+

WO2007108362A1 - 有機エレクトロルミネッセンス素子、表示装置および照明装置 - Google Patents

有機エレクトロルミネッセンス素子、表示装置および照明装置 Download PDF

Info

Publication number
WO2007108362A1
WO2007108362A1 PCT/JP2007/054916 JP2007054916W WO2007108362A1 WO 2007108362 A1 WO2007108362 A1 WO 2007108362A1 JP 2007054916 W JP2007054916 W JP 2007054916W WO 2007108362 A1 WO2007108362 A1 WO 2007108362A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
general formula
compound
layer
Prior art date
Application number
PCT/JP2007/054916
Other languages
English (en)
French (fr)
Inventor
Noriko Yasukawa
Eisaku Katoh
Shinya Otsu
Yoshiyuki Suzuri
Shuichi Sugita
Hiroshi Kita
Aki Nakata
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to US12/282,809 priority Critical patent/US20090091253A1/en
Priority to JP2008506251A priority patent/JP5672648B2/ja
Priority to EP07738388.3A priority patent/EP1998387B1/en
Publication of WO2007108362A1 publication Critical patent/WO2007108362A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes

Definitions

  • Organic electoluminescence device display device and lighting device
  • the present invention relates to an organic electroluminescent mouth luminescence element, and a display device and an illumination device using the organic electroluminescent mouth luminescence element.
  • ELD electoric luminescence display
  • ELD constituent elements include inorganic electoluminescence elements and organic electroluminescence elements (hereinafter also referred to as organic EL elements).
  • Inorganic electoric luminescence elements require high alternating current voltage to drive the force light-emitting elements that have been used as planar light sources.
  • an organic EL device has a structure in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode.
  • excitons This is an element that emits light by using the emission of light (fluorescence / phosphorescence) when this exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts.
  • it since it is a self-luminous type, it is a thin-film type complete solid-state device that has a wide viewing angle and high visibility, and has attracted attention from the viewpoints of space saving and portability.
  • organic EL elements that emit light with high power consumption and high luminance efficiently are desired.
  • stilbene derivatives, Technology that improves light emission brightness and extends device lifetime by doping a styrylarylene derivative or tristyrylarylene derivative with a small amount of phosphor see, for example, Patent Document 4
  • 8-hydroxyquinoline aluminum A device having an organic light-emitting layer doped with a small amount of a phosphor as a host compound (see, for example, Patent Document 5), and a 8-hydroxyquinoline aluminum complex as a host compound and a quinacridone series
  • An element having an organic light emitting layer doped with a dye for example, see Patent Document 6) is known.
  • L Ir (acac) as a dopant for example, (ppy) Ir (acac) (for example, see Non-Patent Document 6)
  • Non-Patent Document 3 studies using iridium complexes using phenylbiazole as a ligand have been conducted (for example, see Patent Document 1 and Patent Document 3).
  • Fir a typical phosphorescent blue dopant
  • Fir a typical phosphorescent blue dopant
  • the emission wavelength can be shortened by introducing a virazaball-based ligand as the secondary ligand (see, for example, Patent Document 1 and Non-Patent Documents 1 and 2).
  • These dopants have achieved high-efficiency devices by combining power rubazole derivatives and triaryl silanes as host compounds, but the light emission lifetime of the devices is greatly deteriorated, so an improvement in the trade-off is required. It was.
  • Each of the blue dopants is a compound of a type having a low highest occupied orbital (hereinafter abbreviated as HOMO) level of the dopant material and a lowest empty orbital (hereinafter abbreviated as LUMO) level of the dopant material. .
  • HOMO lowest occupied orbital
  • LUMO lowest empty orbital
  • the values of the HOMO and LUM0 levels are both lower by about leV.
  • blue dopant The compounds with low HOM and LUMO levels are known. There are few reports of compounds with high HOMO and LU MO levels. Recently, blue dopants with high HMO and LUMO levels have been reported (see, for example, Patent Documents 2 and 3), but conventionally known host compounds with high HMO_LUM0 levels. Only examples that have been combined with are reported. The light emission lifetimes of these devices are still not satisfactory, and improvements are required.
  • Patent Document 1 International Publication No. 02/15645 Pamphlet
  • Patent Document 2 US Patent Application Publication No. 2004/0048101
  • Patent Document 3 International Publication No. 04/085450 Pamphlet
  • Patent Document 4 Japanese Patent No. 3093796
  • Patent Document 5 Japanese Unexamined Patent Publication No. 63-264692
  • Patent Document 6 JP-A-3-255190
  • Non-Patent Document 1 C. Adachi et al., Applied Physics Letters, 79th, No. 13, pp. 2082-2084 (2003;)
  • Non-Patent Document 2 R. J. Holmes et al., Applied Physics Letters, 83rd, No. 18, pages 3818-3820 (2003)
  • Non-Patent Document 3 M. A. Baldo et al., Nature, 395 ⁇ , 151—154 (1998)
  • Non-Patent Document 4 M. A. Baldo et al., Nature, 403 ⁇ , 17, 750—753 (2000)
  • Non-Patent Document 5 S. Lamansky et al., J. Am. Chem. So, 123 ⁇ , 4304 (2001)
  • Non-patent literature ⁇ ⁇ . E. Tompson et al., The 10th International Workshopon Inorganic and Organic Electroluminescence (EL '00, Hamamatsu)
  • Non-patent literature 7 Moon— Jae Youn. Og, Tetsuo Tsutsui et al., The 10th I nternational Workshop on Inorganic and Organic Electroluminescen ce (EL'00, Hamamatsu)
  • a first object of the present invention is to provide a blue phosphorescent organic electoluminescence element that is driven at a low voltage, and a display device and an illumination device using the element.
  • a second object of the present invention is to provide an organic-electric-mouth luminescence element with high luminous efficiency, and an illumination device and a display device using the same.
  • the first object of the present invention is achieved by the following configurations 14 and 13 to 18 and the second object is achieved by the following 5 to 18 configurations.
  • an organic electoluminescence device having an electrode and at least one organic layer on a substrate, wherein at least one of the organic layers is a light-emitting layer containing a host compound and a phosphorescent compound.
  • HOMO of the host compound is ⁇ 7.20 eV 5.42 eV
  • LUMO is ⁇ 2.30 0.50 eV
  • the phosphorescent compound is represented by the general formula (1), .
  • R represents a substituent.
  • Z represents a nonmetallic atom group necessary for forming a 5 7-membered ring.
  • Table nl represents an integer of 0.
  • BB represents a carbon atom, a nitrogen atom, Oxygen atom or sulfur Represents an atom and at least one represents a nitrogen atom.
  • M is 8 to 10 in the periodic table
  • X and X represent a carbon atom, nitrogen atom or oxygen atom, and L represents X and X
  • 1 2 1 1 represents a group of atoms that forms a bidentate ligand with X.
  • ml represents an integer of 1, 2 or 3
  • M2 represents an integer of 0, 1 or 2 ml + m2 is 2 or 3.
  • an organic electoluminescence device having an electrode and at least one organic layer on a substrate, at least one of the organic layers is a light emitting layer containing a phosphorescent compound and an electron transporting host compound.
  • the phosphorescent compound has a HOMO of -5.15 3.50 eV and LUMO of -1.25 + 1. OOeV, and the excited triplet energy T1 of the electron-transporting host compound is 2.7 eV or more.
  • An organic-electric-luminescence element characterized by that.
  • HOMO of the phosphorescent compound is 4.80 3. 50 eV and LUMO is 0.80.
  • R represents a substituent.
  • Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
  • nl represents an integer of 0 to 5.
  • B to B are carbon atom, nitrogen atom, oxygen atom or sulfur
  • M is group 8 to 1 in the periodic table
  • X and X represent a carbon atom, a nitrogen atom or an oxygen atom, and L is
  • X and X represent a group of atoms that form a bidentate ligand.
  • ml is 1, 2, or 3
  • T1 of the organic compound contained in the electron transport layer A in contact with the light emitting layer is 2.7 eV or more. 5 ⁇
  • the general formula (1) or the general formula (I) is represented by the following general formula ( ⁇ ): Organic Electrum Luminescent as described in S element.
  • R, R and R represent a substituent.
  • Z is a non-metallic element necessary to form a 5- to 7-membered ring
  • nl represents an integer of 0 to 5.
  • M is group 8 to group 10 gold in the periodic table
  • X and X represent a carbon atom, nitrogen atom or oxygen atom, and L represents X and X
  • 1 2 1 1 represents a group of atoms that together with X forms a bidentate ligand.
  • ml represents an integer of 1, 2, or 3
  • m2 is a force representing an integer of 0, 1 or 2 ml + m2 is 2 or 3. ]
  • R represents a substituent having a steric parameter value (Es value) of ⁇ 0.5 or less.
  • Es value steric parameter value
  • n5 represents an integer of 0 to 4.
  • * indicates a bonding position.
  • An illuminating device comprising the organic electoluminescence element according to any one of 1 to 15 above.
  • a display device comprising the illumination device according to 17 and a liquid crystal element as display means.
  • a blue phosphorescent organic electoluminescence device driven at a low voltage and the device are used.
  • a display device and a lighting device could be provided.
  • the organic electroluminescent device with high luminous efficiency and an illumination device and a display device using the same. could be provided.
  • FIG. 1 is a diagram showing a basic layer structure of the present invention.
  • FIG. 2 is a schematic view showing an example of a display device composed of organic EL elements.
  • FIG. 3 is a schematic diagram of a display unit.
  • FIG. 4 is a schematic diagram of a pixel.
  • FIG. 5 is a schematic diagram of a passive matrix type full-color display device.
  • FIG. 6 is a schematic view of a lighting device.
  • FIG. 7 is a cross-sectional view of the lighting device.
  • the compound represented by the general formula (1) according to the present invention has low HOM and LUMO levels, it is considered that hole injection is smooth. Therefore, the present inventors have used the phosphor compound represented by the general formula (1) as a dopant, and when a compound having a specific range of high HMO and LUMO levels is used as a host compound, It was found that the first problem could be solved, and the inventions described in claims 1 to 4 and 13 to 18 were reached. In other words, it is considered that the voltage was lowered without charge being accumulated in the light emitting layer by injecting holes into the dopant in the light emitting layer and injecting electrons into the host compound.
  • the values of HMO and LUMO are Gaussian98 (Gaussian98, Revision A. 11.4, MJ Frisch, et al, Gaussian, Inc. , Pittsburgh PA, 2002.), and the values of HOM0 and LUMO of the host compound in the present invention should be optimized using B 3LYP / 6- 31G * as a keyword.
  • the HOMO and LUMO values of phosphorescent compounds in the present invention are values calculated by structural optimization using B3LYP / LanL2DZ as keywords (eV unit (Converted value). The reason why this calculated value is effective is that the correlation between the calculated value obtained by this method and the experimental value is high.
  • HOMO level is low means that the absolute value of HOMO level is small.
  • HOMO levels of Compound A and Compound B are 5.45 eV and-5.30 eV, respectively
  • Compound B is HMO level than Compound A. Is low.
  • LUMO level is low means that the absolute value of LUMO level is small. For example, when LU MO level of Compound A and Compound B is ⁇ 1.12eV and ⁇ 0.85eV, respectively. Compound B has a lower LUMO level than Compound A.
  • the light emitting layer contains a host compound and a phosphorescent compound.
  • the mixing ratio of the phosphor compound to the host compound as the main component in the light emitting layer is preferably adjusted to a range of 0.1 to less than 30% by mass.
  • the phosphorescent compound represented by the general formula (1) preferably has a HOMO of ⁇ 4 ⁇ 80 to 1.35 eV and a LUMO of 1 ⁇ 80 to + 1.OOeV.
  • examples of the substituent represented by R include
  • an alkyl group for example, methinole group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecinole group, tetradecyl group, pentadecyl group, etc.
  • cyclo Alkyl groups eg, cyclopentyl group, cyclohexyl group, etc.
  • alkenyl groups eg, vinyl group, allyl group, etc.
  • alkynyl groups eg, ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon ring groups aromatic hydrocarbon ring groups (aromatic
  • sulfamoyl group for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group) , Dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (eg, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexyl group) Xylcarbonyl group, octylcarbonyl group, 2-ethyl
  • Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
  • Examples of the 5- to 7-membered ring formed by Z include a benzene ring, naphthalene ring, pyridine ring, pyrimidine ring, pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring, and thiazole ring. . Of these, a benzene ring is preferred.
  • B to B represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom.
  • the nitrogen-containing heterocycle formed by 5 atoms including is preferably a monocycle.
  • examples thereof include a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, a tetrazole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an oxadiazole ring, and a thiadiazo ring.
  • a pyrazonole ring and an imidazole ring are preferable, and an imidazole ring is more preferable.
  • These rings may be further substituted with the above substituents.
  • Preferred examples of the substituent include an alkyl group and an aryl group, and more preferred is an aryl group.
  • L represents an atomic group forming a bidentate ligand together with X and X. 2 represented by X -L -X
  • 1 1 2 1 1 2 bidentate ligands include, for example, substituted or unsubstituted phenylvinylidine, phenylvirazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, Examples include picolinic acid and acetylacetone. These groups may be further substituted with the above substituents.
  • ml represents an integer of 1, 2 or 3
  • m2 represents the force of 0, 1 or 2 ml + m2 is
  • the phosphorescent compound represented by the general formula (1) may or may not have a polymerizable group or a reactive group.
  • the nitrogen-containing heterocycle formed by B to B is preferably an imidazole ring.
  • the general formula (1) is more preferably represented by the general formula ( ⁇ ).
  • R, R, and R represent a substituent.
  • Z forms a 5- to 7-membered ring
  • nl represents an integer of 0 to 5.
  • M is 8 in the periodic table
  • X and X represent a carbon atom, a nitrogen atom or an oxygen atom
  • L represents a group of atoms that together with X and X form a bidentate ligand.
  • ml is 1, 2 or
  • m2 represents an integer of 0, 1 or 2 ml + m2 is 2 or 3.
  • the preferred general formula (III) is a substituted aryl group in which a substituted aryl group is preferred.
  • R represents a substituent having a steric parameter value (Es value) of ⁇ 0.5 or less.
  • the R is the same as R, and n5 represents an integer of 0-4. Note that * represents a binding position.
  • the Es value is a steric parameter derived from chemical reactivity, and the smaller this value, the more sterically bulky a substituent can be said.
  • the Es value will be described.
  • the Es value is the numerical value of the steric hindrance of the substituent.
  • the Es value of the substituent X is represented by the following chemical reaction formula:
  • Es log (kX / kH)
  • the reaction rate decreases due to the steric hindrance of the substituent X, resulting in kX and kH, so the Es value is usually negative.
  • the above two reaction rate constants kX and kH are obtained and calculated by the above formula.
  • Es values are described in detail in Unger, S. H., Hansch, C., Prog. Phys. Org. Chem., 12, 91 (1976). The specific values are also shown in “Structure-activity relationship of drugs” (Ishi 122, Nankodo), “American Chemical Society Professional Reference Book, 'Exploring QSAR' p. 81 Table 3-3”. Is described. Some of these are shown in Table 1.
  • the Es value as defined in the present specification is that a hydrogen atom that is not defined as that of a methyl group is 0, and that the methyl group is 0. This is the Es value minus 1.24.
  • R represents a substituent having a steric parameter value (Es value) of ⁇ 0.5.
  • It is preferably 7.0 or more and 0.6 or less, and most preferably 7.0 or more and 1.0 or less.
  • keto-enol tautomer may exist in R.
  • the keto moiety is converted to Es value as an isomer of enol. If other tautomers exist, the Es value is converted using the same conversion method.
  • the host compounds used in the inventions according to claims 1 to 4 and 13 to 18 have a HOMO level of ⁇ 7.20 to 5.42 eV and a LUMO level of ⁇ 2.30 ⁇ 0.5
  • OeV is a compound having a phosphorescence quantum yield of phosphorescence of less than 0.01 at room temperature (25 ° C.).
  • the phosphor compound used in combination has a wavelength shorter than the phosphorescence 0-0 band.
  • the phosphorescence 0-0 band is used as the host compound. It is preferable that it is 460 nm or less.
  • a method for measuring the 0-0 band of phosphorescence in the present invention will be described. First, the method for measuring the phosphorescence spectrum will be explained.
  • any solvent that can dissolve the compound may be used (substantially no problem is caused by the solvent effect of the phosphorescence wavelength in the measurement method described above). ).
  • force which is a method for obtaining the 0_0 band, in the present invention, phosphorus obtained by the above-described measurement method is used.
  • the maximum emission wavelength that appears on the shortest wavelength side in the optical spectrum chart is defined as 0-0 band.
  • the phosphorescence spectrum is usually weak in intensity, it may be difficult to distinguish between noise and peak when enlarged.
  • the emission spectrum immediately after the excitation light irradiation (for convenience, this is called the steady light spectrum) is expanded, and the emission spectrum 100 ms after the excitation light irradiation (for convenience, this is called the phosphorescence spectrum).
  • the peak wavelength is read from the portion of the constant light spectrum derived from the phosphorescence spectrum.
  • the Savitzky & Golay smoothing method can be applied.
  • the host compound used in the invention described in claims 1 to 4 and 13 to 18 is not particularly limited in terms of structure, but is a low molecular weight compound having a repeating unit. It may be a low molecular weight compound (deposited polymerizable host compound) having a polymerizable group such as a vinyl group or an epoxy group. Preference is given to compounds that have hole transporting and electron transporting capabilities, prevent emission of longer wavelengths, and have a high Tg (glass transition temperature).
  • the host compounds in the inventions of claims 1 to 4 and 13 to 18 are typically rubazole derivatives, triarylamine derivatives, aromatic boranes.
  • the host compound according to claims 1 to 4 and 13 to 18 is preferably a compound represented by the following general formula (2).
  • Ar and Ar are each an aromatic hydrocarbon group or an aromatic heterocyclic ring.
  • Ar aromatic hydrocarbon group represented by Ar (aromatic carbocyclic group, aryl group)
  • Examples thereof include phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthyl group, fluorenyl group, phenanthryl group, indur group. , Pyrenyl group, biphenyl benzylyl group, etc.
  • Examples of the aromatic heterocyclic group represented by Ar and Ar include a pyridinole group and a pyrimidininole group.
  • These groups may each have a substituent.
  • substituents include an alkyl group.
  • cycloalkyl group for example, cyclopentyl group, cyclohexyl group, etc.
  • alkenyl group for example, bur group, aryl group, etc.
  • Alkynyl groups for example, ethynyl groups
  • aromatic hydrocarbon groups also called aromatic carbocyclic groups, aryl groups, etc., for example, phenyl groups, 2,6 dimethylenophenyl groups, etc.
  • aromatic heterocyclic groups also referred to as a heteroaryl group, for example, furyl group, phenyl group, pyridyl group, pyridazyl group, pyrimidyl group, pyrazyl group, triazyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolyl group, phthala
  • Synolethio group, etc. arylthio group (eg, phenylthio group, naphthylthio group, etc.), aralkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, etc.), aryloxy A carbonyl group (for example, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), a sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, etc.), an acyl group (for example, acetyl group, Ethylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino
  • the nitrogen atom substituted with Ar and Ar is a position where the nitrogen atom of Ar and Ar is further substituted.
  • a ring may be formed between the adjacent position of and a nitrogen atom. Specifically, the following structure may be adopted.
  • Ra is a hydrogen atom, an alkyl group, a cycloalkyl group, an aromatic hydrocarbon group, an aromatic complex
  • Examples of the alkyl group represented by Ra include a methyl group, an ethyl group, a propyl group, and an iso group.
  • Ra alkyl group represented by Ra
  • Examples of 1 cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • Examples of the aromatic hydrocarbon group and aromatic heterocyclic group represented by Ra include the above
  • Aromatic hydrocarbon groups and aromatic heterocyclic groups mentioned in the description of Ar and Ar are Aromatic hydrocarbon groups and aromatic heterocyclic groups mentioned in the description of Ar and Ar.
  • heterocyclic group represented by Ra examples include pyrrolidinole group, imidazolidinole group, and
  • a ruphoryl group, an oxazolidinole group, etc. are mentioned. Each of these groups may have a substituent. Examples of the substituent include those mentioned above as examples of Ar and Ar substituents.
  • Ar to Ar represent an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • Ar to Ar may have a substituent.
  • Specific examples of the group represented by Ar to Ar include a general formula (
  • a ring may be formed between the adjacent position of and a nitrogen atom.
  • Ar represents a divalent arylene group or a heteroarylene group, and may have a substituent.
  • arylene group or heteroarylene group represented by Ar for example, 1, 3-fluoro
  • L represents a divalent linking group
  • nl represents an integer of 0 to 6
  • a plurality of L may be different or the same.
  • R and R each represent a substituent, and nl and n2 each represent 0 to 4.
  • Ra is a hydrogen atom, an alkyl group, a cycloalkyl group, an aromatic hydrocarbon group, an aromatic complex
  • Ar and Ar nitrogen atoms are further substituted.
  • a ring may be formed between the adjacent position and the nitrogen atom.
  • Ra represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aromatic carbon
  • R and R each represents a substituent.
  • Nl and n2 represent 0-4.
  • Ra represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aromatic carbon.
  • R and R each represents a substituent.
  • Nl represents 0 to 4
  • n2 represents 0 to 3.
  • Ra represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aromatic carbon
  • R and R are each a substituent Nl and n2 represent 0-3.
  • R to R represent substituents
  • nl to n5 represent 0 to 4.
  • L is bivalent
  • nl represents an integer of 0 to 6
  • a plurality of L may be different or the same
  • R to R represent substituents, nl, n3 and n5 represent 0 to 4, n2
  • n4 represents 0 to 3
  • L represents a divalent linking group
  • nl represents an integer of 0 to 6
  • a plurality of L may be different or the same.
  • Ra and Ra are a hydrogen atom, an alkyl group, a cycloa
  • Ar and Ar may be substituted with a substituent which may be present.
  • R 1 to R represent substituents
  • nl and n4 represent 0 to 3
  • n5 represents 0-4.
  • L represents a divalent linking group, nl represents an integer of 0 to 6, and a plurality of L may be different or the same.
  • R to R represent substituents
  • nl to n4 represent 0 to 3
  • n5 represents 0 to
  • L represents a divalent linking group
  • nl represents an integer of 0 to 6
  • a plurality of L may be different or the same.
  • each of R 1 to R 3 represents
  • the divalent linking group represented by L may include a hetero atom in addition to a hydrocarbon group such as an alkylene group, an alkenylene group, an alkynylene group, or an arylene group.
  • 2,5_diyl group may be pyrazine—a divalent linking group derived from a compound having an aromatic heterocycle such as 2,3_diyl group (also called heteroaromatic compound), ⁇ It may be a chalcogen atom such as _, _S-, _NR_ (R represents a hydrogen atom or a substituent). Further, it may be a group linked via a hetero atom such as an anolequinolemino group, a dialkylsilane diyl group or a diarylgermandyl group.
  • a compound represented by the following general formula (12) is also preferred as the host compound.
  • Ar to Ar represent an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • a compound represented by the following general formula (13) is also preferable.
  • Ar to Ar represent an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • the organic electroluminescent device (hereinafter also referred to as an organic EL device) according to the invention according to the constitution of claims 5 to 18, at least one of the organic layers is a phosphorescent compound and an electron transport.
  • the phosphorescent compound has a HOM of from 15.15 to 3.50 eV and a LUMO of from 1.25 to 10. 1. OOeV.
  • the excitation triplet energy T1 of the compound must be 2.7 eV or more.
  • an illumination device and a display device could be obtained using the organic EL element.
  • the values of HOMO and LUM 0 are Gaussian98 (Gaussian98, Revision A. 11.4, MJ Frisch, et al, Gaussian, software for molecular orbital calculation manufactured by Gaussian, USA). , Inc., Pittsburgh PA, 2002.) and is defined as a value (eV unit converted value) calculated by optimizing the structure using B3LYP / LanL2DZ as a keyword. The reason why this calculated value is effective is that there is a high correlation between the calculated value obtained by this method and the experimental value.
  • the electron transporting host compound (hereinafter also referred to as host compound) is the electron mobility ⁇ and the hole mobility.
  • Electron mobility / and hole mobility ⁇ are measured by the time e he e h fob flight (T.O.F) method as follows.
  • OPTEL TOF-301 can be used for the measurement.
  • Electron mobility and hole mobility are obtained from the transient current characteristics.
  • the excited triplet energy level (T1) value is defined by the following equation.
  • X represents the excited triplet energy (eV)
  • represents the 0_0 band (nm) of phosphorescence.
  • the 0-0 band (nm) of phosphorous light can be obtained as follows.
  • any solvent that can dissolve the compound may be used (substantially the solvent effect of the phosphorescence wavelength is negligible in the measurement method described above. Absent).
  • the emission maximum wavelength that appears on the shortest wavelength side in the phosphor spectrum chart obtained by the above measurement method is 0-0 band. It is defined as
  • the phosphorescence spectrum usually has a low intensity, it may be difficult to distinguish between noise and peak when enlarged.
  • the steady-state light spectrum is expanded and overlapped with the emission spectrum 100 ms after irradiation with the excitation light (referred to as the phosphorescence spectrum for convenience), and peaks from the portion of the steady-state light spectrum derived from the phosphorescence spectrum. It can be determined by reading the wavelength.
  • a smoothing method such as Savitzky & Golay can be applied.
  • HOMO is 1 ⁇ 15 3.50eV and LUMO is 1 ⁇ 25 ⁇ + 1.00 eV.
  • the HOMO is from 1.80 to 3.50 eV and the LUMO is from 1.80 to 10.00 eV.
  • the substituent represented by R is, for example, an alkyl group (for example, , Methyl group,
  • ureido group for example, methylureido group, Ethylureido group, pentylureido group, cyclohexylurei group Group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridinoreaminoureido group
  • a disulfonyl group, etc. an amino group (for example, an amino group, an ethylamino group, a dimethylenoamino group, a butylamino group, a cyclopentylamino group, a 2-ethylhexylamino group, a dodecinoreamino group, an anilino group, a naphthinoreamino group, a 2-pyridinoremino group.
  • syno groups Nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropyl silyl group, triphenylsilyl group, phenylethylsilyl group, etc.)
  • Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
  • the 5- to 7-membered ring formed by Z include a benzene ring, naphthalene ring, pyridine ring, pyrimidine ring, pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring, and thiazole ring. . Of these, a benzene ring is preferred.
  • B to B represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of them
  • the aromatic nitrogen-containing heterocycle formed by these five atoms is preferably a monocycle. Examples thereof include a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, a tetrazole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazol ring, an oxadiazole ring, and a thiadiazole ring.
  • a pyrazole ring and an imidazole ring are preferable, and an imidazole ring is more preferable.
  • These rings may be further substituted with the above substituents.
  • Preferred examples of the substituent are an alkyl group and an aryl group, and more preferred are a substituted alkyl group and an unsubstituted aryl group.
  • L represents an atomic group which forms a bidentate ligand with X and X.
  • 1 1 2 1 1 2 bidentate ligands include, for example, substituted or unsubstituted phenylviridine, phenylvirazole, phenylimidazole, phenyltriazole, phenyltetrazole, virazorbol, picoline. Examples include acid and acetylacetone.
  • ml represents an integer of 1, 2 or 3
  • m2 represents a force of 0, 1 or 2 ml + m2 is
  • m2 is preferably 0.
  • the metal represented by M includes transition metal elements of Group 8 to Group 10 of the Periodic Table of Elements (simply transition
  • iridium and platinum are preferred, and iridium is more preferred.
  • the phosphorescent compound represented by the general formula (I) of the present invention has a polymerizable group or a reactive group. I have it, I don't need it.
  • the nitrogen-containing heterocycle formed by B to B is preferably an imidazole ring.
  • the general formula (I) is more preferably represented by the general formula ( ⁇ ).
  • R, R, and R represent a substituent.
  • Z forms a 5- to 7-membered ring
  • nl represents an integer of 0 to 5.
  • M is 8 in the periodic table
  • X and X represent a carbon atom, a nitrogen atom or an oxygen atom
  • L represents a group of atoms that together with X and X form a bidentate ligand.
  • ml is 1, 2 or
  • m2 represents an integer of 0, 1 or 2 ml + m2 is 2 or 3.
  • the preferred general formula (III) is a substituted aryl group in which a substituted aryl group is preferred.
  • R represents a substituent having a steric parameter value (Es value) of -0.5 or less.
  • the R is the same as R, and n5 represents an integer of 0-4. Note that * represents a binding position.
  • the Es value is a steric parameter derived from chemical reactivity, and the smaller this value, the more sterically bulky the substituent.
  • R represents a substituent having a steric parameter value (Es value) of -0.5 or less.
  • ketoeenol tautomer it is preferably 7.0 or more and 0.6 or less, and most preferably 7.0 or more and 1.0 or less.
  • Es value is converted as an isomer of diols. If other tautomers exist, convert the Es value using the same conversion method.
  • the light emitting layer according to the constitution of claims 5 to 18 of the present invention, electrons and holes injected from an electrode or an electron transport layer, a hole transport layer, etc. are recombined.
  • the light emitting portion may be in the light emitting layer or at the interface between the light emitting layer and the adjacent layer.
  • the light emitting layer of the organic EL device of the present invention contains a phosphorescent compound (also referred to as a phosphorescent dopant or a phosphorescent compound) and a host compound.
  • a phosphorescent compound also referred to as a phosphorescent dopant or a phosphorescent compound
  • a host compound such as a phosphorescent compound.
  • a plurality of known phosphorescent compounds may be used in combination.
  • By using multiple types of phosphorescent dopants it is possible to mix different light emissions, and thus any light emission color can be obtained.
  • White light emission is possible by adjusting the type and amount of phosphorescent dopant, and it can also be applied to lighting and knocklights.
  • JP 2002-100476 JP 2002-173674, JP 2002-359082, JP 2002-175884, JP 2002-363552, JP 2002-184582 Publication, JP 2003-7469, JP 2002-525 808, JP 2003-7471, JP 2002-525833, JP 2003
  • the light emitting layer As a material used for the light emitting layer, there is a light emitting phosphine compound in addition to the above phosphorescent dopant.
  • the host compound is a compound having a phosphorescence quantum yield power of less than 0.01 of phosphorescence emission at room temperature (25 ° C) among compounds contained in the light emitting layer. Defined.
  • an electron transporting host compound as the host compound. This makes it possible to extend the light emission lifetime of the element during continuous driving more frequently.
  • the electron transporting host compound (hereinafter also referred to as host compound) is the above-mentioned As shown above, when the electron mobility is ⁇ and the hole mobility is /, the host condition is such that ⁇ > ⁇ .
  • the luminescent host compound used in the invention according to the constitution described in claims 5 to 18 is not particularly limited in terms of structure, but is typically a carboline derivative or diaza-powered rubazole. Derivatives, aromatic borane derivatives, oxadiazole derivatives, force rubazole derivatives and the like.
  • the luminescent host compound a compound that prevents the emission of light from being long-wavelength and has a high Tg (glass transition temperature) is preferable.
  • Preferable specific examples of the layer structure of the organic EL device of the present invention are as follows. The present invention is not limited thereto.
  • the intermediate layer according to the present invention is a layer between the light emitting layer and the hole transport layer. Depending on the nature of the material contained in the layer, the layer may be referred to as a hole transport layer or an electron blocking layer. In the present invention, the intermediate layer preferably contains the same material as the host compound contained in the light emitting layer.
  • Blocking layer (electron blocking layer, hole blocking layer) >>
  • the blocking layer for example, electron blocking layer, hole blocking layer
  • the blocking layer for example, electron blocking layer, hole blocking layer
  • the thickness of the blocking layer according to the present invention is preferably 3 to:! OOnm, and more preferably 5 to 30 nm.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a material that has a function of transporting electrons and has a very small ability to transport holes, and blocks holes while transporting electrons. By doing so, the probability of recombination of electrons and holes can be improved.
  • Examples of the hole blocking layer include, for example, Japanese Patent Application Laid-Open Nos. 11-204258 and 11204359, and “The Forefront of Organic EL Devices and Their Industrialization (November 30, 1998).
  • the hole blocking (hole blocking) layer described on page 237 of “Issued by the company” can be used as the hole blocking layer according to the present invention.
  • the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
  • the organic EL device of the present invention has a hole blocking layer as a constituent layer, and the hole blocking layer is at least one carbon atom of the carboline derivative or the hydrocarbon ring constituting the carboline ring of the carboline derivative. It is preferable to contain a derivative having a ring structure in which one is substituted with a nitrogen atom.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes and an extremely small capacity of transporting electrons. The probability of recombination of electrons and holes can be improved by blocking the children. Also described later The structure of the hole transport layer to be used can be used as an electron blocking layer as required.
  • the hole transport layer includes a material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided with a single layer or multiple layers.
  • hole transport material there are no particular restrictions on the hole transport material. Conventionally, in photoconductive materials, it is commonly used as a hole charge injection / transport material, and used for the hole injection layer and hole transport layer of organic EL devices. Any known medium force can be selected and used.
