+

WO2007108388A1 - Method for manufacturing biosensor and biosensor - Google Patents

Method for manufacturing biosensor and biosensor Download PDF

Info

Publication number
WO2007108388A1
WO2007108388A1 PCT/JP2007/055138 JP2007055138W WO2007108388A1 WO 2007108388 A1 WO2007108388 A1 WO 2007108388A1 JP 2007055138 W JP2007055138 W JP 2007055138W WO 2007108388 A1 WO2007108388 A1 WO 2007108388A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
biosensor
manufacturing
forming step
reaction part
Prior art date
Application number
PCT/JP2007/055138
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Tanaka
Nobukazu Tanabe
Takafumi Tanaka
Original Assignee
Gunze Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Limited filed Critical Gunze Limited
Priority to JP2008506264A priority Critical patent/JP4856697B2/en
Publication of WO2007108388A1 publication Critical patent/WO2007108388A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes

Definitions

  • the present invention relates to a biosensor manufacturing method for measuring blood glucose level and the like, and a biosensor manufactured by the manufacturing method.
  • FIG. 4 shows The This biosensor 1 is provided with a working electrode 3 and a counter electrode 4 in parallel proximity on an electrode insulating substrate 2, and a mask sheet 6 having a reaction cell 5 on the electrode insulating substrate 2, the working electrode 3 and the counter electrode 4.
  • the reaction part 7 was formed by applying a reaction part coating solution containing a redox enzyme on the working electrode 3 and the counter electrode 4 in the reaction part cell 5 and drying them.
  • an electrically insulating spacer sheet 8 and a transparent cover sheet 9 are laminated on the mask sheet 6.
  • the blood glucose level can be recognized by attaching the sample to the blood glucose level measurement display and taking the sample, and the blood glucose level measurement display displays the blood glucose level.
  • the measurement value of a biosensor changes depending on the stored temperature due to its temperature dependence. For example, it is known that when a blood glucose level or the like is measured after being stored at a temperature higher than room temperature, it is detected higher than the actual level. For this reason, special considerations and storage devices were required for biosensor storage.
  • Patent Document 1 International Publication No. 2004Z017057 Pamphlet
  • Patent Document 2 Japanese Patent Publication No. 7-114705
  • Patent Document 3 Japanese Patent No. 3063442
  • Patent Document 4 Japanese Patent No. 3483314
  • an object of the present invention is to provide a biosensor having a high storage stability in which a change in a measured value due to a stored temperature is minimized, and a method for manufacturing the same.
  • the biosensor manufacturing method of the present invention includes a reaction part forming step of forming a reaction part having an oxidoreductase on a working electrode and a counter electrode provided on an electrically insulating substrate.
  • the first reaction layer forming step includes applying a first reaction region coating solution having an oxidoreductase on the working electrode and the counter electrode, and drying to form a first layer; and
  • the biosensor manufacturing method of the present invention is characterized in that, compared with the biosensor manufacturing method, the acid reductase is glucose oxidase.
  • the method for producing a biosensor of the present invention is characterized in that, compared with the method for producing a biosensor, the hydrophilic polymer compound is polybulurpyrrolidone.
  • the biosensor manufacturing method of the present invention is characterized in that, in the biosensor manufacturing method, the electron acceptor force S is ferricyan potassium.
  • the hydrophilic polymer compound is polyvinyl pyrrolidone, the electron acceptor force S ferricyanide potassium, and the ferricyanide.
  • the weight ratio of polyvinyl pyrrolidone to potassium is 0.5 to 50%.
  • the biosensor of the present invention is manufactured by the above-described method for manufacturing a biosensor of the present invention.
  • the first reaction part coating solution containing oxidoreductase is applied and dried to form the first layer, and the hydrophilic polymer compound is formed.
  • the oxidoreductase is present in the first layer because the second reaction part coating solution containing the product and the electron acceptor is applied and dried to form the second layer.
  • the body is in the second layer. This separates the oxidoreductase from the electron acceptor. Therefore, long-term storage in a dry state can be improved.
  • the first layer having the oxidation-reduction enzyme is covered with the second layer, it is possible to improve the storage stability of the acid-reductase that does not react unnecessarily.
  • the second layer was prepared using a solvent that did not dissolve the first layer. It was found that the difference was smaller when the film was formed than when the second layer was formed using a solvent that dissolves the first layer, and the effect of the storage temperature was less.
  • reference numeral 10 denotes a biosensor of the present invention.
  • the manufacturing method of the biosensor 10 includes an electrode part forming step in which a working electrode 14 and a counter electrode 16 are provided in parallel and proximity on an electrically insulating substrate 12, and a mask step in which a mask sheet 20 having reaction part cells 18 is thermally bonded.
  • the reaction part forming step is a first layer forming step in which a first reaction part coating solution having an oxidoreductase is applied on the working electrode 14 and the counter electrode 16 and dried to form the first layer 28.
  • oxidoreductase is dissolved in water and applied.
  • the hydrophilic polymer compound is dissolved in a solvent that does not dissolve the first layer 28 so that the first layer 28 does not dissolve.
  • this solvent for example, ethanol solve ethanol can be mentioned.
  • Examples of the material of the electrical insulating substrate 12 include biodegradable polyester comprising polyethylene terephthalate (PET), polyethylene naphthalate, aliphatic units, and aromatic units.
  • Examples thereof include polyester-based resin sheets such as tellurium, polyamidoimide sheets having superior heat resistance, chemical resistance and strength, plastic sheets such as polyimide film sheets, and inorganic substrates such as ceramics.
  • the working electrode 14 and the counter electrode 16 are formed on the electrically insulating substrate 12 by a good conductor such as platinum, gold, palladium, indium-tin oxide, or the like.
  • a good conductor such as platinum, gold, palladium, indium-tin oxide, or the like.
  • hot stamping is considered, and vacuum deposition or sputtering is preferable because a fine electrode pattern can be formed quickly with high accuracy. In the case of sputtering, it can be formed at once by masking the outside of the bipolar electrode formation.
  • the oxidoreductase is, for example, glucose oxidase when measuring glucose.
  • Glucose oxidase reacts with glucose to produce darconic acid and hydrogen peroxide.
  • alcohol levels use alcohol oxidase or alcohol dehydrogenase.
  • lactate oxidase or lactate dehydrogenase When measuring uric acid, use uricase.
  • acid reductase is performed by dissolving in water.
  • the hydrophilic polymer compound is a polymer compound soluble in water, alcohol and a mixed solvent thereof.
