WO2007006121A1 - Detection de l'etat de charge d'une batterie lithium-ion dans un vehicule electrique hybride - Google Patents
Detection de l'etat de charge d'une batterie lithium-ion dans un vehicule electrique hybride Download PDFInfo
- Publication number
- WO2007006121A1 WO2007006121A1 PCT/CA2006/000610 CA2006000610W WO2007006121A1 WO 2007006121 A1 WO2007006121 A1 WO 2007006121A1 CA 2006000610 W CA2006000610 W CA 2006000610W WO 2007006121 A1 WO2007006121 A1 WO 2007006121A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- state
- charge
- voltage
- real
- Prior art date
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 4
- 238000005259 measurement Methods 0.000 abstract 1
- 230000001419 dependent effect Effects 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- -1 nickel metal hydride Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3842—Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/389—Measuring internal impedance, internal conductance or related variables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4285—Testing apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/443—Methods for charging or discharging in response to temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to detection of the state-of-charge of a lithium ion battery of the type used in a hybrid electric vehicle.
- Hybrid electric vehicles combine a small internal combustion engine with an electric motor and battery to reduce fuel consumption and tailpipe emissions.
- the battery assists the internal combustion engine during initial start-off and acceleration of the vehicle by providing power to the motor.
- the electric motor is used as a generator to produce energy which is stored in the battery.
- the state-of-charge of a battery is the amount of electrical charge remaining in the battery, expressed as a percentage of the difference between the battery's fully-charged and fully-discharged states. To be capable of providing power during acceleration and to be capable accepting power during braking, the battery's state-of-charge must be maintained between the battery's fully charged and fully discharged states.
- HEVs typically use lead acid, nickel cadmium or nickel metal hydride batteries.
- Various prior art techniques have been developed to determine the state-of-charge of such batteries. However, these techniques are typically accurate only at very low current levels, and require frequent calibration. This is a significant disadvantage because HEVs draw large amounts of current during acceleration and generate very large amounts of current during braking.
- Rechargeable lithium ion batteries are unique in that the terminal voltage of a rechargeable lithium ion battery is relatively linear throughout charging or discharging of the battery.
- Such linearity can be used to accurately determine the state-of-charge of a rechargeable lithium ion battery.
- the magnitude of a rechargeable lithium ion battery's terminal voltage depends on the temperature of the battery and on the current drawn through the battery. More particularly, the state-of-charge of a rechargeable lithium ion battery is directly dependent on the battery's terminal voltage, provided the battery's temperature does not change and further provided the current drawn through the battery does not change. However, a change in a rechargeable lithium ion battery's temperature or a change in the current drawn through the battery will change the battery's terminal voltage without necessarily changing the battery's state-of-charge.
- This invention addresses the foregoing factors to facilitate accurate determination of the state-of- charge of a rechargeable lithium ion battery at different battery temperatures and at different currents.
- Figure 1 graphically depicts the voltage (in volts) of a rechargeable lithium ion battery as a function of battery capacity (in amp-hours) for different battery temperatures.
- Figure 2 graphically depicts the voltage (in volts) of a rechargeable lithium ion battery as a function of battery capacity (in amp-hours) for different battery impedances.
- Lower battery operating temperatures suppress the battery's terminal voltage, thereby altering the battery's voltage-to-capacity characteristic.
- the voltage suppression due to low operating temperatures is substantially linear. That is, as can be seen in Figure 1, each discharge curve is substantially linear between the battery's fully charged and fully discharged states, but the magnitude of the voltage differs for each temperature.
- the temperature of the battery is determined (e.g. by a temperature sensor thermally coupled to the battery) and the corresponding voltage (as per Figure 1) is used to determine the battery's state-of-charge.
- each discharge curve is substantially linear between the battery's fully charged and fully discharged states, but the magnitude of the voltage differs for each current parameter plotted.
- a 60% state-of-charge ( «2Ah) at 1.65 amperes corresponds to a battery terminal voltage of 3.8 volts
- a 60% state-of-charge at 5.0 amperes corresponds to a battery terminal voltage of 3.5 volts.
- the state-of-charge of a lithium ion battery is directly proportional to the open circuit voltage of the battery during charging or discharging.
