WO2007005029A2 - Tissue protecting spray-on copolymer film composition - Google Patents
Tissue protecting spray-on copolymer film composition Download PDFInfo
- Publication number
- WO2007005029A2 WO2007005029A2 PCT/US2005/024120 US2005024120W WO2007005029A2 WO 2007005029 A2 WO2007005029 A2 WO 2007005029A2 US 2005024120 W US2005024120 W US 2005024120W WO 2007005029 A2 WO2007005029 A2 WO 2007005029A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spray
- film
- composition
- water
- methacrylate
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 100
- 229920001577 copolymer Polymers 0.000 title claims description 52
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims abstract description 90
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims abstract description 75
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 65
- 239000000178 monomer Substances 0.000 claims abstract description 49
- 229920001400 block copolymer Polymers 0.000 claims abstract description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 230000029663 wound healing Effects 0.000 claims abstract description 8
- 239000012867 bioactive agent Substances 0.000 claims abstract description 7
- 230000003444 anaesthetic effect Effects 0.000 claims abstract description 6
- 230000003110 anti-inflammatory effect Effects 0.000 claims abstract description 6
- 230000000845 anti-microbial effect Effects 0.000 claims abstract description 6
- 210000001519 tissue Anatomy 0.000 claims description 65
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 62
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 59
- -1 alkyl methacrylate Chemical compound 0.000 claims description 39
- 239000007921 spray Substances 0.000 claims description 39
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 30
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims description 29
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 claims description 29
- YPHQUSNPXDGUHL-UHFFFAOYSA-N n-methylprop-2-enamide Chemical compound CNC(=O)C=C YPHQUSNPXDGUHL-UHFFFAOYSA-N 0.000 claims description 29
- 239000000645 desinfectant Substances 0.000 claims description 27
- 239000003021 water soluble solvent Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 20
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 17
- 230000035699 permeability Effects 0.000 claims description 13
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 claims description 12
- 208000002193 Pain Diseases 0.000 claims description 12
- 230000001476 alcoholic effect Effects 0.000 claims description 12
- 239000004599 antimicrobial Substances 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 11
- 230000004888 barrier function Effects 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 claims description 10
- 230000001681 protective effect Effects 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 8
- 230000001464 adherent effect Effects 0.000 claims description 7
- 238000000889 atomisation Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 238000000935 solvent evaporation Methods 0.000 claims description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- 229910052740 iodine Inorganic materials 0.000 claims description 6
- 238000010526 radical polymerization reaction Methods 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 239000011734 sodium Substances 0.000 claims description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 claims description 6
- 229920002554 vinyl polymer Polymers 0.000 claims description 6
- 239000003999 initiator Substances 0.000 claims description 5
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 claims description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 4
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 claims description 4
- 241000251539 Vertebrata <Metazoa> Species 0.000 claims description 4
- 230000002421 anti-septic effect Effects 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- LCMDQKIQBKULEI-UHFFFAOYSA-N dimethyl ditelluride Chemical compound C[Te][Te]C LCMDQKIQBKULEI-UHFFFAOYSA-N 0.000 claims description 4
- 239000011630 iodine Substances 0.000 claims description 4
- 229960004125 ketoconazole Drugs 0.000 claims description 4
- 229960002509 miconazole Drugs 0.000 claims description 4
- 238000006116 polymerization reaction Methods 0.000 claims description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 3
- 206010024774 Localised infection Diseases 0.000 claims description 3
- 206010061304 Nail infection Diseases 0.000 claims description 3
- 229910021585 Nickel(II) bromide Inorganic materials 0.000 claims description 3
- 230000000202 analgesic effect Effects 0.000 claims description 3
- 239000000730 antalgic agent Substances 0.000 claims description 3
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 3
- 229940030225 antihemorrhagics Drugs 0.000 claims description 3
- 239000003443 antiviral agent Substances 0.000 claims description 3
- 239000003054 catalyst Substances 0.000 claims description 3
- 229910001882 dioxygen Inorganic materials 0.000 claims description 3
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 claims description 3
- XIMFCGSNSKXPBO-UHFFFAOYSA-N ethyl 2-bromobutanoate Chemical compound CCOC(=O)C(Br)CC XIMFCGSNSKXPBO-UHFFFAOYSA-N 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 239000003193 general anesthetic agent Substances 0.000 claims description 3
- 239000002874 hemostatic agent Substances 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 230000001404 mediated effect Effects 0.000 claims description 3
- IPLJNQFXJUCRNH-UHFFFAOYSA-L nickel(2+);dibromide Chemical compound [Ni+2].[Br-].[Br-] IPLJNQFXJUCRNH-UHFFFAOYSA-L 0.000 claims description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 3
- 239000011541 reaction mixture Substances 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 claims description 3
- 230000000475 sunscreen effect Effects 0.000 claims description 3
- 239000000516 sunscreening agent Substances 0.000 claims description 3
- 229910052714 tellurium Inorganic materials 0.000 claims description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 3
- 239000002966 varnish Substances 0.000 claims description 3
- 239000003357 wound healing promoting agent Substances 0.000 claims description 3
- 101100030361 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) pph-3 gene Proteins 0.000 claims 1
- 239000002243 precursor Substances 0.000 claims 1
- 239000003960 organic solvent Substances 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 95
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 26
