WO2007036351A1 - Method for the operation of an internal combustion engine comprising a particulate filter - Google Patents
Method for the operation of an internal combustion engine comprising a particulate filter Download PDFInfo
- Publication number
- WO2007036351A1 WO2007036351A1 PCT/EP2006/009357 EP2006009357W WO2007036351A1 WO 2007036351 A1 WO2007036351 A1 WO 2007036351A1 EP 2006009357 W EP2006009357 W EP 2006009357W WO 2007036351 A1 WO2007036351 A1 WO 2007036351A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- soot particles
- ignition
- internal combustion
- combustion engine
- graphitized
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/029—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles by adding non-fuel substances to exhaust
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/66—Regeneration of the filtering material or filter elements inside the filter
- B01D46/80—Chemical processes for the removal of the retained particles, e.g. by burning
- B01D46/84—Chemical processes for the removal of the retained particles, e.g. by burning by heating only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/30—Arrangements for supply of additional air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/024—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
- F02D41/025—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/029—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/06—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/08—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
- F01N2430/085—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing at least a part of the injection taking place during expansion or exhaust stroke
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0802—Temperature of the exhaust gas treatment apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1473—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
- F02D41/1475—Regulating the air fuel ratio at a value other than stoichiometry
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/402—Multiple injections
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the invention relates to a method for operating an internal combustion engine with a particle filter.
- the exhaust gas also contains particles substantially in the form of graphitized soot. It is known to filter out these particles essentially by means of a particle filter.
- Known diesel particulate filters reduce particulate emissions by up to 90%. However, since the load of particles in the filter is limited, they must be regenerated at certain intervals.
- This regeneration can be carried out catalytically at relatively low temperature by addition of additives in the form of oxygen-releasing metal complexes (such as cerium / platinum or iron organyls), which, however, lead to ash formation in the filter. So that the ash residue does not adhere to the environment are discharged, the filter surface and thus the entire filter must be correspondingly large, in order to provide even with ash load still sufficient free filter surface available.
- oxygen-releasing metal complexes such as cerium / platinum or iron organyls
- the object of the invention is to provide a method for operating an internal combustion engine with a particle filter, which makes it possible to carry out without additives a regeneration of the particulate filter at a relatively low temperature.
- a method for operating an internal combustion engine with a particulate filter are collected in the fuel combustion resulting, substantially graphitized soot particles for exhaust gas purification, wherein the forming soot particle layer by corresponding change in the control of the operation of the internal combustion engine incompletely graphitized soot particles with an ignition temperature be deposited between 300 and 550 ⁇ C and for regenerating the particulate filter cyclically burning off the soot particles by ignition by means of temperature increase is initiated to ignition temperature of the incompletely graphitized soot particles.
- Incomplete graphitized carbon black particles having an ignition temperature between about 300 and 55O 0 C have an amorphous structure and contain hydrogen atoms from the hydrocarbon chain of the fuel, that is reactive Components like H 2 or HC-. They are generated by changing the operating state of the internal combustion engine by modifying the internal engine process control by adjusting engine parameters such as adjustment of the air path, such as adaptation of the airflow (such as the exhaust gas recirculation valve, the throttle valve, the turbine geometry of the engine Turbocharger) and / or injection timing and quantities (such as multiple injection, post-injection, injection into the exhaust) can be influenced, so that there is a corresponding, igniting at low temperature particle phase, which is caused by a correspondingly slowed or delayed in-engine combustion.
- engine parameters such as adjustment of the air path, such as adaptation of the airflow (such as the exhaust gas recirculation valve, the throttle valve, the turbine geometry of the engine Turbocharger) and / or injection timing and quantities (such as multiple injection, post-injection
- the operation of the internal combustion engine can accordingly take place in four phases, namely the normal operating phase with superstoichiometric combustion of the fuel in the internal combustion engine, followed by a subsequent short-term operating phase for generating the highly reactive particle phase, an operating phase with increased exhaust gas temperature and a burn-off phase with superstoichiometric combustion of the fuel in the internal combustion engine, which emits after burning in the first phase.
- the engine operation of the internal combustion engine can be returned during the regeneration phase before the end of a complete regeneration in the normal operating condition with stoichiometric or stoichiometric combustion of the fuel, since the regeneration after ignition of the highly reactive particulate phase independently practically continues until the substantially complete emptying of the particulate filter.
- the regeneration operation for the particulate filter is in the range of a few seconds.
- the highly reactive particle phase does not necessarily require substoichiometric combustion for its production, but can also be produced by delayed combustion by changing the injection times and quantities (for example via secondary injection or multiple injection), optionally in combination with substoichiometric combustion.
- the burning rate and the completeness of the burnup can be influenced. Both parameters are influenced by the frequency of introduction and the duration of the highly reactive particle phase. On the one hand, these parameters can be modeled and regulated in a motor control or, on the other hand, regulated via a suitable sensor technology, for example pressure or lambda sensors.
- the preferred desired layer structure of the particles collected in the particle filter is produced by interval-like switching to substoichiometric and / or delayed combustion. - However, it can also be quasi-continuous be burned by, during or after each interval in which the highly reactive particle phase is generated, provided for a corresponding oxygen supply, which leads to the ignition of the highly reactive particle phase.
- a control of the different operating intervals for constructing the layer structure depends in detail on the respective engine, the combustion process in normal operation and the respective operating phase of the associated vehicle.
