+

WO2007032110A1 - A/d変換器及びa/d変換方法 - Google Patents

A/d変換器及びa/d変換方法 Download PDF

Info

Publication number
WO2007032110A1
WO2007032110A1 PCT/JP2006/305935 JP2006305935W WO2007032110A1 WO 2007032110 A1 WO2007032110 A1 WO 2007032110A1 JP 2006305935 W JP2006305935 W JP 2006305935W WO 2007032110 A1 WO2007032110 A1 WO 2007032110A1
Authority
WO
WIPO (PCT)
Prior art keywords
azd
initial value
sub
input signal
converter
Prior art date
Application number
PCT/JP2006/305935
Other languages
English (en)
French (fr)
Inventor
Toshiaki Ozeki
Daisuke Nomasaki
Koji Oka
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/631,844 priority Critical patent/US7649487B2/en
Priority to JP2006536968A priority patent/JP4314275B2/ja
Priority to CN2006800010079A priority patent/CN101040442B/zh
Publication of WO2007032110A1 publication Critical patent/WO2007032110A1/ja
Priority to US12/643,613 priority patent/US7884750B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/16Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
    • H03M1/164Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages
    • H03M1/167Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages all stages comprising simultaneous converters
    • H03M1/168Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages all stages comprising simultaneous converters and delivering the same number of bits

