WO2007018292A1 - 水素吸蔵合金、水素吸蔵合金電極、二次電池、および水素吸蔵合金の製造方法 - Google Patents
水素吸蔵合金、水素吸蔵合金電極、二次電池、および水素吸蔵合金の製造方法 Download PDFInfo
- Publication number
- WO2007018292A1 WO2007018292A1 PCT/JP2006/315945 JP2006315945W WO2007018292A1 WO 2007018292 A1 WO2007018292 A1 WO 2007018292A1 JP 2006315945 W JP2006315945 W JP 2006315945W WO 2007018292 A1 WO2007018292 A1 WO 2007018292A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen storage
- storage alloy
- alloy
- phase
- hydrogen
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/383—Hydrogen absorbing alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
- H01M10/345—Gastight metal hydride accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04201—Reactant storage and supply, e.g. means for feeding, pipes
- H01M8/04216—Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/065—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- Hydrogen storage alloy Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
- the present invention relates to a hydrogen storage alloy, a hydrogen storage alloy electrode, a secondary battery, and a method for producing a hydrogen storage alloy.
- a hydrogen storage alloy is a metal alloy that can store hydrogen as an energy source safely and easily, and has attracted much attention as a material for energy conversion and storage.
- Applications of hydrogen storage alloys as functional materials include hydrogen storage and transport, heat storage and transport, thermomechanical energy conversion, hydrogen separation and purification, hydrogen isotope separation, and hydrogen-based batteries It has been proposed for a wide range of catalysts and temperature sensors in synthetic chemistry.
- a nickel metal hydride storage battery using a hydrogen storage alloy as a negative electrode material is capable of (a) high capacity, (b) strong overcharge and overdischarge, and (c) highly efficient charge / discharge. (D) It is attracting attention as a consumer battery because it has features such as being clean, and aims for higher performance (improvement of charge-discharge cycle characteristics, higher battery capacity, etc.) Application 'practical use' is actively underway.
- an AB type rare earth M-type alloy having a porcelain CaCu type crystal structure has been put into practical use so far.
- the discharge capacity has reached its limit at about 300mAhZg, and it is difficult to further increase the capacity.
- Patent Document 1 uses a LaCaMgNi alloy having a PuNi-type crystal structure. An electrode is disclosed.
- Patent Document 1 Japanese Patent No. 3015885
- the alloy described in Patent Document 1 has a large amount of hydrogen occlusion, but has a problem in that the rate of hydrogen release is slow (that is, the rate characteristics are poor).
- Patent Document 2 discloses a hydrogen storage compound including an intermetallic compound phase represented by La Ni.
- Element storage alloys are described.
- the hydrogen storage alloy described in Patent Document 2 is manufactured by applying mechanical caloring using two or more different types of hydrogen storage alloys as materials.
- Patent Document 2 Japanese Patent No. 3397981
- Patent Documents 3 to 5 listed below include CeNi type, Gd Co type, Ce Ni type and PuNi type.
- an electrode using a rare earth Mg—Ni-based alloy having any crystal structure exhibits good hydrogen release characteristics while maintaining a high hydrogen storage capacity.
- Patent Document 3 Japanese Patent Application Laid-Open No. 11-323469
- Patent Document 4 Japan No. 2002-273346
- Patent Document 5 Japanese Unexamined Patent Publication No. 2002-105563
- Patent Document 6 listed below also relates to an alloy having a Ce Co type crystal structure, which is also a CaCu type.
- Patent Document 6 Japanese Patent No. 3490871
- rare earth element Mg—Ni-based hydrogen storage alloys and rare earth element Mg—Ni-based elements are mainly used as hydrogen storage alloys for hydrogen storage electrodes for high capacity.
- Various hydrogen storage alloys have been proposed that contain constituent elements and other elements such as Cu, Co, Mn, and A1 as constituent elements (for example, Patent Documents 7 to 10).
- Patent Document 7 Japanese Unexamined Patent Publication No. 2000-80429
- Patent Document 8 Japanese Unexamined Patent Publication No. 2004-115870
- Patent Document 9 Japanese Unexamined Patent Publication No. 2000-265229
- Patent Document 10 Japanese Unexamined Patent Publication No. 2000-21439 Disclosure of the invention
- these rare earth-one Mg-Ni alloys known as the prior art have an excellent discharge capacity compared to AB-type rare earth alloys when used for hydrogen storage electrodes.
- an object of the present invention is to provide a hydrogen storage alloy having a high capacity and excellent cycle characteristics. Another object of the present invention is to provide a hydrogen storage alloy at low cost with high capacity and excellent cycle characteristics.
- the present invention relates to the compositional power of the general formula: A B C (where A includes Y (yttrium).
- B is an Mg element
- C is one or more elements selected from the group consisting of Ni, Co, Mn and A1
- w is ⁇ 0 Containing a phase consisting of a Pr Co type crystal structure represented by 1) to 0.8).
- Rl is one or more elements selected from rare earth elements including Y (yttrium)
- R2 is Mg element
- R3 is Ni 1 or 2 or more elements selected from the group consisting of Co, Mn and A1, wherein the value of Mn + Al in the z is 0.5 or more and the value of A1 is 4.1.
- a hydrogen storage alloy characterized by the following:
- the hydrogen storage alloy according to the present invention is completely different from that disclosed in the above patent document. r Co Crystal structural strength
- x, y, and z represent the ratio of the number of elements, not the weight percentage.
- the Pr Co type crystal structure is a hexagonal crystal system belonging to the P6 Zmmc space group.
- the c-axis length of the child constant has a crystal structure in which the ratio of the Za-axis length is 6.2 to 6.6.
- Rl R2 R3, x, y, and z are 16. 3 ⁇ x ⁇ x y z
- the ratio of the formation of a phase that also has Pr Co crystal structure can be increased.
- the phase having Pr Co crystal structure strength is 8 wt% or more.
- the present invention cools the molten alloy at a cooling rate of 1000 KZ seconds or more, and further anneals the obtained alloy in a temperature range of 860 to 120 ° C under a pressurized inert gas atmosphere.
- a method for producing a hydrogen storage alloy characterized by manufacturing the hydrogen storage alloy.
- the production of the phase consisting of the Pr Co crystal structural force, which is a metastable phase is produced.
- the composition ratio can be increased, and a high-capacity hydrogen storage alloy can be obtained.
- the molten alloy means a material in which a predetermined amount of a raw material ingot (material) is weighed and heated and melted based on the composition of the target hydrogen storage alloy.
- the present inventors have proposed hydrogen absorption containing a phase having Pr Co-type crystal structural force as described above.
- the present invention is melted and annealed so that the content of Cu element is 1 to 8 mol%.
- the phase with Pr Co-type crystal structure is formed at a ratio of 15% by weight or more.
- a hydrogen storage alloy is provided.
- the hydrogen storage alloy according to the present invention was prepared by melting and annealing so as to contain 1 to 8 mol% of Cu element as an essential component of the alloy.
- the 5 19 phase is formed at a rate of 15% by weight or more, and is thus configured to have a high hydrogen storage capacity and excellent cycle characteristics.
- Cu is relatively cheaper than Co, a hydrogen storage alloy having such excellent characteristics can be provided at a relatively low cost.
- the composition of the entire alloy has the general formula Rl R2 R3 Cu (where a b e d
- Rl is one or more elements selected from rare earth elements including Y (yttrium)
- R2 is one or more elements selected from the group consisting of Mg, Ca, Sr and Ba
- R3 is one or more elements selected from the group consisting of Ni ⁇ Co, Mn ⁇ Al, Fe ⁇ Cr ⁇ Zn, Si ⁇ Sn ⁇ V, Nb ⁇ Ta ⁇ Ti, Zr and Hf.
- the R2 is Mg, and one or more elements selected from the group consisting of the R3 force Co, Mn, A1, and Ni.
- the present invention is a method of cooling a molten alloy at a cooling rate of 1000 KZ seconds or more, and annealing the obtained alloy in a temperature range of 860 to 980 ° C in a pressurized inert gas atmosphere.
- the present invention provides a method for producing a hydrogen storage alloy, characterized by producing the hydrogen storage alloy.
- the temperature range during annealing is preferably 920-970 ° C.
- the primary particle size of the alloy is preferably 10 to: LOOnm.
- the hydrogen storage alloy electrode according to the present invention uses the hydrogen storage alloy as described above as a hydrogen storage medium, and the secondary battery according to the present invention uses the hydrogen storage alloy electrode as a negative electrode. Used as a pole.
- the hydrogen storage alloy according to the present invention has a high hydrogen storage capacity when used for a hydrogen storage electrode, and has excellent durability even after repeated charge / discharge. It becomes.
- the secondary battery according to the present invention uses a hydrogen storage alloy electrode having a hydrogen storage alloy having the above characteristics as a hydrogen storage medium as a negative electrode.
- FIG. 1 is a diagram showing a structural model of a Pr Co crystal structure.
- FIG. 2 shows a transmission electron micrograph (TEM image) of secondary particles.
- FIG. 3 is a graph showing the relationship between the heat treatment temperature and the abundance ratio of Pr Co type crystal structure phase.
- FIG. 4 is a graph showing the relationship between the heat treatment temperature and the capacity retention rate.
- FIG. 5 is a graph showing the relationship between the heat treatment temperature and the abundance ratio of Pr Co type crystal structure phase.
- FIG. 6 is a graph showing the relationship between heat treatment temperature and capacity retention.
- FIG. 7 is a graph showing the relationship between the heat treatment temperature and the abundance ratio of the Pr Co type crystal structure phase.
- FIG. 8 is a graph showing the relationship between heat treatment temperature and capacity retention.
- FIG. 9 is a graph showing the relationship between the heat treatment temperature and the abundance ratio of the Pr Co type crystal structure phase.
- FIG. 10 is a graph showing the relationship between heat treatment temperature and capacity retention.
- a first embodiment of the hydrogen storage alloy according to the present invention has a composition represented by the general formula: A B C
- A is one or more elements selected from rare earth element forces including Y (yttrium), ⁇ is Mg element, C is selected from the group consisting of Ni, Co, Mn and A1 forces. Or two or more elements, w represents a number in the range of 0.1 to 0.8).
- composition has a phase of Pr Co crystal structure as represented by the general formula: A B C
- the presence of the phase and the amount (wt%) of the PrCo-type crystal structural force are, for example, pulverized.
- the obtained hydrogen storage alloy powder can be evaluated by performing X-ray diffraction measurement and analyzing the obtained X-ray diffraction pattern by the Rietveld method. More specifically, it is measured by the method described in the examples.
- Figure 1 shows a structural model of a phase that also has Pr Co crystal structure.
- the crystal system belongs to hexagonal crystal, and the space group belongs to P6 Zmmc.
- the composition of the whole alloy has the general formula: Rl R2 R3 (where 15.8 ⁇ x ⁇ 17.8, 3.4 ⁇ y ⁇ 5. 0, 78. 8 ⁇ z ⁇ 79. 6, x + y
- Rl is one or more elements that also select the rare earth element force including Y (yttrium), R2 is Mg element, R3 is from Ni, Co, Mn and A1 1 or 2 or more elements selected from the group consisting of the above-mentioned z, the value indicating Mn + Al is not less than 0.5 and the value indicating A1 is not more than 4.1. Is. Also preferably, the general formula: Rl R2 R3! /, X, y and z forces 16. 3 ⁇ x ⁇ 17.6, 3.6 ⁇ v ⁇ 4. 7, 78. 8 ⁇ z ⁇ 79.1, wherein the value of Mn + Al in z is not less than 1.6 and the value of A1 is not more than 1.9.
- the hydrogen storage alloy according to the first embodiment of the present invention includes a rare earth element containing Y (yttrium) as R1, that is, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho , Er, Tm, Yb, Lu, Sc and Y Group force selected
- Y yttrium
- One or more elements selected from the viewpoint of hydrogen dissociation equilibrium pressure La, Ce, Pr and Nd are particularly preferred .
- misch metal which is a mixture of rare earth elements, is inexpensive and therefore is preferably used.
- Mg element is used as R2.
- Mg element the hydrogen storage capacity and durability are improved.
- the hydrogen storage alloy according to the first embodiment of the present invention includes at least either Mn or A1 as R3, and a value indicating Mn + Al in the z (that is, Mn relative to the whole). + Al composition ratio) is 0.5 or more, preferably 1.6 or more.
- composition ratio of Mn + Al is 0.5 or more, the amount of phase formed of Pr Co crystal structure is
- Mn yarn and iti iti, 0.2 ⁇ 3.7 power is preferable, 1.0 ⁇ 3.7 power is more preferable! / ⁇ .
- Mn is within the above range, high capacity can be achieved while maintaining the phase of Pr Co crystal structure.
- those containing Ni as R3 are preferable.
- Ni as an essential element, the hydrogen storage and release characteristics can be improved.
- A1 is 4.1 or less, preferably 1.9 or less.
- composition ratio exceeds 4.1, the amount of phase that has Pr Co crystal structural strength significantly decreases, and water
- the hydrogen storage alloy according to the first embodiment of the present invention comprises the Pr Co type crystal structure.
- the above-mentioned Pr Co-type crystal structure strength is 8 in the alloy.
- % By weight or more, preferably 65% by weight or more, more preferably 79% by weight or more.
- the upper limit is not limited, but is usually about 95% by weight.
- the phase of Pr Co-type crystal structure is as shown in the crystal structure model in Fig. 1.
- Mn or A1 contained in the alloy is generated between the AB unit and the AB unit.
- Other product phases include CeNi type, PuNi type, Ce Ni type, Ce Co type, CaCu type, etc.
- the hydrogen storage alloy according to an embodiment of the present invention preferably has a primary particle size of 10 to LOOnm.
- the size of the primary particles in the range of 10 to LOONm, the volume expansion associated with hydrogen occlusion is alleviated and fine powder is generated.