  • An example of the hydrophilic polymer compound is polyvinyl pyrrolidone (PVP).
  • PVP polyvinyl pyrrolidone
  • examples of the hydrophilic polymer compound include hydroxypropyl cellulose and carboxyl vinyl polymer.
  • the electron acceptor is generally an inorganic or organic fine powdery compound that promotes oxidation-reduction of an enzyme.
  • ferricyanium alkali metal salt especially ferricyanium potassium metal salt is preferred
  • pheucene or its alkyl-substituted product p-benzoquinone, methylene blue, ⁇ -naphthoquinone mono-4-sulfonate potassium, phenazine metho
  • p-benzoquinone methylene blue
  • ⁇ -naphthoquinone mono-4-sulfonate potassium phenazine metho
  • phenazine metho examples thereof include sulfate, 2,6-dichlorophenol monoindophenol, and the like.
  • Alkali metal ferricyanide, Phucene-based force Since it works stably as an electron transfer medium and is well soluble in water, alcohols, and aqueous solvents such as these mixed solvents, it is effective as an electron acceptor.
  • Polyvinylpyrrolidone is selected as the hydrophilic polymer compound, and as an electron acceptor If you select the Ferishiani spoon potassium, weight iti of Poribyurupi opening pyrrolidone for potassium ferricyanide or 0.5 to 50 0/0 (0.005 to 0.5) force preferably! / ⁇ . When 0.5 0/0 below in are too small, it is impossible to fix the electron acceptor. On the other hand, if it exceeds 50%, the dissolution rate in blood is too slow.
  • the force described above for the method of manufacturing the biosensor 10 of the present invention is used as appropriate after being stored in a dry state.
  • the first reaction part coating solution having oxidoreductase is applied and dried to form the first layer 28, and the second layer having the hydrophilic polymer compound and the electron acceptor.
  • the oxidoreductase is present in the first layer 28 and the electron acceptor is in the second layer 30. Exists. Thereby, since the oxidoreductase and the electron acceptor are present separately, the long-term storage stability in a dry state can be improved.
  • the measurement of blood glucose level by the biosensor 10 will be described below.
  • the blood glucose level is measured by attaching the biosensor 10 to the sensor cover 34 and attaching it to the blood glucose level measurement display 36 as shown in FIG. 2, and bringing the tip of the biosensor 10 into contact with the blood 38. Do by.
  • the blood 38 that has contacted the tip of the biosensor 10 contacts the second layer 30 of the reaction layer 22 as shown in FIG. When the blood 38 comes into contact with the second layer 30, an enzymatic reaction occurs while penetrating into the second layer 30 and the first layer 28, and the electrochemical change at that time is detected at the working electrode 14 and the counter electrode 16, and the blood glucose level is reduced. Measured.
  • the present invention is not limited to the illustrated ones.
  • the application of the present invention is not limited to the measurement of blood glucose level, and may be a wide range of medical, biological, chemical examinations or tests.
  • blood tests other than blood sugar levels may be used.
  • the shape of the biosensor is not particularly limited as long as the effects of the present invention are produced.
  • the biosensor 10 of the present invention was actually manufactured and the blood glucose level was measured, and the difference in the measured value depending on the storage temperature was evaluated.
  • a solution of 50 mg glucose oxidase (including 50% stabilizer) dissolved in 3.3 g of water is dropped on the surface of the electrode system by 1 ⁇ 1 and dried in a conveyor drying oven at 40 ° C for 6 minutes. Layer 28 was formed.
  • a solution obtained by dissolving 22 mg of PVP (polybulurpyrrolidone) having a molecular weight of about 40,000 in 1.77 g of ethylceous solve (2-ethoxyethanol) and then mixing 0.6 g of finely divided ferricyanium potassium, 0.81 was dropped on the first layer 28 and dried in a conveyor drying furnace at 40 ° C. for 6 minutes to form the second layer 30.
  • the weight ratio of PVP to potassium ferricyanide is 3.7%.
  • Example 4 A solution of 50 mg glucose oxidase (including 50% stabilizer) dissolved in 3.3 g of water is dropped on the surface of the electrode system by 1 ⁇ 1 and dried in a conveyor drying oven at 40 ° C for 6 minutes. Layer 28 was formed. Next, 112 mg of PVP (polybulurpyrrolidone) with a molecular weight of about 40,000 was dissolved in 1.68 g of ethylceous solve (2-ethoxyethanol), and then mixed with 0.6 g of finely divided ferricyanium potassium. Then, 0.81 was dropped on the first layer 28 and dried in a conveyor drying furnace at 40 ° C. for 6 minutes to form the second layer 30. In the above composition, the weight ratio of PVP to potassium ferricyanide is 18.7%.
  • the weight ratio of eupol to ferricyanium potassium is 29.6%.
  • the weight ratio of crystalline cellulose to potassium ferricyanide is 13.8%.
  • the coating solution used in this comparative example contained 19.6% water. Therefore, a part of ferricyanium potassium is dissolved, and when it is dropped on the first layer, it is dissolved and mixed with a part of the GOD of the first layer.
  • the sensor chip was packed in aluminum together with about 25 mg of desiccant (activated alumina), and then stored at 25 ° C and 40 ° C for 1 month for thermal stability evaluation.
  • the measurement was performed using whole blood adjusted to glucose concentrations of 30,50 and 13 OmgZdl, and the measurement result of the sensor stored at 25 ° C was subtracted from the measurement result of the sensor stored at 40 ° C, which was used as an index of thermal stability.
  • Table 1 for the biosensor 10 manufactured according to Examples 1-6
  • Table 2 for the biosensor 10 manufactured according to Examples 7-9
  • Table 3 shows.
  • the average absolute value of the difference in the measurement results was 4. Og / dl for a glucose concentration of 30 mgZd 1 4. For a glucose concentration of 50 mgZdl 4. For a 7 mg / dU glucose concentration of 130 mgZdl, it was 4.2 mgZdl. It was. For Examples 7 to 9, the average difference in measurement results was 21.3 mgZdl for a glucose concentration of 30 mgZdl, 18.7 mgZdl for a glucose concentration of 50 mgZdl, and 15.7 mgZdl for a glucose concentration of 130 mgZdl.
  • the comparative examples they were 97, 96, and 71 mg Zdl, respectively, and the difference in the measurement results was stronger when the second layer 30 was applied using a solvent that did not dissolve the first layer 28.
  • the highest stability was obtained when polyvinylpyrrolidone was used.
  • the biosensor manufacturing method of the present invention can improve the storage stability by reducing the influence of the storage temperature of the biosensor. Therefore, it can be widely used for manufacturing various biosensors.
  • FIG. 1 A diagram showing a biosensor of the present invention, in which (a) is a plan view and (b) is A
  • FIG. 1 A first figure.
  • FIG. 2 is a front view showing a usage state of the biosensor of FIG.
  • FIG. 3 is a diagram showing the usage state of the biosensor of FIG. 1, in which FIG. (A) is a cross-sectional view taken along the line AA showing the moment of blood contact, and FIG. FIG. 5 is a cross-sectional view taken along the line AA showing a state in which is reacted.
  • FIG. 4 is a view showing a conventional biosensor, in which FIG. 4 (a) is a plan view and FIG. 4 (b) is a cross-sectional view taken along line AA.
  • Reaction unit cell Mask sheet: Reaction unit
  • Spacer sheet Cover sheet: First layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

