンデンサー b 1st condenser
b 第二抵抗 b Second resistance
b 第二コンデンサ b Second capacitor
b 第三抵抗 b Third resistor
第三コンデンサー Third capacitor
第四抵抗 Fourth resistance
、 4 1 b 電解質 4 1b electrolyte
、 4 2 b 燃料極 4 2 b Fuel electrode
, 3 b 空気極 , 3 b
、 4 4 b 燃料電池用セル 4 4 b Fuel cell
参照極 Reference pole
b 等電位線 b Equipotential lines
燃料極端子 Fuel electrode terminal
空気極端子
5 5 a、 5 5 b 中間電位点 Air electrode terminal 5 5 a, 5 5 b Intermediate potential point
5 6 燃料極 4 2 bが接合されている面 産業上の利用可能性 5 6 Surface where fuel electrode 4 2 b is joined Industrial applicability
本発明によれば、 作動条件での燃料電池用セルの界面抵抗を把握する ことができるので、 燃料電池用セルを有する発電システムの構築が容易 になる。
According to the present invention, the interfacial resistance of the fuel cell can be ascertained under operating conditions, so that it is easy to construct a power generation system having the fuel cell.
Claims
1. 算出対象燃料電池用セルの作動時の燃料極側界面抵抗 R i a及び空 気極側界面抵抗 R i cを算出する界面抵抗の算出方法であって、 界面抵抗の算出を行う作動条件で、 該算出対象燃料電池用セルの複素ィ ンピーダンス測定を行い、該算出対象燃料電池用セルのコール'コール · プロットを得る第一工程と、 1. A method for calculating an interface resistance for calculating a fuel electrode side interface resistance R ia and an air electrode side interface resistance R ic at the time of operation of a calculation target fuel cell, under an operating condition for calculating the interface resistance, A first step of performing a complex impedance measurement of the calculation target fuel cell and obtaining a call-call plot of the calculation target fuel cell;
燃料極側ガスのガス組成のみが異なる第一測定条件及び第二測定条件で、 該算出対象燃料電池用セルの複素インピーダンス測定を行い、 次いで、 該第一測定条件における周波数が nの時の実数部抵抗値 R 1 r nと該第 二測定条件における周波数が nの時の実数部抵抗値 R 2 r nとの差厶 R (1 - 2) r nを下記式 (1) : The complex impedance measurement of the calculation target fuel cell is performed under the first measurement condition and the second measurement condition that are different only in the gas composition of the fuel electrode side gas, and then the real number when the frequency in the first measurement condition is n The difference between the part resistance value R 1 rn and the real part resistance value R 2 rn when the frequency in the second measurement condition is n is R (1-2) rn as the following formula (1):
厶 R (l _ 2) r n=R l r n-R 2 r n (1) 厶 R (l _ 2) r n = R l r n-R 2 r n (1)
により計算し、 周波数毎の ΔΙ (1— 2) r nを求め、 次いで、 横軸を 周波数、 縦軸を (1 - 2) r nとして、 周波数毎の AR (1— 2) r nをプロットし、 実数部抵抗値差第一グラフを得、 次いで、 該実数部 抵抗値差第一グラフ中のピーク トップの周波数から、 該第一工程で得ら れた該算出対象燃料電池用セルのコール■ コール 'プロット中の円弧の うち、 燃料極側界面に由来する円弧を認定する第二工程と、 Calculate ΔΙ (1− 2) rn for each frequency, then plot the AR (1− 2) rn for each frequency, with the horizontal axis representing frequency and the vertical axis representing (1-2) rn. The resistance value difference first graph is obtained, and then the call of the calculation target fuel cell obtained in the first step is obtained from the peak top frequency in the real part resistance value difference first graph. Of the arcs in the plot, the second step of certifying arcs originating from the fuel electrode side interface,
