WO2007036947A1 - Delayed release anti-malarial composition - Google Patents
Delayed release anti-malarial composition Download PDFInfo
- Publication number
- WO2007036947A1 WO2007036947A1 PCT/IN2005/000369 IN2005000369W WO2007036947A1 WO 2007036947 A1 WO2007036947 A1 WO 2007036947A1 IN 2005000369 W IN2005000369 W IN 2005000369W WO 2007036947 A1 WO2007036947 A1 WO 2007036947A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pharmaceutical composition
- composition according
- arteether
- weight
- tablets
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 39
- 230000003111 delayed effect Effects 0.000 title claims abstract description 20
- 239000003430 antimalarial agent Substances 0.000 title claims abstract description 19
- 230000000078 anti-malarial effect Effects 0.000 title claims abstract description 12
- NLYNIRQVMRLPIQ-XQLAAWPRSA-N artemotil Chemical compound C1C[C@H]2[C@H](C)CC[C@H]3[C@@H](C)[C@@H](OCC)O[C@H]4[C@]32OO[C@@]1(C)O4 NLYNIRQVMRLPIQ-XQLAAWPRSA-N 0.000 claims abstract description 44
- 239000003826 tablet Substances 0.000 claims abstract description 43
- 238000009505 enteric coating Methods 0.000 claims abstract description 24
- 239000002702 enteric coating Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 24
- 239000003814 drug Substances 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 20
- 229940079593 drug Drugs 0.000 claims abstract description 19
- 239000002662 enteric coated tablet Substances 0.000 claims abstract description 19
- 238000007907 direct compression Methods 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 11
- BLUAFEHZUWYNDE-NNWCWBAJSA-N artemisinin Chemical group C([C@](OO1)(C)O2)C[C@H]3[C@H](C)CC[C@@H]4[C@@]31[C@@H]2OC(=O)[C@@H]4C BLUAFEHZUWYNDE-NNWCWBAJSA-N 0.000 claims abstract description 10
- 201000004792 malaria Diseases 0.000 claims abstract description 7
- 239000003960 organic solvent Substances 0.000 claims abstract description 7
- 210000002784 stomach Anatomy 0.000 claims abstract description 7
- 210000001035 gastrointestinal tract Anatomy 0.000 claims abstract description 5
- 229920000642 polymer Polymers 0.000 claims abstract description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims description 23
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 18
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 18
- 239000006186 oral dosage form Substances 0.000 claims description 14
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 12
- 238000009472 formulation Methods 0.000 claims description 10
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 claims description 10
- 229940016286 microcrystalline cellulose Drugs 0.000 claims description 10
- 235000019813 microcrystalline cellulose Nutrition 0.000 claims description 10
- 239000008108 microcrystalline cellulose Substances 0.000 claims description 10
- 229920000168 Microcrystalline cellulose Polymers 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 239000007888 film coating Substances 0.000 claims description 9
- 238000009501 film coating Methods 0.000 claims description 9
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 8
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 claims description 8
- 239000008101 lactose Substances 0.000 claims description 8
- 239000000454 talc Substances 0.000 claims description 8
- 229910052623 talc Inorganic materials 0.000 claims description 8
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 7
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 7
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 7
- 239000008363 phosphate buffer Substances 0.000 claims description 7
- 239000004408 titanium dioxide Substances 0.000 claims description 6
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 5
- 239000013543 active substance Substances 0.000 claims description 5
- 229960000981 artemether Drugs 0.000 claims description 5
- 229960000913 crospovidone Drugs 0.000 claims description 5
- SXYIRMFQILZOAM-HVNFFKDJSA-N dihydroartemisinin methyl ether Chemical compound C1C[C@H]2[C@H](C)CC[C@H]3[C@@H](C)[C@@H](OC)O[C@H]4[C@]32OO[C@@]1(C)O4 SXYIRMFQILZOAM-HVNFFKDJSA-N 0.000 claims description 5
- 239000007884 disintegrant Substances 0.000 claims description 5
- 238000004090 dissolution Methods 0.000 claims description 5
- 235000019359 magnesium stearate Nutrition 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 claims description 5
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 claims description 5
- NLYNIRQVMRLPIQ-LTLPSTFDSA-N 10-ethoxydecahydro-3,6,9-trimethyl-(3r,5as,6r,8as,9r,10r,12r,12ar)-3,12-epoxy-12h-pyrano(4,3-j)-1,2-benzodioxepin Chemical compound C1C[C@H]2[C@H](C)CC[C@H]3[C@@H](C)[C@H](OCC)O[C@H]4[C@]32OO[C@@]1(C)O4 NLYNIRQVMRLPIQ-LTLPSTFDSA-N 0.000 claims description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 4
- 229960004191 artemisinin Drugs 0.000 claims description 4
- 229960002521 artenimol Drugs 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 238000007580 dry-mixing Methods 0.000 claims description 4
- 229960003943 hypromellose Drugs 0.000 claims description 4
- 239000004615 ingredient Substances 0.000 claims description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 235000019333 sodium laurylsulphate Nutrition 0.000 claims description 4
- 229940080313 sodium starch Drugs 0.000 claims description 4
- BJDCWCLMFKKGEE-ISOSDAIHSA-N artenimol Chemical compound C([C@](OO1)(C)O2)C[C@H]3[C@H](C)CC[C@@H]4[C@@]31[C@@H]2O[C@H](O)[C@@H]4C BJDCWCLMFKKGEE-ISOSDAIHSA-N 0.000 claims description 3
- FIHJKUPKCHIPAT-AHIGJZGOSA-N artesunate Chemical compound C([C@](OO1)(C)O2)C[C@H]3[C@H](C)CC[C@@H]4[C@@]31[C@@H]2O[C@@H](OC(=O)CCC(O)=O)[C@@H]4C FIHJKUPKCHIPAT-AHIGJZGOSA-N 0.000 claims description 3
- 229960004991 artesunate Drugs 0.000 claims description 3
- 229930016266 dihydroartemisinin Natural products 0.000 claims description 3
- 239000003085 diluting agent Substances 0.000 claims description 3
- 229920001600 hydrophobic polymer Polymers 0.000 claims description 3
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 3
- 239000000314 lubricant Substances 0.000 claims description 3
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 2
- 229930101531 artemisinin Natural products 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000007941 film coated tablet Substances 0.000 claims description 2
- 125000005395 methacrylic acid group Chemical group 0.000 claims description 2
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 claims description 2
- 229920000058 polyacrylate Polymers 0.000 claims description 2
- 229940093429 polyethylene glycol 6000 Drugs 0.000 claims description 2
- 239000002278 tabletting lubricant Substances 0.000 claims description 2
- 229940079832 sodium starch glycolate Drugs 0.000 claims 2
- 239000008109 sodium starch glycolate Substances 0.000 claims 2
