+

WO2007010740A1 - Novel endoribonuclease - Google Patents

Novel endoribonuclease Download PDF

Info

Publication number
WO2007010740A1
WO2007010740A1 PCT/JP2006/313270 JP2006313270W WO2007010740A1 WO 2007010740 A1 WO2007010740 A1 WO 2007010740A1 JP 2006313270 W JP2006313270 W JP 2006313270W WO 2007010740 A1 WO2007010740 A1 WO 2007010740A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
sequence
seq
nucleic acid
amino acid
Prior art date
Application number
PCT/JP2006/313270
Other languages
French (fr)
Japanese (ja)
Inventor
Masamitsu Shimada
Masanori Takayama
Kiyozo Asada
Ikunoshin Kato
Original Assignee
Takara Bio Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Bio Inc. filed Critical Takara Bio Inc.
Priority to JP2007525935A priority Critical patent/JPWO2007010740A1/en
Publication of WO2007010740A1 publication Critical patent/WO2007010740A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases [RNase]; Deoxyribonucleases [DNase]

Definitions

  • the present invention relates to a novel sequence-specific endoribonuclease useful in the field of genetic engineering.
  • mK is an endoribonuclease that recognizes a specific base of UAH (H is C, A or U) and cleaves mRNA (Patent Document 1, Non-Patent Document 10).
  • RelE and PemK family toxins may be endoribonucleases that cleave mRNA in a base-specific manner.
  • the PemK family of toxins may be endoribonucleases that recognize specific bases and cleave mRNAs independently of ribosomes.
  • Many PemK family toxins are present in prokaryotes, and their sequence comparison has been well studied (Non-patent Documents 1 and 11).
  • Patent Document 1 Pamphlet of International Publication No. 2004Z113498
  • Non-Patent Document 1 Journal 'Ob' Battereriol. (J. Bacteriol.), 182, p5 61-572 (2000)
  • Non-Patent Document 2 Science, No. 301, pl496-1499 (2003)
  • Non-Patent Document 3 Molecular Microbiol., No. 48, pl389-1400 (2003)
  • Non-Patent Document 4 Cell, 122, 131-140 (2003)
  • Non-Patent Document 5 Journal 'Ob' Molequila 'Biology. Mol. Biol.), No. 332, p809-819 (2003)
  • Non-Patent Document 6 Molecular One's Microbiology, No. 51, pl705-1717 (2004)
  • Non-Patent Document 7 Molecular Cell, No. 12, p913-920, 200 3)
  • Non-Patent Document 8 Journal 'Ob' Biological 'Chemistry (J. Biol. Chem.), No. 280, p3143-3150 (2005)
  • Non-Patent Document 9 FEBS Letters, No. 567, p316-320 (2004)
  • Non-Patent Document 10 Journal 'Ob' Biological 'Chemistry, Vol. 279, p20678 -20684 (2004)
  • Non-Patent Document 11 Journal ⁇ Bob ⁇ Molequila 'Microbiology' and Biotechnology (J. Mol. Microbiol. Biotechnol.), No. 1, p295-302 (1999)
  • Non-patent document 12 Genome Biology, IV, R81 (2003)
  • Non-patent document 13 Nucleic Acids Research, Vol. 33, p966-976 (2005)
  • Non-Patent Document 14 Molequila 'Microbiology, No. 56, pi 139— 1148 (2005)
  • Non-Patent Document 15 Method in Enzymology, No. 3 41, p28-41 (2001)
  • An object of the present invention is to provide a novel sequence-specific endoribonuclease in view of the above prior art, and the specificity of the novel sequence-specific endoribonuclease cleavage sequence. Is to provide and use for genetic engineering.
  • the present inventors screened a sequence-specific endoribonuclease, and the polypeptide encoded by each gene of Nostoc s p. A113211, Bacillus subtilis YdcE and Enterococcus faecalis EFO 850 was a novel sequence-specific. Was found to be a typical endoribonuclease. Furthermore, the specificity of the cleavage sequence of the enzyme was identified and the present invention was completed.
  • the present invention provides:
  • nucleic acid encoding a polypeptide capable of being or hybridized under stringent conditions to the nucleic acid of [2] or [3] and having sequence-specific endoribonuclease activity
  • a method for producing a single-stranded RNA degradation product comprising the step of allowing the polypeptide of [1] to act on single-stranded RNA;
  • a method for degrading single-stranded RNA comprising the step of allowing the polypeptide of [1] to act on single-stranded RNA, About.
  • the polypeptide of the present invention is an amino acid sequence having the amino acid sequence set forth in SEQ ID NO: 1, 2 or 3, or an amino acid sequence having at least one deletion, addition, insertion or substitution of one or more amino acid residues in the amino acid sequence. It is characterized by its sequence-specific and sequence-specific endoribonuclease activity.
  • the activity of the polypeptide of the present invention is a single-stranded RNA-specific endoribonuclease activity, and the activity of ribonucleotides in a single-stranded nucleic acid containing ribonucleotides as a constituent base.
  • the phosphodiester bond on the side can be hydrolyzed.
  • the nucleic acid hydrolyzed by the activity has a 3 ′ end having a hydroxyl group and a 5 ′ end having a phosphate group, a 3 ′ end having a phosphate group and a 5 ′ end having a hydroxyl group, or a 2 ′ or 3 ′ site. This produces a 5 'end with click phosphate and hydroxyl groups.
  • the substrate of the polypeptide of the present invention may be a nucleic acid having at least one molecule of ribonucleotide, such as RNA, RNA containing deoxyribonucleotide, DNA containing ribonucleotide, and the like. It is not limited to these.
  • the substrate contains a nucleotide different from that contained in a normal nucleic acid within a range not inhibiting the action of the polypeptide of the present invention, such as deoxyinosine, deoxyuridine, hydroxymethyldeoxyuridine and the like. Well, okay.
  • the polypeptide of the present invention specifically acts on a single-stranded nucleic acid.
  • Double-stranded nucleic acids such as double-stranded RNA, RNA-DNA nobled, etc. cannot be cleaved! /.
  • the polypeptide of the present invention is characterized by having an activity of cleaving a nucleic acid in a specific base sequence.
  • the present invention is not particularly limited, for example, a polypeptide having the amino acid sequence shown in SEQ ID NO: 1, a polypeptide having the amino acid sequence shown in SEQ ID NO: 2,
  • the peptide and the polypeptide having the amino acid sequence shown in SEQ ID NO: 3 are located at the 5 ′ end of the sequence when a 5′-UACAU-3 ′ sequence is present in the single-stranded RNA molecule. It hydrolyzes the phosphodiester bond between the residue and the 3 'adjacent A residue.
  • This activity is confirmed as an activity of hydrolyzing a phosphodiester bond between the 14th and 15th bases of the oligoribonucleotide using, for example, mazG30, which is an oligoribonucleotide having the base sequence shown in SEQ ID NO: 13, as a substrate. can do.
  • the polypeptide having the amino acid sequence shown in SEQ ID NO: 1 hydrolyzes the phosphodiester bond between the U residue and the A residue for the 5′-UACA-3 ′ sequence in the single-stranded RNA molecule. Can be solved. Since the endoribonuclease activity of the polypeptide of the present invention is expressed without the coexistence of ribosomes, the activity is ribosome-independent.
  • the single-stranded RNA-specific endoribonuclease activity of the polypeptide of the present invention can be measured, for example, using single-stranded RNA as a substrate.
  • a single-stranded RNA transcribed with RNA polymerase in the shape of a DNA or a chemically synthesized single-stranded RNA is allowed to act on a polypeptide whose activity is to be cleaved. It can be measured by examining whether it occurs.
  • RNA degradation can be confirmed, for example, by electrophoresis (agarose gel, acrylamide gel, etc.). If a suitable label (for example, a radioisotope, a fluorescent substance, etc.) is attached to RNA as a substrate, it becomes easy to detect degradation products after electrophoresis.
  • a suitable label for example, a radioisotope, a fluorescent substance, etc.
  • the polypeptide of the present invention has one or more amino acid sequences described in SEQ ID NO: 1, 2 or 3 in the sequence listing as long as it exhibits endoribonuclease activity that hydrolyzes single-stranded RNA in a sequence-specific manner. It includes a polypeptide represented by an amino acid sequence in which at least one of deletion, addition, insertion or substitution of amino acid residues has been made. Examples of the polypeptide having such a mutation include a polypeptide having 50% or more homology to the polypeptide described in SEQ ID NO: 1, 2, or 3, preferably a polypeptide having 70% or more homology, Particularly preferred is a polypeptide having 90% or more homology. Polypeptides having these mutations are included in the present invention even if they recognize and cleave a sequence different from the polypeptide of the amino acid sequence described in SEQ ID NO: 1, 2 or 3.
  • the polypeptide has a peptide region essential for its activity! /,
  • peptides for improving the efficiency of translation for example, peptides for facilitating purification of the polypeptide (for example, histidine tag, dartathione S transferase, maltose binding protein, etc.), chaperones, etc.
  • those added with a tank are included in the polypeptide of the present invention as long as they exhibit RNA-cleaving activity specific to single-stranded RNA.
  • the present invention provides a nucleic acid encoding a polypeptide having sequence-specific endoribonuclease activity.
  • the nucleic acid is not particularly limited, but the amino acid sequence described in SEQ ID NO: 1, 2, or 3 in the sequence listing, or one or more, for example, 1-10 amino acid residues missing from the sequence. Examples thereof include those which are represented by an amino acid sequence having at least one of deletion, addition, insertion or substitution, and which encode a polypeptide having the sequence-specific endoribonuclease activity.
  • amino acid sequence having at least one of deletion, addition, insertion or substitution of one or more amino acid residues in the amino acid sequence described in SEQ ID NO: 1, 2 or 3 for example, SEQ ID NO: 1, 2 or An amino acid sequence having 50% or more homology in the polypeptide described in 3, preferably an amino acid sequence having 70% or more homology, particularly preferably an amino acid sequence having 90% or more homology.
  • the nucleic acid of the present invention includes a nucleic acid that can hybridize to the above-mentioned nucleic acid under stringent conditions and encodes a polypeptide having sequence-specific endoribonuclease activity.
  • the above stringent conditions are as follows: 1989, Cold 'Spring' Nova 1 'Laboratory published, edited by J. Sambrook et al., Molecular ⁇ ⁇ ⁇ Cloning:' Laboratory ⁇ ⁇ ⁇ Examples include conditions described in the second edition of the manual (Molecular Cloning: A Laboratory Manual 2nd ed.). Specifically, for example, conditions of incubation with a probe at 65 ° C.
  • nucleic acid hybridized to the probe can be detected after removing non-specifically bound probe by washing at 37 ° C. in 0.1 ⁇ SSC containing 0.5% SDS, for example.
  • the nucleic acid encoding the polypeptide of the present invention can be obtained, for example, by the following means.
  • a gene having homology in the amino acid sequence to a toxin such as MazF or PemK that has endoribonuclease activity that recognizes a specific base sequence and cleaves mRNA is a polypeptide having sequence-specific ribonuclease activity.
  • Candidate nucleic acids to encode. Such candidate genes can be found, for example, from the bacterial genome.
  • Bacillus subtilis has one PemK family toxin, Nostoc sp. Has four PemK family toxins, and Enterococcus faecalis has three PemK family toxins.
  • Candidate genes can also be isolated from bacterial genomic strength by PCR using primers designed based on nucleotide sequence information, for example. If the entire base sequence is known, the entire sequence of the candidate gene can be synthesized using a DNA synthesizer.
  • Protein expression with candidate gene ability can be carried out in an appropriate host transformed with an expression vector incorporating the candidate gene, for example, E. coli.
  • Expression of sequence-specific ribonucleases that degrade host RNA may be lethal to the host, and the expression of candidate genes must be strictly suppressed until induction.
  • an expression system such as a pET system (manufactured by Novagen) using a T7 polymerase promoter or a cold shock expression control system pCold system (manufactured by Takara Bio Inc.).
  • a peptide such as the histidine tag
  • an expression vector containing such a peptide coding region may be used.
  • the measurement of endoribonuclease activity can be carried out by the above-described method using single-stranded RNA as a substrate.