- 208000027418 Wounds and injury Diseases 0.000 description 25
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- 206010052428 Wound Diseases 0.000 description 22
- 235000019441 ethanol Nutrition 0.000 description 20
- 239000007788 liquid Substances 0.000 description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 12
- 230000001010 compromised effect Effects 0.000 description 12
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 238000000576 coating method Methods 0.000 description 8
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 6
- 208000025865 Ulcer Diseases 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000007334 copolymerization reaction Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 230000035876 healing Effects 0.000 description 6
- 231100000397 ulcer Toxicity 0.000 description 6
- 238000005299 abrasion Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 238000007429 general method Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 210000004400 mucous membrane Anatomy 0.000 description 5
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 208000034693 Laceration Diseases 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- BLFLLBZGZJTVJG-UHFFFAOYSA-N benzocaine Chemical compound CCOC(=O)C1=CC=C(N)C=C1 BLFLLBZGZJTVJG-UHFFFAOYSA-N 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 206010053615 Thermal burn Diseases 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 239000005457 ice water Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 230000002572 peristaltic effect Effects 0.000 description 3
- 239000002798 polar solvent Substances 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 230000018040 scab formation Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 3
- LBUJPTNKIBCYBY-UHFFFAOYSA-N 1,2,3,4-tetrahydroquinoline Chemical compound C1=CC=C2CCCNC2=C1 LBUJPTNKIBCYBY-UHFFFAOYSA-N 0.000 description 2
- 206010006797 Burns first degree Diseases 0.000 description 2
- 206010006802 Burns second degree Diseases 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 208000010201 Exanthema Diseases 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 230000003385 bacteriostatic effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960005274 benzocaine Drugs 0.000 description 2
- 238000012662 bulk polymerization Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229940096890 d&c violet no. 2 Drugs 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 201000005884 exanthem Diseases 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 230000000855 fungicidal effect Effects 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 230000005923 long-lasting effect Effects 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 230000003239 periodontal effect Effects 0.000 description 2
- 230000002980 postoperative effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 206010037844 rash Diseases 0.000 description 2
- LJFWQNJLLOFIJK-UHFFFAOYSA-N solvent violet 13 Chemical compound C1=CC(C)=CC=C1NC1=CC=C(O)C2=C1C(=O)C1=CC=CC=C1C2=O LJFWQNJLLOFIJK-UHFFFAOYSA-N 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 229960002447 thiram Drugs 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- LNZBSVNIMBHSAG-UHFFFAOYSA-N 1-(1,3-benzodioxol-5-yl)-2-(methylamino)hexan-1-one Chemical compound CCCCC(NC)C(=O)c1ccc2OCOc2c1 LNZBSVNIMBHSAG-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000003014 Bites and Stings Diseases 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 206010012442 Dermatitis contact Diseases 0.000 description 1
- 102000009024 Epidermal Growth Factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 208000006877 Insect Bites and Stings Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 206010042496 Sunburn Diseases 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 208000030961 allergic reaction Diseases 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229960003872 benzethonium Drugs 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 210000004268 dentin Anatomy 0.000 description 1
- 229960001378 dequalinium chloride Drugs 0.000 description 1
- LTNZEXKYNRNOGT-UHFFFAOYSA-N dequalinium chloride Chemical compound [Cl-].[Cl-].C1=CC=C2[N+](CCCCCCCCCC[N+]3=C4C=CC=CC4=C(N)C=C3C)=C(C)C=C(N)C2=C1 LTNZEXKYNRNOGT-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- SIYLLGKDQZGJHK-UHFFFAOYSA-N dimethyl-(phenylmethyl)-[2-[2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethoxy]ethyl]ammonium Chemical compound C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 SIYLLGKDQZGJHK-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- AEDZKIACDBYJLQ-UHFFFAOYSA-N ethane-1,2-diol;hydrate Chemical compound O.OCCO AEDZKIACDBYJLQ-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 239000007952 growth promoter Substances 0.000 description 1
- 230000002439 hemostatic effect Effects 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 239000005414 inactive ingredient Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- ADKOXSOCTOWDOP-UHFFFAOYSA-L magnesium;aluminum;dihydroxide;trihydrate Chemical compound O.O.O.[OH-].[OH-].[Mg+2].[Al] ADKOXSOCTOWDOP-UHFFFAOYSA-L 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920006264 polyurethane film Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0009—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
- A61L26/0014—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0061—Use of materials characterised by their function or physical properties
- A61L26/0066—Medicaments; Biocides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0061—Use of materials characterised by their function or physical properties
- A61L26/0076—Sprayable compositions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F293/00—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F293/00—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
- C08F293/005—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/202—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with halogen atoms, e.g. triclosan, povidone-iodine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/402—Anaestetics, analgesics, e.g. lidocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/442—Colorants, dyes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/602—Type of release, e.g. controlled, sustained, slow
Definitions
- This invention deals with amphiphilic, copolymeric, sprayable, organic solvent-borne compositions so designed to provide a means to yield a medicated or unmedicated elastomeric, thin film on intact or compromised vertebrate animal tissue to protect against damaging environmental elements, aid in healing, and/or deliver needed medicaments.