- 229920003109 sodium starch glycolate Polymers 0.000 claims 2
- 229940075614 colloidal silicon dioxide Drugs 0.000 claims 1
- 239000004480 active ingredient Substances 0.000 abstract description 6
- 239000011248 coating agent Substances 0.000 abstract description 5
- 238000000576 coating method Methods 0.000 abstract description 5
- 239000002552 dosage form Substances 0.000 abstract description 5
- 239000002253 acid Substances 0.000 abstract description 3
- 238000000354 decomposition reaction Methods 0.000 abstract description 3
- 239000012530 fluid Substances 0.000 abstract description 2
- 230000002496 gastric effect Effects 0.000 abstract description 2
- 210000000936 intestine Anatomy 0.000 abstract 1
- 229960002970 artemotil Drugs 0.000 description 11
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 10
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 235000001258 Cinchona calisaya Nutrition 0.000 description 5
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 5
- 229960000948 quinine Drugs 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 3
- 206010063094 Cerebral malaria Diseases 0.000 description 3
- 229960003677 chloroquine Drugs 0.000 description 3
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 3
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- XEEQGYMUWCZPDN-DOMZBBRYSA-N (-)-(11S,2'R)-erythro-mefloquine Chemical compound C([C@@H]1[C@@H](O)C=2C3=CC=CC(=C3N=C(C=2)C(F)(F)F)C(F)(F)F)CCCN1 XEEQGYMUWCZPDN-DOMZBBRYSA-N 0.000 description 2
- 230000000181 anti-adherent effect Effects 0.000 description 2
- 239000003911 antiadherent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229960001962 mefloquine Drugs 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 230000004584 weight gain Effects 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- OVCDSSHSILBFBN-UHFFFAOYSA-N Amodiaquine Chemical compound C1=C(O)C(CN(CC)CC)=CC(NC=2C3=CC=C(Cl)C=C3N=CC=2)=C1 OVCDSSHSILBFBN-UHFFFAOYSA-N 0.000 description 1
- 235000001405 Artemisia annua Nutrition 0.000 description 1
- 240000000011 Artemisia annua Species 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical class CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000224017 Plasmodium berghei Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241001122588 Pseudoruegeria indica Species 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 208000035999 Recurrence Diseases 0.000 description 1
- 239000004141 Sodium laurylsulphate Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229960001444 amodiaquine Drugs 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000012738 dissolution medium Substances 0.000 description 1
- 238000007908 dry granulation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- -1 glidants Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 229960001375 lactose Drugs 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- DYLGFOYVTXJFJP-MYYYXRDXSA-N lumefantrine Chemical compound C12=CC(Cl)=CC=C2C=2C(C(O)CN(CCCC)CCCC)=CC(Cl)=CC=2\C1=C/C1=CC=C(Cl)C=C1 DYLGFOYVTXJFJP-MYYYXRDXSA-N 0.000 description 1
- 229960004985 lumefantrine Drugs 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- WKSAUQYGYAYLPV-UHFFFAOYSA-N pyrimethamine Chemical compound CCC1=NC(N)=NC(N)=C1C1=CC=C(Cl)C=C1 WKSAUQYGYAYLPV-UHFFFAOYSA-N 0.000 description 1
- 229960000611 pyrimethamine Drugs 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000001445 schizonticidal effect Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000006068 taste-masking agent Substances 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000005550 wet granulation Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2013—Organic compounds, e.g. phospholipids, fats
- A61K9/2018—Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/357—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having two or more oxygen atoms in the same ring, e.g. crown ethers, guanadrel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/205—Polysaccharides, e.g. alginate, gums; Cyclodextrin
- A61K9/2054—Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/205—Polysaccharides, e.g. alginate, gums; Cyclodextrin
- A61K9/2059—Starch, including chemically or physically modified derivatives; Amylose; Amylopectin; Dextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/28—Dragees; Coated pills or tablets, e.g. with film or compression coating
- A61K9/2806—Coating materials
- A61K9/2833—Organic macromolecular compounds
- A61K9/286—Polysaccharides, e.g. gums; Cyclodextrin
- A61K9/2866—Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/28—Dragees; Coated pills or tablets, e.g. with film or compression coating
- A61K9/2886—Dragees; Coated pills or tablets, e.g. with film or compression coating having two or more different drug-free coatings; Tablets of the type inert core-drug layer-inactive layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to delayed release anti-malarial pharmaceutical compositions. More particularly, the invention relates to delayed release formulations comprising the artemisinin derivative, ⁇ -arteether, which is formulated such that the compositions are suitable for drug release in the gastrointestinal tract and is of use to a patient in need of treatment related thereto.
- Artemisininin derivatives appear to be the most promising new antimalarial agents. Arteether is safe and therapeutically as effective as quinine for the treatment of cerebral malaria and because of its ease of administration, it appears to be a promising alternative drug for the treatment of severe, complicated and multi-drug resistant malaria in areas of quinine resistance and in rural zones where monitoring facilities are usually absent, ⁇ - arteether, a third generation ethyl ether derivative of dihydroartemisinin, a drug introduced in India for the first time by Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, recommended by World Health Organization (WHO), has undergone extensive preclinical, animal, toxicological studies as well as clinical studies on Indian subjects for drug regulatory purposes.
- CIMAP Central Institute of Medicinal and Aromatic Plants
- WHO World Health Organization
- Arteether shows rapid schizonticidal action with quicker clearance rate, short fever clearance time with no side effects and low recrudescence rate. Arteether has advantages over artemether, it is more lipophilic and can accumulate easily in brain tissues, which is advantageous in cerebral malaria patients.
- the ⁇ anomer of arteether a crystalline solid, is the predominant anomer upon synthesis and is easy to separate from the ⁇ anomer, which is a liquid, so that there is the potential for large-scale production.
- arteether was manufactured jointly by WHO and other partners, it costs less than artemether and cost is a critical factor in determining use of antimalarial drugs.
