WO2007013618A1 - Heat-shrinkable polyester film and process for production thereof - Google Patents
Heat-shrinkable polyester film and process for production thereof Download PDFInfo
- Publication number
- WO2007013618A1 WO2007013618A1 PCT/JP2006/315035 JP2006315035W WO2007013618A1 WO 2007013618 A1 WO2007013618 A1 WO 2007013618A1 JP 2006315035 W JP2006315035 W JP 2006315035W WO 2007013618 A1 WO2007013618 A1 WO 2007013618A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- polyester
- heat
- label
- layer
- Prior art date
Links
- 229920006267 polyester film Polymers 0.000 title claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000034 method Methods 0.000 title description 38
- 229920000728 polyester Polymers 0.000 claims abstract description 105
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 claims abstract description 8
- -1 polyethylene Polymers 0.000 claims description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 238000001816 cooling Methods 0.000 claims description 21
- 238000010030 laminating Methods 0.000 claims description 16
- 239000002904 solvent Substances 0.000 claims description 15
- 150000002148 esters Chemical class 0.000 claims description 5
- 238000007654 immersion Methods 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 11
- 230000032798 delamination Effects 0.000 abstract description 2
- 238000005096 rolling process Methods 0.000 abstract 1
- 229920005989 resin Polymers 0.000 description 28
- 239000011347 resin Substances 0.000 description 28
- 230000003068 static effect Effects 0.000 description 26
- 229920000139 polyethylene terephthalate Polymers 0.000 description 25
- 239000005020 polyethylene terephthalate Substances 0.000 description 25
- 238000002844 melting Methods 0.000 description 17
- 230000008018 melting Effects 0.000 description 17
- 229910052698 phosphorus Inorganic materials 0.000 description 17
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 16
- 239000002253 acid Substances 0.000 description 16
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 16
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 14
- 239000011574 phosphorus Substances 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 239000000853 adhesive Substances 0.000 description 13
- 230000001070 adhesive effect Effects 0.000 description 13
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 13
- 239000000155 melt Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 9
- 229920003023 plastic Polymers 0.000 description 9
- 239000004033 plastic Substances 0.000 description 9
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 8
- 150000001339 alkali metal compounds Chemical class 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 235000011007 phosphoric acid Nutrition 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- 125000005907 alkyl ester group Chemical group 0.000 description 7
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000002372 labelling Methods 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 4
- 229920006257 Heat-shrinkable film Polymers 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 150000001342 alkaline earth metals Chemical group 0.000 description 4
- 150000007860 aryl ester derivatives Chemical class 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- 235000010724 Wisteria floribunda Nutrition 0.000 description 3
- 150000001340 alkali metals Chemical group 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- 235000013361 beverage Nutrition 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229940117969 neopentyl glycol Drugs 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 125000004437 phosphorous atom Chemical group 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 3
- 238000009958 sewing Methods 0.000 description 3
- 239000001632 sodium acetate Substances 0.000 description 3
- 235000017281 sodium acetate Nutrition 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 3
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000009191 jumping Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 2
- 239000011654 magnesium acetate Substances 0.000 description 2
- 235000011285 magnesium acetate Nutrition 0.000 description 2
- 229940069446 magnesium acetate Drugs 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 150000003016 phosphoric acids Chemical class 0.000 description 2
- 150000003018 phosphorus compounds Chemical class 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- NWPRXAIYBULIEI-UHFFFAOYSA-N 2-(methoxycarbonylamino)-3,3-dimethylbutanoic acid Chemical compound COC(=O)NC(C(O)=O)C(C)(C)C NWPRXAIYBULIEI-UHFFFAOYSA-N 0.000 description 1
- UOBYKYZJUGYBDK-UHFFFAOYSA-N 2-naphthoic acid Chemical compound C1=CC=CC2=CC(C(=O)O)=CC=C21 UOBYKYZJUGYBDK-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- CHBLBMKOMRIANS-UHFFFAOYSA-N COP(OC)(=O)P(=O)=O Chemical compound COP(OC)(=O)P(=O)=O CHBLBMKOMRIANS-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- JYFHYPJRHGVZDY-UHFFFAOYSA-N Dibutyl phosphate Chemical compound CCCCOP(O)(=O)OCCCC JYFHYPJRHGVZDY-UHFFFAOYSA-N 0.000 description 1
- KKUKTXOBAWVSHC-UHFFFAOYSA-N Dimethylphosphate Chemical compound COP(O)(=O)OC KKUKTXOBAWVSHC-UHFFFAOYSA-N 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- XKIBROFIMNVGKX-UHFFFAOYSA-N OP(O)(=O)P(=O)=O Chemical compound OP(O)(=O)P(=O)=O XKIBROFIMNVGKX-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- YBVKMVCZNISULF-UHFFFAOYSA-N Polyester A3 Natural products CC1CC(OC(=O)c2ccccc2)C(OC(=O)C)C3(COC(=O)C)C(OC(=O)C)C(OC(=O)c4ccccc4)C5C(O)C13OC5(C)C YBVKMVCZNISULF-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- BNMJSBUIDQYHIN-UHFFFAOYSA-N butyl dihydrogen phosphate Chemical class CCCCOP(O)(O)=O BNMJSBUIDQYHIN-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- ZBYYWKJVSFHYJL-UHFFFAOYSA-L cobalt(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Co+2].CC([O-])=O.CC([O-])=O ZBYYWKJVSFHYJL-UHFFFAOYSA-L 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- VONWDASPFIQPDY-UHFFFAOYSA-N dimethyl methylphosphonate Chemical compound COP(C)(=O)OC VONWDASPFIQPDY-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- FOBPTJZYDGNHLR-UHFFFAOYSA-N diphosphorus Chemical compound P#P FOBPTJZYDGNHLR-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- ZJXZSIYSNXKHEA-UHFFFAOYSA-N ethyl dihydrogen phosphate Chemical class CCOP(O)(O)=O ZJXZSIYSNXKHEA-UHFFFAOYSA-N 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229940097364 magnesium acetate tetrahydrate Drugs 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- XKPKPGCRSHFTKM-UHFFFAOYSA-L magnesium;diacetate;tetrahydrate Chemical compound O.O.O.O.[Mg+2].CC([O-])=O.CC([O-])=O XKPKPGCRSHFTKM-UHFFFAOYSA-L 0.000 description 1
- CRGZYKWWYNQGEC-UHFFFAOYSA-N magnesium;methanolate Chemical compound [Mg+2].[O-]C.[O-]C CRGZYKWWYNQGEC-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- CAAULPUQFIIOTL-UHFFFAOYSA-N methyl dihydrogen phosphate Chemical class COP(O)(O)=O CAAULPUQFIIOTL-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical class OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- QVLTXCYWHPZMCA-UHFFFAOYSA-N po4-po4 Chemical compound OP(O)(O)=O.OP(O)(O)=O QVLTXCYWHPZMCA-UHFFFAOYSA-N 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910001927 ruthenium tetroxide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- RXSHXLOMRZJCLB-UHFFFAOYSA-L strontium;diacetate Chemical compound [Sr+2].CC([O-])=O.CC([O-])=O RXSHXLOMRZJCLB-UHFFFAOYSA-L 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XTTGYFREQJCEML-UHFFFAOYSA-N tributyl phosphite Chemical compound CCCCOP(OCCCC)OCCCC XTTGYFREQJCEML-UHFFFAOYSA-N 0.000 description 1
- CYTQBVOFDCPGCX-UHFFFAOYSA-N trimethyl phosphite Chemical compound COP(OC)OC CYTQBVOFDCPGCX-UHFFFAOYSA-N 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C61/00—Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
- B29C61/06—Making preforms having internal stresses, e.g. plastic memory
- B29C61/0608—Making preforms having internal stresses, e.g. plastic memory characterised by the configuration or structure of the preforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F3/00—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
- G09F3/04—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps to be fastened or secured by the material of the label itself, e.g. by thermo-adhesion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2009/00—Layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/02—2 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
- B32B2250/244—All polymers belonging to those covered by group B32B27/36
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/58—Cuttability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
- B32B2307/736—Shrinkable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2519/00—Labels, badges
Definitions
- the present invention relates to a heat-shrinkable polyester film, and more particularly to a heat-shrinkable polyester film suitable for labeling applications such as PET bottles (polyethylene terephthalate (PET) bottles).
- PET polyethylene terephthalate
- a heat-shrinkable film particularly a heat-shrinkable film for labeling the body of a bottle
- a film having polyvinyl chloride, polystyrene or the like is mainly used.
- the generation of chlorine-based gas has been a problem for incineration of discarded vinyl chloride products with respect to polyvinyl chloride, while the problem with polystyrene is that it is difficult to print on polystyrene film.
- plastic labels such as polyvinyl chloride and polystyrene at the time of disposal. For this reason, polyester-based heat-shrinkable films that do not have these problems are attracting attention.
- heat shrinkable polyester film used as a label for bottles is required to have perforation cut ability and strength of the adhesive portion when labeling is performed. ing.
- the perforation cutability is required because a perforation for opening may be provided on a bottle label. If product bottles are beverage glass bottles, they are usually refrigerated. In this case, since label opening is performed at a low temperature, there is a problem that unsuccessful opening is likely to occur, and there is a high demand for perforation cutability.
- Patent Document 1 in order to improve the perforation cutting property, the temperature conditions during stretching are optimized in the manufacturing process of the heat-shrinkable polyester film. Although the perforation cutting property of the heat-shrinkable polyester film obtained by this method is somewhat improved, it is still insufficient.
- Patent Document 2 discloses a heat-shrinkable polyester film having a predetermined hot water shrinkage ratio and elongation at break. This heat-shrinkable polyester film can be used as a label on PET bottles. There was a problem that the strength of the adhesive part at the time of labeling was inferior, for example, when the plastic bottle dropped when attached, the adhesive part of the label was peeled off by impact.
- the heat-shrinkable polyester film is required to have excellent perforation cutability and strength of the adhesive portion when labeling occurs.
- Patent Document 1 Japanese Unexamined Patent Publication No. 2003-268131
- Patent Document 2 JP-A-11-207818
- FIG. 1 is a schematic view showing an example of a production line for a heat-shrinkable polyester film of the present invention.
- FIG. 2 TEM photograph of film imported into image analysis software.
- FIG. 3 is an image after the Fourier transform of FIG.
- FIG. 5 is an image after clearing the shading of FIG.
- the problem to be solved by the present invention is to provide a heat-shrinkable polyester film excellent in perforation cutting properties and strength of an adhesive portion at the time of labeling.
- the heat-shrinkable polyester film of the present invention that has been able to solve the above-described problems is a heat shrinkable structure in which an X layer containing a polyester component M and a Y layer containing a polyester component N are alternately laminated.
- a shrinkable polyester film which is coated with 1,3-dioxolan slightly inside from one edge of one end of the film, rolled up and overlapped to form a tubular film label, When a film label is coated on a 500 mL PET bottle, heated at 80 ° C for 2.5 seconds and then attached, and when 10 PET bottles are dropped even at a height of lm, all 10 PET bottles It is characterized in that the film label is not damaged due to peeling from the Y layer.
- the heat-shrinkable polyester film of the present invention comprises polyester component M 1S polyester A 70 to 99% by mass and polyester Bl 30% by mass contained in the X layer, and polyester component N force polyester B 70 to 99% contained in the Y layer.
- 0/0 and a is a preferred embodiment comprises a polyester a 1 to 30 wt%.
- the X layer and the Y layer have a structure in which 500 layers or more are alternately laminated.
- the heat-shrinkable polyester film of the present invention has a heat shrinkage ratio of 50% or more in the main shrinkage direction after being immersed in warm water of 95 ° C ⁇ 0.5 ° C for 10 seconds, and has a solvent adhesive strength of 2.0 N. / 15 mm or more, tear propagation strength is 2. ON or less, and the thickness after breaking into hot water at 60 ° C ⁇ 1 ° C for 30 minutes is 20 MPa or more. Thickness is 5 to: L00 ⁇ m It is also expressed as a heat-shrinkable polyester film.
- the heat-shrinkable polyester film of the present invention is suitable for a bottle label, and a bottle label using the heat-shrinkable polyester film of the present invention is also included in the present invention.
- the heat-shrinkable polyester film of the present invention comprises a polyester component M containing 70 to 99% by weight of polyester A and 30 to 30% by weight of polyester Bl, and a polyester component containing 70 to 99% by weight of polyester B and 30 to 30% by weight of polyester Al.
- N is fed into separate extruders E and F, respectively, and melted.
- Polyester components M and N in a molten state are fed into a laminating apparatus to obtain a laminated body of polyester components X and Y.
- the laminated body is guided from the laminating apparatus to a slit die so that it takes 45 seconds to 10 minutes until the force is discharged from the laminating apparatus and the force comes into close contact with the cooling roll.
- the unstretched sheet can be produced by a method characterized by stretching at least uniaxially, and this method is also included in the present invention.
- a heat-shrinkable polyester-based film having general characteristics of heat-shrinkable polyester film such as heat-shrinkability and tensile strength, and having excellent perforation cutability and strength of an adhesive portion at the time of labeling.
- a film is provided.
- the film of the present invention is a full-bottle label, it is easy to peel off the label even at low temperatures, causing a problem of label breakage when a beverage product in a PET bottle falls to the outlet with a vending machine. It can be used favorably as a label for bottles with a long gap.
- the present invention relates to a heat-shrinkable polyester film having a structure in which an X layer containing a polyester component M and a Y layer containing a polyester component N are laminated in a force alternating fashion, on one side of the film. Apply 1,3-dioxolan slightly inward from the edge, roll the film and overlap the edges to form a tube-shaped film label, and cover the film label on a 500 mL PET bottle at 80 ° C. 2. If the PET bottle is heated and attached for 5 seconds and dropped from the height of lm, the film label will be damaged due to the peeling between the X layer and the Y layer for all 10 PET bottles.
- This is a heat-shrinkable polyester film characterized by the absence of the heat-shrinkable polyester film.
- the heat-shrinkable polyester film of the present invention has a structure in which X layers and Y layers are alternately laminated, and the X layers and Y layers are composed of different polyester components (polyester components M and N).
- polyester components M and N can be selected to meet the object of the present invention in any combination as long as they have different thermal characteristics. It is preferable that the difference between the glass transition temperatures of the polyester components M and N is 3 ° C. or more and 100 ° C. or less and the difference in crystal heat of fusion is 5 jZg or more and 100 J Zg or less.
- Polyester component M is a crystalline polyester component having a glass transition temperature measured by DSC of ⁇ 50 ° C or more and less than 60 ° C and a heat of crystal melting of 5jZg or more and lOOjZg or less
- polyester component N is More preferably, it is a substantially amorphous polyester component having a glass transition temperature of 60 ° C.
- the starting polyester components M and N may be either homopolymers or copolymers, and may be a polyester composition containing two or more arbitrary polyesters.
- polyester component M and N wherein the polyester component M power Po Riesuteru A70 ⁇ 99 mass 0/0 and polyester Bl ⁇ 30 mass 0/0, the polyester component N is polyester B70 ⁇ 99 wt% And polyester Al to 30% by mass is preferable. Also includes B3 ⁇ 27 wt% polyester component M force polyester A73 ⁇ 97 mass 0/0 and polyester, and more preferably contains B73 ⁇ 97 wt% polyester component N force polyester Oyobi polyester A3 ⁇ 27 wt%. In addition, police Include ether components M force polyester A75 ⁇ 94 wt% and the polyester B6 ⁇ 25 mass 0/0, most preferred to contain B75 ⁇ 94 wt% polyester component N force polyesters and polyester A6 to 25 wt%.
- the polyester components M and N are preferably used in a mass ratio (polyester component MZN) of 97Z3 to 3Z97. If the mass ratio is outside this range, it becomes difficult to form a layer structure, and it becomes difficult to simultaneously achieve a heat shrinkage ratio of 60% or more at 95 ° C and a tear strength of 2. ON or less. There is a fear.
- polyester components M and N are used in a mass ratio (polyester component MZN) of 90/10 to 10/90, more preferably force S, and used in 85/15 to 60/40 or 40/60 to 15 Z85. Most preferably.
- polyester A examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polypentamethylene terephthalate, polyhexamethylene terephthalate, polyethylene 2, 6 naphthalate.
- Crystalline polyester such as (PEN) can be used.
- an acid component and Z or glycol component described later may be copolymerized with 10 mol% or less in 100 mol% of the acid component and Z or glycol component.
- PET polyethylene terephthalate
- PEN polyethylene one 2
- PBT polyethylene terephthalate
- PET-D polyethylene terephthalate
- Polyester B is, for example, based on polyester having terephthalic acid as the acid component and diethylene glycol power as the glycol component, and 5 mol% or more, preferably 6 mol% or more in 100 mol% of the acid component and / or the diol component.
- a copolymer obtained by copolymerizing different dicarboxylic acid components and Z or glycol components of less than 40 mol% can be used.
- Specific monomer components include, for example, dicarboxylic acid components such as aromatic dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid, and orthophthalic acid, and aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, and decanedicarboxylic acid. Acid, and alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid.
- dicarboxylic acid components such as aromatic dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid, and orthophthalic acid
- aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, and decanedicarboxylic acid.
- Acid, and alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid.
- amine component examples include aliphatic diols such as propanediol, butanediol, neopentylglycol, and hexanediol; alicyclic diols such as 1,4-cyclohexanedimethanol, and aromatic diols.
- Polyester B is preferably composed of terephthalic acid as the acid component and 7 to 35 mol% of neopentyl glycol and Z or 1,4-cyclohexanedimethanol based on polyester having diethylene glycol strength as the glycol component. It is a copolymerized polyesterol.
- the heat-shrinkable polyester film of the present invention has a structure in which X layers and Y layers are alternately laminated.
- the number of X layers and Y layers to be laminated the number of X layers and Y layers is More preferably, the total is 500 or more, more preferably 1,000 to 100,000, and most preferably 2,000 to 10,000.
- the perforation cutting property is particularly excellent.
- the outermost layer of the heat-shrinkable polyester film may be either the X layer or the Y layer.
- the X- and Y-layers are dyed separately, and then the film cross-section is observed by TEM.
- additives for example, organic particles (eg, bridge acrylic particles, crosslinked styrene particles, silicone particles, etc.), inorganic particles (eg, silica, kaolin) Contains phosphorus, clay, calcium carbonate, aluminum oxide, barium sulfate, zinc oxide, zinc sulfide, etc.), lubricant, stabilizer, colorant, antioxidant, antifoaming agent, antistatic agent, UV absorber, etc. May be.
- organic particles eg, bridge acrylic particles, crosslinked styrene particles, silicone particles, etc.
- inorganic particles eg, silica, kaolin
- 1,3-dioxolane is applied slightly inside from one edge of one end of the film, the film is rolled up and the ends are overlapped to form a tube.
- the film label was covered with a 500mL plastic bottle, heated at 80 ° C for 2.5 seconds, and 10 plastic bottles dropped with a height of lm. In this case, the film label is not damaged due to peeling between the X layer and the Y layer for all the 10 PET bottles.
- 1,3-dioxolan is applied in a width of 2 ⁇ lmm slightly inward from the edge of one side of the film (application amount: 3.0 ⁇ 0. 3g / m 2).
- application amount 3.0 ⁇ 0. 3g / m 2.
- the size of the tube-shaped film label is not limited as long as it can be mounted on a 500 mL plastic bottle without any strain.
- the folding diameter is 109 mm and the label length is about 90 mm.
- the label is provided with perforations according to the actual product form. For example, by using a sewing blade, holes with a length of 0.2 to 2. Omm are arranged at intervals of 0.2 to 1. Omm along the direction perpendicular to the main shrinkage direction of the label. Provide one or two perforations of length.
- the film label breakage due to the peeling between the X layer and the Y layer is, for example, that the label is peeled off due to the delamination between the X layer and the Y layer, particularly in the solvent adhesion portion. It is done.
- the heat-shrinkable polyester film as described above has a heat shrinkage ratio of 50% or more in the main shrinkage direction after being immersed in warm water at 95 ° C for 5 seconds, and a solvent adhesive strength of 2.0 NZl5 mm or more. Yes, the tear propagation strength is 2. ON or less, and the fracture strength after immersion for 30 minutes in 60 ° C warm water is 20 MPa or more.
- the problem to be solved by the present invention can be solved by the heat-shrinkable polyester film having such characteristics. I found out.
- the heat-shrinkable polyester film of the present invention has a hot-water heat shrinkage force when immersed in hot water at 95 ° C ⁇ 0.5 ° C for 10 seconds under no load condition. % Or more. If the heat shrinkage rate is less than 50%, the label may not be properly attached to the container due to insufficient heat shrinkage force.
- the heat shrinkage rate is preferably 55% or more, more preferably 60% or more. In particular, when the heat shrinkage rate is 60% or more, it is very easy to attach a label even on a difficult part such as a shoulder of a bottle.
- the upper limit of the thermal shrinkage rate is a technical limit of 98%, preferably 90% or less, more preferably 85% or less. In particular, when the heat shrinkage rate is 85% or less, the occurrence of label jumping due to the excessively large shrinkage force of the label when the bottle is heated and shrunk over the bottle is extremely suppressed.
- the heat-shrinkable polyester film of the present invention has a hot-water heat shrinkage rate in the main shrinkage direction when immersed in hot water at 70 ° C ⁇ 0.5 ° C for 10 seconds under no load!
- a hot-water heat shrinkage rate in the main shrinkage direction when immersed in hot water at 70 ° C ⁇ 0.5 ° C for 10 seconds under no load!
- it is preferably 10% or more and 50% or less. If the heat shrinkage rate is less than 10%, the shrinkability is insufficient and the shrinking process needs to be performed at a higher temperature. When the thermal shrinkage rate exceeds 50%, a label jumping phenomenon may occur when the bottle is covered with a bottle and heated and shrunk, because the shrinkage force of the label is too large.
- the hot water heat shrinkage ratio is measured by measuring the length of the film before and after the dipping treatment, (length before shrinkage, length after shrinkage) Z length before shrinkage) X 100 (%) This is the value obtained from the formula.
- the main shrinkage direction is a direction in which the hot water heat shrinkage rate is high in the longitudinal direction and the transverse direction.
- the heat-shrinkable polyester film of the present invention has a characteristic that the solvent adhesive strength is 2.0 NZl 5 mm or more.
- the solvent adhesive strength is preferably 2.5 to 20 NZl5 mm. 2. 8 to: LON / 15 mm is preferable.
- the solvent adhesive strength is as follows. This is the value obtained in this way.
- the heat-shrinkable polyester film of the present invention has a characteristic that the tear propagation strength is 2.0 N or less.
- the tear propagation strength is preferably 0.2 to 1.9 N, and more preferably 0.5 to 1.8 N.
- the tear propagation strength is based on JIS K7128-2 (1998).
- a film that has been shrunk 10% at 85 ° C in advance to 5 lmm x 64 mm is manufactured by Toyo Seiki Seisakusho Co., Ltd. The value obtained by measuring with a light load tear tester.
- the heat-shrinkable polyester film of the present invention has a characteristic that the breaking strength after immersion for 30 minutes in warm water of 60 ° C ⁇ 1 ° C is 20 MPa or more.
- the breaking strength is preferably 30 to 200 MPa, more preferably 40 to 150 MPa.
- the breaking strength is a value obtained as follows.
- Folded diameter 87.5mm X Label length 120mm film label is put on a 250mL steel can (outer diameter 53mm, height 133mm) and immersed in hot water at 80 ° C for 10 seconds to put the label in the can Wear shrinkage (about 5% shrinkage). Immediately transfer the labeled steel can into warm water of 60 ° C ⁇ 1 ° C and soak for 30 minutes. Cut the sample from the steel can label, and film before heat treatment according to JIS-K-7127 (1999) (test piece is type 2. However, distance between chucks: 20mm, pulling speed: 200mmZ) Conduct a tensile test in the direction perpendicular to the maximum shrinkage direction.