該空気極側ガスのガス組成のみが異なる第三測定条件及ぴ第四測定条件 で、 該算出対象燃料電池用セルの複素インピーダンス測定を行い、 次い で、 該第三測定条件における周波数が nの時の実数部抵抗値 R 3 r nと 該第四測定条件における周波数が nの時の実数部抵抗値 R 4 r nとの差 厶 R (3 -4) r nを下記式 (2) : The complex impedance measurement of the calculation target fuel cell is performed under the third measurement condition and the fourth measurement condition, which differ only in the gas composition of the air electrode side gas, and then the frequency in the third measurement condition is n The difference between the real part resistance value R 3 rn and the real part resistance value R 4 rn when the frequency in the fourth measurement condition is n 厶 R (3 -4) rn is expressed by the following equation (2):
AR (3— 4) r n=R 3 r n—R4 r n (2) AR (3— 4) r n = R 3 r n—R4 r n (2)
により計算し、 周波数毎の (3 -4) r nを求め、 次いで、 横軸に
周波数、 縦軸に AR (3 -4) r nをプロットして実数部抵抗値差第二 グラフを得、 次いで、 該実数部抵抗値差第二グラフ中のピーク トップの 周波数から、 該第一工程で得られた該算出対象燃料電池用セルのコー ル · コール ·プロット中の円弧のうち、 空気極側界面に由来する円弧を 認定する第三工程と、 Calculate (3 -4) rn for each frequency, and then on the horizontal axis Plot AR (3 -4) rn on the vertical axis and obtain the second graph of the real part resistance difference. Next, from the peak top frequency in the second real part resistance value difference graph, the first step A third step of certifying an arc derived from the air electrode side interface among the arcs in the call-call-plot of the calculation target fuel cell obtained in
該第一工程で得られた該算出対象燃料電池用セルのコール · コール ·プ ロット中、 該第二工程で燃料極側界面に由来する円弧であると認定した 円弧の実数部抵抗値の最大値 R r a (ma x) と実数部抵抗値の最小値 R r a (m i n) との差を、 下記式 (3) : The maximum of the resistance value of the real part of the arc that is recognized as the arc derived from the fuel electrode side interface in the second step in the call / call / plot of the fuel cell to be calculated obtained in the first step The difference between the value R ra (max) and the minimum value R ra (min) of the real part resistance is expressed by the following equation (3):
R i a =R r a (ma x) - R r a (m i n) (3) R i a = R r a (max)-R r a (m i n) (3)
により計算して、 燃料極側界面抵抗 R i aを求め、 次いで、 該第一工程 で得られた該算出対象燃料電池用セルのコール ' コール 'プロット中、 該第三工程で空気極側界面に由来する円弧であると認定した円弧の実数 部抵抗値の最大値 R r c (ma x) と実数部抵抗値の最小値 R r c (m i n) との差を、 下記式 (4) : Then, the fuel electrode side interface resistance Ria is obtained, and then, in the call “call” plot of the calculation target fuel cell obtained in the first step, the air electrode side interface is obtained in the third step. The difference between the real part resistance maximum value R rc (max) and the real part resistance minimum value R rc (min) of the arc that is recognized as the arc derived from the following equation (4):
R i c =R r c (ma x) — R r c 、m i n) 、4) R i c = R r c (ma x) — R r c, m i n), 4)
により計算し、 空気極側界面抵抗 R i cを求める界面抵抗計算工程と、 を有することを特徴とする界面抵抗の算出方法。 An interface resistance calculation step of calculating an air electrode side interface resistance R ic by calculating the interface resistance, and calculating the interface resistance.
