+

WO2007036103A1 - Procede de reparation de trajet de reacheminement de service et systeme associe - Google Patents

Procede de reparation de trajet de reacheminement de service et systeme associe Download PDF

Info

Publication number
WO2007036103A1
WO2007036103A1 PCT/CN2006/001279 CN2006001279W WO2007036103A1 WO 2007036103 A1 WO2007036103 A1 WO 2007036103A1 CN 2006001279 W CN2006001279 W CN 2006001279W WO 2007036103 A1 WO2007036103 A1 WO 2007036103A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
router
directly connected
route
primary link
Prior art date
Application number
PCT/CN2006/001279
Other languages
English (en)
French (fr)
Inventor
Qian He
Yi Xiong
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to AT06742150T priority Critical patent/ATE525833T1/de
Priority to CN2006800117095A priority patent/CN101156394B/zh
Priority to EP06742150A priority patent/EP1936882B1/en
Publication of WO2007036103A1 publication Critical patent/WO2007036103A1/zh
Priority to US12/056,471 priority patent/US7885183B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • H04L45/507Label distribution

Definitions

  • the present invention relates to the field of service bearer transmission technologies, and in particular, to a method and system for recovering service forwarding routes. Background technique
  • LSP label switched path
  • LDP label distribution protocol
  • MPLS VPN network will each LSP are left in non-preferred standby link
  • the LDP session is pre-established on the standby link.
  • the LDP only needs to re-trigger to establish a new LSP on the standby link based on the pre-established LDP session, so that the service can be restored from the failed primary link to the standby link. And this recovery process will be very fast (generally a few milliseconds).
  • each router in the network re-learns the original service forwarding route based on the Interior Gateway Protocol (IGP), because the service forwarding route of the original primary link is relative to the backup chain.
  • IGP Interior Gateway Protocol
  • the service forwarding route of the route is more preferable.
  • the LDP will remove the LSP established on the standby link and attempt to establish an LSP on the original primary link. ⁇
  • the establishment of an LSP on the original primary link needs to be based on the established LDP session on the original primary link. However, the LDP session on the original primary link has not yet been established, and the LDP session establishment speed is usually compared.
  • the technical problem to be solved by the present invention is to provide a method for recovering a service forwarding route and a system thereof, so as to avoid the absence of an available LSP to carry the service and reduce the impact on the bearer transmission of the service.
  • a method for recovering a service forwarding route includes the following steps:
  • the service forwarding route on the standby link is redirected to the primary link.
  • the process of suppressing the change of the service forwarding route on the standby link includes: the router directly connected to the primary link advertises the neighbor type carrying the link overload attribute to the router not directly connected to the primary link. Length value
  • the router that is not directly connected to the primary link detects that the received link type length value carries the link overload attribute, the received neighbor type length value is ignored during the route learning process.
  • the router directly connected to the primary link issues a neighbor type length value carrying a link overload attribute to a router that is not directly connected to the primary link when the intermediate system to the intermediate system neighbor is established.
  • the neighbor type length value is a neighbor type length value of 2
  • the eighth bit in the default metric field in the neighbor type length value 2 is used to carry the link overload attribute.
  • the neighbor type length value is a neighbor type length value 22, and a subtype length value 2 is added in the neighbor type length value 22 to carry the link overload attribute.
  • the neighbor type length value is a multi-topology intermediate system type length value
  • a sub-type length value 2 is added in the multi-topology intermediate system type length value to carry the link overload genus Sex.
  • the process of suppressing the change of the service forwarding route on the standby link includes: the router directly connected to the primary link advertises the neighbor type length value to the router that is not directly connected to the primary link;
  • a router that is not directly connected to the primary link performs routing learning with the default neighbor type length value.
  • the router directly connected to the primary link advertises the neighbor type length value to the router that is not directly connected to the primary link when the intermediate system to the intermediate system neighbor is established.
  • the router directly connected to the primary link learns the route advertised by the primary link peer router based on the primary link, and establishes a label distribution protocol session on the primary link.
  • the router directly connected to the primary link is a hierarchical -1-2 router.
  • the router directly connected to the primary link learns the routing process advertised by the primary link peer router, and performs mask-level diffusion and route penetration processing.
  • the process of redirecting the service forwarding route on the standby link to the primary link includes:
  • the router When the router directly connected to the active link meets the preset condition, the router sends a neighbor type length value of the unloaded link overload attribute to the router that is not directly connected to the active link.
  • the router that is not directly connected to the active link continues to perform route learning according to the received neighbor type length value of the un-bearing link overload attribute, so that the service forwarding route on the standby link is redirected to the active link.
  • the process of redirecting the service forwarding route on the standby link to the primary link includes:
  • the router directly connected to the active link advertises the neighbor type length value to the router that is not directly connected to the active link when the preset condition is met.
  • the router that is not directly connected to the primary link continues the routing learning according to the received neighbor type length value, and redirects the service forwarding route on the standby link to the active link.
  • the predetermined condition that is satisfied is:
  • the router directly connected to the primary link detects that the label distribution protocol session on the primary link has been established.
  • the predetermined condition that is satisfied is:
  • a router directly connected to the primary link initiates a timer having a set timing length when the intermediate system to the intermediate system neighbor is established;
  • the timer is set to have a timing length greater than or equal to a length of time for establishing a label distribution protocol session on the primary link.
  • a recovery system for a service forwarding route including:
  • the route change suppression unit is configured to suppress a change of a service forwarding route on the standby link in a route learning process in which the primary link is restored from a fault state to a normal state;
  • a label distribution protocol session establishing unit configured to establish a label distribution protocol session on the primary link when the route change suppression unit suppresses the change of the service forwarding route on the standby link; and the route redirection unit is used for the label distribution protocol After the session establishment unit establishes the completion of the label distribution protocol session on the primary link, the service forwarding route on the standby link is redirected to the primary link.
