+

WO2007037377A1 - 積層型圧電素子およびこれを用いた噴射装置 - Google Patents

積層型圧電素子およびこれを用いた噴射装置 Download PDF

Info

Publication number
WO2007037377A1
WO2007037377A1 PCT/JP2006/319482 JP2006319482W WO2007037377A1 WO 2007037377 A1 WO2007037377 A1 WO 2007037377A1 JP 2006319482 W JP2006319482 W JP 2006319482W WO 2007037377 A1 WO2007037377 A1 WO 2007037377A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
piezoelectric element
metal layers
layers
layer
Prior art date
Application number
PCT/JP2006/319482
Other languages
English (en)
French (fr)
Inventor
Masaki Terazono
Takafumi Tsurumaru
Shigenobu Nakamura
Ken Yamamoto
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to EP20060798450 priority Critical patent/EP1942532B1/en
Priority to JP2007537704A priority patent/JP4885869B2/ja
Priority to US12/088,428 priority patent/US8288921B2/en
Publication of WO2007037377A1 publication Critical patent/WO2007037377A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/508Piezoelectric or electrostrictive devices having a stacked or multilayer structure adapted for alleviating internal stress, e.g. cracking control layers

Definitions

  • the present invention relates to a multilayer piezoelectric element (hereinafter also simply referred to as “element”) and an injection device, and more particularly to a multilayer pressure suitable for continuous driving for a long period of time under high voltage and high pressure.
  • the present invention relates to an electric element and an injection device.
  • piezoelectric actuator in which piezoelectric layers and metal layers are alternately stacked.
  • piezoelectric actuators are classified into two types: a co-fired type and a stack type in which piezoelectric ceramics composed of a single piezoelectric material and plate-like metal layers are alternately stacked.
  • a co-fired type piezoelectric actuator is often used.
  • the co-fired type piezoelectric actuator is easy to make thin and excellent in miniaturization and durability.
  • FIG. 6 (a) is a perspective view showing a conventional laminated piezoelectric element
  • FIG. 6 (b) shows a laminated state of the piezoelectric layer and the metal layer in FIG. 6 (a). It is a fragmentary perspective view.
  • this multilayer piezoelectric element is composed of a multilayer body 103 and a pair of external electrodes 105 formed on side surfaces facing each other.
  • the laminate 103 is formed by alternately laminating piezoelectric layers 101 and metal layers 102.
  • Inactive layers 104 are respectively stacked on both end sides of the stacked body 103 in the stacking direction.
  • the metal layer (internal electrode layer) 102 is not formed on the entire main surface of the piezoelectric layer 101, and has a so-called partial electrode structure.
  • the metal layers 102 of the partial electrode structure are laminated so as to be exposed on different side surfaces of the laminated body 103 every other layer, and are connected to the pair of external electrodes 105 every other layer.
  • a conventional method for manufacturing a multilayer piezoelectric element is as follows. That is, first, a metal paste is printed on a ceramic green sheet containing the raw material of the piezoelectric layer 101 in a pattern having a predetermined metal layer structure as shown in FIG. Next, a plurality of green sheets printed with a metal paste are laminated to produce a laminated molded body, which is fired to obtain a laminated body 103. Thereafter, a metal paste is applied to the opposite side surfaces of the laminate 103, and then fired. Thus, a pair of external electrodes 105 is formed to obtain a multilayer piezoelectric element shown in FIG. 6 (a) (see, for example, Patent Document 1).
  • the metal layer 102 an alloy of silver and palladium is generally used in many cases. Further, in order to simultaneously fire the piezoelectric layer 101 and the metal layer 102, the metal composition of the metal layer 102 is often set to 70% by mass of silver and 30% by mass of palladium (see, for example, Patent Document 2). Thus, the reason why the metal layer 102 having a silver-palladium alloy force that is less than the metal layer made only of silver is used is as follows.
  • metal pastes prepared with substantially the same metal component ratio and metal concentration have been used for the purpose of forming a metal layer 102 having substantially the same metal filling rate.
  • this metal paste is screen-printed on the ceramic green sheet, the laminate 103 is manufactured with the mesh density and the resist thickness set to substantially the same conditions.
  • a lead wire (not shown) is connected and fixed to the external electrode 105 by soldering, and is driven by applying a predetermined potential between the external electrodes 105.
  • multilayer piezoelectric elements have been demanded to ensure a large amount of displacement under a large pressure at the same time as miniaturization is promoted, so a higher electric field is applied and the force is continuously applied for a long time. It is required that it can be used under the severe conditions of driving.
  • Patent Document 4 proposes an element provided with a layer in which the thickness of the piezoelectric body 101 is changed. That is, stress relaxation has been attempted by utilizing the fact that the amount of displacement varies with the other layers due to the difference in thickness.
  • the contact resistance at the interface between the metal layer and the piezoelectric layer is set to a high resistance at the center in the stacking direction of the multilayer piezoelectric element and is controlled to decrease toward both ends.
  • stress is not concentrated at the center in the stacking direction of the multilayer piezoelectric element (see, for example, Patent Document 5).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 61-133715
  • Patent Document 2 Japanese Utility Model Publication No. 1 130568
  • Patent Document 3 Japanese Patent Laid-Open No. 10-199750
  • Patent Document 4 JP-A-60-86880
  • Patent Document 5 JP-A-6-326370
  • the methods shown in Patent Documents 4 and 5 have been made, but at present, the method may be used under severe conditions such as continuous operation for a long time under high electric field and high pressure. Under these conditions, the amount of displacement may change due to stress concentration on the outer periphery of the center of the element, cracking, or peeling. there were.
  • the simultaneous firing type multilayer piezoelectric element or the multilayer piezoelectric element in which at least a part of the outer periphery of the piezoelectric body is constrained has a high possibility of causing the above-mentioned problems.
  • a resonance phenomenon in which the displacement behaviors of the piezoelectric layers coincide with each other may generate a beat sound, or a harmonic signal that is an integral multiple of the drive frequency may be generated and become a noise component.
  • a conventional multilayer piezoelectric element is used as an actuator used for a drive element such as a fuel injection device, there has been a problem that the desired displacement gradually changes. There was a need to suppress changes in quantity and improve durability.
  • the main problem of the present invention has been made in view of the above-mentioned problems, and it is possible to suppress the change in displacement even when continuously driven for a long time under a high voltage and a high pressure.
  • Another object of the present invention is to provide a multilayer piezoelectric element and a jet capable of suppressing the generation of noise due to a resonance phenomenon. Is to provide a device.
  • the inventors of the present invention have made extensive studies in order to solve the above problems. As a result, by disposing a plurality of high-resistance metal layers with higher electrical resistance than adjacent metal layers on both sides, the amount of displacement changes even when driven for a long time under high voltage and high pressure. We have discovered a new fact that a laminated piezoelectric element with excellent durability can be obtained, and have completed the present invention.
  • a plurality of piezoelectric layers and a plurality of metal layers are alternately stacked, and the plurality of metal layers have higher electrical resistance than adjacent metal layers on both sides. Including multiple high resistance metal layers! / Speak.
  • the plurality of high resistance metal layers are respectively disposed with a plurality of metal layers other than the high resistance metal layer interposed therebetween. Further, it is more preferable that the high resistance metal layers are regularly arranged. Further, the high resistance metal layer has an internal porosity larger than that of the other metal layer! /.
  • the high resistance metal layer includes a high resistance component having a higher electrical resistance than the other metal layer, and the content of the high resistance component is higher than the content of the high resistance component in the other metal layer. Good.
  • the high resistance metal layer may be thinner than the other metal layers.
  • the ratio of electrical resistance of the high resistance metal layer to the piezoelectric layer is 1 to 10 to 1000 times, and the electrical resistance of the high resistance metal layer is 1000 times that of other metal layers. More than that!
  • a plurality of piezoelectric layers and a plurality of metal layers are alternately stacked, and at least one of the plurality of metal layers is disposed between the piezoelectric layers. It consists of a plurality of partial metal layers.
  • a part of the plurality of partial metal layers is in contact with both piezoelectric layers adjacent to each other in the thickness direction of the partial metal layer, and the remainder of the plurality of partial metal layers is the thickness of the partial metal layer. It is preferable that only one end in the direction of contact is in contact with the piezoelectric layer!
  • a plurality of metal layers made of the partial metal layers are provided, and it is preferable that the metal layers are arranged via a plurality of piezoelectric layers.
  • the plurality of metal layers composed of the partial metal layers are preferably arranged regularly.
  • the partial metal layer preferably has a width that gradually decreases or gradually increases as it approaches a piezoelectric layer adjacent to the partial metal layer.
  • the partial metal layer may be made of silver, palladium, or an alloy thereof. Furthermore, it is preferable that a gap exists between the adjacent partial metal layers.
  • a pair of external electrodes connected to the plurality of metal layers is formed on the side surface of the laminate.
  • the injection device of the present invention includes a container having an ejection hole and the multilayer piezoelectric element, and the liquid filled in the container is discharged from the ejection hole by driving the multilayer piezoelectric element. Configured to be
  • the plurality of metal layers include the plurality of high resistance metal layers having a higher electric resistance than the metal layers on both sides adjacent to each other.
  • the displacement of the piezoelectric layer in contact with the high resistance metal layer is reduced.
  • the presence of a plurality of piezoelectric layers having such small displacements in the multilayer piezoelectric element can disperse the stress distribution caused by the displacements, thereby suppressing the occurrence of cracks. Even if it occurs, the progress can be suppressed. Therefore, even if it is driven continuously for a long time under high voltage and high pressure, it is possible to suppress the change in displacement, so that a highly durable and highly reliable multilayer piezoelectric element is provided. can do.
  • At least one of the plurality of metal layers includes: Since it consists of a plurality of partial metal layers disposed between the piezoelectric layers, the metal layer composed of the partial metal layers can absorb the stress caused by the displacement when the piezoelectric layers are displaced.
  • the degree of freedom of the piezoelectric layers around the metal layer increases due to the presence of the metal layer composed of the partial metal layer, the displacement of these piezoelectric layers can be increased. This alleviates suppression of element deformation due to stress concentration and suppresses stress concentration due to element deformation, resulting in a large amount of displacement and suppression of the resonance phenomenon. Even when driven continuously for a period of time, a change in displacement can be suppressed, and a laminated piezoelectric element having excellent durability can be obtained.
  • the multilayer piezoelectric element of the present invention does not substantially change the amount of displacement even when continuously driven, it is possible to provide a highly reliable injection device with excellent durability.
  • FIG. 1 (a) is a perspective view showing a laminated piezoelectric element that works in one embodiment of the present invention, and (b) is a laminated state of a piezoelectric layer and a metal layer in (a).
  • FIG. 1 (a) is a perspective view showing a laminated piezoelectric element that works in one embodiment of the present invention, and (b) is a laminated state of a piezoelectric layer and a metal layer in (a).
  • FIG. 2 is a cross-sectional view showing a multilayer structure of a multilayer piezoelectric element that works according to the first embodiment.
  • FIG. 3 (a) is a perspective view showing a laminated piezoelectric element that works on another embodiment of the present invention, and (b) shows a laminated state of the piezoelectric layer and the metal layer in (a). It is a fragmentary perspective view.
  • FIG. 4 (a) to () are enlarged sectional views enlarging the periphery of a partial metal layer disposed between piezoelectric layers.
  • FIG. 5 is a schematic sectional view showing an injection device according to an embodiment of the present invention.
  • FIG. 6 (a) is a perspective view showing a conventional laminated piezoelectric element
  • FIG. 6 (b) is a partial perspective view showing a laminated state of a piezoelectric layer and a metal layer in (a).
  • FIG. 1 (a) is a perspective view showing a laminated piezoelectric element that works according to this embodiment
  • FIG. 1 (b) is a partial perspective view showing a laminated state of a piezoelectric layer and a metal layer in this laminated piezoelectric element.
  • Fig. 2 shows the lamination of metal layers in contact with the piezoelectric layer of the multilayer piezoelectric element that is effective in this embodiment. It is sectional drawing which shows a structure.
  • this multilayer piezoelectric element has a multilayer body 13 in which piezoelectric layers 11 and metal layers 12 are alternately stacked, and on the opposite side surfaces of the multilayer body 13.
  • a pair of external electrodes 15 that are electrically connected to the exposed end portions of the metal layer 12 are joined to each other.
  • An inactive layer 14 formed of the piezoelectric layer 11 is laminated on both ends of the laminated body 13 in the laminating direction.
  • a lead wire (not shown) is connected and fixed to the external electrode 15 by soldering, and the lead wire is connected to an external voltage supply unit (not shown). (Shown) may be connected.
  • a metal layer 12 is disposed between the piezoelectric layers 11. Since the metal layer 12 is formed of a metal material such as silver-palladium, a predetermined voltage is applied to each piezoelectric body 11 through the metal layer 12. Is applied to cause displacement of the piezoelectric layer 11 due to the inverse piezoelectric effect.
  • the inert layer 14 is composed of a laminated body in which a plurality of piezoelectric layers are laminated, and the metal layer 12 is disposed only on one main surface side, so that the displacement does not occur even when a voltage is applied. Does not happen!
  • the plurality of metal layers 12 include a plurality of high resistance metal layers 12A having higher electric resistance than adjacent metal layers on both sides.
  • the high resistance metal layer 12A is arranged with a plurality of metal layers 12B other than the high resistance metal layer 12A interposed therebetween. That is, the plurality of metal layers 12 includes a plurality of metal layers 12B and a plurality of high resistance metal layers 12A having higher electric resistance than the metal layers 12B.
  • the substantially uniform metal layer 12 is formed so that an electric field is uniformly applied to all the piezoelectric layers 11, so that the element itself continuously changes in dimensions during driving. Therefore, all the piezoelectric bodies 11 are driven in close contact with each other through the metal layer 12. For this reason, the laminated piezoelectric element undergoes drive deformation as a unit. For this reason, stress due to deformation of the element concentrates on the outer periphery of the center part of the element that expands when compressed and constricts when stretched, and when it is driven continuously for a long time under a high electric field and pressure, the laminated part ( There was a problem that the interface between the piezoelectric layer and the metal layer was peeled off or cracked.
  • the stress generated by the displacement can be dispersed. Therefore, even when driven continuously for a long time under a high electric field and high pressure, the generation of cracks can be suppressed, the change in displacement can be reduced, and durability can be reduced. Improvements can be made.
  • the piezoelectric layer 11 in contact with the high-resistance metal layer 12A is smaller in displacement than the piezoelectric layer 11 in contact with the other metal layer 12B. That is, there are a plurality of piezoelectric layers 11 having a small displacement. Therefore, the plurality of regions separated by the high-resistance metal layer 12A are not in a state where the elements are integrally driven and deformed. As a result, the stress that has been concentrated in the center of the element in the past is dispersed in a plurality of regions in the element according to the present embodiment, so that excellent durability can be obtained even under a high electric field and high pressure.
  • the laminated portion is partially peeled off or a crack is generated, the progress of the crack is suppressed by the portion of the piezoelectric body 11 having a small displacement. For the reasons described above, it is presumed that durability is improved and a highly reliable element can be obtained.
  • the high resistance metal layer 12A is regularly arranged in the stacking direction of the multilayer piezoelectric element and is V.
  • a plurality of other metal layers 12B are included between the high resistance metal layer 12A and the high resistance metal layer 12A so that the plurality of high resistance metal layers 12A are regularly arranged in the stacking direction.
  • V is the same between 12A and 12A
  • the other is present between the high resistance metal layers 12A and 12A so that the stress is almost uniformly distributed in the stacking direction.
  • This concept includes the case where the number of metal layers 12B is approximate.
  • the number of other metal layers 12B existing between the high-resistance metal layers 12A is preferably within a range of ⁇ 20% with respect to the average value of each layer, and more preferably the average of the number of each layer. Within ⁇ 10% of the value, more preferably the same number There should be.
  • the high resistance metal layer 12A preferably has an internal porosity that is 1.5 to 30 times, preferably 5 to 20 times larger than the porosity of the other metal layer 12B.
  • the displacement amount of the piezoelectric layer 11 in contact with the high-resistance metal layer 12A is smaller than the displacement amount of the piezoelectric layer 11 in which both main surfaces are in contact with the other metal layer 12B.
  • the region delimited by the piezoelectric layer 11 with a small displacement amount is smaller than the displacement amount of the entire multilayer piezoelectric element, and cracks generated on the outer periphery of the multilayer piezoelectric element can be suppressed, improving durability. To do.
  • the porosity is high, stress can be absorbed, thereby further improving durability.
  • the porosity of the high resistance metal layer 12A is 40% to 99%, more preferably 50% to 90%. If the porosity is less than 40%, the electrical resistance of the metal layer may not be increased, and the displacement amount of the piezoelectric layer 11 in contact therewith may not be sufficiently reduced. On the other hand, if the porosity is greater than 99%, the strength of the high-resistance metal layer 12A may be reduced, and the high-resistance metal layer 12A may be easily broken.
  • the porosity is measured by a cross section obtained by cutting the multilayer piezoelectric element along a plane parallel to the stacking direction or a plane perpendicular to the stacking direction. It is obtained by measuring the cross-sectional area of the void in the cross section of the high-resistance metal layer 12A and dividing it by the cross-sectional area of the high-resistance metal layer 12A and multiplying by 100.
  • the diameter of the gap is not particularly limited, but is preferably 3 to: ⁇ / ⁇ ⁇ , more preferably 5 to 70 ⁇ m! / ⁇ .
  • the first method is a method of observing a cross section when the laminate 13 is cut along a plane parallel to the stack direction