- the respective strategy can be controlled via maps, suitable sensors and monitoring of the operating modes or simulation models or adapted to the respective operating mode in order to achieve the lowest possible emission of pollutants.
- a NOx adsorption catalyst may be downstream of the particulate filter, wherein the combustion of the particulate filter content via the oxygen supply is controlled so that both are not exposed to high temperatures, but safely regenerated.
- Other catalysts such as Oxi-KAT or 3-way catalysts can be combined with the particle filter according to the combustion method used in the internal combustion engine.
- Fig. 1 shows two diagrams in which lambda or the temperature in the filter is plotted against time.
- the temperature in the filter increased from below about 300 ° C to slightly above 500 0 C after the end of the interval and increased with appropriate oxygen supply after switching back from rich to lean operation, resulting in each case an effective and thus quasicontinuier Anlagen particle burn in the particle filter. In this way it can be achieved that the maximum particle loading of the particulate filter does not exceed an extremely low level.
- FIG. 2 shows, by way of example, the dependence of the particle loading in the particle filter on a defined, constant loading time compared to the increase in the fat time with a constant lean time in the lean / rich cycle, using a diagram. From this it can be seen that with a higher proportion of reactive particle phase in the particle filter, the total particle mass in the particle filter decreases and thus an improvement of the burning behavior can be achieved.
- particulate loading will increase with each interval. Then the burning can be done at predetermined intervals. However, if a predetermined limit load is detected during such a time interval, the burnup may be initiated and the time interval shortened for this and / or the phases t 2 of the rich operation extended and / or by increasing the fuel injection amount during rich operation.
- the highly reactive particle phase is only needed to ignite by their ignition, the substantially graphitized soot particles, this is sufficient for a relatively small amount of about 0.5 wt .-% highly reactive particle phase based on the total carbon black.
- an amount of about 1% by weight, in particular more than 2% by weight, of highly reactive particle phase based on the total carbon black is preferred.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
The invention relates to a method for operating an internal combustion engine comprising a particulate filter in which substantially graphitized soot particles produced during fuel combustion are collected for emission control. Soot particles that are not fully graphitized and have an ignition temperature ranging approximately from 300 to 550 °C are made to attach to the forming soot particle layer by adequately modifying control of the operation of the internal combustion engine, and burning of the soot particles is cyclically initiated to regenerate the particulate filter with the aid of an ignition process by increasing the temperature to the ignition temperature of the not fully graphitized soot particles.
Description
Verfahren zum Betrieb einer Brennkraftmaschine mit einem Partikelfilter Method for operating an internal combustion engine with a particle filter
Die Erfindung betrifft ein Verfahren zum Betrieb einer Brennkraftmaschine mit einem Partikelfilter.The invention relates to a method for operating an internal combustion engine with a particle filter.
Beim Betrieb von Brennkraftmaschinen in Form von Dieselmotoren oder Ottomotoren mit Direkteinspritzung enthält das Abgas auch Partikel im wesentlichen in Form von graphitisiertem Ruß. Es ist bekannt, diese Partikel im wesentlichen mittels eines Partikelfilters herauszufiltern. Bekannte Dieselpartikelfilter führen zu einer Reduzierung der Partikelemission um bis zu 90%. Da allerdings die Beladungsmenge an Partikeln im Filter begrenzt ist, müssen diese in bestimmten Abständen regeneriert werden.In the operation of internal combustion engines in the form of diesel engines or gasoline engines with direct injection, the exhaust gas also contains particles substantially in the form of graphitized soot. It is known to filter out these particles essentially by means of a particle filter. Known diesel particulate filters reduce particulate emissions by up to 90%. However, since the load of particles in the filter is limited, they must be regenerated at certain intervals.
Diese Regeneration kann bei relativ niedriger Temperatur katalytisch durch Zusatz von Additiven in Form von sauerstoffabgebenden Metallkomplexen (etwa Cer-/Platin- oder auch Eisenorganyle) erfolgen, die allerdings zu einer Aschenbildung im Filter führen. Damit die Ascherückstände nicht an die Umwelt
abgegeben werden, muß die Filteroberfläche und damit der gesamte Filter entsprechend groß sein, um auch mitzunehmender Aschebeladung noch genügend freie Filterfläche zur Verfügung zu stellen.This regeneration can be carried out catalytically at relatively low temperature by addition of additives in the form of oxygen-releasing metal complexes (such as cerium / platinum or iron organyls), which, however, lead to ash formation in the filter. So that the ash residue does not adhere to the environment are discharged, the filter surface and thus the entire filter must be correspondingly large, in order to provide even with ash load still sufficient free filter surface available.
Weiter ist es bekannt, die Regeneration thermisch vorzunehmen, indem die im Filter angesammelten Partikel bei einer Temperatur von über 600°C durch im Abgas der Brennkraftmaschine enthaltenen Sauerstoff oxidiert werden, beispielsweise über einen Zeitraum von ca. 15 min bei 6500C. Um eine sichere thermische Regeneration unter allen Fahrbedingungen zu gewährleisten, muß diese Regenerationstemperatur am Filter im gesamten Betriebsbereich der Brennkraftmaschine darstellbar sein, abgesehen davon, daß sich eine entsprechende Temperaturbelastung etwa eines Turboladers oder eines dem Partikelfilter vorgeschalteten Oxidationskatalysators als auch ein Anstieg des Kraftstoffverbrauchs ergibt.It is also known to thermally make the regeneration by the particles collected in the filter are oxidized at a temperature of about 600 ° C by the oxygen contained in the exhaust of the engine, for example, over a period of about 15 min at 650 0 C. To a To ensure safe thermal regeneration under all driving conditions, this regeneration temperature on the filter throughout the operating range of the internal combustion engine must be able to be represented, except that there is a corresponding temperature load such as a turbocharger or an oxidation catalyst upstream of the particulate filter and an increase in fuel consumption.