  • the cleavage site can be identified by a primer extension using a cleaved RNA as a saddle and a primer complementary to the RNA and reverse transcriptase. Since the extension reaction stops at the cleavage site in the primer extension, the cleavage site can be identified by determining the length of the extended strand by electrophoresis. Furthermore, in order to precisely identify the nucleotide sequence specificity, an oligoribonucleosome having an arbitrary sequence is used. After chemically synthesizing the tide and allowing the expression product of the candidate gene to act, the presence or absence of cleavage may be determined by denaturing acrylamide gel electrophoresis or the like.
  • the polypeptide of the present invention is, for example, (1) purified from a culture of a microorganism producing the polypeptide of the present invention, or (2) capable of culturing a transformant containing a nucleic acid encoding the polypeptide of the present invention. It can be produced by a method such as purification.
  • the microorganism that produces the polypeptide of the present invention is not particularly limited, and examples include bacteria belonging to the genera Bacillus, Nostoc and Enterococcus.
  • the polypeptide of the present invention can be obtained from Bacillus suDtilis, Nostoc sp., Enterococcus faecaiis, particularly preferably Baku subtilis 168 strain, Nostoc sp. PCC7120 strain, E. faecalis V583 strain.
  • the culture of the microorganism should be performed under conditions suitable for the growth of the microorganism.
  • the target polypeptide produced in the bacterial cells or the culture solution can be obtained by methods commonly used for protein purification, such as disruption of bacterial cells, fractionation by precipitation (such as ammonium sulfate salting-out), and various chromatography (ion It can be purified by exchange chromatography, affinity chromatography, hydrophobic chromatography, molecular sieve chromatography, etc.) or a combination thereof.
  • the polypeptide of the present invention can be obtained from the transformant transformed with the recombinant DNA containing the nucleic acid encoding the polypeptide of the present invention.
  • the recombinant DNA is preferably provided with a suitable promoter functionally connected upstream of the nucleic acid encoding the polypeptide of the present invention. Since the polypeptide of the present invention may have a lethal action on the host, the expression system including the promoter and promoter described above strictly transcribes the nucleic acid that encodes the polypeptide of the present invention. It is preferably one that can be closely controlled. Examples of such a system include the pET system and the pCold system.
  • the above recombinant DNA may be introduced as it is into a host cell, and may be introduced by being inserted into an appropriate vector such as a plasmid vector, a phage vector, or a virus vector. Furthermore, the above recombinant DNA may be integrated into the host chromosome.
  • the host to be transformed is not particularly limited, for example, E. coli, Bacillus subtilis, yeast, Examples include hosts that are commonly used in the field of recombinant DNA, such as filamentous fungi, plants, animals, plant culture cells, and animal culture cells.
  • the polypeptide of the present invention produced by these transformants can be purified using the purification method as described above.
  • the nucleic acid encoding the polypeptide of the present invention encodes a polypeptide to which a peptide for facilitating the purification of the polypeptide is added, purification becomes very easy.
  • a purification method according to the added peptide for example, using a metal chelate resin for histidine-tag and a dartathione-fixed resin for daltathione S-transferase, respectively, A pure polypeptide can be obtained by a simple operation.
  • RNA degradation product By using the polypeptide of the present invention, single-stranded RNA can be degraded to produce an RNA degradation product. Since the polypeptide of the present invention can cleave RNA in a base sequence-specific manner, the average chain length of the generated RNA degradation product correlates with the appearance frequency of the base sequence recognized by the polypeptide. That is, the present invention provides an RNA degradation product having a certain chain length distribution. Furthermore, it is possible to excise a specific region in RNA using its sequence specificity.
  • single-stranded RNA can be selectively degraded by the polypeptide of the present invention.
  • protein synthesis systems for example, cell-free translation systems and mRNAs in transformants can be degraded with the polypeptide of the present invention to inhibit protein synthesis.
  • the mRNA encoding the desired protein which is artificially prepared so as not to contain the base sequence recognized by the polypeptide of the present invention, is allowed to exist in the above system, so that only the mRNA is degraded.
  • the desired protein is specifically produced in the system.
  • This embodiment is particularly useful for producing highly pure protein.
  • the polypeptide of the present invention has the ability to cleave single-stranded RNA. It does not cleave double-stranded RNA or RNA-DNA hybrids! This property can be used to analyze the secondary structure of RNA.
  • tRNA forms a secondary structure called the cloverleaf model, and the three loop structures are single-stranded.
  • a sequence that can be cleaved by the polypeptide of the present invention present in tRNA is cleaved by the polypeptide of the present invention only when the sequence is located in the loop region. Utilizing this fact, tRNA identification and structural analysis using the polypeptide of the present invention can be carried out.
  • Example 1 Isolation of Bdc subtilis 168 strain YdcE, Nostoc sp. PCC7120 strain All 3211, E. faecalis V583 strain EF0850 isolation and expression plasmid construction
  • amino acid sequence and nucleotide sequence of the polypeptide obtained from ydcE from Bacillus subtilis 168, all3211 from Nostoc sp. PCC7120, and EF0850 from Enterococcus faecalis V583 were obtained from the NCBI database. (Accession No. NP—388347 and NC—000964, NP—487251, and NC—003272, NP—814592 and NC—004668).
  • primer ydcE—F SEQ ID NO: 7
  • primer ydcE —R SEQ ID NO: 7
  • Genomic DNA was prepared from B. subtilis 168 strain and Nostoc sp. PCC7120 strain by the following method.
  • the cells were suspended in 0.5 ml of TE buffer containing 50 U of mutanolysin (manufactured by Nacalai Testa) and 0.1 mg of lysozyme (manufactured by Sigma), incubated at 37 ° C for 2 hours, and then 10% SDS50; zl, 10mg / ml proteinase K5 1 Incubated for an additional hour. Next, phenol extraction and black mouth form extraction were performed, followed by ethanol precipitation to obtain genomic DNA. Genomic DNA was dissolved in TE buffer. E. faecalis V583 strain genomic DNA was obtained from ATCC (ATCC No. 700 802D).
  • PCR using Pyrobest DNA polymerase was performed using 50 ng of B. subtilis 168 genomic DNA, primers ydcE-F and ydcE-R, and an amplified DNA fragment of 371 bp was obtained.
  • This amplified fragment was digested with restriction enzymes Ndel and Xhol and subjected to agarose electrophoresis, and a 350 bp DNA fragment was recovered from the gel after electrophoresis.
  • a 461 bp amplified fragment and a 440 bp restriction enzyme digested DNA fragment were obtained using Nostoc sp.
  • a 398 bp amplified fragment and a 377 bp restriction enzyme digested DNA fragment were obtained using E. faecalis V583 strain genomic DNA and primers EF08 50-F and EF0850-R.
  • Plasmids were prepared from the thus obtained transformant colonies, their nucleotide sequences were confirmed, and these were designated expression vectors pET-ydcE, pET-all3211 and pET-EF0850, respectively.
  • the base sequence encoding the YdcE polypeptide derived from the B. subtilis 168 strain inserted into the expression vector pET-ydcE is shown in SEQ ID NO: 5, and the amino acid sequence of the polypeptide is shown in SEQ ID NO: 2, respectively.
  • the nucleotide sequence encoding the A113211 polypeptide derived from Nostoc sp. PC C7120 strain inserted into the expression vector pET-all3211 is shown in SEQ ID NO: 4, and the amino acid sequence of the polypeptide is shown in SEQ ID NO: 1, respectively.
  • the polypeptide having the amino acid sequence of SEQ ID NO: 1, 2 or 3 also has an 8 amino acid residue strength including 6 residues of histidine.
  • a polypeptide with a single histidine tag is expressed Is done.
  • Example 2 Preparation of YdcE from B. subtilis 168 strain, All 3211 polypeptide from Nostoc sp. PCC7120 strain, EF0850 polypeptide from E. faecalis V583 strain
  • Expression vectors pET-ydcE and pET obtained in Example 1 — E. coli BL21 (DE3) strain (Novagen) transformed with all3211 or pET—EF0 85 for expression E. coli pET—ydcEZBL21 (DE3), pET—all321 lZBL21 (DE3) Pleasure—ET0 Got.
  • oligoribonucleotides were synthesized and subjected to cleavage assay.
  • oligoribonucleotides whose base sequences were shown in SEQ ID NOs: 13 to 21 were synthesized as substrates.
  • the reaction product was subjected to 20% denaturing acrylamide gel (20% acrylamide, 7M urea, 0.5 XTBE buffer) electrophoresis, stained with SYBR GREE N II (manufactured by Takara Bio Co., Ltd.), and then fluorescence image analyzer FMBIOII Multi view (Takara Bio). Fluorescence images were analyzed using a Table 1 shows the state of cleavage of each oligoribonucleotide.
  • Cutting indication +++ indicates complete cutting, ++ indicates partial cutting, + indicates very weak cutting.
  • Cut site The cut site is cleaved between -1 and eleven.
  • cleavage was performed using tRNA synthesized by in vitro transcription as a quality.
  • tRNA40 derived from Deinococcus radiodurans having an anticodon (UAC) corresponding to the amino acid parin was obtained from The Genomic tRNA Database (http: ZZlowelab. Ucsc. EduZGtRNAdbZ).
  • tRNA40 DNA sequence with T7 promoter sequence to synthesize tRNA by in vitro transcription The DNA shown in SEQ ID NO: 22 having a sequence and its complementary sequence DNA were synthesized with a DNA synthesizer to prepare a 92 bp double-stranded DNA fragment. Using this DNA fragment and in vitro transcription kit (manufactured by Takara Bio Inc.), in vitro transcription was performed according to the instruction manual of the kit.
  • the resulting reaction solution was treated with DNasel (manufactured by Takara Bio Inc.) at a final concentration of 0.5UZw 1 for 30 minutes at 37 ° C, and then treated with phenol Z chloroform, chloroform, isopropanol precipitation, and RNA.
  • the RNA precipitate was dissolved in sterile distilled water.
  • This tRNA40 contains 10 X Annealing Buffer (lOOmM Tris—HCl, pH 8.0, 500 mM CH COOK, lOmM EDTA) included in the kit in an lZlO capacity.
  • A113211 showed that 75-base tRNA40 was degraded into 33-base and 42-base, and cleavage occurred at the U / AC A site in the anticodon loop of tRNA40. From this result, it was shown that A113211 polypeptide has an activity capable of cleaving tRNA containing anticodon UAC. Since an A residue continues on the 3 ′ side of the site in tRNA40, it was speculated that the site could not be cleaved with YdcE and EF0850 polypeptides.
  • the present invention provides a novel sequence-specific endoribonuclease. Since the enzyme can recognize and cleave specific sequences in RNA, it can analyze RNA molecules.
  • RNA fragments it is useful for preparation of RNA fragments, cell control through RNA cleavage in cells (for example, inhibition of protein production), and the like.
  • SEQ ID NO: 7 PCR primer ydcE— F to amplify a DNA fragment encoding YdcE prote in.
  • SEQ ID NO: 8 PCR primer ydcE-R to amplify a DNA fragment encoding YdcE prote in.
  • PCR primer EF0850 F to amplify a DNA fragment encoding EF0850 protein
  • SEQ ID NO: 22 DNA to transcribe Deinococcus radiodurans tRNA 40.
  • RNA molecule partially equal to RNA sequence of Deinococcus radi odurans tRNA 40.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A polypeptide having a novel endoribonuclease activity; a nucleic acid encoding the polypeptide; recombinant DNA having the nucleic acid therein; a transformant transformed with the recombinant DNA; a process for producing the polypeptide comprising the steps of cultivating the transformant and collecting the polypeptide from the culture; a process for producing a digest of single-stranded RNA comprising the step of reacting the polypeptide with the single-stranded RNA; and a method for the digestion of single-stranded RNA.