  • the second method is when the laminate 13 is cut along a plane perpendicular to the stack direction. This is a method of observing the cross section.
  • the porosity in the present invention may be measured by either method.
  • the laminated body 13 is polished using a known polishing means so that a cross section parallel to the lamination direction is exposed.
  • a known polishing means for example, it can be polished with diamond paste using a table polishing machine KEMET-V-300 manufactured by Kemet Japan Co., Ltd. as a polishing apparatus.
  • the cross section exposed by this polishing process is observed with, for example, a scanning electron microscope (SEM), an optical microscope, a metal microscope, an optical microscope, and the like to obtain a cross section image. By doing so, the porosity of the metal layer can be measured.
  • SEM scanning electron microscope
  • the void portion is painted in black and the portion other than the void is painted in white, and the ratio of the black portion, that is, (the area of the black portion) )
  • Z area of black part + area of white part
  • the porosity can be calculated. For example, if the cross-sectional image is color, it is better to convert it to grayscale and separate it into a black part and a white part.
  • polishing is performed in the stacking direction of the stacked body 13 using a known polishing apparatus until the cross section of the metal layer whose porosity is to be measured (cross section perpendicular to the stacking direction) is exposed.
  • polishing can be performed with diamond paste using a table polishing machine KEMET-V-300 manufactured by Kemet Japan Co., Ltd. as a polishing apparatus.
  • the cross section exposed by this polishing process is observed with, for example, a scanning electron microscope (SEM), an optical microscope, a metal microscope, an optical microscope, and the like to obtain a cross section image. The rate can be measured.
  • the void portion is painted in black, the portion other than the void is painted in white, and the ratio of the black portion, that is, (area of the black portion) Z
  • the void ratio can be calculated by calculating (area of the black portion + area of the white portion) and expressing the percentage. For example, in the case of a cross-sectional image force color, it may be converted into a gray scale and divided into a black portion and a white portion. At this time, if it is necessary to set the threshold value for the two gradations in the black and white parts, the threshold value for the image processing software should be set by visual inspection. .
  • the cross section of the metal layer When the cross section of the metal layer is observed, it is preferable to polish the metal layer to a position of about 1Z2 of the thickness of the metal layer and observe the exposed cross section.
  • the entire cross section of the metal layer may not be exposed by the polishing process.
  • the polishing process is performed until a part of the metal layer is exposed, the exposed portion is observed to obtain a cross-sectional image, and further polishing is performed to remove the already observed portion. Repeat the operation of observing other parts multiple times Even ⁇ . If the observation images obtained by multiple operations in this way are added together, the entire cross section of the metal layer can be observed.
  • the high resistance metal layer 12A contains a higher resistance component having a higher electric resistance than the other metal layers 12B.
  • the content of the high resistance component is 1.5 to 20 times, preferably 2 to: LO times higher than the content of the high resistance component in the other metal layer 12B.
  • Examples of the high resistance component include Pd, Pt, Cr, Ni, Mo, and W.
  • the particle diameter of the high resistance component is not particularly limited, but is preferably 0.1 to: LOO m, more preferably 0.1 to 50 / ⁇ ⁇ .
  • the content of the high resistance component in the high resistance metal layer 12A is preferably 40% to 99%, more preferably 50 to 90%.
  • the content of the high resistance component is 100 times the SEM photograph of the surface parallel to the high resistance metal layer 12A, the area of the high resistance component occupying the surface is measured, and divided by the total area of the imaging surface. It can be obtained by doing so.
  • the thickness of the high-resistance metal layer 12A is preferably thinner than the thicknesses of the other metal layers 12B. Since the thickness of the high resistance metal layer 12A is thinner than the thickness of the other metal layer 12B, the deformation is less severe than the other metal layer 12B, and the stress generated in the piezoelectric layer 11 adjacent to the high resistance metal layer 11 Can be reduced, and durability can be improved. Further, when the thickness of the high resistance metal layer is made thinner than that of other metal layers, the metal layer is easily deformed, absorbs stress, and is difficult to peel off, thereby improving durability.
  • the thicknesses of the metal layers 12A and 12B are measured on a plane obtained by cutting the stacked piezoelectric element in the stacking direction. Select any 5 points on the other metal layer 12B, and measure the thickness between any 2 parallel lines. That is, one of the two parallel lines is set at the boundary between the metal layer and the piezoelectric layer, the other line is moved to the other boundary, and the distance between the two parallel lines is measured.
  • the high resistance metal layer 12 mm is also measured in the same manner to determine the thickness of the metal layer.
  • High resistance metal layer 12mm thick Is not particularly limited, but is preferably 30 to 0.1 m, more preferably 20 to 1 / zm.
  • the thickness of the other metal layer 12B is preferably 103% or more, more preferably 110% or more, relative to the high resistance metal layer.
  • the following method may be used to select five locations for measuring the thickness of the metal layer.
  • the cross section of the multilayer piezoelectric element cut in the stacking direction it consists of both ends in the width direction of the metal layer, 1Z2 position in the width direction, and 1Z4 position (2 points) in the width direction from the end. There is a way to select a location.
  • the ratio of the electrical resistance of the high resistance metal layer 12A to the piezoelectric layer 11 is 1 Z10-: LOOO times.
  • the amount of displacement of the piezoelectric layer 11 in contact with the high-resistance metal layer 12A can be appropriately controlled. Since the ratio of the electrical resistance of the high resistance metal layer 12A to the piezoelectric layer 11 is 1Z10 times or more, the displacement amount of the piezoelectric layer 11 in contact with the high resistance metal layer 12A becomes the displacement of the other piezoelectric layer 11. It is smaller than the amount, and the effect that the stress is dispersed can be sufficiently obtained.
  • the ratio of the electrical resistance of the high resistance metal layer 12A to the piezoelectric layer 11 is 1000 times or less, the displacement amount of the piezoelectric layer 11 in contact with the high resistance metal layer 12A is prevented from becoming excessively small. It is possible to prevent excessive concentration of stress.
  • the ratio of the electrical resistance of the high resistance metal layer 12A to the piezoelectric layer 11 is more preferably 1 to: LOOO times.
  • the electrical resistance ( ⁇ ) in the present invention is a picoampere meter (for example, manufactured by Huette Packard Co., Ltd.) by applying probes to both ends of the high resistance metal layer 12A or both ends of the piezoelectric layer 11 in each layer. 4140B etc.).
  • both ends of the high-resistance metal layer 12A means end portions of the high-resistance metal layer 12A exposed on two opposing side surfaces (portions where the external electrodes 15 and 15 are not formed) in the laminate 13 Say.
  • the end of the high resistance metal layer 12A is exposed on the side surface of the laminate 13, and in this case, the polishing may be performed with a known polishing apparatus or the like until the end of the high resistance metal layer 12A is exposed. Then, the electric resistance is measured by applying a probe of a picoampere meter to both ends of the high resistance metal layer 12A.
  • the temperature at which the electrical resistance is measured should be 25 ° C.
  • the electrical resistance of the high-resistance metal layer 12A is preferably 1000 times or more that of the other metal layers 12B. By doing so, the piezoelectric layer 11 in contact with the high resistance metal layer 12A has a smaller displacement than the piezoelectric layer 11 in contact with the other metal layer 12B.
  • the resistive metal layer 12A separates the multilayer piezoelectric element, disperses stress, and improves durability.
  • a slurry is prepared by mixing a calcined powder, a binder having an organic polymer strength such as acrylic or petital, and a plasticizer such as DBP (dibutyl phthalate) or DOP (dioctyl phthalate).
  • a ceramic green sheet to be the piezoelectric body 11 is produced by a tape forming method such as a known doctor blade method or calendar roll method.
  • the metal powder constituting the high-resistance metal layer 12A such as silver-palladium contains an organic substance (for example, acrylic beads) that is bonded and fixed when dried and volatilizes when fired. Etc. are added and mixed to prepare a conductive paste, which is printed on the upper surface of some of the green sheets to a thickness of 1 to 40 m by screen printing or the like.
  • an organic substance for example, acrylic beads
  • the porosity of the high resistance metal layer can be changed. That is, when there are many acrylic beads, the porosity is high, and when the acrylic beads are low, the porosity is low.
  • the void diameter can be adjusted by changing the bead diameter.
  • an organic substance such as acrylic beads is added to a binder and a plasticizer, and mixed to prepare an acrylic bead paste.
  • a binder and a plasticizer are added to a metal powder such as silver-palladium.
  • a conductive paste may be prepared by addition and mixing, and the acrylic bead paste and the conductive base may be laminated and printed on the upper surface of the part of the green sheet by screen printing or the like. This printing method makes it possible to perform printing with higher mass productivity.
  • the porosity of the high-resistance metal layer 12A can be controlled by heat-treating the metal layer such as silver-palladium and soaking the surface.
  • a high resistance component such as PZT, lead titanate, or alumina may be added to the metal layer such as one silver column.
  • a conductive paste for forming the other metal layer 12B is printed by screen printing or the like.
  • an organic substance such as acrylic beads or a high resistance component may be added to the conductive paste.
  • the metal powder constituting the metal layer 12 such as silver-palladium is added to the green sheet of the inert layer 14 or when the green sheet of the inert layer 14 is laminated.
  • Sintering of the inert layer 14 and other parts by printing a metal powder such as silver-palladium, etc., and a slurry that also has an inorganic compound, a binder, and a plasticizer power on the green sheet. Since the shrinkage behavior and shrinkage rate at the same time can be matched, a dense laminate 13 can be formed.
  • the laminate 13 is not limited to the one produced by the above manufacturing method. Any laminate 13 can be produced by alternately laminating a plurality of piezoelectric bodies 11 and a plurality of metal layers 12. It may be formed by such a manufacturing method.
  • the metal layer 12 whose end is exposed on the side surface of the multilayer piezoelectric element and the metal layer 12 whose end is not exposed are alternately formed so that the end is exposed.
  • Grooves are formed in the piezoelectric portion between the external electrodes 15, and an insulator such as resin or rubber having a Young's modulus lower than that of the piezoelectric body 11 is formed in the groove.
  • the groove is formed on the side surface of the laminate 13 by an internal dicing apparatus or the like.
  • a glass powder is added with a noinder to produce a silver glass conductive paste, which is formed into a sheet and dried (the solvent is scattered) to a raw density of 6-9 gZcm 3
  • the sheet is transferred to the external electrode forming surface of the columnar laminate 13, and the laminate 13 is fired at a temperature higher than the softening point of the glass and below the melting point of silver (965 ° C).
  • the binder component in the sheet made using the silver glass conductive paste is scattered and disappears, and the porous conductive body force that forms a three-dimensional network structure Electrode 15 can be formed.
  • the paste constituting the external electrode 15 is laminated on a multi-layered sheet, and the force is also baked. However, it is more mass-productive if it is laminated on multiple sheets and then baked at once.
  • the baking temperature of the silver glass conductive paste effectively forms a neck portion (portion where crystal grains are confined), and the silver and the metal layer 12 in the silver glass conductive paste are diffusion bonded.
  • the temperature is 500 to 800 ° C. from the viewpoint that the voids in the external electrode 15 are effectively left, and further, the external electrode 15 and the side surface of the columnar laminate 13 are partially joined.
  • the soft spot of the glass component in the silver glass conductive paste is preferably 500 to 800 ° C.
  • the baking temperature is higher than 800 ° C, the silver powder of the silver glass conductive paste is sintered too much, and a porous conductor having an effective three-dimensional network structure can be formed.
  • the external electrode 15 becomes too dense, and as a result, the Young's modulus of the external electrode 15 becomes too high to absorb the stress during driving sufficiently, and the external electrode 15 may be disconnected. There is. It is preferable to bake at a temperature within 1.2 times the soft spot of the glass.
  • the laminated body 13 on which the external electrode 15 is formed is immersed in a silicone rubber solution, and the silicone rubber solution is vacuum degassed to fill the groove of the laminated body 13 with silicone rubber.
  • the rubber solution force also raises the laminate 13 and coats the side surface of the laminate 13 with silicone rubber.
  • the silicone rubber filled in the groove and coated on the side surface of the laminated body 13 is cured to complete the laminated piezoelectric element of the present invention.
  • a lead wire is connected to the external electrode 15, a direct current voltage of 0.1 to 3 kVZmm is applied to the pair of external electrodes 15 through the lead wire, and the laminate 13 is subjected to polarization treatment, whereby
  • a lead wire is connected to an external voltage supply unit, and a voltage is applied to the metal layer 12 via the lead wire and the external electrode 15, each piezoelectric body 11 is largely displaced by the reverse piezoelectric effect, and functions as a fuel injection valve for an automobile that injects fuel into, for example, an engine.
  • a conductive auxiliary member made of a conductive adhesive in which a metal mesh or a mesh-like metal plate is embedded may be formed on the outer surface of the external electrode 15.
  • a conductive auxiliary member on the outer surface of the external electrode 15
  • a large current can be passed through the conductive auxiliary member even when a large current is supplied to the actuator and the actuator is driven at high speed. Because the current flowing through the external electrode 15 can be reduced, it is possible to prevent the external electrode 15 from causing local heat generation and disconnection, and the durability can be greatly improved.
  • a metal mesh or a mesh-like metal plate is embedded in the conductive adhesive, it is possible to prevent the conductive adhesive from cracking.
  • a metal mesh is a braided metal wire
  • a mesh-like metal plate is a mesh formed by forming holes in a metal plate.
  • the conductive adhesive constituting the conductive auxiliary member is preferably made of a polyimide resin in which silver powder is dispersed. That is, by dispersing silver powder having a low specific resistance in a polyimide resin having high heat resistance, a conductive auxiliary member having a low resistance value and a high adhesive strength can be formed even when used at high temperatures. Can do.
  • the conductive particles are non-spherical particles such as flakes or needles. This is because by making the shape of the conductive particles non-spherical particles such as flakes and needles, the entanglement between the conductive particles can be strengthened, and the shear strength of the conductive adhesive can be increased. It is because it can raise more.
  • Fig. 13 (a) is a perspective view showing a laminated piezoelectric element that is effective in this embodiment
  • Fig. 13 (b) is a portion showing the laminated state of the piezoelectric layer and the metal layer in Fig. 13 (a). It is a perspective view.
  • the multilayer piezoelectric element of the present embodiment includes a plurality of piezoelectric layers 21 and a plurality of metal layers 22a, 22b (hereinafter referred to as “metal layer 22”). And a pair of external electrodes 25 are disposed on opposite side surfaces of the multilayer body 23 (one external electrode is not shown).
  • Each metal layer 22 is not formed on the entire main surface of the piezoelectric layer 21 but has a so-called partial electrode structure.
  • the plurality of metal layers 22 of this partial electrode structure are arranged so as to be exposed on opposite side surfaces of the laminate 23 every other layer. Thereby, the metal layers 22 are electrically connected to the pair of external electrodes 25 every other layer.
  • an inactive layer 24 made of a piezoelectric material is laminated on both ends of the laminate 23 in the stacking direction.
  • the lead wires may be connected and fixed to the pair of external electrodes 25 by soldering, and the lead wires may be connected to the external voltage supply unit.
  • each piezoelectric layer 21 is displaced by the inverse piezoelectric effect.
  • the inactive layer 24 has only the metal layer 22 arranged on one main surface side, and the metal layer 22 is not arranged on the other main surface side. Does not occur.
  • the multilayer piezoelectric element of the present embodiment includes a plurality of metal layers 22 in which at least one of the plurality of metal layers 22 is disposed between the piezoelectric layers 21.
  • the metal layer 22b is composed of the partial metal layer 22c. The presence of at least one metal layer 22b as described above can improve the durability of the multilayer piezoelectric element as well as increase the displacement of the entire multilayer piezoelectric element.
  • the element itself continuously measures during driving. Make a change. For this reason, all the piezoelectric bodies are driven in close contact with each other through the metal layer, and the laminated piezoelectric element is integrally driven and deformed. For this reason, the stress due to the deformation of the element tends to concentrate on the outer periphery of the central part of the element that expands when compressed and constricts when stretched. In particular, stress tended to be concentrated at the boundary between the active layer that was piezoelectrically displaced and the inactive layer that was not piezoelectrically displaced. In addition, a resonance phenomenon occurs in which the displacement behavior of each piezoelectric layer coincides. There was a problem that a roaring sound was generated or a harmonic signal that was an integral multiple of the driving frequency was generated and became a noise component.
  • the multilayer piezoelectric element since at least one of the metal layers 22 is the metal layer 22b, the displacement of the piezoelectric layer around the metal layer 22b is reduced, and the metal layer 22b Since the piezoelectric layer 21 around the metal layer 22a has a large displacement, the large displacement portion and the small displacement portion can be dispersed in the element.
  • the stress applied to the element can be dispersed.
  • suppression of element deformation due to stress concentration is alleviated, so that the displacement of the entire element can be increased.
  • stress concentration due to deformation of the element can be suppressed, and excellent durability can be exhibited even when driven continuously for a long time under a high electric field and high pressure.
  • the plurality of partial metal layers 22c constituting the metal layer 22b are disposed substantially uniformly between the piezoelectric layers 21 and 21.
  • the plurality of partial metal layers 22c are arranged between the piezoelectric layers 21 and 21 so that the distance between them is substantially uniform, the metal layer in which the stress due to the element deformation does not concentrate in part. 22b acts as a stress relaxation layer of the piezoelectric layer over the entire cross section of the element.
  • a plurality of metal layers 22b are present in the laminate 23.
  • Each metal layer 22b is arranged via a plurality of piezoelectric layers 21 and a plurality of metal layers 22a, and is regularly arranged in the thickness direction of the laminate 23.