To provide a biosensor exhibiting high storage stability in which variations in measurements due to storage temperature are extremely small, and to provide a manufacturing method of the biosensor. A method for manufacturing a biosensor (10) comprises a reactive portion forming step which comprises a first layer forming step for forming a first layer (28) on a working electrode (14) and a counter electrode (16) by applying and drying thereon a first coating liquid for the reactive portion containing an oxidation/reduction enzyme, and a second layer forming step for forming a second layer (30) on the first layer (28) by applying and drying thereon a second coating liquid for the reactive portion containing a hydrophilic polymer compound and an electron receptor.

Description

明 細 書  Specification
バイオセンサの製造方法、及びバイオセンサ  Biosensor manufacturing method and biosensor
技術分野  Technical field
[0001] 本発明は、血糖値の測定等を行うためのバイオセンサの製造方法、及びその製造 方法によって製造したバイオセンサに関する。  The present invention relates to a biosensor manufacturing method for measuring blood glucose level and the like, and a biosensor manufactured by the manufacturing method.
[0002] 従来から、検体の血糖値等を測定するバイオセンサ及びその製造方法が案出され ている(例えば、特許文献 1〜特許文献 4参照。 )0図 4に従来のバイオセンサ 1を示 す。このバイオセンサ 1は、電極絶縁基板 2上に作用電極 3及び対電極 4を平行近接 して設け、電極絶縁基板 2、作用電極 3及び対電極 4上に、反応部セル 5を有するマ スクシート 6を熱接着し、反応部セル 5内の作用電極 3及び対電極 4上に酸化還元酵 素を含む反応部用塗布液を塗布し乾燥して反応部 7を形成することにより製造されて いた。なお、マスクシート 6上には電気絶縁性のスぺーサシート 8及び透明のカバー シート 9が積層される。このバイオセンサ 1によれば、血糖値計測表示器に取り付けて 検体を取り込み、血糖値計測表示器が血糖値を計測表示することにより、血糖値を 認識できる。 [0002] Conventionally, a biosensor and a manufacturing method thereof for measuring the blood sugar level or the like of the specimen are devised (e.g., Patent Documents 1 4 reference.) 0 conventional biosensor 1 in FIG. 4 shows The This biosensor 1 is provided with a working electrode 3 and a counter electrode 4 in parallel proximity on an electrode insulating substrate 2, and a mask sheet 6 having a reaction cell 5 on the electrode insulating substrate 2, the working electrode 3 and the counter electrode 4. The reaction part 7 was formed by applying a reaction part coating solution containing a redox enzyme on the working electrode 3 and the counter electrode 4 in the reaction part cell 5 and drying them. Note that an electrically insulating spacer sheet 8 and a transparent cover sheet 9 are laminated on the mask sheet 6. According to the biosensor 1, the blood glucose level can be recognized by attaching the sample to the blood glucose level measurement display and taking the sample, and the blood glucose level measurement display displays the blood glucose level.
[0003] ここで、一般に、バイオセンサによる測定値は、その温度依存性により、保存していた 温度により測定値が変化することが知られている。例えば、常温よりも高い温度で保 存した後に血糖値等を測定した場合、実際よりも高く検知することが知られている。こ のため、バイオセンサの保存には、特別の配慮や保存装置が必要であった。  [0003] Here, it is generally known that the measurement value of a biosensor changes depending on the stored temperature due to its temperature dependence. For example, it is known that when a blood glucose level or the like is measured after being stored at a temperature higher than room temperature, it is detected higher than the actual level. For this reason, special considerations and storage devices were required for biosensor storage.
[0004] 特許文献 1:国際公開第 2004Z017057号パンフレット  [0004] Patent Document 1: International Publication No. 2004Z017057 Pamphlet
特許文献 2:特公平 7— 114705号公報  Patent Document 2: Japanese Patent Publication No. 7-114705
特許文献 3:特許第 3063442号公報  Patent Document 3: Japanese Patent No. 3063442
特許文献 4:特許第 3483314号公報  Patent Document 4: Japanese Patent No. 3483314
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] そこで、本発明者は、このような課題の原因を究明してこのような課題を解決するべ ぐ鋭意研究を重ねた結果、本発明に至ったのである。 [0006] すなわち、本発明は、保存していた温度による測定値の変化が極力少なぐ保存安 定性の高 、バイオセンサ及びその製造方法を提供することを目的とする。 [0005] Therefore, the present inventor has reached the present invention as a result of intensive studies to investigate the cause of such a problem and solve such a problem. [0006] That is, an object of the present invention is to provide a biosensor having a high storage stability in which a change in a measured value due to a stored temperature is minimized, and a method for manufacturing the same.
課題を解決するための手段  Means for solving the problem
[0007] 本発明のバイオセンサの製造方法は、電気絶縁基板上に設けられた作用電極及 び対電極上に酸化還元酵素を有する反応部を形成する反応部形成ステップを含む バイオセンサの製造方法において、前記反応部形成ステップが、前記作用電極及び 対電極上に、酸化還元酵素を有する第一の反応部用塗布液を塗布し乾燥させて第 一層を形成する第一層形成ステップと、前記第一層上に、親水性高分子化合物及 び電子受容体を有する第二の反応部用塗布液を塗布し乾燥させて第二層を形成す る第二層形成ステップと、を含むことを特徴とする。  [0007] The biosensor manufacturing method of the present invention includes a reaction part forming step of forming a reaction part having an oxidoreductase on a working electrode and a counter electrode provided on an electrically insulating substrate. The first reaction layer forming step includes applying a first reaction region coating solution having an oxidoreductase on the working electrode and the counter electrode, and drying to form a first layer; and A second layer forming step of forming a second layer by applying a coating solution for a second reaction part having a hydrophilic polymer compound and an electron acceptor on the first layer and drying the coating solution. Features.
[0008] また、本発明のバイオセンサの製造方法は、前記バイオセンサの製造方法にぉ ヽ て、前記酸ィ匕還元酵素がグルコースォキシダーゼであることを特徴とする。  [0008] In addition, the biosensor manufacturing method of the present invention is characterized in that, compared with the biosensor manufacturing method, the acid reductase is glucose oxidase.
[0009] また、本発明のバイオセンサの製造方法は、前記バイオセンサの製造方法にぉ ヽ て、前記親水性高分子化合物がポリビュルピロリドンであることを特徴とする。  [0009] In addition, the method for producing a biosensor of the present invention is characterized in that, compared with the method for producing a biosensor, the hydrophilic polymer compound is polybulurpyrrolidone.
[0010] また、本発明のバイオセンサの製造方法は、前記バイオセンサの製造方法におい て、前記電子受容体力 Sフェリシアンィ匕カリウムであることを特徴とする。  [0010] Further, the biosensor manufacturing method of the present invention is characterized in that, in the biosensor manufacturing method, the electron acceptor force S is ferricyan potassium.
[0011] また、本発明のバイオセンサの製造方法は、前記バイオセンサの製造方法におい て、前記親水性高分子化合物がポリビニルピロリドンであり、前記電子受容体力 Sフェリ シアンィ匕カリウムであり、該フェリシアンィ匕カリウムに対する該ポリビニルピロリドンの重 量比が 0. 5〜50%であることを特徴とする。  [0011] Further, in the biosensor manufacturing method of the present invention, in the biosensor manufacturing method, the hydrophilic polymer compound is polyvinyl pyrrolidone, the electron acceptor force S ferricyanide potassium, and the ferricyanide. The weight ratio of polyvinyl pyrrolidone to potassium is 0.5 to 50%.
[0012] 本発明のバイオセンサは、上記本発明のバイオセンサの製造方法により製造するこ とを特徴とする。 [0012] The biosensor of the present invention is manufactured by the above-described method for manufacturing a biosensor of the present invention.
発明の効果  The invention's effect