  • the invention suppresses the change of the service forwarding route on the standby link during the route learning process in which the primary link is restored from the fault state to the normal state; and establishes an LDP session on the primary link; After the LDP session is established, the service forwarding route on the standby link is redirected to the active link. Therefore, in the process of restoring the primary link to the normal state from the fault state, since the LDP session on the primary link has not yet been established, the LSP on the standby link has been removed, and at the same time The LDP session has not been established on the link, and the new LSP cannot be triggered to be triggered on the active link. Therefore, no LSP is available to carry the service during this period, and the service is better. Bearer transmission impact.
  • FIG. 1 is a flowchart of a main implementation principle of a method for recovering a service forwarding route according to the present invention
  • FIG. 2 is a schematic diagram of an MPLS bone path composed of four routers in an MPLS VPN network.
  • FIG. 3 is a block diagram showing the main components of a service forwarding route recovery system according to the present invention. detailed description
  • the MPLS VPN network usually has a non-preferred backup link for the primary link, and the LDP session is pre-established on the non-preferred backup link, so that when the primary link occurs.
  • LDP only needs to re-trigger a new LSP based on the established LDP session on the standby link to recover the service forwarding route to carry the service. This process is very fast (usually several milliseconds).
  • the router in the network re-learns the original service forwarding route based on the IGP protocol. Since the service forwarding route of the original active link has a higher priority, it is preferred.
  • the LDP protocol removes the LSP established on the standby link and attempts to establish a new LSP on the original primary link.
  • the LDP session has not been established yet, and the LDP session is set up at a slower speed (usually a dozen seconds). In this period, the bearer transmission of the service is affected because no LSP is available to carry the service, thus causing the transmission. malfunction.
  • the method for recovering the service forwarding route of the present invention proposes an extension of the ISIS protocol to the LDP protocol by means of the scalability of the Intermediate System to Intermediate System (ISS).
  • ISS Intermediate System to Intermediate System
  • the routers in the network are updated based on the ISIS protocol, and the new LSP is established on the active link based on the LDP protocol.
  • the establishment process of the LDP session is omitted, so as to quickly transfer the service to the primary link for bearer transmission.
  • FIG. 1 is a flowchart of the main implementation principle of the method for recovering the service forwarding route of the present invention.
  • the main implementation principles are as follows:
  • step S10 during the route learning process in which the primary link is restored from the fault state to the normal state, the service forwarding route on the standby link is suppressed from being changed.
  • the service bearer of the active link is preferentially in the MPLS VPN network.
  • the level is higher than the service bearer priority of the standby link configured for the primary link.
  • the suppression is performed in two ways.
  • the specific processing of the first suppression method is as follows:
  • the router directly connected to the primary link advertises the Neighbor TLV with the link overload attribute (Link Overload attribute) to the router that is not directly connected to the primary link;
  • a router directly connected to the router may choose to issue a Neighbor TLV carrying a Link Overload attribute to a router that is not directly connected to the primary link when the intermediate system to intermediate system (ISS) neighbor is established;
  • ISS intermediate system to intermediate system
  • the 8th bit in the Default Metric in the Neighbor TLV 2 is used to carry the Link Overload attribute;
  • Neighbor TLV is Neighbor TLV 22 (that is, the intermediate system reachable type length value IS reachability TLV), a subtype length value of 2 (Sub TLV 2 ) needs to be added to the Neighbor TLV 22 to carry Link Overload attribute;
  • the Neighbor TLV is a multi-top intermediate system type length value (MT Intermediate Systems TLV)
  • the type of the length value is the top 2 bytes of the reserved field multi-topography identifier (MT ID)
  • MT ID the reserved field multi-topography identifier
  • the Neighbor TLV 22 is exactly the same, so you can also add a subtype length value of 2 (Sub TLV 2) to the MT Intermediate Systems TLV to carry the Link Overload attribute.
  • the router that is not directly connected to the primary link detects the received Linkighload attribute in the Neighbor TLV, it ignores the received Neighbor TLV during the route learning process, thereby suppressing the service on the standby link.
  • the forwarding route is changed so that the service forwarding route does not revert to the active link at this time (because the LDP session on the primary link has not been established yet).
  • the specific processing of the second suppression method is as follows: Bl.
  • the router directly connected to the primary link advertises the neighbor type length value (Neighbor TLV) to the router that is not directly connected to the primary link, that is, the route learning in which the primary link is restored from the fault state to the normal state.
  • the router directly connected to the active link does not advertise the Neighbor TLV to the entire network.
  • the router directly connected to the active link advertises Neighbor to the router that is not directly connected to the active link when the ISIS neighbor is established. TLV;
  • the router that is not directly connected to the active link performs route learning in the case of the default Neighbor TLV, so as to suppress the change of the service forwarding route on the standby link, so that the service forwarding route does not occur at this time. Restore to the primary link (because the LDP session on the primary link has not yet been established).
  • the second suppression mode is applicable to the case where the router does not support the Link Overload attribute in the entire network.
  • the first suppression mode requires that the routers in the entire network support the Link Overload attribute respectively. When there is a router that does not support the Link Overload attribute, and the first suppression method is used directly, the routing loop will occur. Therefore, in this case, the second suppression method is used instead of the first suppression method. .
  • step S20 an LDP session is established on the primary link at the same time as the processing of the foregoing step S10.
  • the router directly connected to the primary link can learn the primary link peer router based on the primary link. Routing to establish a corresponding LDP session on the primary link.
  • the router directly connected to the active link is at the level -1-2 (level) -1-2)
  • the router directly connected to the primary link mentioned here to learn the routing route advertised by the primary link peer router, to be masked to level-2 (Level-2) ) Diffusion and route penetration processing.
  • Step S30 after the establishment of the LDP session on the primary link is complete, the service forwarding route on the backup link is redirected to the primary link, so that the service carried on the backup link is switched to the primary link. Because the LDP session is established after the active link is restored, the new LSP can be set up based on the established LDP session when the service forwarding route is redirected to the active link. Used to carry transmission services, so it can recover bearers more accurately. Service, reducing the impact on bearer transmission services. , J
  • step S10 If the first suppression mode is adopted in the foregoing step S10 to change the service forwarding route on the standby link, the process of redirecting the service forwarding route on the standby link to the active link in step S30 is as follows: :