  • the metal layer 22b is formed in a portion of the metal layers 22 via the plurality of piezoelectric bodies 21.
  • the resonance phenomenon that occurs when the displacements, which are the dimensional changes of the elements, are aligned, it is possible to prevent the generation of a roaring sound.
  • generation of harmonic signals can be prevented, control signal noise can be suppressed.
  • the magnitude of the displacement of the piezoelectric body 11 can be controlled by changing the thickness of the metal layer 22, it is possible to obtain a structure effective for mass production that does not require the thickness of the piezoelectric body 21 to be changed.
  • a part of the plurality of partial metal layers 22c is in contact with the adjacent piezoelectric layers 21 at both ends in the thickness direction of the partial metal layers 22c (Fig. 4 (a)), Constructs metal layer 22b
  • the remaining part of the plurality of partial metal layers 22c it is desirable that only one end in the thickness direction of the partial metal layer 22c is in contact with the piezoelectric layer 21 (FIG. 4B). Further, almost the entire surface on one end side is in contact with the piezoelectric layer 21 as in the partial metal layer 22c shown in FIG. 4 (c), and only a part on the other end side is in contact with the piezoelectric layer 21. It may be a form like this!
  • One of the functions required for the metal layer 22b is to increase the displacement during driving of the multilayer piezoelectric element.
  • the plurality of partial metal layers 22c constituting the metal layer 22b must have both ends or one end in the thickness direction in contact with the adjacent piezoelectric layers 21 on both sides. Both end forces in the thickness direction of the plurality of partial metal layers 22c constituting the metal layer 22b
  • the panel function for connecting the adjacent piezoelectric layers 21 is sufficient. Since it cannot be applied, the effect of increasing the displacement at the time of driving the multilayer piezoelectric element cannot be sufficiently obtained! /.
  • the widths of the plurality of partial metal layers 22c gradually decrease in the vicinity of the adjacent piezoelectric layers 21 as they approach the piezoelectric layers (FIG. 4 (d)) or gradually increase ( Figure 4 (e)) is desirable.
  • one of the functions required for the metal layer 22b is to relieve stress generated when the multilayer piezoelectric element is driven and displaced. In order to obtain this function, it is necessary to alleviate the stress generated at the interface between the piezoelectric body 21 and the metal layer 22 without concentrating at one point when the multilayer piezoelectric element is driven and deformed.
  • the width of the partial metal layer 22c is gradually increased as the distance from the adjacent piezoelectric layer 21 to the piezoelectric layer is increased. It is made smaller or gradually larger to suppress stress concentration at one point.
  • the piezoelectric body 21 in contact with the metal layer 22b does not concentrate stress, so the amount of displacement increases, and while maintaining the driving displacement of the element, it is possible to avoid concentration of the element stress at one point. It is possible to provide a highly reliable piezoelectric actuator having a large size and excellent durability.
  • the metal layer 22b it is desirable that a gap exists between the plurality of adjacent partial metal layers 22c. This is because, if an insulating material other than a metal component is present in the metal layer 22b, there may be a portion where the voltage cannot be applied to the piezoelectric body 21 when the element is driven, and the piezoelectric displacement may not be sufficiently large. Stress during driving tends to concentrate.
  • the laminate 23 is preferably a polygonal columnar body. This is because if the laminate 23 is a cylindrical body, the center axis will be blurred unless it is made a perfect circle, so a high-precision circle must be created and stacked, and a mass production method using simultaneous firing is used. In addition, it is difficult to align the central axis of the metal layer 22 with high accuracy even if the outer periphery is polished and formed into a cylindrical shape after laminating a substantially circular laminate or after firing.
  • the metal layer 22 can be formed on the piezoelectric body 21 whose reference line has been determined, and can be further laminated along the reference line. Since the central axis, which is the axis, can be formed using a mass production type manufacturing method, a highly durable element can be obtained.
  • the metal constituting the metal layer 22b is preferably silver, palladium, or a compound thereof. This is because these metals have high heat resistance, so that the piezoelectric body 21 and the metal layer 22 having a high firing temperature can be fired simultaneously. Therefore, since the sintering temperature of the external electrode 25 can be made lower than the sintering temperature of the piezoelectric body 21, it is possible to suppress intense interdiffusion between the piezoelectric body 21 and the external electrode 25. .
  • a slurry is prepared by mixing a binder with organic polymer strength such as DBP or PETILAL and a plasticizer such as DBP (dibutyl phthalate) or DOP (dioctyl phthalate).
  • a ceramic green sheet to be the piezoelectric body 21 is produced by a tape molding method such as a calender roll method.
  • a binder and a plasticizer are added to the metal powder constituting the metal layer 22 such as silver-palladium. Etc. are added and mixed to prepare a conductive paste, which is printed on the upper surface of each green sheet to a thickness of 1 to 40 m by screen printing or the like.
  • the laminated body 23 is produced by firing at 900 to 1200 ° C. without applying a weight so that a difference can be made.
  • the laminate 23 is not limited to the one produced by the above manufacturing method.
  • the laminate 23 can be produced by alternately laminating a plurality of piezoelectric bodies 21 and a plurality of metal layers 22.
  • it may be formed by any manufacturing method.
  • a noinder is added to the glass powder to produce a silver glass conductive paste, which is formed into a sheet and dried (the solvent is dispersed) to a green density of 6 to 9 gZcm 3 Control.
  • This sheet is transferred to the surface of the columnar laminate 23 where the external electrodes are formed, at a temperature higher than the softening point of the glass, a temperature below the melting point of silver (965 ° C), and the firing temperature of the laminate 23 (° C Bake at a temperature of 4Z5 or less.
  • the binder component in the sheet produced using the silver glass conductive paste is scattered and disappeared, and the external electrode 25 made of a porous conductor having a three-dimensional network structure can be formed.
  • the baking temperature of the silver glass conductive paste is preferably 500 to 800 ° C as described above.
  • the soft spot of the glass component in the silver glass conductive paste is preferably 500 to 800 ° C.
  • the laminate 23 in which the external electrode 25 is formed is dipped in a silicone rubber solution, and the silicone rubber solution is vacuum degassed to fill the groove of the laminate 23 with silicone rubber, and then the silicone The rubber solution force also raises the laminate 23 and coats the side surface of the laminate 23 with silicone rubber. Thereafter, the silicone rubber filled in the groove and coated on the side surface of the laminated body 23 is cured to complete the laminated piezoelectric element of the present invention.
  • a lead wire is connected to the external electrode 25, a direct current voltage of 0.1 to 3 kVZmm is applied to the pair of external electrodes 25 through the lead wire, and the laminate 23 is subjected to polarization treatment.
  • a piezoelectric actuator utilizing the multilayer piezoelectric element of the invention is completed. If a lead wire is connected to an external voltage supply unit and a voltage is applied to the metal layer 22 via the lead wire and the external electrode 25, each piezoelectric body 21 is greatly displaced by the reverse piezoelectric effect, and for example, It functions as an automobile fuel injection valve that injects fuel into the engine.
  • FIG. 5 is a schematic cross-sectional view showing an injection device according to an embodiment of the present invention.
  • the laminated piezoelectric element of the present invention represented by the above embodiment is accommodated in the inside of a storage container 31 having 33 having an injection hole at one end.
  • an injection hole 33 can be opened and closed—a dollar valve 35 is disposed.
  • a fuel passage 37 is arranged in the injection hole 33 so as to be communicable according to the movement of the one-dollar valve 35.
  • the fuel passage 37 is connected to an external fuel supply source, and the fuel passage 37 is always supplied with fuel at a constant high pressure. Therefore, when the needle valve 35 opens the injection hole 33, the fuel supplied to the fuel passage 37 is jetted into a fuel chamber of an internal combustion engine (not shown) at a constant high pressure.
  • the upper end portion of the needle valve 35 has a large inner diameter, and a cylinder 39 formed in the storage container 31 and a slidable piston 41 are disposed.
  • the piezoelectric actuator 43 provided with the above-described laminated piezoelectric element is stored.
  • the present invention also relates to a multilayer piezoelectric element and an injection device, but is not limited to the above-described embodiments.
  • a fuel injection device for an automobile engine a liquid injection device such as an ink jet, and an optical device.
  • Drive elements mounted on precision positioning devices such as vibration prevention devices, etc., or sensor elements mounted on combustion pressure sensors, knock sensors, acceleration sensors, load sensors, ultrasonic sensors, pressure sensors, directional sensors, etc.
  • circuit elements other than circuit elements mounted on a piezoelectric gyro, a piezoelectric switch, a piezoelectric transformer, a piezoelectric breaker, etc. can be implemented as long as the elements use piezoelectric characteristics.
  • Example 1 A piezoelectric actuator comprising the multilayer piezoelectric element of the present invention was produced as follows.
  • lead zirconate titanate (? 1 ⁇ 1: 0—PbTiO) with an average particle size of 0.4 111 is the main component
  • a slurry was prepared by mixing the calcined powder of piezoelectric ceramic, binder, and plasticizer to 3 3, and a plurality of ceramic green sheets to become piezoelectric body 11 with a thickness of 150 ⁇ m were prepared by the doctor blade method.
  • a silver - palladium alloy (silver 95 mass 0/0 - Palladium ⁇ arm 5 mass 0/0) was added to the binder in the conductive paste was printed by a screen printing method.
  • the other metal layer 12B is formed of a conductive paste in which a binder is added to a silver-palladium alloy (95% by mass of silver—5% by mass of palladium), and has a thickness of 5 or 10 m after firing.
  • Printing was performed as follows. In some cases, 0.2 ⁇ m acrylic beads were encased in the conductive bed to create voids in the metal layer.
  • an appropriate amount of acrylic beads with an average particle size of 0.2 ⁇ m is applied to particles obtained by oxidizing the surface of a silver-palladium alloy (95% by mass of silver—5% by mass of palladium). 1-6 m thick after firing with conductive paste containing binder and binder Printing was performed as follows.
  • the number of layers of the high-resistance metal layer 12A in the laminate 13 was as shown in Table 1.
  • the arrangement of the high-resistance metal layer 12A was regular except for Sample No. 9. Specifically, for sample No. 1 with one high-resistance metal layer, a high-resistance metal layer was placed on the 150th layer from the top of the laminate. In Sample No. 2 having two high-resistance metal layers, the high-resistance metal layers were regularly arranged in the 100th and 200th layers from the top of the laminate. In Sample No. 3 with five high-resistance metal layers, the high-resistance metal layers were regularly arranged for every 50 layers on the top of the laminate.
  • Samples with 14 high-resistance metal layers were arranged regularly every 20 layers, and 59 samples were arranged regularly every 5 layers. Furthermore, in the sample with 10 high-resistance metal layers, the high-resistance metal layers are regularly arranged at intervals of 26, 27, 27, 28, 28, 28, 28, 28, 27, 27 from the top of the laminate. Arranged. In addition, for the sample with a layer force of S39, high-resistance metal layers were regularly arranged with the intervals of 7 layers and 8 layers alternated like 7, 8, 7, 8 from the top of the laminate. Samples with 20 layers of high-resistance metal layers are 13, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 16, 16, 15, 15, 14, 14, 13 The high resistance metal layers are regularly arranged at intervals of.
  • Sample No. 9 where the arrangement of the high-resistance metal layers is not regular is 5, 5, 25, 25, 15, 10, 20 from the top of the laminate. 20, 10, 10, 10, 10, 10, 20, 20, 10, 15, 25, 25, 5, high resistance metal layers were arranged.
  • the high resistance metal layer 12A a layer containing a high resistance component such as PZT, lead titanate, alumina, titanium nitride, silicon nitride, silica, or the like was also prepared.
  • a high resistance component such as PZT, lead titanate, alumina, titanium nitride, silicon nitride, silica, or the like was also prepared.
  • 8 parts by weight of Noinder is added to the mixture of powder with respect to 100 parts by weight of the total weight of silver powder and glass powder, and mixed well to produce a silver glass conductive paste, thus produced silver glass Conductive paste It formed on the release film by screen printing, and after drying, it peeled off from the release film, and the sheet
  • the average particle size of the flaky powder was measured as follows. In other words, a photograph of the powder was taken using a scanning electron microscope (SEM), a straight line was drawn on the photograph, the length at which the particles and the straight line intersected was measured, and the average was taken as the average particle size. .
  • the sheet of silver glass paste was transferred to the surface of the external electrode 15 of the laminate 13 and laminated, and baked at 700 ° C. for 30 minutes to form a pair of external electrodes 15.
  • a lead wire is connected to the external electrode 15, a 3 kVZmm DC electric field is applied to the positive and negative external electrodes 15 through the lead wire for 15 minutes, and polarization is performed, as shown in FIG.
  • a piezoelectric actuator using a piezoelectric element was fabricated.
  • a DC voltage of 170 V was applied to the obtained multilayer piezoelectric element, displacement was obtained in the stacking direction in all piezoelectric actuators.
  • the piezoelectric Akuchiyueta is applied at frequency of 300Hz AC voltage 0 to + 170 V at room temperature, was tested was continuously driven up to 2 X 10 9 times. The test was performed for each 100 samples. After the test, the percentage of samples that resulted in destruction was calculated and shown in Table 1 as the percentage of destruction after the test. At the same time, the laminated part was observed with a metal microscope, SEM, etc., and the number of layers where peeling occurred was counted.
  • the drive test was performed by multiplying the absolute value of the difference between the displacement amount of the initial multilayer piezoelectric element and the displacement amount of the multilayer piezoelectric element after the test by the value obtained by dividing the absolute value by the displacement amount of the initial multilayer piezoelectric element.
  • Table 1 shows the rate of change in displacement before and after. The results are shown in Table 1.
  • Sample No. 1-1 which is a comparative example, was several powers of the high-resistance metal layer in the multilayer piezoelectric element, so the stress could not be dispersed well and was further generated. Since cracks propagate throughout the device, the probability of failure after testing is as high as 10%. In addition, the number of layers that peeled off the layers in the laminate was as high as 100. Furthermore, the rate of change of displacement before and after the driving test increased to 10%, and the durability was low.
  • sample numbers 1-2 to 32 which are examples of the present invention, are continuously driven 2 X 10 9 times.
  • the fracture rate after aging was 3% or less, which was very superior in terms of durability compared to Sample No. 1-1 as a comparative example.
  • samples with a high-resistance metal layer arranged regularly such as sample No. 1-6, have no damage after the test and displacement before and after the test compared to sample No. 1-9, which is not regularly arranged.
  • the rate of change in quantity is small, so it has excellent durability!
  • high-resistance metal layers are regularly arranged, and the content of the high-resistance component in the high-resistance metal of the high-resistance metal layer is higher than the content of the high-resistance component in the other metal layers.
  • Many samples No. 17 to 16 have excellent durability as a multilayer piezoelectric element with a very small change of 0.4% to 0.9% before and after the drive test, including the samples to be destroyed. I was divided. Samples using PZT, lead titanate, alumina, and titer as the high resistance component were even more durable.
  • samples No. 1-6 and No. 1 were confirmed in which the thickness of the high-resistance metal layer was changed from that of the other metal layers by changing the thickness of the high-resistance metal layer and the other metal layers.
  • the rate of change in displacement before and after the drive test is 1.6% or less compared to Sample No. 1-27, where the thickness of the high-resistance metal layer is larger than that of the other metal layers. It was small and excellent in durability.
  • the electrical resistance ratio of the high-resistance metal layer to the piezoelectric layer is controlled to 1Z10 ⁇ : L000 times, and the electrical resistance of the high-resistance metal layer is more than 1000 times that of the other metal layers. It was found that the samples prepared in 1) were excellent in durability with no peeling of the high resistance metal layer.
  • the injection device containing the multilayer piezoelectric element of the present invention has been divided into a product that performs injection efficiently, has excellent durability, and is friendly to the global environment.
  • a piezoelectric actuator having the laminated piezoelectric element force of the present invention was produced as follows. . First, lead zirconate titanate (? 1 ⁇ 1: 0—PbTiO) with an average particle size of 0.4 111 is the main component
  • a slurry was prepared by mixing the piezoelectric ceramic calcined powder, binder, and plasticizer as 3 3, and a ceramic green sheet to become a piezoelectric 21 with a thickness of 150 ⁇ m was prepared by the doctor blade method.
  • a silver one palladium alloy - 300 sheets of conductive paste obtained by adding a binder to a sheet formed by a screen printing method (95 wt% silver Palladium ⁇ arm 5 weight 0/0) Laminated and fired. Firing was carried out at 1000 ° C after holding at 800 ° C.
  • 8 parts by mass of Noinder was added to 100 parts by mass of the total mass of the silver powder and the glass powder, and mixed well to prepare a silver glass conductive paste.
  • the silver glass conductive paste thus produced was formed on a release film by screen printing, dried, and then peeled off from the release film to obtain a silver glass conductive paste sheet.
  • the sheet of silver glass paste was transferred to the external electrode forming surface of the laminate 23 and laminated, and baked at 700 ° C for 30 minutes to form the external electrode 25.
  • a lead wire is connected to the external electrode 25, a 3 kVZmm DC electric field is applied to the positive and negative external electrodes 25 through the lead wire for 15 minutes, and polarization treatment is performed.
  • a piezoelectric actuator using a piezoelectric element was fabricated.
  • Sample Nos. 11-1 to 5 which are embodiments of the present invention are necessary as piezoelectric actuators in which the element displacement does not significantly decrease even after continuous driving 1 X 10 9 times.
  • Sample No. in which the stress relaxation layer and the stress concentration layer are arranged adjacent to each other via the piezoelectric body.
  • ⁇ -3 can produce a stacked-type actuator with a stable element displacement as well as a large element displacement.
  • Sample Nos. 11-4 and 5 with the stress relaxation layer sandwiched through the piezoelectric material can not only maximize the displacement of the element, but the displacement of the element hardly changes and is extremely durable. As a result, it was possible to obtain a stacked actuator with a stable element displacement.
  • the multilayer piezoelectric element and the injection device of the present invention are not limited to the above embodiments, and various modifications are possible within the scope of the claims of the present invention.
  • the external electrodes 15 and 25 are formed on the opposite side surfaces of the multilayer bodies 13 and 23 has been described.
  • a pair of external electrodes 15 and 25 may be formed on the adjacent side surfaces.