[0013] 本発明のバイオセンサの製造方法及びバイオセンサによれば、酸化還元酵素を有 する第一の反応部用塗布液を塗布し乾燥して第一層を形成し、親水性高分子化合 物及び電子受容体を有する第二の反応部用塗布液を塗布し乾燥して第二層を形成 するため、製造したバイオセンサにおいて、酸化還元酵素が第一層内に存在し、電 子受容体が第二層内に存在する。これにより、酸化還元酵素と電子受容体が分離し て存在するため、乾燥状態での長期保存性を高めることができる。また、酸化還元酵 素を有する第一層を第二層でカバーする形態となるため、酸ィ匕還元酵素が無用に反 応することなぐ保存性を高めることができる。実際に、バイオセンサを製造して、高温 で保存したものと室温(25°C)で保存したものとの測定値の差を求めたところ、第一層 を溶解しない溶媒を用いて第二層を形成した場合の方が、第一層を溶解する溶媒を 用いて第二層を形成した場合よりも、その差が小さく保存温度による影響が少ないこ とが判明した。 [0013] According to the biosensor manufacturing method and biosensor of the present invention, the first reaction part coating solution containing oxidoreductase is applied and dried to form the first layer, and the hydrophilic polymer compound is formed. In the manufactured biosensor, the oxidoreductase is present in the first layer because the second reaction part coating solution containing the product and the electron acceptor is applied and dried to form the second layer. The body is in the second layer. This separates the oxidoreductase from the electron acceptor. Therefore, long-term storage in a dry state can be improved. Further, since the first layer having the oxidation-reduction enzyme is covered with the second layer, it is possible to improve the storage stability of the acid-reductase that does not react unnecessarily. Actually, when the difference between the measured values of the biosensor manufactured and stored at high temperature and that stored at room temperature (25 ° C) was determined, the second layer was prepared using a solvent that did not dissolve the first layer. It was found that the difference was smaller when the film was formed than when the second layer was formed using a solvent that dissolves the first layer, and the effect of the storage temperature was less.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 次に、本発明に係るバイオセンサの製造方法及びバイオセンサについて、図面に 基づいて詳しく説明する。  Next, the biosensor manufacturing method and biosensor according to the present invention will be described in detail with reference to the drawings.
[0015] 図 1及び図 2において、符号 10は本発明のバイオセンサである。このバイオセンサ 10の製造方法は、電気絶縁基板 12上に作用電極 14及び対電極 16を平行近接し て設ける電極部形成ステップと、反応部セル 18を有するマスクシート 20を熱接着す るマスクステップと、反応部セル 18内の作用電極 14及び対電極 16上に酸化還元酵 素を有する反応部 22を形成する反応部形成ステップと、マスクシート 20上に電気絶 縁性のスぺーサシート 24及び透明のカバーシート 26を積層する積層ステップとを含 む。  In FIG. 1 and FIG. 2, reference numeral 10 denotes a biosensor of the present invention. The manufacturing method of the biosensor 10 includes an electrode part forming step in which a working electrode 14 and a counter electrode 16 are provided in parallel and proximity on an electrically insulating substrate 12, and a mask step in which a mask sheet 20 having reaction part cells 18 is thermally bonded. A reaction part forming step for forming a reaction part 22 having a redox enzyme on the working electrode 14 and the counter electrode 16 in the reaction part cell 18, and an electrically insulating spacer sheet 24 and on the mask sheet 20. A laminating step of laminating a transparent cover sheet 26.
[0016] 反応部形成ステップは、作用電極 14及び対電極 16上に、酸化還元酵素を有する第 一の反応部用塗布液を塗布し乾燥させて第一層 28を形成する第一層形成ステップ と、第一層 28上に、親水性高分子化合物及び電子受容体を有する第二の反応部用 塗布液を塗布し乾燥させて第二層 30を形成する第二層形成ステップとを含む。第一 層形成ステップにおいては、例えば、酸化還元酵素を水に溶かして塗布する。第二 層形成ステップにおいて、第一層 28が溶けないように、親水性高分子化合物は、第 一層 28が溶けない溶媒で溶解される。この溶媒として、例えば、ェチルセ口ソルブゃ エタノールが挙げられる。このような反応部形成ステップにより、図 1に示すように、第 一層 28及び第二層 30から成る反応部 22が形成される。  [0016] The reaction part forming step is a first layer forming step in which a first reaction part coating solution having an oxidoreductase is applied on the working electrode 14 and the counter electrode 16 and dried to form the first layer 28. And a second layer forming step of forming a second layer 30 by applying and drying a second coating liquid for a reaction part having a hydrophilic polymer compound and an electron acceptor on the first layer 28. In the first layer forming step, for example, oxidoreductase is dissolved in water and applied. In the second layer forming step, the hydrophilic polymer compound is dissolved in a solvent that does not dissolve the first layer 28 so that the first layer 28 does not dissolve. As this solvent, for example, ethanol solve ethanol can be mentioned. By such a reaction part forming step, as shown in FIG. 1, a reaction part 22 composed of a first layer 28 and a second layer 30 is formed.
[0017] 電気絶縁基板 12の材料としては、例えば、ポリエチレンテレフタレート (PET)、ポリ エチレンナフタレート、脂肪族ユニット及び芳香族ユニットからなる生分解性ポリエス テル榭脂等のポリエステル系榭脂シート、より耐熱性、耐薬品性、強度等に優れるポ リアミドイミドシート、ポリイミドフィルムシート等のプラスチックシート、セラミック等の無 機系基板が挙げられる。 [0017] Examples of the material of the electrical insulating substrate 12 include biodegradable polyester comprising polyethylene terephthalate (PET), polyethylene naphthalate, aliphatic units, and aromatic units. Examples thereof include polyester-based resin sheets such as tellurium, polyamidoimide sheets having superior heat resistance, chemical resistance and strength, plastic sheets such as polyimide film sheets, and inorganic substrates such as ceramics.
[0018] 作用電極 14及び対電極 16は、電気絶縁基板 12上に、例えば白金、金、パラジゥ ム、インジウム—スズ酸化物等の良電導体によって形成される。形成方法としては、 ホットスタンビングが考えられる、真空蒸着又はスパッタリングによる方が微細な電極 パターンを精度良ぐ迅速に形成できるので好ましい。スパッタリングの場合は、両極 形成外をマスキングすることで一挙に形成できる。  [0018] The working electrode 14 and the counter electrode 16 are formed on the electrically insulating substrate 12 by a good conductor such as platinum, gold, palladium, indium-tin oxide, or the like. As a formation method, hot stamping is considered, and vacuum deposition or sputtering is preferable because a fine electrode pattern can be formed quickly with high accuracy. In the case of sputtering, it can be formed at once by masking the outside of the bipolar electrode formation.
[0019] 酸化還元酵素は、例えば、グルコースを測定する場合には、グルコースォキシダー ゼが挙げられる。グルコースォキシダーゼは、グルコースと反応して、ダルコン酸及び 過酸化水素が生成する。また、アルコール値を測定する場合には、アルコールォキ シダーゼ又はアルコールデヒドロゲナーゼを使用する。また、乳酸を測定する場合に は、乳酸ォキシダーゼ又は乳酸デヒドロゲナーゼを使用する。また、尿酸を測定する 場合には、ゥリカーゼを使用する。酸ィ匕還元酵素の塗布は水に溶カゝして行う。  [0019] The oxidoreductase is, for example, glucose oxidase when measuring glucose. Glucose oxidase reacts with glucose to produce darconic acid and hydrogen peroxide. When measuring alcohol levels, use alcohol oxidase or alcohol dehydrogenase. When measuring lactic acid, use lactate oxidase or lactate dehydrogenase. When measuring uric acid, use uricase. Application of acid reductase is performed by dissolving in water.
[0020] 親水性高分子化合物は、水、アルコール及びこれらの混合溶媒に可溶な高分子化 合物である。親水性高分子化合物の一例としてポリビニルピロリドン (PVP)が挙げら れる。親水性高分子化合物としてのポリビュルピロリドンは、ェチルセ口ソルブ等の溶 剤に溶解されて使用される。その他、親水性高分子化合物としては、ヒドロキシプロピ ルセルロース、カルボキシルビ二ルポリマー等が挙げられる。親水性高分子化合物を 第二層 30に含むことにより、電子受容体を固定することができる。  [0020] The hydrophilic polymer compound is a polymer compound soluble in water, alcohol and a mixed solvent thereof. An example of the hydrophilic polymer compound is polyvinyl pyrrolidone (PVP). Polybulylpyrrolidone as a hydrophilic polymer compound is used after being dissolved in a solvent such as ethylcete solve. In addition, examples of the hydrophilic polymer compound include hydroxypropyl cellulose and carboxyl vinyl polymer. By including the hydrophilic polymer compound in the second layer 30, the electron acceptor can be fixed.