Description

明 細 書  Specification
新規なエンドリボヌクレアーゼ  Novel endoribonuclease
技術分野  Technical field
[0001] 本発明は、遺伝子工学分野において有用な、新規な配列特異的エンドリボヌクレア ーゼに関する。  [0001] The present invention relates to a novel sequence-specific endoribonuclease useful in the field of genetic engineering.
背景技術  Background art
[0002] V、くつかの原核生物のプラスミドは、宿主でのプラスミドを維持するためにプラスミド が脱落した宿主を殺す post— segregation killing (PSK)の機能を有することが報 告されている。これらのプラスミドにはトキシン アンチトキシン遺伝子が存在している 。アンチトキシンは細胞内でトキシンと結合しトキシンを不活性ィ匕している力 アンチト キシンはプロテアーゼに対して分解されやすく、アンチトキシンがプロテアーゼにより 分解されると安定なトキシンが活性化される (非特許文献 1)。このようなトキシンーァ ンチトキシン遺伝子はほとんどの原核生物のクロモソームにも存在し、さまざまなスト レスに対応し、 Programmed Cell Deathの機能を担っている。これらのトキシンの 機能はまだすべて明らかになっていないが、 CcdBおよび ParEは DNA gyraseをタ 一ゲットとして複製を制御し、 RelEおよび Docは転写を制御して 、る可能性が示唆さ れている (非特許文献 1、 2)。  [0002] V, some prokaryotic plasmids have been reported to have post-segregation killing (PSK) functions that kill the host from which the plasmid was dropped in order to maintain the plasmid in the host. These plasmids contain the toxin antitoxin gene. Anti-toxin binds with the toxin in the cell and inactivates the toxin Anti-toxin is prone to degradation by protease, and when it is degraded by protease, stable toxin is activated (non- Patent Document 1). Such a toxin-antitoxin gene is also present in most prokaryotic chromosomes, supports various stresses, and plays a role in programmed cell death. Although the functions of these toxins have not yet been clarified, it has been suggested that CcdB and ParE may regulate replication using DNA gyrase as a target, while RelE and Doc may regulate transcription. (Non-Patent Documents 1 and 2).
[0003] 大腸菌においては、 RelE、 ChpAK (MazF)、 ChpBK、 YoeB、 YafQの少なくとも 5つのトキシンが存在する(非特許文献 2)。 Christensenらは、 RelEがリボソーム依 存的に 3塩基の特定のコドンを認識して mRNAを切断するエンドリボヌクレアーゼで あることを報告している(非特許文献 3、 4)。また Christensenらは、 ChpA :、 ChpB Kおよび YoeBも同様にリボソームおよびコドン依存的に mRNAを切断するエンドリ ボヌ クレアーゼであることを報告して 、る(非特許文献 5、 6)。  [0003] In E. coli, there are at least five toxins of RelE, ChpAK (MazF), ChpBK, YoeB, and YafQ (Non-patent Document 2). Christensen et al. Reported that RelE is an endoribonuclease that cleaves mRNA by recognizing a specific codon of 3 bases depending on ribosome (Non-patent Documents 3 and 4). Christensen et al. Also reported that ChpA :, ChpBK and YoeB are also endoribonucleases that cleave mRNA in a ribosome- and codon-dependent manner (Non-Patent Documents 5 and 6).
[0004] 一方、井上らは、 MazF (ChpAK)は、リボソーム非依存的に ACAの特定の塩基を 認識して mRNAを切断するエンドリボヌクレアーゼであることを証明して ヽる(非特許 文献 7、 8)。また、 Munoz— Gomezらは、 mazFの RNA切断の特異性は NACであ ると報告している(非特許文献 9)。さらに、井上らは、プラスミド R100に存在する Pe mKが UAH (Hは C, Aまたは U)の特定の塩基を認識して mRNAを切断するエンド リボヌクレアーゼであることを証明している(特許文献 1、非特許文献 10)。以上のよう に、 RelEや PemKファミリーのトキシンは塩基特異的に mRNAを切断するエンドリボ ヌクレアーゼである可能性が示唆されてきた。特に PemKファミリーのトキシンは、リボ ソーム非依存的に特定の塩基を認識して mRNAを切断するエンドリボヌクレアーゼ である可能性がある。 PemKファミリーのトキシンは、原核生物に多く存在し、その配 列の比較はよく研究されて 、る (非特許文献 1、 11)。 [0004] On the other hand, Inoue et al. Proved that MazF (ChpAK) is an endoribonuclease that recognizes a specific base of ACA and cleaves mRNA in a ribosome-independent manner (Non-Patent Document 7, 8). Munoz-Gomez et al. Reported that the specificity of mazF for RNA cleavage is NAC (Non-patent Document 9). Furthermore, Inoue et al. Described Pe present in plasmid R100. It has been proved that mK is an endoribonuclease that recognizes a specific base of UAH (H is C, A or U) and cleaves mRNA (Patent Document 1, Non-Patent Document 10). As described above, it has been suggested that RelE and PemK family toxins may be endoribonucleases that cleave mRNA in a base-specific manner. In particular, the PemK family of toxins may be endoribonucleases that recognize specific bases and cleave mRNAs independently of ribosomes. Many PemK family toxins are present in prokaryotes, and their sequence comparison has been well studied (Non-patent Documents 1 and 11).
[0005] また、 Anantharamanらは、トキシンの遺伝子情報およびゲノム解析が終了した生 物の遺伝子情報をもとに Gene neighborhood analysisを行い、トキシンを系統的 に分類し、さらに未知の機能のタンパクについてもトキシン様プロテインを予測した( 非特許文献 12)。さらに解析を通して、 RelEや PemKのみならず、 Docファミリーお よび PINドメインを有するタンパクがリボヌクレアーゼ活性を有する可能性を示唆して いる。 Bacillus subtilisには 1種の PemKファミリーのトキシン、 Nostoc sp. には 4 種の PemKファミリーのトキシン、 Enterococcus faecalisには 3種の PemKファミリ 一のトキシンが見出されている(非特許文献 13)。 Mathyらは Bacillus subtilisの P emKファミリーのトキシン YdcEがエンドリボヌクレアーゼであることを見出し、その特 異性は MazFと類似しており UACの配列を認識すると報告して 、る(非特許文献 14[0005] In addition, Anantharaman et al. Performed gene neighborhood analysis based on the genetic information of toxins and the genetic information of genomes for which genome analysis was completed, systematically classifying the toxins, and also for proteins with unknown functions. A toxin-like protein was predicted (Non-patent Document 12). Further analysis suggests that not only RelE and PemK, but also proteins with the Doc family and PIN domains may have ribonuclease activity. Bacillus subtilis has one PemK family toxin, Nostoc sp. Has four PemK family toxins, and Enterococcus faecalis has three PemK family toxins (Non-patent Document 13). Mathy et al. Found that the Bacillus subtilis PemK family toxin YdcE is an endoribonuclease and reported that it is similar to MazF and recognizes the UAC sequence (Non-patent Document 14).
) o ) o
[0006] 核酸を配列特異的に切断する酵素としては、二本鎖 DNAを切断する制限酵素は 数多く見出されており、遺伝子工学分野で広く利用されている。一本鎖 RNAを配列 特異的に切断する酵素は、 G塩基を特異的に切断するリボヌクレアーゼ T1が見出さ れており、遺伝子工学で利用されているが(非特許文献 15)、一本鎖 RNA内の複数 の塩基を認識して特異的に切断する酵素は未だ数少なぐ遺伝子工学分野ではそ のようなエンドリボヌクレアーゼの開発が望まれている。 MazFのような 3塩基配列ある いはそれ以上の塩基数を特異的に認識して切断するエンドリボヌクレアーゼが発見 されれば、遺伝子工学分野で有用な酵素となると考えられる。  [0006] As an enzyme that cleaves nucleic acids in a sequence-specific manner, many restriction enzymes that cleave double-stranded DNA have been found and are widely used in the field of genetic engineering. An enzyme that specifically cleaves single-stranded RNA has been found in ribonuclease T1, which specifically cleaves G bases and is used in genetic engineering (Non-patent Document 15). In the field of genetic engineering, there are still few enzymes that recognize and specifically cleave a plurality of bases, and development of such endoribonucleases is desired. If an endoribonuclease that specifically recognizes and cleaves a 3 base sequence such as MazF or more is discovered, it will be a useful enzyme in the field of genetic engineering.
[0007] 特許文献 1:国際公開第 2004Z113498号パンフレット  [0007] Patent Document 1: Pamphlet of International Publication No. 2004Z113498
非特許文献 1 :ジャーナル'ォブ 'バタテリォロジ一 (J. Bacteriol. )、第 182卷、 p5 61-572(2000) Non-Patent Document 1: Journal 'Ob' Battereriol. (J. Bacteriol.), 182, p5 61-572 (2000)
非特許文献 2:サイエンス(Science)、第 301卷、 pl496— 1499 (2003) 非特許文献 3:モレキュラ^ ~·マイクロバイオロジー(Molecular Microbiol. )、第 48 卷、 pl389— 1400(2003) Non-Patent Document 2: Science, No. 301, pl496-1499 (2003) Non-Patent Document 3: Molecular Microbiol., No. 48, pl389-1400 (2003)
非特許文献 4:セル(Cell)、第 122, 131— 140(2003) Non-Patent Document 4: Cell, 122, 131-140 (2003)
非特許文献 5:ジャーナル'ォブ 'モレキユラ一'バイオロジーお Mol. Biol. )、第 332卷、 p809-819(2003) Non-Patent Document 5: Journal 'Ob' Molequila 'Biology. Mol. Biol.), No. 332, p809-819 (2003)
非特許文献 6:モレキユラ一'マイクロバイオロジー、第 51卷、 pl705— 1717(2004) 非特許文献 7:モレキユラ一 ·セル(Molecular Cell)、第 12卷、 p913— 920, 200 3) Non-Patent Document 6: Molecular One's Microbiology, No. 51, pl705-1717 (2004) Non-Patent Document 7: Molecular Cell, No. 12, p913-920, 200 3)
非特許文献 8:ジャーナル'ォブ 'バイオロジカル 'ケミストリー (J. Biol. Chem. )、 第 280卷、 p3143-3150(2005) Non-Patent Document 8: Journal 'Ob' Biological 'Chemistry (J. Biol. Chem.), No. 280, p3143-3150 (2005)
非特許文献 9:フエブス'レターズ (FEBS Letters)、第 567卷、 p316— 320(2004 ) Non-Patent Document 9: FEBS Letters, No. 567, p316-320 (2004)
非特許文献 10:ジャーナル'ォブ 'バイオロジカル 'ケミストリー、第 279卷、 p20678 -20684(2004) Non-Patent Document 10: Journal 'Ob' Biological 'Chemistry, Vol. 279, p20678 -20684 (2004)
非特許文献 11:ジャーナル ·ォブ ·モレキユラ一'マイクロバイオロジ一'アンド.バイオ テクノロジー(J. Mol. Microbiol. Biotechnol. )、第 1卷、 p295— 302(1999 ) Non-Patent Document 11: Journal · Bob · Molequila 'Microbiology' and Biotechnology (J. Mol. Microbiol. Biotechnol.), No. 1, p295-302 (1999)
非特許文献 12:ゲノム'バイオロジー(Genome Biology)、第 4卷、 R81(2003) 非特許文献 13:ヌクレイック'アシッド'リサーチ(Nucleic Acids Research)、第 33 卷、 p966-976(2005) Non-patent document 12: Genome Biology, IV, R81 (2003) Non-patent document 13: Nucleic Acids Research, Vol. 33, p966-976 (2005)
非特許文献 14:モレキユラ一'マイクロバイオロジー、第 56卷、 pi 139— 1148 (2005 ) Non-Patent Document 14: Molequila 'Microbiology, No. 56, pi 139— 1148 (2005)
非特許文献 15:メソッズ'イン'ェンザィモロジ一(Method in Enzymology)、第 3 41卷、 p28-41(2001) Non-Patent Document 15: Method in Enzymology, No. 3 41, p28-41 (2001)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 [0008] 本発明の目的は、上記従来技術を鑑みたものであり、新規な配列特異的エンドリボ ヌクレアーゼを見出すことであり、その新規な配列特異的エンドリボヌクレア一ゼの切 断配列の特異性を同定し、遺伝子工学への利用を提供することにある。 Problems to be solved by the invention [0008] An object of the present invention is to provide a novel sequence-specific endoribonuclease in view of the above prior art, and the specificity of the novel sequence-specific endoribonuclease cleavage sequence. Is to provide and use for genetic engineering.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者らは、配列特異的なエンドリボヌクレアーゼをスクリーニングし、 Nostoc s p.の A113211、 Bacillus subtilisの YdcEおよび Enterococcus faecalisの EFO 850の各遺伝子にコードされるポリペプチドが新規な配列特異的エンドリボヌクレア ーゼであることを見出した。さらに該酵素の切断配列の特異性を同定し、本発明を完 成させた。  [0009] The present inventors screened a sequence-specific endoribonuclease, and the polypeptide encoded by each gene of Nostoc s p. A113211, Bacillus subtilis YdcE and Enterococcus faecalis EFO 850 was a novel sequence-specific. Was found to be a typical endoribonuclease. Furthermore, the specificity of the cleavage sequence of the enzyme was identified and the present invention was completed.
[0010] すなわち、本発明は、  [0010] That is, the present invention provides:
〔1〕配列表の配列番号 1、 2または 3記載のアミノ酸配列、または該配列において 1 個以上のアミノ酸残基の欠失、付加、挿入もしくは置換の少なくとも 1つを有するアミ ノ酸配列で示され、かつ配列特異的なエンドリボヌクレアーゼ活性を有するポリぺプ チド、  [1] Amino acid sequence described in SEQ ID NO: 1, 2, or 3 in the sequence listing, or an amino acid sequence having at least one deletion, addition, insertion or substitution of one or more amino acid residues in the sequence And a polypeptide having sequence-specific endoribonuclease activity,
〔2〕 〔1〕のポリペプチドをコードする核酸、  [2] a nucleic acid encoding the polypeptide of [1],
〔3〕配列表の配列番号 4、 5または 6記載の塩基配列を有することを特徴とする〔2〕 の核酸、  [3] The nucleic acid according to [2], having the base sequence described in SEQ ID NO: 4, 5 or 6 in the sequence listing,
〔4〕 〔2〕または〔3〕の核酸にストリンジェントな条件でノ、イブリダィズ可能であり、かつ 配列特異的なエンドリボヌクレアーゼ活性を有するポリペプチドをコードする核酸、 [4] A nucleic acid encoding a polypeptide capable of being or hybridized under stringent conditions to the nucleic acid of [2] or [3] and having sequence-specific endoribonuclease activity,
〔5〕 〔2〕〜〔4〕 V、ずれ力 1項に記載の核酸を含んでなる組換え DNA、 [5] [2] to [4] V, shear force Recombinant DNA comprising the nucleic acid according to item 1,
〔6〕 [5]の組換え DNAにより形質転換されてなる形質転換体、  [6] A transformant transformed with the recombinant DNA of [5],