Aufgabe der Erfindung ist es, ein Verfahren zum Betrieb einer Brennkraftmaschine mit einem Partikelfilter zu schaffen, das es ermöglicht, ohne Additive eine Regeneration des Partikelfilters bei relativ niedriger Temperatur durchzuführen.The object of the invention is to provide a method for operating an internal combustion engine with a particle filter, which makes it possible to carry out without additives a regeneration of the particulate filter at a relatively low temperature.
Diese Aufgabe wird entsprechend den Merkmalen des Anspruchs 1 gelöst.This object is achieved according to the features of claim 1.
Dementsprechend ist ein Verfahren zum Betrieb einer Brennkraftmaschine mit einem Partikelfilter vorgesehen, in dem bei der Kraftstoffverbrennung entstehende, im wesentlichen graphitisierte Rußpartikel zur Abgasreinigung gesammelt werden, wobei an die sich bildende Rußpartikelschicht durch entsprechende Änderung der Steuerung des Betriebs der Brennkraftmaschine unvollständig graphitisierte Rußpartikel mit einer Zündtemperatur etwa zwischen 300 und 550βC angelagert werden und zum Regenerieren des Partikelfilters zyklisch ein Abbrennen der Rußpartikel durch Zünden mittels Temperaturerhöhung auf Zündtemperatur der unvollständig graphitisierten Rußpartikel initiiert wird.Accordingly, a method for operating an internal combustion engine with a particulate filter is provided, are collected in the fuel combustion resulting, substantially graphitized soot particles for exhaust gas purification, wherein the forming soot particle layer by corresponding change in the control of the operation of the internal combustion engine incompletely graphitized soot particles with an ignition temperature be deposited between 300 and 550 β C and for regenerating the particulate filter cyclically burning off the soot particles by ignition by means of temperature increase is initiated to ignition temperature of the incompletely graphitized soot particles.
Unvollständig graphitisierte Rußpartikel mit einer Zündtemperatur etwa zwischen 300 und 55O0C haben eine amorphe Struktur und enthalten noch Wasserstoffatome aus der Kohlenwasserstoffkette des Kraftstoffs, d.h. reaktive
Komponenten wie H2 oder HC-. Sie werden durch Änderung des Betriebszustands der Brennkraftmaschine erzeugt, indem die innermotorische Prozeßführung geändert wird, indem motorische Parameter wie Anpassung des Luftpfades, etwa An d ro s s e l u n g d e r L u ft m a sse (etwa d u rch Ve rste l l u n g d e s Abgasrückführungsventils, der Drosselklappe, der Turbinengeometrie des Turboladers) und/oder Einspritzzeitpunkte und -mengen (etwa über Mehrfacheinspritzung, Nacheinspritzung, Einspritzung ins Abgas) beeinflußt werden, so daß sich eine entsprechende, bei niedriger Temperatur zündende Partikelphase ergibt, die durch eine entsprechend verlangsamte bzw. verschleppte innermotorische Verbrennung bewirkt wird.Incomplete graphitized carbon black particles having an ignition temperature between about 300 and 55O 0 C have an amorphous structure and contain hydrogen atoms from the hydrocarbon chain of the fuel, that is reactive Components like H 2 or HC-. They are generated by changing the operating state of the internal combustion engine by modifying the internal engine process control by adjusting engine parameters such as adjustment of the air path, such as adaptation of the airflow (such as the exhaust gas recirculation valve, the throttle valve, the turbine geometry of the engine Turbocharger) and / or injection timing and quantities (such as multiple injection, post-injection, injection into the exhaust) can be influenced, so that there is a corresponding, igniting at low temperature particle phase, which is caused by a correspondingly slowed or delayed in-engine combustion.
Der Betrieb der Brennkraftmaschine kann dementsprechend in vier Phasen erfolgen, nämlich der normalen Betriebsphase mit überstöchiometrischer Verbrennung des Kraftstoffs in der Brennkraftmaschine, gefolgt von einer nachfolgenden kurzzeitigen Betriebsphase zur Erzeugung der hochreaktiven Partikelphase, einer Betriebsphase mit erhöhter Abgastemperatur und einer Abbrandphase bei überstöchiometrischer Verbrennung des Kraftstoffs in der Brennkraftmaschine, die nach dem Abbrand in der ersten Phase mündet.The operation of the internal combustion engine can accordingly take place in four phases, namely the normal operating phase with superstoichiometric combustion of the fuel in the internal combustion engine, followed by a subsequent short-term operating phase for generating the highly reactive particle phase, an operating phase with increased exhaust gas temperature and a burn-off phase with superstoichiometric combustion of the fuel in the internal combustion engine, which emits after burning in the first phase.