Definitions

  • the present invention relates to an AZD conversion and an AZD conversion method.
  • Pipelined AZD variants use multiple operational amplifiers, each of which plays a very important function. Their power consumption accounts for a large percentage of the total power consumption. For the operation of the operational amplifier constituting such a pipeline AZD transformation, an operational amplification operation of multiplication and addition / subtraction is required for the input signal.
  • an operational amplifier As a configuration example of an operational amplifier, a voltage comparator that compares a given analog input voltage and a reference voltage, a voltage generator that generates a reference voltage for use in addition and subtraction, an input signal An inverting amplifier that performs operational amplification is included.
  • FIG. 6 shows a conventional example of an operational amplifier that is a component of a pipeline AZD converter.
  • the operational amplifier 100 shown in FIG. 6 includes a sub A ZD converter 2a, a sub DZA converter 3a, an inverting amplifier la, a first capacitor Cll, a second Canon C12, and five switches SW1, SW2, SW3, SW4, SW5 ⁇ Composed of this.
  • the operation of the operational amplifier formed by these circuit configurations can be divided into a sampling period and an amplification period.
  • the sample period for sampling the input signal will be described.
  • switch SW1 is switched to the a side (input signal VIN input side), the two switches SW2 and SW5 are turned on, and the remaining two switches SW3 and SW4 are turned off. Therefore, the analog input signal VIN to which the input terminal force is also input is connected to the sub-AZD converter 2a and the first and second capacitors Cll and C12, and the output terminal of the inverting amplifier la is not connected.
  • the three switches SW1, SW2, and SW5 are turned off.
  • switch SW1 switches to the b side (sub DZA converter 3a side). Then, the two SW3 and SW4 forces are turned on, and the other two switches SW2 and SW5 are turned off. For this reason, the output terminal of the sub-DZA change and the first capacitor C11 are connected, and the output terminal of the inverting amplifier la and the second capacitor C12 are connected. At this time, the non-inverting input terminal of the inverting amplifier la becomes the ground and the virtual ground. At the end of the amplification period, the three switches SW1, SW3, SW4 are turned off. All these switch operations are performed synchronously.
  • the analog input signal VIN is applied to the first capacitor C11 and the second capacitor C12 to store charges.
  • the sub-AZD conversion converts the analog input signal VIN based on a predetermined reference voltage.
  • the sub DZ A converter 3a performs DZA conversion on the digital input signal AZD converted by the sub AZD converter 2a, and determines a reference voltage for performing addition / subtraction in the next amplification period.
  • the input signal voltage VIN can be amplified and added / subtracted at an arbitrary magnification by adjusting the capacitance ratio of the first and second capacitors Cll and C12.
  • An output transfer function can be obtained.
  • next operational amplifier is in the sample period and the output of the next-stage inverting amplifier la
  • the terminal is connected to the input terminal of the operational amplifier at the next stage. Therefore, the output terminal of the next-stage inverting amplifier la is connected to the next-stage capacitor C13 including the next-stage sampling capacitors (first and second capacitors C11 and C12) and the like during the amplification period.
  • the operational amplifier has a very large load capacity, and a high-performance inverting amplifier la is required.
  • Non-Patent Document 1 Andrew M.abo et al. "A 1.5- V, 10-bit, 14.3- MS / s CMOS Pipeline Analog to Digital Converter", IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO 5, MAY 1999.
  • AZD has become an important analog block for digital signal processing due to digitalization, high speed, wide bandwidth, downsizing of information communication equipment, and light weight in the information communication field. Therefore, high speed, wide band and low power consumption are demanded.
  • the operational amplifier at the next stage enters the sampling period and the amplification period in the opposite phase to the operational amplifier at the next stage. Since the amplification target value in the amplification period of the operational amplifier has no correlation with the voltage value of the next-stage capacitor in the previous clock phase, the amplification amplifier immediately before the output terminal of the operational amplifier is connected to the next-stage capacitor in the amplification period. The charge amount and potential of the next-stage capacitor are unknown. For this reason, the initial value of the output voltage of the operational amplifier at the moment of shifting to the amplification period cannot be uniquely determined, and the convergence operation to the amplification target value may be delayed.
  • the present invention has been made to solve the above-described problem, and an object of the present invention is to set an initial value of an output voltage of an operational amplifier at the time when operational amplification is started.
  • the purpose is to provide an AZD converter and an AZD conversion method that accelerates the convergence of the amplification to the target value, operates at high speed, and consumes power.
  • a predetermined bias voltage is applied to the next-stage capacitor in advance before the amplification period of the operational amplifier!
  • the AZD converter of the present invention includes an operational amplifier that performs AZD conversion on an analog input signal input to an input terminal, and then performs operational amplification to output from the output terminal, and start of an amplification operation of the operational amplifier
  • An initial value setting circuit for giving an initial value to the output voltage at the time, and the initial value setting circuit is connected to the output terminal of the operational amplifier at the start of the amplification operation of the operational amplifier.
  • a predetermined noise voltage is applied to the stage capacitor.
  • the operational amplifier includes first and second capacitors, a sub-AZD conversion that performs AZD conversion on an analog input signal input to the input terminal, and the sub-AZD.
  • the sub-DZA converter that generates a reference voltage by DZA-converting the digital input signal converted by the conversion, the reference voltage generated by the sub-DZA converter, and the first and second capacitors A connection between the inverting amplifier that amplifies the analog input signal based on the electric charge and outputs the amplified signal from the output terminal, and the first and second capacitors, the input terminal, the sub-DZA converter, and the inverting amplifier.
  • a switch group for switching between is
  • the initial value setting circuit has an initial value of an output voltage at the start of an amplification operation of the operational amplifier as the predetermined bias voltage. It is set to be close to the target value of the operational amplification corresponding to the signal.
  • the present invention provides the AZD converter, wherein the initial value setting circuit corresponds in advance to a sub-AZD converter that performs AZD conversion of the analog input signal, and a digital input signal that is converted by the sub-AZD converter. And a sub-DZA converter for generating the voltage and outputting the voltage as the predetermined bias voltage.
  • the present invention is directed to the AZD converter, wherein the initial value setting circuit is a power source pre-corresponding to a digital input signal converted by the sub-AZD conversion provided in the operational amplifier. And a sub DZA converter that generates a voltage and outputs the voltage as the predetermined bias voltage.
  • the AZD conversion method of the present invention is an AZD conversion method for performing an AZD conversion on an analog input signal input to an input terminal and then performing operational amplification with an operational amplifier to output an output terminal force.
  • AZD conversion and sampling in the sample period, and a predetermined bias voltage corresponding to the digital input signal obtained in the sample period is generated in the initial value setting period, and the predetermined bias voltage is generated in the output terminal of the operational amplifier.
  • the second stage capacitor to which the predetermined noise voltage is applied and the output terminal of the operational amplifier are connected to each other by V during an amplification period, and the analog input signal Is operated and amplified by the operational amplifier.
  • the present invention is characterized in that, in the AZD conversion method, the initial value setting period is set between the sample period and the amplification period.
  • the present invention is characterized in that in the AZD conversion method, the initial value setting period starts after the analog input signal is AZD converted.
  • the initial value setting period is set before the operational amplification period, and the initial value setting period is connected to the output terminal of the operational amplifier.
  • a predetermined bias voltage is applied to the next-stage capacitor.
  • a predetermined bias voltage applied to the next-stage capacitor that is, the initial value of the output voltage of the operational amplifier at the start of the operational amplification is in the vicinity of the target value for the operational amplification during the amplification period. Therefore, it is possible to converge the operational amplification operation at higher speed and realize an AZD converter with high speed and low power consumption. Therefore, if this AZD transformation is used as a pipeline AZD transformation, the entire pipeline AZD converter can be reduced in power consumption and speed.
  • the invention's effect [0027] As described above, according to the AZD converter and the AZD conversion method of the present invention, the convergence to the target value of the operational amplification in the operational amplification operation of the operational amplifier can be speeded up. Low power consumption AZD converter can be realized.
  • FIG. 1 is a block diagram showing a configuration of an AZD converter according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an operation timing chart of the AZD converter.
  • Figure 3 is a circuit diagram showing the internal configuration of the initial value setting circuit provided in the AZD converter.
  • FIG. 4 is a block diagram showing the configuration of the AZD converter of the second embodiment of the present invention.
  • FIG. 5 is an operation timing chart of the AZD converter of the third embodiment of the present invention. is there.
  • FIG. 6 is a block diagram showing a configuration of a conventional AZD transformation.
  • FIG. 1 is a block diagram showing the configuration of the AZD converter according to the first embodiment of the present invention.
  • la is an inverting amplifier used for operational amplification of the input signal VIN inputted to the input terminal 10a, and outputs a digital signal after the operational amplification from the output terminal 11a.
  • 2a is the sub-AZD conversion ⁇ that converts the input signal VIN input to the input terminal 10a to AZD conversion
  • 3a is DZA conversion of the digital input signal that has been AZD converted by the sub-AZD conversion, and is added / subtracted during the next amplification This is a sub-DZA converter that determines the reference voltage for the operation.
  • Cll and C12 are first and second capacitors
  • 12 is a switch group, and includes five switches SW1, SW2, SW3, SW4, and SW5. The switch group 12 switches connections between the first and second capacitors Cll and C12, the input terminal 10a, the sub DZA variable 3a, and the inverting amplifier la.
  • Reference numeral 4a is an initial value setting circuit characteristic of the present invention for setting an initial value of the output voltage of the operational amplifier 101 at the start of operational amplification when performing operational amplification.