- phase change caused by atomic rearrangement during heat treatment The state easily occurs, and a phase having the Pr Co crystal structural force is easily generated.
- the size of the primary particles can be determined by observation with a transmission electron microscope described in Examples.
- the average particle diameter of the secondary particles is 20 to 60 ⁇ m! /.
- the secondary particle means a particle having a polycrystalline force formed by combining a plurality of primary particles.
- FIG. 2 shows a transmission electron micrograph (TEM image) of the secondary particle.
- a hydrogen storage alloy according to an embodiment of the present invention is obtained by mixing a raw material ingot (material) in an amount that gives a predetermined alloy composition, melting, cooling, and solidifying a crude product obtained from 860 to 860. It is formed by annealing at a temperature range of 1020 ° C.
- the molten alloy obtained by melting the material is then cooled, and the cooling rate at which the molten alloy is cooled is 1000 KZ seconds or more.
- the alloy phase of the present invention (phase consisting of Pr Co crystal structure) that is a metastable phase can be efficiently formed.
- a melt spinning method capable of rapid cooling in ⁇ , ⁇ seconds or more can be used.
- cooling rate can be ⁇ , ⁇ / second
- gas atomization method cooling rate can be ⁇ , ⁇ second
- (Annealing) is preferably heat treatment for 3 to 50 hours in the furnace temperature range of 860 to 120 ° C.
- the reason why the lower limit temperature and the upper limit temperature of the heat treatment temperature are set to 860 ° C and 1020 ° C, respectively, is to improve the generation ratio of the phase having Pr Co type crystal structural force.
- the target phase of Pr Co crystal structure strength is highly divided.
- More preferable heat treatment conditions are 900 to 980 ° C. and 5 to 10 hours.
- the heat treatment atmosphere is a pressurized inert gas atmosphere (eg, argon, helium) is to prevent the evaporation of magnesium while preventing the oxidation of the material during the heat treatment. It is.
- a pressurized inert gas atmosphere eg, argon, helium
- a helium gas atmosphere is preferable because it has a large effect of preventing the evaporation of magnesium.
- the pressure is in the range of 0. IMPa or higher, preferably in the range of 0.2 to 0.5 MPa (gauge pressure).
- the heat treatment temperature is more preferably 900 to 980 ° C.
- the hydrogen storage alloy according to the second embodiment of the present invention has a Pr Co type crystal structure in which the raw material of the alloy is melted and annealed so that the Cu element content is 1 to 8 mol%.
- the phase is formed at a ratio of 15% by weight or more. From the Pr Co type crystal structure
- the Pr Co type crystal structure phase is originally a metastable phase, but it is stabilized by adding Cu element,
- Pr Co-type crystal structure phase is stabilized by adding Cu element
- phase having Pr Co-type crystal structure strength is stable to alkaline electrolyte
- the primary particles consisting of the crystal phase of the Pr Co type crystal structure are other crystal phases such as Ce Ni type crystal phase.
- the content of Cu element is 1-8 mole 0/0, more preferably 2 to 7 mol 0/0. If the content of Cu element is 2 to 7 mol%, the amount of the phase consisting of the Pr Co type crystal structural force is further increased,
- the cycle characteristics are deteriorated. This is because when the Cu content exceeds 8%, other crystal phases (Ce Ni-type crystal phase, Ce Co type) that have poor corrosion resistance to alkaline electrolytes.
- the hydrogen storage alloy according to the second embodiment of the present invention has the Pr Co type crystal structure.
- a force formed by a ratio of 15% by weight or more is preferable.
- a force formed by a ratio of 25% by weight or more is preferable.
- a structure formed by a ratio of 40% by weight or more is more preferable. Those formed at a ratio of ⁇ 85% by weight are particularly preferable.
- the distortion of time will be relieved and fine powder will be suppressed.
- the contact area between the alkaline electrolyte and the hydrogen storage alloy is reduced, corrosion of the hydrogen storage alloy is suppressed, and the cycle life is improved.
- the hydrogen storage alloy according to the second embodiment of the present invention has a chemical composition of the general formula R1a
- the R1 rare earth element is selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, and Y force.
- One or more elements are used. From the viewpoint of hydrogen dissociation equilibrium pressure, one or more elements selected from the group consisting of La, Ce, Pr and Nd are particularly preferable.
- misch metal (Mm) which is a mixture of rare earth elements, is inexpensive and is therefore preferably used.
- R2 the force in which one or more elements selected from the group consisting of Mg, Ca, Sr and Ba are used.
- Mg is particularly preferred from the viewpoint of hydrogen storage capacity and corrosion resistance.
- the R3 is one or two selected from the group consisting of Ni-Co, Mn, Al, Fe-Cr-Zn, Si-Sn, V, Nb-Ta-Ti, Zr and Hf. Force in which the above elements are used In particular, it is preferable to use one or more elements selected from the group consisting of Co, Mn, A1 and M. By using Ni or Co, the alkali resistance and the electrocatalytic activity are excellent. Further, by using the Mn or A1, it is possible to adjust the hydrogen dissociation equilibrium pressure, in particular, at least one of Mn or A1, 0. 3 to 0. 6 mole 0/0 (the case of both added Is preferably added within the range of the total amount).
- a, b, c and d are the same numbers as those in the above general formula.
- the primary particles preferably have a particle size of 10 to LOOnm.
- Phase is uniformly dispersed at grain boundaries of other crystal phases such as Ce Ni-type crystal structure phase
- phase change accompanying heat treatment occurs easily, and the alloy of the present invention. There is an effect that the phase can be obtained with high efficiency. If the crystal grain size is less than lOnm, it is easily oxidized, and if it exceeds lOOnm, pulverization tends to occur.
- a method in which the melted material is rapidly cooled using a melt spinning method with a cooling rate of 100000 KZ seconds or more and then annealed under the conditions described later is suitably employed. can do.
- the primary particle size of 10 to LOOnm means that almost all of the primary particles are contained within a range of a minimum of 10 nm and a maximum of lOOnm. Specifically, when measuring the particle size of 100 arbitrary objects in an electron micrograph, the particle size is 10 to: The ratio force occupied by particles in the range of LOOnm 80% or more in area ratio It means that.
- a primary particle refers to a particle (also referred to as a crystal grain) having a single crystal structure composed of a single crystallite.
- the particle size of the primary particles can be determined by observation using a transmission electron microscope. Specifically, using a transmission electron microscope (Hitachi H9000), the length of the longest long side and the shortest short side of the crystal grain is measured and obtained by the following formula.
- the hydrogen storage alloy according to the second embodiment of the present invention is blended with an alloy material so as to have the chemical composition represented by the above general formula, heated and melted, and rapidly cooled at a cooling rate of 1000 KZ seconds or more. It is obtained by cooling and solidifying and then annealing the obtained crude product in a temperature range of 860 to 980 ° C, preferably 920 to 970 ° C, under an inert gas atmosphere under pressure. It is out.
- a predetermined amount of raw material ingot (alloy material) is weighed and placed in a crucible and placed in an inert gas atmosphere or in a vacuum.
- the material is melted by heating to 1200-1600 ° C using a high-frequency melting furnace. Thereafter, the molten material is cooled and solidified.
- the cooling rate for cooling the molten material is preferably at least 6 seconds (both rapid cooling). When the cooling rate is less than leap seconds, a stable phase such as a CaCu crystal structure is formed.
- the Pr Co phase which is a metastable phase, is produced by rapid cooling in over leap seconds.
- the cooling method is a cooling rate of 100000KZ seconds or more.
- the melt spinning method and the gas atomizing method with a cooling rate of about 10,000 KZ seconds can be preferably used.
- the proportion of phase present can be greatly increased.
- the temperature condition during the heat treatment is preferably 860 to 980 ° C.
- the pressure condition during the heat treatment is preferably a pressure state of 0.2 to 1. OMPa (gauge pressure).
- an inert atmosphere such as argon or helium is preferably used as the atmosphere during the heat treatment, and helium gas is particularly preferably used.
- the reason why the heat treatment atmosphere is an inert gas atmosphere (for example, argon or helium) is to prevent acid oxidation of the material during the heat treatment.
- the heat treatment temperature is 860 to 980 ° C, particularly preferably 920 to 970 ° C.
- the heat treatment temperature is in the range of 920 ° C to 970 ° C, the proportion of the Pr Co type crystal structure phase increases significantly, and the Pr Co type crystal structure
- the phase becomes the main phase (that is, the most occupied phase in the alloy).
- the hydrogen storage alloy electrode according to the second embodiment of the present invention includes the above-described hydrogen storage alloy as a hydrogen storage medium.
- the hydrogen storage alloy of the second embodiment according to the present invention is used for an electrode as a hydrogen storage medium, the hydrogen storage alloy is preferably pulverized.
- the hydrogen storage alloy may be pulverized before or after the heat treatment at the time of manufacturing the electrode. However, since the surface area is increased by the pulverization, it should be pulverized after the heat treatment from the viewpoint of preventing surface oxidation of the alloy. desirable.
- the pulverization is preferably performed in an inert atmosphere to prevent oxidation of the alloy surface. For the pulverization, for example, mechanical pulverization or hydrogenation pulverization is used.
- the secondary battery according to the present invention uses the hydrogen storage alloy electrode as a negative electrode, and is configured, for example, as a nickel hydrogen storage battery. Since the hydrogen storage alloy of the present invention, that is, the hydrogen storage alloy electrode has corrosion resistance against a strong alkaline aqueous solution used in an electrolyte solution of a nickel metal hydride storage battery or the like, it has excellent cycle characteristics for repeatedly absorbing and releasing hydrogen. Yes. As a result, the charge / discharge cycle characteristics of the secondary battery are also excellent.
- the positive electrode of the secondary battery for example, a nickel electrode (sintered or non-sintered) is used.
- the crystal grain (primary particle) size was measured using a transmission electron microscope (Hitachi H9000).
- the particle size distribution and average particle size of the hydrogen storage alloy were measured by a laser diffraction / scattering method using a particle size analyzer (product number “MT3000” manufactured by Microtrack).
- the average particle diameter refers to the cumulative average diameter D50, which is the particle diameter at which the cumulative curve is 50% when the total powder volume is 100%.
- the obtained hydrogen storage alloy was pulverized into a powder with an average particle size (D50) of 20 ⁇ m, and this was used with an X-ray diffractometer (BrukerAXS, product number M06XCE), 40 kV, 100 mA (Cu tube) The measurement was performed under the following conditions. In addition, the Rietveld method (analysis software: RI ETAN2000) was used for structural analysis. [0071] ⁇ Measurement method of discharge capacity>
- nickel powder # 210, manufactured by INCO
- alloy powder 100 parts by weight
- an aqueous solution in which a thickener (methylcellulose) is dissolved is added, and a binder (styrene butane rubber) is added.
- a thickener methylcellulose
- a binder styrene butane rubber
- the negative electrode was sandwiched by the positive electrode through a separator, and fixed to an acrylic plate so that a pressure of lOkgfZcm 2 was applied to these electrodes, and assembled into an open cell.
- the electrolyte was a mixture of 6.8molZl KOH aqueous solution and 0.8molZl LiOH aqueous solution.
- Cycle deterioration rate (53rd cycle capacity Z10th cycle capacity) X 100. [0074] ⁇ Method for measuring corrosion resistance>
- the negative electrode after the charge / discharge test was washed with water and dried, and the mass saturation magnetization and the specific surface area were measured.
- VSM vibrating sample magnetometer
- the mass saturation magnetization of the hydrogen storage alloy before the charge / discharge test is 0.2 Am 2 Zkg or less, and as the corrosion proceeds, the value of the mass saturation magnetism increases.
- the specific surface area was measured by the BET method (manufactured by QUANTACHROME, model name: direct reading fully automatic surface measuring device monosoap MS-19).
- the specific surface area of the hydrogen storage alloy before the charge / discharge test is 0.1 lm 2 Zg or less, and the specific surface area increases as corrosion progresses.
- a predetermined amount of the raw material ingot was weighed based on the desired composition, put in a crucible, and heated to 1500 ° C. in a vacuum helium gas atmosphere using a high-frequency melting furnace to melt the material. After melting, the alloy was solidified by a mold forging method that was allowed to stand in a mold in the furnace.
- the alloy was heat-treated using an electric furnace in a helium gas atmosphere at atmospheric pressure. After recrystallization annealing at a temperature of 940 ° C for 7 hours in the electric furnace, it was left to cool in the furnace to obtain a hydrogen storage alloy having a compositional power of La Mg Ni Co Mn Al.
- the crystal structure and abundance (% by weight) of the obtained hydrogen storage alloy were measured. Further, using the obtained hydrogen storage alloy, the discharge capacity at the 10th cycle, the discharge capacity at the 12th cycle, the cycle deterioration rate, the post-cycle mass saturation magnetic field, and the specific surface area after the cycle were measured.
- a specified amount of raw material ingot is weighed based on the desired composition, and the annealing temperature is 940 under 0.2 MPa.
- a hydrogen storage alloy having the composition La Mg Ni Co Mn Al was obtained in the same manner as in Example 1 except that recrystallization annealing was performed at ° C and an annealing time of 7 hours.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of the raw material ingot was weighed based on the target composition, put in a crucible, and heated to 1500 ° C. using a high-frequency melting furnace in a reduced-pressure helium gas atmosphere to melt the material. After melting, the alloy was solidified by quenching for more than 8 seconds using the melt spinning method. Next, after re-annealing the alloy for 7 hours at 860 ° C in an helium gas atmosphere at 0.2 MPa in a helium gas atmosphere, the alloy was left to cool in the furnace and then La Mg Ni
- a hydrogen storage alloy with Co Mn Al composition was obtained. Implemented using the hydrogen storage alloy
- a raw material ingot is weighed in a predetermined amount based on the target composition, and the same operation as in Example 3 is performed except that recrystallization annealing is performed at 0.2 MPa, an annealing temperature of 900 ° C, and an annealing time of 7 hours.