〔7〕 〔6〕の形質転換体を培養する工程、および該培養物中より配列特異的な RNA 切断活性を有するポリペプチドを採取する工程を包含することを特徴とする〔1〕のポ リペプチドの製造方法、  [7] The polypeptide according to [1], comprising the step of culturing the transformant according to [6] and the step of collecting a polypeptide having a sequence-specific RNA cleavage activity from the culture. Manufacturing method,
〔8〕 一本鎖 RNAに〔1〕のポリペプチドを作用させる工程を包含することを特徴とする 、一本鎖 RNA分解物の製造方法、および  [8] A method for producing a single-stranded RNA degradation product, comprising the step of allowing the polypeptide of [1] to act on single-stranded RNA; and
〔9〕 一本鎖 RNAに〔1〕のポリペプチドを作用させる工程を包含することを特徴とする 、一本鎖 RNAの分解方法、 に関する。 [9] A method for degrading single-stranded RNA, comprising the step of allowing the polypeptide of [1] to act on single-stranded RNA, About.
発明の効果  The invention's effect
[0011] 本発明により、新規な配列特異的エンドリボヌクレアーゼを見出し、その新規な配列 特異的エンドリボヌクレアーゼの切断配列の特異性を同定し、遺伝子工学への利用 を提供することが可能となる。  [0011] According to the present invention, it is possible to find a novel sequence-specific endoribonuclease, identify the specificity of the cleavage sequence of the novel sequence-specific endoribonuclease, and provide use for genetic engineering.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 1.本発明のポリペプチド  [0012] 1. Polypeptide of the present invention
本発明のポリペプチドは、配列番号 1、 2または 3記載のアミノ酸配列、又は該ァミノ 酸配列において 1個以上のアミノ酸残基の欠失、付加、挿入若しくは置換の少なくと も 1つを有するアミノ酸配列で示され、かつ配列特異的なエンドリボヌクレアーゼ活性 を示すことを特徴とする。  The polypeptide of the present invention is an amino acid sequence having the amino acid sequence set forth in SEQ ID NO: 1, 2 or 3, or an amino acid sequence having at least one deletion, addition, insertion or substitution of one or more amino acid residues in the amino acid sequence. It is characterized by its sequence-specific and sequence-specific endoribonuclease activity.
[0013] 本発明のポリペプチドが有している活性は、一本鎖 RNA特異的なエンドリボヌタレ ァーゼ活性であり、構成塩基としてリボヌクレオチドを含有する一本鎖核酸中の、リボ ヌクレオチドの 3 '側のリン酸ジエステル結合を加水分解することができる。前記活性 により加水分解された核酸は、水酸基を有する 3 '末端とリン酸基を有する 5'末端、リ ン酸基を有する 3'末端と水酸基を有する 5'末端、もしくは 2' , 3'サイクリックホスフエ ートと水酸基を有する 5'末端を生じる。  [0013] The activity of the polypeptide of the present invention is a single-stranded RNA-specific endoribonuclease activity, and the activity of ribonucleotides in a single-stranded nucleic acid containing ribonucleotides as a constituent base. 'The phosphodiester bond on the side can be hydrolyzed. The nucleic acid hydrolyzed by the activity has a 3 ′ end having a hydroxyl group and a 5 ′ end having a phosphate group, a 3 ′ end having a phosphate group and a 5 ′ end having a hydroxyl group, or a 2 ′ or 3 ′ site. This produces a 5 'end with click phosphate and hydroxyl groups.
[0014] 本発明のポリペプチドの基質としては、少なくとも 1分子のリボヌクレオチドを有する 核酸であればよぐ例えば RNA、デォキシリボヌクレオチドを含有する RNA、リボヌク レオチドを含有する DNA等が例示される力 これらに限定されるものではない。前記 の基質は、本発明のポリペプチドの作用を阻害しない範囲で通常の核酸中に含有さ れているものとは異なるヌクレオチド、例えばデォキシイノシン、デォキシゥリジン、ヒド ロキシメチルデォキシゥリジン等を含有して 、てもよ 、。  [0014] The substrate of the polypeptide of the present invention may be a nucleic acid having at least one molecule of ribonucleotide, such as RNA, RNA containing deoxyribonucleotide, DNA containing ribonucleotide, and the like. It is not limited to these. The substrate contains a nucleotide different from that contained in a normal nucleic acid within a range not inhibiting the action of the polypeptide of the present invention, such as deoxyinosine, deoxyuridine, hydroxymethyldeoxyuridine and the like. Well, okay.
[0015] また、本願発明のポリペプチドは一本鎖核酸に特異的に作用する。二本鎖核酸、 例えば二本鎖 RNA、 RNA— DNAノヽイブリツド等は切断することができな!/、。  [0015] The polypeptide of the present invention specifically acts on a single-stranded nucleic acid. Double-stranded nucleic acids, such as double-stranded RNA, RNA-DNA nobled, etc. cannot be cleaved! /.
[0016] 本発明のポリペプチドは核酸をその塩基配列特異的に切断する活性を有すること を特徴とする。本発明を特に限定するものではないが、例えば配列番号 1に示される アミノ酸配列を有するポリペプチド、配列番号 2に示されるアミノ酸配列を有するポリ ペプチド、及び配列番号 3に示されるアミノ酸配列を有するポリペプチドは、一本鎖 R NA分子中に 5'— UACAU— 3'の配列が存在した場合、当該配列の 5'末端に位 置する U残基とその 3'側に隣接する A残基間のリン酸ジエステル結合を加水分解す る。この活性は、例えば配列番号 13に示される塩基配列のオリゴリボヌクレオチドで ある mazG30を基質とし、前記オリゴリボヌクレオチドの 14番目と 15番目の塩基の間 のリン酸ジエステル結合を加水分解する活性として確認することができる。また、配列 番号 1に示されるアミノ酸配列を有するポリペプチドは、一本鎖 RNA分子中の 5'— UACA— 3'の配列についても U残基と A残基間のリン酸ジエステル結合を加水分 解することができる。本発明のポリペプチドのエンドリボヌクレアーゼ活性はリボソーム の共存なしに発現されることから、前記活性はリボソーム非依存性である。 [0016] The polypeptide of the present invention is characterized by having an activity of cleaving a nucleic acid in a specific base sequence. Although the present invention is not particularly limited, for example, a polypeptide having the amino acid sequence shown in SEQ ID NO: 1, a polypeptide having the amino acid sequence shown in SEQ ID NO: 2, The peptide and the polypeptide having the amino acid sequence shown in SEQ ID NO: 3 are located at the 5 ′ end of the sequence when a 5′-UACAU-3 ′ sequence is present in the single-stranded RNA molecule. It hydrolyzes the phosphodiester bond between the residue and the 3 'adjacent A residue. This activity is confirmed as an activity of hydrolyzing a phosphodiester bond between the 14th and 15th bases of the oligoribonucleotide using, for example, mazG30, which is an oligoribonucleotide having the base sequence shown in SEQ ID NO: 13, as a substrate. can do. In addition, the polypeptide having the amino acid sequence shown in SEQ ID NO: 1 hydrolyzes the phosphodiester bond between the U residue and the A residue for the 5′-UACA-3 ′ sequence in the single-stranded RNA molecule. Can be solved. Since the endoribonuclease activity of the polypeptide of the present invention is expressed without the coexistence of ribosomes, the activity is ribosome-independent.
[0017] 本発明のポリペプチドが有する一本鎖 RNA特異的なエンドリボヌクレアーゼ活性 は、例えば一本鎖 RNAを基質として測定することができる。具体的には、 RNAポリメ ラーゼにより DNAを铸型として転写された一本鎖 RNAやィ匕学的に合成した一本鎖 RNAに活性を測定しょうとするポリペプチドを作用させ、 RNAの切断が生じるかどう かを調べることで測定することができる。 RNAの分解は、例えば電気泳動(ァガロー スゲル、アクリルアミドゲル等)により確認することができる。基質とする RNAに適当な 標識 (例えば放射性同位体、蛍光物質等)を付しておけば電気泳動後の分解産物の 検出が容易となる。 [0017] The single-stranded RNA-specific endoribonuclease activity of the polypeptide of the present invention can be measured, for example, using single-stranded RNA as a substrate. Specifically, a single-stranded RNA transcribed with RNA polymerase in the shape of a DNA or a chemically synthesized single-stranded RNA is allowed to act on a polypeptide whose activity is to be cleaved. It can be measured by examining whether it occurs. RNA degradation can be confirmed, for example, by electrophoresis (agarose gel, acrylamide gel, etc.). If a suitable label (for example, a radioisotope, a fluorescent substance, etc.) is attached to RNA as a substrate, it becomes easy to detect degradation products after electrophoresis.
[0018] 本発明のポリペプチドは、配列特異的に一本鎖 RNAを加水分解するエンドリボヌク レアーゼ活性を示す限りにおいて、配列表の配列番号 1、 2または 3記載のアミノ酸配 列に 1個以上のアミノ酸残基の欠失、付加、挿入もしくは置換の少なくとも 1つがなさ れたアミノ酸配列で示されるポリペプチドを包含する。このような変異を有するポリべ プチドとしては、例えば配列番号 1、 2または 3記載のポリペプチドに 50%以上のホモ 口ジーを有するポリペプチド、好ましくは 70%以上のホモロジ一を有するポリペプチド 、特に好ましくは 90%以上のホモロジ一を有するポリペプチドが例示される。これらの 変異を有するポリペプチドは、配列番号 1、 2または 3記載のアミノ酸配列のポリぺプ チドとは異なる配列を認識、切断するものであっても、本発明に包含される。  [0018] The polypeptide of the present invention has one or more amino acid sequences described in SEQ ID NO: 1, 2 or 3 in the sequence listing as long as it exhibits endoribonuclease activity that hydrolyzes single-stranded RNA in a sequence-specific manner. It includes a polypeptide represented by an amino acid sequence in which at least one of deletion, addition, insertion or substitution of amino acid residues has been made. Examples of the polypeptide having such a mutation include a polypeptide having 50% or more homology to the polypeptide described in SEQ ID NO: 1, 2, or 3, preferably a polypeptide having 70% or more homology, Particularly preferred is a polypeptide having 90% or more homology. Polypeptides having these mutations are included in the present invention even if they recognize and cleave a sequence different from the polypeptide of the amino acid sequence described in SEQ ID NO: 1, 2 or 3.
[0019] さらに、前記のポリペプチドはその活性には必須でな 、ペプチド領域を有して!/、て もよい、例えば翻訳の効率を向上させるためのペプチドや、前記ポリペプチドの精製 を容易とするためのペプチド (例えばヒスチジン タグ、ダルタチオン S トランスフ エラーゼ、マルトース結合タンパク質等)、シャペロンなど発現効率を向上させるタン ノ クが付加されたものであっても、一本鎖 RNA特異的な RNA切断活性を示す限り 本発明のポリペプチドに包含される。 [0019] Further, the polypeptide has a peptide region essential for its activity! /, For example, peptides for improving the efficiency of translation, peptides for facilitating purification of the polypeptide (for example, histidine tag, dartathione S transferase, maltose binding protein, etc.), chaperones, etc. Even those added with a tank are included in the polypeptide of the present invention as long as they exhibit RNA-cleaving activity specific to single-stranded RNA.
[0020] 2.本発明のポリペプチドをコードする核酸  [0020] 2. Nucleic acid encoding the polypeptide of the present invention
本発明は、配列特異的なエンドリボヌクレアーゼ活性を有するポリペプチドをコード する核酸を提供する。前記核酸としては、本発明を特に限定するものではないが、配 列表の配列番号 1、 2または 3記載のアミノ酸配列、または該配列において 1個以上、 例えば 1〜10個のアミノ酸残基の欠失、付加、挿入もしくは置換の少なくとも 1つを有 するアミノ酸配列で示され、かつ前記の配列特異的なエンドリボヌクレアーゼ活性を 有するポリペプチドをコードするものが挙げられる。ここで、配列番号 1、 2または 3記 載のアミノ酸配列において 1個以上のアミノ酸残基の欠失、付加、挿入もしくは置換 の少なくとも 1つを有するアミノ酸配列としては、例えば配列番号 1、 2または 3記載の ポリペプチドに 50%以上のホモロジ一を有するアミノ酸配列、好ましくは 70%以上の ホモロジ一を有するアミノ酸配列、特に好ましくは 90%以上のホモロジ一を有するァ ミノ酸配列が例示される。  The present invention provides a nucleic acid encoding a polypeptide having sequence-specific endoribonuclease activity. The nucleic acid is not particularly limited, but the amino acid sequence described in SEQ ID NO: 1, 2, or 3 in the sequence listing, or one or more, for example, 1-10 amino acid residues missing from the sequence. Examples thereof include those which are represented by an amino acid sequence having at least one of deletion, addition, insertion or substitution, and which encode a polypeptide having the sequence-specific endoribonuclease activity. Here, as the amino acid sequence having at least one of deletion, addition, insertion or substitution of one or more amino acid residues in the amino acid sequence described in SEQ ID NO: 1, 2 or 3, for example, SEQ ID NO: 1, 2 or An amino acid sequence having 50% or more homology in the polypeptide described in 3, preferably an amino acid sequence having 70% or more homology, particularly preferably an amino acid sequence having 90% or more homology.
[0021] さらに、本発明の核酸は、前記の核酸にストリンジェントな条件でハイブリダィズ可 能であり、かつ配列特異的なエンドリボヌクレアーゼ活性を有するポリペプチドをコー ドする核酸を包含する。前記のストリンジェントな条件としては、 1989年、コールド'ス プリング'ノヽーバ一'ラボラトリー発行、 J. サムブルック (J. Sambrook)ら編集、モ レキユラ^ ~ ·クロー-ング:ァ 'ラボラトリ^ ~ ·マニュアル第 2版(Molecular Cloning : A Laboratory Manual 2nd ed. )等に記載された条件が例示される。具体的 には、例えば 0. 5% SDS、 5 Xデンハルツ溶液、 0. 01% 変性サケ精子 DNAを 含む 6 X SSC中、プローブとともに 65°Cにて 12〜20時間インキュベートする条件が 挙げられる。プローブにハイブリダィズした核酸は、例えば 0. 5% SDSを含む 0. 1 X SSC中、 37°Cで洗浄して非特異的に結合したプローブを除去した後に検出する ことができる。 [0022] 本発明のポリペプチドをコードする核酸は、例えば下記のような手段により取得する ことができる。 Furthermore, the nucleic acid of the present invention includes a nucleic acid that can hybridize to the above-mentioned nucleic acid under stringent conditions and encodes a polypeptide having sequence-specific endoribonuclease activity. The above stringent conditions are as follows: 1989, Cold 'Spring' Nova 1 'Laboratory published, edited by J. Sambrook et al., Molecular ^ ~ · Cloning:' Laboratory ^ ~ · Examples include conditions described in the second edition of the manual (Molecular Cloning: A Laboratory Manual 2nd ed.). Specifically, for example, conditions of incubation with a probe at 65 ° C. for 12 to 20 hours in 6 X SSC containing 0.5% SDS, 5 X Denharz solution, and 0.01% denatured salmon sperm DNA can be mentioned. The nucleic acid hybridized to the probe can be detected after removing non-specifically bound probe by washing at 37 ° C. in 0.1 × SSC containing 0.5% SDS, for example. [0022] The nucleic acid encoding the polypeptide of the present invention can be obtained, for example, by the following means.