- Artemisinin and its derivative arteether are a class of antimalarial compounds derived from Artemisia annua.
- Various processes adequately describing the methods of preparation of arteether are reported by Jain et al (Jain D. C, Bhakuni R. S, Saxena S, kumar, S and Vishwakarma, R. A. ref: U.S. Pat. No. 6,346,631, G.B.2360517 and German no 10014669); Bhakuni et al, (Bhakuni, R. S.; Jain D. C and Sharma R. P. Indian. J. Chemistry, 34B, 529-30,1995) and Bhakuni et al, (Bhakuni, Singh R; Tewari A, Singh T, Khanuja S) ref: U.S. Pat. No. 6,750,356.
- U.S. patent no. 6,326,023 describes the process for formulation of alpha/beta, arteether and a neutralized refined vegetable oil which is administered by rectal route.
- U.S. patent no. 6,423,741 discloses antimalarial combinations and composition regarding process of formulation comprising of alpha arteether in combination with other drugs. These compositions are useful for the treatment of drug-resistant cases.
- compositions for topical application comprising of therapeutically effective amounts of pharmaceutical agents such as arteether.
- U.S. patent no. 6127405 describes the compositions and formulations related to alpha arteether alone or in combinations. These are known for their anti-bacterial and antifungal action in drug resistant cases.
- U.S. patent 5219865 discloses combinations of the synergistic therapeutic actions of subcurative doses of malaria therapeutics, artemisinine and its derivatives, dihydroartemisinine and arteether in combination with subcurative doses of chloroquine, 10-0-methylfloxacrine, mefloquine or pyrimethamine against chloroquine-sensitive Plasmodium berghei infection in mice.
- EP0464233 describes compositions of antimalarial combinations of arteether with quinine alone or with quinine and mefloquine, besides customary auxiliaries and/or vehicles. This can be in a form suitable for parenteral administration, or even in a form suitable for oral administration where these semi-solid compositions may also be employed as fillers in soft and hard gelatin capsules.
- WO9202217 discloses benflumetol combinations with artemisinine or its derivatives such as artemether where a synergistic antimalarial composition, methods of treating malaria by administering that composition, and a process for the preparation of that synergistic antimalarial composition are described. The combined preparations are exemplified for enteral (suppositories) , parenteral or oral (tablets, hard gelatine and soft capsules) dosage forms according to conventional formulation methods.
- ⁇ -arteether decomposes to dihydroartemisinin in simulated stomach conditions, which subsequently rearranges to a new compound with significantly reduced anti-malarial activity, thus rendering ⁇ - arteether unstable and ineffective in the stomach. Therefore, ⁇ -arteether tablets, when subjected to enteric coating to protect from acid degradation in the stomach region, and to safely deliver it to the intestinal region where the active substance could be more effectively released and absorbed, adds increased and assured therapeutic benefit to the patient.
- the main objective of the present invention is to provide a delayed release formulation of ⁇ -arteether in the form of enteric coated tablets, such that the drug is protected from acid decomposition by gastric fluid in stomach and facilitated for release in the gastrointestinal tract.
- a further objective of this invention is to provide a process for preparation of stable pharmaceutical formulation of ⁇ -arteether in the form of enteric coated tablets.
- Another object of the present invention is to provide a process for preparation of an improved, safe, less expensive pharmaceutical composition, in particular for the treatment of uncomplicated malarial infections as well as for the control of multi-drug resistant malaria and emerging treatment for severe, complicated cerebral malarial infections.
- the present invention discloses a novel antimalarial formulation comprising artemisinin derivative suitable for oral administration, and is formulated into a solid, delayed release, enteric-coated composition.
- the present invention is directed to a delayed release dosage form for oral administration comprising of therapeutically effective amount of ⁇ -arteether; and, protected with a delayed release enteric coating designated to afford suitable protection to the active substance known for its decomposition in the acidic environment of the stomach.
- the present invention is directed to a simplified, economical, time saving method of manufacturing for stable, enteric coated oral dosage form of ⁇ -arteether, more particularly tablets of ⁇ -arteether.
- the pharmaceutically active agents used in the present invention are therapeutic agents for the treatment of cerebral malaria and severe, complicated, multi-drug resistant malaria. They are artemisinin compounds which may be first generation, second generation and/or third generation compounds including ⁇ - and ⁇ -arteether, artemether, artesunate and combinations thereof.
- the preferred active ingredient is ⁇ - arteether. Typically the amount of active ingredient may vary from about 12.5 mg to about 200 mg.
- the preferred dosage of active ingredient according to the present invention is between 25 mg and 150 mg and most preferably between 50 mg and 100 mg.
- the preferred dosage form is enteric coated tablets for the delayed release of ⁇ - arteether.
- the tabletting process usually includes the steps of : (a) Formulation of the cores; (b) Coating the cores.
- the preparation of the core tablets can be done following wet granulation, dry granulation or direct compression.
- ⁇ - arteether core tablets are prepared by a process of direct compression.
- Direct compression is a ecomomical, time saving process for manufacturing core tablets, since it avoids the steps of granulation and drying.
- Core tablets manufactured by the process of direct compression usually include excipients such as fillers, preferably of direct compression grade, disintegrants, lubricants, glidants, anti-adherents, surfactants, colours, flavours, taste masking agents and such like.
- core tablet contains excipients such as microcrystalline cellulose and lactose as fillers/diluents to aid in direct compression tabletting process.
- Microcrystalline cellulose is usually used in the range of 45-50% by weight of the tablet and lactose in the range of 12-15% by weight of the tablet, wherein 16-22% of microcrystalline cellulose and 8-14% of lactose are direct compression tabletting aids.
- Other excipients include disintegrants selected from sodium starch glycollate, cross carmellose sodium, micro-crystalline cellulose, crospovidone and such like, either alone or in combination, usually in the range of 1-10% by weight of the tablet.
- the tablet core further includes glidants, lubricants or anti-adherents selected from colloidal anhydrous silica, magnesium stearate and talc in the range of 1.1-2.0%, 0.9- 1.5% and 0.3-0.7% by weight of the tablet respectively, either alone or in combinations thereof.
- the tablet also contains surface active agent such as sodium lauryl sulphate in the range of 1.5-1.9% by weight of the tablet.
- the core tablets are coated with an enteric coating to produce delayed-release ⁇ -arteether tablets.