2. 算出対象燃料電池用セルの作動時の燃料極側界面抵抗 R i a及び空 気極側界面抵抗 R i cを算出する界面抵抗の算出方法であって、 界面抵抗の算出を行う作動条件で、 該算出対象燃料電池用セルの複素ィ ンピーダンス測定を行い、該算出対象燃料電池用セルのコール'コール · プロットを得る第一工程と、 2. A calculation method of interface resistance to calculate the fuel electrode side interface resistance R ia and the air electrode side interface resistance R ic at the time of operation of the target fuel cell, and under the operating conditions for calculating the interface resistance, A first step of performing a complex impedance measurement of the calculation target fuel cell and obtaining a call-call plot of the calculation target fuel cell;
燃料極側ガスのガス組成のみが異なる第一測定条件及び第二測定条件で、 該算出対象燃料電池用セルの複素インピーダンス測定を行い、 次いで、 該第一測定条件における周波数が nの時の実数部抵抗値 R 1 r nと該第
二測定条件における周波数が nの時の実数部抵抗値 R 2 r nとの差 AR ( 1 - 2) r nを下記式 ( 1 ) : The complex impedance measurement of the calculation target fuel cell is performed under the first measurement condition and the second measurement condition that are different only in the gas composition of the fuel electrode side gas, and then the real number when the frequency in the first measurement condition is n Resistance value R 1 rn The difference AR (1-2) rn from the real part resistance value R 2 rn when the frequency is n under the two measurement conditions is expressed by the following formula (1):
厶 R (l— 2) r n=R l r n-R 2 r n (1) により計算し、 周波数毎の AR (1 - 2) r nを求め、 次いで、 横軸を 周波数、 縦軸を (1 - 2) r nとして、 周波数毎の A R (1— 2) r nをプロットし、 実数部抵抗値差第一グラフを得、 次いで、 該実数部 抵抗値差第一グラフ中のピークトップの周波数から、 該第一工程で得ら れた該算出対象燃料電池用セルのコール · コール 'プロット中の円弧の うち、 燃料極側界面に由来する円弧を認定する第二工程と、 厶 R (l— 2) rn = R lr nR 2 rn (1) to calculate AR (1-2) rn for each frequency, then the horizontal axis is frequency and the vertical axis is (1-2) rn Plot AR (1−2) rn for each frequency to obtain a real part resistance value difference first graph, and then from the peak top frequency in the real part resistance value difference first graph, the first step The second step of certifying an arc derived from the fuel electrode side interface among the arcs in the call / call 'plot of the fuel cell to be calculated obtained in
該空気極側ガスのガス組成のみが異なる第三測定条件及び第四測定条件 で、 該算出対象燃料電池用セルの複素インピーダンス測定を行い、 次い で、 該第三測定条件における周波数が nの時の実数部抵抗値 R 3 r nと 該第四測定条件における周波数が nの時の実数部抵抗値 R 4 r nとの差 ^R (3 -4) r nを下記式 (2) : The complex impedance measurement of the calculation target fuel cell is performed under the third measurement condition and the fourth measurement condition that are different only in the gas composition of the air electrode side gas, and then the frequency in the third measurement condition is n. The difference between the real part resistance value R 3 rn at the time and the real part resistance value R 4 rn when the frequency in the fourth measurement condition is n ^ R (3 -4) rn is expressed by the following equation (2):
厶 R (3— 4) r n=R 3 r n— R 4 r n (2) 厶 R (3— 4) r n = R 3 r n— R 4 r n (2)
により計算し、 周波数毎の (3— 4) r nを求め、 次いで、 横軸に 周波数、 縦軸に AR (3 -4) r nをプロットして実数部抵抗値差第二 グラフを得、 次いで、 該実数部抵抗値差第二グラフ中のピーク トップの 周波数から、 該第一工程で得られた該算出対象燃料電池用セルのコー ル · コール ·プロット中の円弧のうち、 空気極側界面に由来する円弧を 認定する第三工程と、 Calculate (3-4) rn for each frequency, then plot the frequency on the horizontal axis and AR (3 -4) rn on the vertical axis to obtain the real part resistance difference second graph, From the peak-top frequency in the real part resistance difference second graph, on the air electrode side interface among the arcs in the call-coal-plot of the calculation target fuel cell obtained in the first step A third step of certifying the arc
直列に接続された ( i ) 第一抵抗、 ( i i ) 並列に接続された第二抵抗 及び第一コンデンサー、 並びに ( i i i ) 並列に接続された第三抵抗及 び第二コンデンサーを有する等価回路と、 該第一工程で得られた該算出 対象燃料電池用セルのコール · コール ·プロットとのフィッティングを 行い、 燃料極側界面抵抗 R i a及び空気極側界面抵抗 R i cを求めるフ