- the test piece size is 100 mm long (in the direction perpendicular to the maximum film shrinkage direction) and 15 mm wide. mm, temperature 23 ° C, tensile speed 200mmZ.
- the strength at the time of rupture during the test is the breaking strength.
- the heat-shrinkable polyester film used in the present invention preferably has a melt specific resistance at a temperature of 275 ° C of 0.70 to 10 8 ⁇ 'cm or less.
- a melt specific resistance at a temperature of 275 ° C of 0.70 to 10 8 ⁇ 'cm or less.
- the film melted and extruded by an extruder is cooled by a conductive cooling roll (such as a casting roll), an electrode is disposed between the extruder and the casting roll, and the electrode, the casting roll, A voltage is applied between them (that is, the electrode force also applies electricity to the film), and the film is electrostatically adhered to the roll.
- a conductive cooling roll such as a casting roll
- the adhesion between the film and the roll electrostatic adhesion
- the electrostatic adhesion to the roll is low, the thickness of the cast unstretched film becomes non-uniform, and the thickness non-uniformity is further expanded in the stretched film obtained by stretching the unstretched film.
- the electrostatic adhesion is sufficiently high, the thickness can be made uniform even in the stretched film.
- the bonded portions can be easily overlapped even when the film is processed into a tube or the like by solvent bonding.
- the film can be prevented from becoming wrinkled easily, and the film can be prevented from meandering during running, thereby improving workability (stable workability). it can.
- the film productivity can be increased as well as the uniformity of the film thickness, and the appearance of the film can also be improved.
- high electrostatic adhesion improves the stability of film cooling and solidification.
- the casting speed production speed
- the electrostatic adhesion is high, the film is incompletely cooled and solidified, and air is locally introduced between the roll and the film, resulting in pinner bubbles (streaky defects) on the film surface. Can be prevented and the film appearance can be enhanced.
- the melting specific resistance value is preferably 0.65 X 10 8 ⁇ 'cm or less, more preferably 0.60.
- the melt specific resistance value In order to control the melt specific resistance value within the above range, it is desirable to contain an alkaline earth metal compound and a phosphorus-containing compound in the film.
- the melting specific resistance value can be lowered by using only the alkaline earth metal compound, but the melting specific resistance value can be remarkably lowered by the presence of the phosphorus-containing compound. It is not clear why the specific resistance of the melt can be significantly lowered by combining the alkaline earth metal compound and the phosphorus-containing compound. It is estimated that the amount of charge carriers can be increased.
- the content of the alkaline earth metal compound in the film is, for example, 20 ppm (mass basis) or more, preferably 40 ppm (mass basis) or more, based on the alkaline earth metal atom 2 . Preferably it is 50 ppm (mass basis) or more, particularly 60 ppm (mass basis) or more. If the amount of the alkaline earth metal compound is too small, the melting specific resistance value cannot be lowered. Even if the content of the alkaline earth metal compound is excessively increased, the effect of reducing the melt specific resistance value is saturated, and rather adverse effects such as generation of foreign matter and coloring are increased.
- alkaline earth metal compound based on the alkaline-earth metal atom M 2, for example, 400pp m (by mass) or less, preferably 350 ppm (mass basis) or less, more preferably 300 ppm (mass basis) It is as follows.
- the content of the phosphorus compound in the film is, for example, 5 ppm (mass standard) or more, preferably 20 ppm (mass standard) or more, more preferably 40 ppm (mass standard) or more, based on the phosphorus atom P. Especially 60ppm (mass basis) or more. If the amount of the phosphorus compound is too small, the melting specific resistance value cannot be lowered sufficiently, and the amount of foreign matter generated cannot be reduced. Even if the content of the phosphorus compound is increased too much, the effect of reducing the melt specific resistance value is saturated. Furthermore, it promotes the production of diethylene glycol, and the force also controls the amount of production.
- the phosphorus compound content is, for example, 500 ppm (mass basis) or less, preferably 450 ppm (mass basis) or less, more preferably 400 ppm (mass basis) or less, particularly 350 ppm (mass basis), based on the phosphorus atom P. It is as follows.
- the mass ratio (M 2 ZP) of the alkaline earth metal atom M 2 and phosphorus atom P in the film is 1 It should be 2 or more (preferably 1.3 or more, more preferably 1.4 or more).
- the mass ratio (M 2 ZP) is 5.0 or less, preferably 4.5 or less, and more preferably 4.0 or less.
- the melt specific resistance value of the film it is desirable to contain an alkali metal compound in the film in addition to the alkaline earth metal compound and the phosphorus-containing compound.
- Alkali metal compounds cannot lower the melt resistivity even if they are contained alone in the film, but by adding them to the coexistence system of alkaline earth metal compounds and phosphorus-containing compounds, the melt resistivity can be reduced. Can be significantly reduced. Although the reason for this is not clear, it is presumed that the melting specific resistance value is lowered by forming a complex of the alkali metal compound, the alkaline earth metal compound, and the phosphorus-containing compound.
- the content of the alkali metal compound in the film based on the alkali metal atom M 1, for example, Oppm (mass basis) or more, preferably 5 ppm (mass basis) or more, more preferably 6 ppm (mass basis) Above, especially 7ppm (mass basis) or more. Even if the content of the alkali metal compound is excessively increased, the effect of reducing the melt specific resistance value is saturated, and further, the amount of foreign matter generated is increased.
- the alkali metal compound based on the alkali metals atom M 1, for example, LOOppm (mass basis) or less, preferably 90 ppm (mass basis) or less, still more preferably not more than 80 ppm (by weight) .
- alkaline earth metal compound examples include an alkaline earth metal hydroxide, alkoxide, aliphatic carboxylate (acetate, butyrate, etc., preferably acetate), and aromatic carboxylate (benzoic acid). Acid salt), a salt with a compound having a phenolic hydroxyl group (such as a salt with phenol). Etc.).
- alkaline earth metal examples include magnesium, calcium, strontium, norium (preferably magnesium).
- Preferred alkaline earth metal compounds include magnesium hydroxide, magnesium methoxide, magnesium acetate, calcium acetate, strontium acetate, barium acetate and the like, in particular magnesium acetate.
- the alkaline earth metal compounds can be used alone or in combination of two or more.
- Examples of the phosphorus compound include phosphoric acids (phosphoric acid, phosphorous acid, hypophosphorous acid, etc.), esters thereof (alkyl esters, aryl esters, etc.), alkyl phosphonic acids, aryl phosphones. Examples thereof include acids and esters thereof (alkyl esters, aryl esters, etc.).
- Preferred phosphoric acid compounds include phosphoric acid, aliphatic esters of phosphoric acid (alkyl esters of phosphoric acid, etc .; for example, phosphoric acid monomethyl esters, phosphoric acid monoethyl esters, phosphoric acid monobutyl esters, etc. Alkyl ester, dimethyl phosphate
- Di-C alkyl phosphates such as stealth, jetyl phosphate, dibutyl phosphate
- ester 1-6 ester, trimethyl phosphate, triethyl ester phosphate, tri-C phosphate ester such as tributyl ester), phosphoric acid aromatic ester (phosphate phosphate)
- Such as phosphoric acid, tricresyl phosphate, or tri-C aryl ester Such as phosphoric acid, tricresyl phosphate, or tri-C aryl ester.
- Aliphatic esters of phosphorous acid alkyl esters of phosphorous acid, etc .; for example, phosphorous acid compounds such as trimethyl phosphite, tributyl phosphite, or tri C alkyl ester
- anorequinolephosphonic acid metal-oxide-semiconductor (methinorephosphonic acid, ethenorephosphonic acid, etc.)
- alkylphosphonic acid alkyl esters mono- or di-C alkyl ethers of C alkylphosphonic acids such as dimethyl methylphosphonate, dimethyl ethylphosphonate
- aryl phosphonic acid alkyl esters mono- or di-C alkyl ethers of C allylic phosphonic acids such as dimethyl phosphophosphonate, jetyl phosphophosphonate
- aryl phosphonic acid aryl ester (mono- or di-C aryl ester of C arylphosphonic acid such as diphosphorus phosphonic acid) etc.
- the Particularly preferred phosphorus compounds include phosphoric acid and trialkyl phosphates (such as trimethyl phosphate). These phosphorus compounds can be used alone or in combination of two or more.
- alkali metal compounds include alkali metal hydroxides, carbonates, and aliphatic carbonates. Bonates (acetate, butyrate, etc., preferably acetate), aromatic carboxylates (benzoate), salts with compounds having a phenolic hydroxyl group (such as salts with phenol), etc. It is.
- alkali metal include lithium, sodium, potassium and the like (preferably sodium).
- Preferred alkaline earth metal compounds include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium acetate, sodium acetate, potassium acetate and the like, especially sodium acetate.
- the thickness of the heat-shrinkable polyester film of the present invention,. 5 to: LOO mu m is preferably 20 to 50 111 mosquitoes ⁇ Yori preferably 1 ⁇ 0
- the heat-shrinkable polyester film of the present invention can be labeled by a conventionally known method.
- a suitable film is applied to a heat-shrinkable polyester film cut to a desired width, and a film film is manufactured by overlapping and bonding the left and right ends of the film by solvent adhesion or the like.
- the tube film is cut into an appropriate length to obtain a tube-shaped label.
- one opening of this tubular label is joined to form a bag-like label.
- These labels are then perforated by a conventional method, and then covered with a plastic bottle.
- the plastic bottle is placed on a belt conveyor and the like, and steam is blown into the shrink tunnel (steam tunnel) or hot air.
- the label is attached to a bottle container such as a plastic bottle by heat shrinking when passing through these tunnels.
- polyester Le component containing A70 ⁇ 99 wt% polyester and polyester Bl ⁇ 30 wt% M, and polyester B70 ⁇ 99 mass 0 / 0 and polyester component N containing polyester Al ⁇ 30 mass 0/0 melt was poured into separate extruders E and F, respectively, the polyester component by introducing a polyester component M and N of molten state in the stacking device M And the laminate is led from the laminating apparatus to the slit die so that the time from when the laminated body is discharged from the laminating apparatus until it comes into close contact with the cooling roll is 45 seconds to 10 minutes. Extruded into a roll to obtain an unstretched sheet, and the unstretched sheet is stretched at least uniaxially (An example of a production line is shown in Fig. 1).
- the polyester as a raw material is first dried using a dryer such as a hopper dryer, a paddle dryer, or a vacuum dryer.
- a dryer such as a hopper dryer, a paddle dryer, or a vacuum dryer.
- a predetermined amount of polyester A and polyester B are mixed to prepare polyester component M and polyester component N.
- a method for mixing polyester a chip blend method, a master batch method and the like, which are not particularly limited, can be employed. It is known that even when two or more polyester components are blended, there is a strong tendency to transesterify and copolymerize due to the heat history during melt extrusion.
- Polyester component M and polyester component N are charged into separate extruders E and F, respectively, and melted.
- the melting temperature is not particularly limited as long as it does not cause deterioration or alteration for each of the fats and oils.
- the melting point + 5 ° C to 30 ° C
- the softening temperature + (20 ° C to 150 ° C) It is preferable.
- the melted polyester components M and N are guided to the laminating apparatus while being in a molten state, and a stacked body is formed.
- the laminating apparatus include a feed block, a multi-hold die, and a static mixer. Of these, the stacking of several hundred layers can be easily achieved, so it is more preferable to use a combination of a feed block and a static mixer, which are preferable to use a static mixer.
- the static mixer in the present invention is an element having a shape in which a horizontally long rectangular plate is twisted and bent so that an angle (torsion angle) between its short sides is 45 degrees to 270 degrees.
- the in-pipe mixing device arranged alternately so that the short sides of adjacent elements intersect.
- the LZD (pipe length Z pipe inner diameter) ratio of the static mixer element is preferably in the range of 1.0 to 3.0, more preferably in the range of 1.4 to 2.0. If the L / D ratio is less than 1.0, the efficiency of dividing the resin deteriorates, and if it exceeds 3.0, the residence time of the resin passing through the mixer becomes longer, which is not practical.
- the torsion angle of the static mixer element shall be 45 degrees or more. This is because if the twist angle is less than 45 degrees, the twist of the resin layer is insufficient.
- the twist angle is more preferably 90 ° or more, and more preferably 135 ° or more.
- the upper limit of torsion angle should be 315 degrees. If it exceeds 315 degrees, a uniform laminated structure cannot be obtained due to excessive twisting.
- the twist angle is preferably 270 degrees or less, more preferably 215 degrees or less. Note that the fact that a uniform laminated structure cannot be obtained means that the laminated structure is disturbed, for example, the laminated layers are wavy.
- the angle formed by the straight line that follows the joint between the pipe inner wall and the element and the direction of grease movement, that is, the torsional gradient of the element is 27 degrees or more is preferable. If this twist gradient is less than 27 degrees, the LZD ratio must be increased in order to give sufficient twist to the resin with less twisting effect of the resin layer, which is not practical.
- the torsional gradient is more preferably 38 degrees or more, and more preferably 42 degrees or more. On the other hand, when the torsional gradient exceeds 65 degrees, the turbulent flow of the resin becomes violent and the laminated structure is disturbed.
- the twist gradient is more preferably 54 degrees or less, and further preferably 50 degrees or less.
- the preferred shape of the elements of the static mixer can be appropriately selected according to the discharge amount and melting characteristics of the resin, and the shape varies depending on the change of the melting characteristics of the resin passing through the static mixer.
- a plurality of elements can also be used in combination.
- the arrangement of the elements of the static mixer is preferably changed alternately so that the twisting directions of the elements are right turn, left turn, and right turn. This is because a uniform laminated structure can be obtained. It is also preferable to arrange adjacent elements so that they intersect at right angles in order to obtain a uniform laminated structure.
- the number of static mixer elements is preferably 4 or more, more preferably 6 or more. More preferably, it is 8 or more.
- the film of the present invention has a laminated structure, and the number of layers is particularly preferably 500 or more as will be described later. When the number of elements is 8 or more, a laminated structure of 500 or more layers is ensured. Easy to obtain. On the other hand, if the number of elements becomes too large, the laminated structure tends to be disturbed. Therefore, the number of elements is preferably 24 or less, more preferably 18 or less, and more preferably 14 or less. Is more preferable.
- the mass ratio of the polyester component is 8Z2 (MZN)
- the number of elements is preferably 8 to 14, and particularly preferably 10 to 12 forces! / ⁇ .
- the structure of the static mixer described above is one typical example, and the shape and arrangement can be changed without departing from the object of the present invention, and another apparatus can be arranged before and after the static mixer and between the elements.
- another apparatus can be arranged before and after the static mixer and between the elements.
- two or more rows of static mixers smaller in diameter than the resin piping may be arranged in parallel in the piping. It can be obtained by laminating a mixture of the resin component M and the component N of the resin component N by passing through a static mixer and further mixing another resin.
- the number of stacked feed blocks is preferably within 100 layers.
- the temperature of the laminating apparatus is as follows: melting point + (5 ° C to 30 ° C) when the composition exhibits crystallinity, softening temperature + Most preferably, it should be set to (20 ° C to 150 ° C).
- This laminate is extruded through a slit die such as a T-die and is brought into close contact with a cooling tool having a surface temperature of 10 to 40 ° C to obtain an unstretched sheet.
- a slit die such as a T-die
- a cooling tool having a surface temperature of 10 to 40 ° C to obtain an unstretched sheet.
- the laminated body is discharged from the laminating device (the last device that performs laminating when multiple laminating devices are used) until it comes into close contact with the force cooling roll.
- Time for example, in Fig. 1, the stack is discharged from the static mixer 4 and then extruded from the T die 5 to The time until the laminate adheres to the handle 6) is 45 seconds to 10 minutes, preferably 1 to 8 minutes, and more preferably 1.5 to 5 minutes.
- the fact that the stacked body is in close contact with the cooling roll means that the laminate is in surface contact with the cooling roll in the entire width direction.
- the laminated body extruded from the die first comes into surface contact with the cooling roll when the cooling roll rotates as a force that makes contact with the cooling roll in the entire width direction.
- the starting point of the surface contact appears as a line that is formed when the contact points between the cooling roll and the laminate are continuously arranged in the width direction. Therefore, consider the moment when this line appears as the point of contact with the cooling roll.
- the stacking device force can be increased by, for example, increasing the flow path to the slit die, or causing the laminate to stay in the path. The method is mentioned.
- the obtained unstretched sheet is preheated at 50 to 120 ° C, preferably 60 to 100 ° C, if necessary, and then stretched in the transverse direction (direction perpendicular to the extrusion direction) with a tenter. Stretched to 0 times or more, preferably 3.5 times to 15 times.
- the stretching temperature is 60 ° C or higher and 120 ° C or lower, preferably 70 ° C or higher and 100 ° C or lower.
- heat treatment is performed at a temperature of 70 to 100 ° C to obtain a heat-shrinkable polyester film.
- the film may be made into a film roll by winding it according to a conventional method.
- the stretching method may be biaxial stretching by additionally stretching in the machine direction in addition to transverse monoaxial stretching with a tenter.
- Such biaxial stretching may be performed by any of the sequential biaxial stretching method and the simultaneous biaxial stretching method, and may be re-stretched in the longitudinal direction or the transverse direction as necessary.
- the fluctuation range of the surface temperature is a temperature force at each point when the surface temperature of the film is measured at an arbitrary point.
- the average temperature of the film is within about ⁇ 1 ° C. More preferably, the temperature is within ⁇ 0.6 ° C.
- the film is stretched through various processes such as a preheating process before stretching, a stretching process, a heat treatment process after stretching, a relaxation process, and a restretching process process. It is preferable to use equipment that can reduce (homogenize) the fluctuation range of the surface temperature of the film partially or entirely. In particular, in order to make the thickness distribution value uniform over the entire length of the film, the fluctuation range of the surface temperature of the film can be reduced in the preheating step and the stretching step (and in the heat treatment step after stretching if necessary). It is preferable to use equipment. In order to make the heat shrinkage rate uniform, it is preferable to use equipment capable of reducing the fluctuation range of the surface temperature of the film in the stretching process.
- Examples of the equipment that can reduce the fluctuation of the film surface temperature include, for example, equipment equipped with a wind speed control means (such as an inverter) for controlling the supply speed of hot air for heating the film, and stably supplying air.
- a wind speed control means such as an inverter
- Examples include equipment equipped with heating means for heating to prepare the hot air [heating means using low-pressure steam of 500 kPa or less (5 kgf Zcm 2 or less) as a heat source].
- the horizontal direction is practical as the main shrinkage direction, and thus, an example of the film forming method in the case where the main shrinkage direction is the horizontal direction has been shown above.
- the main shrinkage direction is the longitudinal direction
- a film can be formed in accordance with the operation of the above method except that the stretching direction in the above method is changed by 90 degrees.
- the heat-shrinkable polyester film thus obtained has the general characteristics of a heat-shrinkable polyester film such as heat-shrinkability and tensile strength, and also has a perforation cut property and a label wear. It is excellent in the strength of the bonded part and is suitable as a label for a bottle.
- the label was perforated in a direction perpendicular to the main shrinkage direction of the label. Fold in half Two lmm thick cardboards are placed under the label, and a sewing machine blade (100mm blade with 1mm pitch blades at lmm intervals) is placed on the test sealer (made by Seibu Kikai Co., Ltd.). Attach, press the sewing blade to the label with a gauge pressure of 2kg / cm 2 , and put a perforation parallel to the label edge at 5mm from the edge of the folded label.
- the label was provided with two perforations with 1 mm long holes arranged at lmm intervals over the entire length of the label, and the interval between the two perforations was 10 mm.
- the label was attached under the condition (4), and the PET bottle refrigerated at 5 ° C for 12 hours was dust-coated from the height of lm and allowed to fall freely onto the glossy concrete surface. At this time, holding the plastic bottle sideways and letting go of the hand, the bottle dropped on its side force concrete surface. A test was performed on 10 PET bottles, and X was given if even one bonded part was removed.
- Folded diameter 87.5mm X Label length 120mm film label is placed on a 250mL steel can (outer diameter 53mm, height 133mm) and immersed in 80 ° C hot water for 10 seconds to shrink the label into the can (5% contraction).
- the steel can with the label was immediately transferred to warm water of 60 ° C ⁇ 1 ° C and immersed for 30 minutes.
- Also cut out the sample of the steel can label (part without back attachment) and set it to JIS K 7127 (1999) (specimen is type 2; however, distance between chucks: 20 mm, pulling speed: 200 mmZ) According to heat treatment
- the bow I tension test was conducted in the direction perpendicular to the maximum shrinkage direction of the film before the treatment.
- the size of the test piece is 100 mm in length (direction perpendicular to the maximum film shrinkage direction), 15 mm in width, and the test conditions are a distance between chucks of 20 mm, a temperature of 23 ° C, and a tensile speed of 200 mmZ.
- the strength at the time of breaking during the test was defined as the breaking strength.
- Thermal analysis of the polyester component was performed using a DSC device (model: DSC220) manufactured by Seiko Denshi Kogyo. 10 ⁇ lmg of each chip synthesized in the synthesis example described below is used as a sample. This sample is heated at 300 ° C for 2 minutes, immediately put in liquid nitrogen and rapidly cooled, and then the temperature is increased from 40 ° C to 300 ° C. The temperature was raised at 20 ° CZ and the heat flow rate curve (DSC curve) was measured. The intersection of tangent lines drawn before and after the endothermic start curve in the DSC curve was defined as the glass transition temperature (Tg). The temperature showing the maximum value of the endothermic peak in the DSC curve was defined as the melting temperature (Tm). The integrated value of the endothermic peak of the DSC curve was defined as the heat of fusion (Hm). The results are shown in Table 1.
- the number of layers inside the film was determined by observation using a transmission electron microscope.
- the film was embedded in epoxy resin.
- epoxy resin As the epoxy resin used, Luabeck 812, Luabeck NMA (manufactured by Nacalai Testa Co., Ltd.) and DMP30 (TAAB Co., Ltd.) were mixed well in a ratio of 100: 89: 3, respectively.
- TAAB Co., Ltd. TAAB Co., Ltd.
- the obtained embedding block was attached to Nissan Sangyo Ultracut N, and an ultrathin section was prepared.
- trimming was performed using a glass knife until the cross section of the part that was desired for film observation appeared on the resin surface.
- an ultrathin section was cut out using a diamond knife (Sumitomo Electric Sumiknife S K2045). The cut sections were collected on a mesh, stained in ruthenium tetroxide vapor at room temperature for 30 minutes, and then thinly deposited with carbon.
- JEOL SiiEM—2010 was conducted under the condition of an acceleration voltage of 200 kV. It was. The obtained image was recorded on an imaging plate (FDL UR-V made by Fuji Photo Film). The signal recorded on the imaging plate is read out using digital luminography (PixsysTEM, manufactured by JEOL) and recorded as digital image information on a Windows (registered trademark) PC. We counted the number of layers identified.
- the number of layers inside the film was determined by observation using a transmission electron microscope (TEM).
- TEM transmission electron microscope
- the film was embedded in epoxy resin.
- As the epoxy resin used Luabeck 812, Luavec NMA (manufactured by Nacalai Testa Co., Ltd.) and DMP30 (TAAB Co.) were mixed well at a ratio (mass) of 100: 89: 3, respectively.
- the sample film was allowed to stand in an oven adjusted to a temperature of 60 ° C. for 16 hours to cure the resin and obtain an embedded block.
- the embedded block was cut with a glass knife until the cross section of the film portion appeared on the block surface (surface contact).
- the embedding block after the surface exposure was placed in a container sealed with ruthenium chloride vapor for 3 days to carry out ruthenium staining.
- the ruthenium chloride vapor was replaced with fresh vapor every day.
- the electron microscope was observed using JEOL SiiEM-2010 under an acceleration voltage of 200 kV.
- the obtained image was recorded on an imaging plate (“FDL UR V” manufactured by Fuji Photo Film Co., Ltd.).
