WO2007010057A1 - Nouveau systeme multitubulaire destine a la synthese de nanotubes de carbone en phase gazeuse - Google Patents
Nouveau systeme multitubulaire destine a la synthese de nanotubes de carbone en phase gazeuse Download PDFInfo
- Publication number
- WO2007010057A1 WO2007010057A1 PCT/ES2005/070103 ES2005070103W WO2007010057A1 WO 2007010057 A1 WO2007010057 A1 WO 2007010057A1 ES 2005070103 W ES2005070103 W ES 2005070103W WO 2007010057 A1 WO2007010057 A1 WO 2007010057A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reactor
- carbon nanotubes
- nanotubes
- gas
- phase synthesis
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 15
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 14
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 12
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 12
- 239000002071 nanotube Substances 0.000 claims abstract description 16
- 239000002243 precursor Substances 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 2
- 230000003197 catalytic effect Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 9
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003863 metallic catalyst Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
- D01F9/133—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
- B01J19/0013—Controlling the temperature of the process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2415—Tubular reactors
- B01J19/2425—Tubular reactors in parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/30—Purity
Definitions
- the present invention relates to the method of synthesis of carbon nanotubes and, more specifically to the synthesis of nanotubes of high purity using the thermal method of chemical vapor deposition (CVD).
- CVD chemical vapor deposition
- Carbon nanotubes are cylindrical structures that are formed by hexagons of carbon atoms, which are repeated giving rise to a honeycomb structure.
- the diameter of these nanotubes can vary between several angstroms to several nanometers. Because they have very special properties, such as: low density, high flexibility, high surface area, high thermal conductivity, high electrical conductivity, high resistance; This type of materials is very attractive for applications such as: composite materials, microelectronic components, fuel cells, radio communications, flat devices, lithium cells, etc.
- Existing nanotube synthesis techniques include the electric arc method (DS Bethune et al., Nature, 363, 605, 1993; US Pat. No.
- the nanotubes obtained by the electric arc method and by laser vaporization are not able to control the diameter or length of the carbon nanotubes. They also give rise to low yields and generate a large amount of amorphous coal. Therefore, it is necessary to resort to the use of complicated purification procedures. Another drawback of this type of processes is that they require a manufacturing temperature that exceeds 1000 0 C. On the other hand, it is widely recognized that gas phase deposition methods allow the production of nanotubes at lower temperatures and with high performance .
- the thermal method of chemical vapor deposition uses a metallic catalyst supported on a porous material, inert to the temperatures used, such as: silica, magnesium oxide, alumina or zeolite.
- the most frequently used metals are: Fe, Co or Ni; although nanotubes have also been synthesized with Cu, Mo, Mn, Zn or Pt.
- the use of supported catalysts has the disadvantage of having to remove the support by means of purification processes.
- filling the pores of the substrate with the metal catalyst is complicated and time consuming.
- the plasma CVD method has the disadvantage that carbon nanotubes can be damaged as a result of the impacts produced by the plasma.
- the gas phase synthesis method, as well as the CVD method results in the formation of nanotubes at lower temperatures and with high performance, also presenting the additional advantage of not requiring purification processes to eliminate the catalyst substrate.
- the objective of the present invention is to design a system for manufacturing high purity nanotubes by gas phase synthesis in a single step.
- Another objective of the present invention is the use of a multitubular reactor that maximizes the deposition surface and, therefore, the production of carbon nanotubes.
- the system consists of a reaction tube, introduced in a horizontal oven, which is fed with the mixture of reagents and inert and, which has an outlet of the vaporized gases (Figure 1). Inside the reaction tube is the multitubular reactor composed of a tube of smaller diameter than the reactor, which in turn contains a variable number of hollow tubes (Figure 2).
- the length of the multitubular reactor is chosen such that it is within the stable working temperature zone of the oven.
- the synthesis of nanotubes is carried out at atmospheric pressure in the temperature range of 650 0 C to 1000 0 C, introducing a mixture of the carbon source compound, a reducing reagent, the catalyst and the transport gas into the multitubular reactor.