- a seal coating is applied to the tablets before the enteric coating is provided.
- the enteric coated ⁇ arteether tablets are further coated with a film-coating.
- the enteric coating material is selected from the group consisting of ethyl cellulose, acrylic polymers, methacrylic polymers and hydrophobic polymers such as hypromellose phthalate.
- the enteric coating material is coated in an amount of from about 10 to about 30 percent by weight of the total oral dosage form and the total enteric coating comprises 15% by weight of the oral dosage form.
- the enteric coating formula further comprises dibutyl phthalate in the range of 1 to 2%; titanium dioxide in the range of 0.3 to 0.7% and talc in the range of 0.3 to 0.7% of the oral dosage form.
- the film coating on the enteric coated tablets is in an amount of about 2 percent by weight of the total oral dosage form.
- the film coating comprises of hydroxypropyl methyl cellulose in the range of 2 to 6%; polyethylene glycol 6000 in the range of 0.1 to 0.3 %; titanium dioxide in the range of 0.3 to 0.6%; talc in the range of 0.8 to 1.5% and red ferric oxide in the range of 0.05 to 0.1% of the film coated tablet.
- the solvents for enteric coating and film coating comprises organic solvents such as isopropyl alcohol and methylene chloride and combinations thereof.
- the delayed release, enteric coated tablets of ⁇ -arteether is manufactured by the process comprising :
- the delayed release enteric coated tablet of the invention were tested for dissolution in the following conditions:
- USP Type 2 apparatus at 100 rpm in 900 ml of 0.1 HCl for 1 hour, and subsequently in USP Type 2 apparatus at 100 rpm in 900 ml of pH 7.2 phosphate buffer 1 hour.
- Drug release after 1 hour in 0.1 N HCl 0 to 10%; Drug release after 1 hour in pH 7.2 phosphate buffer: not less than 95%.
- the dissolution pattern of the enteric coated tablet showed that the tablets released less than 10% of the drug in one hour in 0.1N HCL and more than 95% in pH 7.2 phosphate buffer.
- the enteric coated tablets as formulated in the present invention thus provided a time lag of one hour before releasing the drug, and released the drug by the end of the next one hour in phosphate buffer.
- the following examples illustrate the present invention:
- the formulation for direct compression had the following composition for the core:
- Microcrystalline cellulose 47.45 %
- Crospovidone 1.32 %
- Colloidal anhydrous silica 1.56 %
- Magnesium stearate 1.05%
- the core is manufactured by the following process:
- step (b) tabletting the blend of step (a) by direct compression means into tablets containing 50mg and 100 mg of ⁇ -arteether.
- Target Weight 380 mg 190 mg
- Hypromellose phthalate 13.08 %
- Dibutyl phthalate 1.31 %
- Titanium dioxide 0.54 %
- a film coat was applied to the enteric coated tablets as follows:
- Titanium dioxide 0.48 %
- Example 2 The solid coating materials were dissolved/suspended in isopropyl alcohol and methylene chloride. The film coat was applied onto the enteric coated ⁇ -arteether tablets with a weight gain of about 2% using a perforated pan coater. The formula for 50 mg strength tablets is linear and dose-weight proportional, therefore they are similarly prepared.
- Example 2 The solid coating materials were dissolved/suspended in isopropyl alcohol and methylene chloride. The film coat was applied onto the enteric coated ⁇ -arteether tablets with a weight gain of about 2% using a perforated pan coater. The formula for 50 mg strength tablets is linear and dose-weight proportional, therefore they are similarly prepared.
- Example 2 The formula for 50 mg strength tablets is linear and dose-weight proportional, therefore they are similarly prepared.
- Dissolutions tests on tablets so produced were carried out in a paddle apparatus (USP Type II) and the pH of the dissolution medium was raised by changing from 0.1N HCl for 1 hour to pH 7.2 phosphate buffer for next 1 hour in order to better simulate the GI tract.
- Core tablets were coated with enteric coating material (15%) and film coating (2%) of example 1. The dissolution data for these coated tablets is presented below in Table 1.
- Stability study was carried out over a period of 3 months at various stability conditions of 25°C/60% RH, 30°C/60% RH and 40°C/75% RH. All the test results at each station (1 month, 2 months, 3 months) showed compliance with the predetermined specifications and were found to be stable for the studied period.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
This invention discloses a novel, stable delayed release antimalarial composition of a pharmaceutically effective amount of antimalarial agent from the artemisinin group such as β-arteether. Since the antimalarial agent is unstable in stomach, the dosage form is designed such that the active ingredient is released and absorbed in the gastrointestinal tract. The invention encompasses the composition in the form of delayed release, enteric coated tablet dosage form. The invention also provides a process to prepare said tablets comprising a process of direct compression for preparing the core tablets, which are then enteric coated with suitable polymer coating material in organic solvent based system. These enteric coated are further film coated. The enteric coating is useful to protect the sensitive active ingredient against acid decomposition by the gastric fluid and delay release of the active ingredient for local delivery at the intestine. Such enteric coated tablets are useful for the treatment of drug resistant malaria.
Description
"Delayed Release Anti-Malarial Composition"
Technical field of the Invention:
The present invention relates to delayed release anti-malarial pharmaceutical compositions. More particularly, the invention relates to delayed release formulations comprising the artemisinin derivative, β-arteether, which is formulated such that the compositions are suitable for drug release in the gastrointestinal tract and is of use to a patient in need of treatment related thereto.
Background and prior art:
With the emergence of widespread chloroquine resistance and a world-wide scarcity of quinine, a search for newer antimalarial drugs has become imperative. Artemisinin derivatives appear to be the most promising new antimalarial agents. Arteether is safe and therapeutically as effective as quinine for the treatment of cerebral malaria and because of its ease of administration, it appears to be a promising alternative drug for the treatment of severe, complicated and multi-drug resistant malaria in areas of quinine resistance and in rural zones where monitoring facilities are usually absent, β- arteether, a third generation ethyl ether derivative of dihydroartemisinin, a drug introduced in India for the first time by Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, recommended by World Health Organization (WHO), has undergone extensive preclinical, animal, toxicological studies as well as clinical studies on Indian subjects for drug regulatory purposes. Arteether shows rapid schizonticidal action with quicker clearance rate, short fever clearance time with no side effects and low recrudescence rate. Arteether has advantages over artemether, it is more lipophilic and can accumulate easily in brain tissues, which is advantageous in cerebral malaria patients. The β anomer of arteether, a crystalline solid, is the predominant anomer upon synthesis and is easy to separate from the α anomer, which is a liquid, so that there is the potential for large-scale production. Finally, because of this and because arteether was manufactured jointly by WHO and other partners, it costs less than artemether and cost is a critical factor in determining use of antimalarial drugs.