  • the hole transport material has either a hole injection or transport or electron barrier property, and may be either an organic substance or an inorganic substance.
  • a hole injection or transport or electron barrier property may be either an organic substance or an inorganic substance.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, vinylene diamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone Derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl 4, 4,'-diaminophenyl; ⁇ , N'- diphenylol, ⁇ '— Bis (3-methylphenyl) 1 [1, 1' — Biphenyl] 1, 4, 4 '— Diamine (TPD); 2, 2 _bis (4-di- ⁇ -tolylaminophenyl) Propane; 1, 1 _bis (4_di_ _trilaminophenyl) cyclohexane; ⁇ , ⁇ , ⁇ ', N r —tetra-p-tolyl-1,4'-diaminobiphenyl; 1,1-bis (4-di-p-tolylaminophenyl) 1-4-phenyl hexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-dimethylamin
  • inorganic compounds such as p-type single Si and p-type single SiC can be used as a hole injection material and a hole transport material.
  • the hole transport material preferably has a high Tg.
  • the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. That power S.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 to 5000 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • An impurity-doped hole transport layer with high p property can also be used. Examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004), and the like. It is done.
  • the hole transport layer on the side in contact with the light emitting layer is referred to as a hole transport layer A.
  • the material that can be used for the hole transport layer A used in the present invention has a hole transport property, and in order to prevent energy transfer from excitons generated in the light emitting layer, a phosphorescent dopant is used. It is necessary to have an excited triplet energy higher than a single punt. When producing a full-color display material using a white light source or blue, green, and red, the blue component is essential. The excitation of the blue phosphor material increases the triplet energy (T1). As a material for the hole transport layer A, a T1 level of 2.7 eV or more is required.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided with a single layer or multiple layers.
  • the electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • any known medium strength compound can be selected and used.
  • electron transport materials examples include heterocyclic tetrafluoride derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, and the like. At least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline ring is substituted with a nitrogen atom, carboxylic acid anhydride, force norepositimide, fluorenylidenemethane derivative, anthraquinodimethane and anthrone derivative, oxadiazole derivative, carboline derivative And derivatives having a cyclic structure.
  • thiadiazole derivatives in which the oxygen atom of the oxaziazo mono ring is substituted with a sulfur atom, and quinoxaline derivatives having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material. .
  • Metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-l-quinolinol) aluminum, tris (5,7-dive mouth 8 quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq) etc., and the central metals of these metal complexes are In, Mg, Cu, Metal complexes replacing Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • methanolyl or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylvirazine derivative exemplified as the material for the light-emitting layer can also be used as an electron transport material, and, like the hole injection layer and the hole transport layer, inorganic such as n-type Si and n-type SiC. Semiconductors can also be used as electron transport materials.
  • This electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. S can.
  • the thickness of the electron transport layer is not particularly limited, but is usually 5 to 5000. It is about nm.
  • This electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an impurity-doped electron transport layer having a high n property can also be used.
  • examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, Appl. Phys., 95, 5773 (2004). S can be named.
  • an electron transport layer A When there are two or more electron transport layers between the light emitting layer and the cathode, the electron transport layer in contact with the light emitting layer is referred to as an electron transport layer A.
  • the material that can be used for the electron transport layer A used in the invention according to the constitution of claims 5 to 18 is not only the electron transport property but also excitons generated in the light emitting layer. In order to prevent energy transfer, it is necessary to have a higher excited triplet energy than the phosphorescent dopant.
  • the blue component is essential, but the excitation triplet energy (T1) of the blue phosphorescent material is high, so electrons
  • the transport layer A material requires a T1 level of 2.7 eV or higher.
  • Examples of the electron transporting material of the electron transporting layer A of the present invention include the aforementioned electron transporting host compound of the present invention. As a result, an organic EL element with a longer lifetime can be obtained.
  • the electron transporting material contained in the electron transport layer A and the electron transporting host compound contained in the light emitting layer may be the same or different.
  • the injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer. It may exist between the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer.
  • the injection layer is a layer provided between the electrode and the organic layer in order to lower the drive voltage and improve the light emission luminance.
  • the organic EL element and the forefront of its industrialization June 30, 1998, NTT) 2) Chapter 2 “Electrode Materials” (pages 123 to 166) of “The Company”), the hole injection layer (anode buffer layer) and the electron injection layer (cathode buffer layer). There is.
  • anode buffer layer (hole injection layer)
  • Examples include a phthalocyanine buffer layer typified by phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene. It is done.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are also described in JP-A-6-325871, JP-A-91-17574, JP-A-10-74586, and the like.
  • Metal buffer layer typified by aluminum, etc., alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide typified by aluminum oxide
  • a buffer layer typified by a buffer layer.
  • the buffer layer (injection layer) preferably has a very thin film thickness, but the film thickness is preferably in the range of 0.1 to OOnm.
  • This injection layer can be formed by thin-filming the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method.
  • the thickness of the injection layer is not particularly limited, but is usually about 5 to 5000 nm.
  • This injection layer may have a single layer structure composed of one or more of the above materials.
  • an electrode material made of a metal, an alloy, an electrically conductive compound and a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, conductive transparent materials such as Cul, indium tin oxide (ITO), SnO, and ZnO.
  • ITO indium tin oxide
  • SnO indium tin oxide
  • ZnO ZnO
  • IDIX ⁇ (In ⁇ —ZnO) or other amorphous material capable of producing a transparent conductive film may be used.
  • these electrode materials can be formed into a thin film by vapor deposition or sputtering, and a pattern of the desired shape can be formed by photolithography, or when pattern accuracy is not so high (100 ⁇ m or more) Degree), a pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • the transmittance it is desirable to make the transmittance larger than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / mouth or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • a metal having a low work function (4 eV or less) metal referred to as an electron injecting metal
  • an alloy referred to as an electrically conductive compound
  • a mixture thereof is used.
  • electrode materials include sodium, sodium-power rhodium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al O) mixture, indium, lithium / aluminum mixture, dilute
  • Examples include earth metals.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is usually selected in the range of 10 to 1000 nm, preferably 50 to 200 nm. In order to transmit light, if either the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.
  • Substrate also referred to as substrate, substrate, support, etc.
  • the substrate of the organic EL device of the present invention is not particularly limited as long as it is transparent or transparent, and is not particularly limited as long as it is transparent. Examples thereof include glass, quartz, and a light transmissive resin film.
  • a particularly preferred substrate is a resin film that can give flexibility to the organic EL element.
  • Examples of the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylenesulfide, polyarylate, polyimide, polycarbonate ( PC), cellulose triacetate (TAC), cellulose acetate propionate (CAP) and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PES polyetherimide
  • polyetheretherketone polyphenylenesulfide
  • PC polycarbonate
  • TAC cellulose triacetate
  • CAP cellulose acetate propionate
  • High barrier property with water vapor permeability of 0.01 g / m 2 'day' atm or less, which may be coated with inorganic or organic coating or a hybrid coating of both on the surface of the resin film A film is preferred.
  • the extraction efficiency at room temperature for light emission of the organic EL device of the present invention is 1.
  • the force is preferably 0 or more, more preferably S, more preferably 2% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted outside the organic EL element / the number of electrons XI 00 flowed to the organic EL element.
  • a film such as anti-glare phenolic
  • a roughened surface may be used in combination in order to reduce unevenness in light emission.
  • a hue improving filter such as a color filter may be used in combination.
  • anode Z hole injection layer Z hole transport layer Z light emitting layer A method for fabricating an organic EL device comprising a Z-hole blocking layer / electron transport layer / cathode buffer layer / cathode will be described.
  • a desired electrode material for example, a thin film made of an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so that the film thickness is 1 ⁇ m or less, preferably 10 to 200 nm.
  • a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, or an electron transport layer, which is an element material, is formed thereon. Make it.
  • a method for thinning a thin film containing an organic compound there are a spin coating method, a casting method, an inkjet method, a vapor deposition method, a printing method, and the like.
  • the vacuum deposition method or spin coating method is particularly preferred because it is difficult to produce. Further, a different film forming method may be applied for each layer.
  • the deposition conditions of that varies depending on the kinds of materials used generally boat temperature 50 to 450 ° C, vacuum degree of 10- 6 ⁇ : 10- 2 Pa, the deposition rate It is desirable to select appropriately within the range of 0.01 to 50 nmZ seconds, substrate temperature—50 to 300 ° C., and film thickness of 0.1 to 5 ⁇ m.
  • a thin film made of a cathode material is formed thereon with a thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm.
  • the desired organic EL device can be obtained by forming the cathode more and forming a cathode.
  • the organic EL element is preferably manufactured from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the display devices according to the configurations of claims 1 to 4 and claims 13 to 18 of the present invention will be described.
  • the display device of the present invention has the organic EL element.
  • the display device of the present invention may be single color or multicolor, but here, a multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an ink jet method, a printing method, or the like.
  • the method is not limited, but the vapor deposition method, the ink jet method, and the printing method are preferable.
  • the vapor deposition method patterning using a shadow mask is preferred. It is also possible to reverse the production order to produce a cathode, an electron transport layer, a hole blocking layer, a light emitting layer, a hole transport layer, and an anode in this order.
  • the multicolor display device can be used as a display device, a display, and various light sources. Full color display is possible by using three types of organic EL elements, blue, red, and green, for display devices and displays. Examples of display devices and displays include televisions, personal computers, mopile devices, AV devices, teletext displays, and information displays in automobiles.
  • the driving method when used as a display device for moving image reproduction that may be used as a display device for reproducing still images or moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light emitting sources include household lighting, interior lighting, clock and liquid crystal backlights, signboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Examples include, but are not limited to, a sensor light source.
  • the manufacturing method is the same as described above. That is, first, a thin film made of a desired electrode material, for example, an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 zm or less, preferably 10 nm to 200 nm, An anode is produced. Next, a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer, which is a device material, is formed thereon.
  • a method for forming a thin film containing this organic compound there are a spin coating method, a casting method, an ink jet method, a vapor deposition method, a printing method, etc., as described above. In view of the difficulty of forming holes, vacuum deposition, spin coating, ink jet, and printing are particularly preferable. Further, different film forming methods may be applied for each layer.
  • the deposition conditions may vary due to kinds of materials used, generally boat temperature 50 ° C ⁇ 450 ° C, vacuum degree of 10- 6 Pa to: 10- It is desirable to select appropriately within the range of 2 Pa, deposition rate of 0.01 nm to 50 nm / second, substrate temperature—50 ° C to 300 ° C, and film thickness of 0.1 nm to 5 xm.
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so that the film thickness is 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm.
  • the organic EL device is preferably manufactured from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the image display device using the organic EL element of the invention according to the constitution of claims 5 to 18 may be monochromatic or multicolor.
  • a shadow mask is provided for each color light emitting unit, and a light emitting layer is formed for each color by vapor deposition, casting, spin coating, ink jet, printing, or the like.
  • the method is not limited, but the vapor deposition method, the ink jet method, and the printing method are preferable. In the case of using the vapor deposition method, patterning using a shadow mask is preferable.
  • a light emitting layer is formed on one surface by a vapor deposition method, a casting method, a spin coating method, an ink jet method, a printing method or the like without patterning.
  • the production order can be reversed, and the cathode, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be produced in this order.
  • a white display device it can be used as a display device, a display, or various light sources. In display devices and displays, full-color display is possible by using a white organic EL element as the backlight.
  • Display devices and displays include TVs, personal computers, mopile devices, AV devices, text broadcast displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing still images and moving images.
  • Light emitting sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sensors Although a light source etc. are mentioned, it is not limited to this.
  • the lighting device of the present invention will be described.
  • the lighting device of the present invention has the organic EL element.
  • the use of the organic EL element having a resonator structure as described above may be used as an organic EL element having a resonator structure in the organic EL element of the present invention.
  • Power of electrophotographic copying machine, light source of optical communication processing machine, light source of optical sensor, etc. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL device of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, a still image or a moving image directly visible It may be used as a type of display device (display).
  • the driving method may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
  • the organic EL device according to the present invention can also be applied to an organic EL device that emits substantially white light as a lighting device.
  • FIG. 2 is a schematic view showing an example of a display device composed of organic EL elements.
  • Organic FIG. 3 is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside.
  • the pixels emit light sequentially according to the image data signal and perform image scanning to display image information on the display unit A.
  • FIG. 3 is a schematic diagram of the display unit A.
  • the display unit A includes a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate. The main members of the display unit A will be described below.
  • the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (for details, see Not shown).
  • the pixel 3 When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data.
  • Full color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 4 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • Full-color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels and arranging them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a stray signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is driven by the capacitor 13. It is transmitted to the gate of transistor 12.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive of the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7, a source connected to the electrode of the organic EL element 10, and a power supply according to the potential of the image data signal applied to the gate. A current is supplied from the line 7 to the organic EL element 10.
  • the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 maintains the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on, and the next running signal is not applied.
  • the organic EL device 10 continues to emit light until it is done.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by providing a switching transistor 11 and a drive transistor 12 which are active elements for the organic EL elements 10 of each of the plurality of pixels, and each of the organic EL elements 10 of the plurality of pixels 3. Is emitting light.
  • a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, and a predetermined light emission by a binary image data signal. You can turn the amount on or off.
  • the potential of the capacitor 13 may be maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • FIG. 5 is a schematic diagram of a display device using a passive matrix method.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • the passive matrix method there is no active element in pixel 3, so the manufacturing cost can be reduced.
  • the organic EL material according to the constitution of claims 1 to 4 and 13 to 18 of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device.
  • a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by mixing colors.
  • the combination of multiple emission colors includes three light-emitting electrodes for the three primary colors of blue, green, and blue. It may be one that contains a large wavelength, or one that contains two light emission maximum wavelengths utilizing the relationship between complementary colors such as blue and yellow, blue green and orange.
  • a combination of light-emitting materials for obtaining a plurality of emission colors includes a combination of a plurality of phosphorescent or fluorescent materials, a light-emitting material that emits fluorescence or phosphorescence, and a light-emitting material. Any of the above materials may be used in combination with a dye material that emits light as excitation light. However, in the white organic EL device according to the present invention, it is only necessary to mix and combine a plurality of light emitting dopants. A mask is provided only during formation of the light-emitting layer, hole transport layer, or electron transport layer, etc.
  • an electrode film can be formed on one surface by vapor deposition, casting, spin coating, inkjet, printing, etc., and productivity is improved. According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
  • the light emitting material used for the light emitting layer is not particularly limited.
  • the light emitting material according to the present invention is adapted so as to conform to the wavelength range corresponding to the CF (color filter) characteristics. Select a complex of metal complexes and other known luminescent materials and combine them to make them white.
  • the white light-emitting organic EL elements include various light-emitting elements in addition to the display device and the display. It is also useful as a light source and lighting device, as a kind of lamp such as home lighting, interior lighting, and exposure light source, and as a backlight for liquid crystal display devices.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like at the time of film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
  • the white light-emitting organic EL according to the constitution of claims 5 to 18 of the present invention
  • the elements are various light emitting light sources and lighting devices such as home lighting, interior lighting, and a kind of lamp such as an exposure light source, and a display device such as a backlight of a liquid crystal display device. Also useful for use.
  • backlights for watches, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electronic photocopiers, light sources for optical communication processors, light sources for optical sensors, and display devices are required. And a wide range of uses such as general household appliances.
  • Example 1 (Inventions relating to the constitution of claims 1 to 4 and 13 to 18) ⁇ Calculation of HOMO level and LUMO level of material >>
  • HOMO and LUMO values were calculated for the compounds shown below. Calculated using Gaussian98 (Gaussian98, Revision A. 11.4, MJ Frisch, et al., Gaussian, Inc., Pittsburgh PA, 2002.) Yes, the HOMO and LUMO values of the host compound were calculated using B3LYPZ6-31G * as the keyword, and the HMO and LUMO values of the phosphorescent compound were calculated using B3LYP / LanL2DZ as the keyword. The results are shown below.
  • Gaussian98 Gaussian98, Revision A. 11.4, MJ Frisch, et al., Gaussian, Inc., Pittsburgh PA, 2002.
  • the transparent support substrate with this ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol Then, it was dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • This transparent support substrate is fixed to the substrate holder of a commercial vacuum evaporation system, while a _NPD, CBP, Fir (pic), BC, Alq
  • Each 3 was put in and attached to the vacuum evaporation system (first vacuum chamber). Furthermore, lithium fluoride was placed in a resistance heating boat made of tantalum and aluminum was placed in a resistance heating boat made of tungsten, respectively, and attached to the second vacuum tank of the vacuum evaporation system.
  • the heating boat containing CBP and the boat containing Fir (pic) are energized independently, and the deposition rate of CBP as the host compound and Fir (pic) as the phosphorescent compound are deposited.
  • the light-emitting layer was provided by adjusting the thickness to 0: 6 and depositing the film to a thickness of 30 nm.
  • a hole blocking layer having a thickness of 10 nm was formed at a rate of 1 second.
  • the heating boat containing Alq was heated by energization, and the deposition rate was 0.:! To 0.2 nm /
  • An electron transport layer having a thickness of 20 nm was provided in seconds.
  • the element deposited up to the electron transport layer was transferred to the second vacuum chamber in a vacuum, and then a stainless steel rectangular perforated mask was placed on the electron transport layer. It was installed with remote control. After decompression of the second vacuum chamber up to 2 X 10- 4 Pa, by energizing the boat fluoride lithium ⁇ beam entering the cathode buffer one layer of deposition rate from 0.01 to 0. In 02nmZ seconds thickness 0. 5 nm
  • the organic EL device 1 _ 1 was prepared by energizing a boat containing aluminum, attaching a cathode with a film thickness of 150 nm at a deposition rate: 2 nmZ seconds, and sealing.
  • Organic EL devices 1-2 to 1-19 were prepared in the same manner as in the preparation of organic EL device 11, except that the host compound and phosphorescent compound were changed as shown in Table 2.
  • the organic EL element in which the host compound having the relationship of HMO and LUMO levels defined in the present invention and the phosphorescent compound are combined has a drive voltage higher than that of the comparative organic EL element. It is clear that the voltage is lowered.
  • the transparent support substrate with this ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol And dried with dry nitrogen gas.
  • a solution of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) diluted to 70% with pure water was added to 3000r.
  • the film was dried at 200 ° C. for 1 hour to provide a hole injection layer having a thickness of 30 nm, and then fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • Mg Magnesium
  • Ag silver
  • the first vacuum chamber was depressurized to 4 X 10-, Pa, and then heated by energizing the heating boat containing a NPD, and the deposition rate was 0.1 nm / sec to 0.2 nm.
  • the film was deposited on the transparent support substrate at a film thickness of 90 nm per second, and a hole injection / transport layer was provided.
  • the heating boat containing H_28 and the boat containing Fir6 are independently connected to each other, and the deposition rate of H-28, which is a host compound, and Fir6, which is a phosphorescent compound, is 100. : Adjusted to 6 and deposited to a thickness of 30 nm to provide a light emitting layer.
  • the heating boat containing BAlq was heated by applying electricity, and a hole blocking layer having a thickness of 10 nm was provided at a deposition rate of 0.:! To 0.2 nm / sec. Furthermore, the heated boat containing Alq
  • organic EL devices 1-21 to 1-27 were produced in the same manner except that the materials of the host compound and phosphorescent compound were changed as shown in Table 4. did
  • Example 2 (Inventions relating to configurations of claims 1 to 4 and claims 13 to 18) ⁇ Preparation of full-color display device>
  • the organic EL device 1-10 of Example 1 was used as a blue light emitting device.
  • a green light emitting device was produced in the same manner as in the organic EL device 1-10 of Example 1, except that the host compound was changed to CBP and the dopant was changed to Ir (ppy), and this was used as the green light emitting device.
  • a red light emitting device was produced in the same manner as in the organic EL device 1-10 of Example 1, except that the host compound was changed to CBP and the dopant was changed to Ir (btp y), and this was used as a red light emitting device.
  • FIG. 3 shows only a schematic diagram of the display portion A of the display device thus manufactured.
  • a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate, and a plurality of juxtaposed pixels 3 (emission color is a pixel in a red region, a pixel in a green region, a pixel in a blue region, etc.)
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning line 5 and the data line 6 are orthogonal to each other in a grid pattern and connected to the pixel 3 at the orthogonal position. (Details not shown).
  • the plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, respectively. When a signal is applied, it receives an image data signal from the data line 6 and emits light according to the received image data. In this way, a full-color display device was produced by appropriately juxtaposing red, green, and blue pixels.
  • this full-color display device has high luminance and high durability, and a clear full-color moving image display can be obtained.
  • Example 3 (Inventions relating to configurations of claims 1 to 4 and claims 13 to 18) ⁇ Preparation of white light emitting element and white illumination device >>
  • the electrode of the transparent electrode substrate of Example 1 was patterned to 20 mm x 20 mm, and then a hole-injection Z transport layer was formed in a thickness of 90 nm as a hole injection Z transport layer in the same manner as in Example 1.
  • the light emitting layer was provided by vapor deposition so as to have a thickness.
  • An electron transport layer was provided.
  • Example 2 a square perforated mask having substantially the same shape as the transparent electrode made of stainless steel was placed on the electron injection layer, and lithium fluoride 0.5 nm and the cathode were used as one cathode buffer layer. As a film, 150 nm of aluminum was deposited.
  • a planar lamp having the same method as in Example 1 and a sealing structure having the same structure as this device was manufactured. When this flat lamp was energized, almost white light was obtained, indicating that it can be used as a lighting device.
  • this IT ⁇ transparent electrode After putting a pattern on a substrate (NH45 manufactured by NH Techno Glass) with a 150nm film of IT ⁇ (indium tin oxide) on a glass substrate of 100mm x 100mm x 1.1mm as the anode, this IT ⁇ transparent electrode A transparent support substrate provided with an ultrasonic wave with isopropyl alcohol Washed, dried with dry nitrogen gas, and UV ozone washed for 5 minutes.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation system, while 200 mg of a-NPD is put in a molybdenum resistance heating boat and 200 mg of the exemplified compound HA-9 is put in another molybdenum resistance heating boat.
  • lOOmg of the exemplary phosphorescent compound 1-1 was put into another molybdenum resistance heating boat, and 200 mg of BAlq was put into another molybdenum resistance heating boat, which was attached to a vacuum deposition apparatus.
  • the hole is heated at a deposition rate of 0.2 nm / sec and 0. Olnm / sec, respectively, by heating through the heating boat containing the exemplified compound HA-9 and the exemplified phosphorescent compound 1 1 1.
  • a 40 nm light-emitting layer was provided by co-evaporation on the transport layer.
  • the heating boat containing BAlq was energized and heated, and deposited on the light emitting layer at a deposition rate of 0.1 nm / sec to provide an electron transport layer having a thickness of 30 nm.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • Organic EL element 1a-2 is the same as Organic EL element 1a-1, except that the host compound and phosphorescent compound were changed as shown in Table 5 in organic EL element la-1. : 1 a-11 was produced.
  • organic EL element la-12 ⁇ : la-14 was produced in the same manner as organic EL element la-1. did.
  • the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C.
  • a spectral radiation luminance meter CS-1000 manufactured by Konica Minolta Sensing was used.
  • Table 5 shows the obtained results.
  • the measurement result of external extraction quantum efficiency in Table 5 is It was expressed as a relative value when the measured value of the organic EL element la-13 was 100.
  • Table 5 shows that the organic EL elements la_l to la_ll of the present invention have higher external extraction quantum efficiencies than la-14 of comparative organic EL elements la-12 to la-14.
  • the heating boat containing Exemplified Compound HA-38 and Exemplified Phosphorescent Compound 1-58 was energized and heated, and the hole transport was performed at a deposition rate of 0.2 nm / sec and 0. Olnm / sec, respectively.
  • a 40 nm light emitting layer was provided by co-evaporation on the feeding layer.
  • the heating boat containing BAlq was energized and heated, and deposited on the light emitting layer at a deposition rate of 0. Inm / sec to provide an electron transport layer having a thickness of 30 nm.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • organic elements 1 & _16 to 1 & _21 were prepared in the same manner as organic EL element 1 & _15, except that the host compound and phosphorescent compound were changed as shown in Table 6. Produced.
  • organic EL element la-22 ⁇ : la-23 was prepared in the same manner as organic EL element la-1, except that the host compound and phosphorescent compound were changed as shown in Table 6. did.
  • Table 6 shows the obtained results.
  • the measurement results of the external extraction quantum efficiency in Table 6 are expressed as relative values when the measured value of the organic EL element la_21 is 100.
  • this IT transparent electrode After putting a pattern on a 100 mm x 100 mm x 1.1 mm glass substrate with ITO (indium tin oxide) on lOOnm (NH Techno Glass NA45) as an anode, this IT transparent electrode
  • the transparent support substrate provided with was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while 200 mg of a-NPD is placed in a molybdenum resistance heating boat, and the hole transporting compound HT— is exemplified in another molybdenum resistance heating boat.
  • the heating boat containing alpha NPD It was heated by energization, and deposited on a transparent support substrate at a deposition rate of 0.1 nm / sec to provide a 20 nm hole transport layer.
  • the exemplary compound HT-36 was deposited on the hole transport layer at a deposition rate of 0.1 nm / sec to provide a 10 nm hole transport layer A.
  • the hole is heated at a deposition rate of 0.2 nm / sec and 0. Olnm / sec, respectively, by heating through the heating boat containing the exemplified compound HA-9 and the exemplified phosphorescent compound 1 1 1.
  • a 40 nm light-emitting layer was provided on the transport layer A by co-evaporation.
  • the exemplified compound HA-9 was vapor-deposited on the light emitting layer at a vapor deposition rate of 0.1 nm / sec to provide an electron transport layer A having a thickness of 10 nm. Furthermore, energize and heat the heating boat containing BAlq.
  • an electron transport layer having a thickness of 20 nm was formed by vapor deposition on the electron transport layer A at a deposition rate of 0.1 nm / sec.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • Organic EL device 2-1 except that the materials of hole transport layer A, host compound, phosphorescent compound, and electron transport layer A were changed as shown in Table 7 in organic EL device 2-1. In the same manner, organic EL devices 2-2 to 2-13 were fabricated.
  • organic device 2-1 except that the material of the hole transport layer A, the host compound, the phosphorescent compound, and the electron transport layer A compound were changed as shown in Table 7, it was the same as the organic EL device 2-1.
  • Organic EL devices 2-14 to 2-15 were produced.
  • the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C.
  • a spectral radiation luminance meter CS-1000 manufactured by Konica Minolta Sensing was used.
  • Table 7 shows the obtained results.
  • the measurement results of the external extraction quantum efficiency in Table 2 are expressed as relative values when the measured value of the organic EL element 2-13 is 100.
  • Table 7 shows that the organic EL element 2 of the present invention compared to the comparative organic element 2-14 2-15
  • NPD is changed to m-MTDATA: F4—TCNQ (mass ratio 99: 1) co-deposited film lOnm and NPD film lOnm, and BAlq is changed to BAlq film 10 nn ⁇ BPhen : Cs (mass ratio 75:25) Co-deposited film
  • the film was changed to a 20 nm stack, and the organic EL device 3— :! 3-11 was fabricated in the same manner except that LiF was not deposited.
  • each of the obtained organic EL elements 3_ :! 3_11 had a drive voltage lower by 3V and 6V than the organic EL elements la_ :! la_ll.
  • the non-light emitting surface of the organic EL element 41 is covered with a glass case, and a color filter is attached to the light emitting surface for use as an image display device. It could be used as an image display device.
  • the non-light emitting surface of the organic EL element 5-1 was covered with a glass case to obtain a lighting device.
  • the illumination device could be used as a thin illumination device that emits white light with high luminous efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Indole Compounds (AREA)
  • Furan Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 本発明は、第1には低電圧で駆動する青色燐光発光性有機エレクトロルミネッセンス(EL)素子、及び該素子を用いた表示装置、照明装置を提供し、また第2には長寿命な有機EL素子、及びそれを用いた照明装置、表示装置を提供する。本発明の有機EL素子は、基板上に電極と少なくとも1層の有機層を有し、該有機層の少なくとも1層がホスト化合物と燐光性化合物とを含有する発光層であり、第1の課題に対しては、該ホスト化合物のHOMOが-7.20eV~-5.42eV、LUMOが-2.30~-0.50eVであって、該燐光性化合物が一般式(1)で表されることを特徴とし、第2の課題に対しては、ホスト化合物が電子輸送性ホスト化合物であり、燐光性化合物のHOMOが-5.15~-3.50eVかつLUMOが-1.25~+1.00eVであり、該電子輸送性ホスト化合物の励起三重項エネルギーT1が2.7eV以上であることを特徴とする。