[0021] 電子受容体は、一般には酵素の酸化還元を促進させる無機又は有機の微細粉末 状化合物である。例えば、フェリシアンィ匕アルカリ金属塩 (特にフェリシアンィ匕カリウム 金属塩が好ましい。)、フエ口セン又はそのアルキル置換体、 p—べンゾキノン、メチレ ンブルー、 β—ナフトキノン一 4—スルホン酸カリウム、フエナジンメトサルフェート、 2 、 6—ジクロロフェノール一インドフエノール等が挙げられる。フェリシアン化アルカリ金 属塩、フ 口セン系力 電子移動媒体としての働きが安定しており、水、アルコール類 、又はこれら混合溶媒等の水性溶媒に良く溶けるため、電子受容体として有効に作 用する。親水性高分子化合物としてポリビニルピロリドンを選択し、電子受容体として フェリシアンィ匕カリウムを選択した場合、フェリシアン化カリウムに対するポリビュルピ 口リドンの重量 itiま 0. 5〜500/0 (0. 005〜0. 5)力好まし!/ヽ。 0. 50/0未満で少なすぎ る場合には、電子受容体を固定することができない。一方、 50%より多いと、血液へ の溶解速度が遅くなりすぎる。 [0021] The electron acceptor is generally an inorganic or organic fine powdery compound that promotes oxidation-reduction of an enzyme. For example, ferricyanium alkali metal salt (especially ferricyanium potassium metal salt is preferred), pheucene or its alkyl-substituted product, p-benzoquinone, methylene blue, β-naphthoquinone mono-4-sulfonate potassium, phenazine metho Examples thereof include sulfate, 2,6-dichlorophenol monoindophenol, and the like. Alkali metal ferricyanide, Phucene-based force Since it works stably as an electron transfer medium and is well soluble in water, alcohols, and aqueous solvents such as these mixed solvents, it is effective as an electron acceptor. Use. Polyvinylpyrrolidone is selected as the hydrophilic polymer compound, and as an electron acceptor If you select the Ferishiani spoon potassium, weight iti of Poribyurupi opening pyrrolidone for potassium ferricyanide or 0.5 to 50 0/0 (0.005 to 0.5) force preferably! /ヽ. When 0.5 0/0 below in are too small, it is impossible to fix the electron acceptor. On the other hand, if it exceeds 50%, the dissolution rate in blood is too slow.
[0022] 以上、本発明のバイオセンサ 10の製造方法について説明した力 このようにして製 造されたバイオセンサ 10は、乾燥状態で保存された後、適宜使用される。バイオセン サ 10の製造方法によれば、酸化還元酵素を有する第一の反応部用塗布液を塗布し 乾燥して第一層 28を形成し、親水性高分子化合物及び電子受容体を有する第二の 反応部用塗布液を塗布し乾燥して第二層 30を形成するため、製造したバイオセンサ 10において、酸化還元酵素が第一層 28内に存在し、電子受容体が第二層 30内に 存在する。これにより、酸化還元酵素と電子受容体が分離して存在するため、乾燥状 態での長期保存性を高めることができる。  [0022] The force described above for the method of manufacturing the biosensor 10 of the present invention. The biosensor 10 manufactured in this way is used as appropriate after being stored in a dry state. According to the method for producing biosensor 10, the first reaction part coating solution having oxidoreductase is applied and dried to form the first layer 28, and the second layer having the hydrophilic polymer compound and the electron acceptor. In the manufactured biosensor 10, the oxidoreductase is present in the first layer 28 and the electron acceptor is in the second layer 30. Exists. Thereby, since the oxidoreductase and the electron acceptor are present separately, the long-term storage stability in a dry state can be improved.
[0023] なお、このバイオセンサ 10による血糖値の測定について以下に説明する。血糖値の 測定は、バイオセンサ 10をセンサカバー 34に挿入固定した状態で、図 2に示すよう に、血糖値計測表示器 36に取り付けて、バイオセンサ 10の先端部を血液 38に接触 させることによって行う。バイオセンサ 10の先端部に接触した血液 38は、図 3 (a)に 示すように、反応層 22の第二層 30に接触する。血液 38が第二層 30に接触すると、 第二層 30及び第一層 28に浸透しながら酵素反応し、その際の電気化学変化が作 用電極 14及び対電極 16で検出されて血糖値が測定される。  [0023] The measurement of blood glucose level by the biosensor 10 will be described below. The blood glucose level is measured by attaching the biosensor 10 to the sensor cover 34 and attaching it to the blood glucose level measurement display 36 as shown in FIG. 2, and bringing the tip of the biosensor 10 into contact with the blood 38. Do by. The blood 38 that has contacted the tip of the biosensor 10 contacts the second layer 30 of the reaction layer 22 as shown in FIG. When the blood 38 comes into contact with the second layer 30, an enzymatic reaction occurs while penetrating into the second layer 30 and the first layer 28, and the electrochemical change at that time is detected at the working electrode 14 and the counter electrode 16, and the blood glucose level is reduced. Measured.
[0024] 以上、本発明の実施形態について図面に基づいて説明したが、本発明は図示した ものには限定されない。例えば、本発明の用途は、血糖値の測定に限定されず、広 ぐ医学的、生物学的、化学的な検査又は試験等であっても良い。また、血糖値以外 の血液検査であっても良い。また、バイオセンサの形状は、本発明の作用効果が生 じれば特に限定されない。  [0024] Although the embodiments of the present invention have been described with reference to the drawings, the present invention is not limited to the illustrated ones. For example, the application of the present invention is not limited to the measurement of blood glucose level, and may be a wide range of medical, biological, chemical examinations or tests. In addition, blood tests other than blood sugar levels may be used. Further, the shape of the biosensor is not particularly limited as long as the effects of the present invention are produced.
[0025] その他、本発明の技術的範囲には、その趣旨を逸脱しない範囲で当業者の知識に 基づき種々なる改良、修正、変形を加えた態様も含まれる。また、同一の作用又は効 果が生じる範囲内で、いずれかの発明特定事項を他の技術に置換した形態で実施 しても良い。 実施例 [0025] In addition, the technical scope of the present invention includes embodiments in which various improvements, modifications, and variations are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention. In addition, within a range where the same action or effect is produced, any invention-specific matter may be replaced with another technique. Example
[0026] 以下のように、実際に本発明のバイオセンサ 10を製造して血糖値を測定し、保存 温度による測定値の差を評価した。  [0026] As described below, the biosensor 10 of the present invention was actually manufactured and the blood glucose level was measured, and the difference in the measured value depending on the storage temperature was evaluated.
[0027] (実施例 1) [0027] (Example 1)
グルコースォキシダーゼ 74mg (安定化剤 50%を含む)を、水 4. 9gに溶解した液を 、電極系表面に 1 μ 1滴下し、 40°Cのコンベア乾燥炉で 6分間乾燥して第一層 28を 形成した。次に、ェチルセ口ソルブ(2—エトキシエタノール) 2. 16gに、分子量約 4万 の PVP (ポリビュルピロリドン)を 240mg溶解した後、微粒子化したフェリシアンィ匕カリ ゥム 0. 8gを混合した液を、第一層 28上に 0. 8 1滴下し、 40°Cのコンベア乾燥炉で 6分間乾燥して第二層 30を形成した。上記の組成において、フェリシアン化カリウム に対する PVPの重量比は 30%である。  1 μl of glucose oxidase 74 mg (containing 50% stabilizer) dissolved in 4.9 g of water is dropped on the surface of the electrode system and dried in a conveyor drying oven at 40 ° C for 6 minutes. Layer 28 was formed. Next, 240 mg of PVP (polybulurpyrrolidone) with a molecular weight of about 40,000 was dissolved in 2.16 g of ethylceous sorb (2-ethoxyethanol) and then mixed with 0.8 g of finely divided ferricyanium potassium. Then, 0.81 was dropped on the first layer 28 and dried in a conveyor drying furnace at 40 ° C. for 6 minutes to form the second layer 30. In the above composition, the weight ratio of PVP to potassium ferricyanide is 30%.
[0028] (実施例 2) [Example 2]