[0023] 特定の塩基配列を認識して mRNAを切断するエンドリボヌクレアーゼ活性を有する MazFや PemKのようなトキシンにアミノ酸配列上でホモロジ一を有する遺伝子は、 配列特異的なリボヌクレアーゼ活性を有するポリペプチドをコードする核酸の候補で ある。このような候補遺伝子は、例えば細菌のゲノムより見出すことができる。 Bacillu s subtilisには 1種の PemKファミリーのトキシン、 Nostoc sp. には 4種の PemKフ アミリーのトキシン、 Enterococcus faecalisには 3種の PemKファミリーのトキシンが 存在する。  [0023] A gene having homology in the amino acid sequence to a toxin such as MazF or PemK that has endoribonuclease activity that recognizes a specific base sequence and cleaves mRNA is a polypeptide having sequence-specific ribonuclease activity. Candidate nucleic acids to encode. Such candidate genes can be found, for example, from the bacterial genome. Bacillus subtilis has one PemK family toxin, Nostoc sp. Has four PemK family toxins, and Enterococcus faecalis has three PemK family toxins.
[0024] 候補遺伝子は、例えば塩基配列情報を基に設計されたプライマーを用いた PCRに より細菌ゲノム力も単離することができる。全塩基配列が既知であれば DNA合成機 を用いて候補遺伝子の全配列を合成することもできる。  [0024] Candidate genes can also be isolated from bacterial genomic strength by PCR using primers designed based on nucleotide sequence information, for example. If the entire base sequence is known, the entire sequence of the candidate gene can be synthesized using a DNA synthesizer.
[0025] 候補遺伝子力 のタンパク発現は、候補遺伝子を組み込んだ発現ベクターで形質 転換した適当な宿主、例えば大腸菌で実施することができる。宿主の RNAを分解す る配列特異的リボヌクレアーゼの発現は宿主には致死的である可能性があり、誘導 前まで候補遺伝子の発現は厳密に抑制される必要がある。例えば、 T7ポリメラーゼ のプロモーターを利用する pETシステム(ノバジェン社製)、コールドショック発現制御 系 pColdシステム (タカラバイオ社製)のような発現システムを利用することが好適で ある。候補遺伝子からの発現産物を簡便に精製するためには、その精製を容易とす るために前記のヒスチジン タグのようなペプチドを発現産物に付加しておくことが有 利である。そのためには、発現ベクターとしてこのようなペプチドのコード領域を含む ものを使用すればよい。  [0025] Protein expression with candidate gene ability can be carried out in an appropriate host transformed with an expression vector incorporating the candidate gene, for example, E. coli. Expression of sequence-specific ribonucleases that degrade host RNA may be lethal to the host, and the expression of candidate genes must be strictly suppressed until induction. For example, it is preferable to use an expression system such as a pET system (manufactured by Novagen) using a T7 polymerase promoter or a cold shock expression control system pCold system (manufactured by Takara Bio Inc.). In order to easily purify the expression product from the candidate gene, it is advantageous to add a peptide such as the histidine tag to the expression product in order to facilitate the purification. For this purpose, an expression vector containing such a peptide coding region may be used.
[0026] エンドリボヌクレアーゼの活性の測定は、前記の、一本鎖 RNAを基質とする方法に より実施することができる。切断部位は、切断した RNAを铸型とし、該 RNAに相補的 なプライマーと逆転写酵素を用いたプライマー ·エクステンションにより同定することが できる。前記のプライマー ·エクステンションでは切断部位で伸長反応が停止するた め、伸長鎖の鎖長を電気泳動により決定すれば切断部位を同定することができる。さ らに塩基配列特異性を厳密に同定するには、任意の配列を有するオリゴリボヌクレオ チドを化学的に合成し、候補遺伝子の発現産物を作用させた後、変性アクリルアミド ゲル電気泳動等によって切断の有無を判定すればよい。 [0026] The measurement of endoribonuclease activity can be carried out by the above-described method using single-stranded RNA as a substrate. The cleavage site can be identified by a primer extension using a cleaved RNA as a saddle and a primer complementary to the RNA and reverse transcriptase. Since the extension reaction stops at the cleavage site in the primer extension, the cleavage site can be identified by determining the length of the extended strand by electrophoresis. Furthermore, in order to precisely identify the nucleotide sequence specificity, an oligoribonucleosome having an arbitrary sequence is used. After chemically synthesizing the tide and allowing the expression product of the candidate gene to act, the presence or absence of cleavage may be determined by denaturing acrylamide gel electrophoresis or the like.
[0027] 3.本発明のポリペプチドの製造方法  [0027] 3. Method for producing polypeptide of the present invention
本発明のポリペプチドは、例えば、(1)本発明のポリペプチドを生産する微生物の 培養物からの精製、(2)本発明のポリペプチドをコードする核酸を含有する形質転換 体の培養物力もの精製、等の方法により製造することができる。  The polypeptide of the present invention is, for example, (1) purified from a culture of a microorganism producing the polypeptide of the present invention, or (2) capable of culturing a transformant containing a nucleic acid encoding the polypeptide of the present invention. It can be produced by a method such as purification.
[0028] 本発明のポリペプチドを生産する微生物としては、本発明を特に限定するものでは ないが、 Bacillus属、 Nostoc属および Enterococcus属に属する細菌が例示される 。例 は、 Bacillus suDtilis、 Nostoc sp.、 Enterococcus faecaiis、特に好適 に ίま B. subtilis 168株、 Nostoc sp. PCC7120株、 E. faecalis V583株 より本発明のポリペプチドを取得することができる。前記微生物の培養はその微生物 の生育に適した条件で行えばょ 、。菌体あるいは培養液中に生産された目的のポリ ペプチドは、通常のタンパク質の精製に用いられる方法、例えば菌体の破砕、沈殿 法 (硫安塩析等)による分画、各種のクロマトグラフィー (イオン交換クロマトグラフィー 、ァフィ-ティクロマトグラフィー、疎水クロマトグラフィー、分子ふるいクロマトグラフィ 一)等、あるいはこれらを組み合わせて精製することができる。  [0028] The microorganism that produces the polypeptide of the present invention is not particularly limited, and examples include bacteria belonging to the genera Bacillus, Nostoc and Enterococcus. For example, the polypeptide of the present invention can be obtained from Bacillus suDtilis, Nostoc sp., Enterococcus faecaiis, particularly preferably Baku subtilis 168 strain, Nostoc sp. PCC7120 strain, E. faecalis V583 strain. The culture of the microorganism should be performed under conditions suitable for the growth of the microorganism. The target polypeptide produced in the bacterial cells or the culture solution can be obtained by methods commonly used for protein purification, such as disruption of bacterial cells, fractionation by precipitation (such as ammonium sulfate salting-out), and various chromatography (ion It can be purified by exchange chromatography, affinity chromatography, hydrophobic chromatography, molecular sieve chromatography, etc.) or a combination thereof.
[0029] 前記の、本発明のポリペプチドをコードする核酸を含む組換え DNAで形質転換さ れた形質転換体より、本発明のポリペプチドを取得することができる。前記の組換え DNAは、好ましくは本発明のポリペプチドをコードする核酸の上流に機能的に接続 された適切なプロモーターが配置されている。なお、本発明のポリペプチドは宿主に 対して致死的な作用を示すことがあるので、前記のプロモーター、ならびにプロモー ターを含めた発現システムは本発明のポリペプチドをコードする核酸力 の転写を厳 密に制御しうるものであることが好ましい。このようなシステムとして、前記の pETシス テム、 pColdシステムが例示される。 [0029] The polypeptide of the present invention can be obtained from the transformant transformed with the recombinant DNA containing the nucleic acid encoding the polypeptide of the present invention. The recombinant DNA is preferably provided with a suitable promoter functionally connected upstream of the nucleic acid encoding the polypeptide of the present invention. Since the polypeptide of the present invention may have a lethal action on the host, the expression system including the promoter and promoter described above strictly transcribes the nucleic acid that encodes the polypeptide of the present invention. It is preferably one that can be closely controlled. Examples of such a system include the pET system and the pCold system.
[0030] 宿主となる細胞へは前記の組換え DNAがそのまま導入されてもよぐ適切なベクタ 一、例えばプラスミドベクター、ファージベクター、ウィルスベクターに挿入されて導入 されてもよい。さら〖こ、前記の組換え DNAが宿主の染色体に組み込まれていても構 わない。形質転換される宿主には特に限定はなぐ例えば、大腸菌、枯草菌、酵母、 糸状菌、植物、動物、植物培養細胞、動物培養細胞等、組換え DNAの分野で通常 使用されている宿主が挙げられる。 [0030] The above recombinant DNA may be introduced as it is into a host cell, and may be introduced by being inserted into an appropriate vector such as a plasmid vector, a phage vector, or a virus vector. Furthermore, the above recombinant DNA may be integrated into the host chromosome. The host to be transformed is not particularly limited, for example, E. coli, Bacillus subtilis, yeast, Examples include hosts that are commonly used in the field of recombinant DNA, such as filamentous fungi, plants, animals, plant culture cells, and animal culture cells.
[0031] これらの形質転換体で産生された本発明のポリペプチドは、前記のような精製手法 を利用して精製することができる。本発明のポリペプチドをコードする核酸が、前記ポ リペプチドの精製を容易とするためのペプチドが付加されたポリペプチドをコードする ものであった場合には、精製は非常に容易となる。付加されたペプチドに応じた精製 手法、例えば、ヒスチジン—タグに対しては金属キレート榭脂を、ダルタチオン S— トランスフェラーゼに対してはダルタチオン固定ィ匕榭脂を、それぞれ使用することによ り、高純度のポリペプチドを簡便な操作で得ることができる。 [0031] The polypeptide of the present invention produced by these transformants can be purified using the purification method as described above. When the nucleic acid encoding the polypeptide of the present invention encodes a polypeptide to which a peptide for facilitating the purification of the polypeptide is added, purification becomes very easy. By using a purification method according to the added peptide, for example, using a metal chelate resin for histidine-tag and a dartathione-fixed resin for daltathione S-transferase, respectively, A pure polypeptide can be obtained by a simple operation.
[0032] 4.本発明のポリペプチドを用いた一本鎖 RNAの分解  [0032] 4. Degradation of single-stranded RNA using the polypeptide of the present invention
本発明のポリペプチドを用いることにより、一本鎖 RNAを分解し、 RNA分解物を製 造することができる。本発明のポリペプチドは塩基配列特異的に RNAを切断しうるこ とから、生成する RNA分解物の平均の鎖長は前記ポリペプチドに認識される塩基配 列の出現頻度に相関する。すなわち、本発明によりある鎖長分布を有する RNA分解 物が提供される。さらに、その配列特異性を利用して RNA中の特定の領域を切り出 すことも可能である。  By using the polypeptide of the present invention, single-stranded RNA can be degraded to produce an RNA degradation product. Since the polypeptide of the present invention can cleave RNA in a base sequence-specific manner, the average chain length of the generated RNA degradation product correlates with the appearance frequency of the base sequence recognized by the polypeptide. That is, the present invention provides an RNA degradation product having a certain chain length distribution. Furthermore, it is possible to excise a specific region in RNA using its sequence specificity.
[0033] さらに、本発明のポリペプチドにより一本鎖 RNAを選択的に分解することができる。  [0033] Furthermore, single-stranded RNA can be selectively degraded by the polypeptide of the present invention.