- the flow of the transport gas varies between 350 and 2000 cm 3 min "1 , and those of the carbon source compound and the reducing compound between 5 and 50 cm 3 min " 1 .
- Figure 1 shows the total scheme of the system used for the synthesis of nanotubes.
- the system consists of an oven (1) in which a gas conduit tube (2) is introduced, which has an inlet (3) of reagents and an outlet (4) of products.
- the multitubular reactor (5) is placed inside the reactor.
- Figure 2 shows a multitubular reactor detail.
- a feed mixture that could consist of: 40 Cm 3 HUn "1 of acetylene (carbon source), 0.3 is introduced into the reactor at a temperature that could be 750 0 C Cm 3 HUn "1 of iron pentacarbonyl (precursor), 40 cm 3 min "! Of hydrogen (reducer) and 2000 cm 3 min "! of nitrogen (carrier gas).
- the nanotubes formed ( Figure 3) are collected in the multitubular reactor. The purity of the nanotubes obtained is greater than 90%. Under these conditions, the yield obtained with the multitubular reactor is greater than 2% by weight of pure product, per step of acetylene.
- a feed mixture that could consist of: 30 cm 3 min "1 of acetylene (carbon source), 0.05 g. Of ferrocene (precursor), 30 cm is introduced into the reactor at a temperature that could be 700 0 C 3 min "1 of hydrogen (reducer) and 1800 cm 3 min " 1 of nitrogen (carrier gas).
- the nanotubes formed ( Figure 4) are collected in the multitubular reactor. The purity of the nanotubes obtained is greater than 90%. Under these conditions, the yield obtained with the multitubular reactor is also greater than 2% by weight of pure product, per step of acetylene.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
L'objectif de cette invention consiste à concevoir un système destiné à la fabrication de nanotubes de haute pureté par le biais de la synthèse en phase gazeuse en une seule étape en réduisant au maximum la production. Cette invention consiste en un système de réaction, introduit dans un four horizontal qui s'alimente avec le mélange de réactifs et de produits inertes et, possédant une sortie des gaz vaporisés. Dans les systèmes de réaction se trouve le réacteur multitubulaire composé d'un tube de diamètre inférieur à celui du réacteur, lequel à son tour contient un nombre variable de tubes creux. La longueur du réacteur multitubulaire est choisie de manière à se trouver dans la zone stable de température de travail du four.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/ES2005/070103 WO2007010057A1 (fr) | 2005-07-15 | 2005-07-15 | Nouveau systeme multitubulaire destine a la synthese de nanotubes de carbone en phase gazeuse |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/ES2005/070103 WO2007010057A1 (fr) | 2005-07-15 | 2005-07-15 | Nouveau systeme multitubulaire destine a la synthese de nanotubes de carbone en phase gazeuse |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007010057A1 true WO2007010057A1 (fr) | 2007-01-25 |
Family
ID=37668454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2005/070103 WO2007010057A1 (fr) | 2005-07-15 | 2005-07-15 | Nouveau systeme multitubulaire destine a la synthese de nanotubes de carbone en phase gazeuse |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007010057A1 (fr) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997044278A1 (fr) * | 1996-05-22 | 1997-11-27 | Yeda Research And Development Co. Ltd. | Synthese en masse de structures de chalcogenures de metal de type fullerenes inorganiques |
WO2000026138A1 (fr) * | 1998-11-03 | 2000-05-11 | William Marsh Rice University | Nucleation en phase gazeuse et croissance de nanotubes de carbone a paroi simple a partir de co haute pression |