Description

明 細 書
有機エレクト口ルミネッセンス素子、表示装置および照明装置
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子、及び該有機エレクト口ルミネッセンス 素子を用いた表示装置、照明装置に関する。
背景技術
[0002] 従来、発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレ ィ(以下、 ELDと言う)がある。 ELDの構成要素としては、無機エレクト口ルミネッセン ス素子や有機エレクト口ルミネッセンス素子(以下、有機 EL素子とも言う)が挙げられ る。無機エレクト口ルミネッセンス素子は平面型光源として使用されてきた力 発光素 子を駆動させるためには交流の高電圧が必要である。
[0003] 一方、有機 EL素子は発光する化合物を含有する発光層を陰極と陽極で挟んだ構 成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子 (ェキ シトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光 ·燐光)を利用して 発光する素子であり、数 V〜数十 V程度の電圧で発光が可能であり、更に自己発光 型であるために視野角に富み、視認性が高ぐ薄膜型の完全固体素子であるために 省スペース、携帯性等の観点から注目されている。
[0004] 今後の実用化に向けた有機 EL素子の開発としては、更に低消費電力で、効率よく 高輝度に発光する有機 EL素子が望まれているわけであり、例えば、スチルベン誘導 体、ジスチリルァリーレン誘導体またはトリススチリルァリーレン誘導体に、微量の蛍 光体をドープし、発光輝度の向上、素子の長寿命化を達成する技術 (例えば、特許 文献 4参照。)、 8—ヒドロキシキノリンアルミニウム錯体をホストイ匕合物として、これに 微量の蛍光体をドープした有機発光層を有する素子 (例えば、特許文献 5参照。)、8 —ヒドロキシキノリンアルミニウム錯体をホストイ匕合物として、これにキナクリドン系色素 をドープした有機発光層を有する素子 (例えば、特許文献 6参照。)等が知られてい る。
[0005] 上記特許文献に開示されている技術では、励起一重項からの発光を用いる場合、 一重項励起子と三重項励起子の生成比が 1: 3であるため発光性励起種の生成確率 力 S25%であることと、光の取り出し効率が約 20%であるため、外部取り出し量子効率 ( 77 ext)の限界は 5%とされている。
[0006] ところ力 プリンストン大より、励起三重項からの燐光発光を用いる有機 EL素子の 報告 (例えば、非特許文献 3参照。)がされて以来、室温で燐光を示す材料の研究が 活発になってきている。励起三重項を使用すると内部量子効率の上限が 100%とな るため、励起一重項の場合に比べて原理的に発光効率が 4倍となり、冷陰極管とほ ぼ同等の性能が得られ照明用にも応用可能であり注目されている。
[0007] 上記の燐光発光を用いた有機 EL素子に使用されるドーパントとしては、イリジウム 系金属錯体を中心に検討がなされており(例えば、非特許文献 5参照。)、トリス(2_ フエ二ルビリジン)イリジウム (Ir (PPy) ) (例えば、非特許文献 4参照。)、また、その他
3
、ドーパントとして L Ir (acac)、例えば、(ppy) Ir (acac) (例えば、非特許文献 6参照
2 2
。)を、またドーパントとして、トリス(2— (p—トリル)ピリジン)イリジウム(Ir (ptpy) )、ト
3 リス(ベンゾ [h]キノリン)イリジウム(Ir (bzq) )、Ir (bzq) ClP (Bu) を用いた検討 (例
3 2 3
えば、非特許文献 3参照。)、また、フエ二ルビラゾールを配位子に用いたイリジウム 錯体等を用いた検討 (例えば、特許文献 1、特許文献 3参照。)が行われている。
[0008] 第 1には、代表的な燐光青色ドーパントである Fir (pic)は、主配位子のフエニルピリ ジンにフッ素置換をすること、及び副配位子としてピコリン酸を用いることにより短波 化が実現なされている。副配位子としてはその他にも、ビラザボール系の配位子を導 入することにより、発光波長が短波化することが知られている(例えば、特許文献 1及 び非特許文献 1、 2参照。)。これらのドーパントは、力ルバゾール誘導体ゃトリアリー ルシラン類をホストイ匕合物として組み合わせることによって高効率の素子を達成して いるが、素子の発光寿命は大幅に劣化する為そのトレードオフの改善が求められて いた。
[0009] 上記青色ドーパントはいずれも、該ドーパント材料の最高占有軌道(以下、 HOMO と略す)準位及び該ドーパント材料の最低空軌道(以下、 LUMOと略す)準位の低い タイプの化合物である。代表的な燐光緑色ドーパントである Ir (ppy) に比較すると、
3
HOMO, LUM〇準位の値は共に約 leV程度、低くなつている。青色ドーパントとし て、 HOM〇、 LUMO準位の低いタイプの化合物は知られている力 HOMO, LU MO準位の高いタイプの化合物は報告例が少ない。最近、 H〇MO、 LUMO準位が 高いタイプの青色ドーパントが報告されたが (例えば、特許文献 2、 3参照。)、従来知 られている H〇MO _LUM〇準位の高いタイプのホスト化合物と組み合わせた例し か報告されていなレ、。これらの素子の発光寿命はまだまだ満足といえるものではなく 、その改善が求められている。
また、第 2には、これらリン光発光ドーパントを用いる有機 EL素子の欠点として、連 続駆動時の発光寿命が短いという点が挙げられる。現在、長寿命化の検討がされて いるが、未だ不十分である。
特許文献 1:国際公開第 02/15645号パンフレット
特許文献 2:米国特許出願公開第 2004/0048101号明細書
特許文献 3:国際公開第 04/085450号パンフレット
特許文献 4:特許第 3093796号公報
特許文献 5 :特開昭 63— 264692号公報
特許文献 6 :特開平 3— 255190号公報
非特許文献 1 : C. Adachi et al. , Applied Physics Letters、第 79卷、 13号、 2082〜2084頁(2003年;)
非特許文献 2 : R. J. Holmes et al. , Applied Physics Letters、第 83卷、 18 号、 3818〜3820頁(2003年)
非特許文献 3 : M. A. Baldo et al. , nature, 395卷、 151— 154ページ(1998 年)
非特許文献 4 : M. A. Baldo et al. , nature, 403卷、 17号、 750— 753ページ( 2000年)
非特許文献 5 : S. Lamansky et al. , J. Am. Chem. So , 123卷、 4304ぺー ジ(2001年)
非特許文默 ϋ : Μ. E. Tompson et al. , The 10th International Worksho p on Inorganic and Organic Electroluminescence (EL' 00、浜松) 非特許文献 7 : Moon— Jae Youn. Og, Tetsuo Tsutsui et al. , The 10th I nternational Workshop on Inorganic and Organic Electroluminescen ce (EL' 00、浜松)
発明の開示
発明が解決しょうとする課題
[0011] 従って、本発明の第 1の目的は、低電圧で駆動する青色燐光発光性有機エレクト口 ルミネッセンス素子、及び該素子を用いた表示装置、照明装置を提供することである
[0012] また、本発明の第 2の目的は、発光効率の高い有機エレクト口ルミネッセンス素子、 及びそれを用いた照明装置、表示装置を提供することにある。
課題を解決するための手段
[0013] 本発明の上記第 1の目的は、以下 1 4及び 13〜: 18の構成により、また、上記第 2 の目的は、以下 5〜: 18の構成により達成された。
[0014] 1.基板上に電極と少なくとも 1層の有機層を有し、該有機層の少なくとも 1層がホス ト化合物と燐光性化合物とを含有する発光層である有機エレクト口ルミネッセンス素 子において、該ホスト化合物の HOMOが— 7. 20eV 5. 42eV LUMOが— 2 . 30 0. 50eVであり、該燐光性化合物が一般式(1)で表されることを特徴とする 有機エレクト口ルミネッセンス素子。
[0015] [化 1]
'鎩式 W
Figure imgf000005_0001
[0016] (式中、 Rは置換基を表す。 Zは 5 7員環を形成するのに必要な非金属原子群を表 nlは 0 5の整数を表す。 B Bは炭素原子、窒素原子、酸素原子もしくは硫黄 原子を表し、少なくとも一つは窒素原子を表す。 Mは元素周期表における 8〜: 10族
1
の金属を表す。 X及び Xは炭素原子、窒素原子もしくは酸素原子を表し、 Lは X及
1 2 1 1 び Xと共に 2座の配位子を形成する原子群を表す。 mlは 1、 2または 3の整数を表し
2
、 m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3である。 )
2.前記燐光性化合物の H〇M〇が—4. 80〜一 3. 50eV、 LUM〇が _0. 80〜 + 1. OOeVであることを特徴とする前記 1に記載の有機エレクト口ルミネッセンス素子
[0017] 3.前記一般式(1)で表される燐光性化合物において、 m2が 0であることを特徴と する前記 1または 2に記載の有機エレクト口ルミネッセンス素子。
[0018] 4.前記一般式(1)で表される燐光性化合物において、 B〜Bで形成される含窒
1 4
素複素環がイミダゾール環であることを特徴とする前記 1〜3のいずれ力 4項に記載 の有機エレクト口ルミネッセンス素子。
[0019] 5.基板上に電極と少なくとも 1層以上の有機層を有する有機エレクト口ルミネッセン ス素子において、該有機層の少なくとも 1層は燐光性化合物および電子輸送性ホスト 化合物を含有する発光層であり、該燐光性化合物の HOMOがー 5. 15 3. 50e Vかつ LUMOがー 1. 25 + 1. OOeVであり、該電子輸送性ホスト化合物の励起三 重項エネルギー T1が 2. 7eV以上であることを特徴とする有機エレクト口ルミネッセン ス素子。
[0020] 6.前記燐光性化合物の HOMOがー 4. 80 3. 50eVかつ LUMOがー 0. 80
+ 1. OOeVであることを特徴とする前記 5に記載の有機エレクト口ルミネッセンス素 子。
[0021] 7.前記燐光性化合物が下記一般式 (I)で表されることを特徴とする前記 5または 6 に記載の有機エレクト口ルミネッセンス素子。
[0022] [化 2] 一般式 (I)
Figure imgf000007_0001
[0023] 〔式中、 Rは置換基を表す。 Zは 5〜7員環を形成するのに必要な非金属原子群を表
1
す。 nlは 0〜5の整数を表す。 B〜Bは炭素原子、窒素原子、酸素原子もしくは硫
1 5
黄原子を表し、少なくとも一つは窒素原子を表す。 Mは元素周期表における 8族〜 1
1
0族の金属を表す。 Xおよび Xは炭素原子、窒素原子もしくは酸素原子を表し、 Lは
1 2 1
Xおよび Xとともに 2座の配位子を形成する原子群を表す。 mlは 1、 2または 3の整
1 2
数を表し、 m2は 0、 1または 2の整数を表し、 ml +m2は 2または 3である。〕
8.前記一般式 (I)で表される燐光性ィ匕合物において、 m2が 0であることを特徴とす る前記 7に記載の有機エレクト口ルミネッセンス素子。
[0024] 9.前記一般式 (I)で表される燐光性ィ匕合物において、 B〜Bで形成される含窒素
1 5
複素環がイミダゾール環であることを特徴とする前記 7または 8に記載の有機エレクト 口ルミネッセンス素子。
[0025] 10.記発光層と陽極の間に 2層以上の正孔輸送層があり、発光層と接する正孔輸 送層 Aに含まれる有機化合物の T1が 2. 7eV以上であることを特徴とする前記 5〜9 に記載の有機エレクト口ルミネッセンス素子。
[0026] 11.前記発光層と陰極の間に 2層以上の電子輸送層があり、発光層と接する電子 輸送層 Aに含まれる有機化合物の T1が 2. 7eV以上であることを特徴とする前記 5〜
10に記載の有機エレクト口ルミネッセンス素子。
[0027] 12.発光が白色であることを特徴とする前記 5〜: 11に記載の有機エレクト口ルミネッ センス素子。
[0028] 13.前記一般式(1)または前記一般式 (I)が、下記一般式 (Π)で表されることを特 徴とする前記 1〜4または 7〜: 12のいずれ力 1項に記載の有機エレクト口ルミネッセン ス素子。
[化 3] 一般式 (Π)
Figure imgf000008_0001
[0030] 〔式中、 R、 R、 Rは置換基を表す。 Zは 5〜7員環を形成するのに必要な非金属原
1 2 3
子群を表す。 nlは 0〜5の整数を表す。 Mは元素周期表における 8族〜 10族の金
1
属を表す。 Xおよび Xは炭素原子、窒素原子もしくは酸素原子を表し、 Lは Xおよ
1 2 1 1 び Xとともに 2座の配位子を形成する原子群を表す。 mlは 1、 2または 3の整数を表
2
し、
m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3である。〕
14.前記一般式 (II)において、 Rで表される置換基が下記一般式 (III)で表される
2
ことを特徴とする前記 13に記載の有機エレクト口ルミネッセンス素子。
[0031] [化 4] 一般式 (ΙΠ)
Figure imgf000008_0002
[0032] 〔式中、 Rは立体パラメータ値 (Es値)が— 0. 5以下の置換基を表す。 Rは置換基を
4 5 表し、 n5は 0〜4の整数を表す。尚、式中 *は結合位置を示す。〕
15.前記一般式(3)が、メシチル基(2, 4, 6 _トリメチルフエニル基)、であることを 特徴とする前記 14に記載の有機エレクト口ルミネッセンス素子。
[0033] 16.前記 1〜: 15のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子を有す ることを特徴とする表示装置。
[0034] 17.前記 1〜: 15のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子を有す ることを特徴とする照明装置。
[0035] 18.前記 17に記載の照明装置と表示手段としての液晶素子を有することを特徴と する表示装置。
発明の効果
[0036] 請求の範囲第 1項〜第 4項、及び第 13項〜第 18項に記載の構成によって、低電 圧で駆動する青色燐光発光性有機エレクト口ルミネッセンス素子、及び該素子を用い た表示装置、照明装置を提供することができた。
[0037] また、請求の範囲第 5項〜 12項、及び第 13項〜第 18項に記載の構成により、発光 効率の高い有機エレクト口ルミネッセンス素子、及びそれを用いた照明装置、表示装 置を提供することができた。
図面の簡単な説明
[0038] [図 1]本発明の基本的な層構成を示す図である。
[図 2]有機 EL素子から構成される表示装置の一例を示した模式図である。
[図 3]表示部の模式図である。
[図 4]画素の模式図である。
[図 5]パッシブマトリクス方式フルカラー表示装置の模式図である。
[図 6]照明装置の概略図である。
[図 7]照明装置の断面図である。
符号の説明
[0039] 1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機 EL素子 12 駆動トランジスタ
13 コンデンサ
A 表示部
B 制御部
107 透明電極付きガラス基板
106 有機 EL層
105 陰極
102 ガラスカバー
108 窒素ガス
109 捕水剤
発明を実施するための最良の形態
[0040] 本発明に係る一般式(1)で表される化合物は HOM〇、 LUMO準位が低いため、 正孔の注入はスムーズであると考えられる。そこで、本発明者等は一般式(1)で表さ れる燐光性化合物をドーパントとした素子において、特定の範囲の高い H〇MO、 L UMO準位を有する化合物をホスト化合物として用いると、上記第 1の課題を解決で きることがわかり、請求の範囲第 1項〜第 4項、及び第 13項〜第 18項に記載の発明 に到達した。即ち、発光層においてドーパントに正孔が注入され、ホスト化合物に電 子が注入されることで電荷が発光層中で溜まることなく低電圧化が計れたと考えられ る。
[0041] 以下、本発明の各構成要件について詳細に説明する。
[0042] まず、本発明に係る H〇MO、 LUMOについて説明する。
[0043] 本発明において、 H〇MO、 LUMOの値は、米国 Gaussian社製の分子軌道計算 用ソフトウェアである Gaussian98 (Gaussian98、 Revision A. 11. 4, M. J. Fris ch, et al, Gaussian, Inc., Pittsburgh PA, 2002. )を用いて計算した時の値 であり、本発明におけるホスト化合物の HOM〇、 LUMOの値は、キーワードとして B 3LYP/6— 31G *を用いて構造最適化を行うことにより算出した値(eV単位換算値 )と定義し、本発明における燐光性化合物の HOMO、 LUMOの値は、キーワードと して B3LYP/LanL2DZを用いて構造最適化を行うことにより算出した値(eV単位 換算値)と定義する。この計算値が有効な背景には、この手法で求めた計算値と実 験値の相関が高レ、ためである。
[0044] 請求の範囲第 1項〜第 4項及び第 13項〜第 18項の構成に記載の発明において、 "HOMO準位が低レ、 "とは、 HOMO準位の絶対値が小さいことを表し、例えば、ィ匕 合物 Aと化合物 Bの HOMO準位がそれぞれ一 5. 45eV、 - 5. 30eVであるとき、ィ匕 合物 Bの方が化合物 Aよりも H〇M〇準位が低いと言う。また、 "LUMO準位が低い" とは、 LUMO準位の絶対値が小さいことを表し、例えば、化合物 Aと化合物 Bの LU MO準位がそれぞれ— 1. 12eV、 -0. 85eVであるとき、化合物 Bの方が化合物 Aよ りも LUMO準位が低いと言う。
[0045] 本発明の有機 EL素子において、発光層にはホストイ匕合物と燐光性化合物を含有 する。発光層中の主成分であるホストイ匕合物に対する燐光性化合物との混合比は、 好ましくは質量で 0. 1〜 30質量%未満の範囲に調整することである。
[0046] 次に、請求の範囲第 1項〜第 4項及び第 13項〜第 18項に記載の発明に係る一般 式(1)で表される燐光性化合物について説明する。
[0047] 一般式(1)で表される燐光性化合物は、好ましくは HOMOがー 4· 80〜一 3. 50e V、 LUMOが一 0· 80〜+ 1. OOeVである。
[0048] 一般式(1)で表される燐光性化合物において、 Rで表される置換基としては、例え
1
ば、アルキル基(例えば、メチノレ基、ェチル基、プロピル基、イソプロピル基、 tert— ブチル基、ペンチル基、へキシル基、ォクチル基、ドデシル基、トリデシノレ基、テトラ デシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロ へキシル基等)、アルケニル基(例えば、ビニル基、ァリル基等)、アルキニル基(例え ば、ェチニル基、プロパルギル基等)、芳香族炭化水素環基 (芳香族炭素環基、ァリ ール基等ともレ、い、例えば、フエニル基、 p—クロ口フエニル基、メシチル基、トリル基、 キシリル基、ナフチル基、アントリル基、ァズレニル基、ァセナフテュル基、フルォレニ ル基、フヱナントリル基、インデュル基、ピレニル基、ビフヱ二リル基等)、芳香族複素 環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベン ゾイミダゾリル基、ピラゾリル基、ピラジュル基、トリァゾリル基(例えば、 1, 2, 4—トリア ゾール _ 1—ィル基、 1 , 2, 3 _トリァゾール— 1 _ィル基等)、ォキサゾリル基、ベン ゾォキサゾリル基、チアゾリル基、イソォキサゾリル基、イソチアゾリル基、フラザニル 基、チェニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチェ二ル基、 ジベンゾチェニル基、インドリル基、カルバゾリル基、力ノレボリ二ノレ基、ジァザ力ルバ ゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原 子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、 キナゾリニル基、フタラジュル基等)、複素環基 (例えば、ピロリジノレ基、イミダゾリジル 基、モルホリル基、ォキサゾリジノレ基等)、アルコキシ基(例えば、メトキシ基、エトキシ 基、プロピルォキシ基、ペンチルォキシ基、へキシルォキシ基、ォクチルォキシ基、ド デシルォキシ基等)、シクロアルコキシ基(例えば、シクロペンチルォキシ基、シクロへ キシルォキシ基等)、ァリールォキシ基 (例えば、フエノキシ基、ナフチルォキシ基等) 、アルキルチオ基(例えば、メチルチオ基、ェチルチオ基、プロピルチオ基、ペンチル チォ基、へキシルチオ基、ォクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ 基(例えば、シクロペンチルチオ基、シクロへキシルチオ基等)、ァリールチオ基(例え ば、フエ二ルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチル ォキシカルボニル基、ェチルォキシカルボニル基、ブチルォキシカルボニル基、オタ チルォキシカルボニル基、ドデシルォキシカルボニル基等)、ァリールォキシカルボ ニル基(例えば、フエニルォキシカルボニル基、ナフチルォキシカルボニル基等)、ス ルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミ ノスルホニル基、ブチルアミノスルホニル基、へキシルアミノスルホニル基、シクロへキ シルアミノスルホニル基、ォクチルアミノスルホニル基、ドデシルアミノスルホニル基、 フエニルアミノスルホニル基、ナフチルアミノスルホニル基、 2—ピリジルアミノスルホニ ル基等)、ァシル基(例えば、ァセチル基、ェチルカルボニル基、プロピルカルボニル 基、ペンチルカルボニル基、シクロへキシルカルボニル基、ォクチルカルボニル基、 2 —ェチルへキシルカルボニル基、ドデシルカルボ二ル基、フヱニルカルボニル基、ナ フチルカルボニル基、ピリジルカルボニル基等)、ァシルォキシ基(例えば、ァセチル ォキシ基、ェチルカルボニルォキシ基、ブチルカルボニルォキシ基、ォクチルカルボ ニルォキシ基、ドデシルカルボニルォキシ基、フエニルカルボニルォキシ基等)、アミ ド基(例えば、メチルカルボニルァミノ基、ェチルカルボニルァミノ基、ジメチルカルボ ニルァミノ基、プロピルカルボニルァミノ基、ペンチルカルボニルァミノ基、シクロへキ シルカルボニルァミノ基、 2—ェチルへキシルカルボニルァミノ基、ォクチルカルボ二 ノレアミノ基、ドデシルカルボニルァミノ基、フエニルカルボニルァミノ基、ナフチルカル ボニルァミノ基等)、力ルバモイル基(例えば、ァミノカルボニル基、メチルァミノカルボ ニル基、ジメチルァミノカルボニル基、プロピルアミノカルボニル基、ペンチルァミノ力 ルボニル基、シクロへキシルァミノカルボニル基、ォクチルァミノカルボニル基、 2—ェ チルへキシルァミノカルボニル基、ドデシルァミノカルボニル基、フエニルァミノカルボ ニル基、ナフチルァミノカルボニル基、 2 _ピリジルァミノカルボニル基等)、ウレイド基 (例えば、メチノレウレイド基、ェチルウレイド基、ペンチルゥレイド基、シクロへキシルゥ レイド基、ォクチルゥレイド基、ドデシノレウレイド基、フエニルウレイド基、ナフチルウレ イド基、 2_ピリジルアミノウレイド基等)、スルフィエル基(例えば、メチルスルフィエル 基、ェチルスルフィニル基、ブチルスルフィエル基、シクロへキシルスルフィエル基、 2 ェチルへキシルスルフィニル基、ドデシルスルフィエル基、フエニルスルフィエル基 、ナフチルスルフィエル基、 2—ピリジルスルフィエル基等)、アルキルスルホニル基( 例えば、メチルスルホニル基、ェチルスルホニル基、ブチルスルホニル基、シクロへ キシルスルホニル基、 2—ェチルへキシルスルホニル基、ドデシルスルホニル基等)、 ァリールスルホニル基またはへテロアリールスルホニル基(例えば、フエニルスルホニ ル基、ナフチルスルホニル基、 2—ピリジルスルホニル基等)、アミノ基(例えば、ァミノ 基、ェチルアミノ基、ジメチルァミノ基、ブチルァミノ基、シクロペンチルァミノ基、 2— ェチルへキシルァミノ基、ドデシルァミノ基、ァニリノ基、ナフチルァミノ基、 2—ピリジ ルァミノ基等)、シァノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリ メチルシリル基、トリイソプロビルシリル基、トリフエニノレシリノレ基、フエ二ルジェチルシリ ル基等)等が挙げられる。これらの置換基のうち、好ましいものはアルキル基もしくは ァリール基である。
Zは 5〜7員環を形成するのに必要な非金属原子群を表す。 Zにより形成される 5〜 7員環としては、例えば、ベンゼン環、ナフタレン環、ピリジン環、ピリミジン環、ピロ一 ル環、チォフェン環、ピラゾール環、イミダゾール環、ォキサゾール環及びチアゾール 環等が挙げられる。これらのうちで好ましいものは、ベンゼン環である。 [0050] B〜Bは炭素原子、窒素原子、酸素原子もしくは硫黄原子を表す。 N (窒素原子)
1 4
を含め 5つの原子により形成される含窒素複素環としては単環が好ましい。例えば、 ピロール環、ピラゾール環、イミダゾール環、トリァゾール環、テトラゾール環、ォキサ ゾール環、イソォキサゾール環、チアゾール環、イソチアゾール環、ォキサジァゾール 環及びチアジアゾ一環ル等が挙げられる。これらのうちで好ましいものは、ピラゾーノレ 環、イミダゾール環であり、更に好ましくはイミダゾール環である。これらの環は上記の 置換基によって更に置換されていてもよい。置換基として好ましいものはアルキル基 及びァリール基であり、更に好ましくはァリール基である。
[0051] Lは X、 Xと共に 2座の配位子を形成する原子群を表す。 X -L -Xで表される 2
1 1 2 1 1 2 座の配位子の具体例としては、例えば、置換または無置換のフエ二ルビリジン、フエ 二ルビラゾール、フヱニルイミダゾール、フヱニルトリァゾール、フヱニルテトラゾール、 ピラザボール、ピコリン酸及びァセチルアセトン等が挙げられる。これらの基は上記の 置換基によって更に置換されていてもよい。
[0052] mlは 1、 2または 3の整数を表し、 m2は 0、 1または 2の整数を表す力 ml +m2は
2または 3である。中でも、 m2は 0である場合が好ましい。 Mで表される金属としては
1
、元素周期表の 8〜: 10族の遷移金属元素(単に遷移金属ともいう)が用いられるが、 中でもイリジウム、白金が好ましぐ更に好ましくはイリジウムである。なお一般式(1) で表される燐光性化合物は、重合性基または反応性基を有していてもいなくてもよい
[0053] また、 B〜Bで形成される含窒素複素環がイミダゾール環が好ましぐイミダゾール
1 4
環の場合、前記一般式(1)は前記一般式 (Π)で表されることがより好ましい。
[0054] 一般式 (Π)において、 R、 R、 Rは置換基を表す。 Zは 5〜7員環を形成するのに
1 2 3
必要な非金属原子群を表す。 nlは 0〜5の整数を表す。 Mは元素周期表における 8
1
族〜 10族の金属を表す。 Xおよび Xは炭素原子、窒素原子もしくは酸素原子を表し
1 2
、 Lは Xおよび Xとともに 2座の配位子を形成する原子群を表す。 mlは 1、 2または
1 1 2
3の整数を表し、 m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3である。
[0055] 一般式 (Π)において、 R、 R、 Rで表される置換基は前記一般式(1)における Rで
1 2 3 1 表される置換基と同義である。また、 Z、 M、 Xおよび X、 L等についても前 記一般式(1)におけるものと同義である。また、 ml、 m2も同義である。
[0056] また、一般式 (Π)の Rで表される基として、芳香族炭化水素環基 (芳香族炭素環基
2
)が好ましぐなかでも置換ァリール基が好ましぐ置換ァリールとして下記一般式 (III
)で表される基が好ましい。
[0057] [化 5] 一般式 (ΙΠ)
Figure imgf000015_0001
[0058] 一般式 (ΠΙ)において、 Rは、立体パラメータ値 (Es値)が— 0. 5以下の置換基を表
4
す。 Rは Rと同じで、 n5は 0〜4の整数を表す。尚、 *は結合位置を表す。
5 1
[0059] ここで、 Es値とは化学反応性より誘導された立体パラメータであり、この値が小さけ れば小さいほど立体的に嵩高い置換基ということができる。
[0060] 以下、 Es値について説明する。一般に、酸性条件下でのエステルの加水分解反応 におレ、ては、置換基が反応の進行に対して及ぼす影響は立体障害だけと考えてよ いことが知られており、この事を利用して置換基の立体障害を数値化したものが Es値 である。
[0061] 例えば置換基 Xの Es値は、次の化学反応式
X-CH COOR +H〇→X— CH COOH + R OH
2 X 2 2 X
で表される、酢酸のメチル基の水素原子 1つを置換基 Xで置換した α位モノ置換酢 酸から誘導される α位モノ置換酢酸エステルを酸性条件下で加水分解する際の反 応速度定数 kXと、次の化学反応式
CH COOR +H 0→CH COOH + R OH
3 Y 2 3 Υ
(Rは Rと同じである)で表される、上記のひ位モノ置換酢酸エステルに対応する酢
X Υ
酸エステルを酸性条件下で加水分解する際の反応速度定数 kHから次の式で求めら れる。
[0062] Es =log (kX/kH) 置換基 Xの立体障害により反応速度は低下し、その結果 kXく kHとなるので Es値 は通常負となる。実際に Es値を求める場合には、上記の二つの反応速度定数 kXと k Hを求め、上記の式により算出する。
[0063] Es値の具体的な例は、 Unger, S. H., Hansch, C. , Prog. Phys. Org. Che m. , 12, 91 (1976)に詳しく記載されている。また、『薬物の構造活性相関』 (化学 の領域増干 IJ 122号、南江堂)、「American Chemical Society Professional Reference Book, ' Exploring QSAR' p. 81 Table 3— 3」にも、その具体的 な数値の記載がある。次にその一部を表 1に示す。
[0064] [表 1]
Figure imgf000016_0001
[0065] ここで、注意するのは本明細書で定義するところの Es値は、メチル基のそれを 0とし て定義したのではなぐ水素原子を 0としたものであり、メチル基を 0とした Es値から 1 . 24を差し引いたものである。 [0066] 本発明において Rは、立体パラメータ値 (Es値)がー 0· 5以下の置換基を表す。
4
好ましくは 7. 0以上 0. 6以下であり、最も好ましくは 7. 0以上 1. 0以下であ る。
[0067] また、本発明においては、 Rに、例えば、ケト—エノール互変異性体が存在し得る
4
場合、ケト部分はェノールの異性体として Es値を換算している。他の互変異性が存 在する場合も同様の換算方法にぉレ、て Es値を換算する。
[0068] 以下に本発明の一般式(1)、また一般式 (II)で表されるリン光発光性化合物の具 体的な例を挙げるが、本発明はこれらに限定されるものではない。
[0069] [化 6]
[OZOO]
Figure imgf000018_0001
Figure imgf000019_0001
l6 S0/L00ZdT/13d [6^>] [ 00]
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000021_0002
T6l7S0/.00Zdf/X3d OS Ζ9£80動 OAV
Figure imgf000022_0001
[0074] [化 11]
Figure imgf000023_0001
[0075] [化 12]
Figure imgf000024_0001
[0076] [化 13]
Figure imgf000025_0001
[0077] [化 14]
Figure imgf000026_0001
[0078] [化 15]
Figure imgf000027_0001
[0079] [化 16]
Figure imgf000028_0001
[0080] [化 17]
Figure imgf000029_0001
[0081] [化 18]
[6I^]>] [Z800]
Figure imgf000030_0001
Figure imgf000031_0001
[0083] [化 20] IZ^ [ 800]
Figure imgf000032_0001
Figure imgf000033_0001
これらの金属錯体は、例えば、 Organic Letter誌 vol3 No. 16 2579〜258 1頁(2001)、 Inorganic Chemistry 第 30卷 第 8号 1685〜1687頁(1991年 )、J. Am. Chem. Soc. 123卷 4304頁(2001年)、 Inorganic Chemistry 第 40卷 第 7号 1704〜1711頁(2001年)、 Inorganic Chemistry 第 41卷 第 12号 3055〜3066頁(2002年)、 New Journal of Chemistry 第 26卷 1 171頁(2002年)、 European Journal of Organic Chemistry 第 4卷 695 〜709頁(2004年)、更にこれらの文献中に記載の参考文献等の方法を適用するこ とにより合成できる。
[0086] 次に、請求の範囲第 1項〜第 4項及び第 13項〜第 18項に係わる発明のホスト化合 物について説明する。
[0087] 請求の範囲第 1項〜第 4項及び第 13項〜第 18項に係わる発明に用いられるホスト 化合物は、 HOMO準位が—7. 20〜― 5. 42eV、 LUMO準位が—2. 30〜― 0. 5
OeVであり、発光層に含有される化合物のうちで室温(25°C)において燐光発光の燐 光量子収率が、 0. 01未満の化合物である。
[0088] 請求の範囲第 1項〜第 4項及び第 13項〜第 18項に係わる発明に用いられるホスト 化合物としては、併用される燐光性化合物の燐光 0— 0バンドよりも短波長なそれをも つ化合物が好ましぐ燐光性化合物にその燐光 0— 0バンドが 470nm以下である青 色の発光成分を含む化合物を用いる場合には、ホストイ匕合物としては燐光 0— 0バン ドが 460nm以下であることが好ましい。
[0089] 本発明における燐光の 0— 0バンドの測定方法について説明する。まず、燐光スぺ タトルの測定方法にっレ、て説明する。
[0090] 測定するホストイ匕合物をよく脱酸素されたエタノール/メタノール =4/1 (vol/vol )の混合溶媒に溶かし、燐光測定用セルに入れた後液体窒素温度 77° Kで励起光 を照射し、励起光照射後 100msでの発光スペクトルを測定する。燐光は蛍光に比べ 発光寿命が長いため、 100ms後に残存する光はほぼ燐光であると考えることができ る。なお、燐光寿命が 100msより短い化合物に対しては遅延時間を短くして測定し ても構わないが、蛍光と区別できなくなるほど遅延時間を短くしてしまうと、燐光と蛍 光が分離できないので問題となるため、その分離が可能な遅延時間を選択する必要 力 Sある。
[0091] また、上記溶剤系で溶解できない化合物については、その化合物を溶解しうる任意 の溶剤を使用してもよい (実質上、上記測定法では燐光波長の溶媒効果はごくわず かなので問題ない)。
[0092] 次に 0_0バンドの求め方である力 本発明においては、上記測定法で得られた燐 光スペクトルチャートの中で最も短波長側に現れる発光極大波長をもって 0— 0バン ドと定義する。