- a hydrogen storage alloy with the compositional power of La Mg Ni Co Mn Al was obtained. The hydrogen storage
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy with the compositional power of La Mg Ni Co Mn Al was obtained. The hydrogen storage
- a raw material ingot was weighed in a predetermined amount based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, an annealing temperature of 980 ° C, and an annealing time of 7 hours.
- a hydrogen storage alloy with the compositional power of La Mg Ni Co Mn Al was obtained. The hydrogen storage
- a predetermined amount of raw material ingot is weighed based on the desired composition, 0.2 MPa, annealing temperature 1020
- a hydrogen storage alloy having the composition La Mg Ni Co Mn Al was obtained by performing the same operation as in Example 3 except that recrystallization annealing was performed at ° C and an annealing time of 7 hours.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a raw material ingot was weighed in a predetermined amount based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.5 MPa, an annealing temperature of 940 ° C, and an annealing time of 7 hours.
- a hydrogen storage alloy composed of La Mg Ni Co Mn Al was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of the raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at an atmospheric temperature of 940 ° C and an annealing time of 7 hours in a helium atmosphere.
- recrystallization annealing was performed at an atmospheric temperature of 940 ° C and an annealing time of 7 hours in a helium atmosphere.
- Example 2 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy composed of La Mg Ni Co Mn Al was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy composed of La Mg Ni Mn was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- Example 3 A predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy composed of La Mg Ni Co Mn was obtained. The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy having a composition of La Pr Mg Ni Co Mn was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy composed of La Ce Mg Ni Co Mn was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy composed of La Ce Nd Mg Ni Co Mn was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy composed of La Ce Nd Mg Ni Mn was obtained.
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy composed of La Mg Ni Mn Al was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a specified amount of raw material ingot is weighed based on the desired composition, and the annealing temperature is 940 under 0.2 MPa.
- a hydrogen storage alloy having the composition La Mg Ni Co Mn Al was obtained by performing the same operation as in Example 3 except that recrystallization annealing was performed at ° C and an annealing time of 7 hours.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy composed of La Mg Ni Co Mn Al was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy composed of La Mg Ni Co Mn Al was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy composed of La Mg Ni Mn Al was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy composed of La Mg Ni Co Mn Al was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a raw material ingot is weighed and subjected to the same operation as in Example 2 except that recrystallization annealing is performed at an annealing temperature of 1000 ° C and an annealing time of 7 hours.
- Example 2 The same procedure as in Example 2 was performed except that a predetermined amount of the raw material ingot was weighed based on the target composition, and recrystallization annealing was performed at an annealing temperature of 1000 ° C and an annealing time of 7 hours.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of the raw material ingot was weighed based on the desired composition, put in a crucible, and heated to 1500 ° C. in a vacuum helium gas atmosphere using a high-frequency melting furnace to melt the material.
- the alloy After melting, the alloy is solidified by mold forging in a mold in the furnace, and La Mg Ni
- the alloy was not subjected to recrystallization annealing. Using the alloy, the same measurement as in Example 1 was performed.
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy composed of La Mg Ni Co Mn Al was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy composed of La Mg Ni Co Mn Al was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy composed of La Mg Ni Mn was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- Example 3 Except that a predetermined amount of raw material ingot was weighed based on the target composition and recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours, the same operations as in Example 3 were performed. A hydrogen storage alloy having the composition of La Mg Ni Mn Al was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of raw material ingot was weighed based on the target composition, and the same operation as in Example 3 was performed except that recrystallization annealing was performed at 0.2 MPa, annealing temperature 940 ° C, and annealing time 7 hours.
- a hydrogen storage alloy composed of La Mg Ni Co Al was obtained.
- Example 1 The same measurement as in Example 1 was performed using the hydrogen storage alloy.
- a predetermined amount of a raw material ingot having a chemical composition of 1 to 5 having a different Cu element content is weighed into a crucible and heated to 1500 ° C. using a high-frequency melting furnace in a reduced-pressure argon gas atmosphere. The material was melted. After melting, it was quenched by applying a melt spinning method to solidify the alloy.
- the obtained alloy was heat-treated at each temperature shown in Table 1 in an argon gas atmosphere pressurized to 0.2 MPa (gauge pressure, the same applies hereinafter).
- the crystal structure, the phase existence ratio, and the average particle diameter were measured in the same manner as described above.
- Table 5 and Fig. 3 show the proportion of Pr Co-type crystal structure phase.
- Table 11 As shown in Table 11, each experiment and measurement was performed in the same manner as in Experimental Example 1 except that raw material ingots having different chemical compositions with different Ni element contents were used.
- Table 11 and Fig. 9 show the generation ratio of the phase of the Pr_Co i9 type crystal structure
- Table 12 and Fig. 10 show the measurement results of the capacity retention.
- Composition 1 (No Cu) 68 72 77 76 76 77 75 74 Composition 1 1 68 72 75 78 80 80 78 73 Composition 1 2 70 74 76 81 84 84 79 75 Composition 4 (Standard) 71 76 78 82 87 85 80 75 Composition 1 3 73 78 78 81 86 85 78 75
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
組成が、一般式:A(4-w)B(1+w)C19(但し、AはY(イットリウム)を含む希土類元素から選択される1種又は2種以上の元素、BはMg元素、CはNi、Co、MnおよびAlからなる群より選択される1種又は2種以上の元素、wは-0.1~0.8の範囲の数を表す)で表されるPr5Co19型結晶構造からなる相を含有し、
合金全体の組成が、一般式:R1xR2yR3z(但し、15.8≦x≦17.8、3.4≦y≦5.0、78.8≦z≦79.6、x+y+z=100で表され、R1はY(イットリウム)を含む希土類元素から選択される1種又は2種以上の元素であり、R2はMg元素であり、R3はNi、Co、MnおよびAlからなる群より選択される1種又は2種以上の元素であり、前記zのうちMn+Alを示す値が0.5以上であり、Alを示す値が4.1以下である)で表されることを特徴とする水素吸蔵合金。
Description
明 細 書
水素吸蔵合金、水素吸蔵合金電極、二次電池、および水素吸蔵合金の 製造方法
技術分野
[0001] 本発明は、水素吸蔵合金、水素吸蔵合金電極、二次電池、および水素吸蔵合金 の製造方法に関する。
背景技術
[0002] 水素吸蔵合金は、安全に、かつ容易にエネルギー源としての水素を貯蔵できる合 金であり、新し 、エネルギー変換及び貯蔵用材料として非常に注目されて 、る。 機能性材料としての水素吸蔵合金の応用分野は、水素の貯蔵'輸送、熱の貯蔵- 輸送、熱 機械エネルギーの変換、水素の分離'精製、水素同位体の分離、水素を 活物質とした電池、合成化学における触媒、温度センサーなどの広範囲にわたって 提案されている。
[0003] 例えば、水素吸蔵合金を負極材料に使用したニッケル水素蓄電池は、(a)高容量 であること、(b)過充電'過放電に強いこと、(c)高効率充放電が可能であること、 (d) クリーンであること、などの特長を持っため、民生用電池として注目され、高性能化( 充-放電のサイクル特性の向上、電池の高容量化等)を目指して、その応用'実用化 が活発に行われている。
[0004] このような水素吸蔵合金の一応用例であるニッケル水素蓄電池の電極材としては、 これまで〖こ CaCu型結晶構造を有する AB型希土類 M系合金が実用化されてい
5 5
る力 放電容量は約 300mAhZgで限界に来ており、さらなる高容量化は困難な状 況である。
[0005] これに対し、近年、 AB系水素吸蔵合金が有する耐久性と、 AB系水素吸蔵合金
5 2
が有する高容量とを組み合わせた新たな水素吸蔵合金として種々の希土類 Mg— Ni系合金が注目されており、該合金を電極に用いることで AB型合金を上回る放電
5
容量を示すことが報告されて ヽる。