グルコースォキシダーゼ 50mg (安定化剤 50%を含む)を、水 3. 3gに溶解した液を 、電極系表面に 1 μ 1滴下し、 40°Cのコンベア乾燥炉で 6分間乾燥して第一層 28を 形成した。次に、ェチルセ口ソルブ(2—エトキシエタノール) 1. 77gに、分子量約 4万 の PVP (ポリビュルピロリドン)を 22mg溶解した後、微粒子化したフェリシアンィ匕カリウ ム 0. 6gを混合した液を、第一層 28上に 0. 8 1滴下し、 40°Cのコンベア乾燥炉で 6 分間乾燥して第二層 30を形成した。上記の組成において、フェリシアン化カリウムに 対する PVPの重量比は 3. 7%である。  A solution of 50 mg glucose oxidase (including 50% stabilizer) dissolved in 3.3 g of water is dropped on the surface of the electrode system by 1 μ1 and dried in a conveyor drying oven at 40 ° C for 6 minutes. Layer 28 was formed. Next, a solution obtained by dissolving 22 mg of PVP (polybulurpyrrolidone) having a molecular weight of about 40,000 in 1.77 g of ethylceous solve (2-ethoxyethanol) and then mixing 0.6 g of finely divided ferricyanium potassium, 0.81 was dropped on the first layer 28 and dried in a conveyor drying furnace at 40 ° C. for 6 minutes to form the second layer 30. In the above composition, the weight ratio of PVP to potassium ferricyanide is 3.7%.
[0029] (実施例 3) [0029] (Example 3)
グルコースォキシダーゼ 50mg (安定化剤 50%を含む)を、水 3. 3gに溶解した液を 、電極系表面に 1 μ 1滴下し、 40°Cのコンベア乾燥炉で 6分間乾燥して第一層 28を 形成した。次に、ェチルセ口ソルブ(2—エトキシエタノール) 1. 75gに、分子量約 4万 の PVP (ポリビュルピロリドン)を 45mg溶解した後、微粒子化したフェリシアンィ匕カリウ ム 0. 6gを混合した液を、第一層 28上に 0. 8 1滴下し、 40°Cのコンベア乾燥炉で 6 分間乾燥して第二層 30を形成した。上記の組成において、フェリシアン化カリウムに 対する PVPの重量比は 7. 5%である。  1 μl of glucose oxidase 50 mg (containing 50% stabilizer) dissolved in 3.3 g of water is dropped on the surface of the electrode system and dried in a 40 ° C conveyor drying oven for 6 minutes. Layer 28 was formed. Next, a solution obtained by dissolving 45 mg of PVP (polybulurpyrrolidone) having a molecular weight of about 40,000 in 1.75 g of ethethyl solvate (2-ethoxyethanol), and then mixing 0.6 g of finely divided ferricyanium potassium, 0.81 was dropped on the first layer 28 and dried in a conveyor drying furnace at 40 ° C. for 6 minutes to form the second layer 30. In the above composition, the weight ratio of PVP to potassium ferricyanide is 7.5%.
[0030] (実施例 4) グルコースォキシダーゼ 50mg (安定化剤 50%を含む)を、水 3. 3gに溶解した液を 、電極系表面に 1 μ 1滴下し、 40°Cのコンベア乾燥炉で 6分間乾燥して第一層 28を 形成した。次に、ェチルセ口ソルブ(2—エトキシエタノール) 1. 68gに、分子量約 4万 の PVP (ポリビュルピロリドン)を 112mg溶解した後、微粒子化したフェリシアンィ匕カリ ゥム 0. 6gを混合した液を、第一層 28上に 0. 8 1滴下し、 40°Cのコンベア乾燥炉で 6分間乾燥して第二層 30を形成した。上記の組成において、フェリシアン化カリウム に対する PVPの重量比は 18. 7%である。 [0030] (Example 4) A solution of 50 mg glucose oxidase (including 50% stabilizer) dissolved in 3.3 g of water is dropped on the surface of the electrode system by 1 μ1 and dried in a conveyor drying oven at 40 ° C for 6 minutes. Layer 28 was formed. Next, 112 mg of PVP (polybulurpyrrolidone) with a molecular weight of about 40,000 was dissolved in 1.68 g of ethylceous solve (2-ethoxyethanol), and then mixed with 0.6 g of finely divided ferricyanium potassium. Then, 0.81 was dropped on the first layer 28 and dried in a conveyor drying furnace at 40 ° C. for 6 minutes to form the second layer 30. In the above composition, the weight ratio of PVP to potassium ferricyanide is 18.7%.
[0031] (実施例 5) [0031] (Example 5)
グルコースォキシダーゼ 50mg (安定化剤 50%を含む)を、水 3. 3gに溶解した液を 、電極系表面に 1 μ 1滴下し、 40°Cのコンベア乾燥炉で 6分間乾燥して第一層 28を 形成した。次に、ェチルセ口ソルブ(2—エトキシエタノール) 1. 57gに、分子量約 4万 の PVP (ポリビュルピロリドン)を 225mg溶解した後、微粒子化したフェリシアンィ匕カリ ゥム 0. 6gを混合した液を、第一層 28上に 0. 8 1滴下し、 40°Cのコンベア乾燥炉で 6分間乾燥して第二層 30を形成した。上記の組成において、フェリシアン化カリウム に対する PVPの重量比は 37. 5%である。  1 μl of glucose oxidase 50 mg (containing 50% stabilizer) dissolved in 3.3 g of water is dropped on the surface of the electrode system and dried in a 40 ° C conveyor drying oven for 6 minutes. Layer 28 was formed. Next, a solution obtained by dissolving 225 mg of PVP (polybulurpyrrolidone) with a molecular weight of about 40,000 in 1.57 g of ethyl acetate sorb (2-ethoxyethanol), and then mixing 0.6 g of finely divided ferricyanium potassium. Then, 0.81 was dropped on the first layer 28 and dried in a conveyor drying furnace at 40 ° C. for 6 minutes to form the second layer 30. In the above composition, the weight ratio of PVP to potassium ferricyanide is 37.5%.
[0032] (実施例 6) [Example 6]
グルコースォキシダーゼ 77mg (安定化剤 50%を含む)を、水 5. lgに溶解した液を 、電極系表面に 1 μ 1滴下し、 40°Cのコンベア乾燥炉で 6分間乾燥して第一層 28を 形成した。次に、ェチルセ口ソルブ(2—エトキシエタノール) 5. 38gに、分子量約 36 万の PVP (ポリビュルピロリドン)を 71mg溶解した後、微粒子化したフェリシアンィ匕カ リウム 2. 05gを混合した液を、第一層 28上に 0. 8 1滴下し、 40°Cのコンベア乾燥 炉で 6分間乾燥して第二層 30を形成した。上記の組成において、フェリシアン化カリ ゥムに対する PVPの重量比は 3. 5%である。  1 μl of glucose oxidase 77 mg (including 50% stabilizer) dissolved in 5. lg of water is dropped on the surface of the electrode system and dried in a conveyor drying oven at 40 ° C for 6 minutes. Layer 28 was formed. Next, 71 mg of PVP (polybulurpyrrolidone) with a molecular weight of about 360,000 was dissolved in 5.38 g of ethethyl solvate (2-ethoxyethanol) and then mixed with 2.05 g of finely divided ferricyanium carbonate. 0.81 was dropped on the first layer 28 and dried in a conveyor drying furnace at 40 ° C. for 6 minutes to form the second layer 30. In the above composition, the weight ratio of PVP to ferricyanide is 3.5%.
[0033] (実施例 7) [0033] (Example 7)
グルコースォキシダーゼ 52mg (安定化剤 50%を含む)を、水 3. 2gに溶解した液を 、電極系表面に 1 μ 1滴下し、 40°Cのコンベア乾燥炉で 6分間乾燥して第一層 28を 形成した。次に、ェチルセ口ソルブ(2—エトキシエタノール) 9. 30gに、分子量約 10 250のポリエチレンオキサイド(PEO)—ポリプロピレンオキサイド(PPO)ブロック共重 合体 (商品名:ニューポール PE— 78)を 750mg溶解した後、微粒子化したフエリシ アンィ匕カリウム 0. 81gを混合した液を、第一層 28上に 1. 0 1滴下し、 40°Cのコンペ ァ乾燥炉で 6分間乾燥して第二層 30を形成した。上記の組成において、フェリシアン 化カリウムに対する-ユーポールの重量比は 92. 6%である。 A solution of 52 mg of glucose oxidase (containing 50% stabilizer) dissolved in 3.2 g of water is dropped on the surface of the electrode system by 1 μ1 and dried in a conveyor drying oven at 40 ° C for 6 minutes. Layer 28 was formed. Next, 9.30 g of ethyl acetate sorb (2-ethoxyethanol) was added to a polyethylene oxide (PEO) -polypropylene oxide (PPO) block copolymer with a molecular weight of about 10 250 After dissolving 750 mg of coalescence (trade name: New Pole PE-78), 1.01 g of a mixture of 0.81 g of finely divided Felicyan シ potassium was dropped on the first layer 28, and the temperature was 40 ° C. The second layer 30 was formed by drying for 6 minutes in a compare drying oven. In the above composition, the weight ratio of -Eupol to potassium ferricyanide is 92.6%.
[0034] (実施例 8) [Example 8]
グルコースォキシダーゼ 49mg (安定化剤 50%を含む)を、水 3. lgに溶解した液を 、電極系表面に 1 μ 1滴下し、 40°Cのコンベア乾燥炉で 6分間乾燥して第一層 28を 形成した。次に、ェチルセ口ソルブ(2—エトキシエタノール) 2. 40gに、分子量約 41 00のポリエチレンオキサイド(PEO)—ポリプロピレンオキサイド(PPO)ブロック共重 合体 (商品名:ニューポール PE— 75)を 600mg溶解した後、微粒子化したフエリシ アン化カリウム 0. 80gを混合した液を、第一層 28上に 0. 8 1滴下し、 40°Cのコンペ ァ乾燥炉で 6分間乾燥して第二層 30を形成した。上記の組成において、フェリシアン 化カリウムに対する-ユーポールの重量比は 75%である。  1 μl of glucose oxidase 49 mg (containing 50% stabilizer) dissolved in 3.lg of water is dropped on the surface of the electrode system and dried in a conveyor oven at 40 ° C for 6 minutes. Layer 28 was formed. Next, 600 mg of polyethylene oxide (PEO) -polypropylene oxide (PPO) block copolymer (trade name: New Pole PE-75) with a molecular weight of about 4100 is dissolved in 2.40 g of ethyl acetate solve (2-ethoxyethanol). After that, 0.81 g of a solution in which 0.88 g of finely divided potassium ferricyanide was mixed was dropped on the first layer 28 and dried for 6 minutes in a 40 ° C compare drying oven, and then the second layer 30 Formed. In the above composition, the weight ratio of -Eupol to potassium ferricyanide is 75%.