- the open circuit voltage reflects the battery's state of charge without potential interference due to current flowing through the impedance of the battery and its connections. Such current produces an offset in the voltage appearing at the battery's terminals.
- To determine the state-of-charge of a battery while current is flowing through the battery one must initially determine the impedance of the battery. This impedance remains relatively constant throughout the life of the battery. Real-time voltage and real-time current are then measured (during both charging and discharging). The current is then multiplied by the predetermined impedance to determine the voltage drop. This calculated voltage is then added to the measured voltage.
- This new voltage represents the open circuit voltage of the battery and can be used to determine an accurate state-of-charge.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Ce procédé vise à déterminer l'état de charge d'une batterie rechargeable au lithium-ion. Selon un aspect, la tension de décharge de la batterie est fonction de la capacité pour chaque température de batterie prédéterminée parmi un certain nombre de températures. La tension terminale de la batterie et la température en temps réel sont mesurées. La température de batterie prédéterminée la plus proche de la température en temps réel de la batterie est sélectionnée. L'état de charge correspondant à la tension terminale de la batterie pour la température de batterie prédéterminée la plus proche de la température en temps réel est ensuite sélectionnée. Selon un autre aspect, l'impédance de la batterie, la tension terminale en temps réel et le courant en temps réel sont mesurés. Les mesures d'impédance et de courant en temps réel sont multipliées pour obtenir une chute de tension, qui est ajoutée à la tension terminale en temps réel pour déduire la tension de circuit ouvert de la batterie. L'état de charge correspondant à la tension de circuit ouvert est ensuite calculée.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67284805P | 2005-04-20 | 2005-04-20 | |
US60/672,848 | 2005-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007006121A1 true WO2007006121A1 (fr) | 2007-01-18 |
Family
ID=37636687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2006/000610 WO2007006121A1 (fr) | 2005-04-20 | 2006-04-20 | Detection de l'etat de charge d'une batterie lithium-ion dans un vehicule electrique hybride |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007006121A1 (fr) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009065691A2 (fr) * | 2007-11-20 | 2009-05-28 | Zf Friedrichshafen Ag | Procédé de calcul du rendement d'un accumulateur d'énergie et utilisation dudit rendement |
US7675261B2 (en) | 2003-08-11 | 2010-03-09 | Reserve Power Cell, Llc | Auxiliary battery attachment apparatus for use in a multiple battery system that reliably supplies electrical energy to an electrical system |
US7726975B2 (en) * | 2006-06-28 | 2010-06-01 | Robert Bosch Gmbh | Lithium reservoir system and method for rechargeable lithium ion batteries |
US7846571B2 (en) * | 2006-06-28 | 2010-12-07 | Robert Bosch Gmbh | Lithium reservoir system and method for rechargeable lithium ion batteries |
CN102066964A (zh) * | 2009-07-23 | 2011-05-18 | 德克萨斯仪器股份有限公司 | 用于确定蓄电池充电状态的系统和方法 |
CN103344922A (zh) * | 2013-07-12 | 2013-10-09 | 清华大学 | 混合电动车电池单体荷电状态差异检测方法 |
EP2428388A4 (fr) * | 2009-05-08 | 2014-07-16 | Toyota Motor Co Ltd | Système d'alimentation en énergie et véhicule équipé d'un système d'alimentation en énergie |
KR20160036818A (ko) * | 2014-09-26 | 2016-04-05 | 현대자동차주식회사 | 하이브리드 차량의 배터리 충전 장치 및 그 방법 |