[0006] 例えば、下記特許文献 1には、 PuNi型結晶構造を有する LaCaMgNi合金を用い
た電極が開示されている。
特許文献 1 :日本国特許第 3015885号公報
[0007] しかしながら、該特許文献 1に記載された合金は、水素吸蔵量は多 、ものの水素の 放出速度が遅 ヽ(即ち、レート特性が悪 、) t 、う問題を有して!/、る。
[0008] また、特許文献 2には、 La Ni で表記される金属間化合物の相を含む水素吸蔵合
5 19
金の他に、(La— M) Ni (M : Ca、Mg)で表記される金属間化合物の相を含む水
5 19
素吸蔵合金が記載されている。該特許文献 2に記載の水素吸蔵合金は、異なる 2種 類以上の水素吸蔵合金を材料としてメカ-カルァロイングを適用して、製造されるも のである。
特許文献 2 :日本国特許第 3397981号公報
[0009] さらに、下記特許文献 3〜5には、 CeNi型、 Gd Co型、 Ce Ni型又は PuNi型な
3 2 7 2 7 3 どの結晶構造を有する希土類 Mg— Ni系合金を用いた電極が高い水素吸蔵容量 を維持しつつ、良好な水素放出特性を示すことが開示されている。
特許文献 3 :日本国特開平 11— 323469号公報
特許文献 4:曰本国特開 2002— 273346号公報
特許文献 5 :日本国特開 2002— 105563号公報
[0010] また、下記特許文献 6には、 Ce Co 型結晶構造を有する合金に関しても CaCu型
5 19 5 結晶構造を有する希土類 Ni合金と複合化させた電極が水素化反応速度の点で 優れて 、ることが開示されて 、る。
特許文献 6 :日本国特許第 3490871号公報
[0011] また、前記特許文献以外にも、高容量を目的とした水素吸蔵電極用の水素吸蔵合 金として、希土類元素 Mg— Ni系の水素吸蔵合金や希土類元素 Mg— Ni系の 元素を主構成元素とし、それ以外に Cu、 Co、 Mn、 A1等の元素を構成元素として含 む水素吸蔵合金が種々提案されて ヽる(例えば、特許文献 7〜10)。
特許文献 7 :日本国特開 2000— 80429号公報
特許文献 8 :日本国特開 2004— 115870号公報
特許文献 9 :日本国特開 2000— 265229号公報
特許文献 10 :日本国特開 2000— 21439号公報
発明の開示
発明が解決しょうとする課題
[0012] し力しながら、これらの従来技術として知られている希土類一 Mg—Ni系合金は、 水素吸蔵電極に用いた場合に AB型希土類系合金と比べて優れた放電容量が得ら
5
れやすい点で優れるものの、充 '放電を繰り返した際に、放電容量や放電速度が低 下しやすぐサイクル特性やレート特性が劣るという問題がある。
[0013] また、 AB型希土類系合金では、サイクル特性を高めるために高価な Coを必須成
5
分として使用する必要があり、この場合には、製造コストが高価になるという問題があ る。
[0014] このような従来技術の問題点に鑑み、本発明は、高容量で且つサイクル特性に優 れた水素吸蔵合金を提供することを一の課題とする。また、本発明は、高容量であり 且つサイクル特性にも優れ、しカゝも、安価に水素吸蔵合金を提供することを他の課題 とする。
課題を解決するための手段
[0015] 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、ある特定の結 晶構造が含まれてなる水素吸蔵合金が、高容量で且つ充*放電サイクルに対する耐 久性に優れることを見いだし、本発明を完成するに至った。
[0016] 即ち、本発明は、組成力 一般式: A B C (但し、 Aは Y (イットリウム)を含
(4-w) (1 +w) 19
む希土類元素から選択される 1種又は 2種以上の元素、 Bは Mg元素、 Cは Ni、 Co、 Mnおよび A1からなる群より選択される 1種又は 2種以上の元素、 wは—0. 1〜0. 8 の範囲の数を表す)で表される Pr Co 型結晶構造からなる相を含有し、合金全体の
5 19
組成力 一般式: Rl R2 R3 (但し 15. 8≤x≤17. 8、 3. 4≤y≤5. 0、 78. 8≤z≤
χ y z
79. 6、 x+y+z= 100で表され、 Rlは Y (イットリウム)を含む希土類元素から選択さ れる 1種又は 2種以上の元素であり、 R2は Mg元素であり、 R3は Ni、 Co、 Mnおよび A1からなる群より選択される 1種又は 2種以上の元素であり、前記 zのうち Mn+Alを 示す値が 0. 5以上であり、 A1を示す値が 4. 1以下である)で表されることを特徴とす る水素吸蔵合金を提供する。
本発明に係る水素吸蔵合金は、上記特許文献に開示されたものとは、全く異なる P
r Co 結晶構造力 なる相を含有することにより、高容量で且つ充 '放電サイクルに
5 19
対する耐久性に優れたものとなる。
尚、 x、 y、 zは元素数の比を表したものであり、重量%を表したものではない。
また、前記 Pr Co 型結晶構造とは、 P6 Zmmcの空間群に属する六方晶系で、格
5 19 3
子定数の c軸長 Za軸長の比が 6. 2〜6. 6である結晶構造を有するものである。
[0017] また、本発明は、前記一般式: Rl R2 R3において、 x、 yおよび zが、 16. 3≤x≤ x y z
17. 6、 3. 6≤y≤4. 7、 78. 8≤z≤79. 1、であり、前記 zのうち Mn+Alを示す値 が 1. 6以上であり、 A1を示す値が 1. 9以下であることを特徴とする水素吸蔵合金を 提供する。
力かる構成であれば、 Pr Co 結晶構造力もなる相の生成比率を高めることができ
5 19
、高容量で且つ充*放電サイクルに対する耐久性により優れた水素吸蔵合金となる。
[0018] また、本発明に係る水素吸蔵合金は、 Pr Co 結晶構造力もなる相が 8重量%以上
5 19
存在することが好ましい。
力かる構成であれば、より一層、高容量で且つ充*放電サイクルに対する耐久性に 優れるものとなる。
[0019] また、本発明は、溶融合金を 1000KZ秒以上の冷却速度で冷却し、得られた合金 を更に加圧状態の不活性ガス雰囲気下において 860〜1020°Cの温度範囲で焼鈍 し、前記水素吸蔵合金を製造することを特徴とする水素吸蔵合金の製造方法を提供 する。
上記のような製造方法によれば、準安定相である Pr Co 結晶構造力 なる相の生
5 19
成比率を高めることができ、高容量な水素吸蔵合金を得ることができる。
尚、ここで溶融合金とは、目的とする水素吸蔵合金の組成に基づいて、原料インゴ ッド (材料)を所定量秤量し、加熱溶融させたものを ヽぅ。
[0020] また、本発明者らは、上記のような Pr Co 型結晶構造力もなる相を含有した水素吸
5 19
蔵合金を作成する過程にぉ ヽて、所定割合以上の Cuを添加した状態で合金を溶融 および焼鈍することにより、 Pr Co 型結晶構造力 なる相の生成を促進させうること
5 19
を見出し、本発明を完成するに至った。
[0021] 即ち、本発明は、 Cu元素の含有量が 1〜8モル%となるように溶融および焼鈍され
てなり、 Pr Co 型結晶構造力もなる相が 15重量%以上の割合で形成されてなること
5 19
を特徴とする水素吸蔵合金を提供する。
本発明に係る水素吸蔵合金は、該合金の必須成分として Cu元素を 1〜8モル%含 有するように溶融および焼鈍されて調製されたことにより、合金中に Pr Co 型結晶構
5 19 造の相が 15重量%以上の割合で形成され、これによつて高い水素吸蔵容量と優れ たサイクル特性を備えたものとして構成されたものである。また、 Cuは Coと比べて比 較的安価であるため、このような優れた特性を有する水素吸蔵合金は、比較的安価 に提供され得る。
[0022] 本発明においては、好ましくは、合金全体の組成が、一般式 Rl R2 R3 Cu (但し a b e d
、 Rlは Y (イットリウム)を含む希土類元素から選択される 1種又は 2種以上の元素で あり、 R2は Mg、 Ca、 Sr、 Baからなる群より選択される 1種又は 2種以上の元素であり 、 R3は Niゝ Co、 Mnゝ Al、 Feゝ Crゝ Zn、 Siゝ Snゝ V、 Nbゝ Taゝ Ti、 Zrおよび Hfからな る群より選択される 1種又は 2種以上の元素であり、 a、 b、 c及び dはそれぞれ、 15≤ a ≤19、 2≤b≤7, 70≤c≤80, l≤d≤7, a+b + c + d= 100を満たす数である)で 表されるものとする。
本発明に係る水素吸蔵合金においては、好ましくは、前記 R2が Mgであり、前記 R 3力 Co、 Mn、 A1および Niからなる群より選択される 1種又は 2種以上の元素である。
[0023] また、本発明は、溶融合金を 1000KZ秒以上の冷却速度で冷却し、得られた合金 を更に加圧状態の不活性ガス雰囲気下において 860〜980°Cの温度範囲で焼鈍し 、前記水素吸蔵合金を製造することを特徴とする水素吸蔵合金の製造方法を提供す るものである。焼鈍の際の温度範囲は、好ましくは 920〜970°Cである。
[0024] また、本発明に係る水素吸蔵合金は、合金の一次粒子のサイズが 10〜: LOOnmで あることが好ましい。
一般的に、水素吸蔵合金は、微粉ィ匕すると (極端に粒径が小さくなる)結晶構造が 崩れ易ぐ結果的に耐久性が低下するが、力かる構成であれば、水素吸蔵'放出時 の該合金の微粉化が抑制され、より一層耐久性が優れたものとなる。
[0025] また、本発明に係る水素吸蔵合金電極は、上記のような水素吸蔵合金を水素貯蔵 媒体として用いたものであり、本発明に係る二次電池は、該水素吸蔵合金電極を負
極として用いたものである。
発明の効果
[0026] このように、本発明に係る水素吸蔵合金は、水素吸蔵電極に用いた場合に水素吸 蔵容量が高容量であり、充*放電を繰り返した際にも優れた耐久性を有するものとな る。
[0027] また、本発明に係る二次電池は、上記のような特性を有する水素吸蔵合金を水素 吸蔵媒体とする水素吸蔵合金電極を負極に用いたものであり、従来の AB
5型希土類 系合金と比べて高容量であり、且つサイクル特性にも優れたものとなる。
図面の簡単な説明
[0028] [図 l]Pr Co 型結晶構造の構造モデルを示した図。
5 19
[図 2]二次粒子の透過型電子顕微鏡写真 (TEM像)を示した図。
[図 3]熱処理温度と Pr Co 型結晶構造相の存在割合との関係を示した図。
5 19
[図 4]熱処理温度と容量保持率との関係を示した図。
[図 5]熱処理温度と Pr Co 型結晶構造相の存在割合との関係を示した図。
5 19
[図 6]熱処理温度と容量保持率との関係を示した図。
[図 7]熱処理温度と Pr Co 型結晶構造相の存在割合との関係を示した図。
5 19
[図 8]熱処理温度と容量保持率との関係を示した図。
[図 9]熱処理温度と Pr Co 型結晶構造相の存在割合との関係を示した図。
5 19
[図 10]熱処理温度と容量保持率との関係を示した図。
発明を実施するための最良の形態
[0029] 本発明に係る水素吸蔵合金の第一実施形態は、組成が、一般式: A B C
(4-w) (1 +w) 19
(但し、 Aは、 Y (イットリウム)を含む希土類元素力も選択される 1種又は 2種以上の元 素、 Βは Mg元素、 Cは Ni、 Co、 Mnおよび A1力 なる群より選ばれる 1種又は 2種以 上の元素、 wは 0. 1〜0. 8の範囲の数を表す)で表される Pr Co 型結晶構造から
5 19
なる相を含有する。
[0030] 組成が、前記一般式: A B C で表されるような Pr Co 結晶構造力 なる相を
(4-w) (1+w) 19 5 19
含有することで、高容量で且つ充*放電サイクルに対する耐久性に優れた水素吸蔵 合金となる。すなわち、一般式: A B C で表される Pr Co 型結晶構造は、 3つ
(4-w) (1+w) 19 5 19
の CaCu型の結晶構造の ABユニットと 1つのラーべス構造の A B Cユニットの
5 5 (1-w) (1+w) 4 積層構造からなり、 A B Cユニットにおいて、原子半径の大きい元素 A (希土類
(1-w) (1+w) 4
元素)と原子半径の小さい元素 B (Mg)が w=— 0. 1〜0. 8の割合で存在することに より、ユニット間の歪みが小さくなり、可逆的な水素吸蔵放出に適した格子体積となる 。 wが— 0. 1より小さいと、希土類元素の割合が増加してユニット間の歪みが大きくな り、格子体積も大きくなり、これによつて水素化物が安定した状態で存在することとな り、吸蔵した水素の放出が行われに《なる。 wが 0. 8より大きいと、 Mgの割合が増 カロして格子定数が小さくなつて水素を吸蔵しに《なると考えられる。
[0031] 前記 Pr Co 型結晶構造力 なる相の存在及びその量 (重量%)は、例えば、粉砕
5 19
した水素吸蔵合金粉末にっ 、て X線回折測定を行 ヽ、得られた X線回折パターンを リートベルト法により解析することによって評価できる。より具体的には、実施例記載 の方法により測定される。
図 1は Pr Co 結晶構造力もなる相の構造モデルを示したものである。 X線回折測
5 19
定とリートベルト法による構造解析によれば、前記 Pr Co 結晶構造力もなる相が、該
5 19
図 1に示すような構造モデルを備えたものであることがわかる。
[0032] 前記 Pr Co 型結晶構造力 なる相の具体的な結晶構造を以下に示す。
5 19
結晶系としては、六方晶に属し、空間群としては、 P6 Zmmcに属する。
3
また、格子ノ ラメータとしては、 a軸長 =4. 980〜5. 080Aであり、 c軸長 = 30. 88 〜33. 53Aである。
格子定数の c軸長 Za軸長の比は、 6. 20〜6. 60であり、 V (体積) =663. 1〜74 9. 3A3である。
[0033] また、本発明の第一実施形態に係る水素吸蔵合金は、合金全体の組成が、一般式 : Rl R2 R3 (但し、 15. 8≤x≤17. 8、 3. 4≤y≤5. 0、 78. 8≤z≤79. 6、 x+y
+ z= 100で表され、 Rlは Y (イットリウム)を含む希土類元素力も選択される 1種又は 2種以上の元素であり、 R2は Mg元素であり、 R3は Ni、 Co、 Mnおよび A1からなる群 より選ばれる 1種又は 2種以上の元素であり、前記 zのうち Mn+Alを示す値が 0. 5以 上であり、 A1を示す値が 4. 1以下である)で表されるものである。また、好ましくは、前 記一般式: Rl R2 R3にお!/、て、 x、 yおよび z力 16. 3≤x≤17. 6、 3. 6≤v≤4.
7、 78. 8≤z≤79. 1であり、前記 zのうち Mn+Alを示す値が 1. 6以上であり、 A1を 示す値が 1. 9以下で表されるものである。
[0034] 本発明の第一実施形態に係る水素吸蔵合金は、 R1として、 Y (イットリウム)を含む 希土類元素、即ち、 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu、 Sc及び Yからなる群力 選択される 1種又は 2種以上の元素が用いられる力 水 素解離平衡圧の観点から、特に La、 Ce、 Pr及び Ndが好ましい。
また、希土類元素の混合物であるミッシュメタル (Mm)が安価であるため、好適に 用いられる。
[0035] 本発明の第一実施形態に係る水素吸蔵合金は、 R2として、 Mg元素が用いられる 。 Mg元素を用いることで、水素吸蔵容量や耐久性が向上する。
[0036] 本発明の第一実施形態に係る水素吸蔵合金は、 R3として、少なくとも Mn又は A1 の何れか一方を含むものであり、前記 zのうち Mn+Alを示す値 (即ち、全体に対する Mn+Alの組成比)が 0. 5以上、好ましくは 1. 6以上である。
Mn+Alの組成比が 0. 5以上であれば、 Pr Co 結晶構造からなる相の生成量が
5 19
増大する。
また、 Mnの糸且成 itiま、 0. 2〜3. 7力好ましく、 1. 0〜3. 7力 ^より好まし!/ヽ。
Mnが上記範囲内であれば、 Pr Co 結晶構造力 なる相を維持しつつ、高容量化
5 19
を図ることができる。
更に、 R3として Niを含むものが好ましい。 Niを必須元素とすることで、水素の吸蔵 放出特性を良好にすることができる。
[0037] 前記合金組成においては、上記の如く A1は 4. 1以下であり、好ましくは 1. 9以下で ある。
上記組成範囲内であれば、 Pr Co 結晶構造力もなる相の生成量が増大する。 A1
5 19
の組成比が 4. 1を超えると著しく Pr Co 結晶構造力もなる相の生成量が減少し、水
5 19
素吸蔵量や耐久性が低下する。
[0038] 本発明の第一実施形態に係る水素吸蔵合金の具体的な組成としては、例えば、 L a Mg Ni Co Mn Al , La Mg Ni Co Mn Al , La Mg Ni M
16.9 4.1 69.2 6.0 1.9 1.9 16.9 4.1 71.1 5.8 1.0 1.1 17.0 4.2 77.0 n 、La Mg Ni Co Mn , La Pr Mg Ni Co Mn , La Ce Mg
1.8 17.2 4.0 73.3 3.9 1.6 12.8 4.0 3.6 72.1 4.4 3.1 13.4 4.2 3.6
Ni Co Mn , La Ce Nd Mg Ni Co Mn , La Ce Nd Mg Ni
71.1 4.0 3.7 13.9 2.1 0.8 4.1 72.2 4.0 2.9 14.1 2.0 0.9 4.1 76.3
Mn , La Mg Ni Mn Al , La Mg Ni Co Mn Al , La Mg Ni
2.6 17.6 3.6 76.4 1.4 1.0 17.8 3.4 68.2 6.4 2.1 2.1 16.3 4.7 69.