  • the internal configuration will be described later.
  • Fig. 2 shows the timing chart of the sample period ⁇ 1, ⁇ 1 '( ⁇ 1 ⁇ 1'), the amplification period ⁇ 2, and the initial value setting period ⁇ r when the operational amplifier 101 in Fig. 1 operates. An example is shown.
  • sample periods ⁇ 1 and ⁇ 1 will be described.
  • switch SW1 switches to the a side (input terminal 10a side) and two switches SW 2 and SW5 force S are turned on, while switch SW3 is opened and switch SW4 Turns off.
  • the analog input signal VIN is applied to the input terminal 10a as the input signal of the operational amplifier 101, the analog input signal VIN is applied to the capacitors Cll and C12 and is Nore
  • the reason why the sump nore period ⁇ 1 ′ ends at an earlier timing than the sump nore period ⁇ 1 is to eliminate the variation in the calculation result due to charge injection when the switch SW2 is turned on and off. However, if there is no problem in accuracy, the sampling periods ⁇ 1 and ⁇ 1 ′ may end at the same time.
  • the initial value setting period ⁇ r uses a non-overlap period existing between the sample period and the amplification period in the conventional operational amplification operation. By using this non-overlap period, the initial value setting period ⁇ ⁇ : can be set easily without the need to generate a new clock phase.
  • the initial value setting period ⁇ ⁇ : is set, for example, when the AZD conversion of the sub-AZD converter 2a is completed in the middle of the sampling period, and the initial value setting period ⁇ ⁇ : is set in synchronization with the end of this AZD conversion. It is also possible to set.
  • switch SW3 is switched to the b side (initial value setting circuit 5a side), and the output terminal side of initial value setting circuit 4a is connected to next-stage capacitor C13.
  • a predetermined bias voltage corresponding to the analog input signal VIN is applied from the initial value setting circuit 4a to the next-stage capacitor C13 as described later.
  • the next-stage capacitor C13 has a similar operational amplifier and sub-AZD conversion after the predetermined operational amplifier. It is the sum.
  • the amplification period ⁇ 2 will be described.
  • the switch SW1 is switched to the b side (sub DZA change 3a side), the switch SW3 is opened, the switch SW4 is turned on, and the switches SW2 and SW5 are turned off. Therefore, the output side of the sub DZA converter 3a is connected to the capacitor C11, and the capacitor C12 is connected to the output of the inverting amplifier la. (Ie, output terminal 11a). Since the charges stored in the capacitors Cll and C12 in the sample periods ⁇ 1 and ⁇ 1 ′ are stored as they are, the output voltage of the output terminal 1 la of the operational amplifier 101 is calculated by the following equation: The target value Vout converges to the target.
  • Vout (C12 + C1 D / C12 XVIN
  • VIN is an analog input signal voltage
  • VDAC is an output voltage of the sub DZA converter 3a.
  • the initial value of the output voltage is preliminarily applied to the first and second capacitors Cll and C12 and the next-stage capacitor C 13. Is determined by the charge stored in That is, the initial value of the convergence operation in the amplification period ⁇ 2 can be made variable by applying an arbitrary noise voltage to the next stage capacitor C 13 in the initial value setting period ⁇ ⁇ :.
  • the initial value setting bias voltage set by the initial value setting circuit 4a is the initial value of the output voltage of the calculation amplifier 101 during the amplification period ⁇ 2. It is set to be close to the amplification target value. Details thereof will be described later.
  • the output voltage of the operational amplifier needs to converge from 0 V, for example, to the maximum target voltage value for operational amplification at the maximum amplitude, but in this embodiment, the amplification period is ⁇ 2.
  • the initial value of the output voltage of the operational amplifier 101 is set, and the initial value of the convergence operation to the target value in the amplification period ⁇ 2 is set in the vicinity of the target value for the operational amplification 101.
  • the voltage does not converge from 0V to the target value for operation amplification even at the maximum amplitude, but converges from the vicinity of the target value for operation amplification. Therefore, the operational amplification operation
  • the voltage width to converge can be reduced, the convergence of the output voltage of the operational amplifier 101 can be accelerated.
  • the operational amplifier at the next stage ends the amplification period, but the operational amplification result at the operational amplifier at the next stage is calculated with respect to the previous analog input signal VIN. Since this is performed, there is no relationship with the previous calculation amplification target value. Therefore, the amount of charge during the previous amplification period of the next-stage capacitor C13 is uncorrelated with the amount of charge during the amplification phase of the next phase, and the momentary operational amplifier 101 connected to each capacitor Cll, C12 of the operational amplifier 101 The initial value of the output voltage also depends on the previous analog input signal VIN.
  • the initial value of the output voltage of the operational amplification operation of the operational amplifier 101 is determined to be opposite to the target value of the operational amplification in the worst case, and as a result, the voltage amplitude required for convergence is determined.
  • the convergence operation is delayed, but by setting the initial value of the output voltage of the operational amplification operation of the operational amplifier 101 as in this embodiment, the convergence operation can be accelerated. It is.
  • FIG. 3 shows a configuration example of the initial value setting circuit 4a.
  • an initial value setting circuit 4a includes a flash type second sub-AZD converter 3d having a plurality of voltage comparators ld, 2d, and a plurality of resistors rl, r2, r3, and the like. This is composed of a second sub DZA converter 4d that DZA converts the output signals b0, bl --- of the sub AZD converter 3d into a predetermined bias voltage Vb for initial value setting.
  • the voltage comparators ld, 2d... are analog voltages divided by a plurality of resistors rl, r 2, r3... Between two predetermined reference voltages vl, ⁇ , and analog By comparing the input voltage VIN with the voltage, AZD conversion of the analog input voltage VIN is performed to determine the input signal level. Further, the sub DZA converter 4d receives a combination of the output voltages bO, bl... Of the voltage comparators ld, 2d... And a predetermined bias for setting an initial value corresponding to each of the combinations. Voltages ref0 to ref7 are input, and a predetermined bias voltage refO to set one initial value corresponding to the combination of output voltages bO, b1 ...
  • the predetermined bias voltages ref0 to ref7 for setting the initial value are calculated according to the analog input signal voltage VIN when the corresponding analog input signal voltage VIN is input.
  • a voltage value (VtgtO / ⁇ V) to (Vtgt7 / ⁇ V) obtained by adding or subtracting a predetermined minute voltage value ⁇ V to the amplification target value Vtgt is set.
  • the sub-A / D conversion 3d has seven voltage comparators Id ... and eight resistors rl ... It consists of.
  • a predetermined bias voltage value refO... Is also required for 3 bits so as to correspond to them.
  • multiple analog input voltages VIN correspond to one operational amplification result value, so the predetermined bias voltage value for initial value setting is also 3 The number of bits is not necessary.
  • the sub AZD converter 3d determines the voltage level of the analog input signal VIN, and then the voltage level is converted by the sub DZA converter 4d.
  • the convergence of the operational amplification to the target value can be speeded up, and the speed of the entire AZD system can be increased.
  • the initial value setting circuit 4a includes the sub-AZD converter 3d shown in FIG. 3, but in the present embodiment, the sub-AZD converter 3d is connected to an operational amplifier. Sub-AZD converter 2a is used instead.
  • FIG. 4 is a block diagram showing a configuration of the AZD modification according to the second embodiment of the present invention.
  • reference numeral 5 a denotes an initial value setting circuit for setting an initial value of the output voltage at the time of operational amplification in the operational amplifier 102.
  • This initial value setting circuit 5a determines the voltage level of the analog input signal VIN by AZD converting the analog input signal VIN.
  • Sub AZD converter 2a digital input signal is received. Therefore, the initial value setting circuit 5a differs from the initial value setting circuit 4a shown in FIG. 3 in that it does not have the sub A / D converter 3a, and receives the digital input signal from the sub AZD converter 2a.
  • the sub DZA converter 4d (see Fig. 3) performs DZA conversion to a predetermined bias voltage Vb.
  • FIG. 4 the same components as in FIG.
  • the present embodiment does not include the sub-AZD converter 3d as compared with the first embodiment, and thus the number of sub-AZD changes can be reduced.
  • the accuracy and judgment voltage can be arbitrarily selected between the sub-AZD converter 2a for operational amplification and the sub-AZD change in the initial value setting circuit 4a.
  • the initial value setting accuracy is also determined simultaneously by the AZD conversion accuracy of each operational amplification stage, that is, the resolution of the sub-AZD converter 2a.
  • the sub AZD converter 2a determines the voltage level of the analog input signal VIN, and then the sub DZA converter 4d of the initial value setting circuit 5a performs the operational amplification operation. DZA conversion to a predetermined bias voltage Vb in the vicinity of the target value, and this predetermined bias voltage Vb is given to the next stage capacitor C13 to set the initial value of the output voltage in the operational amplification operation of the operational amplifier 102.
  • the convergence to the target value in the operational amplification operation can be speeded up, and the speed of the entire AZD system can be increased.
  • the initial value setting period ⁇ ⁇ : is set between the sampling periods ⁇ 1, ⁇ 1 ′ and the amplification period ⁇ 2, but in the present embodiment, the sub-AZD converter The initial value setting period is set to start when the voltage level judgment in 3d or 2a is completed.
  • ⁇ 1 and ⁇ 1 ′ are sample periods, and ⁇ 2 is an amplification period. Show.
  • the time point tl indicates the time when the AZD conversion of the sub-AZD conversion ends.
  • the target value for the operational amplification of the operational amplifier 102 has been determined, and after that, the initial value setting period ⁇ ⁇ is entered. Is possible.
  • the initial value setting period ⁇ ⁇ : is entered. Thereafter, the sample periods ⁇ 1 and ⁇ 1 ′ are completed, and the process proceeds to the amplification period ⁇ 2. At this time, the initial value setting period ⁇ r may be continued.
  • the AZD conversion result of the sub-AZD converter 2a is DZA converted to a predetermined bias voltage Vb.
  • the initial value setting period ⁇ r ends before the start of the amplification period ⁇ 2, but the initial value setting period ⁇ ⁇ : is temporarily continued after the transition to the amplification period ⁇ 2 to set the initial value. It is also possible to maintain a state in which the predetermined bias voltage Vb is applied to the output terminal 11a of the inverting amplifier la and the next-stage capacitor C13.
  • the present invention can speed up the convergence of the operational amplification to the target value in the operational amplification operation of the operational amplifier provided in the AZD converter, and thus this AZD converter is provided in each stage. It can be used for pipeline AZD converter applications, such as pipeline AZD converter applications such as TV and video image signal processing and wireless LAN communication signal processing. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