[0093] 燐光スペクトルは通常強度が弱いことが多いため、拡大するとノイズとピークの判別 が難しくなるケースがある。このような場合には励起光照射直後の発光スペクトル (便 宜上これを定常光スペクトルと言う)を拡大し、励起光照射後 100ms後の発光スぺク トル (便宜上これを燐光スペクトルと言う)と重ね合わせ、燐光スペクトルに由来する定 常光スペクトル部分からピーク波長を読みとることで決定することができる。また、燐 光スペクトルをスムージング処理することでノイズとピークを分離し、ピーク波長を読み とることもできる。なお、スムージング処理としては、 Savitzky&Golayの平滑化法等 を適用すること力 Sできる。
[0094] 請求の範囲第 1項〜第 4項及び第 13項〜第 18項に記載の発明に用いられるホス ト化合物は構造的には特に制限はなぐ低分子化合物でも繰り返し単位をもつ高分 子化合物でもよぐビニル基やエポキシ基のような重合性基を有する低分子化合物( 蒸着重合性ホスト化合物)でもいい。正孔輸送能、電子輸送能を有しつつ、且つ発 光の長波長化を防ぎ、なお且つ高 Tg (ガラス転移温度)である化合物が好ましレ、。
[0095] 請求の範囲第 1項〜第 4項、及び第 13項〜第 18項に記載の発明におけるホスト化 合物は、代表的には力ルバゾール誘導体、トリアリールァミン誘導体、芳香族ボラン 誘導体、含窒素複素環化合物、チォフェン誘導体、フラン誘導体、オリゴァリーレン 化合物等の基本骨格を有するもの、またはカルボリン誘導体ゃ該カルボリン誘導体 のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置 換されている環構造を有する誘導体等が挙げられる。
[0096] 請求の範囲第 1項〜第 4項、及び第 13項〜第 18項に係わるホスト化合物として具 体的には、下記一般式(2)で表される化合物が好ましい。
[0097] [化 22]
Figure imgf000035_0001
[0098] 一般式(2)におレ、て、 Ar及び Arは各々芳香族炭化水素基または芳香族複素環
1 2
基を表す。 Ar及び Arで表される芳香族炭化水素基 (芳香族炭素環基、ァリール基
1 2
等ともいう)としては、例えば、フエニル基、 p クロ口フエ二ル基、メシチル基、トリル基 、キシリル基、ナフチル基、アントリル基、ァズレニル基、ァセナフテュル基、フルォレ ニル基、フヱナントリル基、インデュル基、ピレニル基、ビフヱ二リル基等が挙げられる
。 Ar及び Arで表される芳香族複素環基としては、例えば、ピリジノレ基、ピリミジニノレ
1 2
基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジ 二ノレ基、トリアソ^リノレ基(ί列免 ίま'、 1, 2, 4 _卜リアソ^ーノレ一 1—イノレ基、 1 , 2, 3 _トリァ ゾール _ 1 _ィル基等)、ォキサゾリル基、ベンゾォキサゾリル基、チアゾリル基、イソ ォキサゾリル基、イソチアゾリル基、フラザニル基、チェニル基、キノリ
ル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチェ二ル基、ジベンゾチェニル基、 インドリル基、カルバゾリル基、力ノレボリ二ノレ基、ジァザカルバゾリル基(前記カルボリ ニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを 示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジ ニル基等が挙げられる。
[0099] なお、これらの基は各々置換基を有していてもよぐ該置換基としては、アルキル基
(例えば、メチル基、ェチル基、プロピル基、イソプロピル基、 t ブチル基等)、シクロ アルキル基(例えば、シクロペンチル基、シクロへキシル基等)、アルケニル基(例え ば、ビュル基、ァリル基等)、アルキニル基 (例えば、ェチニル基等)、芳香族炭化水 素基(芳香族炭素環基、ァリール基等ともいい、例えば、フエニル基、 2, 6 ジメチノレ フエニル基等)、芳香族複素環基 (ヘテロァリール基ともいい、例えば、フリル基、チェ ニル基、ピリジル基、ピリダジル基、ピリミジル基、ピラジル基、トリアジル基、イミダゾリ ル基、ピラゾリル基、チアゾリル基、キナゾリル基、フタラジノレ基等)、複素環基(ヘテロ 環基ともいい、例えば、ピロリジル基、イミダゾリジル基、モルホリル基、ォキサゾリジル 基等)、アルコキシ基 (例えば、メトキシ基、エトキシ基等)、シクロアルコキシ基 (例え ば、シクロペンチルォキシ基、シクロへキシルォキシ基等)、ァリールォキシ基(例え ば、フエノキシ基、ナフチルォキシ基等)、アルキルチオ基 (例えば、メチルチオ基、ェ チルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロへキ シノレチォ基等)、ァリールチオ基 (例えば、フエ二ルチオ基、ナフチルチオ基等)、ァ ノレコキシカルボニル基(例えば、メチルォキシカルボニル基、ェチルォキシカルボ二 ル基等)、ァリールォキシカルボニル基(例えば、フエニルォキシカルボニル基、ナフ チルォキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチル アミノスルホニル基、ジメチルアミノスルホニル基等)、ァシル基(例えば、ァセチル基 、ェチルカルボニル基等)、ァシルォキシ基(例えば、ァセチルォキシ基、ェチルカル ボニルォキシ基等)、アミド基(例えば、メチルカルボニルァミノ基、ェチルカルボニル アミノ基、ジメチルカルボニルァミノ基等)、力ルバモイル基(例えば、ァミノカルボニル 基、メチルァミノカルボニル基、ジメチルァミノカルボニル基等)、ウレイド基(例えば、 メチルウレイド基、ェチルウレイド基等)、アミノ基 (例えば、アミノ基、ェチルァミノ基、 ジメチルァミノ基、ジフヱニルァミノ基等)、ハロゲン原子 (例えば、フッ素原子、塩素 原子、臭素原子等)、フッ化炭化水素基 (例えば、フルォロメチル基、トリフルォロメチ ル基等)、シァノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチル シリル基等)等が挙げられる。
[0100] また Arと Arで置換された窒素原子は、更に Arと Arの窒素原子が置換した位置
1 2 1 2
の隣接位と窒素原子の間で環を形成してもよぐ具体的には下記のような構造をとつ てもよい。
[0101] [化 23]
Figure imgf000037_0001
[0102] Raは水素原子、アルキル基、シクロアルキル基、芳香族炭化水素基、芳香族複素
1
環基または複素環基を表し、置換基を有してレ、てもよレ、。
[0103] Raで表されるアルキル基としては、例えば、メチル基、ェチル基、プロピル基、イソ プロピル基、ブチル基、イソブチル基、 sec—ブチル基、 tert—ブチル基、ペンチノレ 基、イソペンチル基、ネオペンチル基、 tert—ペンチル基、へキシル基、イソへキシ ル基、ォクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシノレ基、 2— ェチル一へキシル基、ゥンデシノレ基、テトラデシノレ基等が挙げられる。 Raで表される
1 シクロアルキル基としては、例えば、シクロペンチル基、シクロへキシル基等が挙げら れる。 Raで表される芳香族炭化水素基、及び芳香族複素環基としては、例えば、上
1
述の Arと Arの説明で挙げた芳香族炭化水素基等及び芳香族複素環基等が挙げ
1 2
られる。 Raで表される複素環基としては、例えば、ピロリジノレ基、イミダゾリジノレ基、モ
1
ルホリル基、ォキサゾリジノレ基等が挙げられる。なお、これらの基は各々置換基を有 していてもよぐ該置換基としては上述の Ar及び Arの置換基の例として挙げたもの
1 2
と同様のものが挙げられる。
[0104] 一般式(2)で表される化合物のうち、一般式(3)〜一般式(7)で表される化合物が 更に好ましい。
[0105] [化 24]
—般 3}
Figure imgf000038_0001
[0106] 一般式(3)におレ、て、 Ar〜Arは芳香族炭化水素基または芳香族複素環基を表
1 4
し、置換基を有していてもよい。 Ar〜Arで表される基としては、具体的には一般式 (
1 4
2)における Ar及び Arと同様のもの力 S挙げられる。また、 Arと Arで置換された窒
1 2 1 2
素原子または Arと Arで置換された窒素原子は、一般式(2)における Ar及び Arと
3 4 1 2 同様に、更に Ar及び Arの窒素原子、または Arと Arの窒素原子が置換した位置
1 2 3 4
の隣接位と窒素原子の間で環を形成してもよい。
[0107] Arは 2価のァリーレン基またはへテロアリーレン基を表し、置換基を有していてもよ
5
レ、。 Arで表されるァリーレン基またはへテロアリーレン基としては、例えば、 1 , 3—フ
5
ヱ二レン、 1, 4—フヱニレン、 1, 5—ナフチレン、ピリジン一 2, 5—ジィル等が挙げら れる。 Lは 2価の連結基を表し、 nlは 0〜6の整数を表し、複数の Lは各々異なってい ても同一でもよい。
[0108] [化 25]
—殺式
Figure imgf000039_0001
[0109] 一般式(4)におレ、て、 R、 Rは置換基を表し、 nl及び n2は 0〜4を表す。 Ar〜Ar
1 2 1 4 は芳香族炭化水素基または芳香族複素環基を表し、置換基を有していてもよい。 Ar 〜Arで表される基としては、具体的には一般式(2)における Ar及び Arと同様のも
1 4 1 2 のが挙げられる。
[0110] Raは水素原子、アルキル基、シクロアルキル基、芳香族炭化水素基、芳香族複素
1
環基または複素環基を表し、更に置換基を有していてもよい。また、 Arと Arで置換
1 2 された窒素原子または Arと Arで置換された窒素原子は、一般式(2)における Ar
3 4 1 及び Arと同様に、更に Ar及び Arの窒素原子、または Arと Arの窒素原子が置換
2 1 2 3 4
した位置の隣接位と窒素原子の間で環を形成してもよい。
[0111] [化 26]
—艫靖
Figure imgf000039_0002
[0112] 一般式(5)において、 Raは水素原子、アルキル基、シクロアルキル基、芳香族炭
1
化水素基、芳香族複素環基または複素環基を表し、更に一般式(2)において上記 A r及び Arが有してもよい置換基で置換されていてもよい。 R、 Rは各々置換基を表
1 2 1 2
し、 nl、 n2は 0〜4を表す。
[0113] [化 27]
―翁
Figure imgf000040_0001
[0114] 一般式(6)において、 Raは水素原子、アルキル基、シクロアルキル基、芳香族炭
1
化水素基、芳香族複素環基または複素環基を表し、更に一般式(2)において上記 A r及び Arが有してもよい置換基で置換されていてもよい。 R、 Rは各々置換基を表
1 2 1 2
し、 nlは 0〜4を表し、 n2は 0〜3を表す。
[0115] [化 28]
Figure imgf000040_0002
[0116] 一般式(7)において、 Raは水素原子、アルキル基、シクロアルキル基、芳香族炭
1
化水素基、芳香族複素環基または複素環基を表し、更に一般式(2)において上記 A rl及び Ar2が有してもよい置換基で置換されていてもよい。 R、 Rは各々置換基を 表し、 nl、 n2は 0〜3を表す。
[0117] 一般式(3)〜一般式(7)で表される化合物のうち、一般式 (8)〜一般式(11)で表 される化合物が更に好ましレ、。
[0118] [化 29]
Figure imgf000041_0001
[0119] 一般式(8)において、 R〜Rは置換基を表し、 nl〜n5は 0〜4を表す。 Lは 2価の
1 5
連結基を表し、 nlは 0〜6の整数を表し、複数の Lは各々異なっていても同一でもよい
[0120] [化 30]
Figure imgf000041_0002
[0121] 一般式(9)において、 R〜Rは置換基を表し、 nl、 n3及び n5は 0〜4を表し、 n2
1 5
及び n4は 0〜3を表し、 Lは 2価の連結基を表し、 nlは 0〜6の整数を表し、複数の L は各々異なっていても同一でもよい。 Ra及び Raは水素原子、アルキル基、シクロア
2 3
ルキル基、芳香族炭化水素基、芳香族複素環基または複素環基を表し、更に一般 式(2)における上記 Ar及び Arが有してもよい置換基で置換されていてもょレ'
1 2
[化 31]
Figure imgf000042_0001
[0123] 一般式(10)において、 R 〜Rは置換基を表し、 nl及び n4は 0〜3を表し、 n2、 n3
1 5
及び n5は 0〜4を表す。 Lは 2価の連結基を表し、 nlは 0〜6の整数を表し、複数の L は各々異なっていても同一でもよい。
[0124] [化 32]
-續細 Ϊ
Figure imgf000042_0002
[0125] 一般式(11)において、 R 〜Rは置換基を表し、 nl〜n4は 0〜3を表し、 n5は 0〜
1 5
4を表す。 Lは 2価の連結基を表し、 nlは 0〜6の整数を表し、複数の Lは各々異なつ ていても同一でもよい。
[0126] 一般式(3)〜(: 11)で表されるいずれか 1つの化合物において、 R 〜Rで各々表さ
1 6 れる置換基としては、上記一般式(2)における Ar及び Arが有してもよい置換基と同 義である。
[0127] Lが表す 2価の連結基としては、アルキレン基、アルケニレン基、アルキニレン基、ァ リーレン基などの炭化水素基の他へテロ原子を含むものであってもよぐまた、チオフ ヱン— 2, 5 _ジィル基ゃピラジン— 2, 3 _ジィル基のような芳香族複素環を有する 化合物(ヘテロ芳香族化合物ともいう)に由来する 2価の連結基であってもよいし、 - 〇_、 _S―、 _NR_ (Rは水素原子または置換基を表す)などのカルコゲン原子で あってもよレ、。また、ァノレキノレイミノ基、ジアルキルシランジィル基ゃジァリールゲルマ ンジィル基のようなヘテロ原子を介して連結する基でもよい。
[0128] また、ホストイ匕合物として下記一般式(12)で表される化合物も好ましい。
[0129] [化 33]
_!式灣
Figure imgf000043_0001
[0130] 一般式(12)において、 Ar〜Arは芳香族炭化水素基または芳香族へテロ環基を
1 4
表し、各々置換基を有していてもよレ、。 Ar〜Arで表される基としては、具体的には
1 4
上記一般式(2)における Ar及び Arと同様のもの力 S挙げられる。置換基として挙げら
1 2
れるものは、上記一般式(2)における Ar及び Arが有してもよい置換基と同義のもの
1 2
が挙げられる。
[0131] また、ホストイ匕合物として下記一般式(13)で表される化合物も好ましい。
[0132] [化 34]
-贿 13J
Figure imgf000043_0002
[0133] 一般式(13)において、 Ar〜Arは芳香族炭化水素基または芳香族へテロ環基を
1 3
表し、各々置換基を有していてもよレ、。 Ar〜Arで表される基としては、具体的には 上記一般式(2)における Ar及び Arと同様のものが挙げられる。置換基として挙げら
1 2
れるものは、上記一般式(2)における Ar及び Arが有してもよい置換基と同義のもの
1 2
が挙げられる。
[0134] 請求の範囲第 1項〜第 4項、及び第 13項〜第 18項に記載の発明において、ホスト 化合物として用いられる化合物の具体例を以下に示す。
[0135] [化 35]
Figure imgf000044_0001
[0136] [化 36]
Figure imgf000045_0001
[0137] [化 37]
Figure imgf000046_0001
[0138] [化 38]
Figure imgf000047_0001
[0139] [化 39]
Figure imgf000048_0001
] [ το]
Figure imgf000049_0001
8 Z9£80動 OAV
Figure imgf000050_0001
[0142] [化 42]
Figure imgf000051_0001
また、請求の範囲第 5項〜第 18項の構成に係わる発明の有機エレクト口ルミネッセ ンス素子(以下、有機 EL素子ともいう)において、有機層の少なくとも 1層は燐光性化 合物および電子輸送性ホストイヒ合物を含有する発光層であり、該燐光性化合物の H OM〇が一5. 15〜一 3. 50eVかつ LUMOが一1. 25〜十 1. OOeVであり、該電子 輸送性ホストイ匕合物の励起三重項エネルギー T1が 2. 7eV以上である構成とするこ とによって、本発明の第 2の課題である発光効率の高い有機 EL素子を得ることがで きた。また該有機 EL素子を用いて、照明装置、表示装置を得ることができた。
[0144] 以下、請求の範囲第 5項〜第 18項の構成に係わる発明に係る各構成要素の詳細 について、順次説明する。
[0145] まず、本発明の HOMO, LUMOについて説明する。
[0146] 本発明においても、前記同様、 HOMO, LUM〇の値は、米国 Gaussian社製の分 子軌道計算用ソフトウェアである Gaussian98 (Gaussian98、 Revision A. 11. 4, M. J. Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002. )を用いて計算 した時の値であり、キーワードとして B3LYP/LanL2DZを用いて構造最適化を行う ことにより算出した値 (eV単位換算値)と定義する。この計算値が有効な背景には、こ の手法で求めた計算値と実験値の相関が高いためである。
[0147] 請求の範囲第 5項〜第 18項の構成に係わる発明において、電子輸送性ホスト化合 物(以下、ホストイ匕合物ともいう)とは、電子移動度を μ 、正孔移動度を μ としたとき、
e h
μ > β となるホストイ匕合物のことである。電子移動度/ 及び正孔移動度 μ はタイム e h e h ォブフライト (T. O. F)法により以下のように測定する。測定には、例えば、ォプテル 社製 TOF— 301を用いることができ、ホストの薄膜を ΙΤΟ半透明電極及び金属電極 間に挟んだ試料に、 ΙΤΟ側から照射したパルス波によって生成したシート状キャリア の過渡電流特性より電子移動度、正孔移動度が求められる。
[0148] 請求の範囲第 5項〜第 18項の構成に係わる発明において、励起 3重項エネルギー 準位 (T1)値は以下の式により定義する。
[0149] Χ= 1239. 8/Υ
式中、 Xは励起三重項エネルギー(eV)、 Υはリン光の 0_0バンド(nm)を表す。リ ン光の 0— 0バンド(nm)は、下記のようにして求めることができる。
[0150] 測定するホストイ匕合物を、よく脱酸素されたエタノール/メタノール =4/1 (vol/v ol)の混合溶媒に溶かし、リン光測定用セルに入れた後、液体窒素温度 77Kで励起 光を照射し、励起光照射後 100msでの発光スペクトルを測定する。リン光は蛍光に 比べ発光寿命が長いため、 100ms後に残存する光はほぼリン光であると考えること ができる。なお、リン光寿命が 100msより短い化合物に対しては遅延時間を短くして 測定しても構わないが、蛍光と区別できなくなるほど遅延時間を短くしてしまうとリン光 と蛍光が分離できないので問題となるため、その分離が可能な遅延時間を選択する 必要がある。
[0151] また、上記溶剤系で溶解できない化合物については、その化合物を溶解しうる任意 の溶剤を使用してもよい (実質上、上記測定法ではリン光波長の溶媒効果はごくわず かなので問題ない)。
[0152] 次に 0— 0バンドの求め方である力 本発明においては、上記測定法で得られたリ ン光スペクトルチャートの中で最も短波長側に現れる発光極大波長をもって 0— 0バ ンドと定義する。
[0153] リン光スペクトルは通常強度が弱いことが多いため、拡大するとノイズとピークの判 別が難しくなるケースがある。このような場合には定常光スペクトルを拡大し、励起光 照射後 100ms後の発光スペクトル (便宜上これをリン光スペクトルと言う)と重ねあわ せリン光スぺタトノレに由来する定常光スペクトル部分からピーク波長を読み取ることで 決定すること力できる。また、リン光スぺクトノレをスムージング処理することでノイズとピ ークを分離しピーク波長を読み取ることもできる。なお、スムージング処理としては、 S avitzky&Golayの平滑化法等を適用することができる。
[0154] 《一般式 (I)で表される燐光性化合物》
請求の範囲第 5項〜第 18項の構成に係わる発明の一般式 (I)で表される燐光性化 合物について説明する。
[0155] 請求の範囲第 5項〜第 18項の構成に係わる発明の一般式 (I)で表される燐光性化 合物において、 HOMOが一 5· 15 3. 50eVかつ LUMOが一 1 · 25〜+ 1. 00 eVである。好ましくは HOMOが一4. 80〜一 3. 50eVかつ LUMOが一0. 80〜十 1. 00eVである。
[0156] 請求の範囲第 5項〜第 18項の構成に係わる発明の一般式 (I)で表される燐光性化 合物において、 Rで表される置換基としては、例えばアルキル基 (例えば、メチル基、
1
ェチル基、プロピル基、イソプロピル基、 tert_ブチル基、ペンチル基、へキシル基、 ォクチル基、ドデシノレ基、トリデシル基、テトラデシル基、ペンタデシノレ基等)、シクロ アルキル基(例えば、シクロペンチル基、シクロへキシル基等)、アルケニル基(例え ば、ビュル基、ァリル基等)、アルキニル基(例えば、ェチニル基、プロパルギル基等) 、芳香族炭化水素環基 (芳香族炭素環基、ァリール基等ともいい、例えば、フエニル 基、 p—クロロフヱニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル 基、ァズレニル基、ァセナフテュル基、フルォレニル基、フエナントリル基、インデュル 基、ピレニル基、ビフエ二リル基等)、芳香族複素環基 (例えば、ピリジル基、ピリミジ ニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピ ラジュノレ基、卜リアゾリノレ基(ί列免 ίΐ、 1, 2, 4一卜リ ゾ一ノレ一 1ーィノレ基、 1, 2, 3—卜 リアゾール _ 1 _ィル基等)、ォキサゾリル基、ベンゾォキサゾリル基、チアゾリル基、 イソォキサゾリル基、イソチアゾリル基、フラザニル基、チェニル基、キノリル基、ベン ゾフリノレ基、ジベンゾフリル基、ベンゾチェ二ル基、ジベンゾチェ二ル基、インドリル基 、カルバゾリル基、力ノレボリ二ノレ基、ジァザカルバゾリル基(前記カルボリニル基の力 ルポリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノ キサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジェル基等)、 複素環基(例えば、ピロリジノレ基、イミダゾリジノレ基、モルホリル基、ォキサゾリジル基 等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルォキシ基、ペンチルォキ シ基、へキシルォキシ基、ォクチルォキシ基、ドデシノレォキシ基等)、シクロアルコキ シ基(例えば、シクロペンチルォキシ基、シクロへキシルォキシ基等)、ァリールォキシ 基(例えば、フエノキシ基、ナフチルォキシ基等)、アルキルチオ基(例えば、メチルチ ォ基、ェチルチオ基、プロピルチオ基、ペンチルチオ基、へキシルチオ基、ォクチル チォ基、ドデシノレチォ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基 、シクロへキシノレチォ基等)、ァリールチオ基(例えば、フエ二ルチオ基、ナフチルチ ォ基等)、アルコキシカルボニル基(例えば、メチルォキシカルボニル基、ェチルォキ シカルボニル基、ブチルォキシカルボニル基、ォクチルォキシカルボニル基、ドデシ ルォキシカルボニル基等)、ァリールォキシカルボニル基(例えば、フエニルォキシカ ルボニル基、ナフチルォキシカルボニル基等)、スルファモイル基(例えば、アミノスノレ ホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスル ホニル基、へキシルアミノスルホニル基、シクロへキシルアミノスルホニル基、ォクチル アミノスルホニル基、ドデシルアミノスルホニル基、フエニルアミノスルホニル基、ナフ チルアミノスルホニル基、 2—ピリジルアミノスルホニル基等)、ァシル基(例えば、ァセ チノレ基、ェチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シク 口へキシルカルボニル基、ォクチルカルボニル基、 2—ェチルへキシルカルボニル基 、ドデシルカルボ二ル基、フエニルカルボニル基、ナフチルカルボニル基、ピリジルカ ルボニル基等)、ァシルォキシ基(例えば、ァセチルォキシ基、ェチルカルボニルォ キシ基、ブチルカルボニルォキシ基、ォクチルカルボニルォキシ基、ドデシルカルボ ニルォキシ基、フエニルカルボニルォキシ基等)、アミド基(例えば、メチルカルボニル アミノ基、ェチルカルボニルァミノ基、ジメチルカルボニルァミノ基、プロピルカルボ二 ノレアミノ基、ペンチルカルボニルァミノ基、シクロへキシルカルボニルァミノ基、 2—ェ チルへキシルカルボニルァミノ基、ォクチルカルボニルァミノ基、ドデシルカルボニル アミノ基、フエニルカルボニルァミノ基、ナフチルカルボニルァミノ基等)、力ルバモイ ル基(例えば、ァミノカルボニル基、メチルァミノカルボニル基、ジメチルァミノカルボ ニル基、プロピルアミノカルボニル基、ペンチルァミノカルボニル基、シクロへキシル ァミノカルボニル基、ォクチルァミノカルボニル基、 2—ェチルへキシルァミノカルボ二 ル基、ドデシルァミノカルボニル基、フエニルァミノカルボニル基、ナフチルァミノカル ボニル基、 2—ピリジルァミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基 、ェチルウレイド基、ペンチルゥレイド基、シクロへキシルウレイド基、ォクチルゥレイド 基、ドデシルゥレイド基、フエニルウレイド基ナフチルウレイド基、 2—ピリジノレアミノウ レイド基等)、スルフィエル基(例えば、メチルスルフィエル基、ェチルスルフィニル基 、ブチルスルフィニル基、シクロへキシルスルフィニル基、 2—ェチルへキシルスルフ ィニル基、ドデシルスルフィニル基、フエニルスルフィニル基、ナフチルスルフィニル 基、 2 _ピリジルスルフィエル基等)、アルキルスルホニル基(例えば、メチルスルホニ ル基、ェチルスルホニル基、ブチルスルホニル基、シクロへキシルスルホニル基、 2_ ェチルへキシルスルホニル基、ドデシルスルホニル基等)、ァリールスルホニル基ま たはへテロアリールスルホニル基(例えば、フエニルスルホニル基、ナフチルスルホニ ル基、 2_ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、ェチルァミノ基、ジメ チノレアミノ基、ブチルァミノ基、シクロペンチルァミノ基、 2—ェチルへキシルァミノ基、 ドデシノレアミノ基、ァニリノ基、ナフチノレアミノ基、 2—ピリジノレ ミノ基等)、シ ノ基、 ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプ 口ビルシリル基、トリフエエルシリル基、フエ二ルジェチルシリル基等)等が挙げられる
[0157] これらの置換基のうち、好ましいものはアルキル基もしくはァリール基である。
[0158] Zは 5〜7員環を形成するのに必要な非金属原子群を表す。 Zにより形成される 5〜 7員環としては、例えば、ベンゼン環、ナフタレン環、ピリジン環、ピリミジン環、ピロ一 ル環、チォフェン環、ピラゾール環、イミダゾール環、ォキサゾール環及びチアゾール 環等が挙げられる。これらのうちで好ましいものは、ベンゼン環である。
[0159] B〜Bは炭素原子、窒素原子、酸素原子もしくは硫黄原子を表し、少なくとも一つ
1 5
は窒素原子を表す。これら 5つの原子により形成される芳香族含窒素複素環としては 単環が好ましい。例えば、ピロール環、ピラゾール環、イミダゾール環、トリァゾール環 、テトラゾール環、ォキサゾール環、イソォキサゾール環、チアゾール環、イソチアゾ ール環、ォキサジァゾール環及びチアジアゾ一環ル等が挙げられる。これらのうちで 好ましいものは、ピラゾール環、イミダゾール環であり、さらに好ましくはイミダゾール 環である。これらの環は上記の置換基によって更に置換されていてもよレ、。置換基と して好ましいものはアルキル基およびァリール基であり、さらに好ましくは、置換アル キル基および無置換ァリール基である。
[0160] Lは X、 Xと共に 2座の配位子を形成する原子群を表す。 X— L—Xで表される 2
1 1 2 1 1 2 座の配位子の具体例としては、例えば、置換または無置換のフエ二ルビリジン、フエ 二ルビラゾール、フエ二ルイミダゾール、フエニルトリァゾール、フエ二ルテトラゾール、 ビラザボール、ピコリン酸及びァセチルアセトン等が挙げられる。
[0161] これらの基は上記の置換基によって更に置換されていてもよい。
[0162] mlは 1、 2または 3の整数を表し、 m2は 0、 1または 2の整数を表す力 ml +m2は
2または 3である。中でも、 m2は 0である場合が好ましい。
[0163] Mで表される金属としては、元素周期表の 8族〜 10族の遷移金属元素(単に遷移
1
金属ともいう)が用いられるが、中でも、イリジウム、白金が好ましぐさらに好ましくはィ リジゥムである。
[0164] なお本発明の一般式 (I)で表される燐光性化合物は、重合性基または反応性基を 有してレ、てもいなくてもょレ、。
[0165] また、 B〜Bで形成される含窒素複素環がイミダゾール環が好ましぐイミダゾール
1 5
環の場合、前記一般式 (I)は前記一般式 (Π)で表されることがより好ましい。
[0166] 一般式 (Π)において、 R、 R、 Rは置換基を表す。 Zは 5〜7員環を形成するのに
1 2 3
必要な非金属原子群を表す。 nlは 0〜5の整数を表す。 Mは元素周期表における 8
1
族〜 10族の金属を表す。 Xおよび Xは炭素原子、窒素原子もしくは酸素原子を表し
1 2
、 Lは Xおよび Xとともに 2座の配位子を形成する原子群を表す。 mlは 1、 2または
1 1 2
3の整数を表し、 m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3である。
[0167] 一般式 (Π)において、 R、 R、 Rで表される置換基は前記一般式 (II)における R
1 2 3 1 で表される置換基と同義である。また、 Z、 M、 Xおよび X、 L等についても前記一
1 1 2 1
般式(I)におけるものと同義である。また、 ml、 m2も同義である。
[0168] また、一般式 (Π)の Rで表される基として、芳香族炭化水素環基 (芳香族炭素環基
2
)が好ましぐなかでも置換ァリール基が好ましぐ置換ァリールとして下記一般式 (III
)で表される基が好ましい。
[0169] [化 43] 一般式 (ΙΠ)
(
Figure imgf000057_0001
[0170] 一般式 (ΠΙ)において、 Rは、立体パラメータ値 (Es値)が—0. 5以下の置換基を表
4
す。 Rは Rと同じで、 n5は 0〜4の整数を表す。尚、 *は結合位置を表す。
5 1
[0171] ここで、 Es値とは化学反応性より誘導された立体パラメータであり、この値が小さけ れば小さいほど立体的に嵩高い置換基ということができる。
[0172] Es値については前述した。
[0173] Rは、立体パラメータ値 (Es値)がー 0. 5以下の置換基を表す。
4
好ましくは 7. 0以上 0. 6以下であり、最も好ましくは 7. 0以上 1. 0以下であ る。 [0174] また、 Rに、例えば、ケトーエノール互変異性体が存在し得る場合、ケト部分はエノ
4
ールの異性体として Es値を換算している。他の互変異性が存在する場合も同様の換 算方法にぉレ、て Es値を換算する。
[0175] 以下に本発明の一般式 (1)、また一般式 (II)で表される燐光性化合物の具体的な 例を挙げるが、本発明はこれらに限定されるものではない。
[0176] 本発明の一般式 (1)、また一般式 (Π)で表される燐光性化合物の具体的例としては
、前記一般式(1)、また一般式 (Π)で表される燐光性化合物としてあげられた、 ィ匕合物 No. 1—:!〜 1一 59及び 1一 75〜1 _ 107のィ匕合物、
また、下記化合物があげられる。
[0177] [化 44]
[S [8 I0]
Figure imgf000059_0001
89 Z9£80動 OAV -70 1-71
Figure imgf000060_0001
-109
Figure imgf000060_0002
[0180] これらの金属錯体も前記一般式(1)で表される燐光性化合物と同様の参考文献、 更にそれらの文献中に記載の参考文献等の方法を適用することにより合成できる。
[0181] 次に、請求の範囲第 5項〜第 18項の構成に係わる発明の有機 EL素子の構成層 について詳細に説明する。
[0182] 本発明において、請求の範囲第 5項〜第 18項に係わる有機 EL素子の層構成の好 ましい具体例を以下に示すが、本発明はこれらに限定されない。
(i)陽極 Z発光層 Z陰極
(ii)陽極/正孔輸送層/発光層/陰極
(iii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iv)陽極/正孔注入層/正孔輸送層/発光層 Z電子輸送層 Z陰極バッファ一層 層/陰極 (V)陽極/正孔輸送層/正孔輸送層 A/発光層/電子輸送層/陰極バ ッファー層/陰極 (vi)陽極/正孔輸送層/正孔輸送層 AZ発光層 Z電子輸送層 A /電子輸送層/陰極バッファー層/陰極
《発光層》
請求の範囲第 5項〜第 18項の構成本発明に係る発光層について説明する。
[0183] 本発明の請求の範囲第 5項〜第 18項の記載の構成に係る発光層は、電極または 電子輸送層、正孔輸送層等から注入されてくる電子及び正孔が再結合して発光する 層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であつ てもよい。
[0184] (燐光性化合物(リン光性ドーパント、リン光発光性化合物ともいう))
本発明の有機 EL素子の発光層には、燐光性化合物(リン光性ドーパント、リン光発 光性化合物ともいう)とホスト化合物が含有される。本発明においては、燐光性化合 物として前述した本発明に係る化合物を用いることが好ましい。
更に公知の燐光性化合物を複数種併用してもよい。リン光性ドーパントを複数種用 レ、ることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ること ができる。リン光性ドーパントの種類、ドープ量を調整することで白色発光が可能であ り、照明、ノ ックライトへの応用もできる。
[0185] 公知の燐光性化合物の具体例としては、以下の文献に記載されている化合物が挙 げられる。
[0186] 国際公開第 00/70655号パンフレット、特開 2002— 280178号公報、特開 2001
— 181616号公報、特開 2002— 280179号公報、特開 2001— 181617号公報、 特開 2002— 280180号公報、特開 2001— 247859号公報、特開 2002— 299060 号公報、特開 2001— 313178号公報、特開 2002— 302671号公報、特開 2001— 345183号公報、特開 2002— 324679号公報、国際公開第 02/15645号パンフ レット、特開 2002— 332291号公報、特開 2002— 50484号公報、特開 2002— 33 2292号公報、特開 2002— 83684号公報、特表 2002— 540572号公報、特開 20 02— 117978号公報、特開 2002— 338588号公報、特開 2002— 170684号公報 、特開 2002— 352960号公報、国際公開第 01/93642号パンフレット、特開 2002
— 50483号公報、特開 2002— 100476号公報、特開 2002— 173674号公報、特 開 2002— 359082号公報、特開 2002— 175884号公報、特開 2002— 363552号 公報、特開 2002— 184582号公報、特開 2003— 7469号公報、特表 2002— 525 808号公報、特開 2003— 7471号公報、特表 2002— 525833号公報、特開 2003