- the signal recorded on the imaging plate was read out using a digital luminography (“PixsysTEM” manufactured by JEOL Ltd.) and recorded as digital image information on a Windows (registered trademark) PC.
- the magnification was appropriately selected from the medium power of 5000-20000 times.
- the shade of the color in the film thickness direction was numerically expressed by the line profile. In particular , Read the shade of 100 pixels wide and 3000 pixels long (number of pixels can be changed arbitrarily), draw a curve with the horizontal axis as the length direction pixel and the vertical axis as the signal intensity (lightness and shade). I was ashamed.
- the number of layers was counted visually from the TEM image on the ging plate.
- 1 pixel is 5 nm
- 1 pixel is 1.25 ⁇ m.
- This Plot Value format data was read into Microsoft Excel, and the average value (Av) of all data for each pixel of the line parallel to the Y axis was obtained.
- the judgment value + 1 is given to the pixel, and in other cases, the judgment value 1 is given to the pixel.
- the judgment value of each pixel is plotted against the pixel (horizontal axis), the resulting graph is a horizontal straight line connecting +1 and +1 (or -1 and -1), and +1 and 1 ( Or the opposite)).
- the number of diagonal lines was determined as the number of layers.
- the number of layers obtained by the above method may be less than 2 eta layer or 2 eta + 1 layer obtained theoretically from several elements of the static mixer eta.
- Polyester constituting the X layer, the resin component ⁇ and the polyester resin component constituting the cocoon layer Although the composition is different from that of the cocoon layer, transesterification occurs at the interface between adjacent layers during the lamination process, and the X layer A polyester with the same composition may be formed near the interface of the cocoon layer.
- the X layer and the cocoon layer are partly identified as layers of the same polyester composition, and the above dyeing method or layer When the number confirmation method is adopted, it is considered to be less than the theoretical value.
- esterification reactor 57036 parts by mass of terephthalic acid (TPA), 33244 parts by mass of ethylene glycol (EG), 15733 parts by mass of neopentyl glycol (NPG), 23.2 parts by mass of dianhymonic triacid (Polymerization catalyst), 5.0 parts by weight of sodium acetate (alkali metal compound) and 46.1 parts by weight of trimethyl phosphate (phosphorus compound), and the pressure is adjusted to 0.25 MPa, at a temperature of 220 to 240 ° C. Perform esterification reaction by stirring for 120 minutes It was.
- TPA terephthalic acid
- EG ethylene glycol
- NPG 15733 parts by mass of neopentyl glycol
- Polymerization catalyst Polymerization catalyst
- sodium acetate alkali metal compound
- the reaction vessel was returned to normal pressure, and 3.0 parts by mass of cobalt acetate tetrahydrate and 124.1 parts by mass of magnesium acetate tetrahydrate (alkaline earth metal compound) were added at a temperature of 240 ° C. After stirring for 10 minutes, the pressure was reduced to 0.5 hPa over 75 minutes and the temperature was raised to 280 ° C. Stirring was continued until the melt viscosity reached 4500 boise at a temperature of 280 ° C (about 70 minutes), and then discharged into water as a strand. Polyester chip A was obtained by cutting the discharged material with a strand cutter. The intrinsic viscosity of polyester chip A is 0.75 dlZg.
- Polyester raw material chips B to D having the chip compositions shown in Table 1 were obtained in the same manner as in Synthesis Example 1.
- PD is an abbreviation for 1,3 propanediol
- CHDM is 1,4-cyclohexanedimethanol
- BD is 1,4 butanediol
- DEG diethylene glycol.
- the intrinsic viscosities of each polyester were 0.92 dlZg for chip B, 0.72 dlZg for chip C, and 1.20 dlZg for chip D.
- the above unstretched sheet was preheated in a tenter at 82 ° C for 24 seconds, subsequently stretched 4.8 times at 77 ° C in the lateral direction, and subsequently heat treated at 70 ° C for 24 seconds. And a heat-shrinkable polyester film having a thickness of 45 m was obtained.
- Example 1 the change in the surface temperature of the film when the film was continuously produced was changed.
- the dynamic range was within the range of the average temperature ⁇ 0.6 ° C in the tenter preheating step, the average temperature ⁇ 0.5 ° C in the stretching step, and the average temperature ⁇ 0.5 ° C in the heat treatment step.
- Example 2 chip A was changed to chip C.
- Example 3 heat shrinkage was performed in the same manner as in Example 1 except that chip B was changed to chip D and the preheating temperature during transverse stretching was changed to 79 ° C. A conductive polyester film was obtained.
- Table 1 shows the evaluation results of the films obtained in Examples 1 to 3 and Comparative Example 1.
- the number of layers in each example was determined by employing the detailed layer number confirmation method described in (8-2) above.
- Heat shrinkage rate (%) Perforation cutting property Solvent adhesion strength after drop treatment Tear propagation strength Number of layers Horizontal perforation ⁇ La perforation break strength (layer) Breaking from defective rate after shrinkage
- the heat-shrinkable polyester film of the present invention is suitable for a label for a bottle.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Laminated Bodies (AREA)
Abstract
[PROBLEMS] To provide a heat-shrinkable polyester film which is excellent in perforation cuttability and can form labels excellent in joint strength. [MEANS FOR SOLVING PROBLEMS] A heat-shrinkable polyester film having a structure composed of X layers containing a polyester M and Y layers containing a polyester N which are laminated alternately, characterized in that when ten 500mL labeled PET bottles obtained by applying 1,3-dioxolane to one margin on one surface of the polyester film, rolling the film up and laying the margin on top of the other margin to form a tubular film label, covering each bottle with the film label, and heating the covered bottle to 80°C for 2.5 seconds fall from the height of one meter, no PET bottle causes breakage of the film label due to delamination between X and Y layers.
Description
明 細 書 Specification
熱収縮性ポリエステル系フィルムおよびその製造方法 Heat-shrinkable polyester film and method for producing the same
技術分野 Technical field
[0001] 本発明は、熱収縮性ポリエステル系フィルムに関し、特にペットボトル(ポリエチレン テレフタレート(PET)ボトル)等のラベル用途に好適な熱収縮性ポリエステル系フィ ルムに関する。 The present invention relates to a heat-shrinkable polyester film, and more particularly to a heat-shrinkable polyester film suitable for labeling applications such as PET bottles (polyethylene terephthalate (PET) bottles).
背景技術 Background art
[0002] 熱収縮性フィルム、特にボトルの胴部のラベル用の熱収縮性フィルムとしては、ポリ 塩化ビニル、ポリスチレン等力もなるフィルムが主として用いられている。しかし、ポリ 塩ィ匕ビュルについては、近年、廃棄した塩化ビニル製品の焼却時の塩素系ガスの発 生が問題となり、一方、ポリスチレンについては、ポリスチレンフィルム上への印刷が 困難である等の問題がある。さらに、ペットボトルの回収リサイクルにあたっては、ポリ 塩化ビュル、ポリスチレン等の樹脂のラベルは、廃棄時に分別する必要がある。この ため、これらの問題の無いポリエステル系の熱収縮性フィルムが注目を集めている。 [0002] As a heat-shrinkable film, particularly a heat-shrinkable film for labeling the body of a bottle, a film having polyvinyl chloride, polystyrene or the like is mainly used. However, in recent years, the generation of chlorine-based gas has been a problem for incineration of discarded vinyl chloride products with respect to polyvinyl chloride, while the problem with polystyrene is that it is difficult to print on polystyrene film. There is. Furthermore, when collecting and recycling PET bottles, it is necessary to separate plastic labels such as polyvinyl chloride and polystyrene at the time of disposal. For this reason, polyester-based heat-shrinkable films that do not have these problems are attracting attention.
[0003] ボトル用ラベルとして用いられる熱収縮性ポリエステル系フィルムには、熱収縮性、 引張り強度等の一般的な特性の他に、ミシン目カット性およびラベルイ匕時の接着部 の強度が求められている。 [0003] In addition to general properties such as heat shrinkability and tensile strength, heat shrinkable polyester film used as a label for bottles is required to have perforation cut ability and strength of the adhesive portion when labeling is performed. ing.
[0004] ミシン目カット性は、ボトル用ラベルに開封用ミシン目を設ける場合があることから、 要求されるものである。商品のボトルが飲料用ガラス瓶の場合、冷蔵されるのが通常 である。この場合、ラベル開封が低温度で行われるため、開封不良が発生しやすいと いう問題があり、ミシン目カット性に対する要求は高い。特許文献 1では、ミシン目カツ ト性を向上するために、熱収縮性ポリエステル系フィルムの製造工程において、延伸 時の温度条件の最適化が行われている。この方法により、得られる熱収縮性ポリエス テル系フィルムのミシン目カット性は、いくらか改善されるものの、まだ不十分である。 [0004] The perforation cutability is required because a perforation for opening may be provided on a bottle label. If product bottles are beverage glass bottles, they are usually refrigerated. In this case, since label opening is performed at a low temperature, there is a problem that unsuccessful opening is likely to occur, and there is a high demand for perforation cutability. In Patent Document 1, in order to improve the perforation cutting property, the temperature conditions during stretching are optimized in the manufacturing process of the heat-shrinkable polyester film. Although the perforation cutting property of the heat-shrinkable polyester film obtained by this method is somewhat improved, it is still insufficient.
[0005] ミシン目カット性に優れた熱収縮性ポリエステル系フィルムとしては、特許文献 2〖こ 所定の温湯収縮率と破断伸度を有する熱収縮性ポリエステル系フィルムが開示され ている。し力し、この熱収縮性ポリエステル系フィルムは、ペットボトルにラベルとして
装着した際、ペットボトルが落下した場合に、衝撃でラベルの接着部が剥がれるなど 、ラベルイ匕時の接着部の強度に劣るという問題があった。 [0005] As a heat-shrinkable polyester film excellent in perforation cutability, Patent Document 2 discloses a heat-shrinkable polyester film having a predetermined hot water shrinkage ratio and elongation at break. This heat-shrinkable polyester film can be used as a label on PET bottles. There was a problem that the strength of the adhesive part at the time of labeling was inferior, for example, when the plastic bottle dropped when attached, the adhesive part of the label was peeled off by impact.
[0006] 従って、ボトル用ラベル用途において、熱熱収縮性ポリエステル系フィルムには、優 れたミシン目カット性およびラベルイ匕時の接着部の強度が求められて 、る。 [0006] Therefore, in bottle label applications, the heat-shrinkable polyester film is required to have excellent perforation cutability and strength of the adhesive portion when labeling occurs.
特許文献 1 :特開 2003— 268131号公報 Patent Document 1: Japanese Unexamined Patent Publication No. 2003-268131
特許文献 2:特開平 11― 207818号公報 Patent Document 2: JP-A-11-207818
図面の簡単な説明 Brief Description of Drawings
[0007] [図 1]本発明の熱収縮性ポリエステル系フィルムの製造ラインの一例を示す概略図で ある。 FIG. 1 is a schematic view showing an example of a production line for a heat-shrinkable polyester film of the present invention.
[図 2]画像解析ソフトに取り込まれたフィルムの TEM写真である。 [Fig. 2] TEM photograph of film imported into image analysis software.
[図 3]図 2のフーリエ変換後の画像である。 FIG. 3 is an image after the Fourier transform of FIG.
[図 4]図 3の逆フーリエ変換後の画像である。 4 is an image after the inverse Fourier transform of FIG.
[図 5]図 4の濃淡を明瞭ィ匕した後の画像である。 FIG. 5 is an image after clearing the shading of FIG.
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0008] 上記事情に鑑み、本発明が解決しょうとする課題は、ミシン目カット性およびラベル 化時の接着部の強度に優れた熱収縮性ポリエステル系フィルムを提供することにあ る。 [0008] In view of the above circumstances, the problem to be solved by the present invention is to provide a heat-shrinkable polyester film excellent in perforation cutting properties and strength of an adhesive portion at the time of labeling.
課題を解決するための手段 Means for solving the problem
[0009] 上記課題を解決することのできた本発明の熱収縮性ポリエステル系フィルムは、ポ リエステル成分 Mを含む X層とポリエステル成分 Nを含む Y層とが、交互に積層され た構造を有する熱収縮性ポリエステル系フィルムであって、該フィルムの片端の片面 の端縁から少し内側に 1, 3—ジォキソランを塗布し、該フィルムを丸めて端部を重ね 合わせてチューブ状のフィルムラベルとし、該フィルムラベルを 500mLペットボトルに 被覆して 80°Cで 2. 5秒間加熱して装着し、該ペットボトル 10本を lmの高さ力も落下 した場合に、該ペットボトル 10本すべてについて X層と Y層との間の剥離に起因する フィルムラベルの破損が起こらな 、ことを特徴とする。
本発明の熱収縮性ポリエステル系フィルムは、 X層に含まれるポリエステル成分 M 1S ポリエステル A70〜99質量%およびポリエステル Bl〜30質量%を含み、 Y層に 含まれるポリエステル成分 N力 ポリエステル B70〜99質量0 /0およびポリエステル A 1〜30質量%を含むことが好ましい態様である。また、 X層と Y層とが、合わせて 500 層以上交互に積層された構造を有するものであることが好ましい。 [0009] The heat-shrinkable polyester film of the present invention that has been able to solve the above-described problems is a heat shrinkable structure in which an X layer containing a polyester component M and a Y layer containing a polyester component N are alternately laminated. A shrinkable polyester film, which is coated with 1,3-dioxolan slightly inside from one edge of one end of the film, rolled up and overlapped to form a tubular film label, When a film label is coated on a 500 mL PET bottle, heated at 80 ° C for 2.5 seconds and then attached, and when 10 PET bottles are dropped even at a height of lm, all 10 PET bottles It is characterized in that the film label is not damaged due to peeling from the Y layer. The heat-shrinkable polyester film of the present invention comprises polyester component M 1S polyester A 70 to 99% by mass and polyester Bl 30% by mass contained in the X layer, and polyester component N force polyester B 70 to 99% contained in the Y layer. 0/0 and a is a preferred embodiment comprises a polyester a 1 to 30 wt%. Further, it is preferable that the X layer and the Y layer have a structure in which 500 layers or more are alternately laminated.
本発明の熱収縮性ポリエステル系フィルムは、 95°C±0. 5°Cの温水中に 10秒間 浸漬後の主収縮方向の熱収縮率が 50%以上であり、溶剤接着強度が 2. 0N/15 mm以上であり、引裂伝播強度が 2. ON以下であり、 60°C± 1°Cの温水中に 30分間 浸漬後の破断強度が 20MPa以上である厚みが 5〜: L00 μ mの熱収縮性ポリエステ ル系フィルムとしても表現される。 The heat-shrinkable polyester film of the present invention has a heat shrinkage ratio of 50% or more in the main shrinkage direction after being immersed in warm water of 95 ° C ± 0.5 ° C for 10 seconds, and has a solvent adhesive strength of 2.0 N. / 15 mm or more, tear propagation strength is 2. ON or less, and the thickness after breaking into hot water at 60 ° C ± 1 ° C for 30 minutes is 20 MPa or more. Thickness is 5 to: L00 μm It is also expressed as a heat-shrinkable polyester film.
本発明の熱収縮性ポリエステル系フィルムは、ボトル用ラベルに好適であり、本発 明の熱収縮性ポリエステル系フィルムを用いたボトル用ラベルも本発明に含まれる。 本発明の熱収縮性ポリエステル系フィルムは、ポリエステル A70〜 99質量%およ びポリエステル Bl〜30質量%を含むポリエステル成分 M、およびポリエステル B70 〜99質量%およびポリエステル Al〜30質量%を含むポリエステル成分 Nをそれぞ れ別々の押出機 Eおよび Fに投入して溶融し、溶融状態のポリエステル成分 Mおよ び Nを積層装置に投入してポリエステル成分 Xおよび Yの積層体を得、積層体が積 層装置から吐出されて力も冷却ロールに密着するまでの時間が 45秒〜 10分となるよ うに、積層体を積層装置からスリットダイに導き、冷却フィルムロールに押出して未延 伸シートを得、該未延伸シートを少なくとも一軸に延伸することを特徴とする方法によ り製造することができ、当該方法も本発明に含まれる。 The heat-shrinkable polyester film of the present invention is suitable for a bottle label, and a bottle label using the heat-shrinkable polyester film of the present invention is also included in the present invention. The heat-shrinkable polyester film of the present invention comprises a polyester component M containing 70 to 99% by weight of polyester A and 30 to 30% by weight of polyester Bl, and a polyester component containing 70 to 99% by weight of polyester B and 30 to 30% by weight of polyester Al. N is fed into separate extruders E and F, respectively, and melted. Polyester components M and N in a molten state are fed into a laminating apparatus to obtain a laminated body of polyester components X and Y. The laminated body is guided from the laminating apparatus to a slit die so that it takes 45 seconds to 10 minutes until the force is discharged from the laminating apparatus and the force comes into close contact with the cooling roll. The unstretched sheet can be produced by a method characterized by stretching at least uniaxially, and this method is also included in the present invention.
発明の効果 The invention's effect
本発明によれば、熱収縮性、引張り強度等の熱収縮性ポリエステル系フィルムの一 般特性を有し、かつミシン目カット性およびラベル化時の接着部の強度に優れた熱 収縮性ポリエステル系フィルムが提供される。本発明のフィルムは、フルボトルラベル とした場合、低温時でもラベルの引き剥がしが容易であり、 自動販売機でペットボトル 入り飲料の商品が取出口に落下した際のラベルの破損の問題を引き起こすことがな ぐボトル用ラベルとして好適に使用できる。
発明を実施するための最良の形態 According to the present invention, a heat-shrinkable polyester-based film having general characteristics of heat-shrinkable polyester film such as heat-shrinkability and tensile strength, and having excellent perforation cutability and strength of an adhesive portion at the time of labeling. A film is provided. When the film of the present invention is a full-bottle label, it is easy to peel off the label even at low temperatures, causing a problem of label breakage when a beverage product in a PET bottle falls to the outlet with a vending machine. It can be used favorably as a label for bottles with a long gap. BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明は、ポリエステル成分 Mを含む X層とポリエステル成分 Nを含む Y層と力 交 互に積層された構造を有する熱収縮性ポリエステル系フィルムであって、該フィルム の片端の片面の端縁から少し内側に 1, 3—ジォキソランを塗布し、該フィルムを丸め て端部を重ね合わせてチューブ状のフィルムラベルとし、該フィルムラベルを 500mL ペットボトルに被覆して 80°Cで 2. 5秒間加熱して装着し、該ペットボトル 10本を lm の高さから落下した場合に、該ペットボトル 10本すべてについて X層と Y層との間の 剥離に起因するフィルムラベルの破損が起こらないことを特徴とする熱収縮性ポリエ ステル系フィルムである。 [0011] The present invention relates to a heat-shrinkable polyester film having a structure in which an X layer containing a polyester component M and a Y layer containing a polyester component N are laminated in a force alternating fashion, on one side of the film. Apply 1,3-dioxolan slightly inward from the edge, roll the film and overlap the edges to form a tube-shaped film label, and cover the film label on a 500 mL PET bottle at 80 ° C. 2. If the PET bottle is heated and attached for 5 seconds and dropped from the height of lm, the film label will be damaged due to the peeling between the X layer and the Y layer for all 10 PET bottles. This is a heat-shrinkable polyester film characterized by the absence of the heat-shrinkable polyester film.
[0012] 本発明の熱収縮性ポリエステル系フィルムは、 X層と Y層が交互に積層された構造 を有し、 X層と Y層は、異なるポリエステル成分 (ポリエステル成分 Mおよび N)により 構成される。 [0012] The heat-shrinkable polyester film of the present invention has a structure in which X layers and Y layers are alternately laminated, and the X layers and Y layers are composed of different polyester components (polyester components M and N). The
[0013] ポリエステル成分 Mと Nは、異なる熱特性を有するものであれば、任意の組合せで 本発明の目的に合致するよう選択することができる。ポリエステル成分 Mと Nのガラス 転移温度の差が 3°C以上 100°C以下であって結晶融解熱量の差が 5jZg以上 100J Zg以下であることが好ましい。また、ポリエステル成分 Mは、 DSCで測定されるガラ ス転移温度が― 50°C以上 60°C未満であって結晶融解熱量が 5jZg以上 lOOjZg 以下である結晶性ポリエステル成分であり、ポリエステル成分 Nは、ガラス転移温度 が 60°C以上 150°C以下であって結晶融解熱量が OjZg以上 3jZg以下である実質 的に非晶質のポリエステル成分であることがより好まし 、。原料となるポリエステル成 分 Mおよび Nは、ホモポリマー、コポリマーのいずれにより構成されていても良ぐま た 2種類以上の任意のポリエステルを含むポリエステル組成物であってもよい。 [0013] The polyester components M and N can be selected to meet the object of the present invention in any combination as long as they have different thermal characteristics. It is preferable that the difference between the glass transition temperatures of the polyester components M and N is 3 ° C. or more and 100 ° C. or less and the difference in crystal heat of fusion is 5 jZg or more and 100 J Zg or less. Polyester component M is a crystalline polyester component having a glass transition temperature measured by DSC of −50 ° C or more and less than 60 ° C and a heat of crystal melting of 5jZg or more and lOOjZg or less, and polyester component N is More preferably, it is a substantially amorphous polyester component having a glass transition temperature of 60 ° C. or higher and 150 ° C. or lower and a heat of crystal melting of OjZg or higher and 3jZg or lower. The starting polyester components M and N may be either homopolymers or copolymers, and may be a polyester composition containing two or more arbitrary polyesters.
[0014] ポリエステル成分 Mと Nの好ましい組み合わせとしては、ポリエステル成分 M力 ポ リエステル A70〜99質量0 /0およびポリエステル Bl〜30質量0 /0を含み、ポリエステル 成分 Nが、ポリエステル B70〜99質量%およびポリエステル Al〜30質量%を含む ことが好ましい。また、ポリエステル成分 M力 ポリエステル A73〜97質量0 /0および ポリエステル B3〜27質量%を含み、ポリエステル成分 N力 ポリエステル B73〜97 質量%ぉよびポリエステル A3〜27質量%を含むことがより好ましい。さらに、ポリエス
テル成分 M力 ポリエステル A75〜94質量%およびポリエステル B6〜25質量0 /0を 含み、ポリエステル成分 N力 ポリエステル B75〜94質量%およびポリエステル A6 〜25質量%を含むことが最も好ま 、。 [0014] Preferred combinations of the polyester component M and N, wherein the polyester component M power Po Riesuteru A70~99 mass 0/0 and polyester Bl~30 mass 0/0, the polyester component N is polyester B70~99 wt% And polyester Al to 30% by mass is preferable. Also includes B3~27 wt% polyester component M force polyester A73~97 mass 0/0 and polyester, and more preferably contains B73~97 wt% polyester component N force polyester Oyobi polyester A3~27 wt%. In addition, police Include ether components M force polyester A75~94 wt% and the polyester B6~25 mass 0/0, most preferred to contain B75~94 wt% polyester component N force polyesters and polyester A6 to 25 wt%.
[0015] ポリエステル成分 Mおよび Nは、質量比(ポリエステル成分 MZN)で、 97Z3〜3 Z97で使用することが好ましい。質量比がこの範囲を外れると、層構造が形成されに くくなり、 95°C条件での 60%以上の熱収縮率と 2. ON以下の引き裂き強度とを同時 に達成するのが困難となるおそれがある。 [0015] The polyester components M and N are preferably used in a mass ratio (polyester component MZN) of 97Z3 to 3Z97. If the mass ratio is outside this range, it becomes difficult to form a layer structure, and it becomes difficult to simultaneously achieve a heat shrinkage ratio of 60% or more at 95 ° C and a tear strength of 2. ON or less. There is a fear.
さらに、ポリエステル成分 Mおよび Nは、質量比(ポリエステル成分 MZN)で、 90 /10〜10/90で使用すること力 Sより好ましく、 85/15〜60/40又は 40/60〜15 Z85で使用することが最も好ましい。 In addition, the polyester components M and N are used in a mass ratio (polyester component MZN) of 90/10 to 10/90, more preferably force S, and used in 85/15 to 60/40 or 40/60 to 15 Z85. Most preferably.