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

 圧電体層と金属層とが交互に複数積層された積層型圧電素子において、複数の前記金属層は、隣り合う両側の金属層よりも電気抵抗の高い高抵抗金属層を複数含んでいる。複数の前記高抵抗金属層は、該高抵抗金属層以外の他の金属層を複数層挟んでそれぞれ規則的に配置されている。本発明の他の積層型圧電素子は、複数の圧電体層と複数の金属層とが交互に積層され、前記複数の金属層のうちの少なくとも一層が、前記圧電体層間に配設された複数の部分金属層からなる。

Description

積層型圧電素子およびこれを用いた噴射装置
技術分野
[0001] 本発明は、積層型圧電素子(以下、単に「素子」ということもある)および噴射装置に 関し、特に、高電圧 ·高圧力下において長期間連続駆動させるのに適した積層型圧 電素子および噴射装置に関する。
背景技術
[0002] 従来より、積層型圧電素子を用いたものとして、圧電体層と金属層を交互に積層し た圧電ァクチユエータがある。一般に、圧電ァクチユエータは、同時焼成タイプと、 1 つの圧電体からなる圧電磁器と板状体の金属層とを交互に積層したスタックタイプと の 2種類に分類される。これらのうち、低電圧化及び製造コスト低減の観点から、同時 焼成タイプの圧電ァクチユエータが多く採用されている。同時焼成タイプの圧電ァク チユエータは、薄層化が簡単であり、小型化および耐久性にも優れる。
[0003] 図 6 (a)は、従来の積層型圧電素子を示す斜視図であり、図 6 (b)は、図 6 (a)にお ける圧電体層と金属層との積層状態を示す部分斜視図である。図 6(a), (b)に示すよ うに、この積層型圧電素子は、積層体 103と、互いに対向する側面に形成された一 対の外部電極 105とから構成されている。積層体 103は、圧電体層 101と金属層 10 2とが交互に積層されてなる。積層体 103の積層方向における両端側には、不活性 層 104がそれぞれ積層されている。金属層(内部電極層) 102は、圧電体層 101の 主面全体には形成されておらず、いわゆる部分電極構造となっている。この部分電 極構造の金属層 102は、一層おきに積層体 103の異なる側面に露出するように積層 されており、一対の外部電極 105に、それぞれ一層おきに接続されている。
[0004] 従来の積層型圧電素子の製造方法としては、以下の通りである。すなわち、まず、 金属ペーストが、圧電体層 101の原料を含むセラミックグリーンシートに、図 6 (b)に 示すような所定の金属層構造となるパターンで印刷される。ついで、金属ペーストが 印刷されたグリーンシートを複数積層して積層成形体を作製し、これを焼成して積層 体 103を得る。その後、積層体 103の対向する側面に金属ペーストを塗布した後、焼 成して一対の外部電極 105を形成し、図 6 (a)に示す積層型圧電素子を得る(例えば 、特許文献 1参照)。
[0005] ここで、金属層 102としては、一般に銀とパラジウムの合金を用いることが多 、。また 、圧電体層 101と金属層 102を同時焼成するために、金属層 102の金属組成は、銀 70質量%、パラジウム 30質量%に設定されることが多い (例えば、特許文献 2参照) 。このように、銀のみからなる金属層ではなぐ銀—パラジウム合金力もなる金属層 10 2を用いるのは、以下の理由からである。
[0006] すなわち、金属層 102を、ノラジウムを含まない銀のみの組成にすると、対向する 金属層 102間に電位差を与えたときに、対向する金属層 102にお 、て正極力も負極 へと、金属層 102中の銀イオンが素子表面を伝わって移動する、いわゆるイオンマイ グレーシヨン現象が生じるからである。この現象は、高温高湿の雰囲気中において、 著しく発生する傾向にある。
[0007] 一方、従来から、金属充填率が略同一な金属層 102を形成することを目的に、金 属成分比や金属濃度を略同一に調製した金属ペーストが用いられている。この金属 ペーストをセラミックグリーンシート上にスクリーン印刷する際には、メッシュ密度ゃレ ジスト厚みがほぼ同一条件に設定されて積層体 103が作製される。
[0008] また、セラミックグリーンシートを押圧積層した際、金属層 102が重なり合う部分と重 なり合わない部分で押圧状態が異なるため、金属層 102の同一面内でも金属層密 度が不均一になることがある。そこで、金属層 102を形成する部分のセラミックテープ に凹部を形成して、金属充填率を均一にする方法が提案されている(例えば特許文 献 3参照)。
[0009] ところで、従来の積層型圧電素子を圧電ァクチユエータとして使用する場合には、 外部電極 105にリード線 (不図示)を半田により接続固定し、外部電極 105間に所定 の電位をかけて駆動させる。そして、近年では、積層型圧電素子は、小型化が進めら れると同時に、大きな圧力下において大きな変位量を確保するように求められている ため、より高い電界が印加され、し力も長時間連続駆動させる過酷な条件下で使用 できることが要求されて 、る。
[0010] このように高電界、高圧力下で長時間連続駆動させるという要求に対応するために 、特許文献 4には、圧電体 101の厚みを変化させた層を設けた素子が提案されてい る。すなわち、厚みの異なることで他の層と変位量が変化することを利用して応力緩 和が試みられている。
[0011] 更に、スタックタイプの積層型圧電素子において、金属層と圧電体層の界面の接触 抵抗を積層型圧電素子の積層方向の中央部で高抵抗とし、両端に向かうにつれて 小さくなるように制御し、積層型圧電素子の積層方向の中央部に応力が集中しない ようにすることが提案されて ヽる (例えば、特許文献 5参照)。
[0012] 特許文献 1 :特開昭 61— 133715号公報
特許文献 2:実開平 1 130568号公報
特許文献 3 :特開平 10— 199750号公報
特許文献 4:特開昭 60— 86880号公報
特許文献 5:特開平 6— 326370号公報
発明の開示
発明が解決しょうとする課題
[0013] ところで、従来の積層型圧電素子は、前述したように、すべての圧電体に均一に電 界が印加されるように、均一な金属層を形成することが試みられてきた。特に、各金 属層の導電率を均一にしたり、圧電体層に接する部分の表面積を均一にするために 、金属層の金属充填率を均一にすることが試みられてきた。そのため、変位に伴う応 力は、積層型圧電素子の積層方向の中央部の外周に集中し、クラックが発生する等 の不具合が生じていた。
[0014] その改善方法として、特許文献 4、 5に示すような方法がなされたが、現在は、高電 界、高圧力下で長時間連続運転すると言うような過酷な条件下で使う場合が多くなつ ており、このような条件下では、まだ、改善が十分とは言えず、素子中央部の外周に 応力が集中し、クラックが生じたり、剥がれたりして、変位量が変化することがあった。 特に、同時焼成タイプの積層型圧電素子ゃ圧電体の外周の少なくとも一部が拘束 されるタイプの積層型圧電素子では、上記のような問題が生じるおそれが高!、。
[0015] また、各圧電体層の変位挙動が一致する共振現象が発生してうなり音が発生したり 、駆動周波数の整数倍の高調波信号が発生してノイズ成分となることがあった。 さらに、従来の積層型圧電素子を燃料噴射装置等の駆動素子に利用されるァクチ ユエータとして用いた場合には、所望の変位量が次第に変化する問題を生じていた ため、長期間連続運転における変位量の変化の抑制と耐久性向上が求められてい た。
[0016] したがって、本発明の主たる課題は、上述の問題点に鑑みて成されたものであり、 高電圧、高圧力下で長期間連続駆動させた場合でも変位量が変化するのを抑制す ることができ、耐久性に優れた積層型圧電素子および噴射装置を提供することである 本発明の他の課題は、共振現象によるノイズの発生を抑制することができる積層型圧 電素子および噴射装置を提供することである。
課題を解決するための手段
[0017] 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、隣り合う 両側の金属層よりも電気抵抗の高い高抵抗金属層を複数配置することにより、高電 圧、高圧力下で長期間連続駆動させた場合であっても変位量が変化することがなぐ 耐久性に優れた積層型圧電素子を得ることができるという新たな事実を見出し、本発 明を完成するに至った。
[0018] すなわち、本発明の積層型圧電素子は、複数の圧電体層と複数の金属層とが交互 に積層され、複数の前記金属層は、隣り合う両側の金属層よりも電気抵抗の高い複 数の高抵抗金属層を含んで!/ヽる。
[0019] 本発明の積層型圧電素子において、複数の前記高抵抗金属層は、該高抵抗金属 層以外の他の金属層を複数層挟んでそれぞれ配置されているのが好ましい。また、 前記高抵抗金属層は規則的に配置されているのがより好ましい。さらに、前記高抵 抗金属層は、内部の空隙率が前記他の金属層における空隙率よりも大き!、のがよ!/、 。前記高抵抗金属層は、前記他の金属層よりも電気抵抗の高い高抵抗成分を含み、 該高抵抗成分の含有率が前記他の金属層における高抵抗成分の含有率よりも高 、 のがよい。また、前記高抵抗金属層は、厚みが前記他の金属層よりも薄いのがよい。 前記高抵抗金属層の前記圧電体層に対する電気抵抗の比が 1Z10〜1000倍であ るのがよぐ前記高抵抗金属層の電気抵抗がその他の金属層の電気抵抗の 1000倍 以上であることがより好まし!/、。
[0020] 本発明の他の積層型圧電素子は、複数の圧電体層と複数の金属層とが交互に積 層され、前記複数の金属層のうちの少なくとも一層が、前記圧電体層間に配設され た複数の部分金属層からなる。
前記複数の部分金属層の一部は、該部分金属層の厚み方向の両端が隣接する両 側の圧電体層に接しており、前記複数の部分金属層の残部は、該部分金属層の厚 み方向の一端のみが圧電体層に接して 、ることが好まし!/、。
[0021] また、前記部分金属層からなる金属層は複数備えられているのがよぐまた複数の 圧電体層を介してそれぞれ配置されているのがよい。前記部分金属層からなる複数 の金属層は規則的に配置されているのがよい。また、前記部分金属層は、当該部分 金属層に隣接する圧電体層に近づくにつれて幅が漸次小さく又は漸次大きくなつて いるのが好ましい。前記部分金属層が、銀若しくはパラジウム又はこれらの合金から なるのがよい。さらに、隣り合う前記部分金属層の間には空隙が存在するのが好まし い。また、前記積層体の側面には、前記複数の金属層が接続された一対の外部電 極が形成されて 、るのがよ 、。
[0022] 本発明の噴射装置は、噴出孔を有する容器と、上記の積層型圧電素子とを備え、 前記容器内に充填された液体が前記積層型圧電素子の駆動により前記噴射孔から 吐出されるように構成される。
発明の効果
[0023] 本発明の積層型圧電素子によれば、複数の金属層が、複数の前記金属層は、隣り 合う両側の金属層よりも電気抵抗の高い複数の高抵抗金属層を含んでいるので、高 抵抗金属層と接する圧電体層の変位が小さくなる。このような変位の小さな複数の圧 電体層が積層型圧電素子中に存在することで、変位によって生じる応力の分布を分 散させることができるので、クラックが発生するのを抑制し、クラックが発生してもその 進展を抑制することができる。したがって、高電圧、高圧力下で長期間連続駆動させ た場合であっても、変位量が変化するのを抑制することができるので、耐久性に優れ 、信頼性の高い積層型圧電素子を提供することができる。
[0024] 本発明の他の積層型圧電素子によれば、複数の金属層のうちの少なくとも一層が、 圧電体層間に配設された複数の部分金属層からなるので、該部分金属層からなる金 属層が、圧電体層の変位時にその変位により生じる応力を吸収することができる。ま た、該部分金属層からなる金属層が存在することで該金属層周辺の圧電体層の自 由度が大きくなるので、これらの圧電体層の変位を大きくすることができる。これにより 、応力集中による素子変形の抑圧が緩和され、素子の変形による応力集中を抑制で きるので、大きな変位量が得られ、共振現象を抑制することができ、高電界、高圧力 下で長時間連続駆動させた場合であっても変位量の変化を抑制し、耐久性に優れ た積層型圧電素子を得ることができる。
[0025] 本発明の積層型圧電素子は、連続駆動させても変位量が実質的に変化しないた め、耐久性に優れた高信頼性の噴射装置を提供することができる。
図面の簡単な説明
[0026] [図 1] (a)は、本発明の一実施形態に力かる積層型圧電素子を示す斜視図であり、 ( b)は (a)における圧電体層と金属層との積層状態を示す部分斜視図である。
[図 2]第 1の実施形態に力かる積層型圧電素子の積層構造を示す断面図である。
[図 3] (a)は、本発明の他の実施形態に力かる積層型圧電素子を示す斜視図であり、 (b)は (a)における圧電体層と金属層との積層状態を示す部分斜視図である。
[図 4](a)〜( は、圧電体層間に配設された部分金属層の周辺を拡大した拡大断面 図である。
[図 5]本発明の一実施形態にカゝかる噴射装置を示す概略断面図である。
[図 6] (a)は、従来の積層型圧電素子を示す斜視図であり、 (b)は (a)における圧電 体層と金属層との積層状態を示す部分斜視図である。
発明を実施するための最良の形態
[0027] <積層型圧電素子 >
(第 1の実施形態)
本発明の一実施形態に力かる積層型圧電素子について図面を参照し詳細に説明 する。図 1(a)は本実施形態に力かる積層型圧電素子を示す斜視図であり、図 1(b)は この積層型圧電素子における圧電体層と金属層との積層状態を示す部分斜視図で ある。図 2は本実施形態に力かる積層型圧電素子の圧電体層と接する金属層の積層 構造を示す断面図である。
[0028] 図 1に示すように、この積層型圧電素子は、圧電体層 11と金属層 12とを交互に積 層してなる積層体 13を有し、この積層体 13の対向する側面に露出した金属層 12の 端部と電気的に導通する一対の外部電極 15がそれぞれ接合されている。積層体 13 の積層方向の両端には圧電体層 11で形成された不活性層 14が積層されて 、る。
[0029] 本実施形態の積層型圧電素子を圧電ァクチユエータとして使用する場合には、外 部電極 15にリード線 (不図示)を半田により接続固定し、このリード線を外部電圧供 給部(不図示)に接続すればよい。圧電体層 11間には金属層 12が配されているが、 この金属層 12は銀—パラジウム等の金属材料で形成して 、るので、金属層 12を通じ て各圧電体 11に所定の電圧を印加し、圧電体層 11を逆圧電効果による変位を起こ させる作用を有する。
[0030] 不活性層 14は複数の圧電体層を積層した積層体からなり、一方の主面側にのみ 金属層 12が配置されて 、るだけであるため、電圧を印加しても変位を生じな!/、。
[0031] 本実施形態の積層型圧電素子では、図 2に示すように、複数の金属層 12は、隣り 合う両側の金属層よりも電気抵抗の高い複数の高抵抗金属層 12Aを含み、これらの 高抵抗金属層 12 Aが該高抵抗金属層 12A以外の他の金属層 12Bを複数層挟んで 配置されている。すなわち、複数の金属層 12は、複数の金属層 12Bと該金属層 12B よりも電気抵抗の高い複数の高抵抗金属層 12Aとからなる。
[0032] 従来の積層型圧電素子では、すべての圧電体層 11に均一に電界が印加されるよ うに略均一な金属層 12を形成して 、るので駆動時に素子自体が連続的に寸法変化 を起こすため、全ての圧電体 11が金属層 12を介して密着して駆動していた。このた め、積層型圧電素子は一体として駆動変形をすることになる。そのため、圧縮時に広 がり、伸びた時にはくびれてしまう素子中央部の外周に、素子の変形による応力が集 中し、高電界、高圧力下で長期間連続駆動させた場合には、積層部分 (圧電体層と 金属層との界面)が剥がれたり、あるいはクラックが生じたりするという問題があった。
[0033] 本実施形態のように、複数の高抵抗金属層 12Aを配置することにより、変位によつ て発生する応力を分散することができる。そのため、高電界、高圧力下で長期間連続 駆動させた場合でも、クラックの発生を抑制し、変位量の変化を小さくでき、耐久性の 向上を図ることができる。