— 31366号公報、特開 2002— 226495号公報、特開 2002— 234894号公報、特 開 2002— 235076号公報、特開 2002— 241751号公報、特開 2001— 319779号 公報、特開 2001— 319780号公報、特開 2002— 62824号公報、特開 2002— 10 0474号公報、特開 2002— 203679号公報、特開 2002— 343572号公報、特開 2 002— 203678号公報等。
[0187] (発光ホスト化合物)
発光層に使用される材料としては、上記の燐光性ドーパントの他に発光ホス M匕合 物がある。
[0188] ここで、本発明においてホストイ匕合物とは、発光層に含有される化合物のうちで室 温(25°C)においてリン光発光のリン光量子収率力 0. 01未満の化合物と定義され る。請求の範囲第 5項〜第 18項の記載の構成に係る発明においては、ホスト化合物 として電子輸送性ホストイ匕合物を用いることが好ましい。これにより、よりいつそう連続 駆動時の素子の発光寿命を長くすることができる。
[0189] 本発明において、電子輸送性ホストイ匕合物(以下、ホストイ匕合物ともいう)とは、前述 したように、電子移動度を μ 、正孔移動度を/ としたとき、 μ > μ となるホストイ匕合
e h e h
物のことである。
[0190] 請求の範囲第 5項〜第 18項の記載の構成に係る発明に用いられる発光ホスト化合 物としては、構造的には特に制限は無いが、代表的にはカルボリン誘導体、ジァザ力 ルバゾール誘導体、芳香族ボラン誘導体、ォキサジァゾール誘導体、力ルバゾール 誘導体等が挙げられる。
[0191] 以下にカルボリン誘導体、ジァザ力ルバゾール誘導体、芳香族ボラン誘導体の具 体例を挙げるが、本発明はこれらに限定されない。
[0192] [化 47]
Figure imgf000064_0001
[0193] [化 48]
Figure imgf000065_0001
[0194] [化 49]
Figure imgf000066_0001
[0195] [化 50]
Figure imgf000067_0001
[0196] [化 51] [Ζ^ [Ζ6Ϊ0]
Figure imgf000068_0001
l6f-S0/ .00idf/X3d 19 Z9C80I/Z,00i ΟΛ\
Figure imgf000069_0001
[0198] [化 53]
Figure imgf000070_0001
[0199] [化 54]
Figure imgf000071_0001
[0200] [化 55]
Figure imgf000072_0001
[0201] 発光ホストイ匕合物としては、発光の長波長化を防ぎ、なお且つ高 Tg (ガラス転移温 度)である化合物が好ましい。
[0202] 発光ホスト化合物の具体例としては、以下の文献に記載されている化合物が好適 である。例えば、特開 2002— 308855号公報、同 2002— 319491号公報、同 200
1— 357977号公報、同 2002— 334786号公報、同 2002— 334787号公報、同 2
002— 15871号公報、同 2002— 334788号公報、同 2002— 43056号公報、同 2 002— 334789号公報、同 2002— 338579号公報、同 2002— 343568号公報、 同 2002— 141173号公報、同 2002— 352957号公報、同 2002— 203683号公報 、同 2002— 363227号公報、同 2002— 231453号公報、同 2003— 3165号公報 、同 2003— 27048号公報、同 2002— 260861号公報、同 2002— 299060号公 報、同 2002— 302516号公報、同 2002— 305083号公報、同 2002— 305084号 公報、同 2005— 340123号公報、同 2004— 234952公報等。
[0203] 次に、代表的な有機 EL素子の構成について述べる。
[0204] 《有機 EL素子の構成層》
本発明の有機 EL素子の構成層について説明する。
[0205] 本発明の有機 EL素子の層構成の好ましい具体例を以下に示す力 本発明はこれ らに限定されない。
[0206] (i)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(ii)陽極/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極
(m)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰 極
(iv)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰 極
(V)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰 極バッファー層/陰極
(vi)陽極/陽極バッファ一層/正孔輸送層/電子阻止層/発光層/正孔阻止層
/電子輸送層/陰極バッファー層/陰極
(vii)陽極/陽極バッファ一層/正孔輸送層/電子阻止層/発光層/正孔阻止層
/電子輸送層/陰極バッファー層/陰極
(viii)陽極/正孔輸送層/中間層/発光層/正孔阻止層/電子輸送層/陰極バ ッファー層/陰極 この中でも、請求の範囲第 1項〜第 4項、及び第 13項〜第 18項の構成に係わる発 明におレ、ては (vm)の構成が最も好ましレ、。
[0207] 《中間層》
本発明に係る中間層とは発光層と正孔輸送層との間の層のことである。該層に含ま れる材料の性質によっては、該層を正孔輸送層と呼ぶこともあり、電子阻止層と呼ぶ こともある。本発明においては、該中間層中に発光層に含有されるホストイ匕合物と同 じ材料を含有することが好ましレ、。
[0208] 《阻止層(電子阻止層、正孔阻止層)》
本発明に係る阻止層(例えば、電子阻止層、正孔阻止層)について説明する。
[0209] 本発明に係る阻止層の膜厚としては好ましくは 3〜: !OOnmであり、更に好ましくは 5 〜30nmである。
[0210] 《正孔阻止層》
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい材料からなり、電子を輸送しつつ正孔を阻 止することで電子と正孔の再結合確率を向上させることができる。
[0211] 正孔阻止層としては、例えば、特開平 11— 204258号公報、同 11 204359号公 報、及び「有機 EL素子とその工業化最前線(1998年 11月 30日 ェヌ 'ティー'エス 社発行)」の 237頁等に記載の正孔阻止(ホールブロック)層等を本発明に係る正孔 阻止層として適用可能である。また、後述する電子輸送層の構成を必要に応じて、本 発明に係る正孔阻止層として用いることができる。
[0212] 本発明の有機 EL素子は、構成層として正孔阻止層を有し、該正孔阻止層が前記 カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環 の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体を 含有することが好ましい。
[0213] 《電子阻止層》
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述 する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。
[0214] 《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する材料を含み、広い意味で正孔注入 層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層もしくは複数層設ける こと力 Sできる。
[0215] 正孔輸送材料としては特に制限はなぐ従来、光導伝材料において、正孔の電荷 注入輸送材料として慣用されているものや、有機 EL素子の正孔注入層、正孔輸送 層に使用される公知のものの中力、ら任意のものを選択して用いることができる。
[0216] 正孔輸送材料は正孔の注入もしくは輸送、電子の障壁性のいずれかを有するもの であり、有機物、無機物のいずれであってもよレ、。例えば、トリァゾール誘導体、ォキ サジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン 誘導体及びピラゾロン誘導体、フヱニレンジァミン誘導体、ァリールァミン誘導体、アミ ノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、フルォレ ノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリン系共重 合体、また導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げられる。
[0217] 正孔輸送材料としては上記のものを使用することができる力 ポルフィリン化合物、 芳香族第三級ァミン化合物及びスチリルァミン化合物、特に芳香族第三級ァミン化 合物を用いることが好ましい。
[0218] 芳香族第三級ァミン化合物及びスチリルァミン化合物の代表例としては、 N, N, N ' , N' —テトラフエ二ルー 4, Α' —ジァミノフエニル; Ν, N' —ジフエ二ノレ一 Ν, Ν ' —ビス(3—メチルフエ二ル)一〔1 , 1' —ビフエ二ル〕一 4, 4' —ジァミン(TPD) ; 2, 2 _ビス(4—ジ一 ρ—トリルァミノフエニル)プロパン; 1, 1 _ビス(4 _ジ_ _トリ ルァミノフエニル)シクロへキサン; Ν, Ν, Ν' , Nr —テトラ一 p—トリル一 4, 4' - ジアミノビフエニル; 1, 1—ビス(4—ジ一 p—トリルァミノフエニル)一4—フエ二ルシク 口へキサン;ビス(4 -ジメチルアミノー 2 -メチルフエニル)フエニルメタン;ビス(4 -ジ —p—トリルァミノフエニル)フエニルメタン; N, N' —ジフエ二ノレ一 N, N' —ジ(4— メトキシフエ二ル)一 4, 4' —ジアミノビフエニル; N, N, N' , N' —テトラフェニル —4, 一ジアミノジフエニルエーテル; 4, 一ビス(ジフエニルァミノ)クオ一ドリフ ェニル; N, N, N トリ(p トリル)ァミン; 4— (ジ— p トリルァミノ)— —〔4— (ジ —p トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエニルァミノ一(2 ジフエ二 ノレビニノレ)ベンゼン; 3—メトキシ一 N, N ジフエニルアミノスチルベンゼン; N —フヱ二ルカルバゾール、更には米国特許第 5, 061, 569号明細書に記載されて レ、る 2個の縮合芳香族環を分子内に有するもの、例えば、 4, —ビス〔N _ ( 1—ナ フチル) _ N _フエニルァミノ〕ビフヱニル(NPD)、特開平 4— 308688号公報に記 載されているトリフエニルァミンユニットが 3つスターバースト型に連結された 4, 4' , " —トリス〔^^ _ (3 _メチルフエニル) _ N _フエニルァミノ〕トリフエニルァミン(MTD ATA)等が挙げられる。
[0219] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。
[0220] また、 p型一 Si、 p型一 SiC等の無機化合物も正孔注入材料、正孔輸送材料として 使用すること力できる。また、正孔輸送材料は、高 Tgであることが好ましい。
[0221] この正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ること力 Sできる。正孔輸送層の膜厚については特に制限はなレ、が、通常は 5〜5000 nm程度である。この正孔輸送層は上記材料の一種または二種以上からなる一層構 造であってもよい。
[0222] 又、不純物ドープした p性の高い正孔輸送層を用いることも出来る。その例としては 、特開平 4— 297076号公報、特開 2000— 196140号公報、特開 2001— 102175 号公報、 J. Appl. Phys. , 95, 5773 (2004)などに記載されたものが挙げられる。
[0223] 本発明においては、このような ρ性の高い正孔輸送層を用いることが、より低消費電 力の素子を作製することができるため好ましい。
[0224] 《正孔輸送層 Α》
本発明の請求の範囲第 5項〜第 18項の構成に係る正孔輸送層 Αについて説明す る。
[0225] 発光層と陽極の間に 2層以上の正孔輸送層があるとき、発光層と接する側の正孔 輸送層を正孔輸送層 Aと呼ぶ。 [0226] 本発明に用いられる正孔輸送層 Aに使用できる材料は、正孔輸送性であることに カロえて、発光層で生成した励起子からエネルギー移動を阻止するために、リン光性ド 一パントよりも高い励起 3重項エネルギーを有していることが必要となる。 白色光源ま たは青色、緑色、赤色を利用したフルカラーのディスプレイ材料を作製する場合には 、青色成分が必須となる力 青色のリン光性材料の励起 3重項エネルギー (T1)が高 ぐそのため正孔輸送層 Aの材料としては 2. 7eV以上の T1レベルが必要となる。
[0227] 正孔輸送層 Aに用いられる化合物の具体例を以下に示す。
[0228] [化 56]
Figure imgf000078_0001
[0229] [化 57]
Figure imgf000079_0001
[0230] [化 58] [69^>] [l£ZO
Figure imgf000080_0001
Figure imgf000081_0001
[0232] [化 60]
Figure imgf000082_0001
[0233] [化 61]
Figure imgf000083_0001
[0234] 《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層もしくは複数層を設 けること力できる。
[0235] 電子輸送層は陰極より注入された電子を発光層に伝達する機能を有していればよ ぐその材料としては従来公知の化合物の中力 任意のものを選択して用いることが できる。
[0236] この電子輸送層に用いられる材料 (以下、電子輸送材料という)の例としては、ニト 口置換フルオレン誘導体、ジフヱ二ルキノン誘導体、チォピランジオキシド誘導体、ナ フタレンペリレン等の複素環テトラカルボン酸無水物、力ノレポジイミド、フレオレニリデ ンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ォキサジァゾール誘導体 、カルボリン誘導体、または該カルボリン誘導体のカルボリン環を構成する炭化水素 環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体 等が挙げられる。更に、上記ォキサジァゾール誘導体において、ォキサジァゾ一ノレ 環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として 知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用い ること力 Sできる。
[0237] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。
[0238] また 8 キノリノール誘導体の金属錯体、例えば、トリス(8 キノリノール)アルミニゥ ム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ口 モー 8 キノリノール)アルミニウム、トリス(2—メチル 8 キノリノール)アルミニウム 、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Znq )等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに置 き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタノレフリ 一もしくはメタルフタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基等 で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光 層の材料として例示したジスチリルビラジン誘導体も、電子輸送材料として用いること ができるし、正孔注入層、正孔輸送層と同様に n型— Si、 n型— SiC等の無機半導体 も電子輸送材料として用いることができる。
[0239] この電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キ ヤスト法、インクジヱット法、 LB法等の公知の方法により、薄膜化することにより形成す ること力 Sできる。電子輸送層の膜厚については特に制限はないが、通常は 5〜5000 nm程度である。この電子輸送層は上記材料の一種または二種以上からなる一層構 造であってもよい。
[0240] 請求の範囲第 5項〜第 18項の構成に係わる発明においては、又、不純物ドープし た n性の高い電子輸送層を用いることも出来る。その例としては、特開平 4— 297076 号公報、特開 2000— 196140号公報、特開 2001— 102175号公報、】. Appl. Ph ys., 95, 5773 (2004)などに記載されたもの力 S挙げ、られる。
[0241] 請求の範囲第 5項〜第 18項の構成に係わる発明においては、このような n性の高 い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ま しい。
[0242] 《電子輸送層 A》
本発明の請求の範囲第 5項〜第 18項の構成に係る電子輸送層 Aについて説明す る。
[0243] 発光層と陰極の間に 2層以上の電子輸送層があるとき、発光層と接する側の電子 輸送層を電子輸送層 Aと呼ぶ。
[0244] 請求の範囲第 5項〜第 18項の構成に係わる発明に用いられる電子輸送層 Aに使 用できる材料は、電子輸送性であることに加えて、発光層で生成した励起子からエネ ルギー移動を阻止するために、リン光性ドーパントよりも高い励起 3重項エネルギー を有していること必要となる。 白色光源または青色、緑色、赤色を利用したフルカラー のディスプレイ材料を作製する場合には、青色成分が必須となるが、青色のリン光性 材料の励起 3重項エネルギー (T1)が高ぐそのため電子輸送層 Aの材料としては 2 . 7eV以上の T1レベルが必要となる。
[0245] 本発明の電子輸送層 Aの電子輸送性材料としては、前述した本発明の電子輸送 性ホストイ匕合物が挙げられる。これにより、よりいつそう長寿命な有機 EL素子とするこ とができる。なお、電子輸送層 Aに含有される電子輸送性材料と発光層に含有される 電子輸送性ホスト化合物は同一でも異なっていても良い。
[0246] 次に、本発明の有機 EL素子の構成層として用いられる注入層について説明する。
[0247] 《注入層》:電子注入層、正孔注入層
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記のごとく陽極と 発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在 させてもよい。
[0248] 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業化最前線(1998年 11月 30日 ェヌ 'ティー'ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。
[0249] 陽極バッファ一層(正孔注入層)は、特開平 9— 45479号公報、同 9一 260062号 公報、同 8— 288069号公報等にもその詳細が記載されており、具体例として銅フタ ロシアニンに代表されるフタロシアニンバッファ一層、酸化バナジウムに代表される酸 化物バッファ一層、アモルファスカーボンバッファ一層、ポリア二リン(ェメラルディン) やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる。
[0250] 陰極バッファ一層(電子注入層)は特開平 6— 325871号公報、同 9一 17574号公 報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロンチ ゥムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表されるァ ルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金属 化合物バッファ一層、酸化アルミニウムに代表される酸化物バッファ一層等が挙げら れる。
[0251] 上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよるがその 膜厚は 0. 1〜: !OOnmの範囲が好ましい。
[0252] この注入層は上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インク ジェット法、 LB法等の公知の方法により、薄膜ィヒすることにより形成することができる 。注入層の膜厚については特に制限はなレ、が、通常は 5〜5000nm程度である。こ の注入層は上記材料の一種または二種以上からなる一層構造であってもよい。
[0253] 《陽極》
本発明の有機 EL素子に係る陽極としては、仕事関数の大きい (4eV以上)金属、 合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用い られる。このような電極物質の具体例としては、 Au等の金属、 Cul、インジウムチンォ キシド(IT〇)、 Sn〇、 ZnO等の導電性透明材料が挙げられる。また、 IDIX〇(In〇 — Zn〇)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの 電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー 法で所望の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要とし ない場合は(100 μ m以上程度)、上記電極物質の蒸着やスパッタリング時に所望の 形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合に は、透過率を 10%より大きくすることが望ましぐまた陽極としてのシート抵抗は数百 Ω /口以下が好ましい。更に膜厚は材料にもよるが通常 10〜: 1000nm、好ましくは 10〜200nmの範囲で選ばれる。
[0254] 《陰極》
一方、本発明に係る陰極としては、仕事関数の小さい (4eV以下)金属(電子注入 性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするも のが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム—力リウ ム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物 、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム /酸化アルミニウム (Al O )混合物、インジウム、リチウム/アルミニウム混合物、希
2 3
土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の 点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金 属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合 物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム (Al O )混合
2 3 物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電 極物質を蒸着やスパッタリング等の方法により、薄膜を形成させて作製することができ る。また、陰極としてのシート抵抗は数百 Ω /口以下が好ましぐ膜厚は通常 10〜: 10 00nm、好ましくは 50〜200nmの範囲で選ばれる。なお発光を透過させるため、有 機 EL素子の陽極または陰極のいずれか一方が透明または半透明であれば、発光 輝度が向上し好都合である。
[0255] 《基体 (基板、基材、支持体等ともいう)》
本発明の有機 EL素子に係る基体としては、ガラス、プラスチック等の種類には特に 限定はなぐまた透明のものであれば特に制限はないが、好ましく用いられる基板と しては、例えば、ガラス、石英、光透過性樹脂フィルムを挙げることができる。特に好 ましい基体は、有機 EL素子にフレキシブル性を与えることが可能な樹脂フィルムであ る。
[0256] 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナ フタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテル エーテルケトン、ポリフエ二レンスルフイド、ポリアリレート、ポリイミド、ポリカーボネート (PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP )等からなるフィルム等が挙げられる。
[0257] 樹脂フィルムの表面には、無機物もしくは有機物の被膜またはその両者のハイプリ ッド被膜が形成されていてもよぐ水蒸気透過率が 0. 01g/m2' day' atm以下の高 バリア性フィルムであることが好ましレヽ。
[0258] 本発明の有機 EL素子の発光の室温における外部取り出し効率は 1。/0以上であるこ と力 S好ましく、より好ましくは 2%以上である。ここに、外部取り出し量子効率(%) =有 機 EL素子外部に発光した光子数/有機 EL素子に流した電子数 X I 00である。
[0259] 照明用途で用いる場合には、発光ムラを低減させるために粗面加工したフィルム( アンチグレアフイノレム等)を併用することもできる。
[0260] また、カラーフィルタ一等の色相改良フィルタ一等を併用してもよい。
[0261] 多色表示装置として用いる場合は、少なくとも 2種類の異なる発光極大波長を有す る有機 EL素子からなるが、有機 EL素子を作製する好適な例を説明する。
[0262] 《有機 EL素子の作製方法》
本発明の請求の範囲第 1項〜第 4項、及び第 13項〜第 18項の構成に係わる有機 EL素子の作製方法の一例として、陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z正 孔阻止層/電子輸送層/陰極バッファー層/陰極からなる有機 EL素子の作製法 について説明する。
[0263] まず適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を 1 μ m 以下、好ましくは 10〜200nmの膜厚になるように、蒸着やスパッタリング等の方法に より形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、正孔輸 送層、発光層、正孔阻止層、電子輸送層等の有機化合物を含有する薄膜を形成さ せる。
[0264] この有機化合物を含有する薄膜の薄膜化の方法としては、スピンコート法、キャスト 法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすぐ且つピ ンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法が特に好まし レ、。更に層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、そ の蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度 50 〜450°C、真空度 10— 6〜: 10— 2Pa、蒸着速度 0. 01〜50nmZ秒、基板温度— 50〜3 00°C、膜厚 0. 1〜5 μ mの範囲で適宜選ぶことが望ましい。
[0265] これらの層の形成後、その上に陰極用物質からなる薄膜を 1 μ m以下、好ましくは 5 0〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法によ り形成させ、陰極を設けることにより所望の有機 EL素子が得られる。この有機 EL素 子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ま しいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不 活性ガス雰囲気下で行う等の配慮が必要となる。
[0266] 《表示装置》
本発明の請求の範囲第 1項〜第 4項、及び第 13項〜第 18項の構成に係わる表示 装置について説明する。本発明の表示装置は上記有機 EL素子を有する。
[0267] 本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説 明する。多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸 着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
[0268] 発光層のみパターニングを行う場合その方法に限定はないが、好ましくは蒸着法、 インクジェット法、印刷法である。蒸着法を用いる場合においては、シャドーマスクを 用いたパターユングが好ましい。また作製順序を逆にして、陰極、電子輸送層、正孔 阻止層、発光層、正孔輸送層、陽極の順に作製することも可能である。
[0269] このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を十、 陰極を—の極性として電圧 2〜40V程度を印加すると発光が観測できる。また、逆の 極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加 する場合には、陽極が十、陰極が—の状態になったときのみ発光する。なお、印加 する交流の波形は任意でょレ、。
[0270] 多色表示装置は表示デバイス、ディスプレイ、各種発光光源として用いることができ る。表示デバイス、ディスプレイにおいて、青、赤、緑発光の 3種の有機 EL素子を用 レ、ることにより、フルカラーの表示が可能となる。表示デバイス、ディスプレイとしては、 テレビ、パソコン、モパイル機器、 AV機器、文字放送表示、 自動車内の情報表示等 力 S挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよぐ動 画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス (パッシブマ トリタス)方式でもアクティブマトリクス方式でもどちらでもよい。
[0271] 発光光源としては、家庭用照明、車内照明、時計や液晶用のバックライト、看板広 告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、 光センサーの光源等が挙げられるがこれに限定するものではない。
[0272] 《有機 EL素子の作製方法》
本発明の請求の範囲第 5項〜第 18項の構成に係わる有機 EL素子の作製方法の 一例として、図 1に示した、陽極/正孔注入層/正孔輸送層/発光層/電子輸送 層/陰極バッファー層/陰極からなる有機 EL素子の作製法について説明する。
[0273] 作製法は前記同様である。即ち、まず適当な基体上に、所望の電極物質、例えば 陽極用物質からなる薄膜を、 1 z m以下、好ましくは 10nm〜200nmの膜厚になるよ うに、蒸着やスパッタリング等の方法により形成させ、陽極を作製する。次に、この上 に素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層等の有機化合物 を含有する薄膜を形成させる。
[0274] この有機化合物を含有する薄膜の形成方法としては、前記同様に、スピンコート法 、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすく 、かつピンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法、イン クジェット法、印刷法が特に好ましい。さらに層ごとに異なる製膜法を適用してもよい。
[0275] 製膜に蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類等により 異なるが、一般にボート加熱温度 50°C〜450°C、真空度 10— 6Pa〜: 10— 2Pa、蒸着速 度 0. 01nm〜50nm/秒、基板温度— 50°C〜300°C、膜厚 0. lnm〜5 x mの範 囲で適宜選ぶことが望ましレ、。 [0276] これらの層の形成後、その上に陰極用物質からなる薄膜を、 1 β m以下好ましくは 5 0nm〜200nmの範囲の膜厚になるように、例えば蒸着やスパッタリング等の方法に より形成させ、陰極を設けることにより、所望の有機 EL素子が得られる。この有機 EL 素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが 好ましいが、途中で取り出して異なる製膜法を施してもかまわない。その際、作業を 乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
[0277] 《表示装置》
本発明の請求の範囲第 5項〜第 18項の構成に係わる表示装置について説明する
[0278] 請求の範囲第 5項〜第 18項の構成に係わる発明の有機 EL素子を用いた画像表 示装置としては単色でも多色でもよい。多色表示装置の場合は、各色発光ユニット毎 に、シャドーマスクを設け、各色毎に蒸着法、キャスト法、スピンコート法、インクジエツ ト法、印刷法等により発光層を形成する。
[0279] 発光ユニットにパターユングを行う場合、その方法に限定はないが、好ましくは蒸着 法、インクジェット法、印刷法である。蒸着法を用いる場合においてはシャドーマスク を用いたパターユングが好ましい。
[0280] 単色、例えば白色の場合は、パターニングすることなく一面に蒸着法、キャスト法、 スピンコート法、インクジェット法、印刷法等により発光層を形成する。
[0281] また作製順序を逆にして、陰極、電子輸送層、発光層、正孔輸送層、正孔注入層、 陽極の順に作製することも可能である。
[0282] このようにして得られた画像表示装置に、直流電圧を印加する場合には、陽極を +
、陰極を—の極性として電圧 2〜40V程度を印加すると、発光が観測できる。また、 逆の極性で電圧を印加しても電流は流れずに発光は全く生じなレ、。さらに、交流電 圧を印加する場合には、陽極が +、陰極が—の状態になったときのみ発光する。な お、印加する交流の波形は任意でよい。
[0283] 白色表示装置の場合は、表示デバイス、ディスプレイ、各種発光光源として用いる こと力 Sできる。表示デバイス、ディスプレイにおいて、白色有機 EL素子をバックライト に用いることにより、フルカラーの表示が可能となる。 [0284] 表示デバイス、ディスプレイとしてはテレビ、パソコン、モパイル機器、 AV機器、文 字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生 する表示装置として使用してもよい。
[0285] 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告 、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光 センサーの光源等が挙げられるがこれに限定するものではない。
[0286] 《照明装置》
本発明の照明装置にっレ、て説明する。本発明の照明装置は上記有機 EL素子を 有する。
[0287] 本発明の有機 EL素子に共振器構造を持たせた有機 EL素子として用いてもよぐこ のような共振器構造を有した有機 EL素子の使用目的としては、光記憶媒体の光源、 電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる 力 これらに限定されなレ、。また、レーザー発振をさせることにより上記用途に使用し てもよい。