[0016] ここで、ポリエステル Aとしては、例えば、ポリエチレンテレフタレート(PET)、ポリブ チレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリペンタメチレ ンテレフタレート、ポリへキサメチレンテレフタレート、ポリエチレン 2, 6 ナフタレー ト(PEN)等の結晶性ポリエステルを用いることができる。また、これらをベースにして 、後述の酸成分かつ Zまたはグリコール成分を、酸成分かつ Zまたはグリコール成分 100モル%中 10モル%以下共重合したものを使用してもよい。さらに、ポリエチレン テレフタレート(PET)をベースにして、ダイマー酸を 10モル0 /0以下共重合したもの( PET— D)や、ポリエチレン一 2, 6 ナフタレート(PEN)にイソフタル酸を 10モル0 /0 以下共重合したものも用いることができる。より好ましいものとしては、 PBT、 PTTおよ び PET—。である。 Here, examples of polyester A include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polypentamethylene terephthalate, polyhexamethylene terephthalate, polyethylene 2, 6 naphthalate. Crystalline polyester such as (PEN) can be used. Further, based on these, an acid component and Z or glycol component described later may be copolymerized with 10 mol% or less in 100 mol% of the acid component and Z or glycol component. Further, the polyethylene terephthalate (PET) base, 10 moles dimer acid 0/0 those following copolymer (PET-D) and a polyethylene one 2, 10 moles of isophthalic acid to 6-naphthalate (PEN) 0/0 Those copolymerized below can also be used. More preferred are PBT, PTT and PET. It is.
[0017] ポリエステル Bとしては、例えば、酸成分としてテレフタル酸、グリコール成分として ジエチレングリコール力もなるポリエステルをベースとして、酸成分かつ/またはダリ コール成分 100モル%中 5モル%以上、好ましくは 6モル%以上 40モル%未満の異 なるジカルボン酸成分かつ Zまたはグリコール成分を共重合したものを用いることが できる。具体的なモノマー成分としては、例えば、ジカルボン酸成分としては、イソフタ ル酸、ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸 、ァゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および 1 , 4ーシクロへキサンジカルボン酸等の脂環式ジカルボン酸等が挙げられる。グリコー
ル成分としては、プロパンジオール、ブタンジオール、ネオペンチルグリコール、へキ サンジオール等の脂肪族ジオール; 1, 4ーシクロへキサンジメタノール等の脂環式ジ オール、芳香族ジオール等が挙げられる。 [0017] Polyester B is, for example, based on polyester having terephthalic acid as the acid component and diethylene glycol power as the glycol component, and 5 mol% or more, preferably 6 mol% or more in 100 mol% of the acid component and / or the diol component. A copolymer obtained by copolymerizing different dicarboxylic acid components and Z or glycol components of less than 40 mol% can be used. Specific monomer components include, for example, dicarboxylic acid components such as aromatic dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid, and orthophthalic acid, and aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, and decanedicarboxylic acid. Acid, and alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid. Glico Examples of the amine component include aliphatic diols such as propanediol, butanediol, neopentylglycol, and hexanediol; alicyclic diols such as 1,4-cyclohexanedimethanol, and aromatic diols.
ポリエステル Bとして好ましくは、酸成分としてテレフタル酸、グリコール成分としてジ エチレングリコール力もなるポリエステルをベースとして、 7モル%以上 35モル%以下 のネオペンチルグリコールかつ Zまたは 1, 4—シクロへキサンジメタノールを共重合 したポリエステノレである。 Polyester B is preferably composed of terephthalic acid as the acid component and 7 to 35 mol% of neopentyl glycol and Z or 1,4-cyclohexanedimethanol based on polyester having diethylene glycol strength as the glycol component. It is a copolymerized polyesterol.
[0018] 本発明の熱収縮性ポリエステル系フィルムは、 X層と Y層が交互に積層された構造 を有するが、積層される X層および Y層の数としては、 X層と Y層との合計で 500以上 であることが好ましぐより好ましくは 1000〜10万であり、最も好ましくは 2000〜万で ある。 X層と Y層との合計が 500層以上の場合には、ミシン目カット性が特に優れたも のとなる。 [0018] The heat-shrinkable polyester film of the present invention has a structure in which X layers and Y layers are alternately laminated. As the number of X layers and Y layers to be laminated, the number of X layers and Y layers is More preferably, the total is 500 or more, more preferably 1,000 to 100,000, and most preferably 2,000 to 10,000. When the total of the X layer and the Y layer is 500 layers or more, the perforation cutting property is particularly excellent.
なお、熱収縮性ポリエステル系フィルムの最外層は、 X層または Y層のいずれであ つてもよい。 The outermost layer of the heat-shrinkable polyester film may be either the X layer or the Y layer.
フィルムの積層数を測定するには、基本的には、 X層と Y層を染め分けた後、フィル ム断面を TEM観察することにより行う。ただし、層数が増えてくると、 TEM画像の倍 率を高めても、 目視で数えることが困難となる。よって、その場合は、後に詳述するよ うに、画像解析ソフトを用いて画像の濃淡度合いを明瞭ィ匕し、次いで数値ィ匕 (2値化) して、層数を求める方法を採用した。 In order to measure the number of laminated films, the X- and Y-layers are dyed separately, and then the film cross-section is observed by TEM. However, as the number of layers increases, it becomes difficult to visually count even if the magnification of the TEM image is increased. Therefore, in this case, as will be described in detail later, the method of obtaining the number of layers by using the image analysis software to clearly show the degree of shading of the image and then numerically (binarizing) it was adopted.
[0019] X層および Y層には、必要に応じ、従来公知の添加剤、例えば、有機粒子 (例、架 橋アクリル粒子、架橋スチレン粒子、シリコーン粒子等)、無機粒子 (例、シリカ、カオ リン、クレー、炭酸カルシウム、酸ィ匕アルミニウム、硫酸バリウム、酸化亜鉛、硫化亜鉛 等)、滑剤、安定剤、着色剤、酸化防止剤、消泡剤、静電防止剤、紫外線吸収剤等 が含有されていてもよい。 For the X layer and the Y layer, conventionally known additives, for example, organic particles (eg, bridge acrylic particles, crosslinked styrene particles, silicone particles, etc.), inorganic particles (eg, silica, kaolin) Contains phosphorus, clay, calcium carbonate, aluminum oxide, barium sulfate, zinc oxide, zinc sulfide, etc.), lubricant, stabilizer, colorant, antioxidant, antifoaming agent, antistatic agent, UV absorber, etc. May be.
[0020] また、本発明の熱収縮性ポリエステル系フィルムは、該フィルムの片端の片面の端 縁から少し内側に 1, 3—ジォキソランを塗布し、該フィルムを丸めて端部を重ね合わ せてチューブ状のフィルムラベルとし、該フィルムラベルを 500mLペットボトルに被覆 して 80°Cで 2. 5秒間加熱して装着し、該ペットボトル 10本を lmの高さ力も落下した
場合に、該ペットボトル 10本すべてについて X層と Y層との間の剥離に起因するフィ ルムラベルの破損が起こらな 、ことを特徴とする。 [0020] Further, in the heat-shrinkable polyester film of the present invention, 1,3-dioxolane is applied slightly inside from one edge of one end of the film, the film is rolled up and the ends are overlapped to form a tube. The film label was covered with a 500mL plastic bottle, heated at 80 ° C for 2.5 seconds, and 10 plastic bottles dropped with a height of lm. In this case, the film label is not damaged due to peeling between the X layer and the Y layer for all the 10 PET bottles.
[0021] 具体的には、チューブ成形装置を用いて、フィルムの片端の片面の端縁から少し 内側に 1, 3—ジォキソランを 2 ± lmm幅で塗布する(塗布量: 3. 0±0. 3g/m2)。 直ちにフィルムを丸めて端部を重ね合わせて接着し、チューブ状のフィルムラベルを 作成する。チューブ状フィルムラベルの大きさとしては、シヮなく 500mLペットボトル に装着される大きさであればよい。当該フィルムラベルの大きさの目安としては、折径 109mm,ラベル長さ 90mm程度である。 [0021] Specifically, using a tube forming apparatus, 1,3-dioxolan is applied in a width of 2 ± lmm slightly inward from the edge of one side of the film (application amount: 3.0 ± 0. 3g / m 2). Immediately roll up the film and overlap the edges to bond them together to create a tube-shaped film label. The size of the tube-shaped film label is not limited as long as it can be mounted on a 500 mL plastic bottle without any strain. As a guideline for the size of the film label, the folding diameter is 109 mm and the label length is about 90 mm.
[0022] 上記ラベルに、実際の製品の態様に応じたミシン目を設ける。例えば、ミシン刃を用 いて、ラベルの主収縮方向に対し直角方向に沿って長さ 0. 2〜2. Ommの孔を 0. 2 〜1. Ommの間隔で配設し、ラベルの全長にわたる長さのミシン目を 1〜2本設ける。 [0022] The label is provided with perforations according to the actual product form. For example, by using a sewing blade, holes with a length of 0.2 to 2. Omm are arranged at intervals of 0.2 to 1. Omm along the direction perpendicular to the main shrinkage direction of the label. Provide one or two perforations of length.
[0023] 続!、て、該フィルムを 500mLペットボトル(丸型、胴直径 62mm、ネック部の最小直 径 25mm)に被覆し、スチームトンネルを用い、該チューブ状のフィルムラベルを通過 時間 2. 5秒、ゾーン温度 80°Cで熱収縮させることにより、 500mLのペットボトルに装 着する。 [0023] Continue! Coat the film on a 500 mL PET bottle (round shape, barrel diameter 62 mm, minimum neck diameter 25 mm) and pass through the tubular film label using a steam tunnel 2. Attach to a 500 mL PET bottle by heat shrinking at a zone temperature of 80 ° C for 5 seconds.
[0024] このラベルを装着したペットボトルを 10本用意し、 lmの高さから落下させた場合に 、 10本すべてについて X層と Y層との間の剥離に起因するフィルムラベルの破損が 起こらな 、ことが本発明にお 、て必須である。このような落下テストにぉ 、て破損を起 こさないフィルムラベルは、特に自動販売機でペットボトル入り飲料の商品が取出口 に落下した際のラベルの破損の問題を引き起こすことがない。 [0024] When ten PET bottles equipped with this label are prepared and dropped from the height of lm, the film label is damaged due to peeling between the X layer and the Y layer for all 10 bottles. This is essential for the present invention. Film labels that do not break during such a drop test, in particular, do not cause the problem of label breakage when a beverage product in a PET bottle falls to the outlet in a vending machine.
ここで、 X層と Y層との間の剥離に起因するフィルムラベルの破損とは、例として特 に、溶剤接着部において、 X層と Y層との層間剥離によりラベルが剥がれることが挙 げられる。 Here, the film label breakage due to the peeling between the X layer and the Y layer is, for example, that the label is peeled off due to the delamination between the X layer and the Y layer, particularly in the solvent adhesion portion. It is done.
[0025] 上記のような熱収縮性ポリエステル系フィルムは、 95°Cの温水中に 5秒間浸漬後の 主収縮方向の熱収縮率が 50%以上であり、溶剤接着強度が 2. 0NZl5mm以上で あり、引裂伝播強度が 2. ON以下であり、 60°Cの温水中に 30分間浸漬後の破断強 度が 20MPa以上であるという特性を有する。本発明では、このような特性を有する熱 収縮性ポリエステル系フィルムによってこそ、本発明が解決しょうとする課題を解決で
きることを見出した。 [0025] The heat-shrinkable polyester film as described above has a heat shrinkage ratio of 50% or more in the main shrinkage direction after being immersed in warm water at 95 ° C for 5 seconds, and a solvent adhesive strength of 2.0 NZl5 mm or more. Yes, the tear propagation strength is 2. ON or less, and the fracture strength after immersion for 30 minutes in 60 ° C warm water is 20 MPa or more. In the present invention, the problem to be solved by the present invention can be solved by the heat-shrinkable polyester film having such characteristics. I found out.
[0026] (熱収縮率) [0026] (heat shrinkage rate)
本発明の熱収縮性ポリエステル系フィルムは、 95°C±0. 5°Cの温水に無荷重状態 で 10秒間浸漬して処理した際の温水熱収縮率力 最大収縮方向にお!、て 50%以 上であるという特性を有する。該熱収縮率が 50%未満では、熱収縮力の不足により、 ラベルを容器にうまく装着できない場合がでてくる。該熱収縮率は、好ましくは 55% 以上、より好ましくは 60%以上である。特に該熱収縮率が 60%以上のときには、ボト ルの肩部等、装着が難しい部分でも、ラベルの装着が極めて容易に行える。一方、 該熱収縮率の上限は、技術的な限界として 98%である力 好ましくは 90%以下、より 好ましくは 85%以下である。特に該熱収縮率が 85%以下であれば、ボトルに被せて 加熱収縮させる際の、ラベルの収縮力が大きすぎることによるラベルの飛び上がりの 発生が極めて抑制される。 The heat-shrinkable polyester film of the present invention has a hot-water heat shrinkage force when immersed in hot water at 95 ° C ± 0.5 ° C for 10 seconds under no load condition. % Or more. If the heat shrinkage rate is less than 50%, the label may not be properly attached to the container due to insufficient heat shrinkage force. The heat shrinkage rate is preferably 55% or more, more preferably 60% or more. In particular, when the heat shrinkage rate is 60% or more, it is very easy to attach a label even on a difficult part such as a shoulder of a bottle. On the other hand, the upper limit of the thermal shrinkage rate is a technical limit of 98%, preferably 90% or less, more preferably 85% or less. In particular, when the heat shrinkage rate is 85% or less, the occurrence of label jumping due to the excessively large shrinkage force of the label when the bottle is heated and shrunk over the bottle is extremely suppressed.
また、本発明の熱収縮性ポリエステル系フィルムは、 70°C±0. 5°Cの温水に無荷 重状態で 10秒間浸漬して処理した際の温水熱収縮率力 主収縮方向にお!、て 10 %以上 50%以下であることが好ましい。該熱収縮率が 10%未満の場合は、収縮性 が不十分であり、収縮工程をより高温で行う必要がでてくる。該熱収縮率が 50%を超 えると、ボトルに被せて加熱収縮させる際に、ラベルの収縮力が大きすぎることによる ラベルの飛び上がり現象が起こることがある。 In addition, the heat-shrinkable polyester film of the present invention has a hot-water heat shrinkage rate in the main shrinkage direction when immersed in hot water at 70 ° C ± 0.5 ° C for 10 seconds under no load! Thus, it is preferably 10% or more and 50% or less. If the heat shrinkage rate is less than 10%, the shrinkability is insufficient and the shrinking process needs to be performed at a higher temperature. When the thermal shrinkage rate exceeds 50%, a label jumping phenomenon may occur when the bottle is covered with a bottle and heated and shrunk, because the shrinkage force of the label is too large.
[0027] なお、ここで温水熱収縮率は、浸漬処理前後でフィルムの長さを測定し、(収縮前 の長さ 収縮後の長さ) Z収縮前の長さ) X 100 (%)の式により求められる値である 。また、主収縮方向とは、縦方向および横方向のうち、温水熱収縮率の高い方向のこ とをいう。 [0027] Here, the hot water heat shrinkage ratio is measured by measuring the length of the film before and after the dipping treatment, (length before shrinkage, length after shrinkage) Z length before shrinkage) X 100 (%) This is the value obtained from the formula. In addition, the main shrinkage direction is a direction in which the hot water heat shrinkage rate is high in the longitudinal direction and the transverse direction.
また、熱収縮率を測定する際には、当該フィルムに余計な熱履歴を与えないように するために、所定温度の温水に所定時間浸漬後は、 25°C±0. 5°Cの水にフィルム を浸漬してフィルムを冷却するようにすべきである。 In addition, when measuring the heat shrinkage rate, in order not to give the film an excessive heat history, after immersion in warm water at a predetermined temperature for a predetermined time, water at 25 ° C ± 0.5 ° C is used. The film should be soaked in to cool the film.
[0028] 本発明の熱収縮性ポリエステル系フィルムは、溶剤接着強度が 2. 0NZl5mm以 上であるという特性を有する。溶剤接着強度は、 2. 5〜20NZl5mmであることが好 ましぐ 2. 8〜: LON/15mmであることが好ましい。ここで溶剤接着強度とは、次のよ
うにして求められる値である。 [0028] The heat-shrinkable polyester film of the present invention has a characteristic that the solvent adhesive strength is 2.0 NZl 5 mm or more. The solvent adhesive strength is preferably 2.5 to 20 NZl5 mm. 2. 8 to: LON / 15 mm is preferable. Here, the solvent adhesive strength is as follows. This is the value obtained in this way.
[0029] フィルムの片端の片面の端縁から少し内側に 1, 3—ジォキソランを 2 ± lmm幅で 塗布し (塗布量: 3. 0±0. 3gZm2)、直ちにフィルムを丸めて端部を重ね合わせて 接着し、チューブに加工する (加工速度: lOmmZ分)。このチューブを接着箇所が 中央になるように切り開き、さらに、接着箇所が中央になるように長さ 100mm、幅 15 mmのフィルム状試験片(n= 10)を切り出す。このフィルム状試験片を、チャック間距 離を 50mmにセットした引張試験機 (ボールドウィン社製「STM—T」)に、溶剤接着 部がチャック同士の中央に位置するようにセットして、温度 23°C、引張速度 200mm Z分の条件で引張試験を行い、接着部分の剥離強度を測定する。この剥離強度が 溶剤接着強度である。 [0029] Apply 1, 3-dioxolan with a width of 2 ± lmm slightly inward from the edge of one side of the film (coating amount: 3.0 ± 0.3 gZm 2 ). Overlap, bond and process into a tube (processing speed: lOmmZ). Cut this tube so that the bonding point is in the center, and then cut out a film-like test piece (n = 10) with a length of 100 mm and a width of 15 mm so that the bonding point is in the center. Set this film specimen on a tensile tester (Boldwin's “STM-T”) with the distance between chucks set to 50 mm so that the solvent adhesion part is located at the center of the chucks, and the temperature is 23 °. C. Tensile test is performed under the condition of 200mm Z for the tensile speed, and the peel strength of the bonded part is measured. This peel strength is the solvent adhesive strength.
[0030] 本発明の熱収縮性ポリエステル系フィルムは、引裂伝播強度が 2.0N以下であると いう特性を有する。引裂伝播強度は、 0. 2〜1. 9Nであることが好ましぐ 0. 5〜1. 8 Nであることがより好ましい。 [0030] The heat-shrinkable polyester film of the present invention has a characteristic that the tear propagation strength is 2.0 N or less. The tear propagation strength is preferably 0.2 to 1.9 N, and more preferably 0.5 to 1.8 N.
ここで、引裂伝播強度とは、 JIS K7128— 2 (1998年)に基づいて、予め 85°Cで 10 %収縮させたフィルムを縦 5 lmm X横 64mmに裁断し、(株)東洋精機製作所製軽 荷重引裂試験機を用いて測定して得られる値をいう。 Here, the tear propagation strength is based on JIS K7128-2 (1998). A film that has been shrunk 10% at 85 ° C in advance to 5 lmm x 64 mm is manufactured by Toyo Seiki Seisakusho Co., Ltd. The value obtained by measuring with a light load tear tester.
[0031] 本発明の熱収縮性ポリエステル系フィルムは、 60°C± 1°Cの温水中に 30分間浸漬 後の破断強度が 20MPa以上であるという特性を有する。破断強度は、 30〜200M Paであることが好ましぐ 40〜150MPaであることがより好ましい。ここで、破断強度と は、次のようにして求められる値である。 [0031] The heat-shrinkable polyester film of the present invention has a characteristic that the breaking strength after immersion for 30 minutes in warm water of 60 ° C ± 1 ° C is 20 MPa or more. The breaking strength is preferably 30 to 200 MPa, more preferably 40 to 150 MPa. Here, the breaking strength is a value obtained as follows.
[0032] 折り径 87. 5mm Xラベル長さ 120mmのフィルムラベルを、 250mLのスチール缶( 外径 53mm、高さ 133mm)に被せ、 80°Cの温湯に 10秒間浸漬して、ラベルを缶に 収縮装着する (約 5%収縮)。ラベルが装着されたスチール缶を、すぐに 60°C± 1°C の温水中に移し、 30分間浸漬させる。当該スチール缶のラベルからサンプルを切り 出し、 JIS—K— 7127 (1999年)(試験片はタイプ 2とする。ただし、チャック間距離: 20mm,引張り速度: 200mmZ分)に準じて熱処理前のフィルムの最大収縮方向と 直交する方向についての引張試験を行う。試験片のサイズは、長さ 100mm (フィル ムの最大収縮方向と直交する方向)、幅 15mmとし、試験条件は、チャック間距離 20
mm、温度 23°C、引張速度 200mmZ分とする。試験中に破断したときの強度を破 断強度とする。 [0032] Folded diameter 87.5mm X Label length 120mm film label is put on a 250mL steel can (outer diameter 53mm, height 133mm) and immersed in hot water at 80 ° C for 10 seconds to put the label in the can Wear shrinkage (about 5% shrinkage). Immediately transfer the labeled steel can into warm water of 60 ° C ± 1 ° C and soak for 30 minutes. Cut the sample from the steel can label, and film before heat treatment according to JIS-K-7127 (1999) (test piece is type 2. However, distance between chucks: 20mm, pulling speed: 200mmZ) Conduct a tensile test in the direction perpendicular to the maximum shrinkage direction. The test piece size is 100 mm long (in the direction perpendicular to the maximum film shrinkage direction) and 15 mm wide. mm, temperature 23 ° C, tensile speed 200mmZ. The strength at the time of rupture during the test is the breaking strength.
[0033] 本発明で用いる熱収縮性ポリエステル系フィルムは、温度 275°Cにおける溶融比 抵抗値が 0. 70 Χ 108 Ω 'cm以下であることが好ましい。このようなフィルムを用いると 、以下に詳細に説明するように、フィルム厚みの均一性を高めることができ、フィルム への印刷性や、フィルムを容器に装着可能な形態に加工する際の加工性 (安定加工 性)を高めることができる。 [0033] The heat-shrinkable polyester film used in the present invention preferably has a melt specific resistance at a temperature of 275 ° C of 0.70 to 10 8 Ω'cm or less. When such a film is used, as will be described in detail below, the uniformity of the film thickness can be improved, and the printability on the film and the workability when processing the film into a form that can be mounted on a container. (Stable workability) can be improved.
[0034] すなわち本発明では、押出機力 溶融押し出ししたフィルムを導電性冷却ロール( キャスティングロールなど)で冷却するに際して、前記押出機とキャスティングロール の間に電極を配設し、電極とキャスティングロールとの間に電圧を印加し (すなわち、 前記電極力もフィルムに電気を与え)、静電気的にフィルムをロールに密着させてい る。溶融比抵抗値が小さいと、フィルムとロールとの密着性 (静電密着性)を高めるこ とができる。ロールへの静電密着性が低いと、キャスティングした未延伸フィルム原反 の厚みが不均一化し、この未延伸フィルムを延伸した延伸フィルムにお 、ては厚み の不均一性がより拡大されてしまうのに対して、静電密着性が十分に高い場合には、 延伸フィルムにお 、ても厚みを均一化できる。 That is, in the present invention, when the film melted and extruded by an extruder is cooled by a conductive cooling roll (such as a casting roll), an electrode is disposed between the extruder and the casting roll, and the electrode, the casting roll, A voltage is applied between them (that is, the electrode force also applies electricity to the film), and the film is electrostatically adhered to the roll. When the melting specific resistance value is small, the adhesion between the film and the roll (electrostatic adhesion) can be enhanced. If the electrostatic adhesion to the roll is low, the thickness of the cast unstretched film becomes non-uniform, and the thickness non-uniformity is further expanded in the stretched film obtained by stretching the unstretched film. On the other hand, when the electrostatic adhesion is sufficiently high, the thickness can be made uniform even in the stretched film.