US20170250450A1 (en) * | 2016-02-29 | 2017-08-31 | Dongguan Nvt Technology Co., Ltd. | Method and system for dynamically adjusting battery undervoltage protection |
WO2017222728A1 (fr) * | 2016-06-23 | 2017-12-28 | Intel Corporation | Systèmes, procédés et dispositifs de détection d'état de charge de batterie |
US10712396B2 (en) | 2018-05-29 | 2020-07-14 | NDSL, Inc. | Methods, systems, and devices for monitoring state-of-health of a battery system operating over an extended temperature range |
US20230305064A1 (en) * | 2022-03-28 | 2023-09-28 | Ratnesh Kumar Sharma | Systems and methods for managing diverse batteries |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002042786A2 (fr) * | 2000-11-22 | 2002-05-30 | Honeywell International Inc. P.O. Box 2245 | Procede et dispositif permettant de determiner l'etat de charge d'une batterie au ion-lithium |
US6515453B2 (en) * | 2000-11-30 | 2003-02-04 | Koninklijke Philips Electronics | Method of predicting the state of charge as well as the use time left of a rechargeable battery |
US6832171B2 (en) * | 2002-12-29 | 2004-12-14 | Texas Instruments Incorporated | Circuit and method for determining battery impedance increase with aging |
-
2006
- 2006-04-20 WO PCT/CA2006/000610 patent/WO2007006121A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002042786A2 (fr) * | 2000-11-22 | 2002-05-30 | Honeywell International Inc. P.O. Box 2245 | Procede et dispositif permettant de determiner l'etat de charge d'une batterie au ion-lithium |
US6515453B2 (en) * | 2000-11-30 | 2003-02-04 | Koninklijke Philips Electronics | Method of predicting the state of charge as well as the use time left of a rechargeable battery |
US6832171B2 (en) * | 2002-12-29 | 2004-12-14 | Texas Instruments Incorporated | Circuit and method for determining battery impedance increase with aging |
Non-Patent Citations (2)
Title |
---|
RONG P. ET AL.: "An Analytical Model for Predicting the Remaining Battery Capacity of Lithium Ion Batteries", PROCEEDINGS OF THE DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION, 2003, pages 1148 - 1149, XP010634438 * |
SCHMIDT ET AL.: "Complex Impedance Studies of Lithium Iodine Batteries", AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, IEEE, vol. 5, no. 8, August 1990 (1990-08-01), pages 7 - 12, XP008075805 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7839117B2 (en) | 2003-08-11 | 2010-11-23 | Reserve Power Cell, Llc | System and method of detecting a battery fault |
US7675261B2 (en) | 2003-08-11 | 2010-03-09 | Reserve Power Cell, Llc | Auxiliary battery attachment apparatus for use in a multiple battery system that reliably supplies electrical energy to an electrical system |
US7679314B2 (en) | 2003-08-11 | 2010-03-16 | Reserve Power Cell, Llc | Multiple battery system for reliably supplying electrical energy to an electrical system |
US7834583B2 (en) | 2003-08-11 | 2010-11-16 | Reserve Power Cell, Llc | Remotely controlled multiple battery system |
US9774059B2 (en) | 2006-06-28 | 2017-09-26 | Robert Bosch Gmbh | Lithium reservoir system and method for rechargeable lithium ion batteries |
US7726975B2 (en) * | 2006-06-28 | 2010-06-01 | Robert Bosch Gmbh | Lithium reservoir system and method for rechargeable lithium ion batteries |
US8859120B2 (en) | 2006-06-28 | 2014-10-14 | Robert Bosch Gmbh | Lithium reservoir system and method for rechargeable lithium ion batteries |
US7846571B2 (en) * | 2006-06-28 | 2010-12-07 | Robert Bosch Gmbh | Lithium reservoir system and method for rechargeable lithium ion batteries |
WO2009065691A2 (fr) * | 2007-11-20 | 2009-05-28 | Zf Friedrichshafen Ag | Procédé de calcul du rendement d'un accumulateur d'énergie et utilisation dudit rendement |