  • the router directly connected to the active link advertises a Neighbor TLV that does not carry the Link Overload attribute to the router that is not directly connected to the active link when the preset condition is met.
  • the preset conditions mentioned above include the following two cases:
  • the router directly connected to the primary link establishes an ISIS neighbor, it starts a timer that has set the timing length, and when the timer reaches the set timing length (in general, the timer is set)
  • the timing length should be greater than or equal to the length of time the LDP session is established on the primary link.
  • the router that is not directly connected to the primary link continues to perform routing learning according to the received Neighbor TLV that does not carry the Link Overload attribute, so as to redirect the service forwarding route to the primary link.
  • step S10 the process of redirecting the service forwarding route on the standby link to the active link in step S30 is as follows: :
  • the router directly connected to the active link issues a normal Neighbor TLV to the router that is not directly connected to the primary link when the preset condition is met;
  • the preset conditions mentioned here also include two cases:
  • the router directly connected to the primary link detects that the LDP session on the primary link has been established.
  • the router directly connected to the primary link establishes an ISIS neighbor, it starts a timer that has set the timing length, and when the timer reaches the set timing length (in general, the timer is set)
  • the timing length should be greater than or equal to the time when the LDP session is established on the primary link. Length).
  • the router that is not directly connected to the primary link continues to perform routing learning according to the received normal Neighbor TLV, so as to redirect the service forwarding route to the primary link.
  • FIG. 2 is a schematic diagram of an MPLS backbone path composed of four routers in an MPLS VPN network.
  • four routers (RTA, RTB, RTC, and RTD) constitute an MPLS backbone path, where the router The RSIS, RTB, RTC, and RTD respectively run the ISIS routing protocol to complete the routing and learning.
  • the octet (formerly reserved) in the default metric (default Metric) can be used;
  • the neighbor type length value 22 ie, the intermediate system reachable type length value IS reachability TLV
  • a new subtype length value type 2 (Sub TLV 2 ) may be defined to carry the Link Overload attribute;
  • the type length value is first 2 bytes of reserved field multi-topology identifier (MT ID), then the format and neighbor type length value 22 (ie, the middle)
  • the system reachability type length (IS reachability TLV) is exactly the same, so you can also use the same new subtype length value type 2 (Sub TLV 2) to carry the Link Overload attribute.
  • the router directly connected to the original link (the link between the RTB and the RTD) (that is, the RTB and RTD in Figure 2) (that is, the RTB and RTD in Figure 2) performs route learning (assuming routing learning on the RTB), only in the original Used only when the route advertised by the link peer router (that is, the route advertised by the RTD) is processed.
  • the next hop of the route advertised by the peer router (that is, the route advertised by the RTD) learned by the router RTB is the newly recovered link, thereby implementing the guidance on the original link (the link between the RTB and the RTD).
  • the purpose of establishing an LDP session is the following hop of the route advertised by the peer router (that is, the route advertised by the RTD) learned by the router RTB is the newly recovered link, thereby implementing the guidance on the original link (the link between the RTB and the RTD).
  • the router directly connected to the original link is a level-1-2 router, if it is learned by using a Neighbor TLV carrying the Link Overload attribute.
  • the route advertised by the peer router is used, Level-2 diffusion and route penetration processing should not be performed.
  • the router to be directly connected to the original link (the link between the RTB and the RTD) (ie, the RTB and the RTD in FIG. 2) detects that the LDP of the link between the RTB and the RTD has been established, When the router that is not directly connected to the original link (that is, the RTA and RTC in Figure 2) issues the Neighbor TLV, the Link Overload attribute carried in it is cleared.
  • the router that is not directly connected to the original link is cleared (ie, RTA and RTC in FIG. 2).
  • the Link Overload attribute carried in the released Neighbor TLV is greater than or equal to the length of time that the LDP session is established on the original link (the link between the RTB and the RTD).
  • the link between the original link (the link between the RTB and the RTD) that is not directly connected (that is, the RTA and RTC in Figure 2) receives the Neighbor TLV without setting the Link Overload attribute, based on the unset Link Overload attribute.
  • An LDP session is established. Therefore, it is very fast (usually several milliseconds) to establish a new LSP based on the established LDP session. This minimizes the bearer transmission that affects the service and avoids transmission failure. occur.
  • the routers (RTB and RTD) directly connected to the original link will not release the Neighbor TLV. Normally, the RTB and RTD need to issue the Neighbor TLV.
  • the router that is not directly connected to the original link (ie, RTA and RTC in Figure 2) performs routing learning in the case of the default Neighbor TLV because RTB and RTD
  • the Neighbor TLV is not sent, so for routers RTA and RTC that are not directly connected to the original link, the effect of ignoring the Neighbor TLV is the same as in the above scheme.
  • the router to be directly connected to the original link (the link between the RTB and the RTD) (ie, the RTB and the RTD in FIG. 2) detects that the LDP of the link between the RTB and the RTD has been established, and resumes the connection.
  • a router that is not directly connected to the original link (ie, RTA and RTC in Figure 2) issues a Neighbor TLV;
  • the router is not directly connected to the original link (ie, RTA and RTC in FIG. 2). Release the Neighbor TLV.
  • the value of the timing length set in the timer that is started is greater than or equal to the length of time that the LDP session is established on the original link (the link between the RTB and the RTD).
  • the router that is not directly connected to the original link (ie, the RTA and RTC in Figure 2) (ie, the RTA and RTC in Figure 2) initiates a normal route calculation based on the received Neighbor TLV after receiving the normal Neighbor TLV.
  • the present invention further proposes a service forwarding routing recovery system, as shown in FIG. 3, which is a main structural block diagram of the service forwarding routing recovery system of the present invention, which mainly includes routing.
  • the change suppression unit 10, the label distribution protocol session establishing unit 20, and the route redirection unit 30, wherein the specific functions of the respective constituent units are as follows:
  • the route change suppression unit 10 is configured to recover from the fault state to the normal state on the primary link. During the learning process, the service forwarding route on the standby link is suppressed from changing;
  • the label distribution protocol session establishing unit 20 is configured to establish an LDP session on the primary link during the process of the route change suppression unit 10 suppressing the change of the service forwarding route on the standby link; the route redirection unit 30 is configured to use the foregoing After the LDP session is established on the primary link, the label distribution protocol session establishing unit 20 redirects the service forwarding route on the standby link to the primary link.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