[0035] フィルム厚みの均一性を高めると、複数の色を重ね合わせる多色印刷をフィルムに 施す際に、色ズレを防止でき印刷性を高めることができる。 When the uniformity of the film thickness is increased, color misregistration can be prevented and printability can be improved when multicolor printing in which a plurality of colors are superimposed is applied to the film.
[0036] 加えてフィルム厚みの均一性を高めると、溶剤接着によってフィルムをチューブ等 に加工する際にも、接着部分の重ね合わせが容易である。し力もフィルムに多色印 刷する際には、フィルムにシヮが入り易くなるのを防止でき、また走行中にフィルムが 蛇行するのを防止でき、加工性 (安定加工性)を高めることができる。 [0036] In addition, if the uniformity of the film thickness is increased, the bonded portions can be easily overlapped even when the film is processed into a tube or the like by solvent bonding. When multi-color printing is performed on the film, the film can be prevented from becoming wrinkled easily, and the film can be prevented from meandering during running, thereby improving workability (stable workability). it can.
[0037] さらにフィルム厚みの均一性を高めると、フィルムをロール状に巻いた状態で部分 的な巻き硬度の差が発生するのを防止でき、フィルムに弛みや皺が発生し、フィルム の外観を大きく損なうのを防止できる。 [0037] When the uniformity of the film thickness is further increased, it is possible to prevent partial differences in winding hardness when the film is wound in a roll shape, and the film is loosened and wrinkled, resulting in an appearance of the film. It can be prevented from being greatly damaged.
[0038] なお溶融比抵抗値を下げて静電密着性を高めると、前記フィルム厚みの均一性を 高めることができるだけでなぐフィルムの生産性を高めることができ、フィルムの外観 も向上できる。すなわち静電密着性が高いと、フィルムの冷却固化の安定性を高める
ことができ、キャスティング速度(生産速度)を高めることができる。また静電密着性が 高いと、フィルムの冷却固化が不完全となって、ロールとフィルムとの間に局部的にェ ァ一が入り込み、フィルム表面にピンナーバブル (スジ状の欠陥)が発生するのを防 止でき、フィルム外観を高めることができる。 [0038] It should be noted that, when the electrostatic resistivity is increased by lowering the melt specific resistance value, the film productivity can be increased as well as the uniformity of the film thickness, and the appearance of the film can also be improved. In other words, high electrostatic adhesion improves the stability of film cooling and solidification. The casting speed (production speed) can be increased. In addition, if the electrostatic adhesion is high, the film is incompletely cooled and solidified, and air is locally introduced between the roll and the film, resulting in pinner bubbles (streaky defects) on the film surface. Can be prevented and the film appearance can be enhanced.
[0039] 前記溶融比抵抗値は、好ましくは 0. 65 X 108 Ω 'cm以下、さらに好ましくは 0. 60 [0039] The melting specific resistance value is preferably 0.65 X 10 8 Ω'cm or less, more preferably 0.60.
Χ 108 Ω ·«η以下である。 Χ 10 8 Ω · «is less than or equal to η.
[0040] 溶融比抵抗値を上記範囲に制御するためには、フィルム中にアルカリ土類金属化 合物と、リン含有ィ匕合物とを含有させるのが望ましい。アルカリ土類金属化合物だけ でも溶融比抵抗値を下げることができるが、リン含有ィ匕合物を共存させると溶融比抵 抗値を著しく下げることができる。アルカリ土類金属化合物とリン含有ィ匕合物とを組合 わせることによって溶融比抵抗値を著しく下げることができる理由は明らかではない 力 リン含有ィ匕合物を含有させることによって、異物の量を減少でき、電荷担体の量 を増大できるためと推定される。 [0040] In order to control the melt specific resistance value within the above range, it is desirable to contain an alkaline earth metal compound and a phosphorus-containing compound in the film. The melting specific resistance value can be lowered by using only the alkaline earth metal compound, but the melting specific resistance value can be remarkably lowered by the presence of the phosphorus-containing compound. It is not clear why the specific resistance of the melt can be significantly lowered by combining the alkaline earth metal compound and the phosphorus-containing compound. It is estimated that the amount of charge carriers can be increased.
[0041] フィルム中のアルカリ土類金属化合物の含有量は、アルカリ土類金属原子 Μ2を基 準にして、例えば、 20ppm (質量基準)以上、好ましくは 40ppm (質量基準)以上、さ らに好ましくは 50ppm (質量基準)以上、特に 60ppm (質量基準)以上である。アル カリ土類金属化合物の量が少なすぎると溶融比抵抗値を下げることができない。なお アルカリ土類金属化合物の含有量を多くし過ぎても、溶融比抵抗値の低減効果が飽 和してしまい、むしろ異物生成や着色などの弊害が大きくなる。そのためアルカリ土 類金属化合物の含有量は、アルカリ土類金属原子 M2を基準にして、例えば、 400pp m (質量基準)以下、好ましくは 350ppm (質量基準)以下、さらに好ましくは 300ppm (質量基準)以下である。 [0041] The content of the alkaline earth metal compound in the film is, for example, 20 ppm (mass basis) or more, preferably 40 ppm (mass basis) or more, based on the alkaline earth metal atom 2 . Preferably it is 50 ppm (mass basis) or more, particularly 60 ppm (mass basis) or more. If the amount of the alkaline earth metal compound is too small, the melting specific resistance value cannot be lowered. Even if the content of the alkaline earth metal compound is excessively increased, the effect of reducing the melt specific resistance value is saturated, and rather adverse effects such as generation of foreign matter and coloring are increased. The content of this reason alkaline earth metal compound, based on the alkaline-earth metal atom M 2, for example, 400pp m (by mass) or less, preferably 350 ppm (mass basis) or less, more preferably 300 ppm (mass basis) It is as follows.
[0042] フィルム中のリン化合物の含有量は、リン原子 Pを基準にして、例えば、 5ppm (質 量基準)以上、好ましくは 20ppm (質量基準)以上、さらに好ましくは 40ppm (質量基 準)以上、特に 60ppm (質量基準)以上である。リンィ匕合物の量が少なすぎると、溶 融比抵抗値を下げることが充分にできず、異物の生成量を低減することもできな 、。 なおリンィ匕合物の含有量を多くしすぎても、溶融比抵抗値の低減効果が飽和してし まう。さらにはジエチレングリコールの生成を促進してしまい、し力もその生成量をコン
トロールすることが困難であるため、フィルムの物性が予定していたものと異なる虞が ある。そのためリン化合物の含有量は、リン原子 Pを基準にして、例えば、 500ppm( 質量基準)以下、好ましくは 450ppm (質量基準)以下、さらに好ましくは 400ppm( 質量基準)以下、特に 350ppm (質量基準)以下である。 [0042] The content of the phosphorus compound in the film is, for example, 5 ppm (mass standard) or more, preferably 20 ppm (mass standard) or more, more preferably 40 ppm (mass standard) or more, based on the phosphorus atom P. Especially 60ppm (mass basis) or more. If the amount of the phosphorus compound is too small, the melting specific resistance value cannot be lowered sufficiently, and the amount of foreign matter generated cannot be reduced. Even if the content of the phosphorus compound is increased too much, the effect of reducing the melt specific resistance value is saturated. Furthermore, it promotes the production of diethylene glycol, and the force also controls the amount of production. Since it is difficult to trawl, the physical properties of the film may be different from what was planned. Therefore, the phosphorus compound content is, for example, 500 ppm (mass basis) or less, preferably 450 ppm (mass basis) or less, more preferably 400 ppm (mass basis) or less, particularly 350 ppm (mass basis), based on the phosphorus atom P. It is as follows.
[0043] アルカリ土類金属化合物及びリンィ匕合物でフィルムの溶融比抵抗値を下げる場合 、フィルム中のアルカリ土類金属原子 M2とリン原子 Pとの質量比(M2ZP)は、 1. 2以 上 (好ましくは 1. 3以上、さらに好ましくは 1. 4以上)であることが望ましい。質量比( M2ZP)を 1. 2以上にすることによって、溶融比抵抗値を著しく低減できる。なお質量 比(M2ZP)が 5. 0を超えると、異物の生成量が増大したり、フィルムが着色したりす る。そのため質量比(M2ZP)は、 5. 0以下、好ましくは 4. 5以下、さらに好ましくは 4 . 0以下である。 [0043] In the case of lowering the melt specific resistance value of an alkaline earth metal compound and phosphorus compound, the mass ratio (M 2 ZP) of the alkaline earth metal atom M 2 and phosphorus atom P in the film is 1 It should be 2 or more (preferably 1.3 or more, more preferably 1.4 or more). By setting the mass ratio (M 2 ZP) to 1.2 or more, the melting specific resistance can be significantly reduced. When the mass ratio (M 2 ZP) exceeds 5.0, the amount of foreign matter generated increases or the film is colored. Therefore, the mass ratio (M 2 ZP) is 5.0 or less, preferably 4.5 or less, and more preferably 4.0 or less.
[0044] フィルムの溶融比抵抗値をさらに下げるためには、前記アルカリ土類金属化合物及 びリン含有化合物に加えて、フィルム中にアルカリ金属化合物を含有させるのが望ま しい。アルカリ金属化合物は、単独でフィルムに含有させても溶融比抵抗値を下げる ことはできないが、アルカリ土類金属化合物及びリン含有ィ匕合物の共存系に追加す ることで、溶融比抵抗値を著しく下げることができる。その理由については明確ではな いが、アルカリ金属化合物、アルカリ土類金属化合物、及びリン含有化合物の三者 で錯体を形成することによって、溶融比抵抗値を下げているものと推定される。 [0044] In order to further reduce the melt specific resistance value of the film, it is desirable to contain an alkali metal compound in the film in addition to the alkaline earth metal compound and the phosphorus-containing compound. Alkali metal compounds cannot lower the melt resistivity even if they are contained alone in the film, but by adding them to the coexistence system of alkaline earth metal compounds and phosphorus-containing compounds, the melt resistivity can be reduced. Can be significantly reduced. Although the reason for this is not clear, it is presumed that the melting specific resistance value is lowered by forming a complex of the alkali metal compound, the alkaline earth metal compound, and the phosphorus-containing compound.
[0045] フィルム中のアルカリ金属化合物の含有量は、アルカリ金属原子 M1を基準にして、 例えば、 Oppm (質量基準)以上、好ましくは 5ppm (質量基準)以上、さらに好ましく は 6ppm (質量基準)以上、特に 7ppm (質量基準)以上である。なおアルカリ金属化 合物の含有量を多くしすぎても、溶融比抵抗値の低減効果が飽和してしまい、さらに は異物の生成量が増大する。そのためアルカリ金属化合物の含有量は、アルカリ金 属原子 M1を基準にして、例えば、 lOOppm (質量基準)以下、好ましくは 90ppm (質 量基準)以下、さらに好ましくは 80ppm (質量基準)以下である。 [0045] The content of the alkali metal compound in the film, based on the alkali metal atom M 1, for example, Oppm (mass basis) or more, preferably 5 ppm (mass basis) or more, more preferably 6 ppm (mass basis) Above, especially 7ppm (mass basis) or more. Even if the content of the alkali metal compound is excessively increased, the effect of reducing the melt specific resistance value is saturated, and further, the amount of foreign matter generated is increased. The content of this reason the alkali metal compound, based on the alkali metals atom M 1, for example, LOOppm (mass basis) or less, preferably 90 ppm (mass basis) or less, still more preferably not more than 80 ppm (by weight) .
[0046] 前記アルカリ土類金属化合物としては、アルカリ土類金属の水酸化物、アルコキシ ド、脂肪族カルボン酸塩 (酢酸塩、酪酸塩など、好ましくは酢酸塩)、芳香族カルボン 酸塩 (安息香酸塩)、フエノール性水酸基を有する化合物との塩 (フエノールとの塩な
ど)などが挙げられる。またアルカリ土類金属としては、マグネシウム、カルシウム、スト ロンチウム、ノ リウムなど (好ましくはマグネシウム)が挙げられる。好ましいアルカリ土 類金属化合物には、水酸化マグネシウム、マグネシウムメトキシド、酢酸マグネシウム 、酢酸カルシウム、酢酸ストロンチウム、酢酸バリウムなど、特に酢酸マグネシウムが含 まれる。前記アルカリ土類金属化合物は、単独で又は 2種以上組合わせて使用でき る。 [0046] Examples of the alkaline earth metal compound include an alkaline earth metal hydroxide, alkoxide, aliphatic carboxylate (acetate, butyrate, etc., preferably acetate), and aromatic carboxylate (benzoic acid). Acid salt), a salt with a compound having a phenolic hydroxyl group (such as a salt with phenol). Etc.). Examples of the alkaline earth metal include magnesium, calcium, strontium, norium (preferably magnesium). Preferred alkaline earth metal compounds include magnesium hydroxide, magnesium methoxide, magnesium acetate, calcium acetate, strontium acetate, barium acetate and the like, in particular magnesium acetate. The alkaline earth metal compounds can be used alone or in combination of two or more.
[0047] 前記リンィ匕合物としては、リン酸類 (リン酸、亜リン酸、次亜リン酸など)、及びそのェ ステル(アルキルエステル、ァリールエステルなど)、並びにアルキルホスホン酸、ァリ ールホスホン酸及びそれらのエステル(アルキルエステル、ァリールエステルなど)が 挙げられる。好ましいリンィ匕合物としては、リン酸、リン酸の脂肪族エステル (リン酸の アルキルエステルなど;例えば、リン酸モノメチルエステル、リン酸モノェチルエステル 、リン酸モノブチルエステルなどのリン酸モノ C アルキルエステル、リン酸ジメチルェ [0047] Examples of the phosphorus compound include phosphoric acids (phosphoric acid, phosphorous acid, hypophosphorous acid, etc.), esters thereof (alkyl esters, aryl esters, etc.), alkyl phosphonic acids, aryl phosphones. Examples thereof include acids and esters thereof (alkyl esters, aryl esters, etc.). Preferred phosphoric acid compounds include phosphoric acid, aliphatic esters of phosphoric acid (alkyl esters of phosphoric acid, etc .; for example, phosphoric acid monomethyl esters, phosphoric acid monoethyl esters, phosphoric acid monobutyl esters, etc. Alkyl ester, dimethyl phosphate
1-6 1-6
ステル、リン酸ジェチルエステル、リン酸ジブチルエステルなどのリン酸ジ C アルキ Di-C alkyl phosphates such as stealth, jetyl phosphate, dibutyl phosphate
1-6 ルエステル、リン酸トリメチルエステル、リン酸トリェチルエステル、リン酸トリブチルェ ステルなどのリン酸トリ C アルキルエステルなど)、リン酸の芳香族エステル(リン酸ト 1-6 ester, trimethyl phosphate, triethyl ester phosphate, tri-C phosphate ester such as tributyl ester), phosphoric acid aromatic ester (phosphate phosphate)
1-6 1-6
リフエ-ル、リン酸トリクレジルなどのリン酸のモ入ジ、又はトリ C ァリールエステルな Such as phosphoric acid, tricresyl phosphate, or tri-C aryl ester.
6-9 6-9
ど)、亜リン酸の脂肪族エステル(亜リン酸のアルキルエステルなど;例えば、亜リン酸 トリメチル、亜リン酸トリブチルなどの亜リン酸のモ入ジ、又はトリ C アルキルエステ ), Aliphatic esters of phosphorous acid (alkyl esters of phosphorous acid, etc .; for example, phosphorous acid compounds such as trimethyl phosphite, tributyl phosphite, or tri C alkyl ester
1-6 1-6
ノレなど)、ァノレキノレホスホン酸 (メチノレホスホン酸、ェチノレホスホン酸などの C ァノレキ Nore), anorequinolephosphonic acid (methinorephosphonic acid, ethenorephosphonic acid, etc.)
1-6 ルホスホン酸)、アルキルホスホン酸アルキルエステル(メチルホスホン酸ジメチル、ェ チルホスホン酸ジメチルなどの C アルキルホスホン酸のモノ又はジ C アルキルェ 1-6 alkylphosphonic acid), alkylphosphonic acid alkyl esters (mono- or di-C alkyl ethers of C alkylphosphonic acids such as dimethyl methylphosphonate, dimethyl ethylphosphonate)
1-6 1-6 1-6 1-6
ステルなど)、ァリールホスホン酸アルキルエステル(フエ-ルホスホン酸ジメチル、フ ェ-ルホスホン酸ジェチルなどの C ァリールホスホン酸のモノ又はジ C アルキルェ Stearyl, etc.), aryl phosphonic acid alkyl esters (mono- or di-C alkyl ethers of C allylic phosphonic acids such as dimethyl phosphophosphonate, jetyl phosphophosphonate)
6-9 1-6 ステルなど)、ァリールホスホン酸ァリールエステル(フエ-ルホスホン酸ジフエ-ルな どの C ァリールホスホン酸のモノ又はジ C ァリールエステルなど)などが例示でき 6-9 1-6 steal, etc.), aryl phosphonic acid aryl ester (mono- or di-C aryl ester of C arylphosphonic acid such as diphosphorus phosphonic acid) etc.
6-9 6-9 6-9 6-9
る。特に好ましいリンィ匕合物には、リン酸、リン酸トリアルキル (リン酸トリメチルなど)が 含まれる。これらリン化合物は単独で、又は 2種以上組合わせて使用できる。 The Particularly preferred phosphorus compounds include phosphoric acid and trialkyl phosphates (such as trimethyl phosphate). These phosphorus compounds can be used alone or in combination of two or more.
[0048] 前記アルカリ金属化合物としては、アルカリ金属の水酸化物、炭酸塩、脂肪族カル
ボン酸塩 (酢酸塩、酪酸塩など、好ましくは酢酸塩)、芳香族カルボン酸塩 (安息香酸 塩)、フ ノール性水酸基を有する化合物との塩 (フ ノールとの塩など)などが挙げら れる。またアルカリ金属としては、リチウム、ナトリウム、カリウムなど (好ましくはナトリウ ム)が挙げられる。好ましいアルカリ土類金属化合物には、水酸化リチウム、水酸化ナ トリウム、水酸ィ匕カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、酢酸リチウム、 酢酸ナトリウム、酢酸カリウムなど、特に酢酸ナトリウムが含まれる。 [0048] Examples of the alkali metal compounds include alkali metal hydroxides, carbonates, and aliphatic carbonates. Bonates (acetate, butyrate, etc., preferably acetate), aromatic carboxylates (benzoate), salts with compounds having a phenolic hydroxyl group (such as salts with phenol), etc. It is. Examples of the alkali metal include lithium, sodium, potassium and the like (preferably sodium). Preferred alkaline earth metal compounds include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium acetate, sodium acetate, potassium acetate and the like, especially sodium acetate.
[0049] 本発明の熱収縮性ポリエステル系フィルムの厚みとしては、 5〜: LOO μ mが好ましく 、 20〜50 111カ^ょり好まし1 ヽ0 [0049] The thickness of the heat-shrinkable polyester film of the present invention,. 5 to: LOO mu m is preferably 20 to 50 111 mosquitoes ^ Yori preferably 1ヽ0
[0050] 本発明の熱収縮性ポリエステル系フィルムは、従来公知の方法によりラベルイ匕する ことができる。一例としては、所望幅に裁断した熱収縮性ポリエステル系フィルムに適 当な印刷を施し、溶剤接着等によりフィルムの左右端部を重ね合わせて接合してチ ユーブフイルムを製造する。該チューブフィルムを適切な長さに裁断し、チューブ状ラ ベルとする。または、さらにこのチューブ状ラベルの一方の開口部を接合して袋状ラ ベルとする。 [0050] The heat-shrinkable polyester film of the present invention can be labeled by a conventionally known method. As an example, a suitable film is applied to a heat-shrinkable polyester film cut to a desired width, and a film film is manufactured by overlapping and bonding the left and right ends of the film by solvent adhesion or the like. The tube film is cut into an appropriate length to obtain a tube-shaped label. Alternatively, one opening of this tubular label is joined to form a bag-like label.
そして、これらのラベルを、従来方法によりミシン目を形成した後、ペットボトルに被 せ、当該ペットボトルをベルトコンベア一等にのせて、スチームを吹きつけるタイプの 収縮トンネル (スチームトンネル)または、熱風を吹きつけるタイプの収縮トンネル (熱 風トンネル)の内部を通過させる。これらのトンネル通過時にラベルが熱収縮すること により、ラベルがペットボトル等のボトル容器に装着される。 These labels are then perforated by a conventional method, and then covered with a plastic bottle. The plastic bottle is placed on a belt conveyor and the like, and steam is blown into the shrink tunnel (steam tunnel) or hot air. The inside of a contracting tunnel (hot air tunnel) that blows air. The label is attached to a bottle container such as a plastic bottle by heat shrinking when passing through these tunnels.
[0051] 次に、本発明の熱収縮性ポリエステル系フィルムの製造方法について説明する。 [0051] Next, a method for producing the heat-shrinkable polyester film of the present invention will be described.
本発明の熱収縮性ポリエステルフィルムの製造方法には特に制限はな 、が、例えば 、ポリエステル A70〜99質量%およびポリエステル Bl〜30質量%を含むポリエステ ル成分 M、およびポリエステル B70〜99質量0 /0およびポリエステル Al〜30質量0 /0 を含むポリエステル成分 Nをそれぞれ別々の押出機 Eおよび Fに投入して溶融し、溶 融状態のポリエステル成分 Mおよび Nを積層装置に投入してポリエステル成分 Mお よび Nの積層体を得、積層体が積層装置から吐出されてから冷却ロールに密着する までの時間が 45秒〜 10分となるように、積層体を積層装置からスリットダイに導き、 冷却ロールに押出して未延伸シートを得、該未延伸シートを少なくとも一軸に延伸す
る方法によって製造することができる(製造ラインの一例を図 1に示した)。 Do particular limitation on the method for producing heat-shrinkable polyester film of the present invention, but, for example, polyester Le component containing A70~99 wt% polyester and polyester Bl~30 wt% M, and polyester B70~99 mass 0 / 0 and polyester component N containing polyester Al~30 mass 0/0 melt was poured into separate extruders E and F, respectively, the polyester component by introducing a polyester component M and N of molten state in the stacking device M And the laminate is led from the laminating apparatus to the slit die so that the time from when the laminated body is discharged from the laminating apparatus until it comes into close contact with the cooling roll is 45 seconds to 10 minutes. Extruded into a roll to obtain an unstretched sheet, and the unstretched sheet is stretched at least uniaxially (An example of a production line is shown in Fig. 1).
[0052] 以下、より具体的に説明すると、まず、原料であるポリエステルを、ホッパードライヤ 一、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥する。 [0052] Hereinafter, more specifically, the polyester as a raw material is first dried using a dryer such as a hopper dryer, a paddle dryer, or a vacuum dryer.
[0053] ポリエステル Aおよびポリエステル Bを所定量混合し、ポリエステル成分 Mおよびポ リエステル成分 Nを調製する。ポリエステルの混合方法としては、特に制限がなぐチ ップブレンド法、マスターバッチ法等が採用できる。なお、 2種以上のポリエステル成 分をブレンドしても、溶融押出時の熱履歴によってエステル交換し、共重合化する傾 向が強!、ことが知られて 、る。 [0053] A predetermined amount of polyester A and polyester B are mixed to prepare polyester component M and polyester component N. As a method for mixing polyester, a chip blend method, a master batch method and the like, which are not particularly limited, can be employed. It is known that even when two or more polyester components are blended, there is a strong tendency to transesterify and copolymerize due to the heat history during melt extrusion.