US20020102203A1 (en) * | 2001-01-31 | 2002-08-01 | William Marsh Rice University | Process utilizing pre-formed cluster catalysts for making single-wall carbon nanotubes |
WO2004035881A2 (fr) * | 2002-10-18 | 2004-04-29 | Jeong-Ku Heo | Procede et appareil de synthese de nanotubes de carbone a paroi unique |
US20050142059A1 (en) * | 2003-03-05 | 2005-06-30 | Kim Hee Y. | Method for continuous preparation of nanometer-sized hydrous zirconia sol using microwave |
-
2005
- 2005-07-15 WO PCT/ES2005/070103 patent/WO2007010057A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997044278A1 (fr) * | 1996-05-22 | 1997-11-27 | Yeda Research And Development Co. Ltd. | Synthese en masse de structures de chalcogenures de metal de type fullerenes inorganiques |
WO2000026138A1 (fr) * | 1998-11-03 | 2000-05-11 | William Marsh Rice University | Nucleation en phase gazeuse et croissance de nanotubes de carbone a paroi simple a partir de co haute pression |
US20040223901A1 (en) * | 1998-11-03 | 2004-11-11 | William Marsh Rice University | Single-wall carbon nanotubes from high pressure CO |
US20020102203A1 (en) * | 2001-01-31 | 2002-08-01 | William Marsh Rice University | Process utilizing pre-formed cluster catalysts for making single-wall carbon nanotubes |
WO2004035881A2 (fr) * | 2002-10-18 | 2004-04-29 | Jeong-Ku Heo | Procede et appareil de synthese de nanotubes de carbone a paroi unique |
US20050142059A1 (en) * | 2003-03-05 | 2005-06-30 | Kim Hee Y. | Method for continuous preparation of nanometer-sized hydrous zirconia sol using microwave |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104271498B (zh) | 用非铁催化剂来还原碳氧化物的方法和结构 | |
KR101460373B1 (ko) | 유동층에서 탄소 나노튜브를 제조하는 방법 | |
Kim et al. | Large-scale production of single-walled carbon nanotubes by induction thermal plasma | |
JP6389824B2 (ja) | 固体炭素材料を製造するための反応器および方法 | |
ES2351845T3 (es) | Nanotubos de carbono funcionalizado con fullerenos. | |
Prasek et al. | Methods for carbon nanotubes synthesis | |
Louis et al. | High yield synthesis of multi-walled carbon nanotubes by catalytic decomposition of ethane over iron supported on alumina catalyst | |
Allaedini et al. | Methane decomposition for carbon nanotube production: Optimization of the reaction parameters using response surface methodology | |
KR102388564B1 (ko) | 유동층 반응기에서 카본 나노튜브 제조 방법 | |
US20050118090A1 (en) | Plasma synthesis of hollow nanostructures | |
Shukrullah et al. | Mass production of carbon nanotubes using fluidized bed reactor: A short review | |
Lu et al. | Catalytic growth of carbon nanotubes through CHNO explosive detonation | |
WO2013109310A1 (fr) | Système et procédé de fabrication d'hydrogène et d'un nanoproduit de carbone | |
JP2013018673A (ja) | 単層カーボンナノチューブと二層カーボンナノチューブが任意比率で混合してなるカーボンナノチューブ集合体並びにその製造方法 | |
JP2012508159A (ja) | カーボンナノチューブ(carbonnanotubes,CNTs)を生成するプロセス | |
Melezhyk et al. | Some aspects of carbon nanotubes technology | |
JP2007261895A (ja) | カーボンナノチューブの製造方法及び装置 | |
CN102020264A (zh) | 一种磷掺杂多壁碳纳米管的制备方法 | |
WO2007010057A1 (fr) | Nouveau systeme multitubulaire destine a la synthese de nanotubes de carbone en phase gazeuse | |
WO2023190783A1 (fr) | Procédé de production de nanotubes de carbone | |
Glerum et al. | Reactor processes for value added carbon synthesis and turquoise hydrogen | |
JP2003313018A (ja) | カーボンナノチューブの製造方法 | |
WO2022047600A1 (fr) | Méthode de préparation de nanotubes de carbone à parois multiples | |
JP5036564B2 (ja) | プレートレット型スリット気相法炭素繊維の製造方法 | |
WO2003082737A1 (fr) | Procede de production de nanotubes de carbone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05774365 Country of ref document: EP Kind code of ref document: A1 |