Co Mn Al 、 La Mg Ni Co Mn Al 、 La Mg Ni Mn Al 、 La
9 6.0 2.0 1.1 15.8 5.0 71.1 4.1 2.0 2.0 17.0 4.1 73.9 0.9 4.1 17.0
Mg Ni Co Mn Al 等が挙げられる。
4.1 73.7 4.7 0.2 0.3
[0039] 本発明の第一実施形態に係る水素吸蔵合金は、前記 Pr Co 型結晶構造からなる
5 19
相を含有するものであり、通常、該合金中に前記 Pr Co 型結晶構造力 なる相が 8
5 19
重量%以上、好ましくは 65重量%以上、更に好ましくは 79重量 %以上存在する。そ の上限は、限定されないが、通常、 95重量%程度である。
Pr Co 型結晶構造力もなる相の存在割合が高いほど、高容量となる。
5 19
Pr Co 型結晶構造力 なる相は、図 1の結晶構造モデルに示したように ABュ-ッ
5 19 2 トと ABユニットとの積層構造を有する力 耐久性の高い ABユニットの比率が高ぐ
5 5
且つ合金中に含有させた Mn又は A1が ABユニットと ABユニットとの層間に生じる
2 5
歪みを緩和し、結晶構造の安定性が増したために合金の耐久性が増したものと考え られる。
また、他の生成相との粒界界面での歪みが緩和され、微粉化が抑制される。微粉 化が抑制されることで、アルカリ電解液と水素吸蔵合金との接触面積が少なくなり、該 水素吸蔵合金の腐食が抑制されサイクル寿命が向上し、耐久性に優れたものとなる また、従来の CeNi型、 PuNi型等と比較して、結晶中に含まれる Mg含有量が少
3 3
ないため、耐アルカリ性が向上したことも考えられる。
尚、本発明の水素吸蔵合金中の該 Pr Co 型結晶構造力もなる相の存在割合 (重
5 19
量%)は、実施例記載の方法により測定される。
他の生成相としては、 CeNi型、 PuNi型、 Ce Ni型、 Ce Co 型、 CaCu型等の
3 3 2 7 5 19 5 結晶構造力 なる相が挙げられる。
[0040] 本発明の一実施形態に係る水素吸蔵合金は、好ましくは、合金の一次粒子のサイ ズが 10〜: LOOnmである。
前記一次粒子のサイズを 10〜: LOOnmの範囲とすることで、水素吸蔵に伴う体積膨 張を緩和して微粉ィ匕が起こりに《なる。また、熱処理時に原子の再配列による相変
態が容易に起こり、前記 Pr Co 結晶構造力 なる相が生成しやすくなる。
5 19
一次粒子のサイズが lOOnmを超える場合、微粉ィ匕によるサイクル劣化が起こり、 1 Onm未満の場合、酸化による劣化が起こりやすくなる。
尚、前記一次粒子のサイズは、実施例記載の透過型電子顕微鏡観察により求める ことができる。
[0041] また、本発明の一実施形態に係る水素吸蔵合金は、二次粒子の平均粒子径が、 2 0〜60 μ mであることが好まし!/、。
二次粒子の平均粒子径が上記範囲内にあれば、良好な高率放電特性が得られ、 且つ強アルカリ電解質による腐食が抑制されて、より耐久性に優れたものとなる。 尚、二次粒子とは、複数の一次粒子が結合してできた多結晶体力 なる粒子をいう 図 2に二次粒子の透過型電子顕微鏡写真 (TEM像)を示す。
[0042] 本発明の一実施形態に係る水素吸蔵合金は、所定の合金組成となる量の原料イン ゴット (材料)を配合し、溶融し、冷却固化して得られた粗生成物を 860〜1020°Cの 温度範囲で焼鈍することにより形成される。
[0043] まず、目的とする水素吸蔵合金の組成に基づ!/ヽて、原料インゴッド (材料)を所定量 秤量し、ルツボに入れ、不活性ガス雰囲気中又は真空中で高周波溶融炉を用いて、 1200〜1600°Cにカロ熱し、材料を溶融させる。
前記材料を溶融させた溶融合金をその後冷却するが、その際の該溶融合金を冷 却する冷却速度は、 1000KZ秒以上とする。
このように溶融合金を 1000KZ秒以上で急冷することで、準安定相である本発明 の合金相(Pr Co 結晶構造カゝらなる相)を効率よく形成させることができる。
5 19
急冷して固化する冷却法としては、 ιοο,οοοκζ秒以上で急冷可能なメルトスピ- ング法を用いることができる。
尚、その他の冷却法としては、例えば、金型铸造法 (冷却速度としては、 ι,οοοκ/ 秒が可能)、ガスアトマイズ法 (冷却速度としては、 ιο,οοοκΖ秒が可能)が使用でき る。
[0044] 次に、合金の急冷凝固後、目的の合金相の生成割合を向上させるために、加圧状
態の不活性ガス雰囲気中で、電気炉を用いて熱処理を行う。該電気炉で行う熱処理
(焼鈍)としては、 860〜1020°Cの炉内温度範囲において 3〜50時間の熱処理が好 ましい。
[0045] 前記熱処理温度の下限温度、上限温度をそれぞれ 860°C、 1020°Cと定めたのは 、 Pr Co 型結晶構造力もなる相の生成割合を向上させるためである。
5 19
[0046] 最低 3時間の熱処理を行うことにより、目的の Pr Co 結晶構造力 なる相を高い割
5 19
合で得ることができる。また、 50時間を超える熱処理は、 LaNi結晶構造相のような
5
安定相が出現するので好ましくない。
より好ましい熱処理条件は、 900〜980°Cで、 5〜 10時間である。
[0047] また、前記熱処理雰囲気を、加圧状態の不活性ガス雰囲気(例えば、アルゴン、へ リウム)とするのは、熱処理中の材料の酸化を防止しつつ、マグネシウムの蒸発を防 止するためである。
特に、ヘリウムガス雰囲気は、マグネシウムの蒸発防止効果が大きく好ましい。
[0048] 不活性ガス下で熱処理を行う際には、 0. IMPa以上の圧力範囲、好ましくは 0. 2 〜0. 5MPa (ゲージ圧)の圧力範囲とする。
該圧力範囲内で熱処理を行えば、より耐久性に優れた水素吸蔵合金が得られる。 尚、該圧力範囲内で熱処理を行う場合であっても熱処理温度としては、 900〜980 °Cがより好適である。
[0049] 前記温度、時間及び加圧状態の不活性ガス雰囲気下で熱処理を行うことで、 Pr C
5 o 結晶構造力 なる相が多く含まれる水素吸蔵合金を得ることができる。
19
[0050] 次に、本発明の第二実施形態に係る水素吸蔵合金について説明する。
本発明の第二実施形態に係る水素吸蔵合金は、 Cu元素の含有量が 1〜8モル% となるように合金の原料が溶融および焼鈍されてなり、 Pr Co 型結晶構造からなる
5 19
相が 15重量%以上の割合で形成されてなるものである。該 Pr Co 型結晶構造から
5 19
なる相は、前記第一実施形態において説明したものと同じである。
Pr Co 型結晶構造相は本来、準安定相であるが、 Cu元素を加えることで安定ィ匕し、
5 19
生成割合が大幅に増加する。 Pr Co 型結晶構造相が Cu元素を加えることで安定ィ匕
5 19
し、生成割合が大幅に増加する原因は定かではないが、希土類元素サイトまたは ΠΑ
族元素(Mg、 Ca、 Sr、 Baなど)サイトに挟まれた特定の Ni等の元素サイトを選択的 に Cuが置換するためと考えられる。
また、 Pr Co 型結晶構造力もなる相はアルカリ電解液に対して安定であり、且つ該
5 19
Pr Co 型結晶構造の結晶相からなる一次粒子が Ce Ni型結晶相等の他の結晶相
5 19 2 7
カゝらなる一次粒子の粒界に介在し、 Ce Ni型結晶相等の結晶相が電解液と直接接
2 7
触する機会を減らすことにより、合金の腐食が抑制されてサイクル特性が改善された ものと推測される。
[0051] また、結晶中の Ni等の元素が Cu元素に置換されることにより、水素解離平衡圧が 低下するとともに合金の導電性が向上し、大電流放電に対応可能となる。
[0052] 本発明の第二実施形態に係る水素吸蔵合金においては、 Cu元素の含有量は 1〜 8モル0 /0であるが、より好ましくは 2〜7モル0 /0である。 Cu元素の含有量が 2〜7モル %であれば前記 Pr Co 型結晶構造力 なる相の生成量がさらに多くなり、本発明の
5 19
上記効果が特に顕著なものとなる。
Cuの含有量が 8%を超えると、前記 Pr Co 型結晶構造力 なる相の生成割合が
5 19
低下してしまい、サイクル特性が劣る場合がある。これは、 Cuの含有量が 8%を超え ると、アルカリ電解液に対する耐食性が劣る他の結晶相(Ce Ni型結晶相、 Ce Co
2 7 5 19 型結晶相、 AuBe型結晶相など)の生成割合が増えることが原因であると推測される
5
[0053] また、本発明の第二実施形態に係る水素吸蔵合金は、前記 Pr Co 型結晶構造か
5 19
らなる相が 15重量%以上の割合で形成されたものである力 25重量%以上の割合 で形成されたものが好ましぐ 40重量%以上の割合で形成されたものがより好ましぐ 50〜85重量%の割合で形成されたものが特に好ましい。
Pr Co 型結晶構造の存在割合が高いほど他の生成相との粒界が減り、膨張収縮
5 19
時の歪みが緩和されて微粉ィ匕が抑制されることとなる。微粉化が抑制されることで、 アルカリ電解液と水素吸蔵合金との接触面積が少なくなり、該水素吸蔵合金の腐食 が抑制されサイクル寿命が向上することとなる。
[0054] また、本発明の第二実施形態に係る水素吸蔵合金は、その化学組成が一般式 R1 a
R2 R3 Cu (但し、 R1はイットリウムを含む希土類元素力 選択される 1種又は 2種 b e d
以上の元素であり、 R2は Mg、 Ca、 Srおよび Baからなる群より選択される 1種又は 2 種以上の元素であり、 R3は Ni、 Co、 Mn、 Al、 Fe、 Cr、 Zn、 Si、 Sn、 V、 Nb、 Ta、 Ti 、 Zrおよび Hfからなる群より選択される 1種又は 2種以上の元素であり、 a、 b、 c及び d はそれぞれ、 15≤a≤19, 2≤b≤7, 70≤c≤80, l≤d≤7, a+b + c + d= 100を 満たす数である)で表されるものが好ま 、。
[0055] 前記 R1の希土類元素としては、 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 E r、 Tm、 Yb、 Lu、 Scおよび Y力もなる群より選択される 1種又は 2種以上の元素が用 いられるが、水素解離平衡圧の観点から、特に La、 Ce、 Prおよび Ndからなる群より 選択される 1種又は 2種以上の元素が好ましい。特に、希土類元素の混合物であるミ ッシュメタル (Mm)が安価であるため、好適に用いられる。
[0056] 前記 R2としては、 Mg、 Ca、 Srおよび Baからなる群より選択される 1種又は 2種以 上の元素が用いられる力 水素吸蔵量、耐食性の観点から、特に Mgが好ましい。
[0057] 前記 R3としては、 Niゝ Co、 Mn、 Al、 Feゝ Crゝ Zn、 Siゝ Sn、 V、 Nbゝ Taゝ Ti、 Zrお よび Hfからなる群より選択される 1種又は 2種以上の元素が用いられる力 とりわけ C o、 Mn、 A1および Mからなる群より選択される 1種又は 2種以上の元素を用いること が好ましい。 Niや Coを用いることにより、耐アルカリ性、電極触媒活性に優れたもの となる。また、 Mnや A1を用いることにより、水素解離平衡圧を調整することができ、特 に、 Mn又は A1の少なくとも何れか一方を、 0. 3〜0. 6モル0 /0 (両方添加する場合は その合計量)となる範囲内で添加することが好まし 、。
[0058] 本発明の水素吸蔵合金の具体的な化学組成としては、例えば、 La Mg (NiMn) a b c
Cu、 La Mg (NiAl) Cuなどが挙げられる。
d a b c d
尚、 a、 b、 cおよび dは前記一般式中のものと同義の数である。
[0059] 本発明に係る第二実施形態の水素吸蔵合金は、一次粒子の粒径が 10〜: LOOnm であることが好ましい。
前記一次粒子の粒径を 10〜: LOOnmの範囲とすることで、(l) Pr Co 型結晶構造
5 19
の相が、 Ce Ni型結晶構造の相といった他の結晶相の粒界に均一に分散するため
2 7
カゝ、水素吸蔵に伴う体積変化を有効に緩和して微粉化を防き、ひいては耐食性を顕 著に改善することができる、(2)熱処理に伴う相変化が容易に起こり、本発明の合金
相を高効率で得ることができる、という効果がある。結晶粒径が lOnm未満では、酸 化を受けやすぐまた、 lOOnmを超えるものでは、微粉化が起こりやすくなる。
一次粒子の粒径を上記範囲とするには、溶融した材料を冷却速度が 100000KZ 秒以上であるメルトスピユング法を用いて急冷し、後述する条件下にお 、て焼鈍する 方法を好適に採用することができる。
[0060] 尚、前記一次粒子の粒径が 10〜: LOOnmであるとは、該一次粒子の略全てが最小 10nm、最大 lOOnmの範囲内に含まれることを意味するものである。具体的には、電 子顕微鏡写真において任意の 100個を対象として粒径を測定した場合に、粒径が 1 0〜: LOOnmの範囲内である粒子によって占められる割合力 面積比で 80%以上で あることをいう。また、一次粒子とは、一個の結晶子で構成された単結晶構造を有す る粒子 (結晶粒ともいう)のことをいう。一次粒子の粒径は、透過型電子顕微鏡を用い た観察により求めることができる。具体的には、透過型電子顕微鏡 (Hitachi H900 0)を用い、結晶粒の最も長い長辺と最も短い短辺の長さを測定し、下記の式により 求める。
一次粒子の粒径 = (長辺 +短辺) Z2
[0061] 本発明に係る第二実施形態の水素吸蔵合金は、前記一般式で表される化学組成 となるように合金材料を配合し、加熱して溶融し、 1000KZ秒以上の冷却速度で急 冷凝固させ、その後加圧状態の不活性ガス雰囲気下で、得られた粗生成物を 860〜 980°Cの温度範囲、好ましくは 920〜970°Cの温度範囲で焼鈍することにより得るこ とがでさる。
[0062] より具体的に説明すると、まず、目的とする水素吸蔵合金の化学組成に基づいて、 原料インゴッド (合金材料)を所定量秤量し、ルツボに入れ、不活性ガス雰囲気中又 は真空中で高周波溶融炉を用い、 1200〜 1600°Cに加熱して材料を溶融させる。 その後、溶融した材料を冷却して固化させる。
溶融した材料を冷却する際の冷却速度は、 ΙΟΟΟΚΖ秒以上 (急冷とも 、う)が好ま しい。冷却速度が ΙΟΟΟΚΖ秒未満の場合は CaCu型結晶構造などの安定相が生
5
成しやすいが、 ΙΟΟΟΚΖ秒以上で急冷することで、準安定相である Pr Co 相が生
5 19 成しやすくなる。斯カる観点から冷却方法としては、冷却速度が 100000KZ秒以上
であるメルトスピユング法、冷却速度が 10000KZ秒程度であるガスアトマイズ法など を好適に用いることができる。
[0063] 次に、合金が凝固した後、不活性ガス雰囲気下で、電気炉を用いて熱処理 (焼鈍) を行う。具体的【こ【ま、 860〜980°Cの範囲の熱処理温度【こお!/、て、 0. 2〜1. OMPa (ゲージ圧)の加圧状態の不活性雰囲気下で 3〜50時間の再結晶焼鈍を行う。 放冷凝固後においては、合金は準安定相である Pr Co 型結晶構造相と安定相と
5 19
の混合相となっている力 上記のような熱処理を行うことにより、 Pr Co 型結晶構造
5 19
相の存在割合を大幅に増大させることができる。
従来は 1000〜: L 100°Cで、真空中で熱処理して均一化処理を行っていた力 斯か る条件下での熱処理では Mgが揮発しやすぐ結晶構造が変化する虞がある。本発 明では、熱処理の際の温度条件として、好ましくは 860〜980°Cとし、また、熱処理の 際の圧力条件として、好ましくは 0. 2〜1. OMPa (ゲージ圧)の加圧状態とする。さら に、熱処理の際の雰囲気として、好ましくはアルゴンやヘリウムなどの不活性雰囲気 を用い、特に好ましくはヘリウムガスを用いる。斯かる条件の下で熱処理すると、 Pr C
5 o 相を高効率で得ることができる。
19
[0064] 熱処理雰囲気を、不活性ガス雰囲気(例えば、アルゴン、ヘリウム)とするのは、熱 処理中の材料の酸ィ匕を防止するためである。また、前記熱処理温度は 860〜980°C であるが、特に好ましくは 920°C〜970°Cである。熱処理温度が 920°C〜970°Cの 範囲であれば、 Pr Co 型結晶構造相の割合が顕著に増加し、 Pr Co 型結晶構造
5 19 5 19
相が主相(即ち、合金中で最も多く占める相)となる。
[0065] 本発明に係る第二実施形態の水素吸蔵合金電極は、上述のような水素吸蔵合金 を水素吸蔵媒体として備えたものである。本発明に係る第二実施形態の水素吸蔵合 金を水素吸蔵媒体として電極に使用する際には、該水素吸蔵合金を粉砕して使用 することが好ましい。
電極製作時の水素吸蔵合金の粉砕は、熱処理の前後のどちらで行ってもよいが、 粉砕により表面積が大きくなるため、合金の表面酸ィ匕を防止する観点から、熱処理後 に粉砕するのが望ましい。粉砕は、合金表面の酸化防止のために不活性雰囲気中 で行うことが好ましい。
前記粉砕には、例えば、機械粉砕、水素化粉砕などが用いられる。
[0066] また、本発明に係る二次電池は、該水素吸蔵合金電極を負極として用い、例えば、 ニッケル水素蓄電池として構成される。本発明の水素吸蔵合金、即ち水素吸蔵合金 電極は、ニッケル水素蓄電池等の電解液に用いられる強アルカリ水溶液に対して耐 腐食性を有するため、水素の吸収 ·放出を繰り返し行うサイクル特性が優れている。 その結果、二次電池の充'放電のサイクル特性も優れたものとなる。