Zur Bildung einer hochreaktiven Partikelphase ist es zweckmäßig, wenn die Verbrennung mit λ < 1 vorgenommen wird, während bei dem normalerweise vorgesehenen Betriebszustand mitλ > 1 nur praktisch vollständig graphitisierter Ruß erzeugt wird. Die unterstöchiometrische Verbrennung mit λ < 1 wird beispielsweise durch Änderung der innermotorischen Verbrennungsprozeßführung bewirkt. Zum Zünden ist ein entsprechender Sauerstoffüberschuß entweder über das Abgas der Brennkraftmaschine oder über eine separate Quelle, z.B. Sekundärluftzufuhr, bereit zu stellen. Diese Partikelphase liefert aufgrund der unvollständigen Graphitisierung die Energie für den Abbrand der im Partikelfilter angesammelten, im wesentlichen graphitisierten Rußpartikel liefert. Hierdurch wird nicht nur die Temperaturbelastung erniedrigt, sondern auch der Kraftstoffmehrverbrauch zur Regeneration, der auf mehr als die Hälfte gegenüber thermischer Regeneration gesenkt werden kann, gesenkt und kein Additiv benötigt.
Der motorische Betrieb der Brennkraftmaschine kann bereits während der Regenerationsphase vor Ende einer vollständigen Regeneration in den normalen Betriebszustand mit überstöchiometrischer bzw. stöchiometrischer Verbrennung des Kraftstoffs zurückgeführt werden, da die Regeneration nach Zündung der hochreaktiven Partikelphase selbständig praktisch bis zur im wesentlichen vollständigen Entleerung des Partikelfilters weiterläuft. Üblicherweise liegt der Regenerationsbetrieb für den Partikelfilter im Bereich weniger Sekunden.To form a highly reactive particle phase, it is expedient if the combustion is carried out with λ <1, while in the normally provided operating condition with λ> 1 only virtually completely graphitized soot is produced. The stoichiometric combustion with λ <1 is effected for example by changing the internal engine combustion process management. For ignition, a corresponding oxygen excess is to be provided either via the exhaust gas of the internal combustion engine or via a separate source, eg secondary air supply. Due to the incomplete graphitization, this particle phase supplies the energy for the burnup of the essentially graphitized soot particles accumulated in the particle filter. As a result, not only the temperature load is lowered, but also the fuel consumption for regeneration, which can be reduced to more than half compared to thermal regeneration, lowered and no additive needed. The engine operation of the internal combustion engine can be returned during the regeneration phase before the end of a complete regeneration in the normal operating condition with stoichiometric or stoichiometric combustion of the fuel, since the regeneration after ignition of the highly reactive particulate phase independently practically continues until the substantially complete emptying of the particulate filter. Usually, the regeneration operation for the particulate filter is in the range of a few seconds.
Bei entsprechend ausreichendem Sauerstoffgehalt ergeben sich im allgemeinen bei einem Sprung vom Fettbetrieb (unterstöchiometrische Verbrennung) zum Magerbetrieb (überstöchiometrische Verbrennung) hohe lokale Temperaturen durch Zünden der hochreaktiven Phase, die die umliegenden, im wesentlichen graphitisierten Rußpartikel auf ihre Zündtemperatur bringen und somit einen effektiven Abbrand der Partikel im Partikelfilter ermöglichen.In accordance with sufficient oxygen content generally result in a jump from rich operation (stoichiometric combustion) to lean operation (superstoichiometric combustion) high local temperatures by igniting the highly reactive phase, which bring the surrounding, substantially graphitized soot particles to their ignition temperature and thus an effective burn of the Allow particles in the particle filter.
Die hochreaktive Partikelphase benötigt aber nicht unbedingt eine unterstöchiometrische Verbrennung zu ihrer Erzeugung, sondern kann auch durch verschleppte Verbrennung durch Änderung der Einspritzzeitpunkte und -mengen (etwa über Nach- bzw. Mehrfacheinspritzung) gegebenenfalls in Kombination mit unterstöchiometrischer Verbrennung erzeugt werden.However, the highly reactive particle phase does not necessarily require substoichiometric combustion for its production, but can also be produced by delayed combustion by changing the injection times and quantities (for example via secondary injection or multiple injection), optionally in combination with substoichiometric combustion.
Durch Einstellung des Massenverhältnisses von hochreaktiver Partikelphase zu im wesentlichen graphitisiertem Ruß im Partikelfilter, die zweckmäßigerweise in abwechselnden Schichten eingelagert werden, und durch Einstellung der einzelnen Schichtdicken kann die Abbrandgeschwindigkeit sowie die Vollständigkeit des Abbrands beeinflußt werden. Beide Parameter werden durch die Frequenz der Einbringung und die Dauer der hochreaktiven Partikelphase beeinflußt. Diese Parameter lassen sich einerseits modellhaft in einer Motorsteuerung darstellen und regeln oder andererseits über eine geeignete Sensortechnik, beispielsweise Druckoder Lambdasensoren, regeln.By adjusting the mass ratio of highly reactive particle phase to substantially graphitized carbon black in the particulate filter, which are expediently embedded in alternating layers, and by adjusting the individual layer thicknesses, the burning rate and the completeness of the burnup can be influenced. Both parameters are influenced by the frequency of introduction and the duration of the highly reactive particle phase. On the one hand, these parameters can be modeled and regulated in a motor control or, on the other hand, regulated via a suitable sensor technology, for example pressure or lambda sensors.
Die bevorzugt angestrebte Schichtstruktur der im Partikelfilter gesammelten Partikel wird durch intervallartiges Umschalten auf unterstöchiometrische und/oder verschleppte Verbrennung erzeugt. - Jedoch kann auch quasikontinuierlich
abgebrannt werden, indem während bzw. nach jedem Intervall, in dem die hochreaktive Partikelphase erzeugt wird, für eine entsprechende Sauerstoffzufuhr gesorgt wird, die zum Zünden der hochreaktiven Partikelphase führt.The preferred desired layer structure of the particles collected in the particle filter is produced by interval-like switching to substoichiometric and / or delayed combustion. - However, it can also be quasi-continuous be burned by, during or after each interval in which the highly reactive particle phase is generated, provided for a corresponding oxygen supply, which leads to the ignition of the highly reactive particle phase.