[0034] より詳しく説明すると、高抵抗金属層 12Aに接する圧電体層 11は、その変位量が他 の金属層 12Bに接する圧電体層 11よりも小さくなる。すなわち、変位の小さな圧電体 層 11が複数存在することになる。したがって、素子が一体として駆動変形するのでは なぐ高抵抗金属層 12Aにより区切られた複数の領域がそれぞれ駆動変形するよう な状態となる。これにより、従来は素子中央部に集中していた応力が、本実施形態に おける素子では複数の領域毎に分散されるので、高電界、高圧力下でも優れた耐久 性を得ることができる。また、たとえ部分的に積層部分が剥がれたり、あるいはクラック が生じたりしても、変位の小さな圧電体 11の部分によりクラックの進展が抑制される。 以上のような理由で耐久性が向上し、信頼性の高い素子とすることができると推測す る。
なお、高抵抗金属層 12Aの数は、多ければ多いほど応力は分散され、耐久性は向 上するが、多すぎると変位量が減少する傾向にあるので、全体の圧電体層 11の総数 の 20 %以下であるのが好まし 、。
[0035] また、高抵抗金属層 12Aは、積層型圧電素子の積層方向に規則的に配置されて V、るのが好まし 、。高抵抗金属層 12Aと高抵抗金属層 12Aとの間に他の金属層 12 Bが複数含まれるようにして、複数の高抵抗金属層 12Aが積層方向に規則的に配置 されるようにする。これにより、変位に伴う応力の発生は、それぞれ高抵抗金属層 12 Aで分割された部分でほぼ均一に分散されるようになる。このように応力の分散が計 画的に行われることにより、クラックの発生を抑制し、運転時の変位量の変化が抑制 され、耐久性が向上する。
[0036] ここで、「高抵抗金属層が規則的に配置されている」とは、高抵抗金属層 12A, 12A 間に存在する他の金属層 12Bの層数が 、ずれの高抵抗金属層 12A, 12A間にお Vヽても同じである場合はもちろんのこと、積層方向にお!、て応力がほぼ均一に分散さ れる程度に、高抵抗金属層 12A, 12A間に存在する他の金属層 12Bの層数が近似 している場合も含む概念である。具体的には、高抵抗金属層 12A間に存在する他の 金属層 12Bの層数は、好ましくは各層数の平均値に対して ± 20%の範囲内、より好 ましくは各層数の平均値に対して ± 10%の範囲内、さらに好ましくはすべて同数で あるのがよい。
[0037] 上記高抵抗金属層 12Aは、内部の空隙率が他の金属層 12Bにおける空隙率より も 1. 5〜30倍、好ましくは 5〜20倍大きいことが好ましい。これにより、高抵抗金属層 12Aに接する圧電体層 11の変位量は、両主面が他の金属層 12Bに接する圧電体 層 11の変位量よりも小さくなる。この変位量の小さな圧電体層 11で区切られた領域 は、積層型圧電素子全体の変位量より小さくなり、積層型圧電素子の外周に発生す るクラックを抑制することができ、耐久性が向上する。また、空隙率が多いことにより、 応力を吸収できるために、これによつて更に耐久性が向上する。
[0038] 高抵抗金属層 12Aの空隙率は 40%〜99%、好ましくは 50%〜90%であることが より好ましい。空隙率が 40%より小さいと、金属層の電気抵抗が高くならずにそれに 接する圧電体層 11の変位量を十分に小さく出来ないおそれがある。一方、空隙率が 99%より大き ヽと高抵抗金属層 12Aの強度が低下して高抵抗金属層 12Aが容易に 破壊してしまうおそれがある。
[0039] ここで、空隙率は、積層型圧電素子を積層方向に平行な面又は積層方向に垂直な 面で切断した断面で測定する。高抵抗金属層 12Aの断面において、空隙の断面積 を測定し、それを高抵抗金属層 12Aの断面積で除して 100倍することによって求め る。空隙の径は、特に限定されるものではないが、好ましくは 3〜: ίΟΟ /ζ πι、より好まし くは 5〜70 μ mであるのがよ!/ヽ。
[0040] 空隙率を測定する方法は大きく分けて次の 2つある。第 1の方法は、積層体 13を積 層方向に平行な面で切ったときの断面を観察する方法であり、第 2の方法は、積層 体 13を積層方向に垂直な面で切ったときの断面を観察する方法である。本発明に おける空隙率は、どちらの方法で測定したものであってもよ 、。
[0041] 空隙率を第 1の方法で測定するには、例えば以下のようにして行えばよい。まず、 積層方向に平行な断面が露出するように、積層体 13を公知の研磨手段を用いて研 磨処理する。具体的には、例えば研磨装置としてケメット 'ジャパン (株)社製卓上研磨 機 KEMET—V— 300を用いてダイヤモンドペーストで研磨することができる。この研 磨処理により露出した断面を、例えば走査型電子顕微鏡 (SEM)、光学顕微鏡、金 属顕微鏡、光学顕微鏡などにより観察して断面画像を得、この断面画像を画像処理 することによって金属層の空隙率を測定することができる。具体例を挙げると、光学顕 微鏡にて撮影した金属層の画像に対して、空隙部分を黒色に塗りつぶし、空隙以外 の部分を白色に塗りつぶし、黒色部分の比率、即ち、(黒色部分の面積) Z (黒色部 分の面積 +白色部分の面積)を求め、百分率で表すことにより空隙率を算出すること ができる。例えば、断面画像がカラーである場合は、グレースケールに変換して黒色 部分と白色部分に分けるとよい。このとき、黒色部分と白色部分に 2階調化するため の境界の閾値を設定する必要がある場合には、画像処理ソフトウェアや目視により境 界の閾値を設定して 2値ィ匕すればょ 、。
[0042] 空隙率を第 2の方法で測定するには、例えば以下のようにして行えばよい。まず、 空隙率を測定したい金属層の断面 (積層方向に垂直な断面)が露出するまで、公知 の研磨装置を用いて積層体 13の積層方向に研磨する。具体的には、例えば研磨装 置としてケメット ·ジャパン (株)社製卓上研磨機 KEMET— V— 300を用いてダイヤモ ンドペーストで研磨することができる。この研磨処理により露出した断面を、例えば走 查型電子顕微鏡 (SEM)、光学顕微鏡、金属顕微鏡、光学顕微鏡などにより観察し て断面画像を得、この断面画像を画像処理することによって金属層の空隙率を測定 することができる。具体的には、光学顕微鏡にて撮影した金属層の画像に対して、空 隙部分を黒色に塗りつぶし、空隙以外の部分を白色に塗りつぶし、黒色部分の比率 、即ち、(黒色部分の面積) Z (黒色部分の面積 +白色部分の面積)を求め、百分率 で表すことにより空隙率を算出することができる。例えば、断面画像力カラーである場 合は、グレースケールに変換して黒色部分と白色部分に分けるとよい。このとき、黒 色部分と白色部分に 2階調化するための境界の閾値を設定する必要がある場合に は、画像処理ソフトウェアゃ目視により境界の閾値を設定して 2値ィ匕すればよい。
[0043] なお、金属層の断面を観察する際には、金属層の厚みの約 1Z2の位置まで研磨 し、これにより露出した断面を観察するのが好ましい。ただし、金属層の厚みが薄ぐ かつ、厚みのばらつきが比較的大きな場合には、研磨処理により金属層の断面全体 を露出させることができないことがある。このような場合には、金属層の一部が露出す るまで研磨処理した時点で、その露出部分を観察して断面画像を得た後、さらに研 磨を進めて、既に観察した部分を除く他の部分を観察するという操作を複数回繰り返 してもょ ヽ。このようにして複数回の操作で得た観察画像を足し合わせて金属層の断 面全体が観察できればょ 、。
[0044] また、高抵抗金属層 12Aは、電気抵抗の高い高抵抗成分を他の金属層 12Bよりも 多く含むことが好ましい。具体的には、高抵抗成分の含有率が他の金属層 12Bにお ける高抵抗成分の含有率よりも 1. 5〜20倍、好ましくは 2〜: LO倍高いのがよい。この ように高抵抗金属層 12Aに高抵抗成分を多く入れることにより、実質的に空隙の量を 減らしても電気抵抗の高!、金属層を形成することができる。このようにして形成された 高抵抗金属層 12Aが複数配置されていることによつても変位の変化量をより小さくす ることがでさる。
[0045] 高抵抗成分としては、例えば Pd、 Pt、 Cr、 Ni、 Mo、 Wなどが挙げられる。高抵抗成分 の粒径は、特に限定されるものではないが、好ましくは 0. 1〜: LOO m、より好ましく は 0. 1〜50 /ζ πιであるのがよい。
[0046] 高抵抗金属層 12Aにおける高抵抗成分の含有率は 40%〜99%であることが好ま しぐ更には 50〜90%であることがより好ましい。なお、高抵抗成分の含有率は、高 抵抗金属層 12Aに平行な面の SEM写真を撮って、その面に占める高抵抗成分の 面積を測定し、撮影面全体の面積で除して 100倍することによって求めることができ る。
[0047] また、高抵抗金属層 12Aの厚みは他の金属層 12Bの厚みよりも薄いことが好まし い。高抵抗金属層 12Aの厚みが他の金属層 12Bの厚みより薄いことにより、他の金 属層 12Bよりも変形がしゃすくなり、高抵抗金属層に隣接する圧電体層 11に発生す る応力を軽減することができ、耐久性を向上させることができる。また、高抵抗金属層 の厚みを他の金属層よりも薄くしたときは、金属層が変形しやすくなり、応力を吸収し 、剥がれ難くなるので耐久性が向上する。
[0048] 金属層 12A、 12Bの厚みは、積層型圧電素子を積層方向に切断した面で測定す る。他の金属層 12Bの任意の 5箇所を選び、任意の 2本の平行な線で挟んで厚みを 測定する。すなわち、 2本の平行線の一方を金属層と圧電体層の境界にセットし、他 方の線を他方の境界に移動させ、 2本の平行線間の距離を測定する。高抵抗金属層 12Αも同様の方法で測定して金属層の厚みを決定する。高抵抗金属層 12Αの厚み は、特に限定されるものではないが、好ましくは 30〜0. 1 m、より好ましくは 20〜1 /z mであるのがよい。また、他の金属層 12Bの厚みは、高抵抗金属層に対して好まし くは 103%以上、より好ましくは 110%以上であるのがよい。金属層の厚みを測定す る 5箇所の選び方としては、例えば次のようにすればよい。すなわち、積層型圧電素 子を積層方向に切断した断面において、金属層の幅方向の両端と、幅方向の 1Z2 の位置と、端部から幅方向の 1Z4の位置(2点)とからなる 5箇所を選ぶ方法がある。
[0049] さらに、本発明では、高抵抗金属層 12Aの圧電体層 11に対する電気抵抗の比が 1 Z10〜: LOOO倍であることが好ましい。このような範囲にすることにより、高抵抗金属 層 12Aに接する圧電体層 11の変位量を適度にコントロールすることができる。高抵 抗金属層 12Aの圧電体層 11に対する電気抵抗の比が 1Z10倍以上であることによ り、高抵抗金属層 12Aが接する圧電体層 11の変位量が他の圧電体層 11の変位量 よりも小さくなり、応力が分散される効果を十分に得ることができる。また、高抵抗金属 層 12Aの圧電体層 11に対する電気抵抗の比が 1000倍以下であることにより、高抵 抗金属層 12Aが接する圧電体層 11の変位量が過度に小さくなるのを防止し、応力 が過度に集中するのを防止できる。高抵抗金属層 12Aの圧電体層 11に対する電気 抵抗の比は 1〜: LOOO倍であることがより好ましい。
[0050] なお、本発明における電気抵抗(Ω )は、各層において、高抵抗金属層 12Aの両 端または圧電体層 11の両端にプローブをあててピコアンペアメーター(例えば、ヒュ 一レットパッカード社製 4140Bなど)を用いて測定できる。ここで、「高抵抗金属層 12 Aの両端」とは、積層体 13における対向する 2つの側面 (外部電極 15, 15が形成さ れていない部分)に露出した高抵抗金属層 12Aの端部をいう。高抵抗金属層 12Aの 端部が積層体 13の側面に露出して 、な 、場合には、高抵抗金属層 12Aの端部が 露出するまで公知の研磨装置等で研磨すればよい。そして、ピコアンペアメーターの プローブを高抵抗金属層 12Aの両端にそれぞれ当てて電気抵抗を測定する。このと きの電気抵抗を測定する際の温度は 25°Cであるのがよい。
[0051] また、高抵抗金属層 12Aの電気抵抗がその他の金属層 12Bの電気抵抗の 1000 倍以上であることが好ま 、。このようにすることにより高抵抗金属層 12Aに接する圧 電体層 11は、他の金属層 12Bに接する圧電体層 11に比べ変位量が小さくなり、高 抵抗金属層 12Aにより積層型圧電素子が区分され応力が分散され耐久性が向上す る。
[0052] 次に、本実施形態の積層型圧電素子の製法を説明する。
まず、 PbZrO -PbTiO等力 なるぺロブスカイト型酸化物の圧電セラミックスの仮
3 3
焼粉末と、アクリル系、プチラール系等の有機高分子力も成るバインダーと、 DBP (フ タル酸ジブチル)、 DOP (フタル酸ジォチル)等の可塑剤とを混合してスラリーを作製 し、該スラリーを周知のドクターブレード法やカレンダーロール法等のテープ成型法 により圧電体 11となるセラミックグリーンシートを作製する。
[0053] 次に、銀—パラジウム等の高抵抗金属層 12Aを構成する金属粉末に、乾燥時には 接着固定され、焼成時には揮発する有機物 (例えば、アクリルビーズ等)を含有させ て、バインダー及び可塑剤等を添加混合して導電性ペーストを作製し、これを上記グ リーンシートのうちの一部のグリーンシートの上面にスクリーン印刷等によって 1〜40 mの厚みに印刷する。
[0054] アクリルビーズと金属粉末との比を変えることで、高抵抗金属層の空隙率を変化さ せることができる。即ち、アクリルビーズが多い場合は、空隙率は高くなり、アクリルビ ーズが少なくなると空隙率は低くなる。空隙の径は、ビーズの径を変えることにより調 整できる。
[0055] 他の印刷方法として、アクリルビーズ等の有機物をバインダー及び可塑剤等に添加 混合してアクリルビーズペーストを作製し、一方、銀—パラジウム等の金属粉末に、バ インダー及び可塑剤等を添加混合して導電性ペーストを作製して、上記一部のダリ ーンシートの上面にスクリーン印刷等によって、アクリルビーズペーストと導電性べ一 ストを積層印刷してもよい。この印刷方法により、さらに量産性に優れた印刷が可能と なる。
[0056] また、上記銀—パラジウム等の金属層を加熱処理し、ー且表面を酸ィ匕しておくこと で、高抵抗金属層 12Aの空隙率をコントロールがしゃすくなる。また、上記銀一パラ ジゥム等の金属層に PZT、チタン酸鉛、アルミナ等、高抵抗成分を添加しても良い。
[0057] 高抵抗金属層 12Aが形成されるグリーンシート以外の残りのグリーンシートには、 他の金属層 12Bを形成するための導電性ペーストがスクリーン印刷等により印刷され る。この導電性ペーストには、必要に応じてアクリルビーズ等の有機物や高抵抗成分 を添加してもよい。
[0058] 次に、導電性ペーストが印刷された各グリーンシートを複数積層して積層体を得る 。この積層体に重しをのせた状態で所定の温度で脱バインダー処理を行った後、高 抵抗金属層 12Aにボイドができるように重しをのせずに 900〜1200°Cで焼成するこ とによって積層体 13が作製される。
[0059] このとき、不活性層 14の部分のグリーンシート中に、銀一パラジウム等の金属層 12 を構成する金属粉末を添加したり、不活性層 14の部分のグリーンシートを積層する 際に、銀-パラジウム等の金属層 12を構成する金属粉末および無機化合物とバイン ダ一と可塑剤力もなるスラリーをグリーンシート上に印刷することで、不活性層 14とそ の他の部分の焼結時の収縮挙動ならびに収縮率を一致させることができるので、緻 密な積層体 13を形成することができる。
なお、積層体 13は、上記製法によって作製されるものに限定されるものではなぐ 複数の圧電体 11と複数の金属層 12とを交互に積層してなる積層体 13を作製できれ ば、どのような製法によって形成されても良い。
[0060] その後、積層型圧電素子の側面に端部が露出する金属層 12と端部が露出しない 金属層 12とを交互に形成して、端部が露出して 、な 、金属層 12と外部電極 15間の 圧電体部分に溝を形成して、この溝内に、圧電体 11よりもヤング率の低い、榭脂また はゴム等の絶縁体を形成する。ここで、前記溝は内部ダイシング装置等で積層体 13 の側面に形成される。
[0061] 次に、ガラス粉末に、ノインダーを加えて銀ガラス導電性ペーストを作製し、これを シート状に成形し、乾燥した (溶媒を飛散させた)シートの生密度を 6〜9gZcm3に制 御し、このシートを、柱状積層体 13の外部電極形成面に転写し、ガラスの軟化点より も高い温度、且つ銀の融点(965°C)以下の温度で、且つ積層体 13の焼成温度 (°C) の 4Z5以下の温度で焼き付けを行うことにより、銀ガラス導電性ペーストを用いて作 製したシート中のバインダー成分が飛散消失し、 3次元網目構造をなす多孔質導電 体力 なる外部電極 15を形成することができる。