 入力信号を演算増幅して出力する演算増幅器101を備えたA/D変換器において、演算増幅器101では、反転増幅器1a、サブA/D変換器2a、サブD/A変換器3a、キャパシタC11、C12に加えて、初期値設定回路4aが設けられる。この初期値設定回路4aは、反転増幅器1aの演算増幅の開始時に、前記反転増幅器1aの出力電圧の初期値が、その演算増幅の目標値近傍の所定電圧値になるように、その目標値近傍の所定電圧値に等しい所定バイアス電圧を、前記反転増幅器1aの出力側に接続される次段キャパシタC13に印加する。このような演算増幅の目標値への収束が高速化している演算増幅器101がパイプライン型A/D変換器の各段に使用される。

Description

明 細 書
AZD変換器及び AZD変換方法
技術分野
[0001] 本発明は、 AZD変翻及び AZD変換方法に関する。
背景技術
[0002] パイプライン方式の AZD変 では、複数の演算増幅器が使用されており、その 各々の演算増幅器は非常に重要な機能を担う。また、それらの消費電力は全体の消 費電力の多くの割合を占める。このようなパイプライン AZD変 を構成する演算 増幅器の動作にお!、ては、入力信号に対して掛け算と加減算との演算増幅動作が 要求される。
[0003] 演算増幅器の一構成例としては、与えられたアナログ入力電圧と基準電圧とを比 較する電圧比較器や、加減算で使用するための基準電圧を生成する電圧生成器や 、入力信号を演算増幅する反転増幅器などが含まれる。
[0004] 図 6は、パイプライン AZD変換器の構成要素である演算増幅器の従来例を示す。
この従来例は、非特許文献 1に記載される。図 6に示した演算増幅器 100は、サブ A ZD変換器 2a、サブ DZA変換器 3a、反転増幅器 la、第 1のキャパシタ Cll、第 2の キヤノシタ C 12、及び 5つのスィッチ SW1、 SW2、 SW3、 SW4、 SW5【こより構成さ れる。
[0005] これらの回路構成で成り立つ演算増幅器の動作は、サンプル期間と増幅期間との 2つに分けることができる。先ず、始めに入力信号をサンプリングするサンプル期間に ついて説明する。サンプル期間では、スィッチ SW1が a側(入力信号 VINの入力側) に切り換わると共に、 2個のスィッチ SW2、 SW5力オンになり、残りの 2個のスィッチ S W3、 SW4はオフとなる。このため、入力端子力も入力されたアナログ入力信号 VIN は、サブ AZD変換器 2aと第 1及び第 2のキャパシタ Cll、 C12とに接続され、反転 増幅器 laの出力端子は接続されない。また、サンプル期間の終了で、前記 3個のス イッチ SW1、 SW2、 SW5はオフになる。
[0006] その後の増幅期間では、スィッチ SW1が b側(サブ DZA変換器 3a側)に切り換わ ると共〖こ、 2個の SW3、 SW4力オンとなり、他の 2個のスィッチ SW2、 SW5はオフと なる。このため、サブ DZA変 の出力端子と第 1のキャパシタ C11とが接続さ れ、また反転増幅器 laの出力端子と第 2のキャパシタ C12とが接続される。この際、 反転増幅器 laの非反転入力端子はグランドと仮想接地になる。増幅期間の終了で、 前記 3個のスィッチ SW1、 SW3、 SW4はオフになる。これらのスィッチ動作は全て同 期して行われる。
[0007] つまり、サンプル期間では、アナログ入力信号 VINは、第 1のキャパシタ C11と第 2 のキャパシタ C12とに印加されて電荷が蓄えられる。この際、サブ AZD変 は 、アナログ入力信号 VINを所定の参照電圧に基づいて AZD変換する。続いて、サ ブ DZ A変換器 3aは、前記サブ AZD変換器 2aによって AZD変換されたデジタル 入力信号を DZA変換して、次の増幅期間で加減算を行うための基準電圧を決定す る。
[0008] その後の増幅期間では、サブ DZA変換器 3aの出力端子と第 1のキャパシタ C11 とが接続され、第 2のキャパシタ C12と反転増幅器 laの出力端子とが接続される。こ の時、反転増幅器 laの非反転入力端子は仮想接地であるので、第 1のキャパシタ C 11には、サブ DZA変 m^3cの出力である基準電圧に相当する電荷が蓄えられる。 その結果、第 2のキャパシタ C12には、第 1のキャパシタ C 11にサンプル期間で保存 された電荷力 第 1のキャパシタ C11に存在する電荷量を引いた残りの電荷が移動 する。
[0009] これらの一連の動作において、第 1及び第 2のキャパシタ Cll、 C12の容量比を調 節することによって、入力信号電圧 VINを任意の倍率で増幅及び加減算することが でき、所望の入出力伝達関数を得ることができる。
[0010] 演算増幅器 100を複数個接続したパイプライン AZD変翻では、 1つの演算増幅 器 100が増幅期間にある際、次段の演算増幅器はサンプル期間にあり、次段の反転 増幅器 laの出力端子は次段の演算増幅器の入力端子と接続される。このため、次 段の反転増幅器 laの出力端子には、増幅期間において次段のサンプリングキャパ シタ (第 1及び第 2のキャパシタ C11、 C12)等を含む次段キャパシタ C13に接続され る。その次段キャパシタ C13が接続された状態で、所定の演算目標値にまで収束す る必要があるため、演算増幅器は負荷容量が非常に大きくなり、高性能な反転増幅 器 laが必要となる。
[0011] 以上の理由によって、高分解能及び高速動作のパイプライン AZD変換器を実現 するためには、前記演算増幅器の高精度化、高利得化、及び高速ィ匕が必要となる。 非特許文献 1 : Andrew M.abo他著 "A 1.5- V, 10-bit, 14.3- MS/s CMOS Pipeline An alog- to- Digital Converter", IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 5, MAY 1999.
発明の開示
発明が解決しょうとする課題
[0012] 近年、情報通信分野における信号処理のディジタル化、高速化、広帯域化、情報 通信機器の小型化、及び軽量ィ匕に伴い、ディジタル信号処理の重要なアナログプロ ックとなる AZD変 においては、高速化、広帯域化及び低消費電力化が要望さ れている。
[0013] し力しながら、前記従来の AZD変 では、演算増幅器 100が増幅期間に入つ た際に、サンプリング用キャパシタ等を含む次段キャパシタ C13を負荷として増幅目 標値の電圧まで高精度で収束するためには、非常に高性能な反転増幅器が必要と なり、消費電力も大きくなる。
[0014] また、次段の演算増幅器は、次段の演算増幅器とは逆の相でサンプル期間及び増 幅期間に入る。演算増幅器の増幅期間における増幅目標値は、前クロック相での次 段キャパシタの電圧値とは相関が無 、ため、増幅期間に入って演算増幅器の出力 端子が次段キャパシタに接続される直前の次段キャパシタの電荷量や電位は判らな い。このため、増幅期間に移行した瞬間の演算増幅器の出力電圧初期値は一意に 決定することができず、増幅目標値への収束動作が遅くなる場合がある。
[0015] 本発明は、前記の問題を解決するためになされたものであり、その目的は、演算増 幅が開始される際の演算増幅器の出力電圧の初期値を設定し、これにより、演算増 幅の目標値への収束を高速化して、動作が高速で消費電力な AZD変換器及び A ZD変換方法を提供することにある。
課題を解決するための手段 [0016] 前記目的を達成するために、本発明では、演算増幅器の増幅期間の前に予め次 段キャパシタに所定バイアス電圧を印力!]しておき、演算増幅器が増幅期間に移行し た際の初期値を設定することにより、演算増幅動作時の演算目標値への収束時間を 短縮して、 AZD変換器の高速動作を行うようにする。
[0017] 具体的に、本発明の AZD変換器は、入力端子に入力されたアナログ入力信号を AZD変換した後、演算増幅して出力端子から出力する演算増幅器と、演算増幅器 の増幅動作の開始時での出力電圧に初期値を与える初期値設定回路とを備え、前 記初期値設定回路は、演算増幅器の増幅動作の開始時に、前記演算増幅器の出 力端子に接続されることになる次段キャパシタに対して、所定のノィァス電圧を与え ることを特徴とする。
[0018] 本発明は、前記 AZD変換器において、前記演算増幅器は、第 1及び第 2のキャパ シタと、前記入力端子に入力されたアナログ入力信号を AZD変換するサブ AZD変 と、前記サブ AZD変 で変換されたデジタル入力信号を DZA変換して基 準電圧を生成するサブ DZA変換器と、前記サブ DZA変換器により生成された基 準電圧並びに前記第 1及び第 2のキャパシタに保持された電荷に基づいて、前記ァ ナログ入力信号を演算増幅して前記出力端子から出力する反転増幅器と、前記第 1 及び第 2のキャパシタ、前記入力端子、前記サブ DZA変換器及び前記反転増幅器 間の接続を切り換えるスィッチ群とを備えたことを特徴とする。
[0019] 本発明は、前記 AZD変換器において、前記初期値設定回路は、前記所定のバイ ァス電圧として、前記演算増幅器の増幅動作の開始時での出力電圧の初期値が、 前記アナログ入力信号に対応する演算増幅の目標値の近傍になるように設定される ことを特徴とする。
[0020] 本発明は、前記 AZD変換器において、前記初期値設定回路は、前記アナログ入 力信号を AZD変換するサブ AZD変換器と、前記サブ AZD変換器で変換された デジタル入力信号に予め対応させた電圧を生成し、この電圧を前記所定のバイアス 電圧として出力するサブ DZA変 とを備えることを特徴とする。
[0021] 本発明は、前記 AZD変換器において、前記初期値設定回路は、前記演算増幅 器に備えるサブ AZD変 で変換されたデジタル入力信号に予め対応させた電 圧を生成し、この電圧を前記所定のバイアス電圧として出力するサブ DZA変換器を 備えることを特徴とする。