尚、二次電池の正極としては、例えば、ニッケル電極 (焼結式または非焼結式)が 用いられる。
実施例
[0067] 以下、実施例及び比較例を用いて本発明を更に具体的に説明するが、本発明は、 以下の実施例に限定されるものではない。なお、各種特性については以下の方法に よって測定を行った。
[0068] <結晶粒 (一次粒子)サイズの測定方法 >
結晶粒 (一次粒子)サイズは、透過型電子顕微鏡 (Hitachi H9000)を用いて測定 を行った。
結晶粒サイズは、透過型電子顕微鏡を用い、任意の 100個を対象としそれぞれの 結晶粒の最も長い長辺と最も短い短辺との長さを測定し、下記の式により求めた。 結晶粒サイズ = (長辺 +短辺) Z2
[0069] <平均粒子径の測定方法 >
水素吸蔵合金の粒度分布及び平均粒径は、粒度分析計 (マイクロトラック社製、品 番「MT3000」)を用い、レーザ回折 ·散乱法で測定した。
尚、平均粒径とは、累積平均径 D50を指し、粉体の全体積を 100%とした際の累積 カーブが 50%となる点の粒径をいう。
[0070] <結晶構造の測定及び存在割合の測定 >
得られた水素吸蔵合金を粉砕して平均粒径 (D50)が 20 μ mの粉末とし、これを X 線回折装置(BrukerAXS社製、品番 M06XCE)を用いて、 40kV、 100mA (Cu管 球)の条件下で測定を行った。さらに、構造解析として、リートベルト法 (解析ソフト: RI ETAN2000)による解析を行った。
[0071] <放電容量の測定方法 >
[電極の作製]
合金粉末 100重量部に、ニッケル粉末 (INCO社製、 # 210)3重量部をカ卩ぇ混合し た後、増粘剤 (メチルセルロース)を溶解した水溶液を加え、更に、結着剤 (スチレンブ タジェンゴム)を 1. 5重量部加え、ペースト状にしたものを厚み 45 m穿孔鋼鈑 (開孔 率: 60%)の両面に塗布して乾燥した後、厚さ 0. 36mmにプレスし、負極とした。正 極には、容量過剰のシンター式水酸化ニッケル電極を用いた。
[開放形電池の作製]
前記負極をセパレータを介して前記正極で挟み込み、これら電極に lOkgfZcm2の 圧力が力かるようにアクリル板で固定し、開放形セルに組み立てた。
電解液は 6. 8molZlの KOH水溶液と 0. 8molZlの LiOH水溶液とからなる混合液 を用いた。
[放電容量の測定]
20°Cの水槽中で、充電は 0. lltAで 150%、放電は 0. 2ItAで終止電圧—0. 6V ( vs.Hg/HgO)の条件で充放電を 10サイクル繰り返し、最大となったところで求めた。
[0072] <充 ·放電サイクル特性の測定 >
上述のようにして作製した開放形電池を用い、 20°Cの水槽中で、充電は 0. lltA で 150%、放電は 0. 2ItAで終止電圧 0. 6V (vs.HgZHgO)の条件で充放電を 10 サイクル繰り返した。
11サイクル目、充電は 0. lltAで 150%、放電は lltAで終止電圧— 0. 6V (vs.Hg ZHgO)の条件で充放電を行い、 12サイクル目、充電は 0. lltAで 150%、放電は 3 ItAで終止電圧 0. 6V (vs.Hg/HgO)の条件で充放電を行った。
13サイクルから 52サイクルまでは、充電は lltAで 75%、放電は 0. 5ItAで終止電 圧 0. 6V(vs.Hg/HgO)の条件で充放電を繰り返した。
53サイクルから 55サイクルまでは、充電は、 0. lltAで 150%、放電は 0. 2ItAで 終止電圧 0. 6V(vs.Hg/HgO)の条件で充放電を繰り返した。
[0073] <サイクル劣化率の測定方法 >
サイクル劣化率 = (53サイクル目容量 Z10サイクル目容量) X 100で求めた。
[0074] <耐食性測定方法 >
充放電試験後の負極を水洗乾燥させ、質量飽和磁化及び比表面積を測定した。
[質量飽和磁化の測定法]
振動試料型磁力計 (VSM) (理研電子製、機種名: BHV- 10H)を用いて質量飽 和磁ィ匕を測定した。
尚、充放電試験前の水素吸蔵合金の質量飽和磁化は、 0. 2Am2Zkg以下であり 、腐食が進行する従 、質量飽和磁ィ匕の値は大きくなる。
[0075] <比表面積の測定 >
BET法(QUANTACHROME製、機種名:直読全自動表面測定装置モノソープ MS - 19)により、比表面積を測定した。
尚、充放電試験前の水素吸蔵合金の比表面積は、 0. lm2Zg以下であり、腐食が 進行するに従い比表面積が大きくなる。
[0076] (実施例 1)
目的の組成に基づき原料インゴットを所定量秤量し、ルツボに入れ、減圧へリウム ガス雰囲気下で高周波溶融炉を用いて、 1500°Cに加熱し、材料を溶融した。溶融 後、炉内の铸型中で放置する金型铸造法にて合金を固化させた。
次に、前記合金を大気圧下、ヘリウムガス雰囲気中で、電気炉を用いて熱処理を 行った。該電気炉で 940°Cの温度において、 7時間の再結晶焼鈍を行った後、炉内 にて放置冷却して La Mg Ni Co Mn Al の組成力 なる水素吸蔵合金を得た
16.9 4.1 71.1 5.8 1.0 1.1 該水素吸蔵合金の粉砕は、ヘリウムガス雰囲気中で機械的に行い、平均粒径が D 50 = 60 mとなるように調整した。尚、粒度分布幅は、 ϋ10= 16 /ζ πι、 D90= 125 μ mであった。
得られた水素吸蔵合金の結晶構造及び存在割合 (重量%)を測定した。また、得ら れた水素吸蔵合金を用いて 10サイクル目放電容量、 12サイクル目放電容量、サイク ル劣化率、サイクル後質量飽和磁ィ匕及びサイクル後比表面積を測定した。
[0077] (実施例 2)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940
°C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 1と同様の操作を行 い La Mg Ni Co Mn Al の組成からなる水素吸蔵合金を得た。
16.9 4.1 71.1 5.8 1.0 1.1
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0078] (実施例 3)
目的の組成に基づき原料インゴットを所定量秤量し、ルツボに入れ、減圧へリウム ガス雰囲気下で、高周波溶融炉を用いて 1500°Cに加熱し、材料を溶融した。溶融 後、メルトスピユング法を用いて ΙΟΟ,ΟΟΟΚΖ秒以上で急冷して合金を固化させた。 次に、前記合金を 0. 2MPa下、ヘリウムガス雰囲気中で、電気炉を用い 860°Cの 温度において 7時間の再結晶焼鈍を行った後、炉内にて放置冷却して La Mg Ni
16.9 4.1 71
Co Mn Al の組成力もなる水素吸蔵合金を得た。該水素吸蔵合金を用いて実施
.1 5.8 1.0 1.1
例 1と同様の測定を行った。
[0079] (実施例 4)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 900 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Co Mn Al の組成力もなる水素吸蔵合金を得た。該水素吸蔵合
16.9 4.1 71.1 5.8 1.0 1.1
金を用 、て実施例 1と同様の測定を行つた。
[0080] (実施例 5)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Co Mn Al の組成力もなる水素吸蔵合金を得た。該水素吸蔵合
16.9 4.1 71.1 5.8 1.0 1.1
金を用 、て実施例 1と同様の測定を行つた。
[0081] (実施例 6)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 980 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Co Mn Al の組成力もなる水素吸蔵合金を得た。該水素吸蔵合
16.9 4.1 71.1 5.8 1.0 1.1
金を用 、て実施例 1と同様の測定を行つた。
[0082] (実施例 7)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 1020
°C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Co Mn Al の組成からなる水素吸蔵合金を得た。
16.9 4.1 71.1 5.8 1.0 1.1
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0083] (実施例 8)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 5MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Co Mn Al の組成からなる水素吸蔵合金を得た。
16.9 4.1 71.1 5.8 1.0 1.1
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0084] (実施例 9)
目的の組成に基づき原料インゴットを所定量秤量し、大気圧下、ヘリウム雰囲気中 で焼鈍温度 940°C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と 同様の操作を行い La Mg Ni Co Mn Al の組成力もなる水素吸蔵合金を得た
16.9 4.1 71.1 5.8 1.0 1.1 該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0085] (実施例 10)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Co Mn Al の組成からなる水素吸蔵合金を得た。
16.9 4.1 69.2 6.0 1.9 1.9
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0086] (実施例 11)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Mn の組成からなる水素吸蔵合金を得た。
17.0 4.2 77.0 1.8
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0087] (実施例 12)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Co Mn の組成からなる水素吸蔵合金を得た。
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0088] (実施例 13)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Pr Mg Ni Co Mn の組成からなる水素吸蔵合金を得た。
12.8 4.0 3.6 72.1 4.4 3.1
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0089] (実施例 14)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Ce Mg Ni Co Mn の組成からなる水素吸蔵合金を得た。
13.4 4.2 3.6 71.1 4.0 3.7
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0090] (実施例 15)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Ce Nd Mg Ni Co Mn の組成からなる水素吸蔵合金を得た。
13.9 2.1 0.8 4.1 72.2 4.0 2.9
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0091] (実施例 16)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Ce Nd Mg Ni Mn の組成からなる水素吸蔵合金を得た。
14.1 2.0 0.9 4.1 76.3 2.6
該水素吸蔵合金を用いて実施例 1と同様の測定を行い、その結果を表 1に示した。
[0092] (実施例 17)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Mn Al の組成からなる水素吸蔵合金を得た。
17.6 3.6 76.4 1.4 1.0
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0093] (実施例 18)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940
°C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Co Mn Al の組成からなる水素吸蔵合金を得た。
17.8 3.4 68.2 6.4 2.1 2.1
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0094] (実施例 19)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Co Mn Al の組成からなる水素吸蔵合金を得た。
16.3 4.7 69.9 6.0 2.0 1.1
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0095] (実施例 20)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Co Mn Al の組成からなる水素吸蔵合金を得た。
15.8 5.0 71.1 4.1 2.0 2.0
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0096] (実施例 21)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Mn Al の組成からなる水素吸蔵合金を得た。
17.0 4.1 73.9 0.9 4.1
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0097] (実施例 22)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Co Mn Al の組成からなる水素吸蔵合金を得た。
17.0 4.1 73.7 4.7 0.2 0.3
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0098] (比較例 1)
目的の組成に基づき原料インゴットを所定量秤量し、焼鈍温度 1000°C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 2と同様の操作を行い La Ce N
13.1 1.8 d Ni Co Mn Al の組成力もなる水素吸蔵合金を得た。
1.1 64.1 9.9 5.0 5.0
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0099] (比較例 2)
目的の組成に基づき原料インゴットを所定量秤量し、焼鈍温度 1000°C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 2と同様の操作を行い La Mg Ni
17.1 8.0
Co の組成力もなる水素吸蔵合金を得た。
62.2 12.7
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0100] (比較例 3)
目的の組成に基づき原料インゴットを所定量秤量し、ルツボに入れ、減圧へリウム ガス雰囲気下で高周波溶融炉を用いて、 1500°Cに加熱し、材料を溶融した。
溶融後、炉内の铸型中で放置する金型铸造法にて合金を固化させ、 La Mg Ni
16.9 4.1 71.1
Co Mn Al の組成からなる合金を得た。
5.8 1.0 1.1
尚、該合金には、再結晶焼鈍は行わなかった。該合金を用いて実施例 1と同様の 測定を行った。
[0101] (比較例 4)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Co Mn Al の組成からなる水素吸蔵合金を得た。
18.2 3.0 68.3 6.3 2.1 2.1
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0102] (比較例 5)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Co Mn Al の組成からなる水素吸蔵合金を得た。
14.5 6.5 69.4 5.9 1.9 1.8
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0103] (比較例 6)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Mn の組成からなる水素吸蔵合金を得た。
17.8 4.3 75.6 2.3