ポリエステル成分 Mおよびポリエステル成分 Nを、それぞれ別の押出機 Eおよび F に投入し、溶融する。溶融温度は、各榭脂にとって劣化や変質を起こさないものであ れば特に制限はない。ひとつの指標として、組成物が結晶性を示す場合には、融点 + (5°C〜30°C)、非晶性を示す場合には、軟化温度 + (20°C〜150°C)が、好適で ある。 Polyester component M and polyester component N are charged into separate extruders E and F, respectively, and melted. The melting temperature is not particularly limited as long as it does not cause deterioration or alteration for each of the fats and oils. As an index, when the composition exhibits crystallinity, the melting point + (5 ° C to 30 ° C), and when amorphous, the softening temperature + (20 ° C to 150 ° C) It is preferable.
[0054] 溶融したポリエステル成分 Mおよび Nは、溶融状態のまま、積層装置に導かれ、積 層体が形成される。積層装置としては、フィードブロック、マルチマ-ホールドダイ、ス タティックミキサ等が挙げられる。これらのうち、数百層にもおよぶ積層化が容易に達 成できることから、スタティックミキサを使用することが好ましぐフィードブロックとスタ テイツクミキサを組み合わせて用いることがより好ま 、。 [0054] The melted polyester components M and N are guided to the laminating apparatus while being in a molten state, and a stacked body is formed. Examples of the laminating apparatus include a feed block, a multi-hold die, and a static mixer. Of these, the stacking of several hundred layers can be easily achieved, so it is more preferable to use a combination of a feed block and a static mixer, which are preferable to use a static mixer.
[0055] 本発明におけるスタティックミキサとは、配管内に、横長の長方形の板をその短辺 同士のなす角(捩り角)が 45度〜 270度となるように捩じ曲げた形状のエレメントを、 隣接するエレメントの短辺同士が交差するように交互に配列させた配管内混合装置 のことである。 1つのエレメントを溶融樹脂が通過する時、榭脂が 2層に分割されると 共に、各榭脂層に、エレメントの旋回方向とは逆方向への捩れが生じる。さらに、次の エレメントを通過すると、同様に榭脂の分割と捩れが生じ、 4層に分割される。従って 、榭脂成分 Mと榭脂成分 Nとを 1層ずつ積層した状態で、スタティックミキサに導入す ると、理論上は、最初のエレメントの短辺が積層面に水平であれば、 n個のエレメント を通過すると 2n層に、最初のエレメントの短辺が積層面に垂直であれば 2n+1層になる 力 実際には、流路径と長さ、エレメントの捩り角、捩り勾配、榭脂の吐出量、各榭脂
の粘度や表面張力などの溶融特性の影響で変化することもある。 [0055] The static mixer in the present invention is an element having a shape in which a horizontally long rectangular plate is twisted and bent so that an angle (torsion angle) between its short sides is 45 degrees to 270 degrees. The in-pipe mixing device arranged alternately so that the short sides of adjacent elements intersect. When molten resin passes through one element, the resin is divided into two layers, and each resin layer is twisted in the direction opposite to the swivel direction of the element. In addition, when passing through the next element, the splitting and twisting of the resin occurs in the same way, and it is divided into four layers. Therefore, when the resin component M and the resin component N are laminated one by one and introduced into the static mixer, theoretically, if the short side of the first element is horizontal to the lamination surface, n When passing through the elements of the 2 n layers, actually force the short side of the first element is 2 n + 1 layer as long perpendicular to the laminated surface, the passage diameter and length, torsional angle of the elements, the torsional gradient, Effervescent oil discharge amount, each oil It may change due to the influence of melting characteristics such as viscosity and surface tension.
スタティックミキサのエレメントの LZD (配管長 Z配管の内径)比は、 1. 0〜3. 0の 範囲が好ましぐ 1. 4〜2. 0の範囲がより好ましい。 L/D比が 1. 0より小さいと榭脂 の分割効率が悪くなり、 3. 0を超えるとミキサ内を通過する榭脂の滞留時間が長くな るため実用的ではない。 The LZD (pipe length Z pipe inner diameter) ratio of the static mixer element is preferably in the range of 1.0 to 3.0, more preferably in the range of 1.4 to 2.0. If the L / D ratio is less than 1.0, the efficiency of dividing the resin deteriorates, and if it exceeds 3.0, the residence time of the resin passing through the mixer becomes longer, which is not practical.
スタティックミキサのエレメントの捩り角は、 45度以上とする。捩り角が 45度未満で は榭脂層のねじりが不充分となるからである。捩り角は、 90度以上がより好ましぐ 13 5度以上がさらに好ましい。捩り角の上限は 315度がよい。 315度を超えると過度の ねじりによって、均一な積層構造が得られない。捩り角は 270度以下が好ましぐ 215 度以下がより好ましい。なお、均一な積層構造が得られないというのは、積層した各 層が波打った状態となるなど、積層構造が乱れてしまうことをいう。 The torsion angle of the static mixer element shall be 45 degrees or more. This is because if the twist angle is less than 45 degrees, the twist of the resin layer is insufficient. The twist angle is more preferably 90 ° or more, and more preferably 135 ° or more. The upper limit of torsion angle should be 315 degrees. If it exceeds 315 degrees, a uniform laminated structure cannot be obtained due to excessive twisting. The twist angle is preferably 270 degrees or less, more preferably 215 degrees or less. Note that the fact that a uniform laminated structure cannot be obtained means that the laminated structure is disturbed, for example, the laminated layers are wavy.
また、スタティックミキサの配管側面を榭脂の進行方向に切断して展開した場合の、 配管内壁とエレメントとのつなぎ目をたどる直線と、榭脂の進行方向とがなす角度、 つまりエレメントの捩り勾配は、 27度以上が好ましい。この捩り勾配が 27度未満では 榭脂層の捩り効果が少なぐ榭脂に充分なねじりを与えるためには LZD比を大きくし なければならないため、実用的ではない。捩り勾配は 38度以上がより好ましぐ 42度 以上がさらに好ましい。一方、捩り勾配が 65度を超える場合は、榭脂の乱流が激しく なるため、積層構造が乱れるため好ましくない。捩り勾配は 54度以下がより好ましぐ 50度以下がさらに好ましい。 In addition, when the side surface of the static mixer pipe is cut and expanded in the direction of grease movement, the angle formed by the straight line that follows the joint between the pipe inner wall and the element and the direction of grease movement, that is, the torsional gradient of the element is 27 degrees or more is preferable. If this twist gradient is less than 27 degrees, the LZD ratio must be increased in order to give sufficient twist to the resin with less twisting effect of the resin layer, which is not practical. The torsional gradient is more preferably 38 degrees or more, and more preferably 42 degrees or more. On the other hand, when the torsional gradient exceeds 65 degrees, the turbulent flow of the resin becomes violent and the laminated structure is disturbed. The twist gradient is more preferably 54 degrees or less, and further preferably 50 degrees or less.
スタティックミキサのエレメントの好ましい形状は、榭脂の吐出量や溶融特性に応じ て適宜選択することができ、また、スタティックミキサを通過する榭脂の溶融特性の変 化に対応して、形状の異なる複数のエレメントを組み合わせて用いることもできる。最 も好ましいエレメントは、 L/D= l. 5、捩り角 180度、捩り勾配 46度のものである。 スタティックミキサのエレメントの配列は、エレメントの捩れ方向が、右旋回、左旋回 、右旋回となるように、交互に方向を変えることが好ましい。均一な積層構造が得られ るためである。また、隣接するエレメントを直角に交わるように配列することも、均一な 積層構造が得られるためには好まし ヽ。 The preferred shape of the elements of the static mixer can be appropriately selected according to the discharge amount and melting characteristics of the resin, and the shape varies depending on the change of the melting characteristics of the resin passing through the static mixer. A plurality of elements can also be used in combination. The most preferred elements are those with L / D = l.5, twist angle 180 degrees, and twist gradient 46 degrees. The arrangement of the elements of the static mixer is preferably changed alternately so that the twisting directions of the elements are right turn, left turn, and right turn. This is because a uniform laminated structure can be obtained. It is also preferable to arrange adjacent elements so that they intersect at right angles in order to obtain a uniform laminated structure.
スタティックミキサのエレメント数は、 4以上が好ましぐより好ましくは 6以上であり、さ
らに好ましくは 8以上である。本発明のフィルムは積層構造を有するものであり、その 層数としては後述のように 500層以上が特に好ましいものであり、当該エレメント数を 8以上とすれば、 500層以上の積層構造が確実に得られやすい。一方、当該エレメ ント数が大きくなりすぎると、積層構造の乱れが生じやすくなるため、当該エレメント数 を 24以下とすることが好ましぐ 18以下とすることがより好ましぐ 14以下とすることが さらに好ましい。 The number of static mixer elements is preferably 4 or more, more preferably 6 or more. More preferably, it is 8 or more. The film of the present invention has a laminated structure, and the number of layers is particularly preferably 500 or more as will be described later. When the number of elements is 8 or more, a laminated structure of 500 or more layers is ensured. Easy to obtain. On the other hand, if the number of elements becomes too large, the laminated structure tends to be disturbed. Therefore, the number of elements is preferably 24 or less, more preferably 18 or less, and more preferably 14 or less. Is more preferable.
例えば、ポリエステル成分の質量比が 8Z2 (MZN)である場合には、エレメント数 は 8〜 14が好ましく、 10〜 12力とりわけ好まし!/ヽ。 For example, when the mass ratio of the polyester component is 8Z2 (MZN), the number of elements is preferably 8 to 14, and particularly preferably 10 to 12 forces! / ヽ.
上記で説明したスタティックミキサの構造は 1つの典型であり、本発明の目的を逸脱 しない範囲で形状や配置を変更したり、また、スタティックミキサの前後や、そのエレメ ント間に別の装置を配置することも、もちろん可能である。例えば、榭脂配管よりも小 径のスタティックミキサを配管内に 2列以上並列させてもよい。榭脂成分 Mと榭脂成 分 Nとをスタティックミキサを通過させて積層した積層榭脂に、さらに、別の榭脂を合 流させて積層させることちでさる。 The structure of the static mixer described above is one typical example, and the shape and arrangement can be changed without departing from the object of the present invention, and another apparatus can be arranged before and after the static mixer and between the elements. Of course, it is possible. For example, two or more rows of static mixers smaller in diameter than the resin piping may be arranged in parallel in the piping. It can be obtained by laminating a mixture of the resin component M and the component N of the resin component N by passing through a static mixer and further mixing another resin.
また、フィードブロックを複数用いて、 3層以上に積層した積層榭脂を、スタティックミ キサに導いてさらに多層化することもできる。この場合には、フィードブロックでの積層 数の分だけ、スタティックミキサのエレメント数を少なくすることができる力 スタティック ミキサでの積層によって生じるフィルムの特異な効果 (ミシン目開封性の向上等)が小 さくなるため、フィードブロックによる積層数は 100層以内とすることが好ま 、。 In addition, it is possible to use a plurality of feed blocks and laminate the laminated resin laminated in three or more layers to a static mixer for further multilayering. In this case, the force that can reduce the number of elements in the static mixer by the number of layers in the feed block. The unique effects of the film (such as improved perforation opening) caused by the lamination in the static mixer are small. For this reason, the number of stacked feed blocks is preferably within 100 layers.
[0056] 積層装置 (スタティックミキサ等)の温度としては、組成物が結晶性を示す場合には 、融点 + (5°C〜30°C)、非晶性を示す場合には、軟化温度 + (20°C〜150°C)に設 定するのがよぐ最も好ましくは、溶融温度として採用した温度と同じ温度に設定する [0056] The temperature of the laminating apparatus (static mixer or the like) is as follows: melting point + (5 ° C to 30 ° C) when the composition exhibits crystallinity, softening temperature + Most preferably, it should be set to (20 ° C to 150 ° C).
[0057] この積層体を T—ダイ等のスリットダイより押出し、表面温度が 10〜40°Cの冷却口 ールに密着させることにより、未延伸シートを得る。積層体をスリットダイより冷却ロー ルに押出す際、積層体が積層装置 (積層装置を複数使用する場合は、一番最後に 積層を行う装置)から吐出されて力 冷却ロールに密着するまでの時間(例えば、図 1 ではスタティックミキサ 4から積層体が吐出されてから、 Tダイ 5から押出されて冷却口
ール 6に積層体が密着するまでの時間)は 45秒〜 10分、好ましくは 1〜8分、より好 ましくは 1. 5〜5分とする。積層体が積層装置から吐出されて力 冷却ロールに密着 するまでの時間を上記範囲内にすることにより、 X層と Y層との間の剥離に起因するラ ベルフィルムの破損を防ぐことができ、ラベル接着部の強度が確保される。なお、積 層体が冷却ロールに密着するとは、積層体が幅方向全体で冷却ロールに面接触す ることをいう。例えば、静電密着法を採用した場合は、ダイより押出された積層体は、 まず冷却ロールとは幅方向全体で線で接触する力 冷却ロールが回転することにより 、面接触するようになる。面接触の始点は、冷却ロールと積層体の密着点が幅方向 に連続して並ぶことによりできる線となって現れる。よって、この線が現れた瞬間を、 冷却ロールに密着した時点とみなしてよ 、。 [0057] This laminate is extruded through a slit die such as a T-die and is brought into close contact with a cooling tool having a surface temperature of 10 to 40 ° C to obtain an unstretched sheet. When the laminated body is extruded from the slit die to the cooling roll, the laminated body is discharged from the laminating device (the last device that performs laminating when multiple laminating devices are used) until it comes into close contact with the force cooling roll. Time (for example, in Fig. 1, the stack is discharged from the static mixer 4 and then extruded from the T die 5 to The time until the laminate adheres to the handle 6) is 45 seconds to 10 minutes, preferably 1 to 8 minutes, and more preferably 1.5 to 5 minutes. By keeping the time from when the laminate is discharged from the laminating apparatus until it comes into close contact with the force cooling roll within the above range, damage to the label film due to peeling between the X layer and Y layer can be prevented. The strength of the label adhesion portion is ensured. The fact that the stacked body is in close contact with the cooling roll means that the laminate is in surface contact with the cooling roll in the entire width direction. For example, when the electrostatic contact method is adopted, the laminated body extruded from the die first comes into surface contact with the cooling roll when the cooling roll rotates as a force that makes contact with the cooling roll in the entire width direction. The starting point of the surface contact appears as a line that is formed when the contact points between the cooling roll and the laminate are continuously arranged in the width direction. Therefore, consider the moment when this line appears as the point of contact with the cooling roll.
積層体が積層装置力 吐出されて力 冷却ロールに密着するまでの時間を調整す る方法としては、例えば、積層装置力もスリットダイまでの流路を長くする、経路中で 積層体を滞留させる等の方法が挙げられる。 As a method of adjusting the time from when the laminate is discharged to the force cooling roller, the stacking device force can be increased by, for example, increasing the flow path to the slit die, or causing the laminate to stay in the path. The method is mentioned.
[0058] 次に、得られた未延伸シートを、必要により 50〜120°C、好ましくは 60〜100°Cで 予熱した後、横方向(押し出し方向に対して直交する方向)にテンターで 3. 0倍以上 、好ましくは 3. 5倍以上 15倍以下に延伸する。延伸温度は、 60°C以上 120°C以下、 好ましくは 70°C以上 100°C以下である。横延伸の前後に縦延伸を行う必要は必ずし もないが、必要に応じて、縦延伸を行ってもよい。 [0058] Next, the obtained unstretched sheet is preheated at 50 to 120 ° C, preferably 60 to 100 ° C, if necessary, and then stretched in the transverse direction (direction perpendicular to the extrusion direction) with a tenter. Stretched to 0 times or more, preferably 3.5 times to 15 times. The stretching temperature is 60 ° C or higher and 120 ° C or lower, preferably 70 ° C or higher and 100 ° C or lower. Although it is not always necessary to perform longitudinal stretching before and after transverse stretching, longitudinal stretching may be performed as necessary.
[0059] さらに、必要により、 70〜100°Cの温度で熱処理して、熱収縮性ポリエステル系フィ ルムを得る。当該フィルムは、常法に従い巻き取ることによって、フィルムロールとして よい。 [0059] Further, if necessary, heat treatment is performed at a temperature of 70 to 100 ° C to obtain a heat-shrinkable polyester film. The film may be made into a film roll by winding it according to a conventional method.
[0060] なお、延伸の方法は、テンターでの横 1軸延伸のみでなぐ付加的に縦方向に延伸 し 2軸延伸することも可能である。このような 2軸延伸は、逐次 2軸延伸法、同時 2軸延 伸法のいずれの方法によってもよぐさらに必要に応じて、縦方向または横方向に再 延伸を行ってもよい。 [0060] Note that the stretching method may be biaxial stretching by additionally stretching in the machine direction in addition to transverse monoaxial stretching with a tenter. Such biaxial stretching may be performed by any of the sequential biaxial stretching method and the simultaneous biaxial stretching method, and may be re-stretched in the longitudinal direction or the transverse direction as necessary.
[0061] また、フィルムを延伸するに際してフィルムの表面温度の変動幅を小さくする(均温 化する)と、フィルム全長に亘つて同一温度で延伸や熱処理することができ、厚み分 布値や熱収縮挙動を均一化することができる。
[0062] 前記表面温度の変動幅は、任意のポイントにおいてフィルムの表面温度を測定し たときの各ポイントの温度力 例えば、フィルムの平均温度 ± 1°C以内程度であること が好ましぐ平均温度 ±0. 6°C以内であることがさらに好ましい。 [0061] In addition, when the film is stretched, if the fluctuation range of the surface temperature of the film is reduced (soaking), the film can be stretched and heat-treated at the same temperature over the entire length of the film, and the thickness distribution value and heat The shrinkage behavior can be made uniform. [0062] The fluctuation range of the surface temperature is a temperature force at each point when the surface temperature of the film is measured at an arbitrary point. For example, it is preferable that the average temperature of the film is within about ± 1 ° C. More preferably, the temperature is within ± 0.6 ° C.
[0063] フィルムを延伸する際には、延伸前の予備加熱工程、延伸工程、延伸後の熱処理 工程、緩和処理、再延伸処理工程などの種々の工程を経てフィルムを延伸するため これらの工程の一部又は全部で、フィルムの表面温度の変動幅を小さくできる(均質 化する)設備を用いるのが好ましい。特に、フィルム全長に亘つて厚み分布値を均一 化するためには、予備加熱工程及び延伸工程において(さらに、必要に応じて延伸 後の熱処理工程において)、フィルムの表面温度の変動幅を小さくできる設備を用い るのが好ましい。なお熱収縮率挙動を均一化する場合には、延伸工程において、フ イルムの表面温度の変動幅を小さくできる設備を用いるのが好ましい。 [0063] When the film is stretched, the film is stretched through various processes such as a preheating process before stretching, a stretching process, a heat treatment process after stretching, a relaxation process, and a restretching process process. It is preferable to use equipment that can reduce (homogenize) the fluctuation range of the surface temperature of the film partially or entirely. In particular, in order to make the thickness distribution value uniform over the entire length of the film, the fluctuation range of the surface temperature of the film can be reduced in the preheating step and the stretching step (and in the heat treatment step after stretching if necessary). It is preferable to use equipment. In order to make the heat shrinkage rate uniform, it is preferable to use equipment capable of reducing the fluctuation range of the surface temperature of the film in the stretching process.
[0064] 前記フィルム表面温度の変動を小さくできる設備としては、例えば、フィルムを加熱 するための熱風の供給速度を制御するための風速制御手段 (インバーターなど)を 備えた設備、空気を安定的に加熱して前記熱風を調製するための加熱手段 [500k Pa以下 (5kgf Zcm2以下)の低圧蒸気を熱源とする加熱手段など]を備えた設備な どが挙げられる。 [0064] Examples of the equipment that can reduce the fluctuation of the film surface temperature include, for example, equipment equipped with a wind speed control means (such as an inverter) for controlling the supply speed of hot air for heating the film, and stably supplying air. Examples include equipment equipped with heating means for heating to prepare the hot air [heating means using low-pressure steam of 500 kPa or less (5 kgf Zcm 2 or less) as a heat source].
[0065] なお、本発明の目的を達成するには、主収縮方向としては横方向が実用的である ので、以上では、主収縮方向が横方向である場合のフィルム化法の例を示したが、 主収縮方向を縦方向とする場合も、上記方法における延伸方向を 90度変えるほか は、上記方法の操作に準じてフィルム化することができる。 [0065] In order to achieve the object of the present invention, the horizontal direction is practical as the main shrinkage direction, and thus, an example of the film forming method in the case where the main shrinkage direction is the horizontal direction has been shown above. However, when the main shrinkage direction is the longitudinal direction, a film can be formed in accordance with the operation of the above method except that the stretching direction in the above method is changed by 90 degrees.
[0066] このようにして得られた熱収縮性ポリエステル系フィルムは、熱収縮性、引張り強度 等の熱収縮性ポリエステル系フィルムの一般特性を有し、かつミシン目カット性およ びラベルイ匕時の接着部の強度に優れ、ボトル用ラベルとして好適である。 [0066] The heat-shrinkable polyester film thus obtained has the general characteristics of a heat-shrinkable polyester film such as heat-shrinkability and tensile strength, and also has a perforation cut property and a label wear. It is excellent in the strength of the bonded part and is suitable as a label for a bottle.
実施例 Example
[0067] 以下、実施例により本発明を詳細に説明するが、本発明は、これら実施例に何ら制 限されるものではない。まず、実施例および比較例において作成したフィルムの評価 方法について説明する。 [0067] Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to these examples. First, the evaluation method of the film produced in the Example and the comparative example is demonstrated.
[0068] (1)熱収縮率
フィルムを lOcm X IOcmの正方形に裁断し、 95°C±0. 5°Cまたは 70°C±0. 5°C の温水中において、無荷重状態で 10秒間処理して熱収縮させた。フィルムを直ちに 25°C±0. 5°Cの水中に 10秒間浸漬させた後、フィルムの縦および横方向の寸法を 測定し、下記(1)式に従いそれぞれ熱収縮率を求めた。該熱収縮率の大きい方向を 主収縮方向とした。 [0068] (1) Thermal contraction rate The film was cut into a square of lOcm X IOcm and heat-shrinked by treatment for 10 seconds in 95 ° C ± 0.5 ° C or 70 ° C ± 0.5 ° C warm water under no load. The film was immediately immersed in water at 25 ° C ± 0.5 ° C for 10 seconds, then the vertical and horizontal dimensions of the film were measured, and the thermal contraction rate was determined according to the following formula (1). The direction in which the heat shrinkage rate is large was defined as the main shrinkage direction.
熱収縮率 = ( (収縮前の長さ 収縮後の長さ) Z収縮前の長さ) X 100(%) (1) [0069] (2)溶剤接着強度 Thermal shrinkage rate = ((length before shrinkage, length after shrinkage) Z length before shrinkage) X 100 (%) (1) [0069] (2) Solvent bond strength
フィルムの片端の片面の端縁から少し内側に 1, 3 ジォキソランを 2 ± 1mm幅で 塗布した (塗布量: 3. 0±0. 3g/m2) 0直ちにフィルムを丸めて端部を重ね合わせ て接着し、チューブにカ卩ェした (力卩ェ速度: lOmmZ分)。このチューブを平らに潰し た状態で巻き取ってロール状物とした。 1 from one side edge of one end slightly inside of the film, 3 Jiokisoran was applied at 2 ± 1 mm width (coating amount:. 3. 0 ± 0 3g / m 2) 0 superposed ends immediately rounded film And bonded to the tube (force speed: lOmmZ). The tube was rolled up in a flat crushed state to form a roll.