Artemisinin and its derivative arteether are a class of antimalarial compounds derived from Artemisia annua. Various processes adequately describing the methods of preparation of arteether are reported by Jain et al (Jain D. C, Bhakuni R. S, Saxena S, kumar, S and Vishwakarma, R. A. ref: U.S. Pat. No. 6,346,631, G.B.2360517 and German no 10014669); Bhakuni et al, (Bhakuni, R. S.; Jain D. C and Sharma R. P. Indian. J. Chemistry, 34B, 529-30,1995) and Bhakuni et al, (Bhakuni, Singh R; Tewari A, Singh T, Khanuja S) ref: U.S. Pat. No. 6,750,356.
U.S. patent no. 6,326,023 describes the process for formulation of alpha/beta, arteether and a neutralized refined vegetable oil which is administered by rectal route.
U.S. patent no. 6,423,741 discloses antimalarial combinations and composition regarding process of formulation comprising of alpha arteether in combination with other drugs. These compositions are useful for the treatment of drug-resistant cases.
U.S. 5,446,070 and 6,562,363 disclose compositions for topical application comprising of therapeutically effective amounts of pharmaceutical agents such as arteether.
U.S. patent no. 6127405 describes the compositions and formulations related to alpha arteether alone or in combinations. These are known for their anti-bacterial and antifungal action in drug resistant cases.
U.S. patent 5219865 discloses combinations of the synergistic therapeutic actions of subcurative doses of malaria therapeutics, artemisinine and its derivatives, dihydroartemisinine and arteether in combination with subcurative doses of chloroquine, 10-0-methylfloxacrine, mefloquine or pyrimethamine against chloroquine-sensitive Plasmodium berghei infection in mice.
EP0464233 describes compositions of antimalarial combinations of arteether with quinine alone or with quinine and mefloquine, besides customary auxiliaries and/or vehicles. This can be in a form suitable for parenteral administration, or even in a form suitable for oral administration where these semi-solid compositions may also be employed as fillers in soft and hard gelatin capsules.
WO9202217 discloses benflumetol combinations with artemisinine or its derivatives such as artemether where a synergistic antimalarial composition, methods of treating malaria by administering that composition, and a process for the preparation of that synergistic antimalarial composition are described. The combined preparations are exemplified for enteral (suppositories) , parenteral or oral (tablets, hard gelatine and soft capsules) dosage forms according to conventional formulation methods.
A related application has been filed by us, Indian application no.: 763/MUM/2005 disclosing combination of artesunate with amodiaquine in solid oral dosage form, which is fully incorporated herein by reference.
In the present invention, a novel, stable pharmaceutical composition of delayed release, enteric coated form of β-arteether tablets is exemplified in detail, which has hitherto not been seen in the teachings of the prior art. The rationale for attempting enteric coating of β-arteether tablets is that, β-arteether decomposes to dihydroartemisinin in simulated stomach conditions, which subsequently rearranges to a new compound with significantly reduced anti-malarial activity, thus rendering β- arteether unstable and ineffective in the stomach. Therefore, β-arteether tablets, when subjected to enteric coating to protect from acid degradation in the stomach region, and to safely deliver it to the intestinal region where the active substance could be more effectively released and absorbed, adds increased and assured therapeutic benefit to the patient.
Objectives of the invention:
The main objective of the present invention is to provide a delayed release formulation of β-arteether in the form of enteric coated tablets, such that the drug is protected from acid decomposition by gastric fluid in stomach and facilitated for release in the gastrointestinal tract.
A further objective of this invention is to provide a process for preparation of stable pharmaceutical formulation of β-arteether in the form of enteric coated tablets.
Another object of the present invention is to provide a process for preparation of an improved, safe, less expensive pharmaceutical composition, in particular for the treatment of uncomplicated malarial infections as well as for the control of multi-drug resistant malaria and emerging treatment for severe, complicated cerebral malarial infections.
Summary of the Invention:
The present invention discloses a novel antimalarial formulation comprising artemisinin derivative suitable for oral administration, and is formulated into a solid, delayed release, enteric-coated composition.
Further, the present invention is directed to a delayed release dosage form for oral administration comprising of therapeutically effective amount of β-arteether; and, protected with a delayed release enteric coating designated to afford suitable protection to the active substance known for its decomposition in the acidic environment of the stomach.
Also, the present invention is directed to a simplified, economical, time saving method of manufacturing for stable, enteric coated oral dosage form of β-arteether, more particularly tablets of β-arteether.
Detailed Description of the Invention:
The pharmaceutically active agents used in the present invention are therapeutic agents for the treatment of cerebral malaria and severe, complicated, multi-drug resistant malaria. They are artemisinin compounds which may be first generation, second generation and/or third generation compounds including α- and β-arteether, artemether, artesunate and combinations thereof. The preferred active ingredient is β- arteether. Typically the amount of active ingredient may vary from about 12.5 mg to about 200 mg. The preferred dosage of active ingredient according to the present invention is between 25 mg and 150 mg and most preferably between 50 mg and 100 mg. The preferred dosage form is enteric coated tablets for the delayed release of β- arteether.
The tabletting process usually includes the steps of : (a) Formulation of the cores; (b) Coating the cores. The preparation of the core tablets can be done following wet granulation, dry granulation or direct compression. In the current invention, β- arteether core tablets are prepared by a process of direct compression. Direct compression is a ecomomical, time saving process for manufacturing core tablets, since it avoids the steps of granulation and drying. Core tablets manufactured by the process of direct compression usually include excipients such as fillers, preferably of direct compression grade, disintegrants, lubricants, glidants, anti-adherents, surfactants, colours, flavours, taste masking agents and such like. In the present invention, core tablet contains excipients such as microcrystalline cellulose and lactose as fillers/diluents to aid in direct compression tabletting process. Microcrystalline cellulose is usually used in the range of 45-50% by weight of the tablet and lactose in the range of 12-15% by weight of the tablet, wherein 16-22% of microcrystalline cellulose and 8-14% of lactose are direct compression tabletting aids. Other excipients include disintegrants selected from sodium starch glycollate, cross carmellose sodium, micro-crystalline cellulose, crospovidone and such like, either alone or in combination, usually in the range of 1-10% by weight of the tablet. The tablet core further includes glidants, lubricants or anti-adherents selected from colloidal anhydrous silica, magnesium stearate and talc in the range of 1.1-2.0%, 0.9- 1.5% and 0.3-0.7% by weight of the tablet respectively, either alone or in combinations thereof. The tablet also contains surface active agent such as sodium lauryl sulphate in the range of 1.5-1.9% by weight of the tablet.