[0035] (実施例 9) [0035] (Example 9)
グルコースォキシダーゼ 75mg (安定化剤 50%を含む)を、水 4. 9gに溶解した液を 、電極系表面に 1 μ 1滴下し、 40°Cのコンベア乾燥炉で 6分間乾燥して第一層 28を 形成した。次に、ェチルセ口ソルブ(2—エトキシエタノール) 3. 24gに、分子量約 41 00のポリエチレンオキサイド(PEO)—ポリプロピレンオキサイド(PPO)ブロック共重 合体 (商品名:ニューポール PE— 75)を 360mg溶解した後、微粒子化したフエリシ アン化カリウム 1. 20gを混合した液を、第一層 28上に 0. 8 1滴下し、 40°Cのコンペ ァ乾燥炉で 6分間乾燥して第二層 30を形成した。上記の組成において、フェリシアン 化カリウムに対する-ユーポールの重量比は 30%である。  1 μl of glucose oxidase 75 mg (containing 50% stabilizer) dissolved in 4.9 g of water is dropped on the surface of the electrode system and dried in a conveyor drying oven at 40 ° C for 6 minutes. Layer 28 was formed. Next, 360 mg of polyethylene oxide (PEO) -polypropylene oxide (PPO) block copolymer (trade name: New Pole PE-75) with a molecular weight of about 4100 is dissolved in 3.24 g of ethyl acetate solve (2-ethoxyethanol). After that, a mixture of 1.20 g of finely divided potassium ferricyanide was added dropwise to the first layer 28 with 0.8 1 and dried in a 40 ° C compare drying oven for 6 minutes to form the second layer 30 Formed. In the above composition, the weight ratio of -Eupol to potassium ferricyanide is 30%.
[0036] (比較例) [0036] (Comparative example)
グルコースォキシダーゼ 5 lmg (安定化剤 50%を含む)を、水 3. 2gに溶解した液 を、電極系表面に 1 μ 1滴下し、 40°Cのコンベア乾燥炉で 6分間乾燥して第一層を形 成した。次に、ェチルセ口ソルブ(2—エトキシエタノール) 2. 98gに、分子量約 4100 のポリエチレンオキサイド(PEO)—ポリプロピレンオキサイド(PPO)ブロック共重合 体(商品名:ニューポール PE— 75)を 240mg溶解した後、結晶セルロース(商品名: セォラスクリーム、含水率 90%) 1. 12g及び、微粒子化したフェリシアンィ匕カリウム 0. 81gを混合した液を、第一層上に 1. 3 1滴下、 40°Cのコンベア乾燥炉で 6分間乾 燥して第二層を形成した。上記の組成において、フェリシアンィ匕カリウムに対する-ュ 一ポールの重量比は 29. 6%である。また、フェリシアン化カリウムに対する結晶セル ロースの重量比は 13. 8%である。なお、本比較例に用いた塗布液中には水を 19. 6%含んでいる。そのため、フェリシアンィ匕カリウムの一部が溶解しており、さらに第一 層上に滴下した際には、第一層の GODの一部と溶解混合している。 1 μl of glucose oxidase 5 lmg (containing 50% stabilizer) dissolved in 3.2 g of water is dropped on the surface of the electrode system and dried in a conveyor drying oven at 40 ° C for 6 minutes. One layer was formed. Next, 240 mg of polyethylene oxide (PEO) -polypropylene oxide (PPO) block copolymer (trade name: New Pole PE-75) with a molecular weight of about 4100 was dissolved in 2.98 g of ethylceous sorb (2-ethoxyethanol). Later, crystalline cellulose (trade name: (Ceras cream, water content 90%) 1. A solution of 12 g and finely divided ferricyanium potassium (0.81 g) was dropped on the first layer, 1.3 1 drops, in a conveyor drying oven at 40 ° C for 6 minutes. A second layer was formed by drying. In the above composition, the weight ratio of eupol to ferricyanium potassium is 29.6%. The weight ratio of crystalline cellulose to potassium ferricyanide is 13.8%. The coating solution used in this comparative example contained 19.6% water. Therefore, a part of ferricyanium potassium is dissolved, and when it is dropped on the first layer, it is dissolved and mixed with a part of the GOD of the first layer.
(評価方法) (Evaluation methods)
乾燥剤 (活性アルミナ)約 25mgとともに、センサチップをアルミ個包装した後、熱安 定性評価のために 25°Cと 40°Cで 1ヶ月保存した。測定はグルコース濃度 30,50, 13 OmgZdlに調整した全血を用い、 40°C保存したセンサの測定結果から 25°C保存し たセンサの測定結果を差し引き、熱的安定性の指標とした。この測定結果の差につ いて、実施例 1〜6によって製造したバイオセンサ 10に関して表 1に、実施例 7〜9に よって製造したバイオセンサ 10に関して表 2に、比較例によって製造したバイオセン サに関して表 3に示す。 The sensor chip was packed in aluminum together with about 25 mg of desiccant (activated alumina), and then stored at 25 ° C and 40 ° C for 1 month for thermal stability evaluation. The measurement was performed using whole blood adjusted to glucose concentrations of 30,50 and 13 OmgZdl, and the measurement result of the sensor stored at 25 ° C was subtracted from the measurement result of the sensor stored at 40 ° C, which was used as an index of thermal stability. The difference in measurement results is shown in Table 1 for the biosensor 10 manufactured according to Examples 1-6, Table 2 for the biosensor 10 manufactured according to Examples 7-9, and for the biosensor manufactured according to the comparative example. Table 3 shows.
[表 1] [table 1]
Figure imgf000011_0001
Figure imgf000011_0001
[表 2] [Table 2]
Figure imgf000011_0002
Figure imgf000011_0002
[表 3]
Figure imgf000012_0001
[Table 3]
Figure imgf000012_0001
実施例 1〜6について、測定結果の差の絶対値の平均は、グルコース濃度 30mgZd 1の場合 4. Og/dl,グルコース濃度 50mgZdlの場合 4. 7mg/dUグルコース濃度 130mgZdlの場合 4. 2mgZdlであった。実施例 7〜9について、測定結果の差の 平均値は、グルコース濃度 30mgZdlの場合 21. 3mgZdl、グルコース濃度 50mg Zdlの場合 18. 7mgZdl、グルコース濃度 130mgZdlの場合 15. 7mgZdlであつ た。これに対して、比較例では、それぞれ 97、 96、 71mgZdlであり、第一層 28を溶 解しない溶媒を用いて第二層 30を塗布した方が測定結果の差が少な力つた。特に、 ポリビニルピロリドンを用いた場合が最も安定性が高力つた。 For Examples 1 to 6, the average absolute value of the difference in the measurement results was 4. Og / dl for a glucose concentration of 30 mgZd 1 4. For a glucose concentration of 50 mgZdl 4. For a 7 mg / dU glucose concentration of 130 mgZdl, it was 4.2 mgZdl. It was. For Examples 7 to 9, the average difference in measurement results was 21.3 mgZdl for a glucose concentration of 30 mgZdl, 18.7 mgZdl for a glucose concentration of 50 mgZdl, and 15.7 mgZdl for a glucose concentration of 130 mgZdl. On the other hand, in the comparative examples, they were 97, 96, and 71 mg Zdl, respectively, and the difference in the measurement results was stronger when the second layer 30 was applied using a solvent that did not dissolve the first layer 28. In particular, the highest stability was obtained when polyvinylpyrrolidone was used.
産業上の利用可能性  Industrial applicability
[0038] 本発明のバイオセンサの製造方法は、バイオセンサの保存温度の影響を少なくし て保存性を高めることができる。このため、種々のバイオセンサの製造のために広く 利用できる。 [0038] The biosensor manufacturing method of the present invention can improve the storage stability by reducing the influence of the storage temperature of the biosensor. Therefore, it can be widely used for manufacturing various biosensors.
図面の簡単な説明  Brief Description of Drawings
[0039] [図 1]本発明のバイオセンサを示す図であり、同図(a)は平面図であり、同図(b)は A  [0039] [FIG. 1] A diagram showing a biosensor of the present invention, in which (a) is a plan view and (b) is A
-A線切断部断面図である。  FIG.
[図 2]図 1のバイオセンサの使用状態を示す正面図である。  FIG. 2 is a front view showing a usage state of the biosensor of FIG.
[図 3]図 1のバイオセンサの使用状態を示す図であり、同図(a)は血液が接触した瞬 間を示す A— A線切断部断面図であり、同図(b)は血液が反応した状態を示す A— A線切断部断面図である。  FIG. 3 is a diagram showing the usage state of the biosensor of FIG. 1, in which FIG. (A) is a cross-sectional view taken along the line AA showing the moment of blood contact, and FIG. FIG. 5 is a cross-sectional view taken along the line AA showing a state in which is reacted.
[図 4]従来のバイオセンサを示す図であり、同図(a)は平面図であり、同図(b)は A— A線切断部断面図である。  FIG. 4 is a view showing a conventional biosensor, in which FIG. 4 (a) is a plan view and FIG. 4 (b) is a cross-sectional view taken along line AA.
符号の説明  Explanation of symbols
[0040] 10 :バイオセンサ :電気絶縁基板:作用電極[0040] 10: Biosensor : Electrical insulating substrate: Working electrode
:対電極: Counter electrode
:反応部セル:マスクシート:反応部: Reaction unit cell: Mask sheet: Reaction unit
:スぺーサシート:カバーシート:第一層: Spacer sheet: Cover sheet: First layer
:第二層 : Second layer