WO2009065691A3 (fr) * | 2007-11-20 | 2009-08-13 | Zahnradfabrik Friedrichshafen | Procédé de calcul du rendement d'un accumulateur d'énergie et utilisation dudit rendement |
EP2428388A4 (fr) * | 2009-05-08 | 2014-07-16 | Toyota Motor Co Ltd | Système d'alimentation en énergie et véhicule équipé d'un système d'alimentation en énergie |
EP2457107A1 (fr) * | 2009-07-23 | 2012-05-30 | Texas Instruments Incorporated | Systèmes et procédés de détermination d état de charge d'une batterie |
EP2457107A4 (fr) * | 2009-07-23 | 2014-07-02 | Texas Instruments Inc | Systèmes et procédés de détermination d état de charge d'une batterie |
CN102066964A (zh) * | 2009-07-23 | 2011-05-18 | 德克萨斯仪器股份有限公司 | 用于确定蓄电池充电状态的系统和方法 |
CN103344922A (zh) * | 2013-07-12 | 2013-10-09 | 清华大学 | 混合电动车电池单体荷电状态差异检测方法 |
KR20160036818A (ko) * | 2014-09-26 | 2016-04-05 | 현대자동차주식회사 | 하이브리드 차량의 배터리 충전 장치 및 그 방법 |
KR102042124B1 (ko) | 2014-09-26 | 2019-11-08 | 현대자동차주식회사 | 하이브리드 차량의 배터리 충전 장치 및 그 방법 |
US20170250450A1 (en) * | 2016-02-29 | 2017-08-31 | Dongguan Nvt Technology Co., Ltd. | Method and system for dynamically adjusting battery undervoltage protection |
US10135098B2 (en) * | 2016-02-29 | 2018-11-20 | Dongguan Nvt Technology Co., Ltd. | Method and system for dynamically adjusting battery undervoltage protection |
WO2017222728A1 (fr) * | 2016-06-23 | 2017-12-28 | Intel Corporation | Systèmes, procédés et dispositifs de détection d'état de charge de batterie |
US11131716B2 (en) | 2016-06-23 | 2021-09-28 | Intel Corporation | Systems, methods and devices for battery charge state detection |
US10712396B2 (en) | 2018-05-29 | 2020-07-14 | NDSL, Inc. | Methods, systems, and devices for monitoring state-of-health of a battery system operating over an extended temperature range |
US20230305064A1 (en) * | 2022-03-28 | 2023-09-28 | Ratnesh Kumar Sharma | Systems and methods for managing diverse batteries |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007006121A1 (fr) | Detection de l'etat de charge d'une batterie lithium-ion dans un vehicule electrique hybride | |
CN101013822B (zh) | 用于补偿电池充电状态的方法和使用该方法的电池管理系统 | |
CN108663620B (zh) | 一种动力电池组荷电状态估算方法及系统 | |
KR101238478B1 (ko) | 배터리 잔존 용량 측정 방법 | |
US11346887B2 (en) | Method and apparatus for calculating SOH of battery power pack, and electric vehicle | |
CN100541969C (zh) | 用于补偿电池充电状态的方法和使用该方法的电池管理系统 | |
US8965722B2 (en) | Apparatus for calculating residual capacity of secondary battery | |
US9766298B2 (en) | Method for estimating state of health of a battery in a hybrid vehicle | |
JP5447658B2 (ja) | 二次電池の劣化判定装置および劣化判定方法 | |
US7355411B2 (en) | Method and apparatus for estimating state of charge of secondary battery | |
JP5179047B2 (ja) | 蓄電装置の異常検出装置、蓄電装置の異常検出方法及びその異常検出プログラム | |
US7928736B2 (en) | Method of estimating state of charge for battery and battery management system using the same | |
CN104813534B (zh) | 蓄电元件的性能降低探测装置、性能降低探测方法及蓄电系统 | |
JP5515524B2 (ja) | 二次電池の劣化状態判別システム、および二次電池の劣化状態判別方法 | |
EP1158306A2 (fr) | Pocédé de détection pour détecter l'état interne d'une batterie rechargeable, appareil de détection pour une telle procédé, et instrument avec un tel appareil | |
US20100017155A1 (en) | Battery management system | |
JP2006112786A (ja) | 電池の残容量検出方法及び電源装置 | |
CN103869252A (zh) | 用于磷酸铁锂电池的插电充电容量估计方法 | |
US9688159B2 (en) | Methods, apparatus, and systems for preventing over-temperature battery operation | |
JPWO2014167602A1 (ja) | 電池システム | |
CN108459272A (zh) | 状态估计装置及方法、电池组、车辆、蓄电系统、存储器 | |
CN104977537A (zh) | 电池soc的确定方法及使用该方法的电池管理系统 | |
JP7640541B2 (ja) | 急速充電方法 | |
JP2013214371A (ja) | 電池システムおよび推定方法 | |
JP2013187031A (ja) | リチウムイオン二次電池システム、リチウムイオン二次電池の検査方法、リチウムイオン二次電池の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06804611 Country of ref document: EP Kind code of ref document: A1 |