本発明の一つの態様として、タンパク質合成系、例えば無細胞翻訳系や形質転換体 中の mRN Aを本発明のポリペプチドで分解し、タンパク質の合成を阻害することがで きる。この際、本発明のポリペプチドに認識される塩基配列を含有しないように人為 的に作製した、所望のタンパク質をコードする mRNAを前記の系に存在させておくこ とにより、当該 mRNAのみが分解を免れ、系内では所望のタンパク質が特異的に生 成される。本態様は、特に高純度のタンパク質の製造に有用である。本発明のポリべ プチドは一本鎖の RNAを切断する力 二本鎖の RNAや RNA—DNAのハイブリツ ドは切断しな!ヽ。この性質を利用して RNAの二次構造の解析を実施することができ る。例えば、解析しょうとする RNAに本発明のポリペプチドを作用させた際に、前記 の RNA分子内の本発明のポリペプチドにより切断可能な配列が切断されな力つた場 合には、前記の配列の少なくとも一部は他の配列との間に塩基対結合を系背してい ることが予想される。 tRNAはクローバー葉モデルと呼ばれる二次構造を形成してお り、 3箇所のループ構造部分が一本鎖となっている。 tRNA中に存在する、本発明の ポリペプチドにより切断可能な配列は、当該配列がループ領域に位置して 、る場合 にのみ本発明のポリペプチドで切断される。このことを利用し、本発明のポリペプチド を使用した tRNAの同定や構造解析を実施することができる。 As one embodiment of the present invention, protein synthesis systems, for example, cell-free translation systems and mRNAs in transformants can be degraded with the polypeptide of the present invention to inhibit protein synthesis. At this time, the mRNA encoding the desired protein, which is artificially prepared so as not to contain the base sequence recognized by the polypeptide of the present invention, is allowed to exist in the above system, so that only the mRNA is degraded. The desired protein is specifically produced in the system. This embodiment is particularly useful for producing highly pure protein. The polypeptide of the present invention has the ability to cleave single-stranded RNA. It does not cleave double-stranded RNA or RNA-DNA hybrids! This property can be used to analyze the secondary structure of RNA. For example, when the polypeptide of the present invention is allowed to act on the RNA to be analyzed, if the sequence cleavable by the polypeptide of the present invention in the RNA molecule is not cleaved, the above sequence At least a part of the base pair bond with other sequences Is expected. tRNA forms a secondary structure called the cloverleaf model, and the three loop structures are single-stranded. A sequence that can be cleaved by the polypeptide of the present invention present in tRNA is cleaved by the polypeptide of the present invention only when the sequence is located in the loop region. Utilizing this fact, tRNA identification and structural analysis using the polypeptide of the present invention can be carried out.
実施例  Example
[0034] 以下に実施例を挙げて本発明を更に具体的に説明する力 本発明は以下の実施 例のみに限定されるものではない。  [0034] The ability to describe the present invention more specifically with reference to the following examples The present invention is not limited to the following examples.
[0035] また、本明細書に記載の操作のうち、基本的な操作については 2001年、コールド スプリング ハーバー ラボラトリー発行、 J.サムブルック (J. Sambrook)ら編集、モ レキユラ一 クロー-ング:ァ ラボラトリー マニュアル第 3版(Molecular Cloning : A Laboratory Manual, 3rd ed. )に記載の方法によった。  [0035] Among the operations described in this specification, the basic operations are described in 2001, published by Cold Spring Harbor Laboratory, edited by J. Sambrook et al., Molecular Cloning: According to the method described in Laboratory Manual 3rd Edition (Molecular Cloning: A Laboratory Manual, 3rd ed.).
[0036] 実施例 1 B. subtilis 168株由来 YdcE、 Nostoc sp. PCC7120株由来 All 3211、 E. faecalis V583株由来 EF0850の単離と発現プラスミドの構築  Example 1 Isolation of Bdc subtilis 168 strain YdcE, Nostoc sp. PCC7120 strain All 3211, E. faecalis V583 strain EF0850 isolation and expression plasmid construction
Bacillus subtilis 168株由来 ydcE、 Nostoc sp. PCC7120株由来 all3211 、 Enterococcus faecalis V583株由来 EF0850の各遺伝子について、そこにコ ードされて 、るポリペプチドのアミノ酸配列および塩基配列を NCBI データベースよ り入手した(accession No. NP— 388347および NC— 000964、 NP— 48725 1および NC— 003272、 NP— 814592および NC— 004668)。 ydcE、 all3211、 E F0850の塩基配列情報より、ポリペプチド全長をコードする領域の DNAを PCRで増 幅できるように、 ydcE用にプライマー ydcE— F (配列番号 7)およびプライマー ydcE —R (配列番号 8)、 all3211用にプライマー all3211— F (配列番号 9)およびプライ マー all3211— R (配列番号 10)、 EF0850用にプライマー EF0850— F (配列番号 11)およびプライマー EF0850— R (配列番号 12)をそれぞれ合成した。  The amino acid sequence and nucleotide sequence of the polypeptide obtained from ydcE from Bacillus subtilis 168, all3211 from Nostoc sp. PCC7120, and EF0850 from Enterococcus faecalis V583 were obtained from the NCBI database. (Accession No. NP—388347 and NC—000964, NP—487251, and NC—003272, NP—814592 and NC—004668). Based on the nucleotide sequence information of ydcE, all3211, EF0850, primer ydcE—F (SEQ ID NO: 7) and primer ydcE —R (SEQ ID NO: 7) are used for ydcE so that the DNA of the region encoding the entire polypeptide can be amplified by PCR. 8), primer all3211—F (SEQ ID NO: 9) and primer all3211—R (SEQ ID NO: 10) for all3211, primer EF0850—F (SEQ ID NO: 11) and primer EF0850—R (SEQ ID NO: 12) for EF0850 Each was synthesized.
[0037] B. subtilis 168株および Nostoc sp. PCC7120株から以下の方法により ゲノム DNAを調製した。菌体を 50Uのムタノリシン (ナカライテスタ社製)および 0. 1 mgのリゾチーム(シグマ社製)を含む TEバッファー 0. 5mlに懸濁し 37°C、 2時間イン キュベーシヨンした後、 10%の SDS50 ;z l、 10mg/mlのプロテネース K5 1をカロえ さらに 1時間インキュベーションした。次にフエノール抽出、クロ口ホルム抽出を行った 後、エタノール沈澱を行いゲノム DNAを得た。ゲノム DNAは TEバッファーに溶解し た。 E. faecalis V583株ゲノム DNAは ATCCより入手した(ATCC No. 700 802D )。 [0037] Genomic DNA was prepared from B. subtilis 168 strain and Nostoc sp. PCC7120 strain by the following method. The cells were suspended in 0.5 ml of TE buffer containing 50 U of mutanolysin (manufactured by Nacalai Testa) and 0.1 mg of lysozyme (manufactured by Sigma), incubated at 37 ° C for 2 hours, and then 10% SDS50; zl, 10mg / ml proteinase K5 1 Incubated for an additional hour. Next, phenol extraction and black mouth form extraction were performed, followed by ethanol precipitation to obtain genomic DNA. Genomic DNA was dissolved in TE buffer. E. faecalis V583 strain genomic DNA was obtained from ATCC (ATCC No. 700 802D).
50ngの B. subtilis 168株ゲノムDNA、プラィマーydcE—F および ydcE— R を使用し、 Pyrobest DNA polymerase (タカラバイオ社製)を用いた PCRを実施 して 371bpの増幅 DNA断片を得た。この増幅断片を制限酵素 Ndelおよび Xholで 消化してァガロース電気泳動に供し、泳動後のゲルより 350bpの DNA断片を回収し た。同様の方法により、 Nostoc sp. PCC7120株ゲノム DNA、プライマー all321 1 -F および all3211— Rを使用し、 461bpの増幅断片および 440bpの制限酵素 消化 DNA断片を得た。また、 E. faecalis V583株ゲノム DNA、プライマー EF08 50— F および EF0850— Rを使用し、 398bpの増幅断片および 377bpの制限酵 素消化 DNA断片を得た。制限酵素 Ndelおよび Xholで消化してお!、た pET21aベ クタ一(ノバジェン社製)に上記の 350bp、 440bpまたは 377bpの DNA断片を接続 して得られた組換えプラスミドで大腸菌 JM109株をトランスフォーメーションした。こう して得られた形質転換体のコロニーよりプラスミドを調製し、その塩基配列を確認した うえ、これらをそれぞれ発現ベクター pET— ydcE、 pET— all3211および pET— EF 0850と命名した。  PCR using Pyrobest DNA polymerase (manufactured by Takara Bio Inc.) was performed using 50 ng of B. subtilis 168 genomic DNA, primers ydcE-F and ydcE-R, and an amplified DNA fragment of 371 bp was obtained. This amplified fragment was digested with restriction enzymes Ndel and Xhol and subjected to agarose electrophoresis, and a 350 bp DNA fragment was recovered from the gel after electrophoresis. In the same manner, a 461 bp amplified fragment and a 440 bp restriction enzyme digested DNA fragment were obtained using Nostoc sp. PCC7120 strain genomic DNA, primers all321 1 -F and all3211-R. In addition, a 398 bp amplified fragment and a 377 bp restriction enzyme digested DNA fragment were obtained using E. faecalis V583 strain genomic DNA and primers EF08 50-F and EF0850-R. After digestion with restriction enzymes Ndel and Xhol! And transformation of Escherichia coli JM109 with the recombinant plasmid obtained by connecting the above 350bp, 440bp or 377bp DNA fragment to pET21a vector (Novagen). did. Plasmids were prepared from the thus obtained transformant colonies, their nucleotide sequences were confirmed, and these were designated expression vectors pET-ydcE, pET-all3211 and pET-EF0850, respectively.
発現ベクター pET— ydcEに挿入された B. subtilis 168株由来 YdcEポリぺプ チドをコードする塩基配列を配列番号 5に、該ポリペプチドのアミノ酸配列を配列番 号 2にそれぞれ示す。発現ベクター pET—all3211に挿入された Nostoc sp. PC C7120株由来 A113211ポリペプチドをコードする塩基配列を配列番号 4に、該ポリ ペプチドのアミノ酸配列を配列番号 1にそれぞれ示す。発現ベクター pET— EF085 0に挿入された E. faecalis V583株由来 EF0850ポリペプチドをコードする塩基 配列を配列番号 6に、該ポリペプチドのアミノ酸配列を配列番号 3にそれぞれ示す。 なお、前記の発現ベクター pET— ydcE、 pET— all3211および pET— EF0850に よれば配列番号 1、 2または 3のアミノ酸配列のポリペプチドの C末端に 6残基のヒスチ ジンを含む 8アミノ酸残基力もなるヒスチジン一タグが付加されたポリペプチドが発現 される。 The base sequence encoding the YdcE polypeptide derived from the B. subtilis 168 strain inserted into the expression vector pET-ydcE is shown in SEQ ID NO: 5, and the amino acid sequence of the polypeptide is shown in SEQ ID NO: 2, respectively. The nucleotide sequence encoding the A113211 polypeptide derived from Nostoc sp. PC C7120 strain inserted into the expression vector pET-all3211 is shown in SEQ ID NO: 4, and the amino acid sequence of the polypeptide is shown in SEQ ID NO: 1, respectively. The base sequence encoding the EF0850 polypeptide derived from the E. faecalis V583 strain inserted into the expression vector pET-EF0850 is shown in SEQ ID NO: 6, and the amino acid sequence of the polypeptide is shown in SEQ ID NO: 3, respectively. According to the expression vectors pET—ydcE, pET—all3211 and pET—EF0850, the polypeptide having the amino acid sequence of SEQ ID NO: 1, 2 or 3 also has an 8 amino acid residue strength including 6 residues of histidine. A polypeptide with a single histidine tag is expressed Is done.
[0039] 実施例 2 B. subtilis 168株由来 YdcE、 Nostoc sp. PCC7120株由来 All 3211ポリペプチド、 E. faecalis V583株由来 EF0850ポリペプチドの調製 実施例 1で得られた発現ベクター pET - ydcE、 pET— all3211または pET— EF0 85で大腸菌 BL21 (DE3)株 (ノバジェン社製)をトランスフォーメーションし、発現用 大腸菌pET—ydcEZBL21 (DE3)、pET—all321 lZBL21 (DE3)ぉょびpET — EF0850ZBL21 (DE3)を得た。 pET— ydcE/BL21 (DE3)、 pET— all3211 /BL21 (DE3) または pET— EF0850/BL21 (DE3)を 100 μ g/mlのアンピシ リンを含む 5mlの LB培地中、 37°Cで培養し、 OD600nm=0. 6になったところで IP TG (タカラバイオ社製)を最終濃度 ImMになるようにカ卩えてポリペプチドの発現を誘 導した。誘導開始後 2時間後に培養を終了し、菌体を遠心分離により回収した。菌体 を 300 1のリシスバッファー(50mM NaH PO、 300mM NaCl、 10mM イミダ  Example 2 Preparation of YdcE from B. subtilis 168 strain, All 3211 polypeptide from Nostoc sp. PCC7120 strain, EF0850 polypeptide from E. faecalis V583 strain Expression vectors pET-ydcE and pET obtained in Example 1 — E. coli BL21 (DE3) strain (Novagen) transformed with all3211 or pET—EF0 85 for expression E. coli pET—ydcEZBL21 (DE3), pET—all321 lZBL21 (DE3) Pleasure—ET0 Got. Incubate pET—ydcE / BL21 (DE3), pET—all3211 / BL21 (DE3) or pET—EF0850 / BL21 (DE3) in 5 ml LB medium containing 100 μg / ml ampicillin at 37 ° C. When OD600nm = 0.6, IP TG (manufactured by Takara Bio Inc.) was adjusted to a final concentration of ImM to induce polypeptide expression. Two hours after the start of induction, the culture was terminated, and the cells were collected by centrifugation. 300 1 lysis buffer (50 mM NaH PO, 300 mM NaCl, 10 mM imida
2 4  twenty four
ゾール、 pH8. 0)に懸濁した後、超音波破砕機 (Handy sonic,トミー社製)を用い て菌体を破砕した。遠心分離により回収した上清に 20 μ 1の Ni— NTA agarose (キ ァゲン社製)を加え、 4°C、 30分間放置した。遠心分離して回収した沈澱を 100 1の 洗浄バッファー(50mM NaH PO、 300mM NaCl、 20mM イミダゾール、 pH8  After suspending in sol, pH 8.0), the cells were crushed using an ultrasonic crusher (Handy sonic, manufactured by Tommy). 20 μl of Ni-NTA agarose (manufactured by Kagen) was added to the supernatant collected by centrifugation, and left at 4 ° C for 30 minutes. The precipitate collected by centrifugation was washed with 100 1 wash buffer (50 mM NaH PO, 300 mM NaCl, 20 mM imidazole, pH 8
2 4  twenty four
. 0)で 2回洗浄した。洗浄後の沈殿に 20 1の溶出バッファー(50mM NaH PO、  0) was washed twice. 20 1 elution buffer (50 mM NaH PO,
2 4 twenty four
300mM NaCl、 250mM イミダゾール、 pH8. 0)をカ卩えて懸濁し、遠心して上清 を回収した。同じ溶出操作をさらに 2回繰り返し、合計 60 1の、 YdcE、 A113211お よび EF0850ポリペプチドを含む試料を得た。この試料の一部を SDS— PAGEに供 して予想されるサイズのポリペプチドが含有されていることを確認した。また、試料中 のタンパク濃度は約 50ngZ μ 1であった。 300 mM NaCl, 250 mM imidazole, pH 8.0) was suspended and centrifuged, and the supernatant was collected. The same elution procedure was repeated two more times to obtain a total of 60 1 samples containing YdcE, A113211 and EF0850 polypeptides. A part of this sample was subjected to SDS-PAGE to confirm that it contained a polypeptide of the expected size. The protein concentration in the sample was about 50 ngZ μ 1.
[0040] 実施例 3 オリゴリボヌクレオチドを基質とした塩基配列特異性の同定 Example 3 Identification of base sequence specificity using oligoribonucleotide as substrate
実施例 2で得られた YdcE、 A113211および EF0850ポリペプチドのリボヌクレア一 ゼ活性の塩基配列特異性を調べるために、オリゴリボヌクレオチドを合成し、切断アツ セィを行った。  To examine the nucleotide sequence specificity of the ribonuclease activity of the YdcE, A113211 and EF0850 polypeptides obtained in Example 2, oligoribonucleotides were synthesized and subjected to cleavage assay.