业务转发路由的恢复方法及其系统
技术领域
本发明涉及业务承载传输技术领域, 尤其是涉及一种业务转发路由的恢 复方法及其系统。 背景技术
伴随着网络技术的不断发展, 用户对网络的可靠性要求日益提高, 不仅 要求运营商能够提供安全、 可靠的承载通道, 而且还要求当有设备、 链路发 生变化时, 要求对网络造成尽可能小的冲击。
随着多协议标签交换 ( MPLS, Multi Protocol Label Switch )虚拟专用网 ( VPN, Virtual Private Network )技术的快速发展, 运营商已经越来越多的使 用 MPLS VPN来承载用户了,并在使用过程中基于标签分发协议( LDP, Label Distribution Protocol ) 来建立各条标签交换路径 ( LSP, Label Switch Path )0 在通常情况下, MPLS VPN会为网络中的每条 LSP分别留有非优选的备用链 路, 在备用链路上 LDP会话是预先建立好的。 这样当主用链路发生故障时, LDP 只需要基于预先建立好的 LDP会话在备用链路上重新触发建立新的 LSP, 就可以使业务由发生故障的主用链路恢复到备用链路上承载, 而且这个 恢复过程将是很快的 (一般几个毫秒)。
但是, 当原主用链路恢复正常后, 网络中的各个路由器会基于域内网关 协议(IGP, Interior Gateway Protocol )重新学习到原来的业务转发路由, 由 于原主用链路的业务转发路由相对于备用链路的业务转发路由更加优选, 所 以当学习到的原主用链路的业务转发路由生效时 ,会导致 LDP将备用链路上建 立的 LSP拆除,并试图在原主用链路上建立 LSP。侔是在原主用链路上建立 LSP 需要基于原主用链路上已建立的 LDP会话,然而此时在原主用链路上 LDP会话 还没有来得及建立, 而通常情况下 LDP会话建立的速度会比较慢 (通常需要十 几秒) , 因此在此期间会因为备用链路上的 LSP已经拆除, 而原主用链路上的 LSP还没有建立, 导致没有可用的 LSP来承载业务, 从而会较为严重的影响到 业务的承载传输。 发明内容
本发明要解决的技术问题在于提出一种业务转发路由的恢复方法及其系 统, 以使在业务转发路由恢复过程中, 避免没有可用的 LSP来承载业务, 减 小对业务的承载传输影响。
为解决上述问题, 本发明提出的技术方案如下:
一种业务转发路由的恢复方法, 包括步骤:
在主用链路由故障状态恢复到正常状态的路由学习过程中, 抑制备用链 路上的业务转发路由发生变化; 并
• 在主用链路上建立标签分发协议会话;
在主用链路上的标签分发协议会话建立完成后, 将备用链路上的业务转 发路由重新指向主用链路。
较佳地 , 抑制备用链路上的业务转发路由发生变化的处理过程包括: 与主用链路直连的路由器向与主用链路不直连的路由器发布承载有链路 过载属性的邻居类型长度值;
与主用链路不直连的路由器检测到接收的邻居类型长度值中承载有链路 过载属性时 , 在路由学习过程中忽略接收到的邻居类型长度值。
较佳地, 与主用链路直连的路由器在中间系统到中间系统邻居建立时, 向与主用链路不直连的路由器发布承载有链路过载属性的邻居类型长度值。
较佳地, 所述邻居类型长度值为邻居类型长度值 2, 并使用邻居类型长度 值 2中缺省度量域中的第八位来承载所述链路过载属性。
较佳地, 所述邻居类型长度值为邻居类型长度值 22, 并在邻居类型长度 值 22中增设一个子类型长度值 2, 用来承载所述链路过载属性。
较佳地, 所述邻居类型长度值为多拓朴中间系统类型长度值, 并在多拓 朴中间系统类型长度值中增设一个子类型长度值 2,用来承载所述链路过载属 性。
较佳地, 抑制备用链路上的业务转发路由发生变化的处理过程包括: 与主用链路直连的路由器屏蔽向与主用链路不直连的路由器发布邻居类 型长度值;
与主用链路不直连的路由器在缺省邻居类型长度值的情况下进行路由学 习。
较佳地, 与主用链路直连的路由器在中间系统到中间系统邻居建立时, 屏蔽向与主用链路不直连的路由器发布邻居类型长度值。
较佳地, 与主用链路直连的路由器基于该主用链路学习该主用链路对端 路由器发布的路由, 实现在该主用链路上建立标签分发协议会话。
较佳地, 与主用链路直连的路由器为层次 -1-2路由器。 其中与主用链路 直连的路由器学习该主用链路对端路由器发布的路由过程中,屏蔽进行层次 -2 扩散以及路由渗透处理。
较佳地, 将备用链路上的业务转发路由重新指向主用链路的处理过程包 括:
与主用链路直连的路由器在满足预设条件时, 向与主用链路不直连的路 由器发布未承载链路过载属性的邻居类型长度值;
与主用链路不直连的路由器根据接收的未承载链路过载属性的邻居类型 长度值继续进行路由学习, 实现将备用链路上的业务转发路由重新指向主用 链路。
较佳地, 将备用链路上的业务转发路由重新指向主用链路的处理过程包 括:
与主用链路直连的路由器在满足预设条件时, 向与主用链路不直连的路 由器发布邻居类型长度值;
与主用链路不直连的路由器根据接收的邻居类型长度值继续进行路由学 习, 实现将备用链路上的业务转发路由重新指向主用链路。
较佳地, 所述满足的预设条件为: 与主用链路直连的路由器在检测到该主用链路上的标签分发协议会话已 经建立完成的条件。
较佳地, 所述满足的预设条件为:
与主用链路直连的路由器在中间系统到中间系统邻居建立时, 启动一已 经设置定时长度的定时器; 并
在所述定时器到达所述定时长度时的条件。
较佳地, 所述定时器设置的定时长度大于等于在主用链路上建立标签分 发协议会话的时间长度。
一种业务转发路由的恢复系统, 包括:
路由变化抑制单元, 用于在主用链路由故障状态恢复到正常状态的路由 学习过程中, 抑制备用链路上的业务转发路由发生变化;
标签分发协议会话建立单元, 用于在路由变化抑制单元抑制备用链路上 的业务转发路由发生变化过程中, 在主用链路上建立标签分发协议会话; 路由重新指向单元, 用于标签分发协议会话建立单元在主用链路上建立 完成标签分发协议会话后, 将备用链路上的业务转发路由重新指向主用链路。
本发明能够达到的有益效果如下:
本发明通过在主用链路由故障状态恢复到正常状态的路由学习过程中, 抑制备用链路上的业务转发路由发生变化; 并在主用链路上建立 LDP会话; 在主用链路上的 LDP会话建立完成后, 将备用链路上的业务转发路由重新指 向主用链路。 从而避免了主用链路在由故障状态恢复到正常状态的过程中, 由于主用链路上的 LDP会话还没有来得及建立时,备用链路上的 LSP就已经 被拆除, 而同时由于在主用链路上还没有来得及建立 LDP会话, 导致不能迅 速在主用链路上触发建立新的 LSP, 而致使在此期间没有可用的 LSP来承载 业务的问题, 较好的减小了对业务的承载传输影响。 附图说明 图 1为本发明业务转发路由的恢复方法的主要实现原理流程图; 图 2为在 MPLS VPN网络中由 4台路由器组成的 MPLS骨千路径的示意图。 图 3为本发明业务转发路由的恢复系统的主要组成结构框图。 具体实施方式
现有技术中在通常情况下, MPLS VPN网络会为主用链路留有非优选的 备用链路, 而在非优选的备用链路上 LDP会话是预先建立好的, 这样当主用 链路发生故障时, LDP只需要在备用链路上基于建立好的 LDP会话重新触发 建立新的 LSP, 就可以恢复业务转发路由来承载业务,这个过程是很快的(通 常为几个毫秒)。 但是后续当原主用链路由故障状态恢复为正常状态后, 网络 中的路由器会基于 IGP协议重新学习到原来的业务转发路由, 由于原来主用 链路的业务转发路由优先级比较高, 会优选, 所以当主用链路上的业务转发 路由生效时, 会导致 LDP协议将备用链路上建立的 LSP拆除, 并试图在原主 用链路上建立新的 LSP,但此时原主用链路上的 LDP会话还没有来得及建立, 而 LDP会话的建立速度会比较慢(通常要十几秒),则导致在此期间会因为没 有可用的 LSP来承载业务而影响到业务的承载传输, 因而会造成传输故障。
