+

WO2007010057A1 - Nouveau systeme multitubulaire destine a la synthese de nanotubes de carbone en phase gazeuse - Google Patents

Nouveau systeme multitubulaire destine a la synthese de nanotubes de carbone en phase gazeuse Download PDF

Info

Publication number
WO2007010057A1
WO2007010057A1 PCT/ES2005/070103 ES2005070103W WO2007010057A1 WO 2007010057 A1 WO2007010057 A1 WO 2007010057A1 ES 2005070103 W ES2005070103 W ES 2005070103W WO 2007010057 A1 WO2007010057 A1 WO 2007010057A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
carbon nanotubes
nanotubes
gas
phase synthesis
Prior art date
Application number
PCT/ES2005/070103
Other languages
English (en)
Spanish (es)
Inventor
Antonio Guerrero Ruiz
Vicenta MUÑOZ ANDRES
Daniela Martin Nevskaia
Patricia Sampedro Tejedor
Inmaculada Rodriguez Ramos
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad Nacional De Educacion Distancia (U.N.E.D.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad Nacional De Educacion Distancia (U.N.E.D.) filed Critical Consejo Superior De Investigaciones Científicas
Priority to PCT/ES2005/070103 priority Critical patent/WO2007010057A1/fr
Publication of WO2007010057A1 publication Critical patent/WO2007010057A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2425Tubular reactors in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/30Purity

Definitions

  • the present invention relates to the method of synthesis of carbon nanotubes and, more specifically to the synthesis of nanotubes of high purity using the thermal method of chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • Carbon nanotubes are cylindrical structures that are formed by hexagons of carbon atoms, which are repeated giving rise to a honeycomb structure.
  • the diameter of these nanotubes can vary between several angstroms to several nanometers. Because they have very special properties, such as: low density, high flexibility, high surface area, high thermal conductivity, high electrical conductivity, high resistance; This type of materials is very attractive for applications such as: composite materials, microelectronic components, fuel cells, radio communications, flat devices, lithium cells, etc.
  • Existing nanotube synthesis techniques include the electric arc method (DS Bethune et al., Nature, 363, 605, 1993; US Pat. No.
  • the nanotubes obtained by the electric arc method and by laser vaporization are not able to control the diameter or length of the carbon nanotubes. They also give rise to low yields and generate a large amount of amorphous coal. Therefore, it is necessary to resort to the use of complicated purification procedures. Another drawback of this type of processes is that they require a manufacturing temperature that exceeds 1000 0 C. On the other hand, it is widely recognized that gas phase deposition methods allow the production of nanotubes at lower temperatures and with high performance .
  • the thermal method of chemical vapor deposition uses a metallic catalyst supported on a porous material, inert to the temperatures used, such as: silica, magnesium oxide, alumina or zeolite.
  • the most frequently used metals are: Fe, Co or Ni; although nanotubes have also been synthesized with Cu, Mo, Mn, Zn or Pt.
  • the use of supported catalysts has the disadvantage of having to remove the support by means of purification processes.
  • filling the pores of the substrate with the metal catalyst is complicated and time consuming.
  • the plasma CVD method has the disadvantage that carbon nanotubes can be damaged as a result of the impacts produced by the plasma.
  • the gas phase synthesis method, as well as the CVD method results in the formation of nanotubes at lower temperatures and with high performance, also presenting the additional advantage of not requiring purification processes to eliminate the catalyst substrate.
  • the objective of the present invention is to design a system for manufacturing high purity nanotubes by gas phase synthesis in a single step.
  • Another objective of the present invention is the use of a multitubular reactor that maximizes the deposition surface and, therefore, the production of carbon nanotubes.
  • the system consists of a reaction tube, introduced in a horizontal oven, which is fed with the mixture of reagents and inert and, which has an outlet of the vaporized gases (Figure 1). Inside the reaction tube is the multitubular reactor composed of a tube of smaller diameter than the reactor, which in turn contains a variable number of hollow tubes (Figure 2).
  • the length of the multitubular reactor is chosen such that it is within the stable working temperature zone of the oven.
  • the synthesis of nanotubes is carried out at atmospheric pressure in the temperature range of 650 0 C to 1000 0 C, introducing a mixture of the carbon source compound, a reducing reagent, the catalyst and the transport gas into the multitubular reactor.
  • the flow of the transport gas varies between 350 and 2000 cm 3 min "1 , and those of the carbon source compound and the reducing compound between 5 and 50 cm 3 min " 1 .
  • Figure 1 shows the total scheme of the system used for the synthesis of nanotubes.
  • the system consists of an oven (1) in which a gas conduit tube (2) is introduced, which has an inlet (3) of reagents and an outlet (4) of products.
  • the multitubular reactor (5) is placed inside the reactor.
  • Figure 2 shows a multitubular reactor detail.
  • a feed mixture that could consist of: 40 Cm 3 HUn "1 of acetylene (carbon source), 0.3 is introduced into the reactor at a temperature that could be 750 0 C Cm 3 HUn "1 of iron pentacarbonyl (precursor), 40 cm 3 min "! Of hydrogen (reducer) and 2000 cm 3 min "! of nitrogen (carrier gas).
  • the nanotubes formed ( Figure 3) are collected in the multitubular reactor. The purity of the nanotubes obtained is greater than 90%. Under these conditions, the yield obtained with the multitubular reactor is greater than 2% by weight of pure product, per step of acetylene.
  • a feed mixture that could consist of: 30 cm 3 min "1 of acetylene (carbon source), 0.05 g. Of ferrocene (precursor), 30 cm is introduced into the reactor at a temperature that could be 700 0 C 3 min "1 of hydrogen (reducer) and 1800 cm 3 min " 1 of nitrogen (carrier gas).
  • the nanotubes formed ( Figure 4) are collected in the multitubular reactor. The purity of the nanotubes obtained is greater than 90%. Under these conditions, the yield obtained with the multitubular reactor is also greater than 2% by weight of pure product, per step of acetylene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