[0041] 基質として、配列番号 13〜21に塩基配列を示したオリゴリボヌクレオチド 9種を合 成した。 10 M オリゴリボヌクレオチド、 lOngZ w lの実施例 2で得た YdcE、 A1132 11または EF0850ポリペプチド、 10mM Tris— HCl(pH7. 5)からなる 5 1の反応 液を 37°C、 30分間インキュベートした。反応物を 20%変性アクリルアミドゲル(20% アクリルアミド、 7M尿素、 0. 5 XTBEバッファー)電気泳動に供し、 SYBR GREE N II (タカラバィォ社製)で染色した後、蛍光イメージアナライザー FMBIOII Multi view (タカラバイオ社製)を用いて蛍光画像を解析した。各オリゴリボヌクレオチドの 切断の状況を表 1に示す。 [0041] Nine types of oligoribonucleotides whose base sequences were shown in SEQ ID NOs: 13 to 21 were synthesized as substrates. 10 M oligoribonucleotide, lOngZ wl YdcE obtained in Example 2, A1132 11 or EF0850 polypeptide, 51 mM reaction solution consisting of 10 mM Tris—HCl (pH 7.5) was incubated at 37 ° C. for 30 minutes. The reaction product was subjected to 20% denaturing acrylamide gel (20% acrylamide, 7M urea, 0.5 XTBE buffer) electrophoresis, stained with SYBR GREE N II (manufactured by Takara Bio Co., Ltd.), and then fluorescence image analyzer FMBIOII Multi view (Takara Bio). Fluorescence images were analyzed using a Table 1 shows the state of cleavage of each oligoribonucleotide.
切断の状況は完全切断を + + +、部分切断を + +、ごく弱い切断を +、完全未分 解を一で示した。さらに、それぞれのオリゴリボヌクレオチドの切断の有無および切断 の強さから、切断部位周辺の塩基配列を比較し、配列の特異性を評価した。この結 果を表 2に示す。  As for the cutting situation, complete cutting was indicated by +++, partial cutting by ++, very weak cutting by +, and complete undissolved by one. Furthermore, based on the presence or absence of cleavage of each oligoribonucleotide and the strength of cleavage, the base sequences around the cleavage sites were compared to evaluate the specificity of the sequences. The results are shown in Table 2.
[0042] 以上の結果から、 YdcEポリペプチドおよび EF0850ポリペプチドは、 5'— U /A CAU 3,の配列(Zは切断部位を示す)を優先的に認識して RNAを切断すること が明らかになった。また、 A113211ポリペプチドは 5'— UZACA— 3'の配列を優先 的に認識して RNAを切断することが明らかになった。 MazFは 5' -N/ACA- 3' ( Nは任意のリボヌクレオチド)を切断することが報告されて 、るが (非特許文献 7、 8)、 YdcEポリペプチドおよび EF0850ポリペプチドは ACAの両末端にさらに U残基を 有する配列を強く認識し、 A113211ポリペプチドは ACAの 5 '側に U残基を有する配 列を強く認識していることが明らかになった。すなわち、これらのポリペプチドは Maz Fとは異なる塩基配列特異性を有するエンドリボヌクレアーゼであることが明らかにな つた o  [0042] From the above results, it is clear that the YdcE polypeptide and the EF0850 polypeptide cleave RNA by preferentially recognizing the 5'—U / A CAU 3 sequence (Z indicates the cleavage site). Became. It was also found that A113211 polypeptide cleaves RNA by preferentially recognizing the 5'-UZACA-3 'sequence. MazF has been reported to cleave 5'-N / ACA-3 '(N is any ribonucleotide) (Non-Patent Documents 7 and 8), but YdcE polypeptide and EF0850 polypeptide are both ACA. It was revealed that the sequence further having a U residue at the terminal was strongly recognized, and that the A113211 polypeptide strongly recognized a sequence having a U residue on the 5 ′ side of ACA. In other words, it was revealed that these polypeptides are endoribonucleases having a base sequence specificity different from that of Maz F.
[0043] [表 1] [0043] [Table 1]
名称 塩基配列およぴ切断部位 切断 Name Base sequence and cleavage site Cleavage
( / は切断された部位を示す) YdcE A113211 EF0850 mazG30 UAAGAAGGAGAUAU/ACAUAUGAAUCAAAUC 十十十 十十十 十十十 (/ Indicates the cut site) YdcE A113211 EF0850 mazG30 UAAGAAGGAGAUAU / ACAUAUGAAUCAAAUC 10th 10th 10th
ABC020 UGCGUUCCUGU/ACAUAACCUU +++ +++ +++ABC020 UGCGUUCCUGU / ACAUAACCUU +++ +++ +++
MRI027 GGGGCUCGCCUU/ACAAGCGAUUGGG 十十十 MRI027 GGGGCUCGCCUU / ACAAGCGAUUGGG
ABC019 GGUUAUGU/ACAGGAACGCAUU +++  ABC019 GGUUAUGU / ACAGGAACGCAUU +++
MRI021 GAGUCGUGGGCGU/ACUUUAUGGGGC 十 十  MRI021 GAGUCGUGGGCGU / ACUUUAUGGGGC
MRI005 AGACUCU/ACACUCUAUACUCUAAAA +  MRI005 AGACUCU / ACACUCUAUACUCUAAAA +
M20 GGCUUAGAACAUGAAUCCGG  M20 GGCUUAGAACAUGAAUCCGG
MRI022 GGGUCCAUUGUUUCUUAUAUAAAGGUUAGG  MRI022 GGGUCCAUUGUUUCUUAUAUAAAGGUUAGG
ABC008 AUUUGAGAUCAUAUUCAUAUU  ABC008 AUUUGAGAUCAUAUUCAUAUU
切断の表示 +++は完全切断、 ++は部分切断、 +はごく弱い切断を示す。  Cutting indication +++ indicates complete cutting, ++ indicates partial cutting, + indicates very weak cutting.
[0044] [表 2] [0044] [Table 2]
名称 塩基配列 切断の強さ  Name Base sequence Strength of cleavage
- 1 1 2 3 4 YdcE A113211 EF0850  -1 1 2 3 4 YdcE A113211 EF0850
mazLrjO U A C A U +++ +++ +++  mazLrjO U A C A U +++ +++ +++
ABC020 U A C A U +++ +++ +++  ABC020 U A C A U +++ +++ +++
MRI027 U A C A A 十十十  MRI027 U A C A A
ABC019 U A C A G +++  ABC019 U A C A G +++
MRI005 U A C A C +  MRI005 U A C A C +
MRI021 U A C U U 十 十  MRI021 U A C U U Ten Ten
M20 A A C A u  M20 A A C A u
MRI022 U C C A u  MRI022 U C C A u
ABC008 U U C A u  ABC008 U U C A u
MRI022 U A u A u  MRI022 U A u A u
切断部位:切断された部位は、 -1と十1の間が切断されている。  Cut site: The cut site is cleaved between -1 and eleven.
[0045] 実施例 4 tRNAを基質に用いた切断アツセィ Example 4 Cleavage assembly using tRNA as substrate
実施例 2で得られた YdcE、 A113211および EF0850ポリペプチドが tRNAを切断 しうる力どう力を調べるために、 in vitro transcriptionにより合成した tRNAを 質に用いて切断アツセィを行った。  In order to examine the ability of the YdcE, A113211 and EF0850 polypeptides obtained in Example 2 to cleave tRNA, cleavage was performed using tRNA synthesized by in vitro transcription as a quality.
アミノ酸パリンに対応するアンチコドン(UAC)を有する Deinococcus radiodura ns由来の tRNA40の塩基配列情報を The Genomic tRNA Database (http: ZZlowelab. ucsc. eduZGtRNAdbZ)より入手した。 in vitro transcription により tRNAを合成するために T7プロモーター配列を付カ卩した tRNA40 DNA配 列を有する配列番号 22に示した DNAおよびその相補配列 DNAを DNA合成機で 合成し、 92bpの 2本鎖 DNA断片を調製した。この DNA断片と in vitro Transcrip tion Kit (タカラバイオ社製)を使用し、前記キットの取扱説明書に従って in vitro Transcriptionを行った。得られた反応液を終濃度 0. 5UZw 1の DNasel (タカラ バイオ社製)で 37°C、 30分間処理した後、フエノール Zクロ口ホルム処理、クロ口ホル ム処理、イソプロパノール沈澱を行って RNAを精製した。 RNAの沈澱は滅菌蒸留水 に溶解した。この操作により配列番号 23に示した 75塩基の tRNA40が得られた。こ の tRNA40は、前記キットに含まれる 10 X Annealing Buffer (lOOmM Tri s— HCl、pH8. 0、 500mM CH COOK、 lOmM EDTA)を lZlO容量含む The base sequence information of tRNA40 derived from Deinococcus radiodurans having an anticodon (UAC) corresponding to the amino acid parin was obtained from The Genomic tRNA Database (http: ZZlowelab. Ucsc. EduZGtRNAdbZ). tRNA40 DNA sequence with T7 promoter sequence to synthesize tRNA by in vitro transcription The DNA shown in SEQ ID NO: 22 having a sequence and its complementary sequence DNA were synthesized with a DNA synthesizer to prepare a 92 bp double-stranded DNA fragment. Using this DNA fragment and in vitro transcription kit (manufactured by Takara Bio Inc.), in vitro transcription was performed according to the instruction manual of the kit. The resulting reaction solution was treated with DNasel (manufactured by Takara Bio Inc.) at a final concentration of 0.5UZw 1 for 30 minutes at 37 ° C, and then treated with phenol Z chloroform, chloroform, isopropanol precipitation, and RNA. Was purified. The RNA precipitate was dissolved in sterile distilled water. By this operation, the 75-base tRNA40 shown in SEQ ID NO: 23 was obtained. This tRNA40 contains 10 X Annealing Buffer (lOOmM Tris—HCl, pH 8.0, 500 mM CH COOK, lOmM EDTA) included in the kit in an lZlO capacity.
3  Three
滅菌蒸留水に溶解して 75°C、 5分間放置した後、 30分間かけて 25°Cまで温度を下 げる操作を行い、 tRNA40の高次構造を形成させた。この tRNA40 62. 5ngを用 いて、実施例 3と同様の反応液を調整し、実施例 2で得た YdcE、 A113211または EF 0850ポリペプチドによる切断反応を行った後、 10%変性アクリルアミドゲル電気泳 動に供し、切断の有無を評価した。その結果、 YdcEおよび EF0850ポリペプチドで は 75塩基の tRNA40に変化はなかった。一方、 A113211では 75塩基の tRNA40 は 33塩基と 42塩基に分解され、 tRNA40のアンチコドンループに含まれる U/AC Aの部位で切断が起こることが示された。この結果から、 A113211ポリペプチドはアン チコドン UACを含む tRNAを切断しうる活性を有することが示された。 tRNA40中の 前記の部位の 3'側には A残基が続くことから、 YdcEおよび EF0850ポリペプチドで は前記の部位が切断できな力つたものと推測された。  After dissolving in sterilized distilled water and allowing to stand at 75 ° C for 5 minutes, the temperature was lowered to 25 ° C over 30 minutes to form a higher-order structure of tRNA40. Using 62.5 ng of this tRNA40, the same reaction solution as in Example 3 was prepared, and after cleaving with YdcE, A113211 or EF 0850 polypeptide obtained in Example 2, 10% denaturing acrylamide gel electrophoresis was performed. The presence or absence of cutting was evaluated. As a result, there was no change in the 75 base tRNA40 in YdcE and EF0850 polypeptides. On the other hand, A113211 showed that 75-base tRNA40 was degraded into 33-base and 42-base, and cleavage occurred at the U / AC A site in the anticodon loop of tRNA40. From this result, it was shown that A113211 polypeptide has an activity capable of cleaving tRNA containing anticodon UAC. Since an A residue continues on the 3 ′ side of the site in tRNA40, it was speculated that the site could not be cleaved with YdcE and EF0850 polypeptides.
産業上の利用可能性  Industrial applicability
[0046] 本発明により、新規な配列特異的エンドリボヌクレアーゼが提供される。前記酵素 は RNA中の特定の配列を認識して切断することができることから、 RNA分子の解析[0046] The present invention provides a novel sequence-specific endoribonuclease. Since the enzyme can recognize and cleave specific sequences in RNA, it can analyze RNA molecules.
、 RNA断片の作成、細胞内での RNA切断を介した細胞の制御(例えばタンパク質 生成の阻害)等に有用である。 It is useful for preparation of RNA fragments, cell control through RNA cleavage in cells (for example, inhibition of protein production), and the like.
配列表フリーテキスト  Sequence listing free text
[0047] SEQ ID NO:7; PCR primer ydcE— F to amplify a DNA fragment encoding YdcE prote in. SEQ ID NO :8; PCR primer ydcE-R to amplify a DNA fragment encoding YdcE prote in. [0047] SEQ ID NO: 7; PCR primer ydcE— F to amplify a DNA fragment encoding YdcE prote in. SEQ ID NO: 8; PCR primer ydcE-R to amplify a DNA fragment encoding YdcE prote in.
SEQ ID NO :9; PCR primer all3211— F to amplify a DNA fragment encoding A113211 p rotein.  SEQ ID NO: 9; PCR primer all3211— F to amplify a DNA fragment encoding A113211 p rotein.
SEQ ID NO 10; PCR primer all3211-R to amplify a DNA fragment encoding A113211 protein.  SEQ ID NO 10; PCR primer all3211-R to amplify a DNA fragment encoding A113211 protein.
SEQ ID NO 11; PCR primer EF0850— F to amplify a DNA fragment encoding EF0850 protein  SEQ ID NO 11; PCR primer EF0850— F to amplify a DNA fragment encoding EF0850 protein
SEQ ID NO 12; PCR primer EF0850— R to amplify a DNA fragment encoding EF0850 protein  SEQ ID NO 12; PCR primer EF0850— R to amplify a DNA fragment encoding EF0850 protein
SEQ ID NO :13 Oligoribonucleotide mazG30.  SEQ ID NO: 13 Oligoribonucleotide mazG30.
SEQ ID NO :14 Oligoribonucleotide ABC020.  SEQ ID NO: 14 Oligoribonucleotide ABC020.
SEQ ID NO :15 Oligoribonucleotide MRI027.  SEQ ID NO: 15 Oligoribonucleotide MRI027.
SEQ ID NO :16 Oligoribonucleotide ABC019.  SEQ ID NO: 16 Oligoribonucleotide ABC019.
SEQ ID NO :17 Oligoribonucleotide MRI021.  SEQ ID NO: 17 Oligoribonucleotide MRI021.
SEQ ID NO :18 Oligoribonucleotide MRI005.  SEQ ID NO: 18 Oligoribonucleotide MRI005.
SEQ ID NO :19 Oligoribonucleotide M20.  SEQ ID NO: 19 Oligoribonucleotide M20.
SEQ ID NO :20 Oligoribonucleotide MRI022.  SEQ ID NO: 20 Oligoribonucleotide MRI022.
SEQ ID NO :21 Oligoribonucleotide ABC008.  SEQ ID NO: 21 Oligoribonucleotide ABC008.
SEQ ID NO :22 DNA to transcribe Deinococcus radiodurans tRNA 40.  SEQ ID NO: 22 DNA to transcribe Deinococcus radiodurans tRNA 40.
SEQ ID NO :23 RNA molecule partially equal to RNA sequence of Deinococcus radi odurans tRNA 40.  SEQ ID NO: 23 RNA molecule partially equal to RNA sequence of Deinococcus radi odurans tRNA 40.