In the second part of the processing of the β-arteether tablets, the core tablets are coated with an enteric coating to produce delayed-release β-arteether tablets. Optionally, a seal coating is applied to the tablets before the enteric coating is provided. The enteric coated β arteether tablets are further coated with a film-coating. The enteric coating material is selected from the group consisting of ethyl cellulose, acrylic polymers, methacrylic polymers and hydrophobic polymers such as hypromellose phthalate. The enteric coating material is coated in an amount of from about 10 to about 30 percent by weight of the total oral dosage form and the total enteric coating comprises 15% by weight of the oral dosage form. The enteric coating formula further comprises dibutyl phthalate in the range of 1 to 2%; titanium dioxide
in the range of 0.3 to 0.7% and talc in the range of 0.3 to 0.7% of the oral dosage form. The film coating on the enteric coated tablets is in an amount of about 2 percent by weight of the total oral dosage form. The film coating comprises of hydroxypropyl methyl cellulose in the range of 2 to 6%; polyethylene glycol 6000 in the range of 0.1 to 0.3 %; titanium dioxide in the range of 0.3 to 0.6%; talc in the range of 0.8 to 1.5% and red ferric oxide in the range of 0.05 to 0.1% of the film coated tablet. The solvents for enteric coating and film coating comprises organic solvents such as isopropyl alcohol and methylene chloride and combinations thereof.
The delayed release, enteric coated tablets of β-arteether is manufactured by the process comprising :
Dry mixing of the active agent, diluents and disintegrants in suitable equipment till uniform mixing is complete to form a blend; ( if required, the ingredients are milled and sieved before dry mixing); mixing suitable tabletting lubricants with the blend to form a lubricated blend; directly compressing said lubricated blend into core tablets; enteric coating of core tablets with enteric coating agents applied from organic solvent based system and film coating of the enteric coated tablets with organic solvent based system.
The delayed release enteric coated tablet of the invention were tested for dissolution in the following conditions:
USP Type 2 apparatus at 100 rpm in 900 ml of 0.1 HCl for 1 hour, and subsequently in USP Type 2 apparatus at 100 rpm in 900 ml of pH 7.2 phosphate buffer 1 hour. Drug release after 1 hour in 0.1 N HCl : 0 to 10%; Drug release after 1 hour in pH 7.2 phosphate buffer: not less than 95%.
The dissolution pattern of the enteric coated tablet showed that the tablets released less than 10% of the drug in one hour in 0.1N HCL and more than 95% in pH 7.2 phosphate buffer. The enteric coated tablets as formulated in the present invention thus provided a time lag of one hour before releasing the drug, and released the drug by the end of the next one hour in phosphate buffer.
The following examples illustrate the present invention:
Example 1
Tabletting
The formulation for direct compression had the following composition for the core:
Ingredients Preferred embodiment
(Parts by weight) β-arteether: 28.33 %
Microcrystalline cellulose: 47.45 %
Lactose: 13.16 %
Sodium starch glycollate: 3.42 %
Crospovidone: 1.32 %
Purified talc: 0.53 %
Colloidal anhydrous silica: 1.56 %
Sodium lauryl sulfate: 1.84 %
Magnesium stearate: 1.05%
The core is manufactured by the following process:
(a) Blending, milling and sieving β-arteether, microcrystalline cellulose, lactose, sodium starch glycollate, crospovidone, talc, colloidal anhydrous silica, sodium lauryl sulfate and magnesium stearate;
(b) tabletting the blend of step (a) by direct compression means into tablets containing 50mg and 100 mg of β-arteether.
100 mg strength tablets 50 mg strength tablets Tabletting tools: 10.0 mm 8.0 mm
Target Weight: 380 mg 190 mg
Target Hardness: 80-100N 80-100N
LOD of granules: less than 3% less than 3%
(c) An enteric coating is applied to core tablets with a weight gain of about 15% as follows: β-arteether tablet cores
(of 100 mg strength as prepared above)
Ingredients Preferred embodiment
(Parts by weight)
Hypromellose phthalate: 13.08 % Dibutyl phthalate: 1.31 %
Titanium dioxide: 0.54 %
Purified talc: 0.54 %
Isopropyl alcohol: q.s.
Methylene chloride: q.s.
The solid coating materials were dissolved/suspended in isopropyl alcohol and methylene chloride, dibutyl phthalate was added and this solution was coated onto the β-arteether tablet cores using a perforated pan. (d) Film Coat
A film coat was applied to the enteric coated tablets as follows:
Enteric coated tablets
(of 100 mg strength as prepared above)
Preferred embodiment
(Parts by weight)
Hydroxypropyl methyl cellulose: 2.6 %
Purified talc: 1.1 %
Titanium dioxide: 0.48 %
Polyethylene glycol: 0.2 %
Iron oxide Red: 0.08 %
Isopropyl alcohol: q.s.
Methylene chloride: q.s.
The solid coating materials were dissolved/suspended in isopropyl alcohol and methylene chloride.The film coat was applied onto the enteric coated β-arteether tablets with a weight gain of about 2% using a perforated pan coater. The formula for 50 mg strength tablets is linear and dose-weight proportional, therefore they are similarly prepared.
Example 2
Dissolutions tests on tablets so produced were carried out in a paddle apparatus (USP Type II) and the pH of the dissolution medium was raised by changing from 0.1N HCl for 1 hour to pH 7.2 phosphate buffer for next 1 hour in order to better simulate the GI tract. Core tablets were coated with enteric coating material (15%) and film coating (2%) of example 1. The dissolution data for these coated tablets is presented below in Table 1.