ィッティング工程と、 An equivalent circuit having (i) a first resistor connected in series; (ii) a second resistor and a first capacitor connected in parallel; and (iii) a third resistor and a second capacitor connected in parallel. Fitting with the Cole-Cole plot of the calculation target fuel cell obtained in the first step to obtain the fuel electrode side interface resistance Ria and the air electrode side interface resistance Ric The fitting process,
を有することを特徴とする界面抵抗の算出方法。 A method for calculating the interfacial resistance, comprising:
3 . 前記第二工程における前記第一測定条件及び前記第二測定条件が、 前記燃料極側ガス中の燃料濃度のみが異なる測定条件であり、 且つ前記 第三工程における前記第三測定条件及び前記第四測定条件が、 前記空気 極側ガス中の酸素濃度のみが異なる測定条件であることを特徴とする請 求項 1又は 2いずれか 1項に記載の界面抵抗の算出方法。 3. The first measurement condition and the second measurement condition in the second step are measurement conditions that differ only in the fuel concentration in the fuel electrode side gas, and the third measurement condition and the above in the third step The interface resistance calculation method according to claim 1 or 2, wherein the fourth measurement condition is a measurement condition in which only the oxygen concentration in the air electrode side gas is different.
4 . 前記第二工程における前記第一測定条件及び前記第二測定条件が、 前記燃料極側ガス中の水素濃度のみが異なる測定条件であることを特徴 とする請求項 3記載の界面抵抗の算出方法。 4. The interface resistance calculation according to claim 3, wherein the first measurement condition and the second measurement condition in the second step are measurement conditions that differ only in the hydrogen concentration in the fuel electrode side gas. Method.
5 . 前記第二工程における前記第一測定条件及び前記第二測定条件が、 前記燃料極側ガス中の水蒸気濃度のみが異なる測定条件であり、 且つ前 記第三工程における前記第三測定条件及び前記第四測定条件が、 前記空 気極側ガス中の酸素濃度のみが異なる測定条件であることを特徴とする 請求項 1又は 2いずれか 1項に記載の界面抵抗の算出方法。
5. The first measurement condition and the second measurement condition in the second step are measurement conditions that differ only in the water vapor concentration in the fuel electrode side gas, and the third measurement condition in the third step and The interface resistance calculation method according to claim 1, wherein the fourth measurement condition is a measurement condition in which only the oxygen concentration in the air electrode side gas is different.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008507352A JP5007963B2 (en) | 2006-03-29 | 2006-03-29 | Calculation method of interface resistance |
PCT/JP2006/307161 WO2007110970A1 (en) | 2006-03-29 | 2006-03-29 | Method for calculating interface resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/307161 WO2007110970A1 (en) | 2006-03-29 | 2006-03-29 | Method for calculating interface resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007110970A1 true WO2007110970A1 (en) | 2007-10-04 |
Family
ID=38540910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/307161 WO2007110970A1 (en) | 2006-03-29 | 2006-03-29 | Method for calculating interface resistance |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5007963B2 (en) |
WO (1) | WO2007110970A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009180717A (en) * | 2008-02-01 | 2009-08-13 | Mitsui Eng & Shipbuild Co Ltd | Evaluating method of silicone thin film |
WO2010128555A1 (en) * | 2009-05-08 | 2010-11-11 | トヨタ自動車株式会社 | Fuel cell hydrogen concentration estimation device and fuel cell system |
CN102243274A (en) * | 2011-05-05 | 2011-11-16 | 昆明理工大学 | Method for measuring and calculating interface resistivity of Pb-Sn-Al laminated composite material |
JP2013229349A (en) * | 2013-07-19 | 2013-11-07 | Yokogawa Electric Corp | Method and apparatus for evaluating impedance characteristics |
JP2015022884A (en) * | 2013-07-18 | 2015-02-02 | アイシン精機株式会社 | Derivation method and derivation device for deriving each resistance value relating to solid oxide type fuel cell unit cell |