针对现有技术上述存在的问题, 本发明业务转发路由的恢复方法提出借 助于中间系统到中间系统 ( ISIS , Intermediate System to Intermediate System ) 的扩展性, 建立一种 ISIS协议与 LDP协议互动的方式, 以将部分路由的学习 推迟到主用链路上的 LDP会话建立成功后, 以使网络中的各个路由器基于 ISIS协议进行路由更新时,基于 LDP协议在主用链路上建立新的 LSP过程中 省略 LDP会话的建立处理, 从而达到迅速将业务转移到主用链路上进行承载 传输的目的。
下面将结合各个附图对本发明业务转发路由的恢复方法的主要实现原理 及其具体实施方式进行详细的阐述。
请参照图 1,该图是本发明业务转发路由的恢复方法的主要实现原理流程 图, 其主要实现原理如下: 步骤 S10,在主用链路由故障状态恢复到正常状态的路由学习过程中,抑 制备用链路上的业务转发路由发生变化; 通常情况下, 在 MPLS VPN网絡中 主用链路的业务承载优先级要高于为主用链路配置的备用链路的业务承载优 先级。 ' 用两种方式进行抑制 , 第一种抑制方式的具体处理过程如下:
A1. 首先与主用链路直连的路由器向与主用链路不直连的路由器发布承 载有链路过载属性( Link Overload属性)的邻居类型长度值 ( Neighbor TLV ); 其中与主用链路直连的路由器可以选择在中间系统到中间系统 ( ISIS , Intermediate System to Intermediate System )邻居建立时, 向与主用链路不直连 的路由器发布承载有 Link Overload属性的 Neighbor TLV;
其中若 Neighbor TLV为 Neighbor TLV 2时, 则使用 Neighbor TLV 2中缺 省度量域( Default Metric ) 中的第 8位来承载 Link Overload属性;
其中若 Neighbor TLV为 Neighbor TLV 22 (即为中间系统可达类型长度值 IS reachability TLV )时, 则需要在 Neighbor TLV 22中新增设一个子类型长度 值 2 ( Sub TLV 2 ), 以用来承载 Link Overload属性;
其中若 Neighbor TLV 为多拓朴中间系统类型长度值 ( MT Intermediate Systems TLV ) 时, 由于该类型长度值中最前面为 2个字节的保留字段多拓朴 标识( MT ID ), 之后的格式与 Neighbor TLV 22 (即 IS reachability TLV )完全 一样, 所以也可以在 MT Intermediate Systems TLV中新增设一个子类型长度 值 2 ( Sub TLV 2 ), 以用来承载 Link Overload属性。
A2. 与主用链路不直连的路由器在检测到接收的 Neighbor TLV中承载有 Link Overload属性时,在进行路由学习过程中则忽略接收到的 Neighbor TLV, 从而达到抑制备用链路上的业务转发路由发生变化的目的, 以使业务转发路 由在此时不会恢复到主用链路上 (因为此时主用链路上的 LDP会话还未建 立)。
第二种抑制方式的具体处理过程如下: Bl. 与主用链路直连的路由器屏蔽向与主用链路不直连的路由器发布邻 居类型长度值(Neighbor TLV ), 即: 在主用链路由故障状态恢复到正常状态 的路由学习过程中, 与主用链路直连的路由器不向全网发布 Neighbor TLV; 其中与主用链路直连的路由器在 ISIS邻居建立时, 屏蔽向与主用链路不直连 的路由器发布 Neighbor TLV;
B2. 与主用链路不直连的路由器在缺省 Neighbor TLV的情况下进行路由 学习, 从而达到抑制备用链路上的业务转发路由发生变化的目的, 以使业务 转发路由在此时不会恢复到主用链路上(因为此时主用链路上的 LDP会话还 未建立)。
其中第二种抑制方式适用于全网中存在路由器不支持 Link Overload属性 的情况, 由于第一种抑制方式要求全网中的路由器都分别要支持链路过载 ( Link Overload )属性, 如果网络中存在有不支持 Link Overload属性的路由 器时, 而直接使用第一种抑制方式, 就会造成路由环路情况发生, 因此在这 种情况下, 就要使用第二种抑制方式来替代第一种抑制方式。
步骤 S20, 在上述步骤 S10处理过程的同时, 在主用链路上建立 LDP会 话; 其中与主用链路直连的路由器可以基于该主用链路来学习该主用链路对 端路由器发布的路由, 以实现在该主用链路上建立对应的 LDP会话。
值得注意的是: 若在上述步骤 S10 中采取第一种抑制方式来抑制备用链 路上的业务转发路由发生变化时, 并在与主用链路直连的路由器为层次 -1-2 ( level-1-2 )路由器的情况下, 则这里提及到的与主用链路直连的路由器学习 该主用链路对端路由器发布的路由过程中, 要屏蔽进行层次 -2 ( Level-2 )扩 散以及路由渗透处理。
步骤 S30, 在主用链路上的 LDP会话建立完成后, 将备用链路上的业务 转发路由重新指向主用链路, 以将备用链路上承载的业务切换到主用链路上 承载, 因为这时主用链路恢复正常时, 其上的 LDP会话已经建立完成, 这样 在业务转发路由重新指向主用链路时, 就可以直接基于已经建立好的 LDP会 话触发建立新的 LSP, 以用来承载传输业务, 因此可以较为准确的恢复承载 业务, 减小对承载传输业务造成的影响。 , J
其中若上述步骤 S10 中采取第一种抑制方式来抑 备用链路上的业务转 发路由发生变化时, 则步骤 S30 中实现将备用链路上的业务转发路由重新指 向主用链路的处理过程如下:
C1. 与主用链路直连的路由器在满足预设条件时, 向与主用链路不直连 的路由器发布没有承载 Link Overload属性的 Neighbor TLV;
其中上述提及的预设条件包括以下两种情况:
1 )与主用链路直连的路由器在检测到该主用链路上的 LDP会话已经建立 完成的条件。
2 )与主用链路直连的路由器在 ISIS邻居建立时, 启动一个已经设置定时 长度的定时器, 并在该定时器到达设置的定时长度时的条件 (其中一般情况 下, 定时器设置的定时长度应该大于等于在主用链路上建立 LDP会话的时间 长度)。
C2. 此时, 与主用链路不直连的路由器再根据接收的没有承载 Link Overload属性的 Neighbor TLV继续进行路由学习, 以实现将业务转发路由重 新指向主用链路。
此外若上述步骤 S10 中采取第二种抑制方式来抑制备用链路上的业务转 发路由发生变化时, 则步骤 S30 中实现将备用链路上的业务转发路由重新指 向主用链路的处理过程如下:
D1. 与主用链路直连的路由器在满足预设条件时, 向与主用链路不直连 的路由器发布正常的 Neighbor TLV;
其中这里提及的预设条件也包括两种情况:
11 )与主用链路直连的路由器在检测到该主用链路上的 LDP会话已经建 立完成的条件。
12 )与主用链路直连的路由器在 ISIS邻居建立时, 启动一个已经设置定 时长度的定时器, 并在该定时器到达设置的定时长度时的条件 (其中一般情 况下, 定时器设置的定时长度应该大于等于在主用链路上建立 LDP会话的时 间长度)。
D2. 此时, 与主用链路不直连的路由器再根据接收的正常 Neighbor TLV 继续进行路由学习, 以实现将业务转发路由重新指向主用链路。
一个依据本发明方法原理进行实施的实施例:
请参照图 2, 该图是在 MPLS VPN网络中由 4台路由器组成的 MPLS骨 干路径的示意图, 在该图中, 四台路由器(RTA、 RTB, RTC和 RTD )构成 了 MPLS骨干路径, 其中路由器 RTA、 RTB、 RTC和 RTD上面都分别运行了 ISIS路由协议, 以用来完成路由的发布与学习, 其中 RTA=>RTB=>RTD为优 选路径; RTA=>RTO>RTD为备份路径。 同时四台路由器上面都分别运行了 LDP协议, 以用来创建 RTA= RTB=>RTD和 RTA=>RTC=>RTD上的 LSP。 这里假设已经建立了 RTA=>RTB=>RTD上的 LSP。