Eine Steuerung der unterschiedlichen Betriebsintervalle zum Aufbau der Schichtstruktur hängt im Detail vom jeweiligen Motor, dem Brennverfahren im Normalbetrieb und der jeweiligen Betriebsphase des zugehörigen Fahrzeugs ab. Im Fahrbetrieb kann die jeweilige Strategie über Kennfelder, geeignete Sensoren und Überwachen der Betriebsarten bzw. Simulationsmodelle gesteuert bzw. der jeweiligen Betriebsart angepaßt werden, um einen möglichst geringen Schadstoffausstoß zu erreichen.A control of the different operating intervals for constructing the layer structure depends in detail on the respective engine, the combustion process in normal operation and the respective operating phase of the associated vehicle. When driving, the respective strategy can be controlled via maps, suitable sensors and monitoring of the operating modes or simulation models or adapted to the respective operating mode in order to achieve the lowest possible emission of pollutants.
Zwar führt die Bildung der reaktiven Partikelphase zu einem erhöhten Kraftstoffverbrauch, dieser wird jedoch überkompensiert durch den sehr geringen Kraftstoffverbrauch während des Zündens und Abbrennens der im Partikelfilter gesammelten Partikel, da nicht das gesamte Abgas zum Zünden aufgeheizt werden muß, sondern die Energie zum Abbrennen der im wesentlichen graphitisierten Rußteilchen von der hochreaktiven Partikelphase geliefert wird.Although the formation of the reactive particle phase leads to increased fuel consumption, this is overcompensated by the very low fuel consumption during ignition and burning of the particles collected in the particulate filter, since not the entire exhaust gas must be heated to ignite, but the energy for burning in the essentially graphitized carbon black particles from the highly reactive particulate phase.
Gegebenenfalls kann ein NOx-Adsorptionskatalysator dem Partikelfilter nachgeschaltet sein, wobei der Abbrand des Partikelfilterinhalts über die Sauerstoffzufuhr so gesteuert wird, daß beide nicht zu hohen Temperaturen ausgesetzt, aber sicher regeneriert werden. Auch andere Katalysatoren wie Oxi- KAT oder 3-Wege-Katalysatoren lassen sich entsprechend dem in der Brennkraftmaschine verwendeten Brennverfahren mit dem Partikelfilter kombinieren.Optionally, a NOx adsorption catalyst may be downstream of the particulate filter, wherein the combustion of the particulate filter content via the oxygen supply is controlled so that both are not exposed to high temperatures, but safely regenerated. Other catalysts such as Oxi-KAT or 3-way catalysts can be combined with the particle filter according to the combustion method used in the internal combustion engine.
Fig. 1 zeigt zwei Diagramme, in denen Lambda bzw. die Temperatur im Filter gegenüber der Zeit aufgetragen ist. Wie sich aus dem Lambda-Zeit-Diagramm dieses Ausführungsbeispiels ergibt, wird in regelmäßigen Intervallen (kurzzeitig, beispielsweise im Bereich weniger Sekunden (z.B. zwischen 1 bis 10 s) gegenüber den dazwischen liegenden Normalbetriebsintervallen, Fettzeit t2 « Magerzeit t, ) von einem Normalbetrieb mit λ > 1 (=1 ,6) (Magerbetrieb) kurzzeitig auf einen Betrieb mit λ < 1 (=0,9) (Fettbetrieb) umgeschaltet. Im Fettbetrieb wird die Temperatur im Filter
von unter etwa 300°C bis auf etwas über 5000C nach dem Ende des Intervalls erhöht und bei entsprechender Sauerstoffzufuhr nach Zurückschalten vom Fett- auf Magerbetrieb erhöht, wodurch sich jeweils ein effektiver und damit quasikontinuierlicher Partikelabbrand im Partikelfilter ergibt. Hierdurch kann erreicht werden, daß die maximale Partikelbeladung des Partikelfilters ein extrem niedriges Niveau nicht überschreitet.Fig. 1 shows two diagrams in which lambda or the temperature in the filter is plotted against time. As is apparent from the lambda time diagram of this embodiment, at regular intervals (briefly, for example in the range of a few seconds (eg between 1 to 10 s) compared to the intermediate normal operating intervals, the fat time t 2 «lean time t,) of a normal operation with λ> 1 (= 1, 6) (lean mode) briefly switched to an operation with λ <1 (= 0.9) (rich operation). In rich operation, the temperature in the filter increased from below about 300 ° C to slightly above 500 0 C after the end of the interval and increased with appropriate oxygen supply after switching back from rich to lean operation, resulting in each case an effective and thus quasicontinuierlicher particle burn in the particle filter. In this way it can be achieved that the maximum particle loading of the particulate filter does not exceed an extremely low level.