JP2018517239A (en) * | 2015-04-23 | 2018-06-28 | フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Method for obtaining an overvoltage in a fuel cell |
JP2018147657A (en) * | 2017-03-03 | 2018-09-20 | 株式会社京三製作所 | Diagnostic device of fuel cell, fuel cell system and diagnostic method |
JP2019053078A (en) * | 2014-04-14 | 2019-04-04 | 日置電機株式会社 | Measuring apparatus, and measuring method |
CN114976131A (en) * | 2022-06-14 | 2022-08-30 | 哈尔滨工业大学(深圳) | High-temperature proton exchange membrane fuel cell performance test system and method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003223918A (en) * | 2002-01-31 | 2003-08-08 | Hioki Ee Corp | Resistance measurement equipment and diagnostic equipment |
JP2003317810A (en) * | 2002-04-18 | 2003-11-07 | Toyota Motor Corp | Battery characteristic evaluation method |
EP1501146A2 (en) * | 2003-07-24 | 2005-01-26 | Matsushita Electric Industrial Co., Ltd. | Fuel cell system, fuel cell operation method, program, and recording medium |
US20050096858A1 (en) * | 2003-10-31 | 2005-05-05 | Hiroshi Okuda | Fuel cell evaluation method and fuel evaluation apparatus |
US20050100770A1 (en) * | 2003-11-12 | 2005-05-12 | Honda Motor Co., Ltd. | Electrolyte-electrode assembly and method for producing the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005063946A (en) * | 2003-07-24 | 2005-03-10 | Matsushita Electric Ind Co Ltd | Fuel cell system, fuel cell operation method, program, and record medium |
JP4390530B2 (en) * | 2003-11-12 | 2009-12-24 | 本田技研工業株式会社 | Electrolyte / electrode assembly and method for producing the same |
-
2006
- 2006-03-29 WO PCT/JP2006/307161 patent/WO2007110970A1/en active Application Filing
- 2006-03-29 JP JP2008507352A patent/JP5007963B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003223918A (en) * | 2002-01-31 | 2003-08-08 | Hioki Ee Corp | Resistance measurement equipment and diagnostic equipment |
JP2003317810A (en) * | 2002-04-18 | 2003-11-07 | Toyota Motor Corp | Battery characteristic evaluation method |
EP1501146A2 (en) * | 2003-07-24 | 2005-01-26 | Matsushita Electric Industrial Co., Ltd. | Fuel cell system, fuel cell operation method, program, and recording medium |
US20050096858A1 (en) * | 2003-10-31 | 2005-05-05 | Hiroshi Okuda | Fuel cell evaluation method and fuel evaluation apparatus |
US20050100770A1 (en) * | 2003-11-12 | 2005-05-12 | Honda Motor Co., Ltd. | Electrolyte-electrode assembly and method for producing the same |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009180717A (en) * | 2008-02-01 | 2009-08-13 | Mitsui Eng & Shipbuild Co Ltd | Evaluating method of silicone thin film |
JP5338903B2 (en) * | 2009-05-08 | 2013-11-13 | トヨタ自動車株式会社 | Fuel cell hydrogen concentration estimation device, fuel cell system |
WO2010128555A1 (en) * | 2009-05-08 | 2010-11-11 | トヨタ自動車株式会社 | Fuel cell hydrogen concentration estimation device and fuel cell system |
US8542026B2 (en) | 2009-05-08 | 2013-09-24 | Toyota Jidosha Kabushiki Kaisha | Apparatus for estimating fuel-cell hydrogen concentration and fuel cell system |
CN102243274A (en) * | 2011-05-05 | 2011-11-16 | 昆明理工大学 | Method for measuring and calculating interface resistivity of Pb-Sn-Al laminated composite material |
JP2015022884A (en) * | 2013-07-18 | 2015-02-02 | アイシン精機株式会社 | Derivation method and derivation device for deriving each resistance value relating to solid oxide type fuel cell unit cell |
JP2013229349A (en) * | 2013-07-19 | 2013-11-07 | Yokogawa Electric Corp | Method and apparatus for evaluating impedance characteristics |
JP2019053078A (en) * | 2014-04-14 | 2019-04-04 | 日置電機株式会社 | Measuring apparatus, and measuring method |
JP2018517239A (en) * | 2015-04-23 | 2018-06-28 | フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Method for obtaining an overvoltage in a fuel cell |