ロール状物力 切り出したチューブ状試料を、接着箇所が中央になるように切り開 いて、フィルム状試料とした。このフィルム状試料から、長さ 100mm、幅 15mmのフィ ルム状試験片(n= 10)を切り出して、このフィルム状試験片を、チャック間距離を 50 mmにセットした引張試験機 (ボールドウィン社製「STM—T」)に、溶剤接着部がチ ャック同士の中央に位置するようにセットして、温度 23°C、引張速度 200mmZ分の 条件で引張試験を行い、接着部分の剥離強度を測定し、これを溶剤接着強度とした Roll-like physical force The cut-out tube-like sample was cut open so that the bonded portion was in the center, and a film-like sample was obtained. A film test piece (n = 10) having a length of 100 mm and a width of 15 mm was cut out from this film sample, and the film test piece was set to a tensile tester (made by Baldwin) with the distance between chucks set to 50 mm. Set "STM-T") so that the solvent-bonded part is positioned at the center of the chuck, and perform a tensile test at a temperature of 23 ° C and a tensile speed of 200mmZ to measure the peel strength of the bonded part. And this was the solvent adhesive strength
[0070] (3)引裂伝播強度 [0070] (3) Tear propagation strength
JIS K7128— 2 (1998年)に基づいて、予め 85°Cで 10%収縮させたフィルムを縦 51mm X横 64mmに裁断し、(株)東洋精機製作所製軽荷重引裂試験機を用いて 測定し、得られた値を引裂伝播抵抗とした。 Based on JIS K7128-2 (1998), a film that had been shrunk 10% in advance at 85 ° C was cut into a length of 51 mm and a width of 64 mm and measured using a light load tear tester manufactured by Toyo Seiki Seisakusho. The obtained value was taken as the tear propagation resistance.
[0071] (4)ミシン目カットテスト [0071] (4) Perforation cut test
熱収縮性フィルムに、あら力じめ東洋インキ製造 (株)の草 '金 ·白色のインキで 3色 印刷した。印刷したフィルムを 1, 3 ジォキソランで両端部を接着することにより、チ ユーブ状のラベルを作成した。ラベルのサイズは、折径 109mm、ラベル長さ 90mm とした。 Three colors were printed on the heat-shrinkable film using Toyo Ink Mfg. Co., Ltd.'s grass gold and white ink. A tube-shaped label was created by adhering both ends of the printed film with 1,3 dioxolane. The label size was 109 mm fold diameter and 90 mm label length.
上記ラベルに、ラベルの主収縮方向に対し直角方向にミシン目を入れた。 2つ折り
にしたラベルの下に厚さ lmmのボール紙を 2枚重ねて敷き、テストシ一ラー(西部機 械社製)にミシン刃(1mmピッチの刃が lmm間隔で付いている全長 100mmの刃) を装着し、ゲージ圧 2kg/cm2でミシン刃をラベルに圧着して、 2つ折りにしたラベル の端部より 5mmの位置にラベル端部と平行にミシン目を入れた。ラベルには、長さ 1 mmの孔が lmm間隔で配設されたミシン目がラベル全長にわたり同時に 2本設けら れ、 2本のミシン目の間隔は 10mmであった。 The label was perforated in a direction perpendicular to the main shrinkage direction of the label. Fold in half Two lmm thick cardboards are placed under the label, and a sewing machine blade (100mm blade with 1mm pitch blades at lmm intervals) is placed on the test sealer (made by Seibu Kikai Co., Ltd.). Attach, press the sewing blade to the label with a gauge pressure of 2kg / cm 2 , and put a perforation parallel to the label edge at 5mm from the edge of the folded label. The label was provided with two perforations with 1 mm long holes arranged at lmm intervals over the entire length of the label, and the interval between the two perforations was 10 mm.
Fuji Astec Inc製スチームトンネル(型式: SH—1500—L)を用い、通過時間 2 . 5秒、ゾーン温度 80°C (表示)で蒸気圧 lkgZcm2 (圧力ゲージ表示: 98kPa)の水 蒸気を吹き付けて該ラベルを熱収縮させることにより、 500mLのペットボトル (丸型、 胴直径 62mm、ネック部の最小直径 25mm)に装着した。なお、このとき、直径が約 4 Ommの部分 (肩部)がラベルの一方の端になるようにした。 Using Fuji Astec Inc's steam tunnel (model: SH-1500-L), spraying water vapor with a passage time of 2.5 seconds and a zone temperature of 80 ° C (indication) with a vapor pressure of 1 kgZcm 2 (pressure gauge indication: 98 kPa). The label was heat-shrinked and attached to a 500 mL PET bottle (round shape, trunk diameter 62 mm, minimum neck diameter 25 mm). At this time, a portion (shoulder) having a diameter of about 4 Omm was set to one end of the label.
その後、このボトルに水を約 500mL充填し、 5°Cで 12時間冷蔵し、冷蔵庫から取り 出した直後のボトルのラベルのミシン目を指先で引き裂き、縦方向にきれいに裂けて ラベルをボトルカゝら外すことができた本数を数え、全サンプル 50本に対する割合(% )を示した。 After that, fill this bottle with about 500 mL of water, refrigerate at 5 ° C for 12 hours, tear the perforation of the bottle label immediately after taking it out of the refrigerator with your fingertips, tear it cleanly in the vertical direction, and remove the label from the bottle. The number that could be removed was counted, and the percentage (%) of all 50 samples was shown.
[0072] (5)落下時の破れ [0072] (5) Torn when dropped
(4)の条件でラベルを装着し、 5°Cで 12時間冷蔵したペットボトルを、 lmの高さから 防塵塗装を施し光沢のあるコンクリート面に自由落下させた。このとき、ペットボトルを 横向きに持って手を放し、ボトルがその側面力 コンクリート面に落下するようにした。 ペットボトル 10本についてテストを行い、接着部が 1本でも外れれば X、破れなけれ ば〇とした。 The label was attached under the condition (4), and the PET bottle refrigerated at 5 ° C for 12 hours was dust-coated from the height of lm and allowed to fall freely onto the glossy concrete surface. At this time, holding the plastic bottle sideways and letting go of the hand, the bottle dropped on its side force concrete surface. A test was performed on 10 PET bottles, and X was given if even one bonded part was removed.
[0073] (6)破断強度 [0073] (6) Breaking strength
折り径 87. 5mm Xラベル長さ 120mmのフィルムラベルを、 250mLのスチール缶( 外径 53mm、高さ 133mm)に被せ、 80°Cの温湯に 10秒間浸漬することにより、ラベ ルを缶に収縮させて装着した (約 5%収縮)。ラベルが装着されたスチール缶を、すぐ に 60°C± 1°Cの温水中に移し、 30分間浸漬させた。当該スチール缶のラベル (背貼 りのな 、部分)力もサンプルを切り出し、 JIS K 7127 (1999年)(試験片はタイプ 2とする。ただし、チャック間距離: 20mm、引張り速度: 200mmZ分)に準じて熱処
理前のフィルムの最大収縮方向と直交する方向につ 、ての弓 I張試験を行った。試験 片のサイズは、長さ 100mm (フィルムの最大収縮方向と直行する方向)、幅 15mmと し、試験条件は、チャック間距離 20mm、温度 23°C、引張速度 200mmZ分とする。 試験中に破断したときの強度を破断強度とした。 Folded diameter 87.5mm X Label length 120mm film label is placed on a 250mL steel can (outer diameter 53mm, height 133mm) and immersed in 80 ° C hot water for 10 seconds to shrink the label into the can (5% contraction). The steel can with the label was immediately transferred to warm water of 60 ° C ± 1 ° C and immersed for 30 minutes. Also cut out the sample of the steel can label (part without back attachment) and set it to JIS K 7127 (1999) (specimen is type 2; however, distance between chucks: 20 mm, pulling speed: 200 mmZ) According to heat treatment The bow I tension test was conducted in the direction perpendicular to the maximum shrinkage direction of the film before the treatment. The size of the test piece is 100 mm in length (direction perpendicular to the maximum film shrinkage direction), 15 mm in width, and the test conditions are a distance between chucks of 20 mm, a temperature of 23 ° C, and a tensile speed of 200 mmZ. The strength at the time of breaking during the test was defined as the breaking strength.
[0074] (1)〜(6)の評価結果は、表 3に示した。 [0074] The evaluation results of (1) to (6) are shown in Table 3.
[0075] (7)ポリエステル成分の熱分析 [0075] (7) Thermal analysis of polyester component
セイコー電子工業 (株)製の DSC装置 (型式: DSC220)を用い、ポリエステル成分 の熱分析を行った。後述の合成例で合成したチップの各 10± lmgを試料とし、この 試料を 300°Cで 2分間加熱し、直ちに液体窒素に入れて急冷した後、温度 40°Cか ら 300°Cまで速度 20°CZ分で昇温し、熱流速曲線 (DSC曲線)を測定した。前記 D SC曲線における吸熱開始カーブの前後に引いた接線の交点をガラス転移温度 (Tg )とした。前記 DSC曲線における吸熱ピークの最大値を示す温度を融解温度 (Tm) とした。前記 DSC曲線の吸熱ピークの積分値を融解熱量 (Hm)とした。結果を表 1に 示した。 Thermal analysis of the polyester component was performed using a DSC device (model: DSC220) manufactured by Seiko Denshi Kogyo. 10 ± lmg of each chip synthesized in the synthesis example described below is used as a sample. This sample is heated at 300 ° C for 2 minutes, immediately put in liquid nitrogen and rapidly cooled, and then the temperature is increased from 40 ° C to 300 ° C. The temperature was raised at 20 ° CZ and the heat flow rate curve (DSC curve) was measured. The intersection of tangent lines drawn before and after the endothermic start curve in the DSC curve was defined as the glass transition temperature (Tg). The temperature showing the maximum value of the endothermic peak in the DSC curve was defined as the melting temperature (Tm). The integrated value of the endothermic peak of the DSC curve was defined as the heat of fusion (Hm). The results are shown in Table 1.
[0076] (8— 1)フィルム内部の層数(その 1) [0076] (8— 1) Number of layers in the film (1)
フィルム内部の層数は、透過型電子顕微鏡を用いて観察して求めた。まず、フィル ムをエポキシ榭脂中に包埋した。用いたエポキシ榭脂としては、ルアベック 812、ルァ ベック NMA (以上ナカライテスタ社製)、 DMP30 (TAAB社製)をそれぞれ 100: 89 : 3の割合で良く混合したものを用いた。次に、サンプルフィルムを上述の混合榭脂中 に包埋後、温度 60°Cに調整したオーブン中で 16時間放置し、榭脂を硬化せしめ包 埋ブロックを得た。 The number of layers inside the film was determined by observation using a transmission electron microscope. First, the film was embedded in epoxy resin. As the epoxy resin used, Luabeck 812, Luabeck NMA (manufactured by Nacalai Testa Co., Ltd.) and DMP30 (TAAB Co., Ltd.) were mixed well in a ratio of 100: 89: 3, respectively. Next, after embedding the sample film in the above-described mixed resin, it was left in an oven adjusted to a temperature of 60 ° C. for 16 hours to cure the resin and obtain an embedded block.
得られた包埋ブロックを、 日製産業製ウルトラカット Nに取り付け超薄切片を作成し た。まず、ガラスナイフを用いてフィルムの観察に供したい部分の断面がレジン表面 に現れるまでトリミングを実施した。次に、ダイアモンドナイフ (住友電工製スミナイフ S K2045)を用いて超薄切片を切りだした。切りだした切片はメッシュ上に回収した後、 室温で四酸化ルテニウム蒸気中に 30分間静置して染色し、薄くカーボン蒸着を施し た。 The obtained embedding block was attached to Nissan Sangyo Ultracut N, and an ultrathin section was prepared. First, trimming was performed using a glass knife until the cross section of the part that was desired for film observation appeared on the resin surface. Next, an ultrathin section was cut out using a diamond knife (Sumitomo Electric Sumiknife S K2045). The cut sections were collected on a mesh, stained in ruthenium tetroxide vapor at room temperature for 30 minutes, and then thinly deposited with carbon.
電子顕微鏡観察は、 日本電子 SiiEM— 2010を加速電圧 200kVの条件で実施し
た。得られた像はイメージングプレート(フジ写真フィルム製 FDL UR— V)上に記録 した。イメージングプレート上に記録した信号をデジタルルミノグラフィー(日本電子製 PixsysTEM)を用いて読み出し、ウィンドウズ (登録商標)パソコン上にデジタルの画 像情報として記録し、 X層および Y層の染色度の差カゝら確認される層の数を数えた。 For electron microscope observation, JEOL SiiEM—2010 was conducted under the condition of an acceleration voltage of 200 kV. It was. The obtained image was recorded on an imaging plate (FDL UR-V made by Fuji Photo Film). The signal recorded on the imaging plate is read out using digital luminography (PixsysTEM, manufactured by JEOL) and recorded as digital image information on a Windows (registered trademark) PC. We counted the number of layers identified.
(8 2)フィルム内部の層数(その 2) (8 2) Number of layers inside the film (part 2)
フィルム内部の層数は、透過型電子顕微鏡 (TEM)を用いて観察して求めた。まず 、フィルムをエポキシ榭脂中に包埋した。用いたエポキシ榭脂としては、ルアベック 81 2、ルアベック NMA (以上ナカライテスタ社製)、 DMP30 (TAAB社製)をそれぞれ 1 00 : 89 : 3の割合 (質量)で良く混合したものを用いた。次に、サンプルフィルムを上 述の混合榭脂中に包埋後、温度 60°Cに調整したオーブン中で 16時間放置し、榭脂 を硬化せしめ包埋ブロックを得た。 The number of layers inside the film was determined by observation using a transmission electron microscope (TEM). First, the film was embedded in epoxy resin. As the epoxy resin used, Luabeck 812, Luavec NMA (manufactured by Nacalai Testa Co., Ltd.) and DMP30 (TAAB Co.) were mixed well at a ratio (mass) of 100: 89: 3, respectively. Next, after embedding the sample film in the above-described mixed resin, the sample film was allowed to stand in an oven adjusted to a temperature of 60 ° C. for 16 hours to cure the resin and obtain an embedded block.
この包埋ブロックに対し、ガラスナイフを用いて、フィルム部分の断面がブロック表面 に現れるまで榭脂を切削した (面出し)。この面出し後の包埋ブロックを、塩化ルテ- ゥム蒸気を密閉した容器中に 3日間入れて、ルテニウム染色を行った。塩化ルテユウ ム蒸気は 1日毎に新しい蒸気と交換した。 The embedded block was cut with a glass knife until the cross section of the film portion appeared on the block surface (surface contact). The embedding block after the surface exposure was placed in a container sealed with ruthenium chloride vapor for 3 days to carry out ruthenium staining. The ruthenium chloride vapor was replaced with fresh vapor every day.
染色後の包埋ブロックから、ミクロトームで厚さおよそ 700Aの超薄切片を、包埋ブ ロックの表面から 1. 5 /z m程度内部まで何枚も切り出した。最もコントラストの鮮明な 超薄切片を選んで、カーボン蒸着を行い、 TEM観察用試料とした。 From the embedding block after staining, several ultrathin sections with a thickness of about 700A were cut out from the surface of the embedding block to about 1.5 / zm by the microtome. The ultra-thin slice with the clearest contrast was selected, and carbon deposition was performed to prepare a sample for TEM observation.
電子顕微鏡観察は、 日本電子社 SiiEM— 2010を用い、加速電圧 200kVの条件 で実施した。得られた像はイメージングプレート(富士写真フィルム社製「FDL UR V」)上に記録した。イメージングプレート上に記録した信号をデジタルルミノグラフ ィー(日本電子社製「PixsysTEM」)を用いて読み出し、ウィンドウズ (登録商標)パソ コン上にデジタルの画像情報として記録した。倍率は 5000〜20000倍の中力ら適 宜選択した。 The electron microscope was observed using JEOL SiiEM-2010 under an acceleration voltage of 200 kV. The obtained image was recorded on an imaging plate (“FDL UR V” manufactured by Fuji Photo Film Co., Ltd.). The signal recorded on the imaging plate was read out using a digital luminography (“PixsysTEM” manufactured by JEOL Ltd.) and recorded as digital image information on a Windows (registered trademark) PC. The magnification was appropriately selected from the medium power of 5000-20000 times.
上記画像情報を、画像解析ソフト(Scion Image Image analysis software (Scion Image
Alpha 4.0.3.2; Scion Corporation製)を用いて解析した。まず、詳細な層数確認の前 に、予備確認を行った。予備確認は、以下のようにして行った。 Alpha 4.0.3.2; manufactured by Scion Corporation). First, a preliminary check was performed before checking the detailed number of layers. The preliminary confirmation was performed as follows.
1.フィルム厚み方向の色の濃淡をラインプロファイルにより数値ィ匕した。具体的には
、幅 100ピクセル、長さ 3000ピクセル (ピクセル数は任意に変更可能)の濃淡を読み 取り、横軸を長さ方向のピクセル、縦軸を信号強度 (濃淡)として曲線を描かせて、グ ラフィ匕した。 1. The shade of the color in the film thickness direction was numerically expressed by the line profile. In particular , Read the shade of 100 pixels wide and 3000 pixels long (number of pixels can be changed arbitrarily), draw a curve with the horizontal axis as the length direction pixel and the vertical axis as the signal intensity (lightness and shade). I was jealous.
2.グラフ中の曲線にはピークが多数存在しているので、ある 1個のピークについて、 極大値がある位置のピクセル数と、極小値がある位置のピクセル数を読み取り、その 差 d (ピークの幅の約半分)を層の厚みと考えた。 30個のピークについて、 dを求め、 平均値 d を算出した。 2.Because there are many peaks in the curve in the graph, for one peak, read the number of pixels at the position with the maximum value and the number of pixels at the position with the minimum value, and the difference d (peak About half of the width) was considered the thickness of the layer. About 30 peaks, d was calculated | required and average value d was computed.
av av
3.上記平均値 d を nm単位に換算し、換算後の値が lOOnm以上の場合は、ィメー av 3. If the above average value d is converted to nm unit and the converted value is more than lOOnm,
ジングプレート上の TEM像から、 目視で層数を数えた。なお、換算の際には、 TEM 像が 5000倍の場合は、 1ピクセルを 5nmとし、 2万倍の場合は、 1ピクセルを 1. 25η mとした。 The number of layers was counted visually from the TEM image on the ging plate. In the conversion, when the TEM image is 5000 times, 1 pixel is 5 nm, and when it is 20,000 times, 1 pixel is 1.25 ηm.
4.上記換算後の d (nm)が lOOnm未満の場合は、下記の詳細な層数確認法を採 av 4. If the converted d (nm) is less than lOOnm, use the following detailed layer number confirmation method.
用して層数を求めた。 To determine the number of layers.
詳細な層数確認法は、以下のようにして行った。 A detailed method for confirming the number of layers was performed as follows.
1.上記 TEM観察画像について、ノイズと画像の濃淡の斑との補正処理を行った。 まず、画像解析ソフト(L Process ver. 1. 96 ;FUJIFILM Science Lab99製)を用い て、上記画像を取り込んだ(図 2)。イメージセレクタツールの設定を 2nにして、画像の 最大範囲(2048 X 2048ピクセル:但し、任意に指定可能)でフーリエ変換 (FFT)を 行った(図 3)。図 2において、図の中心を決め、層方向(縞の方向)を X軸を、該方向 に直交する方向を Y軸とする。図 3において、白い輝点の集合体が Y軸に沿うように( 図中、水平線と垂直線が見える力 これはノイズである)、図 2の中心と図 3の中心(ゼ 口ピクセル)を合わせて、 Y軸の 5ピクセル目力ら 1020ピクセル目までを幅 200ピクセ ル (X軸上で— 100ピクセルから + 100ピクセル目まで)の長方形で囲んだ。同様に - 5ピクセル目力らー 1020ピクセル目までを幅 200ピクセルの長方形で囲んだ。この 囲んだところ以外はノイズとして扱う。なお、上記の 5〜1020ピクセルと幅 200ピクセ ルという数値は、ノイズを除去するため、経験的に導き出した数値である。囲んだ部 分のみを逆フーリエ変換 (IFFT)し、得られた画像を TIFF形式( 16bit)で保存した( 図 4)。
2.逆フーリエ変換後の画像を、画像解析ソフト (Scion 1. The above TEM observation image was corrected for noise and shading of the image. First, the above images were captured using image analysis software (L Process ver. 1.96; manufactured by FUJIFILM Science Lab99) (Figure 2). With the image selector tool set to 2 n , Fourier transform (FFT) was performed over the maximum image range (2048 x 2048 pixels, but can be specified arbitrarily) (Figure 3). In Fig. 2, the center of the figure is determined, and the layer direction (stripe direction) is the X axis, and the direction perpendicular to the direction is the Y axis. In Fig. 3, the center of Fig. 2 and the center of Fig. 3 (neck pixel) are aligned so that the collection of white bright spots is along the Y axis (the power to see the horizontal and vertical lines in the figure is noise). Combined, the 5th pixel from the 5th pixel on the Y axis to the 1020th pixel is surrounded by a rectangle with a width of 200 pixels (on the X axis—from the 100th pixel to the + 100th pixel). Similarly-5th pixel power-The 1020th pixel is surrounded by a 200 pixel wide rectangle. The areas other than those enclosed are treated as noise. The above numbers of 5 to 1020 pixels and width of 200 pixels are empirically derived values to eliminate noise. Only the enclosed area was subjected to inverse Fourier transform (IFFT), and the resulting image was saved in TIFF format (16bit) (Figure 4). 2. After the inverse Fourier transform, the image analysis software (Scion
Image Alpha 4.0.3.2; Scion Corporation製)に読み込んで、 Threshold機能で画像 の濃淡を明瞭化し、 BMP形式へと変更した(図 5)。(補正処理終了) Image Alpha 4.0.3.2 (manufactured by Scion Corporation), and the threshold of the image was clarified with the Threshold function and changed to BMP format (Fig. 5). (End of correction process)
3.この BMP形式の画像において、 Profile Plot機能を用い、 Y軸に平行ななる ベく長 、(2000〜2500ピクセル程度)ラインプロファイルを、プロット幅 1ピクセルで 採ることにより、フィルム断面画像の濃淡を 2値ィ匕して、 Plot Value形式で保存した 3. In this BMP format image, use the Profile Plot function and take a line profile parallel to the Y-axis (approximately 2000-2500 pixels) with a plot width of 1 pixel. Was saved in Plot Value format.
4.この Plot Value形式のデータを、 Microsoft Excelに読み込んで、 Y軸に平 行なラインの 1ピクセルごとの全データの平均値 (Av)を求めた。次いで、あるピクセ ルのデータが平均値 (Αν)より大きい時は、そのピクセルに判定値 + 1を与え、それ 以外の場合は、そのピクセルには判定値一 1を与えた。各ピクセルの判定値をピクセ ル (横軸)に対してプロットすると、得られるグラフは、 + 1と+ 1 (またはー1とー1)を結 ぶ水平な直線と、 + 1と一 1 (またはその逆)とを結ぶ斜めの直線とからなる線となった 。この斜めの直線の数を、層の数と判断した。 4. This Plot Value format data was read into Microsoft Excel, and the average value (Av) of all data for each pixel of the line parallel to the Y axis was obtained. Next, when the data of a certain pixel is larger than the average value (Αν), the judgment value + 1 is given to the pixel, and in other cases, the judgment value 1 is given to the pixel. When the judgment value of each pixel is plotted against the pixel (horizontal axis), the resulting graph is a horizontal straight line connecting +1 and +1 (or -1 and -1), and +1 and 1 ( Or the opposite)). The number of diagonal lines was determined as the number of layers.
なお、上記の方法で求められる層数は、スタティックミキサのエレメント数 ηから理論 的に求まる 2η層または 2η+1層よりも小さくなることがある。 X層を構成するポリエステル 榭脂成分 Μと Υ層を構成するポリエステル榭脂成分 Νとは異なる榭脂組成であるが、 積層工程中に隣り合う層同士の界面でエステル交換反応が起こり、 X層と Υ層の界面 近傍に同じ組成のポリエステルが生成することがある。例えば、層数が多くなつて一 層の厚みが数 nmレベルに薄くなると、 X層と Υ層との一部が同じポリエステル組成の 層であると同一視されてしまい、上記の染色法や層数確認法を採用したときに、理論 値よりち/ Jヽさくなるちのと考免られる。 Incidentally, the number of layers obtained by the above method may be less than 2 eta layer or 2 eta + 1 layer obtained theoretically from several elements of the static mixer eta. Polyester constituting the X layer, the resin component Μ and the polyester resin component constituting the cocoon layer Although the composition is different from that of the cocoon layer, transesterification occurs at the interface between adjacent layers during the lamination process, and the X layer A polyester with the same composition may be formed near the interface of the cocoon layer. For example, if the number of layers is large and the thickness of one layer is reduced to the level of several nanometers , the X layer and the cocoon layer are partly identified as layers of the same polyester composition, and the above dyeing method or layer When the number confirmation method is adopted, it is considered to be less than the theoretical value.