[0288] また、本発明の有機 EL素子は照明用や露光光源のような一種のランプとして使用 してもよいし、画像を投影するタイプのプロジェクシヨン装置や、静止画像や動画像を 直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の 表示装置として使用する場合の駆動方式は、単純マトリクス (パッシブマトリクス)方式 でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発 明の有機 EL素子を 2種以上使用することにより、フルカラー表示装置を作製すること が可能である。
[0289] 本発明の有機 EL素子を白色発光の素子として用いる場合は、 BGRのカラーフィル ターとの組み合わせによりフルカラー表示を行うことが出来る。
[0290] 本発明に係わる有機 EL素子は、また、照明装置として、実質白色の発光を生じる 有機 EL素子に適用できる。
[0291] 以下、本発明の有機 EL素子を有する表示装置の一例を図面に基づいて説明する
[0292] 図 2は、有機 EL素子から構成される表示装置の一例を示した模式図である。有機 EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの 模式図である。ディスプレイ 1は複数の画素を有する表示部 A、画像情報に基づいて 表示部 Aの画像走査を行う制御部 B等からなる。制御部 Bは表示部 Aと電気的に接 続され、複数の画素それぞれに外部からの画像情報に基づレ、て走查信号と画像デ ータ信号を送り、走査信号により走査線ごとの画素が画像データ信号に応じて順次 発光して画像走查を行って画像情報を表示部 Aに表示する。
[0293] 図 3は表示部 Aの模式図である。表示部 Aは、基板上に複数の走査線 5及びデー タ線 6を含む配線部と複数の画素 3等とを有する。表示部 Aの主要な部材の説明を 以下に行う。図においては、画素 3の発光した光が、白矢印方向(下方向)へ取り出さ れる場合を示してレ、る。配線部の走査線 5及び複数のデータ線 6はそれぞれ導電材 料からなり、走査線 5とデータ線 6は格子状に直交して、直交する位置で画素 3に接 続している(詳細は図示していない)。画素 3は走査線 5から走查信号が印加されると 、データ線 6から画像データ信号を受け取り、受け取った画像データに応じて発光す る。発光の色が赤領域の画素、緑領域の画素、青領域の画素を、適宜、同一基板上 に並置することによって、フルカラー表示が可能となる。
[0294] 次に、画素の発光プロセスを説明する。
[0295] 図 4は画素の模式図である。画素は有機 EL素子 10、スイッチングトランジスタ 11、 駆動トランジスタ 12、コンデンサ 13等を備えている。複数の画素に有機 EL素子 10と して、赤色、緑色、青色発光の有機 EL素子を用い、これらを同一基板上に並置する ことでフルカラー表示を行うことができる。
[0296] 図 4において、制御部 Bからデータ線 6を介してスイッチングトランジスタ 11のドレイ ンに画像データ信号が印加される。そして、制御部 Bから走査線 5を介してスィッチン グトランジスタ 11のゲートに走查信号が印加されると、スイッチングトランジスタ 11の 駆動がオンし、ドレインに印加された画像データ信号がコンデンサ 13と駆動トランジ スタ 12のゲートに伝達される。画像データ信号の伝達により、コンデンサ 13が画像デ ータ信号の電位に応じて充電されるとともに、駆動トランジスタ 12の駆動がオンする。 駆動トランジスタ 12は、ドレインが電源ライン 7に接続され、ソースが有機 EL素子 10 の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源 ライン 7から有機 EL素子 10に電流が供給される。制御部 Bの順次走査により走査信 号が次の走査線 5に移ると、スイッチングトランジスタ 11の駆動がオフする。しかし、ス イッチングトランジスタ 11の駆動がオフしてもコンデンサ 13は充電された画像データ 信号の電位を保持するので、駆動トランジスタ 12の駆動はオン状態が保たれて、次 の走查信号の印加が行われるまで有機 EL素子 10の発光が継続する。順次走査に より次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電 位に応じて駆動トランジスタ 12が駆動して有機 EL素子 10が発光する。
[0297] 即ち、有機 EL素子 10の発光は複数の画素それぞれの有機 EL素子 10に対して、 アクティブ素子であるスイッチングトランジスタ 11と駆動トランジスタ 12を設けて、複数 の画素 3それぞれの有機 EL素子 10の発光を行っている。このような発光方法をァク ティブマトリクス方式と呼んでいる。ここで、有機 EL素子 10の発光は、複数の階調電 位を持つ多値の画像データ信号による複数の階調の発光でもよレ、し、 2値の画像デ ータ信号による所定の発光量のオン、オフでもよレ、。また、コンデンサ 13の電位の保 持は、次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加さ れる直前に放電させてもょレ、。
[0298] 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査さ れたときのみデータ信号に応じて有機 EL素子を発光させるパッシブマトリクス方式の 発光駆動でもよい。
[0299] 図 5はパッシブマトリクス方式による表示装置の模式図である。図 5において、複数 の走査線 5と複数の画像データ線 6が画素 3を挟んで対向して格子状に設けられて いる。
[0300] 順次走查により走査線 5の走查信号が印加されたとき、印加された走査線 5に接続 している画素 3が画像データ信号に応じて発光する。パッシブマトリクス方式では画 素 3にアクティブ素子が無ぐ製造コストの低減が計れる。
[0301] 本発明の請求の範囲第 1項〜第 4項、及び第 13項〜第 18項の構成に係わる有機 EL材料は、また照明装置として実質白色の発光を生じる有機 EL素子に適用できる 。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得 る。複数の発光色の組み合わせとしては、青色、緑色、青色の 3原色の 3つの発光極 大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用 した 2つの発光極大波長を含有したものでもよい。
[0302] また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または 蛍光で発光する材料を、複数組み合わせたもの、蛍光またはリン光で発光する発光 材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもの のいずれでもよいが、本発明に係る白色有機 EL素子においては、発光ドーパントを 複数組み合わせ混合するだけでよい。発光層もしくは正孔輸送層あるいは電子輸送 層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよ ぐ他層は共通であるのでマスク等のパターユングは不要であり、一面に蒸着法、キ ヤスト法、スピンコート法、インクジェット法、印刷法等で、例えば、電極膜を形成でき、 生産性も向上する。この方法によれば、複数色の発光素子をアレー状に並列配置し た白色有機 EL装置と異なり、素子自体が発光白色である。
[0303] 発光層に用いる発光材料としては特に制限はなぐ例えば、液晶表示素子におけ るバックライトであれば、 CF (カラーフィルター)特性に対応した波長範囲に適合する ように、本発明に係る金属錯体、また公知の発光材料の中力 任意のものを選択して 組み合わせて白色化すればょレ、。
[0304] このように、本発明の請求の範囲第 1項〜第 4項、及び第 13項〜第 18項の構成に 係わる白色発光有機 EL素子は前記表示デバイス、ディスプレイに加えて、各種発光 光源、照明装置として、家庭用照明、車内照明、また露光光源のような一種のランプ として、また液晶表示装置のバックライト等、表示装置にも有用に用いられる。
[0305] その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写 真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を 必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
[0306] 本発明請求の範囲第 5項〜第 18項の構成に係わる白色有機 EL素子においては、 必要に応じ製膜時にメタルマスクやインクジェットプリンティング法等でパターユング を施してもよい。パターユングする場合は、電極のみをパターユングしてもいいし、電 極と発光層をパターユングしてもいいし、素子全層をパターユングしてもレ、い。
[0307] このように、本発明請求の範囲第 5項〜第 18項の構成に係わる白色発光有機 EL 素子は、前記表示デバイス、ディスプレイに加えて、各種発光光源、照明装置として 、家庭用照明、車内照明、また、露光光源のような一種のランプとして、液晶表示装 置のバックライト等、表示装置にも有用に用いられる。
[0308] その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写 真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を 必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
実施例
[0309] 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。また、 実施例に用レ、る化合物を下記に示す。
[0310] 実施例 1 (請求の範囲第 1項〜第 4項及び第 13項〜第 18項の構成に係わる発明) 《材料の HOMO準位及び LUMO準位の計算》
以下に示す化合物について、 HOMO, LUMOの値を計算した。米国 Gaussian 社製の分子軌道計算用ソフトウェアである Gaussian98 (Gaussian98、 Revision A. 11. 4, M. J. Frisch, et al. , Gaussian, Inc. , Pittsburgh PA, 2002. ) を用いて計算した時の値であり、ホスト化合物の HOMO、 LUMOの値はキーワード として B3LYPZ6— 31G *を用レ、、燐光性化合物の H〇MO、 LUMOの値は、キー ワードとして B3LYP/LanL2DZを用いて算出した。結果を以下に示す。
[0311] [表 2]
化合物名 HOMO(eV) LUMO(eV)
Fir(pic) -5.99 -2.36
EXD— 1 -4.70 -0.67
-5.13 一 0.97
1 -20 -5.02 -1.20
1一 1 -4.37 一 0.57 燐光性化合物
1一 2 -4.53 -0.76
1 -5 -4.18 -0.42
1 -58 -4.34 一 0.55
1 -90 -4.26 -0.47
1 -99 -4.36 -0.66
C B P -5.31 一 1.22
-5.78 -0.99
H-21 -5.83 -1.48
H-22 -5.91 -1.68
H— 23 -5.68 一 1.51
-5.66 -1.55
H-28 -5.45 -1.18
-5.50 0.95 ホスト化合物
-5.91 -0.93
-5.73 -1.16
H— 55 -6.31 一 1.21
H— 61 -6.52 -0.59
H-62 -5.83 -1.43
H-67 -5.45 -1.17
H-68 -5.62 -1.61
H— 70 -5.53 一 1.24 ]
Figure imgf000098_0001
Figure imgf000098_0002
[0313] 《有機 EL素子 1 1の作製》
陽極としてガラス上に ITOを 150nm成膜した基板(NHテクノグラス社製: NA— 45 )にパターユングを行った後、この ITO透明電極を設けた透明支持基板を iso プロ ピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行 つた。この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、 5 つのタンタル製抵抗加熱ボートに、 a _ NPD、 CBP、 Fir (pic)、 BC、 Alq
3 をそれぞれ入れ、真空蒸着装置 (第 1真空槽)に取付けた。更に、タンタル製抵抗加 熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボートにアルミニウムをそれぞ れ入れ、真空蒸着装置の第 2真空槽に取り付けた。
[0314] まず、第 1の真空槽を 4 X 10— 4Paまで減圧した後、 ひ—NPDの入った前記加熱ボ ートに通電して加熱し、蒸着速度 0.:!〜 0. 2nm/秒で透明支持基板に膜厚 90nm の厚さになるように蒸着し、正孔注入/輸送層を設けた。
[0315] 更に、 CBPの入った前記加熱ボートと Fir (pic)の入ったボートとをそれぞれ独立に 通電して、ホストイ匕合物である CBPと燐光性化合物である Fir (pic)の蒸着速度が 10 0 : 6になるように調節し、膜厚 30nmの厚さになるように蒸着し、発光層を設けた。
[0316] 次いで、 BCの入った前記加熱ボートに通電して加熱し、蒸着速度 0. :!〜 0. 2nm
/秒で厚さ 10nmの正孔阻止層を設けた。
[0317] 更に、 Alqの入った前記加熱ボートを通電して加熱し、蒸着速度 0.:!〜 0. 2nm/
3
秒で膜厚 20nmの電子輸送層を設けた。
[0318] 次に、電子輸送層まで成膜した素子を真空のまま第 2真空槽に移した後、電子輸 送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部からリ モートコントロールして設置した。第 2真空槽を 2 X 10— 4Paまで減圧した後、フッ化リチ ゥム入りのボートに通電して、蒸着速度 0. 01〜0. 02nmZ秒で膜厚 0. 5nmの陰極 バッファ一層を設け、次いでアルミニウムの入ったボートに通電して、蒸着速度:!〜 2 nmZ秒で膜厚 150nmの陰極をつけ、封止することで有機 EL素子 1 _ 1を作製した
[0319] 《有機 EL素子 1—2〜:!—19の作製》
有機 EL素子 1 1の作製において、表 2に記載のようにホストイ匕合物、燐光性化合 物を変更した以外は同様にして、有機 EL素子 1— 2〜1— 19を作製した。
[0320] [化 63] β— NPD
Figure imgf000099_0001
[0321] 《有機 EL素子の評価》 得られた有機 EL素子 1— 1〜1— 19につレ、て室温下、 1000cd/m2の輝度を与え る電圧を測定した。駆動電圧は、有機 EL素子 1—1を 100とする相対値で表した。得 られた結果を表 3に示す。
[表 3]
Figure imgf000100_0001
[0323] 表 3から、本発明で規定する H〇MO、 LUM〇準位の関係を有するホスト化合物と 燐光性化合物を組み合わせた有機 EL素子は、比較例の有機 EL素子に比べ、駆動 電圧が低電圧化することが明らかである。
[0324] 《有機 EL素子 1一 20の作製》
陽極としてガラス上に ITOを 150nm成膜した基板(NHテクノグラス社製: NA— 45 )にパターユングを行った後、この ITO透明電極を設けた透明支持基板を iso プロ ピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した。この透明支持基板上に 、ポリ(3, 4—エチレンジォキシチォフェン) ポリスチレンスルホネート(PEDOT/P SS、 Bayer社製、 Baytron P Al 4083)を純水で 70%に希釈した溶液を 3000r pm、 30秒でスピンコート法により製膜した後、 200°Cにて 1時間乾燥し、膜厚 30nm の正孔注入層を設け、その後、市販の真空蒸着装置の基板ホルダーに固定した。
[0325] 一方、 5つのタンタル製抵抗加熱ボートに、 a—NPD、 H— 28、 FIr6、 BAlq、 Alq
をそれぞれ入れ、真空蒸着装置 (第 1真空槽)に取り付けた。更に、 2つのタンダステ
3
ン製抵抗加熱ボートにマグネシウム(以下 Mg)と銀 (以下 Ag)をそれぞれ入れ、真空 蒸着装置の第 2真空槽に取り付けた。
[0326] [化 64]
Figure imgf000101_0001
[0327] まず、第 1の真空槽を 4 X 10—,Paまで減圧した後、 a NPDの入った前記加熱ボ ートに通電して加熱し、蒸着速度 0. lnm/秒〜 0. 2nm/秒で透明支持基板に膜 厚 90nmの厚さになるように蒸着し、正孔注入/輸送層を設けた。
[0328] 更に、 H_ 28の入った前記加熱ボートと Fir6の入ったボートとをそれぞれ独立に通 電して、ホストイ匕合物である H— 28と燐光性化合物である Fir6の蒸着速度が 100 : 6 になるように調節し、膜厚 30nmの厚さになるように蒸着し、発光層を設けた。 [0329] 次いで、 BAlqの入った前記加熱ボートに通電して加熱し、蒸着速度 0.:!〜 0. 2 nm/秒で厚さ 10nmの正孔阻止層を設けた。更に、 Alqの入った前記加熱ボートを
3
通電して加熱し、蒸着速度 0.:!〜 0. 2nm/秒で膜厚 30nmの電子輸送層を設けた
[0330] 次に、電子輸送層まで成膜した素子を真空のまま第 2真空槽に移した後、電子輸 送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部からリ モートコントロールして設置した。第 2真空槽を 2 X 10_4Paまで減圧した後、 Mgの入 つた前記加熱ボートと Agの入ったボートをそれぞれ独立に通電して共蒸着し、膜厚 1 50nmの MgAg (10: 1)陰極をつけ、封止することで有機 EL素子 1—20を作製した
[0331] 《有機 EL素子 1 _ 21〜:! _ 27の作製》
有機 EL素子 1— 20の作製において、表 4に記載のようにホストイ匕合物、燐光性化 合物の材料を変更した以外は同様にして、有機 EL素子 1— 21〜1— 27を作製した
[0332] 《有機 EL素子の評価》
得られた有機 EL素子 1— 20〜 1― 27につレ、て室温下、 1500cd/m2の輝度を与え る電圧を測定した。駆動電圧は、有機 EL素子 1— 20を 100とする相対値で表した。 得られた結果を表 4に示す。
[0333] [表 4]
Figure imgf000102_0001
[0334] 本発明の有機 EL素子の駆動電圧が低く好ましいことがわかる。 [0335] 実施例 2 (請求の範囲第 1項〜第 4項及び第 13項〜第 18項の構成に係わる発明) 《フルカラー表示装置の作製》
(青色発光素子の作製)
実施例 1の有機 EL素子 1— 10を青色発光素子として用いた。
[0336] (緑色発光素子の作製)
実施例 1の有機 EL素子 1— 10において、ホスト化合物を CBP、ドーパントを Ir (ppy ) に変更した以外は同様にして緑色発光素子を作製し、これを緑色発光素子として 用いた。
[0337] (赤色発光素子の作製)
実施例 1の有機 EL素子 1— 10において、ホスト化合物を CBP、ドーパントを Ir (btp y) に変更した以外は同様にして赤色発光素子を作製し、これを赤色発光素子として 用いた。
[0338] 上記で作製した赤色、緑色、青色発光有機 EL素子を同一基板上に並置し、図 2に 記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した。 図 3には、作製した前記表示装置の表示部 Aの模式図のみを示した。即ち、同一基 板上に複数の走査線 5及びデータ線 6を含む配線部と、並置した複数の画素 3 (発光 の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線 5及び複数のデータ線 6はそれぞれ導電材料からなり、走査線 5とデータ線 6は格子 状に直交して、直交する位置で画素 3に接続してレ、る(詳細は図示せず)。
[0339] 前記複数画素 3は、それぞれの発光色に対応した有機 EL素子、アクティブ素子で あるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリ タス方式で駆動されており、走査線 5から走查信号が印加されると、データ線 6から画 像データ信号を受け取り、受け取った画像データに応じて発光する。このように赤、 緑、青の画素を適宜、並置することによって、フルカラー表示装置を作製した。
[0340] このフルカラー表示装置は、駆動することにより、輝度が高ぐ高耐久性を有し、且 つ鮮明なフルカラー動画表示が得られることが分かった。
[0341] [化 65]
Figure imgf000104_0001
[0342] 実施例 3 (請求の範囲第 1項〜第 4項及び第 13項〜第 18項の構成に係わる発明) 《白色発光素子及び白色照明装置の作製》
実施例 1の透明電極基板の電極を 20mm X 20mmにパターユングし、その上に実 施例 1と同様に正孔注入 Z輸送層としてひ—NPDを 90nmの厚さで成膜し、更に H _ 25の入った前記加熱ボートと化合物 1 _ 2の入ったボート及び Ir (btpy) の入った
3 ボートをそれぞれ独立に通電して、ホストイ匕合物である H— 25、燐光性化合物である 1— 2、及び Ir (btpy) の蒸着速度が 100: 5: 0· 6になるように調節し、膜厚 30nmの
3
厚さになるように蒸着し、発光層を設けた。
[0343] 次いで、 BCを 10nm成膜して正孔阻止層を設けた。更に、 Alqを 40nmで成膜し
3
電子輸送層を設けた。
[0344] 次に、実施例 1と同様に、電子注入層の上にステンレス鋼製の透明電極とほぼ同じ 形状の正方形穴あきマスクを設置し、陰極バッファ一層としてフッ化リチウム 0. 5nm 及び陰極としてアルミニウム 150nmを蒸着成膜した。
[0345] この素子を実施例 1と同様な方法、及び同様な構造の封止構造を有する平面ラン プを作製した。この平面ランプに通電したところほぼ白色の光が得られ、照明装置と して使用できることが分かった。
[0346] 実施例 4 (請求の範囲第 5項〜第 18項)
〈有機 EL素子 la_ l〜: la_ l lの作製〉
陽極として 100mm X 100mm X 1. 1mmのガラス基板上に IT〇(インジウムチンォ キシド)を 150nm製膜した基板 (NHテクノグラス社製 NA45)にパターユングを行つ た後、この IT〇透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行なった。この透明支持基 板を市販の真空蒸着装置の基板ホルダーに固定し、一方モリブデン製抵抗加熱ボ ートに a—NPDを 200mg入れ、別のモリブデン製抵抗加熱ボートに例示化合物 H A—9を 200mg入れ、別のモリブデン製抵抗加熱ボートに例示リン光性化合物 1—1 を lOOmg入れ、更に別のモリブデン製抵抗加熱ボートに BAlqを 200mg入れ、真空 蒸着装置に取付けた。
[0347] 次いで真空槽を 4 X 10— 4Paまで減圧した後、 ひ一NPDの入った前記加熱ボートに 通電して加熱し、蒸着速度 0. InmZsecで透明支持基板に蒸着し 20nmの正孔輸 送層を設けた。
[0348] 更に例示化合物 HA— 9と例示リン光性化合物 1一 1の入った前記加熱ボートに通 電して加熱し、それぞれ蒸着速度 0. 2nm/sec、 0. Olnm/secで前記正孔輸送 層上に共蒸着して 40nmの発光層を設けた。更に BAlqの入った前記加熱ボートに 通電して加熱し、蒸着速度 0. lnm/secで前記発光層上に蒸着して膜厚 30nmの 電子輸送層を設けた。尚、蒸着時の基板温度は室温であった。
[0349] 引き続き、陰極バッファ一層としてフッ化リチウム 0. 5nmを蒸着し、更にアルミニゥ ム l lOnmを蒸着して陰極を形成し、有機 EL素子 la— 1を作製した。
[0350] 有機 EL素子 la— 1において、ホストイ匕合物およびリン光性化合物を表 5のように変 えた以外は、有機 EL素子 1 a— 1と同様にして有機 EL素子 1 a— 2〜: 1 a— 11を作製 した。
[0351] 〈比較有機 EL素子 la— 12〜: la— 14の作製〉
有機素子 la— 1において、ホストイ匕合物およびリン光性化合物を表 5のように変え た以外は、有機 EL素子 la— 1と同様にして有機 EL素子 la— 12〜: la— 14を作製し た。
[0352] 《外部取り出し量子効率》
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2 定電流を印加した時の外部取り出し量子効率(%)を測定した。尚、測定には分光放 射輝度計 CS— 1000 (コニカミノルタセンシング製)を用いた。
[0353] 得られた結果を表 5に示す。ここで、表 5の外部取り出し量子効率の測定結果は、 有機 EL素子 la— 13の測定値を 100とした時の相対値で表した。
[0354] [化 66]
Figure imgf000106_0001
[0355] [表 5]
Figure imgf000106_0002
[0356] 表 5力、ら、比較の有機 EL素子 la— 12〜: la— 14に比べて、本発明の有機 EL素子 la_ l〜la_ l l «、外部取り出し量子効率が高いことがわかる。
[0357] 〈有機 EL素子 la_ 15〜: la_ 21の作製〉
陽極として 100mm X 100mm X 1. 1mmのガラス基板上に IT〇(インジウムチンォ キシド)を 150nm製膜した基板 (NHテクノグラス社製 NA45)にパターユングを行つ た後、この IT〇透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥した。 [0358] この透明支持基板上に、ポリ(3, 4 エチレンジォキシチォフェン) ポリスチレンス ルホネート(PEDOT/PSS、 Bayer社製、 Baytron P A1 4083)を純水で 70% に希釈した溶液を 3000i"pm、 30秒でスピンコート法により製膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの正孔注入層を設け、その後、市販の真空蒸着装置の基 板ホルダーに固定した。
[0359] 一方モリブデン製抵抗加熱ボートにひ—NPDを 200mg入れ、別のモリブデン製抵 抗加熱ボートに例示化合物 HA—38を 200mg入れ、別のモリブデン製抵抗加熱ボ ートに例示リン光性化合物 1— 58を lOOmg入れ、更に別のモリブデン製抵抗加熱ボ ートに BAlqを 200mg入れ、真空蒸着装置に取付けた。
[0360] 次いで真空槽を 4 X 10— 4Paまで減圧した後、 ひ—NPDの入った前記加熱ボート に通電して加熱し、蒸着速度 0. Inm/secで透明支持基板に蒸着し 20nmの正孔 輸送層を設けた。
[0361] 更に例示化合物 HA— 38と例示リン光性化合物 1— 58の入った前記加熱ボートに 通電して加熱し、それぞれ蒸着速度 0· 2nm/sec、 0. Olnm/secで前記正孔輸 送層上に共蒸着して 40nmの発光層を設けた。更に BAlqの入った前記加熱ボート に通電して加熱し、蒸着速度 0. Inm/secで前記発光層上に蒸着して膜厚 30nm の電子輸送層を設けた。尚、蒸着時の基板温度は室温であった。
[0362] 引き続き、 Mgの入った前記加熱ボートと Agの入ったボートをそれぞれ独立に通電 して共蒸着し、膜厚 150nmの MgAg (10 : l)陰極をつけ、封止することで有機 EL素 子 la— 15を作製した。
[0363] 有機 EL素子 la— 15において、ホストイ匕合物およびリン光性化合物を表 6のように 変えた以外は、有機 EL素子 1&_ 15と同様にして有機£し素子1&_ 16〜1&_ 21を 作製した。
[0364] 〈比較有機 EL素子 la_ 22〜: la_ 23の作製〉
有機素子 la— 15において、ホストイ匕合物およびリン光性化合物を表 6のように変え た以外は、有機 EL素子 la— 1と同様にして有機 EL素子 la— 22〜: la— 23を作製し た。
[0365] 《外部取り出し量子効率》 作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で輝度 500cd/m 2の輝時の外部取り出し量子効率(%)を測定した。尚、測定には分光放射輝度計 C S— 1000 (コニ力ミノルタセンシング製)を用いた。
[0366] 得られた結果を表 6に示す。ここで、表 6の外部取り出し量子効率の測定結果は、 有機 EL素子 la_ 21の測定値を 100とした時の相対値で表した。
[0367] [表 6]
Figure imgf000108_0001
[0368] 実施例 5 (請求の範囲第 5項〜第 18項)
〈有機 EL素子 2_:!〜 2— 10の作製〉
陽極として 100mm X 100mm X 1. 1mmのガラス基板上に IT〇(インジウムチンォ キシド)を lOOnm製膜した基板 (NHテクノグラス社製 NA45)にパターユングを行つ た後、この IT〇透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行なった。この透明支持基 板を市販の真空蒸着装置の基板ホルダーに固定し、一方モリブデン製抵抗加熱ボ ートに a—NPDを 200mg入れ、別のモリブデン製抵抗加熱ボートに例示正孔輸送 性化合物 HT—36を 200mg入れ、別のモリブデン製抵抗加熱ボートに例示化合物 HA— 9を 200mg入れ、別のモリブデン製抵抗加熱ボートに例示化合物 1 1を 100 mg入れ、更に別のモリブデン製抵抗加熱ボートに BAlqを 200mg入れ、真空蒸着 装置に取付けた。
[0369] 次いで真空槽を 4 X 10— 4Paまで減圧した後、 α NPDの入った前記加熱ボートに 通電して加熱し、蒸着速度 0. lnm/secで透明支持基板に蒸着し 20nmの正孔輸 送層を設けた。
[0370] 更に例示化合物 HT— 36を蒸着速度 0. lnm/secで前記正孔輸送層上に蒸着し て 10nmの正孔輸送層 Aを設けた。
[0371] 更に例示化合物 HA— 9と例示リン光性化合物 1一 1の入った前記加熱ボートに通 電して加熱し、それぞれ蒸着速度 0. 2nm/sec、 0. Olnm/secで前記正孔輸送 層 A上に共蒸着して 40nmの発光層を設けた。
[0372] 更に例示化合物 HA— 9を蒸着速度 0. lnm/secで前記発光層上に蒸着して 10 nmの電子輸送層 Aを設けた。更に BAlqの入った前記加熱ボートに通電して加熱し
、蒸着速度 0. lnm/secで前記電子輸送層 A上に蒸着して膜厚 20nmの電子輸送 層を設けた。尚、蒸着時の基板温度は室温であった。
[0373] 引き続き、陰極バッファ一層としてフッ化リチウム 0. 5nmを蒸着し、更にアルミユウ ム l lOnmを蒸着して陰極を形成し、有機 EL素子 2— 1を作製した。
[0374] 有機 EL素子 2— 1において、正孔輸送層 Aの材料、ホスト化合物、リン光性化合物 および電子輸送層 Aの材料を表 7のように変えた以外は、有機 EL素子 2—1と同様 にして有機 EL素子 2— 2〜 2— 13を作製した。
[0375] 〈比較有機£ 素子2— 14〜2— 15の作製〉
有機素子 2— 1において、正孔輸送層 Aの材料、ホスト化合物、リン光性化合物お よび電子輸送層 A化合物を表 7のように変えた以外は、有機 EL素子 2— 1と同様にし て有機 EL素子 2— 14〜2— 15を作製した。
[0376] 《外部取り出し量子効率》
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2 定電流を印加した時の外部取り出し量子効率(%)を測定した。尚、測定には分光放 射輝度計 CS— 1000 (コニカミノルタセンシング製)を用いた。
[0377] 得られた結果を表 7に示す。ここで、表 2の外部取り出し量子効率の測定結果は、 有機 EL素子 2— 13の測定値を 100とした時の相対値で表した。
[0378] [表 7] 外部取り出し 有機 EL 正孔 T1 リン光性ホスト T1 電子 T1
量子効率 備考 輸送層 Λ (eV) 化合物 化合物 (eV)輸送層 Λ (eV)
{%)
2 - 1 ΗΤ-36 2.77 1 - 1 HA- 9 2.95 HA- 9 2.95 123 本発明
2 - 2 ΗΤ-37 2.9 1 - 2 HA- 9 2.95 HA-20 2.97 120 本発明
2 - 3 ΗΤ-39 2.79 1 - 5 HA- 9 2.95 HA-24 2.84 119 本発明
2 -4 ΗΤ- 8 3.02 1一 18 HA- 9 2.95 HA- 8 2.95 113 本発明
2 - 5 ΗΤ-35 2.76 1一 20 HA- 9 2.95 なし ― 112 本発明
2 - 6 ΗΤ-36 2.77 1 -60 HA- 9 2.95 HA-20 2.97 118 本発明
2 - 7 ΗΤ-36 2.77 1一 68 HA- 9 2.95 HA-24 2.84 115 本発明
2 - 8 ΗΤ-36 2.77 1 - 1 HA- 8 2.95 HA-24 2.84 121 本発明
2 - 9 ΗΤ-36 2.77 1一 58 HA- 9 2.95 なし ― 118 本発明
2 -10 ΗΤ-36 2.77 1 -58 HA-41 2.84 なし ― 124 本発明
2 -11 ΗΤ-36 2.77 1 -58 HA-41 2.84 HA-41 2.84 128 本発明
2 -12 ΗΤ-36 2.77 1 - 1 HA-20 2.97 なし ― 116 本発明
2 -13 なし ― 1 - 1 HA- 9 2.95 なし ― 100 本発明
2 -14 なし ― 1 - 1 BC 2.59 BC 2.59 75 比 較
2 -15 なし 一 1 - 1 C B P 2.67 HA-23 2.84 70 比 較
[0379] 表 7力ら、比較の有機£ 素子2— 14 2— 15に比べて、本発明の有機 EL素子 2
2— 13は、外部取り出し量子効率が高いことがわかる。
[0380] 実施例 6 (請求の範囲第 5項〜第 18項)
《有機 EL素子 3— :! 3— 10の作製》
有機 EL素子 la—:! la— 11において、 NPDを m - MTDATA: F4— TCNQ ( 質量比 99: 1)共蒸着膜 lOnmと NPD膜 lOnmの積層に変更し、 BAlqを BAlq膜 10 nn^BPhen:Cs (質量比 75: 25)共蒸着膜 20nmの積層に変更し、 LiFを蒸着しな 力、つた以外は同様にして有機 EL素子 3—:! 3— 11を作製した。
[0381] 得られた有機 EL素子 3_:! 3_11は、各々有機 EL素子 la_:! la_llと比較 して、どれも駆動電圧が 3V 6V低電圧化することが確認された。
[0382] [化 67] BPhen F4-TCNQ
Figure imgf000111_0001
[0383] 実施例 7 (請求の範囲第 5項〜第 18項)
実施例 4で作製した有機 EL素子 la_ 1におレ、て、例示リン光性化合物 1 _ 1に代 えて例示リン光性化合物 1— 1、 Ir_l、 Ir_2(l_l:Ir_l:Ir_2 = 2:l:2)を用レ、 た以外は、有機 EL素子 la— 1と同様にして有機 EL素子 4 1を作製した。
[0384] [化 68]
Figure imgf000111_0002
[0385] 《有機 EL素子 4 1を用レ、た画像表示装置の作製》
有機 EL素子 4 1の非発光面をガラスケースで覆い、発光面にカラーフィルターを 付け画像表示装置として用いたところ、良好なフルカラーの色表示性能を示し、優れ た画像表示装置として使用することができた。
[0386] 実施例 8 (請求の範囲第 5項〜第 18項)
実施例 1で作製した有機 EL素子 1一 1におレ、て、例示リン光性化合物 1一 1に代え て例示リン光性化合物 1 _ 1、 Ir _ 3 ( 1 _ 1: Ir _ 3 = 1: 3)を用レ、た以外は、有機 EL 素子 1 a _ 1と同様にして有機 EL素子 5 - 1を作製した。
[0387] [化 69]
Figure imgf000112_0001
《有機 EL素子 5— 1を用いた照明装置の作製》
有機 EL素子 5— 1の非発光面をガラスケースで覆い、照明装置とした。照明装置は 、発光効率が高い白色光を発する薄型の照明装置として使用することができた。