US10637083B2 (en) | 2015-04-23 | 2020-04-28 | Forschungszentrum Juelich Gmbh | Method for ascertaining overvoltages in fuel cells |
US11024862B2 (en) | 2015-04-23 | 2021-06-01 | Forschungszentrum Juelich Gmbh | Fuel cell arrangement |
JP2018147657A (en) * | 2017-03-03 | 2018-09-20 | 株式会社京三製作所 | Diagnostic device of fuel cell, fuel cell system and diagnostic method |
CN114976131A (en) * | 2022-06-14 | 2022-08-30 | 哈尔滨工业大学(深圳) | High-temperature proton exchange membrane fuel cell performance test system and method thereof |
CN114976131B (en) * | 2022-06-14 | 2023-02-28 | 哈尔滨工业大学(深圳) | High-temperature proton exchange membrane fuel cell performance test system and method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5007963B2 (en) | 2012-08-22 |
JPWO2007110970A1 (en) | 2009-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007110970A1 (en) | Method for calculating interface resistance | |
Levi et al. | Impedance spectra of energy-storage electrodes obtained with commercial three-electrode cells: some sources of measurement artefacts | |
Nielsen et al. | Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM: YSZ cathodes | |
Blennow et al. | Manufacturing and characterization of metal-supported solid oxide fuel cells | |
JP6075442B2 (en) | Impedance measuring device and control method of impedance measuring device | |
Hildenbrand et al. | Improved cathode/electrolyte interface of SOFC | |
Carpanese et al. | Understanding the electrochemical behaviour of LSM-based SOFC cathodes. Part I—Experimental and electrochemical | |
JP6337233B2 (en) | Battery evaluation method and battery characteristic evaluation apparatus | |
JP6992803B2 (en) | All-solid-state lithium-ion secondary battery | |
JP6144180B2 (en) | Fuel cell humidification control method | |
Barbucci et al. | Impedance analysis of oxygen reduction in SOFC composite electrodes | |
CN112105913B (en) | Non-destructive method for measuring the active area of active materials | |
CA2966813A1 (en) | State determination device and method for fuel cell | |
Magrasó et al. | Cathode compatibility, operation, and stability of LaNbO4-based proton conducting fuel cells | |
Leng et al. | Development of LSM/YSZ composite cathode for anode-supported solid oxide fuel cells | |
Kim et al. | A novel solid oxide electrolysis cell (SOEC) to separate anodic from cathodic polarization under high electrolysis current | |
CN106797040B (en) | Fuel cell state estimation device, state estimation method, and fuel cell system | |
Hjelm et al. | Electrochemical characterization of planar anode supported SOFC with strontium-doped lanthanum cobalt oxide cathodes | |
JP2016027316A (en) | Method of measuring ac impedance of powder sample | |
Sugita et al. | Cathode contact optimization and performance evaluation of intermediate temperature-operating solid oxide fuel cell stacks based on anode-supported planar cells with LaNi0. 6Fe0. 4O3 cathode | |
Leonide et al. | Evaluation and modelling of the cell resistance in anode supported solid oxide fuel cells | |
Zhang et al. | Reaction mechanisms of the copper–manganese spinel cathode in a solid oxide fuel cell | |
JP5370717B2 (en) | Impedance characteristic evaluation method and impedance characteristic evaluation apparatus | |
An et al. | Effect of cell length on the performance of segmented-in-series solid oxide fuel cells fabricated using decalcomania method | |
Hjelm et al. | Electrochemical impedance studies of SOFC cathodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06731109 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2008507352 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06731109 Country of ref document: EP Kind code of ref document: A1 |