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0104] (比較例 7)
目的の組成に基づき原料インゴットを所定量枰量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Mn の組成からなる水素吸蔵合金を得た。
16.4 3.6 78.5 1.5
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0105] (比較例 8)
目的の組成に基づき原料インゴットを所定量枰量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Mn Al の組成からなる水素吸蔵合金を得た。
16.9 4.0 72.2 1.9 5.0
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0106] (比較例 9)
目的の組成に基づき原料インゴットを所定量秤量し、 0. 2MPa下、焼鈍温度 940 °C、焼鈍時間 7時間で再結晶焼鈍を行うことを除き、他は実施例 3と同様の操作を行 い La Mg Ni Co Al の組成からなる水素吸蔵合金を得た。
16.9 4.0 74.8 4.1 0.2
該水素吸蔵合金を用いて実施例 1と同様の測定を行った。
[0107] 上記の実施例及び比較例につき、製造条件と測定結果を下記表 1〜4に示す。
[0108] [表 1]
[0110] [表 3]
[0111] [表 4]
3 4 5 6 1 8 9
B P Q R S V
金型
製造方法
錶造 スピニンゲ スピニンゲ スピニンゲ スピニンゲ スビニンゲ スピニンゲ 力鎌 MPa) なし 0.2 0.2 0.2 0.2 0.2 0.2
940°C, 940°C, 940°Cf 90°Cf 940°C,
» 時間 940°C, なし
7hr 7hr 7hr 7hr 7hr 7hr リ一卜 Rwp 3.56 4.99 5.12 4.23 3.98 3.88 3.55
Re 1.91 2.14 2.11 2.01 1.99 1.97 2.05 職 S 1.86 2.33 2.43 2.10 2.00 1.97 1.73
AB5(CaCu5) 45 33 29 17 22 15 20
A5B19(Ce5Co19) 26 3 7 20 22 20 結 BS 22
A2B7(Ce2Ni7XGd2Co7) 10 42 50 61 53
楕造 49 55
AB3(PuNi3) 0 0 0 0 0 0 0
A5B19(Pr5Co1 ) 0 0 0 2 3 0 3
AB2(AuBe5) 7 22 14 0 0 16 0
10サイクル目放電容量
315 319 316 344 339
(0.2ItAi¾mXmAh/g) 327 339 サイクル劣化 ¾53t /10thX¾) 88.2 92.1 90.1 9Z3 92.3 91.5 91.4 サイクル後質量飽和磁化 (Am2Ag) 6.21 4.56 5.13 4.44 4.34 4.68 4.66 サイクル後比表面檁 m2/g> 5.5 4.12 4.85 3.95 3.81 4.53 4.32 尚、前記表 1〜4中の水素吸蔵合金の糸且成は以下の通りである。
A:La Mg Ni Co Mn Al
16.9 4.1 69.2 6.0 1.9 1.9
B:La Mg Ni Co Mn Al
16.9 4.1 71.1 5.8 1.0 1.1
C:La Mg Ni Mn
17.0 4.2 77.0 1.8
D:La Mg Ni Co Mn
17.2 4.0 73.3 3.9 1.6
E:La Pr Mg Ni Co Mn
12.8 4.0 3.6 72.1 4.4 3.1
F:La Ce Mg Ni Co Mn
13.4 4.2 3.6 71.1 4.0 3.7
G:La Ce Nd Mg Ni Co Mn
13.9 2.1 0.8 4.1 72.2 4.0 2.
H:La Ce Nd Mg Ni Mn
14.1 2.0 0.9 4.1 76.3 2.6
I:La Mg Ni Mn Al
17.6 3.6 76. 1.4 1.0
J:La Ce Nd Ni Co Mn Al
13.1 1.8 1.1 64.1 9.9 5.0 5.0
K:La Mg Ni Co
17.1 8.0 62.2 12.7
L:La Mg Ni Co Mn Al
18.2 3.0 68.3 6.3 2.1 2.1
M:La Mg Ni Co Mn Al
17.8 3.4 68.2 6.4 2.1 2.1
N:La Mg Ni Co Mn Al
16.3 4.7 69.9 6.0 2.0 1.1
0:La Mg Ni Co Mn Al
15.8 5.0 71.1 4.1 2.0 2.0
P:La Mg Ni Co Mn Al
14.5 6.5 69.4 5.9 1.9 1.8
Q : La Mg Ni Mn
17.8 4.3 75.6 2.3
R: La Mg Ni Mn
16.4 3.6 78.5 1.5
S : La Mg Ni Mn Al
16.9 4.0 72.2 1.9 5.0
T : La Mg Ni Mn Al
17.0 4.1 73.9 0.9 4.1
U : La Mg Ni Co Mn Al
17.0 4.1 73.7 4.7 0.2 0.3
V: La Mg Ni Co Al
16.9 4.0 74.8 4.1 0.2
[0113] 表 1〜4に示したように、実施例 1〜実施例 22で得られた水素吸蔵合金は、高容量 で且つ充'放電サイクルに対する耐久性に優れることが判明した。
[0114] (実験例 1)
表 5に示す如ぐ Cu元素含有量の異なる化学組成 1〜5の原料インゴットを所定量 枰量してルツボに入れ、減圧アルゴンガス雰囲気下で高周波溶融炉を用いて 1500 °Cに加熱し、材料を溶融した。溶融後、メルトスピニング法を適用して急冷し、合金を 固化させた。
次に、得られた合金を 0. 2MPa (ゲージ圧、以下同じ)に加圧されたアルゴンガス 雰囲気下で、表 1に示したそれぞれの温度で熱処理を行った。得られた合金につい て、上記と同様にして結晶構造、相の存在割合、および平均粒子径を測定した。 Pr Co 型結晶構造相の生成割合を表 5及び図 3に示す。
5 19
[0115] [表 5]
[0116] 該実験例においても、上記と同様にして充放電特¾1の測定を行った c
結果を表 6及び図 4に示す。
[0117] [表 6]
容量鹏率の結果 (%)
[0118] (実験例 2)
表 7に示す如ぐ Mn元素の含有量の異なる化学組成 1、 4、 6〜8の原料インゴット および Mn元素の代わりに A1元素を添加した化学組成の原料インゴッドを使用する 点を除き、他は実験例 1と同様にして各実験および測定を行った。 P 5 Co 19型結晶構 造の相の生成割合を表 7及び図 5に示し、容量保持率の測定結果を表 8及び図 6に 示す。
[0119] [表 7]
[0120] [表 8]
容量鹏率の結果 (%)
(実験例 3)
表 9に示したように、 La元素と Mn元素の合計量の含有量が異なる各化学組成の原 料インゴットを使用する点を除き、他は実験例 1と同様にして各実験および測定を行 つた。 Pr Co 型結晶構造の相の生成割合を表 9及び図 7に示し、容量保持率の測
5 19
定結果を表 10及び図 8に示す。
[0122] [表 9]
[0123] [表 10]
容量勝率の結果 (%)
[0124] (実験例 4)
表 11に示したように、 Ni元素の含有量が異なる各化学組成の原料インゴットを使用 する点を除き、他は実験例 1と同様にして各実験および測定を行った。 Pr_Coi9型結 晶構造の相の生成割合を表 11及び図 9に示し、容量保持率の測定結果を表 12及 び図 10に示す。
[0125] 11]
P r 5 C 0 l 9型結晶構造相の賊割合(重量%)
[0126] [表 12] 容量保持率の結果 (%)
讓理 820 840 860 920 970 980 1030
なし 。C °C 。C 。C °C 。C °C
組成 1 (Cuなし) 68 72 77 76 76 77 75 74 組成 1 1 68 72 75 78 80 80 78 73 組成 1 2 70 74 76 81 84 84 79 75 組成 4 (基準) 71 76 78 82 87 85 80 75 組成 1 3 73 78 78 81 86 85 78 75
Claims
[1] 組成が、一般式: A B C (但し、 Aは Y (イットリウム)を含む希土類元素か
(4— w) (1 +w) 19
ら選択される 1種又は 2種以上の元素、 Bは Mg元素、 Cは Ni、 Co、 Mnおよび Alから なる群より選択される 1種又は 2種以上の元素、 wは 0. 1〜0. 8の範囲の数を表す )で表される Pr Co 型結晶構造力 なる相を含有し、
5 19
合金全体の組成力 一般式: Rl R2 R3 (但し、 15. 8≤x≤17. 8、 3. 4≤y≤5.
0、 78. 8≤z≤79. 6、 x+y+z= 100で表され、 Rlは Y (イツ卜リウム)を含む希土類 元素から選択される 1種又は 2種以上の元素であり、 R2は Mg元素であり、 R3は Ni、 Co、 Mnおよび Alからなる群より選択される 1種又は 2種以上の元素であり、前記 zの うち Mn+Alを示す値が 0. 5以上であり、 A1を示す値が 4. 1以下である)で表される ことを特徴とする水素吸蔵合金。
[2] 前記一般式: Rl R2 R3にお ヽて、前記 x、yおよび z力 16. 3≤x≤17. 6、 3. 6
≤y≤4. 7、 78. 8≤z≤79. 1であり、前記 zのうち Mn+Alを示す値力 . 6以上で あり、 A1を示す値が 1. 9以下であることを特徴とする請求項 1記載の水素吸蔵合金。
[3] 前記 Pr Co 型結晶構造力 なる相が 8重量%以上の割合で形成されてなることを
5 19
特徴とする請求項 1又は 2記載の水素吸蔵合金。
[4] Cu元素の含有量が 1〜8モル%となるように溶融および焼鈍されてなり、 Pr Co
5 19 型結晶構造力もなる相が 15重量%以上の割合で形成されたことを特徴とする水素吸 蔵合金。
[5] 合金全体の組成が、一般式 Rl R2 R3 Cu
a b e d
(但し、 Rlは Y (イットリウム)を含む希土類元素から選択される 1種又は 2種以上の元 素であり、 R2は Mg、 Ca、 Srおよび Baからなる群より選択される 1種又は 2種以上の 元素であり、 R3は Ni、 Co、 Mn、 Al、 Fe、 Cr、 Zn、 Si、 Sn、 V、 Nb、 Ta、 Ti、 Zrおよ び Hfからなる群より選択される 1種又は 2種以上の元素であり、 a、 b、 c及び dはそれ ぞれ、 15≤a≤19, 2≤b≤7, 70≤c≤80, l≤d≤7, a+b + c + d= 100を満たす 数である)で表されることを特徴とする請求項 4記載の水素吸蔵合金。
[6] 前記 R2が Mgであり、前記 R3が Co、 Mn、 Alおよび Niからなる群より選択される 1 種又は 2種以上の元素であることを特徴とする請求項 5記載の水素吸蔵合金。
[7] 合金の一次粒子のサイズが 10〜: LOOnmであることを特徴とする請求項 1〜6の何 れか一項に記載の水素吸蔵合金。
[8] 溶融合金を 1000KZ秒以上の冷却速度で冷却し、得られた合金を更に加圧状態 の不活性ガス雰囲気下において 860〜1020°Cの温度範囲で焼鈍し、請求項 1〜3 の何れか一項に記載の水素吸蔵合金を製造することを特徴とする水素吸蔵合金の 製造方法。
[9] 溶融合金を 1000KZ秒以上の冷却速度で冷却し、得られた合金を更に加圧状態 の不活性ガス雰囲気下において 860〜980°Cの温度範囲で焼鈍し、請求項 4〜6の 何れか一項に記載の水素吸蔵合金を製造することを特徴とする水素吸蔵合金の製 造方法。
[10] 前記焼鈍の際の温度範囲が 920〜970°Cであることを特徴とする請求項 9記載の 水素吸蔵合金の製造方法。
[11] 請求項 1〜7の何れか一項に記載の水素吸蔵合金が水素貯蔵媒体として用いられ たことを特徴とする水素吸蔵合金電極。
[12] 請求項 11に記載の水素吸蔵合金電極を備えたことを特徴とする二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/063,394 US7951326B2 (en) | 2005-08-11 | 2006-08-11 | Hydrogen absorbing alloy, hydrogen absorbing alloy electrode, secondary battery and production method of hydrogen absorbing alloy |
JP2007529640A JP5146934B2 (ja) | 2005-08-11 | 2006-08-11 | 水素吸蔵合金、水素吸蔵合金電極、二次電池、および水素吸蔵合金の製造方法 |
CN2006800291566A CN101238231B (zh) | 2005-08-11 | 2006-08-11 | 储氢合金、储氢合金电极、二次电池和储氢合金的制造方法 |
US13/090,184 US8277582B2 (en) | 2005-08-11 | 2011-04-19 | Hydrogen absorbing alloy, hydrogen absorbing alloy electrode, secondary battery, and production method of hydrogen absorbing alloy |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005233533 | 2005-08-11 | ||
JP2005233781 | 2005-08-11 | ||
JP2005-233533 | 2005-08-11 | ||
JP2005-233781 | 2005-08-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/090,184 Division US8277582B2 (en) | 2005-08-11 | 2011-04-19 | Hydrogen absorbing alloy, hydrogen absorbing alloy electrode, secondary battery, and production method of hydrogen absorbing alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007018292A1 true WO2007018292A1 (ja) | 2007-02-15 |
Family
ID=37727468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/315945 WO2007018292A1 (ja) | 2005-08-11 | 2006-08-11 | 水素吸蔵合金、水素吸蔵合金電極、二次電池、および水素吸蔵合金の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US7951326B2 (ja) |
JP (1) | JP5146934B2 (ja) |
CN (1) | CN101238231B (ja) |
WO (1) | WO2007018292A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008218070A (ja) * | 2007-03-01 | 2008-09-18 | Sanyo Electric Co Ltd | アルカリ蓄電池用水素吸蔵合金及びアルカリ蓄電池 |
JP2008300108A (ja) * | 2007-05-30 | 2008-12-11 | Sanyo Electric Co Ltd | アルカリ蓄電池用水素吸蔵合金およびその製造方法ならびにアルカリ蓄電池 |
JP2009054514A (ja) * | 2007-08-29 | 2009-03-12 | Sanyo Electric Co Ltd | 水素吸蔵合金電極およびこの水素吸蔵合金電極を用いたアルカリ蓄電池 |
EP2045855A1 (en) * | 2007-09-28 | 2009-04-08 | Sanyo Electric Co., Ltd. | Alkaline storage battery system |
WO2009060666A1 (ja) * | 2007-11-09 | 2009-05-14 | Gs Yuasa Corporation | ニッケル水素蓄電池および水素吸蔵合金の製造方法 |
JP2009163986A (ja) * | 2008-01-07 | 2009-07-23 | Gs Yuasa Corporation | ニッケル水素蓄電池 |
JP2009176712A (ja) * | 2007-12-27 | 2009-08-06 | Sanyo Electric Co Ltd | 水素吸蔵合金および水素吸蔵合金を負極活物質とするアルカリ蓄電池 |
JP2009181768A (ja) * | 2008-01-30 | 2009-08-13 | Sanyo Electric Co Ltd | アルカリ蓄電池 |