[0062] このとき、外部電極 15を構成するペーストを多層のシートに積層して力も焼付けを 行っても、 1層ごとに積層しては焼付けを行っても良いが、多層のシートに積層してか ら一度に焼付けを行うほうが量産性に優れている。そして、層ごとにガラス成分を変え る場合は、シートごとにガラス成分の量を変えたものを用いればよいが、最も圧電体 1 1に接した面にごく薄くガラスリッチな層を構成したい場合は、積層体 13に、スクリー ン印刷等の方法で、ガラスリッチなペーストを印刷した上で、多層のシートを積層する 事が用いられる。このとき、印刷のかわりに 5 m以下のシートを用いても良い。
[0063] なお、前記銀ガラス導電性ペーストの焼き付け温度は、ネック部(結晶粒の括れた 部分)を有効的に形成し、銀ガラス導電性ペースト中の銀と金属層 12を拡散接合さ せ、また、外部電極 15中の空隙を有効に残存させ、さらには、外部電極 15と柱状の 積層体 13側面とを部分的に接合させるという点から、 500〜800°Cが望ましい。また 、銀ガラス導電性ペースト中のガラス成分の軟ィ匕点は、 500〜800°Cが望ましい。ネ ック部が存在すると、過度に緻密な焼結体とはならず、適度に隙間が存在する網目 状の構造となる。
[0064] 焼き付け温度が 800°Cより高 、場合には、銀ガラス導電性ペーストの銀粉末の焼結 が進みすぎ、有効的な 3次元網目構造をなす多孔質導電体を形成することができず 、外部電極 15が緻密になりすぎてしまい、結果として外部電極 15のヤング率が高く なりすぎ駆動時の応力を十分に吸収することができずに外部電極 15が断線してしま う可能性がある。好ましくは、ガラスの軟ィ匕点の 1. 2倍以内の温度で焼き付けを行つ た方がよい。
[0065] 一方、焼き付け温度が 500°Cよりも低い場合には、金属層 12端部と外部電極 15の 間で十分に拡散接合がなされないために、ネック部が形成されず、駆動時に金属層 12と外部電極 15の間でスパークを起こしてしまう可能性がある。
[0066] 次に、外部電極 15を形成した積層体 13をシリコーンゴム溶液に浸漬するとともに、 シリコーンゴム溶液を真空脱気することにより、積層体 13の溝内部にシリコーンゴムを 充填し、その後シリコーンゴム溶液力も積層体 13を引き上げ、積層体 13の側面にシ リコーンゴムをコーティングする。その後、溝内部に充填、及び積層体 13の側面にコ 一ティングした前記シリコーンゴムを硬化させることにより、本発明の積層型圧電素子 が完成する。 [0067] そして、外部電極 15にリード線を接続し、該リード線を介して一対の外部電極 15に 0. l〜3kVZmmの直流電圧を印加し、積層体 13を分極処理することによって、本 発明の積層型圧電素子を利用した圧電ァクチユエータが完成し、リード線を外部の 電圧供給部に接続し、リード線及び外部電極 15を介して金属層 12に電圧を印加さ せれば、各圧電体 11は逆圧電効果によって大きく変位し、これによつて例えばェン ジンに燃料を噴射供給する自動車用燃料噴射弁として機能する。
[0068] 外部電極 15の外面には、金属のメッシュ若しくはメッシュ状の金属板が埋設された 導電性接着剤からなる導電性補助部材を形成してもよい。この場合には、外部電極 15の外面に導電性補助部材を設けることによりァクチユエ一タに大電流を投入し、高 速で駆動させる場合においても、大電流を導電性補助部材に流すことができ、外部 電極 15に流れる電流を低減できるという理由から、外部電極 15が局所発熱を起こし 断線することを防ぐことができ、耐久性を大幅に向上させることができる。さらには、導 電性接着剤中に金属のメッシュ若しくはメッシュ状の金属板を埋設して 、るため、前 記導電性接着剤に亀裂が生じるのを防ぐことができる。金属のメッシュとは金属線を 編み込んだものであり、メッシュ状の金属板とは、金属板に孔を形成してメッシュ状に したものをいう。
[0069] さらに、前記導電性補助部材を構成する導電性接着剤は銀粉末を分散させたポリ イミド榭脂からなることが望ましい。即ち、比抵抗の低い銀粉末を、耐熱性の高いポリ イミド榭脂に分散させることにより、高温での使用に際しても、抵抗値が低く且つ高い 接着強度を維持した導電性補助部材を形成することができる。
[0070] さらに望ましくは、前記導電性粒子はフレーク状や針状などの非球形の粒子である ことが望ましい。これは、導電性粒子の形状をフレーク状や針状などの非球形の粒子 とすることにより、該導電性粒子間の絡み合いを強固にすることができ、該導電性接 着剤のせん断強度をより高めることができるためである。
[0071] (第 2の実施形態)
本発明の第 2の実施形態に力かる積層型圧電素子について詳細に説明する。図 1 3(a)は、本実施形態に力かる積層型圧電素子を示す斜視図であり、図 13(b)は図 13( a)における圧電体層と金属層との積層状態を示す部分斜視図である。 [0072] 図 3(a)、(b)に示すように、本実施形態の積層型圧電素子は、複数の圧電体層 21と 複数の金属層 22a, 22b (以下、「金属層 22」と総称することがある。)とを交互に積層 してなる積層体 23を有し、該積層体 23の対向する側面に一対の外部電極 25が配 設されている(一方の外部電極は不図示)。各金属層 22は、圧電体層 21の主面全 体には形成されておらず、いわゆる部分電極構造となっている。この部分電極構造 の複数の金属層 22は、一層おきに積層体 23の対向する側面にそれぞれ露出するよ うに配置されている。これにより、金属層 22は、一層おきに、一対の外部電極 25に電 気的に接続されている。
[0073] また、積層体 23の積層方向の両端側には圧電体で形成された不活性層 24が積層 されている。この積層型圧電素子を圧電ァクチユエータとして使用する場合には、一 対の外部電極 25にリード線を半田によりそれぞれ接続固定し、リード線を外部電圧 供給部に接続すればよい。この外部電圧供給部からリード線を通じて隣り合う金属層 22間に所定の電圧を印加することにより、各圧電体層 21が逆圧電効果によって変 位する。一方、不活性層 24は一方の主面側に金属層 22が配置されているのみであ り、他方の主面側には金属層 22が配置されていないので、電圧を印加しても変位が 生じない。
[0074] 本実施形態の積層型圧電素子は、図 3(a)、(b)に示すように、複数の金属層 22のう ちの少なくとも一層が、圧電体層 21間に配設された複数の部分金属層 22cからなる 金属層 22bである。このような金属層 22bが少なくとも 1層存在することで、積層型圧 電素子全体の変位を大きくすることができるだけでなぐ積層型圧電素子の耐久性を 向上させることができる。
[0075] すなわち、従来の積層型圧電素子のように、すべての圧電体に均一に電界を印加 するために全ての金属層を略均一なものにすると、駆動時に素子自体が連続的に寸 法変化を起こす。このため、全ての圧電体が金属層を介して密着して駆動して、積層 型圧電素子は一体として駆動変形をすることになる。そのため、圧縮時に広がり、伸 びた時にはくびれてしまう素子中央部の外周に、素子の変形による応力が集中しや すくなる。特に、圧電変位する活性層と圧電変位しない不活性層の境目に応力が集 中する傾向にあった。また、各圧電体層の変位挙動が一致する共振現象が発生して うなり音が発生したり、駆動周波数の整数倍の高調波信号が発生してノイズ成分とな る問題があった。
[0076] これに対して、本実施形態に力かる積層型圧電素子では、金属層 22の少なくとも 一層を金属層 22bとしたことで、金属層 22b周辺の圧電体層は変位が小さくなり、金 属層 22a周辺の圧電体層 21は変位が大きくなつて、素子内に変位の大きい箇所と 小さい箇所を分散させることができる。このような金属層を素子内に配置することで、 素子に加わる応力を分散させることができる。これにより、応力集中による素子変形の 抑圧が緩和されることで素子全体の変位を大きくすることができる。また、素子の変形 による応力集中を抑制でき、高電界、高圧力下で長期間連続駆動させた場合でも優 れた耐久性を発揮することができる。
[0077] また、金属層 22bを構成する複数の部分金属層 22cは、圧電体層 21, 21間にほぼ 均一に配設されていることが好ましい。複数の部分金属層 22cが圧電体層 21, 21間 に、相互の間隔がほぼ均一となるように配設されているときには、素子変形に伴う応 力が一部に集中することがなぐ金属層 22bが素子の断面全域にわたって圧電体層 の応力緩和層として作用する。
[0078] 図 3(a)、(b)に示す本実施形態では、金属層 22bは、積層体 23中に複数存在してい る。各金属層 22bは、複数の圧電体層 21および複数の金属層 22aを介して配置され ており、かつ、積層体 23の厚み方向に規則的に配置されている。
[0079] 複数の圧電体層 21のうち駆動変形するのは金属層 22aに挟まれた層であることか ら、金属層 22のうち圧電体 21を複数枚介した部位に、金属層 22bを形成することで 、素子の変位量をある程度確保することができる。また、素子の寸法変化である変位 がそろつた場合に発生する共振現象を抑止することができるので、うなり音発生が防 止される。さらに、高調波信号の発生を防止することができるので、制御信号のノイズ を抑止することができる。また、金属層 22の厚みを変化させることで、圧電体 11の変 位の大きさを制御できるので、圧電体 21の厚みを変える必要がなぐ量産性に有効 な構造とすることができる。
[0080] さらに、本発明では、複数の部分金属層 22cの一部は、該部分金属層 22cの厚み 方向の両端が隣接する両側の圧電層 21に接しており(図 4(a))、金属層 22bを構成 する複数の部分金属層 22cの残部は、該部分金属層 22cの厚み方向の一端のみが 圧電体層 21に接している(図 4(b))ことが望ましい。また、図 4(c)に示す部分金属層 2 2cのように一端側のほぼ全面が圧電体層 21に接しており、他端側の一部のみが圧 電体層 21に接して ヽるような形態であってもよ!/ヽ。金属層 22bに求められる機能の一 つ力 積層型圧電素子の駆動時の変位を大きくすることである。そのため、金属層 2 2bを構成する複数の部分金属層 22cは、その厚み方向の両端もしくは一端が、隣接 する両側の圧電体層 21に接する必要がある。金属層 22bを構成する複数の部分金 属層 22cにおける厚み方向の両端力 隣接する両側の圧電体層 21にともに接触し ていない場合、隣接する圧電体層 21を連結するパネ的機能を十分に付与することが できな 、ので、積層型圧電素子駆動時の変位を大きくする効果が十分に得られな!/、 場合がある。
[0081] さらに、複数の部分金属層 22cは、隣接する圧電体層 21の近傍領域において、該 圧電体層に近づくにつれて幅が漸次小さくなるか(図 4(d))、または漸次大きくなる( 図 4(e))ことが望ましい。ここで、金属層 22bに求められる機能の他の一つは、積層型 圧電素子が駆動、変位する時に発生する応力を緩和することである。この機能を得る ためには、積層型圧電素子が駆動変形したときに、圧電体 21と金属層 22の界面に おいて発生する応力を一点集中させずに緩和する必要がある。本発明では、この応 力緩和機能をさらに高めるため、複数の部分金属層 22cの輪郭を、特に隣接する圧 電体層 21の近傍領域にぉ ヽて、該圧電体層に近づくにつれて幅が漸次小さくまた は漸次大きくし、応力の一点集中を抑制したものである。これにより、金属層 22bに接 する圧電体 21は応力が集中することが無いので変位量が大きくなり、素子の駆動変 位を保つと同時に素子の応力一点集中を避けることができるので、変位量が大きくか つ耐久性に優れた高信頼性の圧電ァクチユエータを提供することができる。
[0082] また、金属層 22bにおいて、隣り合う複数の部分金属層 22c間には空隙が存在す ることが望ましい。これは、金属層 22bに金属成分以外の絶縁物質が存在すると、素 子駆動した際、圧電体 21に電圧を印加できない部分が生じて圧電変位を十分に大 きく出来ない場合があり、また、駆動時の応力が集中しやすくなる。
[0083] 一方、部分金属層 22bを構成する複数の部分金属層 22cの間に空隙が存在すると 、金属部分に応力が加わった際に、空隙の部分があることで部分金属層 22cが変形 して応力を分散緩和することができる。また、金属層 22bに接する圧電体 21が圧電 変位する際、空隙の部分があることで、圧電体 21を部分的にクランプすることになり、 全面でクランプするときよりも圧電体 21が束縛される力が小さくなるので、圧電体層 2 1が変位しやすくなつて変位量を大きくすることができる。これにより、素子の変位がよ り大きくなり、かつ、耐久性の高い積層型圧電体素子とすることができる。
[0084] また、積層体 23は、多角形柱状体であることが好ましい。これは、積層体 23が円柱 状体であると、真円にしなければ中心軸がぶれてしまうため高精度の円を作って積 みあげなければならず、同時焼成による量産型の製法を用いるのが困難になり、また 、略円形状の積層体を積層後、あるいは焼成後に外周を研磨して円柱状にしても、 金属層 22の中心軸を高精度にそろえるが困難になる。
[0085] これに対して、多角形柱状体であれば、基準線を決定した圧電体 21に金属層 22 を形成することができ、さらに基準線に沿って積層することができるので、駆動の軸で ある中心軸を量産型の製法を用いて形成することができるため、耐久性の高い素子 とすることができる。
また、本発明においては、金属層 22bを構成する金属が銀もしくはパラジウムまた はこれらの化合物とすることが望ましい。これらの金属は高い耐熱性を有するため、 焼成温度の高い圧電体 21と金属層 22を同時焼成すること可能となるためである。そ のため、外部電極 25の焼結温度を圧電体 21の焼結温度より低温で作製することが 出来るので、圧電体 21と外部電極 25との間の激しい相互拡散を抑制することができ る。
[0086] 次に、本実施形態に力かる積層型圧電素子の製法を説明する。まず、 PbZrO— P
3 bTiO等力 なるぺロブスカイト型酸ィ匕物の圧電セラミックスの仮焼粉末と、アクリル
3
系、プチラール系等の有機高分子力も成るバインダーと、 DBP (フタル酸ジブチル)、 DOP (フタル酸ジォチル)等の可塑剤とを混合してスラリーを作製し、該スラリーを周 知のドクターブレード法やカレンダーロール法等のテープ成型法により圧電体 21とな るセラミックグリーンシートを作製する。
[0087] 次に、銀—パラジウム等の金属層 22を構成する金属粉末にバインダー及び可塑剤 等を添加混合して導電性ペーストを作製し、これを各グリーンシートの上面にスクリー ン印刷等によって 1〜40 mの厚みに印刷する。バインダー及び可塑剤と金属粉末 との比を変えることや、スクリーンのメッシュの度数を変えることや、スクリーンのパター ンを形成するレジスト厚みを変えることで、金属層 22の厚みおよび金属層中の空隙 等を変ィ匕させることができる。
[0088] そして、導電性ペーストが印刷されたグリーンシートを複数積層し、重しをのせた状 態でこの積層体につ 、て所定の温度で脱バインダーを行った後、金属層の厚みに 差ができるように重しをのせずに 900〜1200°Cで焼成することによって積層体 23が 作製される。
このとき、不活性層 24の部分のグリーンシート中に、銀—パラジウム等の金属層 22 を構成する金属粉末を添加したり、不活性層 24の部分のグリーンシートを積層する 際に、銀-パラジウム等の金属層 22を構成する金属粉末および無機化合物とバイン ダ一と可塑剤力もなるスラリーをグリーンシート上に印刷することで、不活性層 24とそ の他の部分の焼結時の収縮挙動ならびに収縮率を一致させることができるので、緻 密な積層体 23を形成することができる。
[0089] なお、積層体 23は、上記製法によって作製されるものに限定されるものではなぐ 複数の圧電体 21と複数の金属層 22とを交互に積層してなる積層体 23を作製できれ ば、どのような製法によって形成されても良い。
[0090] 次に、ガラス粉末に、ノインダーを加えて銀ガラス導電性ペーストを作製し、これを シート状に成形し、乾燥した (溶媒を飛散させた)シートの生密度を 6〜9gZcm3に制 御する。このシートを、柱状積層体 23の外部電極形成面に転写し、ガラスの軟化点 よりも高い温度、且つ銀の融点(965°C)以下の温度で、且つ積層体 23の焼成温度( °C)の 4Z5以下の温度で焼き付けを行う。これにより、銀ガラス導電性ペーストを用い て作製したシート中のバインダー成分が飛散消失し、 3次元網目構造をなす多孔質 導電体からなる外部電極 25を形成することができる。