Fig. 2 zeigt beispielhaft anhand eines Diagramms die Abhängigkeit der Partikelbeladung im Partikelfilter nach definierter, konstanter Beladungsdauer gegenüber der Zunahme der Fettzeit bei konstanter Magerzeit im Mager/Fett- Zyklus. Hieraus ist entnehmbar, daß bei einem höheren Anteil von reaktiver Partikelphase im Partikelfilter die Gesamtpartikelmasse im Partikelfilter abnimmt und somit eine Verbesserung des Abbrandverhaltens erreicht werden kann.FIG. 2 shows, by way of example, the dependence of the particle loading in the particle filter on a defined, constant loading time compared to the increase in the fat time with a constant lean time in the lean / rich cycle, using a diagram. From this it can be seen that with a higher proportion of reactive particle phase in the particle filter, the total particle mass in the particle filter decreases and thus an improvement of the burning behavior can be achieved.
Wird die Temperatur im Partikelfilter nicht während oder nach jedem Fettbetrieb erhöht, wird die Partikelbeladung mit jedem Intervall ansteigen. Dann kann das Abbrennen in vorgegebenen Zeitabständen vorgenommen werden. Wird jedoch während eines solchen Zeitintervalls eine vorgegebene Grenzbeladung detektiert, kann das Abbrennen initiiert werden und das Zeitintervall hierfür verkürzt und/oder die Phasen t2 des Fettbetriebs verlängert werden und/oder durch Erhöhung der Kraftstoffeinspritzmenge während des Fettbetriebs erfolgen.If the temperature in the particulate filter is not increased during or after each rich operation, particulate loading will increase with each interval. Then the burning can be done at predetermined intervals. However, if a predetermined limit load is detected during such a time interval, the burnup may be initiated and the time interval shortened for this and / or the phases t 2 of the rich operation extended and / or by increasing the fuel injection amount during rich operation.
Da die hochreaktive Partikelphase nur benötigt wird, um durch ihre Zündung die im wesentlichen graphitisierten Rußpartikel zu zünden, genügt hierzu eine relativ geringe Menge von etwa 0,5 Gew.-% hochreaktiver Partikelphase bezogen auf die Gesamtrußmenge. Es wird jedoch eine Menge von etwa 1 Gew.%, insbesondere mehr als 2 Gew.-% hochreaktiver Partikelphase bezogen auf die Gesamtrußmenge bevorzugt.
Since the highly reactive particle phase is only needed to ignite by their ignition, the substantially graphitized soot particles, this is sufficient for a relatively small amount of about 0.5 wt .-% highly reactive particle phase based on the total carbon black. However, an amount of about 1% by weight, in particular more than 2% by weight, of highly reactive particle phase based on the total carbon black is preferred.
Claims
1. Verfahren zum Betrieb einer Brennkraftmaschine mit einem Partikelfilter, in dem bei der Kraftstoffverbrennung entstehende, im wesentlichen graphitisierte Rußpartikel zur Abgasreinigung gesammelt werden, wobei an die sich bildende Rußpartikelschicht durch entsprechende Änderung der Steuerung des Betriebs der Brennkraftmaschine unvollständig graphitisierte Rußpartikel mit einer Zündtemperatur etwa zwischen 300 und 55O0C angelagert werden und zum Regenerieren des Partikelfilters zyklisch ein Abbrennen der Rußpartikel durch Zünden mittels Temperaturerhöhung auf Zündtemperatur der unvollständig graphitisierten Rußpartikel initiiert wird.1. A method for operating an internal combustion engine with a particulate filter, are collected in the fuel combustion resulting, substantially graphitized soot particles for exhaust gas purification, wherein the forming soot particle layer by corresponding change in the control of the operation of the internal combustion engine incompletely graphitized soot particles with an ignition temperature between about 300 and 55O 0 C are deposited and to regenerate the particulate filter cyclically burning off the soot particles by ignition by means of temperature increase is initiated to ignition temperature of the incompletely graphitized soot particles.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß ein Sauerstoffüberschuß zum Initiieren des Zündens bereit gestellt wird.2. The method according to claim 1, characterized in that an excess of oxygen for initiating the ignition is provided.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Sauerstoffüberschuß zum Initiieren des Zündens durch das Abgas der Brennkraftmaschine geliefert wird.3. The method according to claim 2, characterized in that the oxygen excess is supplied to initiate the ignition by the exhaust gas of the internal combustion engine.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Sauerstoffüberschuß zum Initiieren des Zündens durch eine separate Sauerstoffquelle geliefert wird.4. The method according to claim 2, characterized in that the oxygen excess for initiating the ignition is supplied by a separate source of oxygen.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die unvollständig graphitisierten Rußpartikel mit einer Zündtemperatur etwa zwischen 300 und 550"C in abwechselnden Schichten in die im wesentlichen graphitisierten Rußpartikel eingelagert werden.5. The method according to any one of claims 1 to 4, characterized in that the incompletely graphitized soot particles are stored with an ignition temperature approximately between 300 and 550 "C in alternating layers in the substantially graphitized carbon black particles.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß abwechselnd eine Schicht aus im wesentlichen graphitisierten Rußpartikeln und eine Schicht aus unvollständig graphitisierten Rußpartikeln mit einer Zündtemperatur etwa zwischen 300 und 550°C erzeugt werden und anschließend die Zündung initiiert wird.6. The method according to any one of claims 1 to 4, characterized in that alternately a layer of substantially graphitized soot particles and a layer of incompletely graphitized soot particles with an ignition temperature between about 300 and 550 ° C are generated and then the ignition is initiated.