按照 ¾有技术方案: 当路由器 RTB与 RTD之间的链路发生故障时,原链 路 RTA=>RTB=>RTD 上的 LSP 马上被拆除, 并重新建立备用链路 RTA=>RTO>RTD上的 LSP, 这个过程将是很快的(通常为几个毫秒), 这是 因为备用链路 RTA=>RTC=>RTD上已经建立了对应的 LDP会话。
但是在这种情况下,路由器 RTB与 RTD之间的链路恢复正常后,各个路 由器将依据 ISIS协议 4艮快算出新的业务转发路由,由于 RTA=>RTB=>RTD的 业务转发路由相对于 RTA=>RTC=>RTD的业务转发路由更加优选, 所以会导 致优选路径变回 RTA=>RTB=>RTD , 则 LDP 协议会马上将备用链路 RTA=>RTC=>RTD上的 LSP拆除,但是因为 RTB与 RTD之间的 LDP会话还 没有来得及建立, 且建立速度会比较慢, 所以将导致链路 RTA=>RTB=>RTD 上的 LSP不能被马上建立, 从而会影响到业务的承载传输。
为解决上述这个问题, 本发明方法执行的过程如下:
1、 首先, 扩展 ISIS协议的邻居类型长度值(Neighbor TLV ), 使之能够 携带暂且称之为链路过载( Link Overload )属性。
其中对于邻居类型长度值 2( Neighbor TLV 2 ),可以使用缺省度量( Default Metric ) 中的笫八位(原为保留位); 对于邻居类型长度值 22 (即中间系统可达类型长度值 IS reachability TLV ), 可以定义一个新的子类型长度值类型 2 ( Sub TLV 2 )来携带链路过载 ( Link Overload )属性;
对于多拓朴中间系统类型长度值 ( MT Intermediate Systems TLV ), 该类 型长度值最前面为 2个字节的保留字段多拓朴标识 (MT ID ), 之后格式与邻 居类型长度值 22 (即中间系统可达类型长度值 IS reachability TLV )完全一样, 所以也可以使用同样的新的子类型长度值类型 2 ( Sub TLV 2 )来携带链路过 载( Link Overload )属性。
2、 在 ISIS邻居建立的时刻起, 原链路直连的路由器(RTB和 RTD )在 发布的 Neighbor TLV中携带 Link Overload属性;
3、 在与原链路 ( RTB与 RTD之间的链路) 不直连的路由器(即图 2中 的 RTA 和 RTC ) 上进行路由学习的时候, 将对接收到的邻居类型长度值
( Neighbor TLV ) 中是否携带有 Link Overload属性进行检查, 如果该 Link Overload属性被设置, 那么就忽略该接收到的 Neighbor TLV, 不用作路由学 习处理。 这样就可以保证在原链路 ( RTB与 RTD之间的链路)上的 LDP未 建立时, 抑制备用链路( RTA=>RTC=>RTD ) 上的业务转发路由重新指向到 原链路 ( RTB 与 RTD 之间的链路) 上, 这样就会使备用链路
( RTA=>RTC=>RTD )上建立的 LSP所依赖的业务转发路由不发生变化, 则 备用链路 RTA=>RTC=>RTD上建立的 LSP就不会马上被拆除。
4、与原链路 ( RTB与 RTD之间的链路 )直连的路由器(即图 2中的 RTB 和 RTD )进行路由学习的时候(这里假设在 RTB上进行路由学习), 只有在 对原链路对端路由器发布的路由 (即 RTD发布的路由)进行处理时, 才使用
(但不仅限于)该原链路。 这样就可以保证路由器 RTB学习到的对端路由器 发布的路由 (即 RTD发布的路由)的下一跳为刚刚恢复的链路, 从而实现了 指导在原链路 ( RTB与 RTD之间的链路 )上建立 LDP会话的目的。
其中对于与原链路直连的路由器(即图 2中的 RTB和 RTD )为 level-1-2 路由器的情况,如果通过使用携带有 Link Overload属性的 Neighbor TLV来学 习对端路由器发布的路由时, 不应当进行 Level-2扩散以及路由渗透处理。
5、 待与原链路 ( RTB与 RTD之间的链路)直连的路由器(即图 2中的 RTB和 RTD )检测到 RTB与 RTD之间的链路的 LDP已经建立时, 在向与原 链路不直连的路由器(即图 2中的 RTA和 RTC )发布 Neighbor TLV时, 清除 其中携带的 Link Overload属性;
或者在 ISIS邻居建立的时刻起, 启动一个可配置定时长度的定时器, 这 样当该定时器到期后, 就清除向与原链路不直连的路由器(即图 2中的 RTA 和 RTC )发布的 Neighbor TLV中携带的 Link Overload属性。其中启动的定时 器中设置的定时长度值要大于等于在原链路(RTB与 RTD之间的链路)上建 立 LDP会话的时间长度。
6、 与原链路 ( RTB与 RTD之间的链路) 不直连的路由器(即图 2中的 RTA和 RTC )接收到没有设置 Link Overload属性的 Neighbor TLV后, 基于 该未设置 Link Overload属性的 Neighbor TLV启动正常的路由计算,这样就可 以指导 RTA=>RTC=>RTD上的业务转发路由重新指向到 RTA=>RTB=>RTD 上, 因为此时 RTB与 RTD之间的链路已经建立了 LDP会话, 所以基于该已 经建立好的 LDP会话触发建立新的 LSP将会很快(通常为几个毫秒), 这样 就做到了尽可能小的影响到业务的承载传输, 避免了传输故障的发生。
上述过程要求 MPLS VP 网络中的各个路由器都要分别支持 Link Overload属性, 而对于不支持 Link Overload属性的路由器而言, 如果还使用 携带有 Link Overload属性的 Neighbor TLV, 就可能会造成路由环路。 因此针 对于 MPLS VPN网络中存在不支持 Link Overload属性的路由器情况,可以采 用本发明下述提出的替代方案来完成:
a、 在 ISIS邻居建立的时刻起, 原链路直连的路由器(RTB和 RTD )就 不再发布 Neighbor TLV, 正常情况下 RTB和 RTD是需要发布 Neighbor TLV 的;
b、 与原链路 ( RTB与 RTD之间的链路) 不直连的路由器(即图 2中的 RTA和 RTC )在缺省 Neighbor TLV的情况下进行路由学习,因为 RTB和 RTD 没有发送 Neighbor TLV,所以对于与原链路不直连的路由器 RTA和 RTC来说, 与上述方案中忽略该 Neighbor TLV的效果是相同的。 这样也可以保证在原链 路 (RTB 与 RTD 之间的链路) 上的 LDP 未建立时, 抑制备用链路 ( RTA=>RTC=>RTD )上的业务转发路由重新指向到原链路 ( RTB与 RTD之 间的链路)上, 这样就会使备用链路 ( RTA=>RTC=>RTD )上建立的 LSP所 依赖的业务转发路由不发生变化, 则备用链路 RTA=>RTC=>RTD 上建立的 LSP就不会马上被拆除。
c、 接下来的处理过程同上述 4中的处理过程, 这里不再赘述。
d、 待与原链路 ( RTB与 RTD之间的链路)直连的路由器(即图 2中的 RTB和 RTD )检测到 RTB与 RTD之间的链路的 LDP已经建立时, 恢复向与 原链路不直连的路由器(即图 2中的 RTA和 RTC )发布 Neighbor TLV;
或者在 ISIS邻居建立的时刻起, 启动一个可配置定时长度的定时器, 这 样当该定时器到期后, 就恢复向与原链路不直连的路由器 (即图 2中的 RTA 和 RTC )发布 Neighbor TLV。 其中启动的定时器中设置的定时长度值要大于 等于在原链路(RTB与 RTD之间的链路)上建立 LDP会话的时间长度。