[0091] なお、前記銀ガラス導電性ペーストの焼き付け温度は、前記と同様に 500〜800°C が望ましい。また、銀ガラス導電性ペースト中のガラス成分の軟ィ匕点は、 500〜800 °Cが望ましい。 [0092] 次に、外部電極 25を形成した積層体 23をシリコーンゴム溶液に浸漬するとともに、 シリコーンゴム溶液を真空脱気することにより、積層体 23の溝内部にシリコーンゴムを 充填し、その後シリコーンゴム溶液力も積層体 23を引き上げ、積層体 23の側面にシ リコーンゴムをコーティングする。その後、溝内部に充填、及び積層体 23の側面にコ 一ティングした前記シリコーンゴムを硬化させることにより、本発明の積層型圧電素子 が完成する。
[0093] そして、外部電極 25にリード線を接続し、該リード線を介して一対の外部電極 25に 0. l〜3kVZmmの直流電圧を印加し、積層体 23を分極処理することによって、本 発明の積層型圧電素子を利用した圧電ァクチユエータが完成する。リード線を外部 の電圧供給部に接続し、リード線及び外部電極 25を介して金属層 22に電圧を印加 させれば、各圧電体 21は逆圧電効果によって大きく変位し、これによつて例えばェン ジンに燃料を噴射供給する自動車用燃料噴射弁として機能する。
その他は、第 1の実施形態と同様であるので、説明を省略する。
[0094] <噴射装置 >
図 5は、本発明の一実施形態にかかる噴射装置を示す概略断面図である。図 5〖こ 示すように、この噴射装置は、一端に噴射孔を有する 33を有する収納容器 31の内 部に、上記実施形態に代表される本発明の積層型圧電素子が収納されている。収 納容器 31内には、噴射孔 33を開閉することができる-一ドルバルブ 35が配設され ている。噴射孔 33には燃料通路 37が-一ドルバルブ 35の動きに応じて連通可能に 配設されている。この燃料通路 37は外部の燃料供給源に連結され、燃料通路 37〖こ 常時一定の高圧で燃料が供給されている。従って、ニードルバルブ 35が噴射孔 33 を開放すると、燃料通路 37に供給されていた燃料が一定の高圧で図示しない内燃 機関の燃料室内に噴出されるように構成されて 、る。
[0095] また、ニードルバルブ 35の上端部は内径が大きくなつており、収納容器 31に形成 されたシリンダ 39と摺動可能なピストン 41が配置されている。そして、収納容器 31内 には、上記した積層型圧電素子を備えた圧電ァクチユエータ 43が収納されて 、る。
[0096] このような噴射装置では、圧電ァクチユエータ 43が電圧を印加されて伸長すると、 ピストン 41が押圧され、ニードルバルブ 35が噴射孔 33を閉塞し、燃料の供給が停止 される。また、電圧の印加が停止されると圧電ァクチユエータ 43が収縮し、皿パネ 45 がピストン 41を押し返し、噴射孔 33が燃料通路 37と連通して燃料の噴射が行われる ようになっている。
また、本発明は、積層型圧電素子および噴射装置に関するものであるが、上記実 施例に限定されるものではなぐ例えば、自動車エンジンの燃料噴射装置、インクジ ット等の液体噴射装置、光学装置等の精密位置決め装置や振動防止装置等に搭 載される駆動素子、または、燃焼圧センサ、ノックセンサ、加速度センサ、荷重センサ 、超音波センサ、感圧センサ、ョーレートセンサ等に搭載されるセンサ素子、ならびに 圧電ジャイロ、圧電スィッチ、圧電トランス、圧電ブレーカ一等に搭載される回路素子 以外であっても、圧電特性を用いた素子であれば、実施可能である。
以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明は以下の実施例 に限定されるものではない。
実施例
[0097] (実施例 1)本発明の積層型圧電素子からなる圧電ァクチユエータを以下のようにして 作製した。
まず、平均粒径が 0. 4 111のチタン酸ジルコン酸鉛(?1^1:0— PbTiO )を主成分
3 3 とする圧電セラミックの仮焼粉末、バインダー、及び可塑剤を混合したスラリーを作製 し、ドクターブレード法で厚み 150 μ mの圧電体 11になるセラミックグリーンシートを 複数作製した。
[0098] このセラミックグリーンシートの片面に、銀—パラジウム合金(銀 95質量0 /0—パラジ ゥム 5質量0 /0)にバインダーを加えた導電性ペーストをスクリーン印刷法により印刷し た。このとき、他の金属層 12Bを形成する部分には、銀—パラジウム合金 (銀 95質量 %—パラジウム 5質量%)にバインダーをカ卩えた導電性ペーストで、焼成後に 5または 10 mの厚さとなるように印刷を行なった。また、場合によっては、上記導電性べ一 ストに 0. 2 μ mのアクリルビーズをカ卩えて金属層中に空隙を作った。
高抵抗金属層 12Aを形成する部分には、銀—パラジウム合金 (銀 95質量%—パラ ジゥム 5質量%)の表面を酸化処理した粒子に平均粒径が 0. 2 μ mのアクリルビーズ を適量カ卩え、さらにバインダーをカ卩えた導電性ペーストで焼成後に 1〜6 mの厚さと なるように印刷を行った。
[0099] このようにして導電性ペーストが印刷されたシートを 300枚用意した。これとは別に 保護層になるグリーンシートを用意し、これらを下力も保護層 30枚、積層体 300枚、 保護層 30枚となるように積層し、プレスした後、脱脂をして焼成した。焼成は、 800°C で 2時間保持した後に、 1000°Cで 2時間焼成した。形成された高抵抗金属層 12Aの 空隙率を表 1に示した。
[0100] また、積層体 13中の高抵抗金属層 12Aは表 1に示すような層数にした。また、この 高抵抗金属層 12Aの配置は、試料 No. 9を除いて規則的とした。具体的には、高抵 抗金属層の層数が 1層の試料 No. 1は、積層体の上から 150層目に高抵抗金属層 を配置した。また、高抵抗金属層の層数が 2層の試料 No. 2は、積層体の上から 100 、 200層目に高抵抗金属層を規則的に配置した。高抵抗金属層の層数が 5層の試 料 No. 3は、積層体の上カゝら 50層ごとに高抵抗金属層を規則的に配置した。高抵抗 金属層の層数が 14層の試料は 20層ごと、 59層の試料は 5層ごとに規則的に配置し た。更に、高抵抗金属層の層数が 10層の試料は積層体の上から 26、 27、 27、 28、 28、 28、 28、 28、 27、 27の間隔で高抵抗金属層を規則的に配置した。また、層数 力 S39層の試料は積層体の上から 7、 8、 7、 8のように 7層と 8層の間隔を交互にして、 高抵抗金属層を規則的に配置した。高抵抗金属層の層数が 20層の試料は、 13、 1 3、 13、 13、 14、 14、 15、 15、 16、 16、 16、 16、 16、 15、 15、 14、 14、 13、 13、 13 の間隔で高抵抗金属層を規則的に配置した。高抵抗金属層の層数が 20層の試料 のうち、高抵抗金属層の配置が規則的ではない試料 No.9は、積層体の上から 5、 5 、 25、 25、 15、 10、 20、 20、 10、 10、 10、 10、 10、 20、 20、 10、 15、 25、 25、 5の 間隔で高抵抗金属層を配置した。
[0101] 高抵抗金属層 12Aには、場合によって PZT、チタン酸鉛、アルミナ、チタ二了、窒 化ケィ素、シリカ等の高抵抗成分を入れたものも用意した。
[0102] 次に、平均粒径 2 μ mのフレーク状の銀粉末と、残部が平均粒径 2 μ mのケィ素を 主成分とする軟ィ匕点が 640°Cの非晶質のガラス粉末との混合物に、ノインダーを銀 粉末とガラス粉末の合計質量 100質量部に対して 8質量部添加し、十分に混合して 銀ガラス導電性ペーストを作製し、このようにして作製した銀ガラス導電性ペーストを 離型フィルム上にスクリーン印刷によって形成し、乾燥後、離型フィルムより剥がして 、銀ガラス導電性ペーストのシートを得た。なお、フレーク状の粉末の平均粒径は、 次のようにして測定されたものである。すなわち、走査型電子顕微鏡 (SEM)を用い て粉末の写真を撮影し、その写真上で直線を引き、粒子と直線が交わる長さを 50個 測定し、その平均を取って平均粒径とした。
[0103] そして、前記銀ガラスペーストのシートを積層体 13の外部電極 15面に転写して積 層し、 700°Cで 30分焼き付けを行い、一対の外部電極 15を形成した。
[0104] その後、外部電極 15にリード線を接続し、正極及び負極の外部電極 15にリード線 を介して 3kVZmmの直流電界を 15分間印加して分極処理を行い、図 1に示すよう な積層型圧電素子を用いた圧電ァクチユエータを作製した。得られた積層型圧電素 子に 170Vの直流電圧を印加したところ、すべての圧電ァクチユエータにおいて、積 層方向に変位が得られた。
[0105] さらに、この圧電ァクチユエータを室温で 0〜 + 170Vの交流電圧を 300Hzの周波 数で印加して、 2 X 109回まで連続駆動した試験を行った。試験は各試料 100個ず つ行った。試験後に、破壊に至ったサンプルの割合を算出し試験後の破壊率として 表 1に示した。また、同時に積層部を金属顕微鏡、 SEM等を使って観察し、剥がれ が生じている層の数を数えた。更に、初期の積層型圧電素子の変位量と試験後の積 層型圧電素子の変位量の差の絶対値を初期の積層型圧電素子の変位量で除した 値に 100倍したものを駆動試験前後での変位量の変化率として表 1に示した。結果 は表 1に示すとおりである。
[0106] [表 1]
Figure imgf000028_0001
[0107] 同表より、比較例である試料 No. 1-1は、積層型圧電素子中の高抵抗金属層の数 力 個であるので応力をうまく分散することができず、更には発生したクラックが素子 全体に進展する為に試験後の破壊確率が 10%と大きい。また、積層体中の層で剥 がれを生じる層の数は 100個と多力つた。更には、駆動試験前後での変位量の変化 率 10%と大きくなり、耐久性が低力つた。
[0108] これに対して、本発明の実施例である試料番号 1-2〜32は、 2 X 109回連続駆動さ せた後の破壊率が 3%以下で、比較例である試料 No. 1-1に比べ、耐久性の面で非 常に優れていた。
特に高抵抗金属層を規則的に配置した試料、例えば試料 No. 1-6は規則的な配 置でない試料 No. 1-9に比べて、試験後の破壊が無いこと、試験前後での変位量の 変化率が小さ 、ことで、耐久性にぉ 、て優れて!/、る。
[0109] また、 20層の高抵抗金属層を規則的に配置し、高抵抗金属層の空隙率が他の金 属層よりも大きな試料 No.ト 10〜16は、駆動試験前後での変位量の変化率が 2. 0 %以下と小さぐ積層型圧電素子として耐久性が優れていることが分力つた。また高 抵抗金属層の空隙率を 40〜99%とした試料 No.ト 11〜16では、駆動試験前後で の変位量の変化率が 1. 8%以下と更に小さく耐久性に優れていることが分力つた。
[0110] また、高抵抗金属層を 20層、規則的に配置し、高抵抗金属層の高抵抗金属中の 高抵抗成分の含有率がその他の金属層中の高抵抗成分の含有率よりも多い試料 N o.ト 17〜16では、破壊する試料もなぐ駆動試験前後での変位量の変化も 0. 4% 〜0. 9%と著しく小さぐ積層型圧電素子として耐久性に優れていることが分力つた。 なお、高抵抗成分として PZT、チタン酸鉛、アルミナ、チタ-ァを用いた試料は、更に 耐久性が優れていた。
[0111] 更に、高抵抗金属層と他の金属層の厚みを変えて、高抵抗金属層の厚みが他の 金属層の厚みより小さいことの効果を確認した試料 No. 1-6、 No. I- 28〜32では、 高抵抗金属層の厚みが他の金属層の厚みより多きい試料 No. 1-27に比べて駆動試 験前後での変位量の変化率が 1. 6%以下と小さく耐久性に優れていた。
更に、高抵抗金属層の圧電体層に対する電気抵抗の比を 1Z10〜: L000倍に制 御した試料や高抵抗金属層の電気抵抗がその他の金属層の電気抵抗の 1000倍以 上であるように作製した試料では、高抵抗金属層の剥がれが無く耐久性に優れること が分かった。
本発明の積層型圧電体素子を収納した噴射装置は、噴射を効率よく行い、耐久性 にも優れ、地球環境にやさしい製品となることが分力つた。
[0112] (実施例 2)
本発明の積層型圧電素子力 なる圧電ァクチユエータを以下のようにして作製した 。まず、平均粒径が 0. 4 111のチタン酸ジルコン酸鉛(?1^1:0— PbTiO )を主成分
3 3 とする圧電セラミックの仮焼粉末、バインダー、及び可塑剤を混合したスラリーを作製 し、ドクターブレード法で厚み 150 μ mの圧電体 21になるセラミックグリーンシートを 作製した。
[0113] このセラミックグリーンシートの片面に、銀一パラジウム合金(銀 95質量%—パラジ ゥム 5重量0 /0)にバインダーを加えた導電性ペーストをスクリーン印刷法により形成し たシートを 300枚積層し、焼成した。焼成は、 800°Cで保持した後に、 1000°Cで焼 成した。
[0114] このとき、金属層 22aを形成する部分には、レジスト厚み 20 mの製版で、 10 m の厚さとなるように印刷を行い、部分金属層 22cを形成する部分には、レジスト厚み 1 の製版で、 5 mの厚さとなるように印刷を行った。部分金属層は、表 2に示す ように配置した。部分金属層 22cからなる金属層 22bは、図 3(b)に示すような 6つの部 分金属層 22cを配置した形態とした。さらに、試料番号 Π-5は、 1つの部分金属層 22 cをさらに縦 5個横 5個の 25個の部分金属層に細分ィ匕したものとした。すなわち、試 料番号 Π-5では 1層あたり 150個の部分金属層を配置した。
[0115] 次に、平均粒径 2 mのフレーク状の銀粉末と、残部が平均粒径 2 mのケィ素を 主成分とする軟ィ匕点が 640°Cの非晶質のガラス粉末との混合物に、ノインダーを銀 粉末とガラス粉末の合計質量 100質量部に対して 8質量部添加し、十分に混合して 銀ガラス導電性ペーストを作製した。このようにして作製した銀ガラス導電性ペースト を離型フィルム上にスクリーン印刷によって形成し、乾燥後、離型フィルムより剥がし て、銀ガラス導電性ペーストのシートを得た。
[0116] そして、前記銀ガラスペーストのシートを積層体 23の外部電極形成面に転写して 積層し、 700°Cで 30分焼き付けを行い、外部電極 25を形成した。
その後、外部電極 25にリード線を接続し、正極及び負極の外部電極 25にリード線 を介して 3kVZmmの直流電界を 15分間印加して分極処理を行い、図 3に示すよう な形態の積層型圧電素子を用いた圧電ァクチユエータを作製した。
[0117] 得られた積層型圧電素子に 170Vの直流電圧を印加したところ、すべての圧電ァク チユエータにお 、て、積層方向に変位量が得られた。 さらに、この圧電ァクチユエータを室温で 0〜 + 170Vの交流電圧を 150Hzの周波 数で印加して、 1 X 109回まで連続駆動した試験を行った。結果は表 2に示すとおり である。
[表 2]
Figure imgf000032_0001
[0119] 表 2から、比較例である試料番号 Π-6は、積層界面に力かる応力が一点に集中して 負荷が増大して剥離が生じるとともに、うなり音やノイズ発生が生じた。
[0120] これに対して、本発明の実施例である試料番号 11-1〜5は、 1 X 109回連続駆動さ せた後も、素子変位量が著しく低下することなぐ圧電ァクチユエータとして必要とす る実効変位量を有しており、誤作動が生じない優れた耐久性を有した圧電ァクチュ エータを作製できた。
[0121] 特に、応力緩和層と応力集中層を、圧電体を介して隣同士に配置させた試料 No.
Π-3は素子の変位量を大きくすることができるだけでなぐ素子変位量が安定した積 層型ァクチユエータを作製できることがわかる。さらに、応力緩和層を、圧電体を介し てはさみこんだ試料 No. 11-4、 5は、素子の変位量を最も大きくすることができるだけ でなぐ素子変位量がほとんど変化せず、極めて耐久性に優れていたことから、素子 変位量が安定した積層型ァクチユエータとすることができた。
[0122] 本発明の積層型圧電素子および噴射装置は以上の実施形態に限定されるもので はなぐ本発明の請求の範囲に記載の範囲内で種々の変更は可能である。例えば、 上記実施形態では、積層体 13, 23の対向する側面に外部電極 15, 25を形成した 例について説明したが、例えば隣設する側面に一対の外部電極 15, 25を形成して ちょい。