Claims

請求の範囲 The scope of the claims
[1] 電気絶縁基板上に設けられた作用電極及び対電極上に酸化還元酵素を有する反 応部を形成する反応部形成ステップを含むバイオセンサの製造方法において、 前記反応部形成ステップが、  [1] In a biosensor manufacturing method including a reaction part forming step of forming a reaction part having an oxidoreductase on a working electrode and a counter electrode provided on an electrically insulating substrate, the reaction part forming step includes:
前記作用電極及び対電極上に、酸化還元酵素を有する第一の反応部用塗布液を 塗布し乾燥させて第一層を形成する第一層形成ステップと、  A first layer forming step of forming a first layer on the working electrode and the counter electrode by applying and drying a first reaction part coating solution having an oxidoreductase; and
前記第一層上に、親水性高分子化合物及び電子受容体を有する第二の反応部用 塗布液を塗布し乾燥させて第二層を形成する第二層形成ステップと、  On the first layer, a second layer forming step of forming a second layer by applying and drying a second reaction part coating solution having a hydrophilic polymer compound and an electron acceptor;
を含むバイオセンサの製造方法。  A method for producing a biosensor comprising:
[2] 前記酸ィ匕還元酵素がグルコースォキシダーゼである請求項 1に記載するバイオセン サの製造方法。  2. The method for producing a biosensor according to claim 1, wherein the acid reductase is glucose oxidase.
[3] 前記親水性高分子化合物がポリビニルピロリドンである請求項 1又は請求項 2に記載 するバイオセンサの製造方法。  [3] The method for producing a biosensor according to claim 1 or 2, wherein the hydrophilic polymer compound is polyvinylpyrrolidone.
[4] 前記電子受容体がフ リシアン化カリウムである請求項 1〜請求項 3のいずれかに記 載するバイオセンサの製造方法。 [4] The biosensor manufacturing method according to any one of [1] to [3], wherein the electron acceptor is potassium fricyanide.
[5] 前記親水性高分子化合物がポリビニルピロリドンであり、前記電子受容体がフエリシ アンィ匕カリウムであり、該フェリシアンィ匕カリウムに対する該ポリビニルピロリドンの重量 比が 0. 5〜50%である請求項 1又は請求項 2に記載するバイオセンサの製造方法。 [5] The hydrophilic polymer compound is polyvinylpyrrolidone, the electron acceptor is ferri-cyan potassium, and a weight ratio of the polyvinyl pyrrolidone to ferricyan potassium is 0.5 to 50%. Or the manufacturing method of the biosensor of Claim 2.
[6] 請求項 1〜請求項 5のいずれかに記載するバイオセンサの製造方法により製造する バイオセンサ。 [6] A biosensor manufactured by the method for manufacturing a biosensor according to any one of claims 1 to 5.
PCT/JP2007/055138 2006-03-17 2007-03-14 Method for manufacturing biosensor and biosensor WO2007108388A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008506264A JP4856697B2 (en) 2006-03-17 2007-03-14 Biosensor manufacturing method and biosensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-073880 2006-03-17
JP2006073880 2006-03-17

Publications (1)

Publication Number Publication Date
WO2007108388A1 true WO2007108388A1 (en) 2007-09-27

Family

ID=38522418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055138 WO2007108388A1 (en) 2006-03-17 2007-03-14 Method for manufacturing biosensor and biosensor

Country Status (2)

Country Link
JP (1) JP4856697B2 (en)
WO (1) WO2007108388A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016512895A (en) * 2013-03-28 2016-05-09 リードウェイ (エイチケイ) リミテッドLeadway (Hk) Limited Biosensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354447A (en) * 1989-04-18 1991-03-08 Matsushita Electric Ind Co Ltd Biosensor and manufacture thereof
JP2001249103A (en) * 1999-12-27 2001-09-14 Matsushita Electric Ind Co Ltd Biosensor
JP2004264247A (en) * 2003-03-04 2004-09-24 Matsushita Electric Ind Co Ltd Biosensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3214188B2 (en) * 1993-10-08 2001-10-02 松下電器産業株式会社 Biosensor and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354447A (en) * 1989-04-18 1991-03-08 Matsushita Electric Ind Co Ltd Biosensor and manufacture thereof
JP2001249103A (en) * 1999-12-27 2001-09-14 Matsushita Electric Ind Co Ltd Biosensor
JP2004264247A (en) * 2003-03-04 2004-09-24 Matsushita Electric Ind Co Ltd Biosensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016512895A (en) * 2013-03-28 2016-05-09 リードウェイ (エイチケイ) リミテッドLeadway (Hk) Limited Biosensor
US10209214B2 (en) 2013-03-28 2019-02-19 Leadway (Hk) Limited Biosensor

Also Published As

Publication number Publication date
JP4856697B2 (en) 2012-01-18
JPWO2007108388A1 (en) 2009-08-06

Similar Documents

Publication Publication Date Title
JP4418435B2 (en) Electrochemical biosensor
JP4621839B2 (en) Biosensor
CN101073000B (en) Concentration determination in a diffusion barrier layer
JP5738914B2 (en) Biosensor system with improved stability and hematocrit performance
JP3297630B2 (en) Biosensor
JP2005003679A (en) Electrochemical biosensor
CN104280431B (en) Reagent composition for biology sensor and the biology sensor comprising the reagent composition
JP5947901B2 (en) Redox reagent composition for electrochemical biosensor and biosensor including the same
JP5236824B2 (en) Stabilization of enzyme activity with electrochemical biosensors
KR100684228B1 (en) Biosensor and its manufacturing method
JP6081414B2 (en) Low total salt reagent compositions and systems for biosensors
US20150104561A1 (en) Method of Screen Printing On a Substrate
US20240085362A1 (en) Method for improving stability of electrochemical sensor
JP6487251B2 (en) Biosensor
EP1124131B1 (en) Biosensor and method of producing the same
JP5001240B2 (en) Biosensor, its manufacturing method, and its use
WO2001020316A1 (en) Process for producing lipid-modified enzyme and biosensor
US20120199497A1 (en) Electrochemical-based analytical test strip with diffusion-controlling layer and method for determining an analyte using such an test strip
TWI565943B (en) Biosensor desiccant system having enhanced measurement performance
WO2007108388A1 (en) Method for manufacturing biosensor and biosensor
JP2000081408A (en) Biosensor
WO2015002184A1 (en) Biosensor
JP2001281202A (en) Biosensor and its manufacturing method
JP2017009431A (en) Sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008506264

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738608

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载