Table 1
Stability study was carried out over a period of 3 months at various stability conditions of 25°C/60% RH, 30°C/60% RH and 40°C/75% RH. All the test results at each station (1 month, 2 months, 3 months) showed compliance with the predetermined specifications and were found to be stable for the studied period.
Having now fully described the invention, it will be understood by those of skill in the art that the invention may be performed within a wide and equivalent range of conditions, parameters and the like, without affecting the spirit or scope of the invention or any embodiment thereof.
Claims
1. A pharmaceutical composition comprising of antimalarial agent in delayed release oral dosage form, designed such that said antimalarial agent is protected in the stomach region and released in the intestinal tract.
2. The pharmaceutical composition according to claim 1, wherein said antimalarial agent is the parent compound artemisinin, or semi-synthetic derivatives thereof selected from dihydroartemisinin, artemether, alpha/beta arteether and artesunate.
3. The pharmaceutical composition according to claim 1 and claim 2, wherein said anti-malarial artemesinin derivative is β-arteether.
4. The pharmaceutical composition according to claim 1, wherein said delayed release pharmaceutical composition is in the form of enteric coated tablets.
5. The pharmaceutical composition according to claims 1 to 4, wherein the concentration of β-arteether is in the range of 12.5 mg to 200 mg per tablet.
6. The pharmaceutical composition according to claim 5, wherein said β-arteether is 50 mg or 100 mg per tablet.
7. The pharmaceutical composition according to claim 1 comprising of : β- arteether 25 to 30%; Microcrystalline cellulose 45 to 50%; Lactose 12 to 15%, Sodium starch glycollate 2 to 4%; Crospovidone 1 to 2.5%; Talc 0.4 to 0.6%, Colloidal anhydrous silica 1.4 to 1.7%; Sodium lauryl sulfate 1.5 to 1.9% and magnesium stearate 0.9 to 1.5% by weight of the oral dosage form are mixed to form a blend.
8. The pharmaceutical composition according to claim 1, wherein the process of preparing said tablets is a direct compression process.
9. The direct compression tabletting process according to claim 8, wherein said process is carried out with direct compression tabletting aids selected from directly compressible lactose and microcrystalline cellulose, added to the blend prior to tabletting.
10. The direct compression process according to claim 9, wherein said lactose comprises 8 to 14% and said microcrystalline cellulose comprises 16 to 22% by weight of the oral dosage form.
11. The pharmaceutical composition according to claim 1 and claim 8, wherein said composition comprises disintegrant selected from microcrystalline cellulose,
cross carmellose sodium, crospovidone and sodium starch glycolate either alone or in combination.
12. The pharmaceutical composition according to claim 11, wherein said sodium starch glycolate is used in the range of 1 to 10% by weight on a dry weight basis, based on the weight of the formulation.
13. The pharmaceutical composition according to claim 1 and claim 8, wherein said composition comprises glidant selected from colloidal silicon dioxide in the range of 1.1 to 2.0% and talc in the range of 0.3 to 0.7% either alone or in combination.
14. The pharmaceutical composition according to claim 1 and claim 8, wherein said composition comprises magnesium stearate in the range of 0.9-1.5% as lubricant.
15. The pharmaceutical composition according to claim 1 and claim 4, wherein said enteric coated tablet comprises enteric coating material selected from the group consisting of acrylic polymers, methacrylic polymers and hydrophobic polymers.
16. The enteric coating material according to claim 15, wherein said enteric coating material is the hydrophobic polymer, hypromellose phthalate.
17. The enteric coating material according to claim 15 and claim 16, wherein said enteric coating material is present in an amount of from 10 to 30 percent by weight of the total oral dosage form, preferably 15 percent by weight of the total oral dosage form.
18. The pharmaceutical composition according to claims 1 to 18, wherein said enteric coating comprises of : hypromellose phthalate 12 to 14 %; dibutyl phthalate 1 to 2%; titanium dioxide 0.3 to 0.7% and talc 0.3 to 0.7% by weight of the oral dosage form.
19. The pharmaceutical composition according to claim 1 to claim 18, wherein said enteric coated tablets are further film coated in an amount of about 2 percent by weight of the total oral dosage form.
20. A pharmaceutical composition according to claims 1 to 20, wherein said film coating comprises of hydroxypropyl methyl cellulose 2 to 6%; polyethylene glycol 6000 0.1 to 0.3 %; titanium dioxide 0.3 to 0.6%; talc 0.8 to 1.5% and red ferric oxide 0.05 to 0.1% by weight of the film coated tablet.
21. The pharmaceutical composition according to claim 1 to claim 21, wherein said enteric coating and said film coating is applied from an organic solvent based system comprising isopropyl alcohol and methylene chloride.
22. The delayed release enteric coated tablet as defined in claim 1 and claim 4, wherein said delayed release enteric coated tablet exhibits the following dissolution profile when tested in a USP Type 2 apparatus at 100 rpm in 900 ml of 0.1 HCl for 1 hour and subsequently in a USP Type 2 apparatus at 100 rpm in 900 ml of pH 7.2 phosphate buffer for 1 hour:
Drug release after 1 hour in 0.1 N HCl : 0 to 10%;
Drug release after 1 hour in pH 7.2 phosphate buffer: not less than 95%.