[0022] 本発明の AZD変換方法は、入力端子に入力されたアナログ入力信号を AZD変 換した後、演算増幅器で演算増幅して出力端子力 出力する AZD変換方法であつ て、前記アナログ入力信号をサンプル期間において AZD変換すると共にサンプル し、前記サンプル期間で得たデジタル入力信号に対応する所定のバイアス電圧を初 期値設定期間において生成し、この所定のバイアス電圧を前記演算増幅器の前記 出力端子に接続されることになる次段キャパシタに印加し、前記所定のノィァス電圧 が印加された次段キャパシタと前記演算増幅器の前記出力端子とを増幅期間にお Vヽて接続し、前記アナログ入力信号を前記演算増幅器で演算増幅することを特徴と する。
[0023] 本発明は、前記 AZD変換方法において、前記初期値設定期間は、前記サンプル 期間と前記増幅期間との間に設定されることを特徴とする。
[0024] 本発明は、前記 AZD変換方法において、前記初期値設定期間は、前記アナログ 入力信号が AZD変換された後に開始されることを特徴とする。
[0025] 以上により、本発明の AZD変換器及び AZD変換方法では、演算増幅期間の前 に初期値設定期間が設定され、この初期値設定期間において、演算増幅器の出力 端子に接続されることになる次段キャパシタに所定のバイアス電圧が与えられる。そ の結果、増幅期間に移行した際に、演算増幅器の演算増幅動作は、前記所定のバ ィァス電圧である初期値力 演算増幅の目標値に向力つて収束するので、前記所定 のバイアス電圧を適宜設定すれば、演算増幅の目標値への収束が高速化される。
[0026] 特に、本発明では、次段キャパシタに与えられる所定のバイアス電圧、すなわち、 演算増幅開始時での演算増幅器の出力電圧の初期値が、その増幅期間での演算 増幅の目標値の近傍に設定されているので、より一層高速に演算増幅動作の収束 を行うことができて、高速及び低消費電力な AZD変換器が実現できる。従って、この AZD変 をパイプライン AZD変^^の格段に使用すれば、ノ ィプライン AZD 変換器全体の低消費電力化及び高速ィ匕が可能である。
発明の効果 [0027] 以上説明したように、本発明の AZD変換器及び AZD変換方法によれば、演算増 幅器の演算増幅動作での演算増幅の目標値への収束を高速化できるので、高速及 び低消費電力な AZD変換器を実現できる。
図面の簡単な説明
[0028] [図 1]図 1は本発明の第 1の実施形態の AZD変換器の構成を示すブロック図である
[図 2]図 2は同 AZD変換器の動作タイミングチャートを示す図である。
圆 3]図 3は同 AZD変換器に備える初期値設定回路の内部構成を示す回路図であ る。
圆 4]図 4は本発明の第 2の実施形態の AZD変換器の構成を示すブロック図である 圆 5]図 5は本発明の第 3の実施形態の AZD変換器の動作タイミングチヤ 図である。
[図 6]図 6は従来の AZD変翻の構成を示すブロック図である。
符号の説明
[0029] 101、 102 演算増幅器
la 反転増幅器
2a サブ AZD変
3a サブ D/A変
4a、 5a 初期値設定回路
Cll 第 1のキャパシタ
C12 第 2のキャパシタ
C13 次段キャパシタ
SW1〜SW5 スィッチ
ld、 2d 電圧比較器
3d 第 2のサブ AZD変換器
4d 第 2のサブ DZA変
rl〜r3 抵抗 10a 入力端子
11a 出力端子
12 スィッチ群
発明を実施するための最良の形態
[0030] 以下に、本発明の実施形態の AZD変換器を図面に基づいてを説明する。
[0031] (第 1の実施形態)
図 1は、本発明の第 1の実施形態に係る AZD変換器の構成を示すブロック図であ る。
[0032] 同図の演算増幅器 101において、 laは入力端子 10aに入力された入力信号 VIN を演算増幅する際に用いる反転増幅器であって、出力端子 11aから演算増幅後の デジタル信号を出力する。 2aは前記入力端子 10aに入力された入力信号 VINを A ZD変換するサブ AZD変^^、 3aは前記サブ AZD変 によって AZD変換 されたデジタル入力信号を DZA変換して、次の増幅期間で加減算を行うための基 準電圧を決定するサブ DZA変換器である。また、 Cll、 C12は第 1及び第 2のキヤ パシタ、 12はスィッチ群であって 5個のスィッチ SW1、 SW2、 SW3、 SW4、 SW5を 備えている。このスィッチ群 12は、前記第 1及び第 2のキャパシタ Cll、 C12、入力端 子 10a、サブ DZA変 3a及び反転増幅器 la間の接続を切り換えるものである。
[0033] そして、 4aは本発明に特徴的な初期値設定回路であって、演算増幅する際の演算 増幅開始時の演算増幅器 101の出力電圧の初期値を設定するためのものであり、そ の内部構成は後述する。
[0034] 次に、図 1の演算増幅器 101の回路動作について説明する。図 2は、図 1の演算増 幅器 101が動作する際のサンプル期間 φ 1、 φ 1 ' ( φ 1≥φ 1 ' )、増幅期間 φ 2、及 び初期値設定期間 φ rのタイミングチャートの一例を示している。
[0035] 先ず、サンプル期間 φ 1及び φ 1,につ 、て説明する。サンプル期間 φ 1及び φ 1, では、スィッチ SW1が a側 (入力端子 10a側)に切り換わると共に、 2個のスィッチ SW 2、 SW5力 Sオンになり、一方、スィッチ SW3は開放され、スィッチ SW4はオフになる。 アナログ入力信号 VINが演算増幅器 101の入力信号として入力端子 10aに与えら れると、このアナログ入力信号 VINが各キャパシタ Cll、 C12に印加されて、サンプ ノレされる。
[0036] 続!、て、サンプル期間 φ 1,が終了し、スィッチ SW2がオフになった後、サンプル期 間 φ 1が終了し、スィッチ SW1が開放され、スィッチ SW5がオフにされる。これにより 、各キャパシタ Cll、 C12には、アナログ入力信号 VINとグランド電位との間の電位 差による電荷が保存される。
[0037] 尚、図 2のタイミングチャートにおいて、サンプノレ期間 φ 1 'がサンプノレ期間 φ 1より 早いタイミングで終了する理由は、スィッチ SW2がオン力 オフになる際のチャージ インジェクションによる演算結果のバラツキを取り除くためであるが、精度上問題がな ければ、サンプル期間 φ 1、 φ 1 'は同時に終了しても構わない。
[0038] 続いて、初期値設定期間 φ rについて説明する。図 2のタイミングチャートに示した ように、この初期値設定期間 φ ι:は、従来の演算増幅動作中におけるサンプル期間と 増幅期間との間に存在するノンオーバーラップ期間を利用したものである。このノン オーバーラップ期間を用いることにより、新たにクロック相を生成する必要がなぐ容 易に初期値設定期間 φ ι:の設定が可能である。尚、初期値設定期間 φ ι:の設定は、 例えばサンプル期間途中でサブ AZD変換器 2aの AZD変換が終了する場合など では、この AZD変換の終了に同期して初期値設定期間 φ ι:を設定することも可能で ある。
[0039] この初期値設定期間 φ rでは、スィッチ SW3が b側 (初期値設定回路 5a側)に切り 換わって、初期値設定回路 4aの出力端子側が次段キャパシタ C13に接続される。こ れにより、この初期値設定期間 φ ι:では、後述するようにアナログ入力信号 VINに対 応した所定のバイアス電圧が初期値設定回路 4aから次段キャパシタ C 13に印加され る。前記次段キャパシタ C13は、パイプライン AZD変換方式においては、所定の演 算増幅器の後段にも同様の演算増幅器やサブ AZD変翻が存在するので、それ らのサンプリング用キャパシタ等を含めたキャパシタの合計である。
[0040] 続いて、増幅期間 φ 2について説明する。増幅期間 φ 2では、スィッチ SW1は b側( サブ DZA変 3a側)に切り換わると共に、スィッチ SW3が開放され、スィッチ SW 4がオンにされ、各スィッチ SW2、 SW5はオフにされる。従って、キャパシタ C11には サブ DZA変換器 3aの出力側が接続され、キャパシタ C12は反転増幅器 laの出力 側(即ち、出力端子 11a)に接続される。前記サンプル期間 φ 1及び φ 1 'で各キャパ シタ Cll、 C12に保存された電荷はそのまま保存されているので、演算増幅器 101 の出力端子 1 laの出力電圧は、以下の式で表される演算目標値 Voutを目標に収束 する。
[0041] Vout= (C12 + C1 D /C12 XVIN
-C11/C12 XVDAC
前記式において、 VINはアナログ入力信号電圧であり、 VDACはサブ DZA変換 器 3aの出力電圧を表す。
[0042] この際、増幅期間 φ 2での演算増幅器 101の出力電圧の収束動作において、その 出力電圧の初期値は、第 1及び第 2のキャパシタ Cll、 C12、及び次段キャパシタ C 13に予めに保存されている電荷で決定される。つまり、前記初期値設定期間 φ ι:で 次段キャパシタ C 13に任意のノィァス電圧を印加しておくことによって、増幅期間 φ 2における収束動作の初期値を可変にすることが可能である。
[0043] ノ ィプライン AZD変^^の演算増幅器 101では、アナログ入力信号電圧 VINに 対する出力電圧の伝達関数が唯一存在する。このため、アナログ入力信号 VINの電 圧レベルがサブ AZD変換器 2aで判定された場合には、この時点で演算増幅の目 標値が確定する。通常、サンプル期間 φ 1及び φ 1 'が終了する際には、サブ AZD 変 2aの AZD変換とサブ DZA変 3aの DZA変換は終了して 、て、次相の 増幅期間 φ 2における演算増幅の目標値が確定していることから、初期値設定回路 4aで設定される初期値設定用の所定のバイアス電圧は、増幅期間 φ 2での演算増 幅器 101の出力電圧の初期値がこの演算増幅の目標値の近傍になるように設定さ れる。その詳細は後述する。