合成例 1 (ポリエステルの合成) Synthesis Example 1 (Synthesis of polyester)
エステル化反応缶に、 57036質量部のテレフタル酸 (TP A)、 33244質量部のェ チレングリコール(EG)、 15733質量部のネオペンチルグリコール(NPG)、 23. 2質 量部の三酸ィヒアンチモン (重合触媒)、 5. 0質量部の酢酸ナトリウム (アルカリ金属化 合物)および 46. 1質量部のトリメチルホスフェート(リン化合物)を仕込み、 0. 25MP aに調圧し、温度 220〜240°Cで 120分間攪拌することによりエステルイ匕反応を行つ
た。反応缶を常圧に復圧し、 3. 0質量部の酢酸コバルト · 4水塩、及び 124. 1質量部 の酢酸マグネシウム · 4水塩 (アルカリ土類金属化合物)を加え、温度 240°Cで 10分 間攪拌した後、 75分間かけて圧力 0. 5hPaまで減圧すると共に、温度 280°Cまで昇 温した。温度 280°Cで溶融粘度が 4500ボイズになるまで攪拌を継続 (約 70分間)し た後、ストランド状で水中へ吐出した。吐出物をストランドカッターで切断することによ り、ポリエステルチップ Aを得た。ポリエステルチップ Aの極限粘度は、 0. 75dlZgで めつに。 In an esterification reactor, 57036 parts by mass of terephthalic acid (TPA), 33244 parts by mass of ethylene glycol (EG), 15733 parts by mass of neopentyl glycol (NPG), 23.2 parts by mass of dianhymonic triacid ( Polymerization catalyst), 5.0 parts by weight of sodium acetate (alkali metal compound) and 46.1 parts by weight of trimethyl phosphate (phosphorus compound), and the pressure is adjusted to 0.25 MPa, at a temperature of 220 to 240 ° C. Perform esterification reaction by stirring for 120 minutes It was. The reaction vessel was returned to normal pressure, and 3.0 parts by mass of cobalt acetate tetrahydrate and 124.1 parts by mass of magnesium acetate tetrahydrate (alkaline earth metal compound) were added at a temperature of 240 ° C. After stirring for 10 minutes, the pressure was reduced to 0.5 hPa over 75 minutes and the temperature was raised to 280 ° C. Stirring was continued until the melt viscosity reached 4500 boise at a temperature of 280 ° C (about 70 minutes), and then discharged into water as a strand. Polyester chip A was obtained by cutting the discharged material with a strand cutter. The intrinsic viscosity of polyester chip A is 0.75 dlZg.
[0078] 合成例 2〜4 [0078] Synthesis Examples 2 to 4
合成例 1と同様な方法により、表 1に示すチップ組成のポリエステル原料チップ B〜 Dを得た。表中、 PDは、 1, 3 プロパンジオール、 CHDMは 1, 4ーシクロへキサン ジメタノール、 BDは 1, 4 ブタンジオール、 DEGはジエチレングリコールの略記で ある。それぞれのポリエステルの極限粘度は、チップ Bが 0. 92dlZg、チップ Cが 0. 72dlZg、チップ Dが 1. 20dlZgであった。 Polyester raw material chips B to D having the chip compositions shown in Table 1 were obtained in the same manner as in Synthesis Example 1. In the table, PD is an abbreviation for 1,3 propanediol, CHDM is 1,4-cyclohexanedimethanol, BD is 1,4 butanediol, and DEG is diethylene glycol. The intrinsic viscosities of each polyester were 0.92 dlZg for chip B, 0.72 dlZg for chip C, and 1.20 dlZg for chip D.
[0079] なお、極限粘度は、チップ 0. lgを精秤し、 25mlのフエノール Zテトラクロロェタン [0079] For the intrinsic viscosity, 0.1 ml of the chip was precisely weighed and 25 ml of phenol Z tetrachloroethane was used.
= 3/2 (質量比)の混合溶媒に溶解した後、ォストワルド粘度計で 30 ±0. 1°Cで測 定した。極限粘度 [ r? ]は、下式 (Huggins式)によって求められる。 After being dissolved in a mixed solvent of 3/2 (mass ratio), it was measured at 30 ± 0.1 ° C with an Ostwald viscometer. The intrinsic viscosity [r?] Is obtained by the following equation (Huggins equation).
[0080] [数 1]
[0080] [Equation 1]
[0081] ここで、 r? :比粘度、 t:ォストワルド粘度計を用いた溶媒の落下時間、 t:ォスワルド sp 0 [0081] where r ?: specific viscosity, t: solvent fall time using Ostwald viscometer, t: Ostwald sp 0
粘度計を用いたチップ溶液の落下時間、 C :チップ溶液の濃度である。なお、実際の 測定では、 Huggins式において k=0. 375とした下記近似式で極限粘度を算出した Drop time of tip solution using viscometer, C: concentration of tip solution. In the actual measurement, the intrinsic viscosity was calculated by the following approximate equation with k = 0.375 in the Huggins equation.
[0082] [数 2]
[0082] [Equation 2]
(η 1 )+3 X Ιηη (η 1) +3 X Ιηη
[0083] ここで、 :相対粘度である。 [0083] where: is the relative viscosity.
[0084] 実施例 1 [0084] Example 1
上記合成例で得られた各チップを別個に予備乾燥し、表 2に示したように、チップ A 80kg,チップ B20kgをスーパーミキサー (川田製作所製)を用いて十分混合した後 に、混合ペレットを押出機 1 (単軸 60 φ、 LZD=25)のホツバに投入し、 275°C±2 °Cで溶融した。同様にチップ A5kg、チップ B25kgをスーパーミキサーを用いて十分 混合した後に、押出機 II (二軸押出機、 22. 5mmX 2本、 LZD = 25)で 255°C±2 °Cで溶融した。 Each chip obtained in the above synthesis example was separately pre-dried, and as shown in Table 2, 80 kg of chip A and 20 kg of chip B were thoroughly mixed using a super mixer (manufactured by Kawada Seisakusho). It was put into the hot rod of Extruder 1 (single shaft 60φ, LZD = 25) and melted at 275 ° C ± 2 ° C. Similarly, Chip A5kg and Chip B25kg were mixed thoroughly using a super mixer, and then melted at 255 ° C ± 2 ° C with Extruder II (two-screw extruder, 22.5mmX, LZD = 25).
[0085] 両押出機で溶融した榭脂を、 ΙΖΠ=8Ζ2 (吐出質量比)となるように、 265°C±2°C のフィードブロックに導き、さらに、 275°C±2°Cのスタティックミキサ(ノリタケカンパ- 一製、 12エレメント、内径 38. 4mm、 1エレメントの L/D= 1. 5、 1エレメントの板の ひねり角度 180度、捩り勾配 46度)にて積層化した。次いで 275°C±2°Cの T—ダイ に導き、溶融押出しした。押出しした榭脂は、表面温度 20°C±2°Cの冷却ロール上 に静電密着され、未延伸シートを得た。なお、榭脂積層体が積層終了にあたるスタテ イツクミキサの出口から吐出された時点から、冷却ロールに密着するまでの時間は約 2分であった。また、押出機 Iおよび Πの吐出量は 1時間あたり 40kgであった。 [0085] The resin melted in both extruders is led to a feed block of 265 ° C ± 2 ° C so that ΙΖΠ = 8Ζ2 (discharge mass ratio), and further static of 275 ° C ± 2 ° C Stacked with a mixer (Noritake Kampa-made, 12 elements, inside diameter 38.4 mm, 1 element L / D = 1.5, 1 element plate twist angle 180 degrees, twist gradient 46 degrees). It was then led to a T-die at 275 ° C ± 2 ° C and melt extruded. The extruded resin was electrostatically adhered onto a cooling roll having a surface temperature of 20 ° C ± 2 ° C to obtain an unstretched sheet. Note that the time from when the resin laminate was discharged from the outlet of the static mixer at the end of lamination to the close contact with the cooling roll was about 2 minutes. In addition, the discharge rate of Extruder I and Saddle was 40 kg per hour.
[0086] 上記未延伸シートを、テンター内で 82°Cで 24秒間予熱した後に、引き続いて、横 方向に 77°Cで 4. 8倍に延伸し、続いて 70°Cで 24秒間熱処理を行って、厚み 45 mの熱収縮性ポリエステルフィルムを得た。 [0086] The above unstretched sheet was preheated in a tenter at 82 ° C for 24 seconds, subsequently stretched 4.8 times at 77 ° C in the lateral direction, and subsequently heat treated at 70 ° C for 24 seconds. And a heat-shrinkable polyester film having a thickness of 45 m was obtained.
ここで実施例 1にお 、ては、フィルムを連続製造したときのフィルムの表面温度の変
動幅は、テンターの予熱工程で平均温度 ±0. 6°C、延伸工程で平均温度 ±0. 5°C 、熱処理工程で平均温度 ±0. 5°Cの範囲であった。 Here, in Example 1, the change in the surface temperature of the film when the film was continuously produced was changed. The dynamic range was within the range of the average temperature ± 0.6 ° C in the tenter preheating step, the average temperature ± 0.5 ° C in the stretching step, and the average temperature ± 0.5 ° C in the heat treatment step.
[0087] 実施例 2〜3 [0087] Examples 2-3
実施例 2ではチップ Aをチップ Cに変更し、実施例 3では、チップ Bをチップ Dに、横 延伸時の予熱温度を 79°Cに変更した以外は実施例 1と同様にして、熱収縮性ポリエ ステル系フィルムを得た。 In Example 2, chip A was changed to chip C. In Example 3, heat shrinkage was performed in the same manner as in Example 1 except that chip B was changed to chip D and the preheating temperature during transverse stretching was changed to 79 ° C. A conductive polyester film was obtained.
比較例 1 Comparative Example 1
ポリエステルチップ Aとポリエステルチップ Bとを、単一の押出機 Iに、榭脂比率が A /B = 80/20 (質量比)となるように投入して溶融し (温度 275°C士 2°C)、スタティッ クミキサを使用せずに、 T—ダイの温度を 275°C± 2°Cとして未延伸シートを得た以 外は、実施例 1と同様の方法で、厚み 45 mの熱収縮性ポリエステル系フィルムを得 た。 Polyester chip A and polyester chip B are put into a single extruder I and melted at a ratio of A / B = 80/20 (mass ratio) (temperature 275 ° C 2 ° C) Heat shrinkage of 45 m in thickness using the same method as in Example 1 except that an unstretched sheet was obtained by using a T-die temperature of 275 ° C ± 2 ° C without using a static mixer. A conductive polyester film was obtained.
実施例 1〜3及び比較例 1で得られたフィルムの評価結果を表 1に示す。各実施例 の層数は、上記(8— 2)の詳細な層数確認法を採用して決定した。 Table 1 shows the evaluation results of the films obtained in Examples 1 to 3 and Comparative Example 1. The number of layers in each example was determined by employing the detailed layer number confirmation method described in (8-2) above.
[0088] [表 1]
[0088] [Table 1]
[0089] [表 2] [0089] [Table 2]
[0090] [表 3] [0090] [Table 3]
熱収縮率 (%) ミシン目カット性 落下時の 分処理後の 溶剤接着強 引裂伝播強度 層数 横 ミシン目 卜 ラへ 'ルのミシン目 破断強度 (層) 収縮後 不良率 からの破れ Heat shrinkage rate (%) Perforation cutting property Solvent adhesion strength after drop treatment Tear propagation strength Number of layers Horizontal perforation 卜 La perforation break strength (layer) Breaking from defective rate after shrinkage
実施例 〇 Example ○
実施例 〇 Example ○
実施例 〇 Example ○
比較例 〇
産業上の利用可能性 Comparative example Industrial applicability
[0091] 本発明の熱収縮性ポリエステル系フィルムは、ボトル用ラベルに好適である 符号の説明 [0091] The heat-shrinkable polyester film of the present invention is suitable for a label for a bottle.
[0092] 1 押出機 E [0092] 1 Extruder E
2 押出機 F 2 Extruder F
3 フィード、ブロック 3 Feed, block
4 スタティックミキサ 4 Static mixer
5 T ダイ 5 T die
6 冷却ロール
6 Cooling roll
Claims
[1] ポリエステル成分 Mを含む X層とポリエステル成分 Nを含む Y層とが、交互に積層さ れた構造を有する熱収縮性ポリエステル系フィルムであって、 [1] A heat-shrinkable polyester film having a structure in which an X layer containing a polyester component M and a Y layer containing a polyester component N are alternately laminated,
該フィルムの片端の片面の端縁から少し内側に 1, 3—ジォキソランを塗布し、該フィ ルムを丸めて端部を重ね合わせてチューブ状のフィルムラベルとし、 Apply 1,3-dioxolan slightly inside from the edge of one side of the film, roll the film and overlap the edges to form a tubular film label,
該フィルムラベルを 500mLペットボトルに被覆して 80°Cで 2. 5秒間加熱して装着し 該ペットボトル 10本を lmの高さ力 落下した場合に、該ペットボトル 10本すべてに ついて X層と Y層との間の剥離に起因するフィルムラベルの破損が起こらないことを 特徴とする熱収縮性ポリエステル系フィルム。 Cover the 500 ml PET bottle with the film label, heat it at 80 ° C for 2.5 seconds, and put it on for 10 seconds. A heat-shrinkable polyester film characterized in that the film label is not damaged due to peeling between the Y layer and the Y layer.
[2] X層に含まれるポリエステル成分 M力 ポリエステル A70〜99質量%およびポリエ ステル Bl〜30質量0 /0を含み、 Y層に含まれるポリエステル成分 N力 ポリエステル B 70〜99質量%およびポリエステル Al〜30質量%を含む請求項 1記載の熱収縮性 ポリエステル系フィルム。 [2] includes a polyester component M force polyester A70~99 wt% and polyethylene ester Bl~30 mass 0/0 contained in X layer, the polyester component N force polyesters contained in the Y layer B 70 to 99% by weight and polyester Al The heat-shrinkable polyester film according to claim 1, comprising -30 mass%.
[3] X層と Y層とが、合わせて 500層以上交互に積層された構造を有するものである請 求項 1または 2記載の熱収縮性ポリエステル系フィルム。 [3] The heat-shrinkable polyester film according to claim 1 or 2, wherein the X layer and the Y layer have a structure in which 500 layers or more are alternately laminated.
[4] 95°C±0. 5°Cの温水中に 10秒間浸漬後の主収縮方向の熱収縮率が 50%以上 であり、溶剤接着強度が 2. 0NZl5mm以上であり、引裂伝播強度が 2. ON以下で あり、 60°C± 1°Cの温水中に 30分間浸漬後の破断強度が 20MPa以上である厚み 力 〜 100 μ mの熱収縮性ポリエステル系フィルム。 [4] Thermal shrinkage in the main shrinkage direction after immersion for 10 seconds in warm water at 95 ° C ± 0.5 ° C is 50% or more, solvent adhesion strength is 2.0NZl5mm or more, and tear propagation strength is 2. Heat-shrinkable polyester film with a thickness of ~ 100 μm that is below ON and has a breaking strength of 20 MPa or more after being immersed in warm water at 60 ° C ± 1 ° C for 30 minutes.
[5] ポリエステル A70〜99質量%およびポリエステル Bl〜30質量%を含むポリエステ ル成分 M、およびポリエステル B70〜99質量0 /0およびポリエステル Al〜30質量0 /0 を含むポリエステル成分 Nをそれぞれ別々の押出機 Eおよび Fに投入して溶融し、 溶融状態のポリエステル成分 Mおよび Nを積層装置に投入してポリエステル成分 X および Yの積層体を得、 [5] Polyester A70~99 wt% and polyester Bl~30 wt% polyester Le component M containing, and polyester B70~99 mass 0/0 and polyester Al~30 mass 0/0 respectively separate the polyester component N including Injected into extruders E and F and melted, molten polyester components M and N were charged into a laminating apparatus to obtain a laminate of polyester components X and Y,
積層体が積層装置から吐出されて力も冷却ロールに密着するまでの時間が 45秒〜 10分となるように、積層体を積層装置力もスリットダイに導き、冷却フィルムロールに 押出して未延伸シートを得、
該未延伸シートを少なくとも一軸に延伸することを特徴とする熱収縮性ポリエステル 系フィルムの製造方法。 In order that the time it takes for the laminate to be discharged from the laminating apparatus and the force to adhere to the cooling roll is 45 seconds to 10 minutes, the laminating apparatus force is also led to the slit die and extruded to the cooling film roll to form the unstretched sheet. Get A method for producing a heat-shrinkable polyester film, wherein the unstretched sheet is stretched at least uniaxially.
請求項 1〜4記載の熱収縮性ポリエステル系フィルムを用いたボトル用ラベル。
A bottle label using the heat-shrinkable polyester film according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-221492 | 2005-07-29 | ||
JP2005221492 | 2005-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007013618A1 true WO2007013618A1 (en) | 2007-02-01 |
Family
ID=37683506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/315035 WO2007013618A1 (en) | 2005-07-29 | 2006-07-28 | Heat-shrinkable polyester film and process for production thereof |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007013618A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008208270A (en) * | 2007-02-27 | 2008-09-11 | Toyobo Co Ltd | Heat-shrinkable polyester-based film, and production method thereof |
JP2019151415A (en) * | 2014-09-09 | 2019-09-12 | 東洋紡株式会社 | Heat shrinkable polyester-based tubular label roll, and method for producing the same |
US20220049049A1 (en) * | 2018-10-16 | 2022-02-17 | Toyobo Co., Ltd. | Polyester resin for heat-shrinkable film, heat-shrinkable film, heat-shrinkable label, and packaged product |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06212066A (en) * | 1992-12-07 | 1994-08-02 | Sumitomo Bakelite Co Ltd | Thermoplastic resin composition |
JPH09300518A (en) * | 1996-05-16 | 1997-11-25 | Toray Ind Inc | Laminated film and its production |
JPH10226018A (en) * | 1997-02-13 | 1998-08-25 | Kobe Steel Ltd | Resin composite type damping metal panel excellent in damping capacity within wide temperature range |
JP2002363312A (en) * | 2001-06-05 | 2002-12-18 | Toyobo Co Ltd | Thermally shrinkable polyester film |
JP2003048247A (en) * | 2002-06-03 | 2003-02-18 | Toyobo Co Ltd | Heat shrinkable polyester film |
WO2003059996A1 (en) * | 2002-01-11 | 2003-07-24 | Toyo Boseki Kabushiki Kaisha | Polyester films |
JP2003266519A (en) * | 2002-01-11 | 2003-09-24 | Toyobo Co Ltd | Method for manufacturing resin film |
JP2004035594A (en) * | 2002-06-28 | 2004-02-05 | Toyobo Co Ltd | Biaxially stretched polyester film |
JP2004122742A (en) * | 2002-08-07 | 2004-04-22 | Toray Ind Inc | Laminated film for tape, tear resistant tape and adhesive tape |
JP2004149570A (en) * | 2002-10-28 | 2004-05-27 | Toyobo Co Ltd | Heat-shrinkable polyester film and label |
JP2005068392A (en) * | 2003-08-06 | 2005-03-17 | Toyobo Co Ltd | Heat shrinkable polyester film |
-
2006
- 2006-07-28 WO PCT/JP2006/315035 patent/WO2007013618A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06212066A (en) * | 1992-12-07 | 1994-08-02 | Sumitomo Bakelite Co Ltd | Thermoplastic resin composition |
JPH09300518A (en) * | 1996-05-16 | 1997-11-25 | Toray Ind Inc | Laminated film and its production |
JPH10226018A (en) * | 1997-02-13 | 1998-08-25 | Kobe Steel Ltd | Resin composite type damping metal panel excellent in damping capacity within wide temperature range |
JP2002363312A (en) * | 2001-06-05 | 2002-12-18 | Toyobo Co Ltd | Thermally shrinkable polyester film |
WO2003059996A1 (en) * | 2002-01-11 | 2003-07-24 | Toyo Boseki Kabushiki Kaisha | Polyester films |
JP2003266519A (en) * | 2002-01-11 | 2003-09-24 | Toyobo Co Ltd | Method for manufacturing resin film |
JP2003048247A (en) * | 2002-06-03 | 2003-02-18 | Toyobo Co Ltd | Heat shrinkable polyester film |
JP2004035594A (en) * | 2002-06-28 | 2004-02-05 | Toyobo Co Ltd | Biaxially stretched polyester film |
JP2004122742A (en) * | 2002-08-07 | 2004-04-22 | Toray Ind Inc | Laminated film for tape, tear resistant tape and adhesive tape |
JP2004149570A (en) * | 2002-10-28 | 2004-05-27 | Toyobo Co Ltd | Heat-shrinkable polyester film and label |
JP2005068392A (en) * | 2003-08-06 | 2005-03-17 | Toyobo Co Ltd | Heat shrinkable polyester film |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008208270A (en) * | 2007-02-27 | 2008-09-11 | Toyobo Co Ltd | Heat-shrinkable polyester-based film, and production method thereof |
JP2019151415A (en) * | 2014-09-09 | 2019-09-12 | 東洋紡株式会社 | Heat shrinkable polyester-based tubular label roll, and method for producing the same |
US20220049049A1 (en) * | 2018-10-16 | 2022-02-17 | Toyobo Co., Ltd. | Polyester resin for heat-shrinkable film, heat-shrinkable film, heat-shrinkable label, and packaged product |
US12134679B2 (en) * | 2018-10-16 | 2024-11-05 | Toyobo Co., Ltd. | Polyester resin for heat-shrinkable film, heat-shrinkable film, heat-shrinkable label, and packaged product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005063485A1 (en) | Heat shrink polyester film and heat shrink label | |
AU2003231443B2 (en) | Heat-shrinkable polyester film | |
JP5082396B2 (en) | Heat-shrinkable polyester film and method for producing the same | |
JP4957235B2 (en) | Heat-shrinkable polyester film | |
JP2007196679A (en) | Heat-shrinkable polyester film | |
WO2007013618A1 (en) | Heat-shrinkable polyester film and process for production thereof | |
JP5993635B2 (en) | Heat-shrinkable polyester film and method for producing the same | |
JP5125017B2 (en) | Heat-shrinkable polyester film and method for producing the same | |
WO2010107147A1 (en) | Heat-shrinkable polyester film and preparation method thereof | |
JP2007079280A (en) | Heat-shrinkable polyester-based film label for bottle | |
JP2008280370A (en) | Thermally shrinkable polyester-based film | |
JP2007197711A (en) | Heat-shrinkable polyester film | |
JP2007196677A (en) | Heat-shrinkable polyester film | |
JP2007196680A (en) | Heat-shrinkable polyester film | |
JP2007196678A (en) | Heat-shrinkable polyester film | |
JP4911871B2 (en) | Method for producing heat-shrinkable polyester film | |
JP5177244B2 (en) | Heat-shrinkable polyester film and method for producing the same | |
JP5092450B2 (en) | Heat-shrinkable polyester film and method for producing the same | |
JP4577009B2 (en) | Heat-shrinkable polyester film and heat-shrinkable label | |
JP2008189779A (en) | Thermally shrinkable polyester-based film | |
JP2007197710A (en) | Heat-shrinkable polyester film | |
JP2007197709A (en) | Heat-shrinkable polyester film | |
JP2003103631A (en) | Heat-shrinkable polyester film and method for producing polyester resin | |
JP2007197708A (en) | Heat-shrinkable polyester film | |
JP2008189780A (en) | Thermally shrinkable polyester-based film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06781945 Country of ref document: EP Kind code of ref document: A1 |