Claims

請求の範囲
[I] 圧電体層と金属層とが交互に複数積層された積層型圧電素子において、複数の 前記金属層は、隣り合う両側の金属層よりも電気抵抗の高い高抵抗金属層を複数含 んで!、ることを特徴とする積層型圧電素子。
[2] 複数の前記高抵抗金属層は、該高抵抗金属層以外の他の金属層を複数層挟んで それぞれ配置されて!ヽる請求項 1記載の積層型圧電素子。
[3] 前記高抵抗金属層が規則的に配置されていることを特徴とする請求項 1または 2記 載の積層型圧電素子。
[4] 前記高抵抗金属層は、内部の空隙率が前記他の金属層における空隙率よりも大き V、ことを特徴とする請求項 1〜3の 、ずれかに記載の積層型圧電素子。
[5] 前記高抵抗金属層は、前記他の金属層よりも電気抵抗の高い高抵抗成分を含み、 該高抵抗成分の含有率が前記他の金属層における高抵抗成分の含有率よりも高 、 ことを特徴とする請求項 1〜4のいずれかに記載の積層型圧電素子。
[6] 前記高抵抗金属層は、厚みが前記他の金属層よりも薄いことを特徴とする請求項 1 〜5の ヽずれかに記載の積層型圧電素子。
[7] 前記高抵抗金属層の前記圧電体層に対する電気抵抗の比が 1Z10〜1000倍で あることを特徴とする請求項 1〜6のいずれかに記載の積層型圧電素子。
[8] 前記高抵抗金属層の電気抵抗がその他の金属層の電気抵抗の 1000倍以上であ ることを特徴とする請求項 1〜7のいずれかに記載の積層型圧電素子。
[9] 複数の圧電体層と複数の金属層とが交互に積層された積層体を有する積層型圧 電素子において、前記複数の金属層のうちの少なくとも一層が、前記圧電体層間に 配設された複数の部分金属層からなることを特徴とする積層型圧電素子。
[10] 前記複数の部分金属層の一部は、該部分金属層の厚み方向の両端が隣接する両 側の圧電体層に接しており、前記複数の部分金属層の残部は、該部分金属層の厚 み方向の一端のみが圧電体層に接している請求項 9に記載の積層型圧電素子。
[II] 前記部分金属層からなる金属層を複数備えている請求項 9又は 10に記載の積層 型圧電素子。
[12] 前記部分金属層からなる複数の金属層は、複数の圧電体層を介してそれぞれ配 置されて!ヽる請求項 11記載の積層型圧電素子。
[13] 前記部分金属層からなる複数の金属層は規則的に配置されている請求項 11また は 12記載の積層型圧電素子。
[14] 前記部分金属層は、当該部分金属層からなる金属層に隣接する圧電体層に近づ くにつれて幅が漸次小さく又は漸次大きくなる請求項 9〜13のいずれかに記載の積 層型圧電素子。
[15] 前記部分金属層が、銀若しくはパラジウム又はこれらの合金力もなる請求項 9〜 14 の!ヽずれかに記載の積層型圧電素子。
[16] 隣り合う前記部分金属層の間には空隙が存在する請求項 9〜15のいずれかに記 載の積層型圧電素子。
[17] 前記積層体の側面には、前記複数の金属層が接続された一対の外部電極が形成 されて 、る請求項 1〜 16の 、ずれかに記載の積層型圧電素子。
[18] 噴出孔を有する容器と、請求項 1〜17のいずれかに記載の積層型圧電素子とを備 え、前記容器内に充填された液体が前記積層型圧電素子の駆動により前記噴射孔 カゝら吐出させるように構成されたことを特徴とする噴射装置。
PCT/JP2006/319482 2005-09-29 2006-09-29 積層型圧電素子およびこれを用いた噴射装置 WO2007037377A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20060798450 EP1942532B1 (en) 2005-09-29 2006-09-29 Laminated piezoelectric element and injection apparatus using same
JP2007537704A JP4885869B2 (ja) 2005-09-29 2006-09-29 積層型圧電素子およびこれを用いた噴射装置
US12/088,428 US8288921B2 (en) 2005-09-29 2006-09-29 Multilayer piezoelectric element and injector using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-283684 2005-09-29
JP2005283684 2005-09-29
JP2005-313865 2005-10-28
JP2005313865 2005-10-28
JP2006089697 2006-03-29
JP2006-089697 2006-03-29

Publications (1)

Publication Number Publication Date
WO2007037377A1 true WO2007037377A1 (ja) 2007-04-05

Family

ID=37899797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319482 WO2007037377A1 (ja) 2005-09-29 2006-09-29 積層型圧電素子およびこれを用いた噴射装置

Country Status (5)

Country Link
US (1) US8288921B2 (ja)
EP (1) EP1942532B1 (ja)
JP (1) JP4885869B2 (ja)
CN (1) CN101789486B (ja)
WO (1) WO2007037377A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101874314A (zh) * 2007-09-26 2010-10-27 埃普科斯股份有限公司 压电多层器件
US20100276511A1 (en) * 2007-08-29 2010-11-04 Kyocera Corporation Multi-Layer Piezoelectric Element, and Ejection Apparatus and Fuel Ejection System That Employ the Same
US20100276510A1 (en) * 2007-09-27 2010-11-04 Kyocera Corporation Multi-Layer Piezoelectric Element, Ejection Apparatus Using the Same and Fuel Ejection System
EP2190042A4 (en) * 2007-09-18 2012-04-11 Kyocera Corp STACKED PIEZOELECTRIC ELEMENT AND NOZZLE DEVICE AND FUEL NOZZLE SYSTEM THEREWITH
EP2216836A4 (en) * 2007-10-29 2013-03-27 Kyocera Corp LAMINATED PIEZOELECTRIC ELEMENT, INJECTOR FURNISHED WITH IT AND FUEL INJECTION SYSTEM
JP2020049710A (ja) * 2018-09-25 2020-04-02 株式会社リコー 液体吐出ヘッド、液体吐出装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728479B (zh) * 2005-10-28 2012-02-29 京瓷株式会社 层叠型压电元件及使用它的喷射装置
JP5050164B2 (ja) * 2006-10-20 2012-10-17 京セラ株式会社 圧電アクチュエータユニット及びその製造方法
JP5398543B2 (ja) * 2007-11-28 2014-01-29 京セラ株式会社 積層型圧電素子及びその製造方法、並びに噴射装置及び燃料噴射システム
WO2013157293A1 (ja) * 2012-04-19 2013-10-24 日本碍子株式会社 膜型圧電/電歪素子
CN104160524B (zh) * 2012-07-30 2016-12-07 京瓷株式会社 层叠型压电元件以及具备其的喷射装置和燃料喷射系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086880A (ja) 1983-10-19 1985-05-16 Nec Corp 電歪効果素子
JPS61133715A (ja) 1984-12-03 1986-06-21 Murata Mfg Co Ltd 周波数調整可能な圧電素子
JPH01130568U (ja) 1988-03-02 1989-09-05
JPH0364979A (ja) * 1989-08-02 1991-03-20 Nec Corp 電歪効果素子
JPH03106082A (ja) * 1989-09-20 1991-05-02 Fuji Electric Co Ltd 積層形圧電アクチュエータ素子
JPH06326370A (ja) 1993-05-12 1994-11-25 Toyota Motor Corp 積層型圧電アクチュエータ
JPH10199750A (ja) 1997-01-10 1998-07-31 Murata Mfg Co Ltd 積層セラミック電子部品及びその製造方法
JPH11186626A (ja) * 1997-12-25 1999-07-09 Kyocera Corp 積層型圧電アクチュエータ
JP2001144340A (ja) * 1999-11-11 2001-05-25 Kyocera Corp 積層型圧電アクチュエータ
WO2006000479A1 (de) 2004-06-29 2006-01-05 Siemens Aktiengesellschaft Piezoelektrisches bauteil mit sollbruchstelle, verfahren zum herstellen des bauteils und verwendung des bauteils

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288075A (ja) * 1987-05-20 1988-11-25 Nec Corp 電歪効果素子
JPH01130568A (ja) 1987-11-17 1989-05-23 Texas Instr Japan Ltd 電荷結合素子
TW432731B (en) * 1998-12-01 2001-05-01 Murata Manufacturing Co Multilayer piezoelectric part
DE10307825A1 (de) * 2003-02-24 2004-09-09 Epcos Ag Elektrisches Vielschichtbauelement und Schichtstapel
EP1511092B1 (en) * 2003-08-29 2007-02-21 Fuji Photo Film Co., Ltd. Laminated structure, method of manufacturing the same and ultrasonic transducer array
DE602004024104D1 (de) * 2003-09-25 2009-12-24 Kyocera Corp Mehrschichtiges piezoelektrisches bauelement
US20070080612A1 (en) * 2003-10-27 2007-04-12 Masaki Terazono Multi-layer piezoelectric element
CN101694865B (zh) * 2004-03-09 2013-03-20 京瓷株式会社 叠层型压电元件及其制造方法
DE102004050803A1 (de) * 2004-10-19 2006-04-20 Robert Bosch Gmbh Piezoaktor
JP4775372B2 (ja) * 2005-02-15 2011-09-21 株式会社村田製作所 積層型圧電素子
JP5123491B2 (ja) * 2005-06-10 2013-01-23 日本碍子株式会社 積層型圧電/電歪素子
JP2007157849A (ja) * 2005-12-01 2007-06-21 Denso Corp 積層型圧電素子の製造方法
WO2008053569A1 (en) * 2006-10-31 2008-05-08 Kyocera Corporation Multi-layer piezoelectric element and injection apparatus employing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086880A (ja) 1983-10-19 1985-05-16 Nec Corp 電歪効果素子
JPS61133715A (ja) 1984-12-03 1986-06-21 Murata Mfg Co Ltd 周波数調整可能な圧電素子
JPH01130568U (ja) 1988-03-02 1989-09-05
JPH0364979A (ja) * 1989-08-02 1991-03-20 Nec Corp 電歪効果素子
JPH03106082A (ja) * 1989-09-20 1991-05-02 Fuji Electric Co Ltd 積層形圧電アクチュエータ素子
JPH06326370A (ja) 1993-05-12 1994-11-25 Toyota Motor Corp 積層型圧電アクチュエータ
JPH10199750A (ja) 1997-01-10 1998-07-31 Murata Mfg Co Ltd 積層セラミック電子部品及びその製造方法
JPH11186626A (ja) * 1997-12-25 1999-07-09 Kyocera Corp 積層型圧電アクチュエータ
JP2001144340A (ja) * 1999-11-11 2001-05-25 Kyocera Corp 積層型圧電アクチュエータ
WO2006000479A1 (de) 2004-06-29 2006-01-05 Siemens Aktiengesellschaft Piezoelektrisches bauteil mit sollbruchstelle, verfahren zum herstellen des bauteils und verwendung des bauteils

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1942532A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100276511A1 (en) * 2007-08-29 2010-11-04 Kyocera Corporation Multi-Layer Piezoelectric Element, and Ejection Apparatus and Fuel Ejection System That Employ the Same
EP2194592A4 (en) * 2007-08-29 2012-12-26 Kyocera Corp LAMINATED PIEZOELECTRIC ELEMENT AND INJECTION DEVICE AND FUEL INJECTION SYSTEM EQUIPPED WITH THE LAMINATED PIEZOELECTRIC ELEMENT
US8450908B2 (en) 2007-08-29 2013-05-28 Kyocera Corporation Multi-layer piezoelectric element with metal parts or ceramic parts bonded to only one piezoelectric material layer
EP2190042A4 (en) * 2007-09-18 2012-04-11 Kyocera Corp STACKED PIEZOELECTRIC ELEMENT AND NOZZLE DEVICE AND FUEL NOZZLE SYSTEM THEREWITH
US8432085B2 (en) 2007-09-18 2013-04-30 Kyocera Corporation Multi-layer piezoelectric element having low rigidity metal layers, and ejection apparatus and fuel ejection system that employ the same
CN101874314A (zh) * 2007-09-26 2010-10-27 埃普科斯股份有限公司 压电多层器件
US20100276510A1 (en) * 2007-09-27 2010-11-04 Kyocera Corporation Multi-Layer Piezoelectric Element, Ejection Apparatus Using the Same and Fuel Ejection System
US8421310B2 (en) * 2007-09-27 2013-04-16 Kyocera Corporation Multi-layer piezoelectric element, ejection apparatus using the same and fuel ejection system
EP2216836A4 (en) * 2007-10-29 2013-03-27 Kyocera Corp LAMINATED PIEZOELECTRIC ELEMENT, INJECTOR FURNISHED WITH IT AND FUEL INJECTION SYSTEM
JP2020049710A (ja) * 2018-09-25 2020-04-02 株式会社リコー 液体吐出ヘッド、液体吐出装置

Also Published As

Publication number Publication date
US8288921B2 (en) 2012-10-16
EP1942532A1 (en) 2008-07-09
CN101789486B (zh) 2012-10-31
CN101789486A (zh) 2010-07-28
EP1942532B1 (en) 2015-03-18
EP1942532A4 (en) 2012-03-28
US20100032503A1 (en) 2010-02-11
JP4885869B2 (ja) 2012-02-29
JPWO2007037377A1 (ja) 2009-04-16

Similar Documents

Publication Publication Date Title
JP4885869B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP5050164B2 (ja) 圧電アクチュエータユニット及びその製造方法
JP4942659B2 (ja) 積層型圧電素子及びこれを用いた噴射装置
JP4933554B2 (ja) 積層型圧電素子、これを用いた噴射装置及び燃料噴射システム、並びに積層型圧電素子の製造方法
JP5050165B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
WO2007097460A1 (ja) セラミック部材の製造方法、並びにセラミック部材、ガスセンサ素子、燃料電池素子、フィルタ素子、積層型圧電素子、噴射装置、及び燃料噴射システム
JP5311733B2 (ja) 積層型圧電素子、これを備えた噴射装置、及びこれを備えた燃料噴射システム
JP5025661B2 (ja) 積層型圧電素子、これを備えた噴射装置及び燃料噴射システム
JPWO2008072767A1 (ja) 積層型圧電素子、これを備えた噴射装置及び燃料噴射システム
JP2012099827A (ja) 積層型電子部品及びこれを用いた噴射装置
JP5084745B2 (ja) 積層型圧電素子、これを備えた噴射装置及び燃料噴射システム
CN100448047C (zh) 叠层型电子部件及其制法、叠层型压电元件及喷射装置
CN100517789C (zh) 叠层型压电元件及其制造方法
JP3730893B2 (ja) 積層型圧電素子及びその製法並びに噴射装置
JP4956054B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
CN101273477A (zh) 层叠型压电元件及使用该层叠型压电元件的喷射装置
JP4986486B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP5133399B2 (ja) 積層型圧電素子、これを備えた噴射装置及び燃料噴射システム
JP5449433B2 (ja) 積層型圧電素子およびこれを用いた噴射装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680035819.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007537704

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006798450

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12088428

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载