[0044] 既述した従来例では、演算増幅器の出力電圧は、最大振幅時では例えば 0Vから 演算増幅の最大目標電圧値まで収束する必要があるが、本実施形態では、増幅期 間 φ 2での演算増幅器 101の出力電圧の初期値設定を行って、予め増幅期間 φ 2 での目標値への収束動作の初期値を演算増幅目標値近傍に設定しておくので、演 算増幅器 101の出力電圧は、最大振幅時でも 0Vから演算増幅目標値にまで収束動 作を行わず、演算増幅目標値近傍から収束動作を行う。従って、演算増幅動作にお いて、収束する電圧幅を削減できるので、演算増幅器 101の出力電圧の収束を高速 ィ匕することがでさる。
[0045] 増幅期間 φ 2に移行する際、次段の演算増幅器はその増幅期間を終了するが、次 段の演算増幅器での演算増幅結果は一つ前のアナログ入力信号 VINに対して演算 を行っているものであるので、前段の演算増幅目標値とは関係が無い。従って、次段 キャパシタ C13の前増幅期間時の電荷量は次相の増幅期間の電荷量とは無相関で あって、演算増幅器 101の各キャパシタ Cll、 C12と接続した瞬間の演算増幅器 10 1の出力電圧の初期値は、一つ前のアナログ入力信号 VINにも依存することになる。 演算増幅器 101の演算増幅動作の出力電圧の初期値は、従来では、最悪の場合に は演算増幅の目標値とは正負逆方向に決定され、それに起因して、収束するのに要 する電圧振幅が増大して、収束動作が遅延していたが、本実施形態のように演算増 幅器 101の演算増幅動作の出力電圧の初期値設定を行うことにより、収束動作を速 めることが可能である。
[0046] 次に、初期値設定回路 4aの構成例を図 3に示す。同図において、初期値設定回路 4aは、複数個の電圧比較器 ld、 2d…と、複数の抵抗 rl、 r2、 r3…とを持つフラッシ ュ型の第 2のサブ AZD変換器 3dと、このサブ AZD変換器 3dの出力信号 b0、 bl--- を初期値設定用の所定のバイアス電圧 Vbに DZA変換する第 2のサブ DZA変換 器 4dとで構成されている。
[0047] 前記電圧比較器 ld、 2d···は、所定の 2つの参照電圧 vl、 νθ間を複数の抵抗 rl、 r 2、 r3…で分割した各電圧 vrl、 ντ2···と、アナログ入力電圧 VINとを電圧比較するこ とにより、アナログ入力電圧 VINの AZD変換を行って、入力信号レベルを判定する 。更に、サブ DZA変換器 4dは、前記電圧比較器 ld、 2d···の出力電圧 bO、 bl…の 組合せを受けると共に、その組合せの各々に対応させた初期値設定用の所定のバイ ァス電圧 ref0〜ref7が入力されていて、前記電圧比較器 ld、 2d···から受けた出力 電圧 bO、 b 1 · ··の組合せに対応する 1つの初期値設定用の所定のバイアス電圧 refO 〜ref7を選択し、この選択した初期値設定用のバイアス電圧を生成して出力する。 前記初期値設定用の所定のバイアス電圧 ref0〜ref7は、各々、対応するアナログ入 力信号電圧 VINが入力されたとき、そのアナログ入力信号電圧 VINに対応する演算 増幅の目標値 Vtgtに所定の微少電圧値 Δ Vを加算又は減算した電圧値 (VtgtO士 Δ V)〜 (Vtgt7士 Δ V)に設定される。
[0048] ここで、例えば、初期値設定を 3ビットのサブ AZD変換器 3dで行うとすると、サブ A /D変翻 3dは、電圧比較器 Id…を 7個と、抵抗 rl…を 8個とで構成される。また、 それらに対応するように所定のバイアス電圧値 refO…も 3ビット数分必要となる。通常 の 1. 5ビット Zステージ方式のパイプライン AZD変換方式では、 1つの演算増幅結 果値に対して複数のアナログ入力電圧 VINが対応するので、初期値設定用の所定 のバイアス電圧値も 3ビット数は必要がな 、。
[0049] 初期値設定回路 4aのサブ AZD変翻 3dとサブ DZA変翻 4dとの変換精度を 上げていくことにより、設定した初期値と演算増幅時の演算増幅目標値との誤差が少 なくなっていくので、演算増幅動作での演算目標値への収束がより高速化される。
[0050] 以上の構成により、本実施形態では、初期値設定回路 4aにおいて、サブ AZD変 換器 3dでアナログ入力信号 VINの電圧レベルを判定し、その後、この電圧レベルを サブ DZA変換器 4dで演算増幅の目標値近傍の所定のバイアス電圧 Vbに DZA変 換し、この所定のバイアス電圧 Vbを次段キャパシタ C 13に与えて、演算増幅器 101 の演算増幅動作における出力電圧の初期値を設定したので、演算増幅の目標値へ の収束を高速ィ匕することができ、 AZD変 全体のシステムの高速ィ匕を図ることが できる。
[0051] (第 2の実施形態)
次に、本発明の第 2の実施形態の AZD変換器を説明する。
[0052] 前記第 1の実施形態では、初期値設定回路 4aには、図 3に示したサブ AZD変換 器 3dを含んでいたが、本実施形態では、このサブ AZD変換器 3dを演算増幅器の サブ AZD変換器 2aで代用したものである。
[0053] 図 4は本発明の第 2の実施形態に係る AZD変^^の構成を示すブロック図である
[0054] 同図の演算増幅器 102において、 5aは演算増幅器 102での演算増幅の際に出力 電圧の初期値を設定する初期値設定回路である。この初期値設定回路 5aには、ァ ナログ入力信号 VINを AZD変換してアナログ入力信号 VINの電圧レベルを判定す るサブ AZD変換器 2aのデジタル入力信号を受ける。従って、この初期値設定回路 5aは、図 3に示した初期値設定回路 4aとは、サブ A/D変換器 3aを有しない点で異 なり、サブ AZD変換器 2aからのデジタル入力信号を受けて、サブ DZA変換器 4d( 図 3参照)で所定のバイアス電圧 Vbに DZA変換する。尚、図 4において、図 1と同じ 構成部分について同一符号を付してその説明を省略する。
[0055] これにより、本実施形態では、前記第 1の実施形態と比べて、サブ AZD変換器 3d を備えないので、サブ AZD変 の数を減少させることができる。尚、前記第 1の実 施形態では、演算増幅用のサブ AZD変換器 2aと初期値設定回路 4a内のサブ AZ D変 とでは、その精度や判定電圧を任意に選択することが可能であつたが、 本実施形態では、各演算増幅段の AZD変換精度、つまりサブ AZD変換器 2aの分 解能によって初期値設定の精度も同時に決定されることになる。
[0056] 以上説明した構成により、本実施形態では、サブ AZD変換器 2aでアナログ入力 信号 VINの電圧レベルを判定し、その後、初期値設定回路 5aのサブ DZA変換器 4 dで演算増幅動作での目標値近傍の所定のバイアス電圧 Vbに DZA変換して、この 所定のバイアス電圧 Vbを次段キャパシタ C 13に与えて、演算増幅器 102の演算増 幅動作における出力電圧の初期値を設定したので、演算増幅動作での目標値への 収束を高速ィ匕することができ、 AZD変 全体のシステムの高速ィ匕を図ることがで きる。
[0057] (第 3の実施形態)
続いて、本発明の第 3の実施形態の AZD変換器を説明する。
[0058] 前記第 1の実施形態では、初期値設定期間 φ ι:をサンプル期間 φ 1、 φ 1 'と増幅期 間 φ 2との間に設定したが、本実施形態では、サブ AZD変換器 3d又は 2aでの電圧 レベル判定が終了した時点カゝら初期値設定期間を開始するように設定したものであ る。
[0059] 本実施形態では、前記第 1の実施形態と第 2の実施形態の両者の回路構成を使用 することが可能である。ここでは、第 2の実施形態の回路構成を用いて、動作を説明 する。
[0060] 図 5のタイミングチャートにおいて、 φ 1、 φ 1 'はサンプル期間、 φ 2は増幅期間を 示す。時点 tlは、サブ AZD変 の AZD変換が終了する時刻を示し、この時 点で演算増幅器 102の演算増幅の目標値が確定しており、これ以降であれば、初期 値設定期間 Φ Γに移行することが可能である。図 5では、サブ AZD変換器 2aの ΑΖ D変換の終了タイミング tlの後に、初期値設定期間 φ ι:に移行している。その後、サ ンプル期間 Φ 1、 Φ 1 'が終了し、増幅期間 φ 2に移行する。このとき、初期値設定期 間 φ rは継続して ヽても構わな 、。
[0061] 初期値設定期間 φ rでは、サブ AZD変換器 2aの AZD変換結果を所定のバイァ ス電圧 Vbに DZA変換する。ここでは、増幅期間 φ 2の開始前に初期値設定期間 φ rを終了しているが、増幅期間 φ 2に移行してからも初期値設定期間 φ ι:を一時継続 して、初期値設定用の所定のバイアス電圧 Vbが反転増幅器 laの出力端子 11aと次 段キャパシタ C13とに与えられた状態を維持することも可能である。反転増幅器 laの 出力端子 11aに初期値設定用の所定のバイアス電圧 Vbが与えられている状態であ つても、サンプル期間 φ 1、 φ 1,で印加された電荷は、スィッチ SW1の開放によって 反転増幅器 laの入力側がフロートであるので、各キャパシタ Cll、 C12に蓄えられて V、た電荷の合計量は保存されて 、て、演算増幅結果に対する影響はな 、からである
[0062] 以上の構成により、サンプル期間 φ 1、 φ 1 'の終了以前にアナログ入力信号 VIN の電圧レベルが判定されれば、この判定後に、サブ DZA変換器 4dで演算増幅の 出力電圧の目標値近傍の所定のバイアス電圧 Vbに DZA変換を行って、この所定 のバイアス電圧 Vbで演算増幅器 102の演算増幅動作における出力電圧の初期値 を設定したので、演算増幅の目標値への収束を高速ィ匕することができ、 AZD変換 器全体のシステムの高速ィ匕を図ることができる。
産業上の利用可能性
[0063] 以上説明したように、本発明は、 AZD変換器に備える演算増幅器の演算増幅動 作での演算増幅の目標値への収束を高速化できるので、この AZD変換器を各段に 備えるパイプライン AZD変 の高速ィ匕及び低消費電力化を図ることができ、パイ プライン AZD変換器の用途、例えば、テレビやビデオの映像信号処理や無線 LAN 等の通信信号処理等の用途に有用である。