JP2011023337A (ja) * | 2009-06-18 | 2011-02-03 | Sanyo Electric Co Ltd | アルカリ蓄電池用水素吸蔵合金およびその製造方法 |
EP2367222A2 (en) | 2010-03-18 | 2011-09-21 | Sanyo Electric Co., Ltd. | Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery and alkaline storage battery system each including negative electrode having the alloy |
JPWO2013118806A1 (ja) * | 2012-02-09 | 2015-05-11 | 株式会社三徳 | 水素吸蔵合金粉末、負極およびニッケル水素二次電池 |
US9234264B2 (en) | 2004-12-07 | 2016-01-12 | Hydrexia Pty Limited | Magnesium alloys for hydrogen storage |
US9435489B2 (en) | 2010-02-24 | 2016-09-06 | Hydrexia Pty Ltd | Hydrogen release system |
US11141784B2 (en) | 2015-07-23 | 2021-10-12 | Hydrexia Pty Ltd. | Mg-based alloy for hydrogen storage |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2897875B1 (fr) * | 2006-02-28 | 2008-12-05 | Accumulateurs Fixes | Alliage hydrurable pour accumulateur alcalin |
US9972837B2 (en) * | 2014-05-14 | 2018-05-15 | Basf Corporation | Hydrogen storage multi-phase alloys |
CN104152749B (zh) * | 2014-08-28 | 2017-05-03 | 包头稀土研究院 | 添加锆、钛元素的a5b19型稀土‑钇‑镍系储氢合金 |
CN111647773B (zh) * | 2020-05-20 | 2022-03-29 | 有研工程技术研究院有限公司 | 一种稀土储氢材料及其制备方法 |
CN114619026B (zh) * | 2022-03-15 | 2024-01-12 | 厦门厦钨氢能科技有限公司 | 一种复合固态贮氢材料及其制备方法 |
CN115626608B (zh) * | 2022-11-07 | 2024-01-30 | 中国工程物理研究院材料研究所 | 一种快速确定Zr2Fe基合金抗毒化温度的方法和提高抗毒化性能的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11100601A (ja) * | 1997-09-29 | 1999-04-13 | Sanyo Electric Co Ltd | 水素吸蔵合金の粒子及びその製法 |
WO2001048841A1 (en) * | 1999-12-27 | 2001-07-05 | Kabushiki Kaisha Toshiba | Alloy for hydrogen storage, secondary battery, hybrid car and electric vehicle |
JP2002105564A (ja) * | 2000-09-29 | 2002-04-10 | Toshiba Corp | 水素吸蔵合金とその製造方法、およびそれを用いたニッケル−水素二次電池 |
JP2002164045A (ja) * | 2000-11-27 | 2002-06-07 | Toshiba Corp | 水素吸蔵合金、二次電池、ハイブリッドカー及び電気自動車 |
JP2004115870A (ja) * | 2002-09-26 | 2004-04-15 | Santoku Corp | 水素吸蔵合金及びその製造方法 |
JP2005023341A (ja) * | 2003-06-30 | 2005-01-27 | Yuasa Corp | 水素吸蔵合金及びその製造方法、並びに、これを用いたニッケル水素蓄電池 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0315885A (ja) | 1989-06-14 | 1991-01-24 | Seiko Epson Corp | クリーニング装置 |
JP3397981B2 (ja) | 1996-06-11 | 2003-04-21 | 三洋電機株式会社 | 水素吸蔵合金及び製造方法 |
JPH11323469A (ja) | 1997-06-17 | 1999-11-26 | Toshiba Corp | 水素吸蔵合金及び二次電池 |
JPH1115885A (ja) | 1997-06-26 | 1999-01-22 | Hitachi Ltd | 点数表マスタ管理システム |
JP3015885B2 (ja) | 1997-11-07 | 2000-03-06 | 工業技術院長 | 新規な水素吸蔵合金及びその合金を用いた水素電極 |
JP4309494B2 (ja) | 1998-06-30 | 2009-08-05 | 株式会社東芝 | ニッケル水素二次電池 |
JP2000080429A (ja) | 1998-08-31 | 2000-03-21 | Toshiba Corp | 水素吸蔵合金および二次電池 |
JP2000265229A (ja) | 1999-03-16 | 2000-09-26 | Toshiba Corp | 水素吸蔵合金及び二次電池 |
JP4965760B2 (ja) | 2000-09-29 | 2012-07-04 | 株式会社東芝 | 水素吸蔵合金およびそれを用いたニッケル−水素二次電池 |
JP2004273346A (ja) | 2003-03-11 | 2004-09-30 | Sanyo Electric Co Ltd | アルカリ蓄電池用水素吸蔵合金及びアルカリ蓄電池 |
-
2006
- 2006-08-11 CN CN2006800291566A patent/CN101238231B/zh active Active
- 2006-08-11 US US12/063,394 patent/US7951326B2/en active Active
- 2006-08-11 WO PCT/JP2006/315945 patent/WO2007018292A1/ja active Application Filing
- 2006-08-11 JP JP2007529640A patent/JP5146934B2/ja active Active
-
2011
- 2011-04-19 US US13/090,184 patent/US8277582B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11100601A (ja) * | 1997-09-29 | 1999-04-13 | Sanyo Electric Co Ltd | 水素吸蔵合金の粒子及びその製法 |
WO2001048841A1 (en) * | 1999-12-27 | 2001-07-05 | Kabushiki Kaisha Toshiba | Alloy for hydrogen storage, secondary battery, hybrid car and electric vehicle |
JP2002105564A (ja) * | 2000-09-29 | 2002-04-10 | Toshiba Corp | 水素吸蔵合金とその製造方法、およびそれを用いたニッケル−水素二次電池 |
JP2002164045A (ja) * | 2000-11-27 | 2002-06-07 | Toshiba Corp | 水素吸蔵合金、二次電池、ハイブリッドカー及び電気自動車 |
JP2004115870A (ja) * | 2002-09-26 | 2004-04-15 | Santoku Corp | 水素吸蔵合金及びその製造方法 |
JP2005023341A (ja) * | 2003-06-30 | 2005-01-27 | Yuasa Corp | 水素吸蔵合金及びその製造方法、並びに、これを用いたニッケル水素蓄電池 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9234264B2 (en) | 2004-12-07 | 2016-01-12 | Hydrexia Pty Limited | Magnesium alloys for hydrogen storage |
JP2008218070A (ja) * | 2007-03-01 | 2008-09-18 | Sanyo Electric Co Ltd | アルカリ蓄電池用水素吸蔵合金及びアルカリ蓄電池 |
JP2008300108A (ja) * | 2007-05-30 | 2008-12-11 | Sanyo Electric Co Ltd | アルカリ蓄電池用水素吸蔵合金およびその製造方法ならびにアルカリ蓄電池 |
JP2009054514A (ja) * | 2007-08-29 | 2009-03-12 | Sanyo Electric Co Ltd | 水素吸蔵合金電極およびこの水素吸蔵合金電極を用いたアルカリ蓄電池 |
CN101425603B (zh) * | 2007-09-28 | 2013-12-11 | 三洋电机株式会社 | 碱性蓄电池系统 |
EP2045855A1 (en) * | 2007-09-28 | 2009-04-08 | Sanyo Electric Co., Ltd. | Alkaline storage battery system |
JP2009087631A (ja) * | 2007-09-28 | 2009-04-23 | Sanyo Electric Co Ltd | アルカリ蓄電池システム |
WO2009060666A1 (ja) * | 2007-11-09 | 2009-05-14 | Gs Yuasa Corporation | ニッケル水素蓄電池および水素吸蔵合金の製造方法 |
US9634324B2 (en) | 2007-11-09 | 2017-04-25 | Gs Yuasa International Ltd. | Nickel-metal hydride battery and method for producing hydrogen storage alloy |
JP2009176712A (ja) * | 2007-12-27 | 2009-08-06 | Sanyo Electric Co Ltd | 水素吸蔵合金および水素吸蔵合金を負極活物質とするアルカリ蓄電池 |
JP2009163986A (ja) * | 2008-01-07 | 2009-07-23 | Gs Yuasa Corporation | ニッケル水素蓄電池 |
JP2009181768A (ja) * | 2008-01-30 | 2009-08-13 | Sanyo Electric Co Ltd | アルカリ蓄電池 |
US8802292B2 (en) | 2009-06-18 | 2014-08-12 | Sanyo Electric Co., Ltd. | Hydrogen-absorbing alloy for alkaline storage battery and method for manufacturing the same |
JP2011023337A (ja) * | 2009-06-18 | 2011-02-03 | Sanyo Electric Co Ltd | アルカリ蓄電池用水素吸蔵合金およびその製造方法 |
US9435489B2 (en) | 2010-02-24 | 2016-09-06 | Hydrexia Pty Ltd | Hydrogen release system |
US10215338B2 (en) | 2010-02-24 | 2019-02-26 | Hydrexia Pty Ltd. | Hydrogen release system |
EP2367222A2 (en) | 2010-03-18 | 2011-09-21 | Sanyo Electric Co., Ltd. | Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery and alkaline storage battery system each including negative electrode having the alloy |
US9105947B2 (en) | 2010-03-18 | 2015-08-11 | Sanyo Electric Co., Ltd. | Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery and alkaline storage battery system each including negative electrode having the alloy |
JPWO2013118806A1 (ja) * | 2012-02-09 | 2015-05-11 | 株式会社三徳 | 水素吸蔵合金粉末、負極およびニッケル水素二次電池 |
US9859556B2 (en) | 2012-02-09 | 2018-01-02 | Santoku Corporation | Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell |
US11141784B2 (en) | 2015-07-23 | 2021-10-12 | Hydrexia Pty Ltd. | Mg-based alloy for hydrogen storage |
Also Published As
Publication number | Publication date |
---|---|
US20110192506A1 (en) | 2011-08-11 |
US20090226342A1 (en) | 2009-09-10 |
US8277582B2 (en) | 2012-10-02 |
US7951326B2 (en) | 2011-05-31 |
CN101238231B (zh) | 2011-04-13 |
CN101238231A (zh) | 2008-08-06 |
JPWO2007018292A1 (ja) | 2009-02-19 |
JP5146934B2 (ja) | 2013-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5146934B2 (ja) | 水素吸蔵合金、水素吸蔵合金電極、二次電池、および水素吸蔵合金の製造方法 | |
US9869007B2 (en) | Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy | |
JP5092747B2 (ja) | 水素吸蔵合金とその製造方法、水素吸蔵合金電極、及び二次電池 | |
US7935305B2 (en) | Hydrogen storage alloy, production method therefor and nickel-hydrogen secondary battery-use cathode | |
JP5718006B2 (ja) | 水素吸蔵合金およびニッケル水素二次電池 | |
JP3737163B2 (ja) | 希土類金属−ニッケル系水素吸蔵合金及びニッケル水素2次電池用負極 | |
JP5119551B2 (ja) | 水素吸蔵合金とその製造方法、及び二次電池 | |
WO2003054240A1 (en) | Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell | |
JP5700305B2 (ja) | 水素吸蔵合金、水素吸蔵合金電極、及び二次電池 | |
WO2001069700A1 (en) | Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell | |
JP5099870B2 (ja) | 水素吸蔵合金とその製造方法、水素吸蔵合金電極および二次電池 | |
JP5499288B2 (ja) | 水素吸蔵合金とその製造方法、水素吸蔵合金電極および二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680029156.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007529640 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12063394 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06796383 Country of ref document: EP Kind code of ref document: A1 |