Claims

請求の範囲 The scope of the claims
[1] 配列表の配列番号 1、 2または 3記載のアミノ酸配列、または該配列において 1個以 上のアミノ酸残基の欠失、付加、挿入もしくは置換の少なくとも 1つを有するアミノ酸 配列で示され、かつ配列特異的なエンドリボヌクレアーゼ活性を有するポリペプチド。  [1] An amino acid sequence described in SEQ ID NO: 1, 2, or 3 in the sequence listing, or an amino acid sequence having at least one deletion, addition, insertion or substitution of one or more amino acid residues in the sequence And a polypeptide having sequence-specific endoribonuclease activity.
[2] 請求項 1記載のポリペプチドをコードする核酸。  [2] A nucleic acid encoding the polypeptide according to claim 1.
[3] 配列表の配列番号 4、 5または 6記載の塩基配列を有することを特徴とする請求項 2 記載の核酸。  [3] The nucleic acid according to claim 2, which has the base sequence described in SEQ ID NO: 4, 5, or 6 in the sequence listing.
[4] 請求項 2または請求項 3記載の核酸にストリンジェントな条件でハイブリダィズ可能 であり、かつ配列特異的なエンドリボヌクレアーゼ活性を有するポリペプチドをコード する核酸。  [4] A nucleic acid that is capable of hybridizing to the nucleic acid of claim 2 or claim 3 under stringent conditions and encodes a polypeptide having sequence-specific endoribonuclease activity.
[5] 請求項 2〜4 、ずれ力 1項に記載の核酸を含んでなる組換え DNA。  [5] Recombinant DNA comprising the nucleic acid according to claim 2 to 4 and shear force 1.
[6] 請求項 5記載の組換え DNAにより形質転換されてなる形質転換体。 [6] A transformant obtained by transformation with the recombinant DNA according to claim 5.
[7] 請求項 6記載の形質転換体を培養する工程、および該培養物中より配列特異的な[7] A step of culturing the transformant according to claim 6, and a sequence-specific method in the culture.
RNA切断活性を有するポリペプチドを採取する工程を包含することを特徴とする請 求項 1のポリペプチドの製造方法。 The method for producing a polypeptide according to claim 1, comprising a step of collecting a polypeptide having RNA cleavage activity.
[8] 一本鎖 RNAに請求項 1記載のポリペプチドを作用させる工程を包含することを特 徴とする、一本鎖 RNA分解物の製造方法。 [8] A method for producing a single-stranded RNA degradation product, comprising a step of allowing the polypeptide of claim 1 to act on single-stranded RNA.
[9] 一本鎖 RNAに請求項 1記載のポリペプチドを作用させる工程を包含することを特 徴とする、一本鎖 RNAの分解方法。 [9] A method for degrading single-stranded RNA, comprising the step of allowing the polypeptide of claim 1 to act on single-stranded RNA.
PCT/JP2006/313270 2005-07-21 2006-07-04 Novel endoribonuclease WO2007010740A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007525935A JPWO2007010740A1 (en) 2005-07-21 2006-07-04 Novel endoribonuclease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005211147 2005-07-21
JP2005-211147 2005-07-21

Publications (1)

Publication Number Publication Date
WO2007010740A1 true WO2007010740A1 (en) 2007-01-25

Family

ID=37668623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313270 WO2007010740A1 (en) 2005-07-21 2006-07-04 Novel endoribonuclease

Country Status (2)

Country Link
JP (1) JPWO2007010740A1 (en)
WO (1) WO2007010740A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133137A1 (en) 2007-04-20 2008-11-06 Takara Bio Inc. Vector for gene therapy
JP2014161284A (en) * 2013-02-26 2014-09-08 Kao Corp Mutant microorganism and useful substance production method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113498A2 (en) * 2003-06-13 2004-12-29 University Of Medicine And Dentistry Of New Jersey Rna interferases and methods of use thereof
WO2005074986A2 (en) * 2004-02-10 2005-08-18 Genobiotix Aps Bioactive species capable of interfering with a microbial toxin-antitoxin complex and methods for evaluation and use of said bioactive species

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113498A2 (en) * 2003-06-13 2004-12-29 University Of Medicine And Dentistry Of New Jersey Rna interferases and methods of use thereof
WO2005074986A2 (en) * 2004-02-10 2005-08-18 Genobiotix Aps Bioactive species capable of interfering with a microbial toxin-antitoxin complex and methods for evaluation and use of said bioactive species

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
CHRISTENSEN S.K. ET AL.: "Toxin-antitoxin lcoi as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA", J. MOL. BIOL., vol. 332, no. 4, 2003, pages 809 - 819, XP002389065 *
DATABASE GENBANK [online] XP003006081, accession no. EMBL Database accession no. (NC_003272) *
DATABASE GENBANK [online] XP003006083, accession no. EMBL Database accession no. (NC_000964) *
DATABASE GENBANK [online] XP003006084, accession no. EMBL Database accession no. (NC_004668) *
DATABASE GENBANK [online] XP003006086, accession no. EMBL Database accession no. (NC_487251) *
DATABASE GENBANK [online] XP003006087, accession no. EMBL Database accession no. (NC_388347) *
DATABASE GENBANK [online] XP003006088, accession no. EMBL Database accession no. (NC_814592) *
GERDES K.: "Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress", J. BACTERIOL., vol. 182, no. 3, February 2000 (2000-02-01), pages 561 - 572, XP002389060 *
HAYES F.: "Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest", SCIENCE, vol. 301, no. 5639, 12 September 2003 (2003-09-12), pages 1496 - 1499, XP002389061 *
KANEKO T. ET AL.: "Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120", DNA RES., vol. 8, no. 5, 2001, pages 205 - 213, XP002262221 *
MUNOZ-GOMEZ A.J. ET AL.: "Insights into the specificity of RNA cleavage by the Escherichia coli MAzF toxin", FEBS LETT., vol. 567, no. 2 TO 3, 2004, pages 316 - 320, XP004514874 *
PANDEY D.P. ET AL.: "Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes", NUCLEIC ACIDS RES., vol. 33, no. 3, 17 February 2005 (2005-02-17), pages 966 - 976, XP003006089 *
PEDERSEN K. ET AL.: "The bacterial toxin Re1E Displays codon-specific cleavage of mRNAs in the ribosomal A site", CELL, vol. 112, no. 1, 2003, pages 131 - 140, XP002403650 *
PELLEGRINI O. ET AL.: "The Bacillus subtilis ydcDE operon encodes an endoribonuclease of the MazF/PemK family and its inhibitor", MOL. MICROBIOL., vol. 56, no. 5, March 2005 (2005-03-01), pages 1139 - 1148, XP003006082 *
SHIMADA M. ET AL: "PemK Family Bacteria Toxin ni Okeru Hairetsu Tokuiteki RNase Kassei no Screening", DAI 28 KAI ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN KOEN YOSHISHU, 25 November 2005 (2005-11-25), pages 464, XP003006085 *
ZHANG J. ET AL.: "Interference of mRNA function by sequence-specific endoribonuclease PemK", J. BIOL. CHEM., vol. 279, no. 20, 14 May 2004 (2004-05-14), pages 20678 - 20684, XP003001717 *
ZHANG Y. ET AL.: "Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase", J. BIOL. CHEM., vol. 280, no. 5, 4 February 2005 (2005-02-04), pages 3143 - 3150, XP003001718 *
ZHANG Y. ET AL.: "MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli", MOL. CELL, vol. 12, no. 4, 2003, pages 913 - 923, XP002389064 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133137A1 (en) 2007-04-20 2008-11-06 Takara Bio Inc. Vector for gene therapy
JP2014161284A (en) * 2013-02-26 2014-09-08 Kao Corp Mutant microorganism and useful substance production method using the same

Also Published As

Publication number Publication date
JPWO2007010740A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
Curiel et al. The pURI family of expression vectors: a versatile set of ligation independent cloning plasmids for producing recombinant His-fusion proteins
US20060228731A1 (en) Compositions and methods of using a synthetic DNase I
US5804418A (en) Methods for preparing nucleotide integrases
JP4889647B2 (en) Novel endoribonuclease
JP4857260B2 (en) Cryogenic microorganism-derived endonuclease
US8017356B2 (en) Endoribonuclease
EP0877084B1 (en) Thermostable diaphorase gene
JP4974891B2 (en) Novel endoribonuclease
CN109735516B (en) PIWI protein with specific endonuclease activity guided by nucleotide fragment
WO2007010740A1 (en) Novel endoribonuclease
WO2022210748A1 (en) Novel polypeptide having ability to form complex with guide rna
WO2006123537A1 (en) Novel endoribonuclease
WO2005017144A1 (en) METHODS OF DEGRADING dsRNA AND SYNTHESIZING RNA
WO2022074056A2 (en) Bacillus cell with reduced lipase and/or esterase side activities
JP5787335B2 (en) Acetylcholinesterase gene
CN117417919B (en) A heat-sensitive uracil DNA glycosidase and its application
CN118006535A (en) Recombinant bacterium for producing high-temperature-resistant high-pressure-resistant prolyl peptidase as well as preparation method and application thereof
JP5626263B2 (en) RrhJ1I modifying enzyme and gene thereof
CN113337489A (en) Novel chimera TsCas12a protein and preparation technology
JPH11155578A (en) Dna synthase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007525935

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767801

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载