Claims

請求の範囲
[1] 入力端子に入力されたアナログ入力信号を AZD変換した後、演算増幅して出力 端子から出力する演算増幅器と、
演算増幅器の増幅動作の開始時での出力電圧に初期値を与える初期値設定回路 とを備え、
前記初期値設定回路は、
演算増幅器の増幅動作の開始時に、前記演算増幅器の出力端子に接続されるこ とになる次段キャパシタに対して、所定のバイアス電圧を与える
ことを特徴とする AZD変^^。
[2] 前記請求項 1記載の AZD変換器において、
前記演算増幅器は、
第 1及び第 2のキャパシタと、
前記入力端子に入力されたアナログ入力信号を AZD変換するサブ AZD変換器 と、
前記サブ AZD変 で変換されたデジタル入力信号を DZA変換して基準電圧 を生成するサブ DZA変換器と、
前記サブ DZA変換器により生成された基準電圧並びに前記第 1及び第 2のキヤ パシタに保持された電荷に基づいて、前記アナログ入力信号を演算増幅して前記出 力端子から出力する反転増幅器と、
前記第 1及び第 2のキャパシタ、前記入力端子、前記サブ DZA変換器及び前記 反転増幅器間の接続を切り換えるスィッチ群とを備えた
ことを特徴とする AZD変^^。
[3] 前記請求項 1又は 2記載の AZD変翻にお 、て、
前記初期値設定回路は、
前記所定のバイアス電圧として、前記演算増幅器の増幅動作の開始時での出力電 圧の初期値が、前記アナログ入力信号に対応する演算増幅の目標値の近傍になる ように設定される
ことを特徴とする AZD変^^。
[4] 前記請求項 1〜3の何れか 1項に記載の AZD変換器において、
前記初期値設定回路は、
前記アナログ入力信号を AZD変換するサブ AZD変換器と、
前記サブ AZD変 で変換されたデジタル入力信号に予め対応させた電圧を生 成し、この電圧を前記所定のバイアス電圧として出力するサブ DZA変^^とを備え る
ことを特徴とする AZD変^^。
[5] 前記請求項 2に記載の AZD変翻にぉ 、て、
前記初期値設定回路は、
前記演算増幅器に備えるサブ AZD変換器で変換されたデジタル入力信号に予 め対応させた電圧を生成し、この電圧を前記所定のバイアス電圧として出力するサブ DZA変 を備える
ことを特徴とする AZD変^^。
[6] 入力端子に入力されたアナログ入力信号を AZD変換した後、演算増幅器で演算 増幅して出力端子力も出力する AZD変換方法であって、
前記アナログ入力信号をサンプル期間において AZD変換すると共にサンプルし、 前記サンプル期間で得たデジタル入力信号に対応する所定のバイアス電圧を初期 値設定期間において生成し、この所定のバイアス電圧を前記演算増幅器の前記出 力端子に接続されることになる次段キャパシタに印加し、
前記所定のバイアス電圧が印加された次段キャパシタと前記演算増幅器の前記出 力端子とを増幅期間において接続し、前記アナログ入力信号を前記演算増幅器で 演算増幅する
ことを特徴とする AZD変換方法。
[7] 前記請求項 6記載の AZD変換方法にお 、て、
前記初期値設定期間は、
前記サンプル期間と前記増幅期間との間に設定される
ことを特徴とする AZD変換方法。
[8] 前記請求項 6記載の AZD変換方法にお 、て、 前記初期値設定期間は、
前記アナログ入力信号が AZD変換された後に開始される ことを特徴とする AZD変換方法。
PCT/JP2006/305935 2005-09-16 2006-03-24 A/d変換器及びa/d変換方法 WO2007032110A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/631,844 US7649487B2 (en) 2005-09-16 2006-03-24 A/D converter and A/D conversion method
JP2006536968A JP4314275B2 (ja) 2005-09-16 2006-03-24 A/d変換器及びa/d変換方法
CN2006800010079A CN101040442B (zh) 2005-09-16 2006-03-24 模/数转换器及模/数转换方法
US12/643,613 US7884750B2 (en) 2005-09-16 2009-12-21 A/D converter and A/D conversion method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-270172 2005-09-16
JP2005270172 2005-09-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US63184407A Continuation 2005-09-16 2007-01-08