L'objectif de cette invention consiste à concevoir un système destiné à la fabrication de nanotubes de haute pureté par le biais de la synthèse en phase gazeuse en une seule étape en réduisant au maximum la production. Cette invention consiste en un système de réaction, introduit dans un four horizontal qui s'alimente avec le mélange de réactifs et de produits inertes et, possédant une sortie des gaz vaporisés. Dans les systèmes de réaction se trouve le réacteur multitubulaire composé d'un tube de diamètre inférieur à celui du réacteur, lequel à son tour contient un nombre variable de tubes creux. La longueur du réacteur multitubulaire est choisie de manière à se trouver dans la zone stable de température de travail du four.
PCT/ES2005/070103 2005-07-15 2005-07-15 Nouveau systeme multitubulaire destine a la synthese de nanotubes de carbone en phase gazeuse WO2007010057A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2005/070103 WO2007010057A1 (fr) 2005-07-15 2005-07-15 Nouveau systeme multitubulaire destine a la synthese de nanotubes de carbone en phase gazeuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2005/070103 WO2007010057A1 (fr) 2005-07-15 2005-07-15 Nouveau systeme multitubulaire destine a la synthese de nanotubes de carbone en phase gazeuse

Publications (1)

Publication Number Publication Date
WO2007010057A1 true WO2007010057A1 (fr) 2007-01-25

Family

ID=37668454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/070103 WO2007010057A1 (fr) 2005-07-15 2005-07-15 Nouveau systeme multitubulaire destine a la synthese de nanotubes de carbone en phase gazeuse

Country Status (1)