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die unvollständig graphitisierten Rußpartikel mit einer Zündtemperatur etwa zwischen 300 und 550°C durch Umschalten des Betriebs der Brennkraftmaschine von einer überstöchiometrischen Verbrennung auf eine unterstöchiometrische Verbrennung erzeugt werden.7. The method according to any one of claims 1 to 6, characterized in that the incompletely graphitized soot particles with an ignition temperature about between 300 and 550 ° C by switching the operation of the internal combustion engine from a superstoichiometric combustion to a stoichiometric combustion.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die unvollständig graphitisierten Rußpartikel mit einer Zündtemperatur etwa zwischen 300 und 550"C durch Umschalten des Betriebs der Brennkraftmaschine auf eine verschleppte Verbrennung erzeugt werden.8. The method according to any one of claims 1 to 7, characterized in that the incompletely graphitized soot particles are generated with an ignition temperature approximately between 300 and 550 "C by switching the operation of the internal combustion engine to a delayed combustion.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die unvollständig graphitisierten Rußpartikel mit einer Zündtemperatur etwa zwischen 300 und 5500C durch intervallartig vorgenommenes kurzzeitiges Umschalten des Betriebs der Brennkraftmaschine auf die unterstöchiometrische Verbrennung im Bereich weniger Sekunden erzeugt werden.9. The method according to claim 7 or 8, characterized in that the incompletely graphitized soot particles with an ignition temperature approximately between 300 and 550 0 C by intermittently made brief switching the operation of the internal combustion engine to the stoichiometric combustion in the range of a few seconds are generated.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die unvollständig graphitisierten Rußpartikel mit einer Zündtemperatur etwa zwischen 300 und 550°C in einer Menge von etwa 0,5 Gew.-%, vorzugsweise etwa 1 Gew.-% und insbesondere mehr als 2 Gew.-% bezogen auf die Gesamtrußmenge erzeugt werden. 10. The method according to any one of claims 1 to 9, characterized in that the incompletely graphitized soot particles with an ignition temperature of between about 300 and 550 ° C in an amount of about 0.5 wt .-%, preferably about 1 wt .-% and in particular more than 2% by weight, based on the total carbon black quantity, can be produced.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005046830A DE102005046830A1 (en) | 2005-09-29 | 2005-09-29 | Method for operating an internal combustion engine with a particle filter |
DE102005046830.6 | 2005-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007036351A1 true WO2007036351A1 (en) | 2007-04-05 |
Family
ID=37499460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/009357 WO2007036351A1 (en) | 2005-09-29 | 2006-09-26 | Method for the operation of an internal combustion engine comprising a particulate filter |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102005046830A1 (en) |
WO (1) | WO2007036351A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2928176A1 (en) * | 2008-02-29 | 2009-09-04 | Faurecia Sys Echappement | Particle filter regenerating method for direct injection petrol heat engine of motor vehicle, involves injecting gas i.e. air, containing oxygen in exhaust line, and oxidizing soot particles deposited on particle filter by injected gas |
GB2528681A (en) * | 2014-07-28 | 2016-02-03 | Jaguar Land Rover Ltd | Exhaust after-treatment system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013011806A1 (en) | 2013-07-16 | 2015-01-22 | Man Truck & Bus Ag | Process for the regeneration of a particle filter and internal combustion engine with particle filter |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2799508A1 (en) * | 1999-10-08 | 2001-04-13 | Renault | FUEL INJECTION METHOD FOR A COMBUSTION ENGINE |
DE10048511A1 (en) * | 2000-09-29 | 2002-04-18 | Omg Ag & Co Kg | Reduction of carbon monoxide, hydrocarbons and soot particles in lean exhaust gas from internal combustion engine, by using particle filter having catalytic coating of oxygen storage component(s) and platinum group metal(s) |
US20030172642A1 (en) * | 2001-04-26 | 2003-09-18 | Koichiro Nakatani | Exhaust emission control device |
AT6752U1 (en) * | 2003-06-05 | 2004-03-25 | Avl List Gmbh | REGENERATION OF AN EXHAUST GAS TREATMENT SYSTEM |
WO2004048757A1 (en) * | 2002-11-22 | 2004-06-10 | Volkswagen Ag | Method for operating an internal combustion engine comprising a particle filter |
FR2853009A1 (en) * | 2003-03-28 | 2004-10-01 | Renault Sa | METHOD FOR REGENERATING A PARTICLE FILTER AND DEVICE FOR CARRYING OUT SUCH A METHOD |
DE102004019660A1 (en) * | 2003-04-22 | 2005-01-27 | Mitsubishi Jidosha Kogyo K.K. | Exhaust gas purification device for an internal combustion engine |
DE10341930A1 (en) * | 2003-09-11 | 2005-04-21 | Audi Ag | A method for heating a in an exhaust system of a diesel internal combustion engine of a vehicle, in particular a motor vehicle, arranged catalyst and / or particulate filter on Desulfatisierungs- and / or Entrußungstemperatur and catalyst, in particular nitrogen oxide storage catalytic converter for exhaust systems of internal combustion engines |
DE10361220A1 (en) * | 2003-12-24 | 2005-07-28 | Volkswagen Ag | Diesel particulate filter e.g. coated soot filter, regenerating method for motor vehicle, involves oxidizing injected fuel and its HC-portions on catalyst of filter to heat filter to preset temperature for burning soot directly on filter |