e、 与原链路 ( RTB与 RTD之间的链路) 不直连的路由器(即图 2中的 RTA和 RTC )接收到正常的 Neighbor TLV后, 基于该接收的 Neighbor TLV 启动正常的路由计算, 这样就可以指导 RTA=>RTC=>RTD上的业务转发路由 重新指向到 RTA=>RTB=>RTD上, 因为此时 RTB与 RTD之间的链路已经建 立了 LDP会话, 所以基于该已经建立好的 LDP会话触发建立新的 LSP将会 很快(通常为几个毫秒), 这样就做到了尽可能小的影响到业务的承载传输, 避免了传输故障的发生。
相应于本发明上述提出的方法, 本发明这里还进而提出了一种业务转发 路由的恢复系统, 如图 3 所示, 为本发明业务转发路由的恢复系统的主要组 成结构框图, 其主要包括路由变化抑制单元 10、 标签分发协议会话建立单元 20和路由重新指向单元 30, 其中各个组成单元的具体作用如下:
路由变化抑制单元 10, 用于在主用链路由故障状态恢复到正常状态的路 由学习过程中, 抑制备用链路上的业务转发路由发生变化;
标签分发协议会话建立单元 20,用于在上述路由变化抑制单元 10抑制备 用链路上的业务转发路由发生变化过程中, 在主用链路上建立 LDP会话; 路由重新指向单元 30,用于上述标签分发协议会话建立单元 20在主用链 路上建立完成 LDP会话后,将备用链路上的业务转发路由重新指向主用链路。
此外本发明系统中的其他相关技术的具体实现细节请参照本发明上述方 法中的相关描述, 这里不再给以过多赘述。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求
1、 一种业务转发路由的恢复方法, 其特征在于, 包括步骤:
在主用链路由故障状态恢复到正常状态的路由学习过程中, 抑制备用链 路上的业务转发路由发生变化; 并
在主用链路上建立标签分发协议会话;
在主用链路上的标签分发协议会话建立完成后, 将备用链路上的业务转 发路由重新指向主用链路。
2、 如权利要求 1所述的方法, 其特征在于, 抑制备用链路上的业务转发 路由发生变化的处理过程包括:
与主用链路直连的路由器向与主用链路不直连的路由器发布承载有链路 过载属性的邻居类型长度值;
与主用链路不直连的路由器检测到接收的邻居类型长度值中承载有链路 过载属性时, 在路由学习过程中忽略接收到的邻居类型长度值。
3、 如权利要求 2所述的方法, 其特征在于, 与主用链路直连的路由器在 中间系统到中间系统邻居建立时, 向与主用链路不直连的路由器发布承载有 链路过载属性的邻居类型长度值。
4、 如权利要求 2或 3所述的方法, 其特征在于, 所述邻居类型长度值为 邻居类型长度值 2,并使用邻居类型长度值 2中缺省度量域中的第八位来承载 所述链路过载属性。
5、 如权利要求 2或 3所述的方法, 其特征在于, 所述邻居类型长度值为 邻居类型长度值 22, 并在邻居类型长度值 22中增设一个子类型长度值 2, 用 来承载所述链路过载属性。
6、 如权利要求 2或 3所述的方法, 其特征在于, 所述邻居类型长度值为 多拓朴中间系统类型长度值, 并在多拓朴中间系统类型长度值中增设一个子 类型长度值 2, 用来承载所述链路过载属性。
7、 如权利要求 1所述的方法, 其特征在于, 抑制备用链路上的业务转发 路由发生变化的处理过程包括:
与主用链路直连的路由器屏蔽向与主用链路不直连的路由器发布邻居类 型长度值;
与主用链路不直连的路由器在缺省邻居类型长度值的情况下进行路由学 习。
8、 如权利要求 7所述的方法, 其特征在于, 与主用链路直连的路由器在 中间系统到中间系统邻居建立时, 屏蔽向与主用链路不直连的路由器发布邻 居类型长度值。
9、 如权利要求 1、 2或 7所述的方法, 其特征在于, 与主用链路直连的 路由器基于该主用链路学习该主用链路对端路由器发布的路由, 实现在该主 用链路上建立标签分发协议会话。
10、 如权利要求 9所述的方法, 其特征在于, 与主用链路直连的路由器 为层次 -1-2路由器。
11、 如权利要求 10所述的方法, 其特征在于, 与主用链路直连的路由器 学习该主用链路对端路由器发布的路由过程中, 屏蔽进行层次 -2扩散以及路 由渗透处理。
12、 如权利要求 2所述的方法, 其特征在于, 将备用链路上的业务转发 路由重新指向主用链路的处理过程包括:
与主用链路直连的路由器在满足预设条件时, 向与主用链路不直连的路 由器发布未承载链路过载属性的邻居类型长度值;
与主用链路不直连的路由器根据接收的未承载链路过载属性的邻居类型 长度值继续进行路由学习, 实现将备用链路上的业务转发路由重新指向主用 链路。
13、 如权利要求 7所述的方法, 其特征在于, 将备用链路上的业务转发 路由重新指向主用链路的处理过程包括:
与主用链路直连的路由器在满足预设条件时, 向与主用链路不直连的路 由器发布邻居类型长度值; 与主用链路不直连的路由器根据接收的邻居类型长度值继续进行路由学 习, 实现将备用链路上的业务转发路由重新指向主用链路。
14、 如权利要求 12或 13所述的方法, 其特征在于, 所述满足的预设条 件为:
与主用链路直连的路由器在检测到该主用链路上的标签分发协议会话已 经建立完成的条件。
15、 如权利要求 12或 13所述的方法, 其特征在于, 所述满足的预设条 件为:
与主用链路直连的路由器在中间系统到中间系统邻居建立时, 启动一已 经设置定时长度的定时器; 并
在所述定时器到达所述定时长度时的条件。
16、 如权利要求 15所述的方'法, 其特征在于, 所述定时器设置的定时长 度大于等于在主用链路上建立标签分发协议会话的时间长度。
17、 一种业务转发路由的恢复系统, 其特征在于, 包括:
路由变化抑制单元, 用于在主用链路由故障状态恢复到正常状态的路由 学习过程中, 抑制备用链路上的业务转发路由发生变化;
标签分发协议会话建立单元, 用于在路由变化抑制单元抑制备用链路上 的业务转发路由发生变化过程中, 在主用链路上建立标签分发协议会话; 路由重新指向单元, 用于标签分发协议会话建立单元在主用链路上建立 完成标签分发协议会话后, 将备用链路上的业务转发路由重新指向主用链路。
PCT/CN2006/001279 2005-09-27 2006-06-12 Procede de reparation de trajet de reacheminement de service et systeme associe WO2007036103A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT06742150T ATE525833T1 (de) 2005-09-27 2006-06-12 Verfahren zum wiederherstellen der dienstweiterleitungsroute und system dafür
CN2006800117095A CN101156394B (zh) 2005-09-27 2006-06-12 业务转发路由的恢复方法及其系统
EP06742150A EP1936882B1 (en) 2005-09-27 2006-06-12 A method for recovering the service-forwarding route and the system thereof
US12/056,471 US7885183B2 (en) 2005-09-27 2008-03-27 Method for recovering service forward routing and system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2005101055549A CN100414942C (zh) 2005-09-27 2005-09-27 业务转发路由的恢复方法
CN200510105554.9 2005-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/056,471 Continuation US7885183B2 (en) 2005-09-27 2008-03-27 Method for recovering service forward routing and system thereof