Country Link
WO (1) WO2007010057A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044278A1 (fr) * 1996-05-22 1997-11-27 Yeda Research And Development Co. Ltd. Synthese en masse de structures de chalcogenures de metal de type fullerenes inorganiques
WO2000026138A1 (fr) * 1998-11-03 2000-05-11 William Marsh Rice University Nucleation en phase gazeuse et croissance de nanotubes de carbone a paroi simple a partir de co haute pression
US20020102203A1 (en) * 2001-01-31 2002-08-01 William Marsh Rice University Process utilizing pre-formed cluster catalysts for making single-wall carbon nanotubes
WO2004035881A2 (fr) * 2002-10-18 2004-04-29 Jeong-Ku Heo Procede et appareil de synthese de nanotubes de carbone a paroi unique
US20050142059A1 (en) * 2003-03-05 2005-06-30 Kim Hee Y. Method for continuous preparation of nanometer-sized hydrous zirconia sol using microwave

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044278A1 (fr) * 1996-05-22 1997-11-27 Yeda Research And Development Co. Ltd. Synthese en masse de structures de chalcogenures de metal de type fullerenes inorganiques
WO2000026138A1 (fr) * 1998-11-03 2000-05-11 William Marsh Rice University Nucleation en phase gazeuse et croissance de nanotubes de carbone a paroi simple a partir de co haute pression
US20040223901A1 (en) * 1998-11-03 2004-11-11 William Marsh Rice University Single-wall carbon nanotubes from high pressure CO
US20020102203A1 (en) * 2001-01-31 2002-08-01 William Marsh Rice University Process utilizing pre-formed cluster catalysts for making single-wall carbon nanotubes
WO2004035881A2 (fr) * 2002-10-18 2004-04-29 Jeong-Ku Heo Procede et appareil de synthese de nanotubes de carbone a paroi unique
US20050142059A1 (en) * 2003-03-05 2005-06-30 Kim Hee Y. Method for continuous preparation of nanometer-sized hydrous zirconia sol using microwave

Similar Documents

Publication Publication Date Title
CN104271498B (zh) 用非铁催化剂来还原碳氧化物的方法和结构
KR101460373B1 (ko) 유동층에서 탄소 나노튜브를 제조하는 방법
Kim et al. Large-scale production of single-walled carbon nanotubes by induction thermal plasma
JP6389824B2 (ja) 固体炭素材料を製造するための反応器および方法
ES2351845T3 (es) Nanotubos de carbono funcionalizado con fullerenos.
Prasek et al. Methods for carbon nanotubes synthesis
Louis et al. High yield synthesis of multi-walled carbon nanotubes by catalytic decomposition of ethane over iron supported on alumina catalyst
Allaedini et al. Methane decomposition for carbon nanotube production: Optimization of the reaction parameters using response surface methodology
KR102388564B1 (ko) 유동층 반응기에서 카본 나노튜브 제조 방법
US20050118090A1 (en) Plasma synthesis of hollow nanostructures
Shukrullah et al. Mass production of carbon nanotubes using fluidized bed reactor: A short review
Lu et al. Catalytic growth of carbon nanotubes through CHNO explosive detonation
WO2013109310A1 (fr) Système et procédé de fabrication d'hydrogène et d'un nanoproduit de carbone
JP2013018673A (ja) 単層カーボンナノチューブと二層カーボンナノチューブが任意比率で混合してなるカーボンナノチューブ集合体並びにその製造方法
JP2012508159A (ja) カーボンナノチューブ(carbonnanotubes,CNTs)を生成するプロセス
Melezhyk et al. Some aspects of carbon nanotubes technology
JP2007261895A (ja) カーボンナノチューブの製造方法及び装置
CN102020264A (zh) 一种磷掺杂多壁碳纳米管的制备方法
WO2007010057A1 (fr) Nouveau systeme multitubulaire destine a la synthese de nanotubes de carbone en phase gazeuse
WO2023190783A1 (fr) Procédé de production de nanotubes de carbone
Glerum et al. Reactor processes for value added carbon synthesis and turquoise hydrogen
JP2003313018A (ja) カーボンナノチューブの製造方法
WO2022047600A1 (fr) Méthode de préparation de nanotubes de carbone à parois multiples
JP5036564B2 (ja) プレートレット型スリット気相法炭素繊維の製造方法
WO2003082737A1 (fr) Procede de production de nanotubes de carbone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05774365

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载