23. The pharmaceutical composition according to claim 1 to 24 wherein a method of treating malaria comprises administering a stable delayed release oral dosage form for oral administration of β-arteether, manufactured by the steps comprising:
(a) Dry mixing of the active agent, diluents and disintegrants in suitable equipment till uniform mixing is complete to form a blend; (if required, the ingredients are milled and sieved before dry mixing);
(b) mixing suitable tabletting lubricants with the blend of step (a) to form a lubricated blend;
(c) directly compressing said lubricated blend of step ( b ) into core tablets;
(d) enteric coating of core tablets of step ( c) with enteric coating agents applied from organic solvent based system and
(e) film coating of enteric coated tablets of step (d) with organic solvent based system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN1225MU2005 | 2005-09-30 | ||
IN1225/MUM/2005 | 2005-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007036947A1 true WO2007036947A1 (en) | 2007-04-05 |
Family
ID=36588826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IN2005/000369 WO2007036947A1 (en) | 2005-09-30 | 2005-11-18 | Delayed release anti-malarial composition |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007036947A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120082720A1 (en) * | 2010-10-05 | 2012-04-05 | Sam Poon Ang | Compositions For Treating Chronic Viral Infections |
US20120082719A1 (en) * | 2010-10-05 | 2012-04-05 | Sam Poon Ang | Compositions For Treating Chronic Viral Infections |
CN101632649B (en) * | 2008-07-23 | 2013-05-08 | Ss制药株式会社 | Composition for film coating |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992002217A1 (en) * | 1990-08-08 | 1992-02-20 | Ciba-Geigy Ag | Antimalarial compositions |
US5578637A (en) * | 1995-05-03 | 1996-11-26 | University Of Washington | Methods of inhibition or killing cancer cells using an endoperoxide |
US6284772B1 (en) * | 1998-09-30 | 2001-09-04 | The United States Of America As Represented By The Secretary Of The Army | Indolo[2,1-B] quinazole-6,12-dione antimalarial compounds and methods of treating malaria therewith |
WO2002078714A1 (en) * | 2001-03-30 | 2002-10-10 | Jomaa Pharmaka Gmbh | Formulations which are resistant to gastric juice and are used to apply anti-infective compounds inhibiting the 2-c-methylerythrose-4 metabolic pathway, and the salts and esters of the same |
US6486199B1 (en) * | 2001-06-21 | 2002-11-26 | Medicines For Malaria Venture Mmv International Centre Cointrin | Spiro and dispiro 1,2,4-trioxolane antimalarials |
WO2005023304A2 (en) * | 2003-09-04 | 2005-03-17 | Cipla Limited | Antimalarial compositions and manufacturing process thereof |
WO2005048912A2 (en) * | 2003-11-19 | 2005-06-02 | Vecta Ltd. | Methods and compositions for the treatment of helicobacter pylori-associated diseases using endoperoxide bridge-containing compounds |
-
2005
- 2005-11-18 WO PCT/IN2005/000369 patent/WO2007036947A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992002217A1 (en) * | 1990-08-08 | 1992-02-20 | Ciba-Geigy Ag | Antimalarial compositions |
US5578637A (en) * | 1995-05-03 | 1996-11-26 | University Of Washington | Methods of inhibition or killing cancer cells using an endoperoxide |
US6284772B1 (en) * | 1998-09-30 | 2001-09-04 | The United States Of America As Represented By The Secretary Of The Army | Indolo[2,1-B] quinazole-6,12-dione antimalarial compounds and methods of treating malaria therewith |
WO2002078714A1 (en) * | 2001-03-30 | 2002-10-10 | Jomaa Pharmaka Gmbh | Formulations which are resistant to gastric juice and are used to apply anti-infective compounds inhibiting the 2-c-methylerythrose-4 metabolic pathway, and the salts and esters of the same |
US6486199B1 (en) * | 2001-06-21 | 2002-11-26 | Medicines For Malaria Venture Mmv International Centre Cointrin | Spiro and dispiro 1,2,4-trioxolane antimalarials |
WO2005023304A2 (en) * | 2003-09-04 | 2005-03-17 | Cipla Limited | Antimalarial compositions and manufacturing process thereof |
WO2005048912A2 (en) * | 2003-11-19 | 2005-06-02 | Vecta Ltd. | Methods and compositions for the treatment of helicobacter pylori-associated diseases using endoperoxide bridge-containing compounds |
Non-Patent Citations (2)
Title |
---|
BAKER J K ET AL: "DECOMPOSITION OF ARTEETHER IN SIMULATED STOMACH ACID YIELDING COMPOUNDS RETAINING ANTIMALARIAL ACTIVITY", PHARMACEUTICAL RESEARCH, NEW YORK, NY, US, vol. 10, no. 5, May 1993 (1993-05-01), pages 662 - 666, XP009068683, ISSN: 0724-8741 * |
BAYOMI M A: "CHARACTERIZATION OF ARTEETHER INTERACTIONS WITH BETA-CYCLODEXTRIN AND HYDROXYPROPYL-BETA-CYCLODEXTRIN", SAUDI PHARMACEUTICAL JOURNAL, SAUDI PHARMACEUTICAL SOCIETY, RIYAD, SA, vol. 10, no. 1/2, January 2002 (2002-01-01), pages 36 - 43, XP009013658, ISSN: 1319-0164 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101632649B (en) * | 2008-07-23 | 2013-05-08 | Ss制药株式会社 | Composition for film coating |
US20120082720A1 (en) * | 2010-10-05 | 2012-04-05 | Sam Poon Ang | Compositions For Treating Chronic Viral Infections |
US20120082719A1 (en) * | 2010-10-05 | 2012-04-05 | Sam Poon Ang | Compositions For Treating Chronic Viral Infections |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100221689B1 (en) | Antimalarial composition | |
KR101774676B1 (en) | Pharmaceutical compositions comprising hydromorphone and naloxone | |
US11607389B2 (en) | Delayed release deferiprone tablets and methods of using the same | |
AU2006295440A1 (en) | Capsule formulation of pirfenidone and pharmaceutically acceptable excipients | |
US20080292695A1 (en) | Carvedilol forms, compositions, and methods of preparation thereof | |
US8664265B2 (en) | Stable dosage forms of spiro and dispiro 1,2,4-trioxolane antimalarials | |
US20100256088A1 (en) | Low dose therapy for treating viral infections | |
WO2005023304A2 (en) | Antimalarial compositions and manufacturing process thereof | |
KR20100045528A (en) | Delayed release formulations of 6-mercaptopurine | |
WO2007036947A1 (en) | Delayed release anti-malarial composition | |
KR20140053169A (en) | Stable dosage forms of arterolane and piperaquine | |
AU668376B2 (en) | Antimalarial synergistic compositions containing benflumetol | |
WO2007043061A1 (en) | Anti-malarial combination and methods of formulation | |
EP4529922A1 (en) | Pharmaceutical formulations of bictegravir and lenacapavir | |
US5637594A (en) | Antimalarial synergistic compositions containing benflumetol | |
WO2014159814A1 (en) | Formulations and tablets for treatment or prevention of neurological disorders | |
EP0583439B1 (en) | Antimalarial synergistic compositions containing benflumetol | |
NZ787785A (en) | Delayed release deferiprone tablets and methods of using the same | |
AU2013201986A1 (en) | Capsule Formulation Of Pirfenidone And Pharmaceutically Acceptable Excipients |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05849137 Country of ref document: EP Kind code of ref document: A1 |