Claims

請求の範囲
基板上に電極と少なくとも 1層の有機層を有し、該有機層の少なくとも 1層がホストイ匕 合物と燐光性化合物とを含有する発光層である有機エレクト口ルミネッセンス素子に おいて、該ホストイ匕合物の HOMOが _ 7. 20eV〜一 5. 42eV LUMOが一2. 30 〜一 0. 50eVであり、該燐光性化合物が一般式(1)で表されることを特徴とする有機 エレクトロノレミネッセンス素子。
[化 1]
~«式《1
Figure imgf000113_0001
(式中、 Rは置換基を表す。 Zは 5〜7員環を形成するのに必要な非金属原子群を表
1
す。 nlは 0〜5の整数を表す。 B〜Bは炭素原子、窒素原子、酸素原子もしくは硫
1 4
黄原子を表し、少なくとも一つは窒素原子を表す。 Mは元素周期表における 8〜: 10
1
族の金属を表す。 X及び Xは炭素原子、窒素原子もしくは酸素原子を表し、 Lは X
1 2 1 1 及び Xと共に 2座の配位子を形成する原子群を表す。 mlは 1、 2または 3の整数を表
2
し、 m2は 0 1または 2の整数を表す力 ml +m2は 2または 3である。 )
[2] 前記燐光性化合物の HOMOがー 4. 80 3. 50eV LUMOがー 0. 80 + 1.
00eVであることを特徴とする請求の範囲第 1項に記載の有機エレクト口ルミネッセン ス素子。
[3] 前記一般式(1)で表される燐光性化合物において、 m2が 0であることを特徴とする 請求の範囲第 1項または第 2項に記載の有機エレクト口ルミネッセンス素子。
[4] 前記一般式(1)で表される燐光性化合物において、 B〜Bで形成される含窒素複
1 4
素環がイミダゾール環であることを特徴とする請求の範囲第 1項〜第 3項のいずれか 1項に記載の有機エレクト口ルミネッセンス素子。 [5] 基板上に電極と少なくとも 1層以上の有機層を有する有機エレクト口ルミネッセンス素 子において、該有機層の少なくとも 1層は燐光性化合物および電子輸送性ホストイ匕 合物を含有する発光層であり、該燐光性化合物の HOMOがー 5. 15 3. 50eV かつ LUM〇が—1. 25〜十 1. OOeVであり、該電子輸送性ホスト化合物の励起三 重項エネルギー T1が 2. 7eV以上であることを特徴とする有機エレクト口ルミネッセン ス素子。
[6] 前記燐光性化合物の HOMOが—4. 80 ― 3. 50eVかつ LUMOが—0. 80〜十
1. OOeVであることを特徴とする請求の範囲第 5項に記載の有機エレクト口ルミネッセ ンス素子。
[7] 前記燐光性化合物が下記一般式 (I)で表されることを特徴とする請求の範囲第 5項 または第 6項に記載の有機エレクト口ルミネッセンス素子。
[化 2] 一般式 (I)
Figure imgf000114_0001
〔式中、 Rは置換基を表す。 Zは 5 7員環を形成するのに必要な非金属原子群を表
1
nlは 0 5の整数を表す。 B Bは炭素原子、窒素原子、酸素原子もしくは硫黄
1 5
原子を表し、少なくとも一つは窒素原子を表す。 Mは元素周期表における 8族〜 10
1
族の金属を表す。 Xおよび Xは炭素原子、窒素原子もしくは酸素原子を表し、 Lは
1 2 1
Xおよび Xとともに 2座の配位子を形成する原子群を表す。 mlは 1、 2または 3の整
1 2
数を表し、 m2は 0、 1または 2の整数を表し、 ml +m2は 2または 3である。〕 前記一般式 (I)で表される燐光性化合物にぉレ、て、 m2が 0であることを特徴とする請 求の範囲第 7項に記載の有機エレクト口ルミネッセンス素子。 [9] 前記一般式 (I)で表される燐光性化合物において、 B〜Bで形成される含窒素複素
1 5
環がイミダゾール環であることを特徴とする請求の範囲第 7項または第 8項に記載の 有機エレクト口ルミネッセンス素子。
[10] 前記発光層と陽極の間に 2層以上の正孔輸送層があり、発光層と接する正孔輸送層
Aに含まれる有機化合物の T1が 2. 7eV以上であることを特徴とする請求の範囲第 5 項〜第 9項に記載の有機エレクト口ルミネッセンス素子。
[11] 前記発光層と陰極の間に 2層以上の電子輸送層があり、発光層と接する電子輸送層
Aに含まれる有機化合物の T1が 2. 7eV以上であることを特徴とする請求の範囲第 5 項〜第 10項に記載の有機エレクト口ルミネッセンス素子。
[12] 発光が白色であることを特徴とする請求の範囲第 5項〜第 11項に記載の有機エレク トロルミネッセンス素子。
[13] 前記一般式(1)または前記一般式 (I)が、下記一般式 (II)で表されることを特徴とす る請求の範囲第 1項〜第 4項または第 7項〜第 12項のいずれか 1項に記載の有機ェ レクト口ルミネッセンス素子。
[化 3]
—般式 (II)
Figure imgf000115_0001
〔式中、 R、 R、 Rは置換基を表す。 Zは 5〜7員環を形成するのに必要な非金属原
1 2 3
子群を表す。 nlは 0〜5の整数を表す。 Mは元素周期表における 8族〜 10族の金
1
属を表す。 Xおよび Xは炭素原子、窒素原子もしくは酸素原子を表し、 Lは Xおよ
1 2 1 1 び Xとともに 2座の配位子を形成する原子群を表す。 mlは 1、 2または 3の整数を表
2
し、
m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3である。〕 前記一般式(3)において、 Rで表される置換基が下記一般式 (III)で表されることを 特徴とする請求の範囲第 13項に記載の有機エレクト口ルミネッセンス素子。
[化 4] 一般式 (ΙΠ)
Figure imgf000116_0001
〔式中、 Rは立体パラメータ値 (Es値)が—0. 5以下の置換基を表す。 Rは置換基を 表し、 n5は 0〜4の整数を表す。尚、式中 *は結合位置を示す。〕
[15] 前記一般式(3)が、メシチル基(2, 4, 6—トリメチルフヱニル基)、であることを特徴と する請求の範囲第 14に記載の有機エレクト口ルミネッセンス素子。
[16] 請求の範囲第 1項〜第 15項のいずれか 1項に記載の有機エレクト口ルミネッセンス素 子を有することを特徴とする表示装置。
[17] 請求の範囲第 1項〜第 15項のいずれ力 1項に記載の有機エレクト口ルミネッセンス素 子を有することを特徴とする照明装置。
[18] 請求の範囲第 17項に記載の照明装置と表示手段としての液晶素子を有することを 特徴とする表示装置。
PCT/JP2007/054916 2006-03-17 2007-03-13 有機エレクトロルミネッセンス素子、表示装置および照明装置 WO2007108362A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/282,809 US20090091253A1 (en) 2006-03-17 2007-03-13 Organic electroluminescent element, display device and lighting device
JP2008506251A JP5672648B2 (ja) 2006-03-17 2007-03-13 有機エレクトロルミネッセンス素子、表示装置および照明装置
EP07738388.3A EP1998387B1 (en) 2006-03-17 2007-03-13 Organic electroluminescent device, display and illuminating device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006074177 2006-03-17
JP2006-074177 2006-03-17
JP2006138706 2006-05-18
JP2006-138706 2006-05-18

Publications (1)

Publication Number Publication Date
WO2007108362A1 true WO2007108362A1 (ja) 2007-09-27

Family

ID=38522394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054916 WO2007108362A1 (ja) 2006-03-17 2007-03-13 有機エレクトロルミネッセンス素子、表示装置および照明装置

Country Status (4)

Country Link
US (1) US20090091253A1 (ja)
EP (1) EP1998387B1 (ja)
JP (3) JP5672648B2 (ja)
WO (1) WO2007108362A1 (ja)

Cited By (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035664A1 (fr) * 2006-09-20 2008-03-27 Konica Minolta Holdings, Inc. Matériau de dispositif électroluminescent organique, dispositif électroluminescent organique, dispositif d'affichage et d'éclairage
WO2008044723A1 (en) * 2006-10-13 2008-04-17 Konica Minolta Holdings, Inc. Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
WO2008072596A1 (ja) * 2006-12-13 2008-06-19 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009008100A1 (ja) * 2007-07-10 2009-01-15 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2009021107A1 (en) 2007-08-08 2009-02-12 Universal Display Corporation Single triphenylene chromophores in phosphorescent light emitting diodes
WO2009069442A1 (ja) * 2007-11-26 2009-06-04 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009096549A1 (ja) * 2008-01-31 2009-08-06 Hodogaya Chemical Co., Ltd. 置換されたピリジル基とピリドインドール環構造がフェニレン基を介して連結した化合物および有機エレクトロルミネッセンス素子
JPWO2008035571A1 (ja) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP2010251675A (ja) * 2008-05-13 2010-11-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20110084601A1 (en) * 2008-07-01 2011-04-14 Konica Minolta Holdings, Inc. White light emission organic electroluminescent element, illuminating device and display
WO2011051404A1 (de) 2009-10-28 2011-05-05 Basf Se Heteroleptische carben-komplexe und deren verwendung in der organischen elektronik
WO2011073149A1 (de) 2009-12-14 2011-06-23 Basf Se Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
JP2013539207A (ja) * 2010-07-30 2013-10-17 メルク パテント ゲーエムベーハー 有機エレクトロルミネセンスデバイス
US8586204B2 (en) 2007-12-28 2013-11-19 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
WO2014012972A1 (en) 2012-07-19 2014-01-23 Basf Se Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
WO2014073791A1 (en) * 2012-11-09 2014-05-15 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device including the same
JP5499708B2 (ja) * 2007-10-29 2014-05-21 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2014147134A1 (en) 2013-03-20 2014-09-25 Basf Se Azabenzimidazole carbene complexes as efficiency booster in oleds
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
WO2015000955A1 (en) 2013-07-02 2015-01-08 Basf Se Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
US9156870B2 (en) 2010-02-25 2015-10-13 Universal Display Corporation Phosphorescent emitters
JP2015188090A (ja) * 2015-04-30 2015-10-29 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
EP3015469A1 (en) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3053918A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd 2-carbazole substituted benzimidazoles for electronic applications
EP3054498A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
EP3056504A1 (en) 2015-02-16 2016-08-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3061763A1 (en) 2015-02-27 2016-08-31 Universal Display Corporation Organic electroluminescent materials and devices
EP3070144A1 (en) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
EP3098229A1 (en) 2015-05-15 2016-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3101021A1 (en) 2015-06-01 2016-12-07 Universal Display Corporation Organic electroluminescent materials and devices
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
EP3124488A1 (en) 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
EP3159350A1 (en) 2015-09-03 2017-04-26 Universal Display Corporation Organic electroluminescent materials and devices
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
EP2329544B1 (en) * 2008-09-04 2017-05-17 Universal Display Corporation White phosphorescent organic light emitting devices
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017109727A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Hetero-condensed phenylquinazolines and their use in electronic devices
EP3205658A1 (en) 2016-02-09 2017-08-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3231809A2 (en) 2016-04-11 2017-10-18 Universal Display Corporation Organic electroluminescent materials and devices
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3239161A1 (en) 2013-07-31 2017-11-01 UDC Ireland Limited Luminescent diazabenzimidazole carbene metal complexes
EP3261146A2 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3261147A1 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
EP3270435A2 (en) 2016-06-20 2018-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US9917256B2 (en) 2012-11-09 2018-03-13 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device including the same
EP3297051A1 (en) 2016-09-14 2018-03-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3301088A1 (en) 2016-10-03 2018-04-04 Universal Display Corporation Condensed pyridines as organic electroluminescent materials and devices
EP3305796A1 (en) 2016-10-07 2018-04-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3321258A1 (en) 2016-11-09 2018-05-16 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3323822A1 (en) 2016-09-23 2018-05-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3345914A1 (en) 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3354654A2 (en) 2016-11-11 2018-08-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3381927A1 (en) 2017-03-29 2018-10-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3401318A1 (en) 2017-05-11 2018-11-14 Universal Display Corporation Organic electroluminescent materials and devices
EP3415521A1 (en) 2011-06-14 2018-12-19 UDC Ireland Limited Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
EP3418286A1 (en) 2017-06-23 2018-12-26 Universal Display Corporation Organic electroluminescent materials and devices
KR20190012117A (ko) * 2017-07-26 2019-02-08 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 디바이스
EP3444258A2 (en) 2017-08-10 2019-02-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3489243A1 (en) 2017-11-28 2019-05-29 University of Southern California Carbene compounds and organic electroluminescent devices
EP3492480A2 (en) 2017-11-29 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3492528A1 (en) 2017-11-30 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
EP3613751A1 (en) 2018-08-22 2020-02-26 Universal Display Corporation Organic electroluminescent materials and devices
US10644247B2 (en) 2015-02-06 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3690973A1 (en) 2019-01-30 2020-08-05 University Of Southern California Organic electroluminescent materials and devices
EP3689889A1 (en) 2019-02-01 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3715353A1 (en) 2019-03-26 2020-09-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3750897A1 (en) 2019-06-10 2020-12-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3771717A1 (en) 2019-07-30 2021-02-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3778614A1 (en) 2019-08-16 2021-02-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3816175A1 (en) 2019-11-04 2021-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3845545A1 (en) 2020-01-06 2021-07-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3858945A1 (en) 2020-01-28 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4001287A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4001286A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4016659A1 (en) 2020-11-16 2022-06-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4019526A1 (en) 2018-01-26 2022-06-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4039692A1 (en) 2021-02-03 2022-08-10 Universal Display Corporation Organic electroluminescent materials and devices
EP4053137A1 (en) 2021-03-05 2022-09-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4056578A1 (en) 2021-03-12 2022-09-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4059941A1 (en) 2021-03-15 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4075530A1 (en) 2021-04-14 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4074723A1 (en) 2021-04-05 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4079743A1 (en) 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4086266A1 (en) 2021-04-23 2022-11-09 Universal Display Corporation Organic electroluminescent materials and devices
EP4112701A2 (en) 2021-06-08 2023-01-04 University of Southern California Molecular alignment of homoleptic iridium phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A2 (en) 2022-02-16 2023-08-23 Universal Display Corporation Organic electroluminescent materials and devices
EP4242285A1 (en) 2022-03-09 2023-09-13 Universal Display Corporation Organic electroluminescent materials and devices
EP4265626A2 (en) 2022-04-18 2023-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4282863A1 (en) 2022-05-24 2023-11-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP4299693A1 (en) 2022-06-28 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4326030A1 (en) 2022-08-17 2024-02-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4362645A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362630A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362631A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4369898A1 (en) 2022-10-27 2024-05-15 Universal Display Corporation Organic electroluminescent materials and devices
EP4376583A2 (en) 2022-10-27 2024-05-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4386065A1 (en) 2022-12-14 2024-06-19 Universal Display Corporation Organic electroluminescent materials and devices
US12187748B2 (en) 2020-11-02 2025-01-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4489555A2 (en) 2018-03-12 2025-01-08 Universal Display Corporation Organic electroluminescent materials and devices

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157477A1 (ja) * 2008-06-26 2009-12-30 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子の製造方法及び白色発光有機エレクトロルミネッセンス素子
US8101699B2 (en) 2008-12-02 2012-01-24 General Electric Company Electron-transporting polymers
WO2010090077A1 (ja) * 2009-02-06 2010-08-12 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
US20100270537A1 (en) * 2009-04-22 2010-10-28 General Electric Company Optoelectronic devices and organic compounds used therein
JPWO2012049828A1 (ja) * 2010-10-12 2014-02-24 出光興産株式会社 芳香族複素環誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
JP2012182443A (ja) * 2011-02-11 2012-09-20 Semiconductor Energy Lab Co Ltd 発光素子及び発光装置
US10211413B2 (en) * 2012-01-17 2019-02-19 Universal Display Corporation Organic electroluminescent materials and devices
US20150021549A1 (en) * 2012-01-18 2015-01-22 The Penn State Research Foundation Light emitting diodes with quantum dot phosphors
JP6060095B2 (ja) 2012-02-03 2017-01-11 出光興産株式会社 カルバゾール化合物、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
KR20140145428A (ko) * 2013-06-13 2014-12-23 에스케이케미칼주식회사 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
CN103333158A (zh) * 2013-07-24 2013-10-02 苏州大学 N-苯基咔唑衍生物及其在电致磷光器件中的应用
KR101502316B1 (ko) * 2014-04-18 2015-03-13 롬엔드하스전자재료코리아유한회사 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
WO2016006523A1 (ja) * 2014-07-08 2016-01-14 住友化学株式会社 金属錯体およびそれを用いた発光素子
KR102357467B1 (ko) * 2014-07-22 2022-02-04 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
GB2548337A (en) 2016-03-08 2017-09-20 Cambridge Display Tech Ltd Compound, composition and organic light-emitting device
KR102706485B1 (ko) * 2016-11-14 2024-09-12 삼성디스플레이 주식회사 발광 소자
US11765970B2 (en) 2017-07-26 2023-09-19 Universal Display Corporation Organic electroluminescent materials and devices

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264692A (ja) 1987-03-02 1988-11-01 イーストマン・コダック・カンパニー 改良薄膜発光帯をもつ電場発光デバイス
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH03255190A (ja) 1990-01-22 1991-11-14 Pioneer Electron Corp 電界発光素子
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06325871A (ja) 1993-05-18 1994-11-25 Mitsubishi Kasei Corp 有機電界発光素子
JPH08288069A (ja) 1995-04-07 1996-11-01 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JPH0917574A (ja) 1995-04-27 1997-01-17 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0945479A (ja) 1995-07-27 1997-02-14 Hewlett Packard Co <Hp> 有機エレクトロルミネセンス装置及び有機エレクトロルミネセンス装置の製造方法
JPH09260062A (ja) 1996-03-25 1997-10-03 Tdk Corp 有機エレクトロルミネセンス素子
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
JPH11204359A (ja) 1998-01-14 1999-07-30 Tokin Corp 圧粉磁芯の製造方法と製造装置
JPH11204258A (ja) 1998-01-09 1999-07-30 Sony Corp 電界発光素子及びその製造方法
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP3093796B2 (ja) 1992-08-28 2000-10-03 出光興産株式会社 電荷注入補助材及びそれを含有する有機エレクトロルミネッセンス素子
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
JP2001102175A (ja) 1999-09-29 2001-04-13 Junji Kido 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
JP2001181617A (ja) 1999-12-27 2001-07-03 Fuji Photo Film Co Ltd オルトメタル化白金錯体からなる発光素子材料および発光素子
JP2001181616A (ja) 1999-12-27 2001-07-03 Fuji Photo Film Co Ltd オルトメタル化パラジウム錯体からなる発光素子材料および発光素子
JP2001247859A (ja) 1999-12-27 2001-09-14 Fuji Photo Film Co Ltd オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2001319780A (ja) 2000-05-02 2001-11-16 Fuji Photo Film Co Ltd 発光素子
JP2001319779A (ja) 2000-05-02 2001-11-16 Fuji Photo Film Co Ltd 発光素子
WO2001093642A1 (en) 2000-05-30 2001-12-06 The Trustees Of Princeton University Phosphorescent organic light emitting devices
JP2001345183A (ja) 2000-03-28 2001-12-14 Fuji Photo Film Co Ltd 高効率赤色発光素子、イリジウム錯体から成る発光素子材料及び新規イリジウム錯体
JP2001357977A (ja) 2000-06-12 2001-12-26 Fuji Photo Film Co Ltd 有機電界発光素子
JP2002015871A (ja) 2000-04-27 2002-01-18 Toray Ind Inc 発光素子
JP2002043056A (ja) 2000-07-19 2002-02-08 Canon Inc 発光素子
JP2002050483A (ja) 2000-05-22 2002-02-15 Showa Denko Kk 有機エレクトロルミネッセンス素子および発光材料
JP2002050484A (ja) 2000-05-22 2002-02-15 Semiconductor Energy Lab Co Ltd 発光装置および電気器具
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
JP2002062824A (ja) 2000-06-05 2002-02-28 Semiconductor Energy Lab Co Ltd 発光装置
JP2002083684A (ja) 2000-06-23 2002-03-22 Semiconductor Energy Lab Co Ltd 発光装置
JP2002100476A (ja) 2000-07-17 2002-04-05 Fuji Photo Film Co Ltd 発光素子及びアゾール化合物
JP2002100474A (ja) 2000-09-25 2002-04-05 Kyocera Corp 有機エレクトロルミネッセンス素子
JP2002117978A (ja) 2000-07-17 2002-04-19 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
JP2002141173A (ja) 2000-08-22 2002-05-17 Semiconductor Energy Lab Co Ltd 発光装置
JP2002170684A (ja) 2000-09-21 2002-06-14 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
JP2002175884A (ja) 2000-09-26 2002-06-21 Canon Inc 発光素子及び発光素子用金属配位化合物
JP2002173674A (ja) 2000-09-21 2002-06-21 Fuji Photo Film Co Ltd 発光素子および新規レニウム錯体
JP2002184582A (ja) 2000-09-28 2002-06-28 Semiconductor Energy Lab Co Ltd 発光装置
JP2002203678A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP2002203679A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP2002203683A (ja) 2000-10-30 2002-07-19 Toyota Central Res & Dev Lab Inc 有機電界発光素子
JP2002525833A (ja) 1998-09-25 2002-08-13 アイシス イノヴェイション リミテッド 二価ランタノイド金属錯体
JP2002525808A (ja) 1998-09-14 2002-08-13 ザ、トラスティーズ オブ プリンストン ユニバーシティ 高効率の電界発光デバイスのための構造
JP2002226495A (ja) 2000-11-29 2002-08-14 Canon Inc 金属配位化合物、発光素子及び表示装置
JP2002231453A (ja) 2000-11-30 2002-08-16 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002234894A (ja) 2000-11-29 2002-08-23 Canon Inc 金属配位化合物、発光素子及び表示装置
JP2002235076A (ja) 2001-02-09 2002-08-23 Fuji Photo Film Co Ltd 遷移金属錯体及びそれからなる発光素子用材料、並びに発光素子
JP2002241751A (ja) 2001-02-21 2002-08-28 Fuji Photo Film Co Ltd 発光素子用材料及び発光素子
JP2002260861A (ja) 2001-01-02 2002-09-13 Eastman Kodak Co 有機発光デバイス
JP2002280180A (ja) 2001-03-16 2002-09-27 Canon Inc 有機発光素子
JP2002280178A (ja) 2001-03-16 2002-09-27 Canon Inc 有機発光素子
JP2002280179A (ja) 2001-03-16 2002-09-27 Canon Inc 有機発光素子
JP2002299060A (ja) 2001-03-30 2002-10-11 Fuji Photo Film Co Ltd 有機発光素子
JP2002302516A (ja) 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002305084A (ja) 2000-12-25 2002-10-18 Fuji Photo Film Co Ltd 新規インドール誘導体およびそれを利用した発光素子
JP2002302671A (ja) 2000-02-10 2002-10-18 Fuji Photo Film Co Ltd イリジウム錯体からなる発光素子材料及び発光素子
JP2002305083A (ja) 2001-04-04 2002-10-18 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002308855A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002319491A (ja) 2000-08-24 2002-10-31 Fuji Photo Film Co Ltd 発光素子及び新規重合体子
JP2002324679A (ja) 2001-04-26 2002-11-08 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2002334786A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334788A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002332291A (ja) 2001-03-08 2002-11-22 Canon Inc 金属配位化合物、電界発光素子及び表示装置
JP2002334789A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002332292A (ja) 2001-03-08 2002-11-22 Canon Inc 金属配位化合物、電界発光素子及び表示装置
JP2002334787A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002540572A (ja) 1999-03-23 2002-11-26 ザ ユニバーシティー オブ サザン カリフォルニア 有機ledの燐光性ドーパントとしてのシクロメタル化金属錯体
JP2002338579A (ja) 2001-03-16 2002-11-27 Fuji Photo Film Co Ltd ヘテロ環化合物及びそれを用いた発光素子
JP2002338588A (ja) 2001-03-14 2002-11-27 Canon Inc 金属配位化合物、電界発光素子及び表示装置
JP2002343568A (ja) 2001-05-10 2002-11-29 Sony Corp 有機電界発光素子
JP2002343572A (ja) 2001-03-14 2002-11-29 Canon Inc ポルフィリン誘導体化合物を用いた発光素子および表示装置
JP2002352960A (ja) 2001-05-29 2002-12-06 Hitachi Ltd 薄膜電界発光素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2002359082A (ja) 2001-03-28 2002-12-13 Semiconductor Energy Lab Co Ltd 有機発光素子および前記素子を用いた発光装置
JP2002363552A (ja) 2001-03-08 2002-12-18 Univ Of Hong Kong 有機金属発光材料
JP2002363227A (ja) 2001-04-03 2002-12-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2003003165A (ja) 2001-06-25 2003-01-08 Showa Denko Kk 有機発光素子および発光材料
JP2003007471A (ja) 2001-04-13 2003-01-10 Semiconductor Energy Lab Co Ltd 有機発光素子および前記素子を用いた発光装置
JP2003007469A (ja) 2001-06-25 2003-01-10 Canon Inc 発光素子及び表示装置
JP2003027048A (ja) 2001-07-11 2003-01-29 Fuji Photo Film Co Ltd 発光素子
JP2003031366A (ja) 2001-07-11 2003-01-31 Semiconductor Energy Lab Co Ltd ドーパントを用いた有機発光素子および発光装置
US20040048101A1 (en) 2002-03-29 2004-03-11 Thompson Mark E. Organic light emitting devices with electron blocking layers
JP2004234952A (ja) 2003-01-29 2004-08-19 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
WO2004085450A2 (en) 2003-03-24 2004-10-07 The University Of Southern California Phenyl-pyrazole complexes of ir
US20050260448A1 (en) * 2004-05-18 2005-11-24 Chun Lin Novel organometallic compounds for use in electroluminescent devices
JP2005340123A (ja) 2004-05-31 2005-12-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2006009024A1 (ja) * 2004-07-23 2006-01-26 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006032599A (ja) * 2004-07-15 2006-02-02 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303607B1 (en) * 1998-09-10 2001-10-16 Cv Therapeutics, Inc. Method for administering a sustained release ranolanolazine formulation
US6660410B2 (en) 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
ATE482476T1 (de) * 2000-07-17 2010-10-15 Fujifilm Corp Lichtemittierendes element und azolverbindung
US6803720B2 (en) * 2000-12-15 2004-10-12 Universal Display Corporation Highly stable and efficient OLEDs with a phosphorescent-doped mixed layer architecture
JP2003133075A (ja) 2001-07-25 2003-05-09 Toray Ind Inc 発光素子
JP5135660B2 (ja) 2001-09-27 2013-02-06 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JPWO2003080761A1 (ja) 2002-03-25 2005-07-21 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
TWI314947B (en) * 2002-04-24 2009-09-21 Eastman Kodak Compan Organic light emitting diode devices with improved operational stability
US6687266B1 (en) * 2002-11-08 2004-02-03 Universal Display Corporation Organic light emitting materials and devices
JP4541152B2 (ja) 2002-12-12 2010-09-08 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP4158562B2 (ja) * 2003-03-12 2008-10-01 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
US7485376B2 (en) * 2003-03-26 2009-02-03 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, and display
JP2004311404A (ja) 2003-03-26 2004-11-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2005044791A (ja) 2003-07-08 2005-02-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置
ATE522539T1 (de) * 2003-07-22 2011-09-15 Idemitsu Kosan Co Iridiumorganischer komplex und elektrolumineszenzgerät, in dem dieser verwendet wird
JP4337475B2 (ja) * 2003-08-27 2009-09-30 三菱化学株式会社 有機金属錯体、発光材料、および有機電界発光素子
JP5112601B2 (ja) 2003-10-07 2013-01-09 三井化学株式会社 複素環化合物および該化合物を含有する有機電界発光素子
US20060251918A1 (en) * 2003-12-11 2006-11-09 Toshihiro Iwakuma Organic electroluminescent device material and organic electroluminescent device using same
WO2005062676A1 (ja) * 2003-12-24 2005-07-07 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置および表示装置
JP4600287B2 (ja) * 2003-12-24 2010-12-15 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2005203293A (ja) * 2004-01-19 2005-07-28 Mitsubishi Chemicals Corp 発光材料及び有機電界発光素子
TW200541401A (en) * 2004-02-13 2005-12-16 Idemitsu Kosan Co Organic electroluminescent device
JP4661781B2 (ja) * 2004-04-14 2011-03-30 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4894513B2 (ja) * 2004-06-17 2012-03-14 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20060008670A1 (en) * 2004-07-06 2006-01-12 Chun Lin Organic light emitting materials and devices
WO2006008977A1 (ja) * 2004-07-16 2006-01-26 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、画像表示素子および照明装置
JP2006028101A (ja) * 2004-07-16 2006-02-02 Saitama Univ 有機金属錯体及び有機電界発光素子
JP5157442B2 (ja) * 2005-04-18 2013-03-06 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US9051344B2 (en) * 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
JP5107237B2 (ja) 2005-05-30 2012-12-26 チバ ホールディング インコーポレーテッド エレクトロルミネセント素子
KR101308282B1 (ko) * 2005-09-05 2013-09-13 이데미쓰 고산 가부시키가이샤 청색 발광 유기 전계 발광 소자
US8758903B2 (en) * 2005-10-31 2014-06-24 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
US7651791B2 (en) * 2005-12-15 2010-01-26 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and electroluminescence device employing the same
WO2007069569A1 (ja) 2005-12-15 2007-06-21 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US20070224446A1 (en) 2006-03-24 2007-09-27 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US8771840B2 (en) * 2009-11-13 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Heterocyclic compound, light-emitting element, light-emitting device, electronic device, and lighting device