Publications (1)

Publication Number Publication Date
WO2007036103A1 true WO2007036103A1 (fr) 2007-04-05

Family

ID=37444180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001279 WO2007036103A1 (fr) 2005-09-27 2006-06-12 Procede de reparation de trajet de reacheminement de service et systeme associe

Country Status (5)

Country Link
US (1) US7885183B2 (zh)
EP (1) EP1936882B1 (zh)
CN (2) CN100414942C (zh)
AT (1) ATE525833T1 (zh)
WO (1) WO2007036103A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816035B (zh) * 2005-02-02 2010-07-07 华为技术有限公司 基于数据通信网的主备传输路径实现方法
CN101286892B (zh) * 2007-04-12 2012-09-05 华为技术有限公司 进行业务恢复的装置和方法
CN102611566B (zh) 2011-12-16 2015-01-21 华为技术有限公司 一种恢复用户业务的方法和装置
CN103516612B (zh) * 2012-06-20 2016-08-03 北京华为数字技术有限公司 分布式路由器中生成路由表项的方法及分布式路由器
CN103841048B (zh) * 2012-11-23 2017-03-15 杭州华三通信技术有限公司 邻居连接建立方法和设备
CN104253752B (zh) * 2014-09-09 2017-09-29 烽火通信科技股份有限公司 在ldp协议中实现lsp平滑切换的方法及系统
CN105763348B (zh) * 2014-12-15 2020-02-14 中兴通讯股份有限公司 一种恢复光层业务的方法和系统
US9680694B1 (en) 2015-03-05 2017-06-13 Juniper Networks, Inc. Overload functionality in overlay networks using fault detection protocols
US9838316B2 (en) * 2015-03-05 2017-12-05 Juniper Networks, Inc. Overload functionality in overlay networks
CN104883300B (zh) * 2015-04-17 2018-10-26 新华三技术有限公司 一种报文传输的方法和设备
CN107276792B (zh) * 2017-05-27 2020-06-12 中国移动通信集团江苏有限公司 综合网关容灾方法、装置、设备及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542934B1 (en) * 1997-05-30 2003-04-01 International Business Machines Corporation Non-disruptively rerouting network communications from a secondary network path to a primary path
US20040004937A1 (en) 2002-07-05 2004-01-08 Nortel Networks Limited Method, device and software for establishing protection paths on demand and revertive protection switching in a communications network
JP2005039362A (ja) * 2003-07-16 2005-02-10 Japan Telecom Co Ltd パケット通信システムの経路制御方法及び経路制御システム
US6904018B2 (en) * 2000-11-22 2005-06-07 Korea Telecommunication Authority Method for high speed rerouting in multi protocol label switching network

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7436855B2 (en) * 2003-02-21 2008-10-14 Alcatel Lucent Prohibit or avoid route mechanism for path setup
EP1531566B1 (en) * 2003-11-12 2009-03-18 Alcatel Lucent Path protection for SDH/SONET networks
US7436782B2 (en) * 2004-03-25 2008-10-14 Alcatel Lucent Full mesh LSP and full mesh T-LDP provisioning between provider edge routers in support of Layer-2 and Layer-3 virtual private network services
US7512064B2 (en) * 2004-06-15 2009-03-31 Cisco Technology, Inc. Avoiding micro-loop upon failure of fast reroute protected links

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542934B1 (en) * 1997-05-30 2003-04-01 International Business Machines Corporation Non-disruptively rerouting network communications from a secondary network path to a primary path
US6904018B2 (en) * 2000-11-22 2005-06-07 Korea Telecommunication Authority Method for high speed rerouting in multi protocol label switching network
US20040004937A1 (en) 2002-07-05 2004-01-08 Nortel Networks Limited Method, device and software for establishing protection paths on demand and revertive protection switching in a communications network
JP2005039362A (ja) * 2003-07-16 2005-02-10 Japan Telecom Co Ltd パケット通信システムの経路制御方法及び経路制御システム

Also Published As

Publication number Publication date
CN100414942C (zh) 2008-08-27
EP1936882B1 (en) 2011-09-21
CN1870632A (zh) 2006-11-29
ATE525833T1 (de) 2011-10-15
US7885183B2 (en) 2011-02-08
CN101156394B (zh) 2010-07-21
US20080186844A1 (en) 2008-08-07
EP1936882A1 (en) 2008-06-25
EP1936882A4 (en) 2009-03-11
CN101156394A (zh) 2008-04-02

Similar Documents

Publication Publication Date Title
WO2007036103A1 (fr) Procede de reparation de trajet de reacheminement de service et systeme associe
US8565098B2 (en) Method, device, and system for traffic switching in multi-protocol label switching traffic engineering
JP4769869B2 (ja) プロトコルプロセスの移動(migration)に関する方法およびルータ
CN100527716C (zh) 主备网关设备状态切换后业务恢复的方法及网关设备
CN102484612B (zh) 用于广播网络的ldp igp同步的方法和设备
US8750096B2 (en) Method and apparatus for improving data integrity during a router recovery process
US20160036698A1 (en) Providing explicit, periodic, protocol and/or interface liveness information
US20100260041A1 (en) Link fault handling method and data forwarding apparatus
TW201134151A (en) RSVP-TE graceful restart under fast re-route conditions
JP2001007859A (ja) ルータ
WO2007115493A1 (fr) Procédé, dispositif et système pour réaliser la commutation dans le réseau à double anneau de réseau vpls
WO2008148296A1 (fr) Procédé de détection des anomalies, système de communication et routeur de commutation d'étiquettes
WO2012000234A1 (zh) 链路间快速切换的方法、装置和系统
JP2010518710A (ja) 多機能サービスを提供するメトロイーサネット(登録商標)ネットワークのネットワーキングにおける高信頼性処理の方法およびシステム
WO2008031334A1 (en) Route updating method, system and router
JP6056089B2 (ja) 二台のコンピュータによるホットスタンバイの方法、機器およびシステム
WO2012159489A1 (zh) 一种伪线双归网络的切换方法、系统和双归属运营商设备
WO2012109941A1 (zh) 一种trill网络的冗余备份方法及系统
WO2008141567A1 (en) Multi-protocol label switching network flow switch method and equipment
WO2009089726A1 (en) Method, system and apparatus for synchronizing the border gateway protocol routes
WO2015123962A1 (zh) 开放流交换机优雅重启处理方法、装置及开放流控制器
WO2014090083A1 (zh) 分布式弹性网络互连的业务承载方法及装置
WO2006053497A1 (fr) Procede de reroutage rapide
WO2012171378A1 (zh) 解决vpls接入l3故障切换导致断流的方法及路由器
CN101505277B (zh) 一种退出优雅重启的方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680011709.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006742150

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006742150

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载