-
2005
- 2005-09-29 DE DE102005046830A patent/DE102005046830A1/en not_active Ceased
-
2006
- 2006-09-26 WO PCT/EP2006/009357 patent/WO2007036351A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2799508A1 (en) * | 1999-10-08 | 2001-04-13 | Renault | FUEL INJECTION METHOD FOR A COMBUSTION ENGINE |
DE10048511A1 (en) * | 2000-09-29 | 2002-04-18 | Omg Ag & Co Kg | Reduction of carbon monoxide, hydrocarbons and soot particles in lean exhaust gas from internal combustion engine, by using particle filter having catalytic coating of oxygen storage component(s) and platinum group metal(s) |
US20030172642A1 (en) * | 2001-04-26 | 2003-09-18 | Koichiro Nakatani | Exhaust emission control device |
WO2004048757A1 (en) * | 2002-11-22 | 2004-06-10 | Volkswagen Ag | Method for operating an internal combustion engine comprising a particle filter |
FR2853009A1 (en) * | 2003-03-28 | 2004-10-01 | Renault Sa | METHOD FOR REGENERATING A PARTICLE FILTER AND DEVICE FOR CARRYING OUT SUCH A METHOD |
DE102004019660A1 (en) * | 2003-04-22 | 2005-01-27 | Mitsubishi Jidosha Kogyo K.K. | Exhaust gas purification device for an internal combustion engine |
AT6752U1 (en) * | 2003-06-05 | 2004-03-25 | Avl List Gmbh | REGENERATION OF AN EXHAUST GAS TREATMENT SYSTEM |
DE10341930A1 (en) * | 2003-09-11 | 2005-04-21 | Audi Ag | A method for heating a in an exhaust system of a diesel internal combustion engine of a vehicle, in particular a motor vehicle, arranged catalyst and / or particulate filter on Desulfatisierungs- and / or Entrußungstemperatur and catalyst, in particular nitrogen oxide storage catalytic converter for exhaust systems of internal combustion engines |
DE10361220A1 (en) * | 2003-12-24 | 2005-07-28 | Volkswagen Ag | Diesel particulate filter e.g. coated soot filter, regenerating method for motor vehicle, involves oxidizing injected fuel and its HC-portions on catalyst of filter to heat filter to preset temperature for burning soot directly on filter |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2928176A1 (en) * | 2008-02-29 | 2009-09-04 | Faurecia Sys Echappement | Particle filter regenerating method for direct injection petrol heat engine of motor vehicle, involves injecting gas i.e. air, containing oxygen in exhaust line, and oxidizing soot particles deposited on particle filter by injected gas |
GB2528681A (en) * | 2014-07-28 | 2016-02-03 | Jaguar Land Rover Ltd | Exhaust after-treatment system |
GB2528681B (en) * | 2014-07-28 | 2018-09-12 | Jaguar Land Rover Ltd | Exhaust after-treatment system |
Also Published As
Publication number | Publication date |
---|---|
DE102005046830A1 (en) | 2007-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102010046762B4 (en) | System and method for regenerating a particulate filter | |
DE102010039020A1 (en) | Method and apparatus for regeneration of a particulate filter | |
DE102010046896B4 (en) | System and method for regenerating a particulate filter accompanied by a catalyst | |
DE112008000369B4 (en) | Exhaust gas purification device for internal combustion engine | |
EP1336037B1 (en) | Method and device for controlling an exhaust gas aftertreatment system | |
EP0731875B1 (en) | Process for reducing pollutant emissions of a diesel engine equipped with an oxidation-type catalytic converter | |
EP3683414B1 (en) | Waste gas system for a combustion engine and method for operating the same | |
WO2019030315A1 (en) | System and method for exhaust gas aftertreatment of an internal combustion engine | |
AT521448B1 (en) | Process and arrangement of Otto engines with improved particle filtering II | |
DE102017127049A1 (en) | METHOD FOR REDUCING OVERTEMPERATURE 7 DURING THE REGENERATION OF THE PARTICULATE FILTER DEVICE OF AN EXHAUST SYSTEM | |
DE102006044503A1 (en) | Regenerating a diesel particulate filter (DPF) by electrically heating resistive coatings | |
DE102011013401A1 (en) | System for targeted particulate matter filter regeneration | |
DE102010037019A1 (en) | Emission control system for an internal combustion engine and desulfurization process for the same | |
DE102018100638A1 (en) | An exhaust control device for an internal combustion engine and exhaust control method for an internal combustion engine | |
EP3584418B1 (en) | Waste gas treatment system and method for regenerating a particle filter | |
DE102010039013A1 (en) | Method and apparatus for regeneration of a particulate filter | |
DE102017209693A1 (en) | Method for regenerating a particle filter in the exhaust system of an internal combustion engine and internal combustion engine | |
DE10040554A1 (en) | Exhaust gas cleaning unit for automobile diesel engines includes a nitrogen oxide absorber located upstream of a particle filter | |
EP1394373B1 (en) | Method for heating a soot filter in an exhaust system of an internal combustion engine - in particular a diesel engine - comprising at least a catalyst and a soot filter located downstream to gather soot | |
DE102016214951A1 (en) | Method for operating an engine | |
AT521454B1 (en) | Process and arrangement of Otto engines with improved particle filtering I | |
DE102019204747A1 (en) | Co-cleaning catalyst, treatment system and after-treatment process | |
WO2007036351A1 (en) | Method for the operation of an internal combustion engine comprising a particulate filter | |
DE102020215289A1 (en) | Process for operating an exhaust gas burner | |
DE10043613A1 (en) | Filter arrangement, used for cleaning exhaust gases from IC engines, comprises porous particle filter body having catalytically active coating, oxidation catalyst, and adjusting element for adjusting feeds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06805881 Country of ref document: EP Kind code of ref document: A1 |