Patent Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264692A (ja) 1987-03-02 1988-11-01 イーストマン・コダック・カンパニー 改良薄膜発光帯をもつ電場発光デバイス
JPH03255190A (ja) 1990-01-22 1991-11-14 Pioneer Electron Corp 電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JP3093796B2 (ja) 1992-08-28 2000-10-03 出光興産株式会社 電荷注入補助材及びそれを含有する有機エレクトロルミネッセンス素子
JPH06325871A (ja) 1993-05-18 1994-11-25 Mitsubishi Kasei Corp 有機電界発光素子
JPH08288069A (ja) 1995-04-07 1996-11-01 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JPH0917574A (ja) 1995-04-27 1997-01-17 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0945479A (ja) 1995-07-27 1997-02-14 Hewlett Packard Co <Hp> 有機エレクトロルミネセンス装置及び有機エレクトロルミネセンス装置の製造方法
JPH09260062A (ja) 1996-03-25 1997-10-03 Tdk Corp 有機エレクトロルミネセンス素子
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
JPH11204258A (ja) 1998-01-09 1999-07-30 Sony Corp 電界発光素子及びその製造方法
JPH11204359A (ja) 1998-01-14 1999-07-30 Tokin Corp 圧粉磁芯の製造方法と製造装置
JP2002525808A (ja) 1998-09-14 2002-08-13 ザ、トラスティーズ オブ プリンストン ユニバーシティ 高効率の電界発光デバイスのための構造
JP2002525833A (ja) 1998-09-25 2002-08-13 アイシス イノヴェイション リミテッド 二価ランタノイド金属錯体
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP2002540572A (ja) 1999-03-23 2002-11-26 ザ ユニバーシティー オブ サザン カリフォルニア 有機ledの燐光性ドーパントとしてのシクロメタル化金属錯体
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
JP2001102175A (ja) 1999-09-29 2001-04-13 Junji Kido 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
JP2001247859A (ja) 1999-12-27 2001-09-14 Fuji Photo Film Co Ltd オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体
JP2001181616A (ja) 1999-12-27 2001-07-03 Fuji Photo Film Co Ltd オルトメタル化パラジウム錯体からなる発光素子材料および発光素子
JP2001181617A (ja) 1999-12-27 2001-07-03 Fuji Photo Film Co Ltd オルトメタル化白金錯体からなる発光素子材料および発光素子
JP2002302671A (ja) 2000-02-10 2002-10-18 Fuji Photo Film Co Ltd イリジウム錯体からなる発光素子材料及び発光素子
JP2001345183A (ja) 2000-03-28 2001-12-14 Fuji Photo Film Co Ltd 高効率赤色発光素子、イリジウム錯体から成る発光素子材料及び新規イリジウム錯体
JP2002015871A (ja) 2000-04-27 2002-01-18 Toray Ind Inc 発光素子
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2001319779A (ja) 2000-05-02 2001-11-16 Fuji Photo Film Co Ltd 発光素子
JP2001319780A (ja) 2000-05-02 2001-11-16 Fuji Photo Film Co Ltd 発光素子
JP2002050483A (ja) 2000-05-22 2002-02-15 Showa Denko Kk 有機エレクトロルミネッセンス素子および発光材料
JP2002050484A (ja) 2000-05-22 2002-02-15 Semiconductor Energy Lab Co Ltd 発光装置および電気器具
WO2001093642A1 (en) 2000-05-30 2001-12-06 The Trustees Of Princeton University Phosphorescent organic light emitting devices
JP2002062824A (ja) 2000-06-05 2002-02-28 Semiconductor Energy Lab Co Ltd 発光装置
JP2001357977A (ja) 2000-06-12 2001-12-26 Fuji Photo Film Co Ltd 有機電界発光素子
JP2002083684A (ja) 2000-06-23 2002-03-22 Semiconductor Energy Lab Co Ltd 発光装置
JP2002117978A (ja) 2000-07-17 2002-04-19 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
JP2002100476A (ja) 2000-07-17 2002-04-05 Fuji Photo Film Co Ltd 発光素子及びアゾール化合物
JP2002043056A (ja) 2000-07-19 2002-02-08 Canon Inc 発光素子
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
JP2002141173A (ja) 2000-08-22 2002-05-17 Semiconductor Energy Lab Co Ltd 発光装置
JP2002319491A (ja) 2000-08-24 2002-10-31 Fuji Photo Film Co Ltd 発光素子及び新規重合体子
JP2002170684A (ja) 2000-09-21 2002-06-14 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
JP2002173674A (ja) 2000-09-21 2002-06-21 Fuji Photo Film Co Ltd 発光素子および新規レニウム錯体
JP2002100474A (ja) 2000-09-25 2002-04-05 Kyocera Corp 有機エレクトロルミネッセンス素子
JP2002175884A (ja) 2000-09-26 2002-06-21 Canon Inc 発光素子及び発光素子用金属配位化合物
JP2002184582A (ja) 2000-09-28 2002-06-28 Semiconductor Energy Lab Co Ltd 発光装置
JP2002203683A (ja) 2000-10-30 2002-07-19 Toyota Central Res & Dev Lab Inc 有機電界発光素子
JP2002226495A (ja) 2000-11-29 2002-08-14 Canon Inc 金属配位化合物、発光素子及び表示装置
JP2002234894A (ja) 2000-11-29 2002-08-23 Canon Inc 金属配位化合物、発光素子及び表示装置
JP2002231453A (ja) 2000-11-30 2002-08-16 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002305084A (ja) 2000-12-25 2002-10-18 Fuji Photo Film Co Ltd 新規インドール誘導体およびそれを利用した発光素子
JP2002203678A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP2002203679A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP2002260861A (ja) 2001-01-02 2002-09-13 Eastman Kodak Co 有機発光デバイス
JP2002235076A (ja) 2001-02-09 2002-08-23 Fuji Photo Film Co Ltd 遷移金属錯体及びそれからなる発光素子用材料、並びに発光素子
JP2002241751A (ja) 2001-02-21 2002-08-28 Fuji Photo Film Co Ltd 発光素子用材料及び発光素子
JP2002363552A (ja) 2001-03-08 2002-12-18 Univ Of Hong Kong 有機金属発光材料
JP2002332292A (ja) 2001-03-08 2002-11-22 Canon Inc 金属配位化合物、電界発光素子及び表示装置
JP2002332291A (ja) 2001-03-08 2002-11-22 Canon Inc 金属配位化合物、電界発光素子及び表示装置
JP2002334786A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334787A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334789A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334788A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002338588A (ja) 2001-03-14 2002-11-27 Canon Inc 金属配位化合物、電界発光素子及び表示装置
JP2002343572A (ja) 2001-03-14 2002-11-29 Canon Inc ポルフィリン誘導体化合物を用いた発光素子および表示装置
JP2002280179A (ja) 2001-03-16 2002-09-27 Canon Inc 有機発光素子
JP2002280180A (ja) 2001-03-16 2002-09-27 Canon Inc 有機発光素子
JP2002280178A (ja) 2001-03-16 2002-09-27 Canon Inc 有機発光素子
JP2002338579A (ja) 2001-03-16 2002-11-27 Fuji Photo Film Co Ltd ヘテロ環化合物及びそれを用いた発光素子
JP2002359082A (ja) 2001-03-28 2002-12-13 Semiconductor Energy Lab Co Ltd 有機発光素子および前記素子を用いた発光装置
JP2002299060A (ja) 2001-03-30 2002-10-11 Fuji Photo Film Co Ltd 有機発光素子
JP2002363227A (ja) 2001-04-03 2002-12-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002302516A (ja) 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002305083A (ja) 2001-04-04 2002-10-18 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002308855A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2003007471A (ja) 2001-04-13 2003-01-10 Semiconductor Energy Lab Co Ltd 有機発光素子および前記素子を用いた発光装置
JP2002324679A (ja) 2001-04-26 2002-11-08 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2002343568A (ja) 2001-05-10 2002-11-29 Sony Corp 有機電界発光素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2002352960A (ja) 2001-05-29 2002-12-06 Hitachi Ltd 薄膜電界発光素子
JP2003003165A (ja) 2001-06-25 2003-01-08 Showa Denko Kk 有機発光素子および発光材料
JP2003007469A (ja) 2001-06-25 2003-01-10 Canon Inc 発光素子及び表示装置
JP2003027048A (ja) 2001-07-11 2003-01-29 Fuji Photo Film Co Ltd 発光素子
JP2003031366A (ja) 2001-07-11 2003-01-31 Semiconductor Energy Lab Co Ltd ドーパントを用いた有機発光素子および発光装置
US20040048101A1 (en) 2002-03-29 2004-03-11 Thompson Mark E. Organic light emitting devices with electron blocking layers
JP2004234952A (ja) 2003-01-29 2004-08-19 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
WO2004085450A2 (en) 2003-03-24 2004-10-07 The University Of Southern California Phenyl-pyrazole complexes of ir
US20050260448A1 (en) * 2004-05-18 2005-11-24 Chun Lin Novel organometallic compounds for use in electroluminescent devices
JP2005340123A (ja) 2004-05-31 2005-12-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2006032599A (ja) * 2004-07-15 2006-02-02 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2006009024A1 (ja) * 2004-07-23 2006-01-26 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
"Organic EL Elements and Idustrialization Front Thereof", 30 November 1998, N. T. S CORP., pages: 273
"Organic EL Elements and Industrialization Front thereof", vol. 2, 30 November 1998, N. T. S CORP., pages: 123 - 166
C. ADACHI ET AL., APPLIED PHYSICS LETTERS, vol. 79, no. 13, 2003, pages 2082 - 2084
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, vol. 4, 2004, pages 695 - 709
INORGANIC CHEMISTRY, vol. 30, no. 8, 1991, pages 1685 - 1687
INORGANIC CHEMISTRY, vol. 40, no. 7, 2001, pages 1704 - 1711
INORGANIC CHEMISTRY, vol. 41, no. 12, 2002, pages 3055 - 3066
J. AM. CHEM. SOC., vol. 123, 2001, pages 4304
J. APPL. PHYS., vol. 95, 2004, pages 5773
J. HOLMES ET AL., APPLIED PHYSICS LETTERS, vol. 83, no. 18, 2003, pages 3818 - 3820
M. A. BALDO ET AL., NATURE, vol. 395, 1998, pages 151 - 154
M. A. BALDO ET AL., NATURE, vol. 403, no. 17, 2000, pages 750 - 753
M. E. TOMPSON ET AL., THE 10TH INTERNATIONAL WORKSHOP ON INORGANIC AND ORGANIC ELECTROLUMINESCENCE
MOON-JAE YOUN. OG; TETSUO TSUTSUI ET AL., THE 10TH INTERNATIONAL WORKSHOP ON INORGANIC AND ORGANIC ELECTROLUMINESCENCE
NEW JOURNAL OF CHEMISTRY, vol. 26, 2002, pages 1171
ORGANIC LETTER, vol. 3, no. 16, 2001, pages 2579 - 2581
S. LAMANSKY ET AL., J. AM. CHEM. SOC., vol. 123, 2001, pages 4304
See also references of EP1998387A1

Cited By (208)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008035664A1 (ja) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008035664A1 (fr) * 2006-09-20 2008-03-27 Konica Minolta Holdings, Inc. Matériau de dispositif électroluminescent organique, dispositif électroluminescent organique, dispositif d'affichage et d'éclairage
JPWO2008035571A1 (ja) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP5644050B2 (ja) * 2006-09-20 2014-12-24 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料
JP5556014B2 (ja) * 2006-09-20 2014-07-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2008044723A1 (en) * 2006-10-13 2008-04-17 Konica Minolta Holdings, Inc. Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
JP5099013B2 (ja) * 2006-10-13 2012-12-12 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US10109800B2 (en) 2006-12-13 2018-10-23 Konica Minolta, Inc. Organic electroluminescent element, display device and lighting device
WO2008072596A1 (ja) * 2006-12-13 2008-06-19 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US9627630B2 (en) 2006-12-13 2017-04-18 Konica Minolta, Inc. Organic electroluminescent element, display device and lighting device
US9048434B2 (en) 2006-12-13 2015-06-02 Konica Minolta, Inc. Organic electroluminescent element, display device and lighting device
US8541112B2 (en) 2006-12-13 2013-09-24 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
US9590180B2 (en) 2007-06-23 2017-03-07 Universal Display Corporation Organic electroluminescent materials and devices
US9209410B2 (en) 2007-07-10 2015-12-08 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device utilizing the same
US8114530B2 (en) 2007-07-10 2012-02-14 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device utilizing the same
JP5619418B2 (ja) * 2007-07-10 2014-11-05 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2009008100A1 (ja) * 2007-07-10 2009-01-15 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US9608206B2 (en) 2007-08-08 2017-03-28 Universal Display Corporation Organic electroluminescent materials and devices
US10957858B2 (en) 2007-08-08 2021-03-23 Universal Display Corporation Organic electroluminescent materials and devices
EP2511254A2 (en) 2007-08-08 2012-10-17 Universal Display Corporation Single triphenylene chromophores in phosphorescent light emitting diodes
US8652652B2 (en) 2007-08-08 2014-02-18 Universal Display Corporation Single triphenylene chromophores in phosphorescent light emitting diodes
EP3424918A1 (en) 2007-08-08 2019-01-09 Universal Display Corporation Single triphenylene chromophores in phosphorescent light emitting diodes
US10312450B2 (en) 2007-08-08 2019-06-04 Universal Display Corporation Organic electroluminescent materials and devices
WO2009021107A1 (en) 2007-08-08 2009-02-12 Universal Display Corporation Single triphenylene chromophores in phosphorescent light emitting diodes
US12082493B2 (en) 2007-08-08 2024-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US11690286B2 (en) 2007-08-08 2023-06-27 Universal Display Corporation Organic electroluminescent materials and devices
JP5499708B2 (ja) * 2007-10-29 2014-05-21 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2009069442A1 (ja) * 2007-11-26 2009-06-04 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US8586204B2 (en) 2007-12-28 2013-11-19 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
WO2009096549A1 (ja) * 2008-01-31 2009-08-06 Hodogaya Chemical Co., Ltd. 置換されたピリジル基とピリドインドール環構造がフェニレン基を介して連結した化合物および有機エレクトロルミネッセンス素子
US8377573B2 (en) 2008-01-31 2013-02-19 Hodogaya Chemical Co., Ltd. Compound having substituted pyridyl group and pyridoindole ring structure linked through phenylene group, and organic electroluminescent device
JP2010251675A (ja) * 2008-05-13 2010-11-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US8951650B2 (en) 2008-05-13 2015-02-10 Konica Minolta Holdings, Inc. Organic electroluminescent element including a condensed aromatic heterocyclic ring compound
US8790793B2 (en) * 2008-05-13 2014-07-29 Konica Minolta Holdings, Inc. Organic electroluminescent element with electron transport layer containing condensed aromatic heterocyclic compound, display device and lighting device
US20110084601A1 (en) * 2008-07-01 2011-04-14 Konica Minolta Holdings, Inc. White light emission organic electroluminescent element, illuminating device and display
EP2329544B1 (en) * 2008-09-04 2017-05-17 Universal Display Corporation White phosphorescent organic light emitting devices
US11189806B2 (en) 2009-10-28 2021-11-30 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
WO2011051404A1 (de) 2009-10-28 2011-05-05 Basf Se Heteroleptische carben-komplexe und deren verwendung in der organischen elektronik
US11871654B2 (en) 2009-10-28 2024-01-09 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
US9487548B2 (en) 2009-12-14 2016-11-08 Udc Ireland Limited Metal complexes comprising diazabenzimidazolocarbene ligands and the use thereof in OLEDs
US11444254B2 (en) 2009-12-14 2022-09-13 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
US10916716B2 (en) 2009-12-14 2021-02-09 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
US11839140B2 (en) 2009-12-14 2023-12-05 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
WO2011073149A1 (de) 2009-12-14 2011-06-23 Basf Se Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
US10090476B2 (en) 2009-12-14 2018-10-02 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
US9156870B2 (en) 2010-02-25 2015-10-13 Universal Display Corporation Phosphorescent emitters
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
US9236578B2 (en) 2010-07-30 2016-01-12 Merck Patent Gmbh Organic electroluminescent device
JP2013539207A (ja) * 2010-07-30 2013-10-17 メルク パテント ゲーエムベーハー 有機エレクトロルミネセンスデバイス
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
EP3415521A1 (en) 2011-06-14 2018-12-19 UDC Ireland Limited Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
WO2014012972A1 (en) 2012-07-19 2014-01-23 Basf Se Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
US9590196B2 (en) 2012-07-19 2017-03-07 Udc Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in OLEDs
EP3133079A1 (en) 2012-07-19 2017-02-22 UDC Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
WO2014073791A1 (en) * 2012-11-09 2014-05-15 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device including the same
US9917256B2 (en) 2012-11-09 2018-03-13 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device including the same
WO2014147134A1 (en) 2013-03-20 2014-09-25 Basf Se Azabenzimidazole carbene complexes as efficiency booster in oleds
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
EP3608329A1 (en) 2013-07-02 2020-02-12 UDC Ireland Limited Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
WO2015000955A1 (en) 2013-07-02 2015-01-08 Basf Se Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
EP3266789A1 (en) 2013-07-02 2018-01-10 UDC Ireland Limited Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
EP3239161A1 (en) 2013-07-31 2017-11-01 UDC Ireland Limited Luminescent diazabenzimidazole carbene metal complexes
EP3916822A1 (en) 2013-12-20 2021-12-01 UDC Ireland Limited Highly efficient oled devices with very short decay times
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US11765967B2 (en) 2013-12-20 2023-09-19 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US11075346B2 (en) 2013-12-20 2021-07-27 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US10118939B2 (en) 2014-03-31 2018-11-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an o-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
US10370396B2 (en) 2014-03-31 2019-08-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometallated aryl group and their use in organic light emitting diodes
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
WO2016067261A1 (en) 2014-10-30 2016-05-06 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
EP3015469A1 (en) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
WO2016097983A1 (en) 2014-12-15 2016-06-23 Idemitsu Kosan Co., Ltd. 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (oleds)
WO2016125110A1 (en) 2015-02-06 2016-08-11 Idemitsu Kosan Co., Ltd. Bisimidazolodiazocines
US11245081B2 (en) 2015-02-06 2022-02-08 Universal Display Corporation Organic electroluminescent materials and devices
EP3054498A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
EP3053918A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd 2-carbazole substituted benzimidazoles for electronic applications
US10644247B2 (en) 2015-02-06 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3056504A1 (en) 2015-02-16 2016-08-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3061763A1 (en) 2015-02-27 2016-08-31 Universal Display Corporation Organic electroluminescent materials and devices
EP3070144A1 (en) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
WO2016157113A1 (en) 2015-03-31 2016-10-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
JP2015188090A (ja) * 2015-04-30 2015-10-29 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
EP3098229A1 (en) 2015-05-15 2016-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3101021A1 (en) 2015-06-01 2016-12-07 Universal Display Corporation Organic electroluminescent materials and devices
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
EP4060757A1 (en) 2015-06-03 2022-09-21 UDC Ireland Limited Highly efficient oled devices with very short decay times
EP3124488A1 (en) 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3760635A1 (en) 2015-09-03 2021-01-06 Universal Display Corporation Organic electroluminescent materials and devices
EP3159350A1 (en) 2015-09-03 2017-04-26 Universal Display Corporation Organic electroluminescent materials and devices
WO2017056052A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017109727A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Hetero-condensed phenylquinazolines and their use in electronic devices
WO2017109722A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them
EP3858842A1 (en) 2016-02-09 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3205658A1 (en) 2016-02-09 2017-08-16 Universal Display Corporation Organic electroluminescent materials and devices
EP4122941A1 (en) 2016-04-11 2023-01-25 Universal Display Corporation Organic electroluminescent materials and devices
EP3231809A2 (en) 2016-04-11 2017-10-18 Universal Display Corporation Organic electroluminescent materials and devices
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3758084A1 (en) 2016-06-20 2020-12-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4349935A2 (en) 2016-06-20 2024-04-10 Universal Display Corporation Organic electroluminescent materials and devices
EP3261146A2 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3261147A1 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3920254A1 (en) 2016-06-20 2021-12-08 Universal Display Corporation Organic electroluminescent materials and devices
EP3270435A2 (en) 2016-06-20 2018-01-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3843171A1 (en) 2016-06-20 2021-06-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3297051A1 (en) 2016-09-14 2018-03-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3323822A1 (en) 2016-09-23 2018-05-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3301088A1 (en) 2016-10-03 2018-04-04 Universal Display Corporation Condensed pyridines as organic electroluminescent materials and devices
EP4477647A1 (en) 2016-10-03 2024-12-18 Universal Display Corporation Condensed pyridines as organic electroluminescent materials and devices
EP3305796A1 (en) 2016-10-07 2018-04-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3858844A1 (en) 2016-10-07 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3321258A1 (en) 2016-11-09 2018-05-16 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3789379A1 (en) 2016-11-09 2021-03-10 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3354654A2 (en) 2016-11-11 2018-08-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4092036A1 (en) 2016-11-11 2022-11-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3689890A1 (en) 2017-01-09 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3345914A1 (en) 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
EP4212540A1 (en) 2017-01-09 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP3730506A1 (en) 2017-03-29 2020-10-28 Universal Display Corporation Organic electroluminescent materials and devices
EP3985012A1 (en) 2017-03-29 2022-04-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3381927A1 (en) 2017-03-29 2018-10-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3401318A1 (en) 2017-05-11 2018-11-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4141010A1 (en) 2017-05-11 2023-03-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3418286A1 (en) 2017-06-23 2018-12-26 Universal Display Corporation Organic electroluminescent materials and devices
KR20230074672A (ko) * 2017-07-26 2023-05-31 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 디바이스
KR102535091B1 (ko) * 2017-07-26 2023-05-19 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 디바이스
KR102798421B1 (ko) * 2017-07-26 2025-04-18 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 디바이스
EP4185086A1 (en) 2017-07-26 2023-05-24 Universal Display Corporation Organic electroluminescent materials and devices
KR20190012117A (ko) * 2017-07-26 2019-02-08 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 디바이스
JP2019062184A (ja) * 2017-07-26 2019-04-18 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
JP7203526B2 (ja) 2017-07-26 2023-01-13 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
EP3783006A1 (en) 2017-08-10 2021-02-24 Universal Display Corporation Organic electroluminescent materials and devices
EP3444258A2 (en) 2017-08-10 2019-02-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3489243A1 (en) 2017-11-28 2019-05-29 University of Southern California Carbene compounds and organic electroluminescent devices
EP3878855A1 (en) 2017-11-28 2021-09-15 University of Southern California Carbene compounds and organic electroluminescent devices
EP3492480A2 (en) 2017-11-29 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3492528A1 (en) 2017-11-30 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4550995A2 (en) 2017-11-30 2025-05-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4019526A1 (en) 2018-01-26 2022-06-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4489555A2 (en) 2018-03-12 2025-01-08 Universal Display Corporation Organic electroluminescent materials and devices
EP3613751A1 (en) 2018-08-22 2020-02-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4206210A1 (en) 2018-08-22 2023-07-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3690973A1 (en) 2019-01-30 2020-08-05 University Of Southern California Organic electroluminescent materials and devices
EP4301117A2 (en) 2019-02-01 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3689889A1 (en) 2019-02-01 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4134371A2 (en) 2019-03-26 2023-02-15 Universal Display Corporation Organic electroluminescent materials and devices
EP3715353A1 (en) 2019-03-26 2020-09-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3750897A1 (en) 2019-06-10 2020-12-16 Universal Display Corporation Organic electroluminescent materials and devices
EP4219515A1 (en) 2019-07-30 2023-08-02 Universal Display Corporation Organic electroluminescent materials and devices
EP3771717A1 (en) 2019-07-30 2021-02-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3778614A1 (en) 2019-08-16 2021-02-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3816175A1 (en) 2019-11-04 2021-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4472386A2 (en) 2019-11-04 2024-12-04 Universal Display Corporation Organic electroluminescent materials and devices
EP4151644A1 (en) 2020-01-06 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP3845545A1 (en) 2020-01-06 2021-07-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4294157A2 (en) 2020-01-28 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3858945A1 (en) 2020-01-28 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US12187748B2 (en) 2020-11-02 2025-01-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4016659A1 (en) 2020-11-16 2022-06-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4001287A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4001286A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4329463A2 (en) 2020-11-24 2024-02-28 Universal Display Corporation Organic electroluminescent materials and devices
EP4039692A1 (en) 2021-02-03 2022-08-10 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4053137A1 (en) 2021-03-05 2022-09-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4056578A1 (en) 2021-03-12 2022-09-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4059941A1 (en) 2021-03-15 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4074723A1 (en) 2021-04-05 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4075530A1 (en) 2021-04-14 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4401530A2 (en) 2021-04-14 2024-07-17 Universal Display Corporation Organic electroluminescent materials and devices
EP4086266A1 (en) 2021-04-23 2022-11-09 Universal Display Corporation Organic electroluminescent materials and devices
EP4079743A1 (en) 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4471041A2 (en) 2021-06-08 2024-12-04 University of Southern California Molecular alignment of homoleptic iridium phosphors
EP4112701A2 (en) 2021-06-08 2023-01-04 University of Southern California Molecular alignment of homoleptic iridium phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A2 (en) 2022-02-16 2023-08-23 Universal Display Corporation Organic electroluminescent materials and devices
EP4242285A1 (en) 2022-03-09 2023-09-13 Universal Display Corporation Organic electroluminescent materials and devices
EP4265626A2 (en) 2022-04-18 2023-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4282863A1 (en) 2022-05-24 2023-11-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP4299693A1 (en) 2022-06-28 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4326030A1 (en) 2022-08-17 2024-02-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4376583A2 (en) 2022-10-27 2024-05-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4369898A1 (en) 2022-10-27 2024-05-15 Universal Display Corporation Organic electroluminescent materials and devices
EP4362631A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362630A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362645A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4386065A1 (en) 2022-12-14 2024-06-19 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
JP5672648B2 (ja) 2015-02-18
JP2013093617A (ja) 2013-05-16
JP5594384B2 (ja) 2014-09-24
EP1998387B1 (en) 2015-04-22
US20090091253A1 (en) 2009-04-09
JPWO2007108362A1 (ja) 2009-08-06
JP2013138220A (ja) 2013-07-11
EP1998387A1 (en) 2008-12-03
EP1998387A4 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP5594384B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5725053B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5011908B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5983369B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5741636B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5589251B2 (ja) 有機エレクトロルミネッセンス素子材料
JP4887731B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5733294B2 (ja) 有機エレクトロルミネッセンス素子
JP5228281B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子を用いた表示装置及び照明装置
JP4961664B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5151045B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2005044791A (ja) 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2008074921A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006131783A (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5055689B2 (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2006080271A (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JPWO2006100925A1 (ja) 有機el素子用材料、有機el素子、表示装置及び照明装置
JP5050312B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5013002B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006282966A (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006152101A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008506251

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007738388

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12282809

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载