Publications (1)

Publication Number Publication Date
WO2007032110A1 true WO2007032110A1 (ja) 2007-03-22

Family

ID=37864714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305935 WO2007032110A1 (ja) 2005-09-16 2006-03-24 A/d変換器及びa/d変換方法

Country Status (4)

Country Link
US (2) US7649487B2 (ja)
JP (1) JP4314275B2 (ja)
CN (1) CN101040442B (ja)
WO (1) WO2007032110A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152818A1 (ja) * 2007-06-14 2008-12-18 Panasonic Corporation 非接触型位置センサ
JP2017055276A (ja) * 2015-09-10 2017-03-16 株式会社東芝 Ad変換回路、パイプラインad変換器、及び無線通信装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032110A1 (ja) * 2005-09-16 2007-03-22 Matsushita Electric Industrial Co., Ltd. A/d変換器及びa/d変換方法
EP2522074A1 (en) * 2009-11-09 2012-11-14 Epcos AG Impedance circuit and method for signal transformation
CN103475372A (zh) * 2011-12-26 2013-12-25 陈启星 直接引出顶阶电位而计算次级输入电压的多级并行式模数转换器
EP2800276A4 (en) * 2011-12-26 2016-04-13 Qixing Chen ULTRA-FAST, PARALLEL AND MULTI-STAGE A / D CONVERTER AND CONVERTER BASED ON THE USE OF THE LOGARITHMIC COMPRESSION-EXPANSION LAW

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002074976A (ja) * 2000-08-28 2002-03-15 Sharp Corp サンプルホールド増幅回路とそれを用いたパイプライン型ad変換器およびパイプライン型da変換器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3581485B2 (ja) * 1996-04-05 2004-10-27 株式会社ルネサステクノロジ パイプライン型a/dコンバータ
SE513044C2 (sv) * 1997-12-29 2000-06-26 Ericsson Telefon Ab L M Analog-digitalomvandlare med global klocka och global strömställare
FI107482B (fi) * 1999-09-20 2001-08-15 Nokia Networks Oy Menetelmä analogia-digitaalimuuntimen kalibroimiseksi sekä kalibrointilaite
JP2003243986A (ja) * 2002-02-20 2003-08-29 Tadahiro Omi A/d変換装置
JP2004158138A (ja) * 2002-11-07 2004-06-03 Texas Instr Japan Ltd サンプリング/ホールドの方法および回路
CN1499730A (zh) * 2002-11-08 2004-05-26 尹登庆 流水线结构的高速高精度模数转换器
JP4071254B2 (ja) * 2004-10-07 2008-04-02 シャープ株式会社 電子回路装置
WO2007032110A1 (ja) * 2005-09-16 2007-03-22 Matsushita Electric Industrial Co., Ltd. A/d変換器及びa/d変換方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002074976A (ja) * 2000-08-28 2002-03-15 Sharp Corp サンプルホールド増幅回路とそれを用いたパイプライン型ad変換器およびパイプライン型da変換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ABO A.M. AND GRAY P.R.: "A 1.5-V, 10-bit, 14-3-MS/s CMOS pipelineanalog-to-digital converter", IEEE J. OF SOLID-STATE CIRCUITS, vol. 34, no. 5, May 1999 (1999-05-01), pages 599 - 606, XP000908572 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152818A1 (ja) * 2007-06-14 2008-12-18 Panasonic Corporation 非接触型位置センサ
US8384375B2 (en) 2007-06-14 2013-02-26 Panasonic Corporation Noncontact position sensor
JP2017055276A (ja) * 2015-09-10 2017-03-16 株式会社東芝 Ad変換回路、パイプラインad変換器、及び無線通信装置

Also Published As

Publication number Publication date
CN101040442A (zh) 2007-09-19
US20090040088A1 (en) 2009-02-12
CN101040442B (zh) 2012-04-25
US20100097136A1 (en) 2010-04-22
JPWO2007032110A1 (ja) 2009-03-19
JP4314275B2 (ja) 2009-08-12
US7884750B2 (en) 2011-02-08
US7649487B2 (en) 2010-01-19

Similar Documents

Publication Publication Date Title
EP0749205B1 (en) Switched capacitor gain stage
EP2629428A1 (en) A/D Converter and Method for Calibrating the Same
US8614639B1 (en) Integrator ramp generator with DAC and switched capacitors
US7683819B2 (en) Analog-to-digital converting circuit
US7113116B2 (en) Sample and hold apparatus
JP2004214905A (ja) 可変分解能a/d変換器
US7064700B1 (en) Multi-channel analog to digital converter
WO2007032110A1 (ja) A/d変換器及びa/d変換方法
US6229472B1 (en) A/D converter
US7002507B2 (en) Pipelined and cyclic analog-to-digital converters
US6756928B2 (en) Pseudo-differential amplifier and analog-to-digital converter using the same
JP3765797B2 (ja) パイプライン型アナログ・ディジタル変換器
US20060055575A1 (en) Analog-to-digital conversion arrangement, a method for analog-to-digital conversion and a signal processing system, in which the conversion arrangement is applied
US7348916B2 (en) Pipeline A/D converter and method of pipeline A/D conversion
US20060125676A1 (en) Analog-to-digital converter in which settling time of amplifier circuit is reduced
US9678166B2 (en) Voltage detection device
US8203474B2 (en) Pipeline A/D converter
EP1398880A2 (en) Analog-digital conversion circuit
US10530381B2 (en) Operational amplifier with switchable candidate capacitors
JP3782911B2 (ja) Adコンバータ回路
US10425097B2 (en) Sample-and-hold amplifier with switchable candidate capacitors
US10536160B2 (en) Pipelined analog-to-digital converter having operational amplifier shared by different circuit stages
JP5186981B2 (ja) パイプライン型a/d変換器
JP2003008439A (ja) アナログ−デジタル変換回路
US7061420B2 (en) Gain control for analog-digital converter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006536968

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11631844

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680001007.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06729883

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载