- the physical and biomechanical properties of these compositions are due to special chain design of the constituent copolymers wherein said chains comprise highly hydrophilic as well as highly hydrophobic segments or blocks.
- Background of the Invention Protecting compromised tissues, as in the case of lacerated skin or mucous membrane, has been of interest to clinicians for decades.
- Opsite Flexigrid ® marketed by Smith & Nephew
- the Opsite Flexigrid ® consists of a thin polyurethane membrane coated with a layer of an acrylic adhesive.
- the dressing which is permeable to both water vapor and oxygen, is impermeable to micro-organisms. Once in position, the film provides an effective barrier to external contamination, while producing a moist environment at the surface of the wound by reducing water vapor loss from the exposed tissue.
- Naturally occurring and derivatized naturally occurring polymers have been tested as liquid adhesive coatings for bandage applications and, in some cases, utilized commercially.
- Typical examples are nitrocellulose in various solvents (e.g., New Skin-Medtech Laboratories, Inc., Cody, Wyoming), agar in water and diethylene glycol (U.S. Patent No. 4,291,025), carrageenan and hydroxypropylmethyl cellulose in water ( U.S. Patent No. 4,318,746), and alginate in glycerin (U.S. Patent No. 4,393,048). All of these natural polymers can support microbial growth, hence requiring the addition of a preservative or antimicrobial agent to the product.
- liquid bandages based on water, diethylene glycol, glycerin, etc. are not only susceptible to microbial growth, but are often also slow drying due to high heats of vaporization; and are often water sensitive, which can result in problems when used on areas of the body exposed to water.
- One commercial product, New Skin does dry rapidly and is not water sensitive, but can cause stinging and further irritation of the skin upon appl ication.
- a few synthetic polymers have been patented for use as liquid adhesive coatings for bandage applications, most notably polymers containing 2-hydroxyethyl methacrylate (U.S. Patent No. 4,303,066).
- traditional wound and surgical bandages such as Band-Aids (Johnson & Johnson, New Brunswick, New Jersey), comprised of film backings with adhesive, may contain silicones as part of either the adhesive or the backing (e.g., U.S. Patent No.
- 4,987,893 was noted to consist essentially of a silo?cane-containing polymer and a solvent system comprising a polar solvent in small amount and a volatile liquid which is non-stinging to a user but provides bulk and formability to the liquid.
- the polymer is present from 1 to 40% by weight, the volatile liquid from 59.9 to 98.9% by weight and the polar solvent from 0.1 to 10% by weight.
- the volatile liquid can be in amounts of 60 to 99%.
- the solvent is minimized to obtain flowability desired at the lowest solvent level feasible which minimizes stinging.
- the material forms a coating or bandage in the form of a dried film when applied to a surface or the skin of a user.
- Patent No. 4,987,893 claims that combinations of alky siloxy siloxane-containing polymers admixed with liquid polydimethylsiloxanes are excellent non- stinging, non-irritating liquid coating material for forming films which act as conformable bandages adhering to and protecting nails, skin, and mucous membrane wounds from abrasion, contamination, and desiccation, while stopping pain from exposed nerve ends and allowing body fluid evaporation.
- 4,987,893 are (1) expected to result in low tear strength films because of being made of polysiloxane-based chains; (2) not expected to form, in a timely manner, a solid film at the application site because of the low volatility of their major constituents; (3) expected to yield hydrophobic films that have low or no tendency to adhere to moist tissue for sufficient periods of time — these films offer no advantage over regular bandages; and (4) not expected to yield thin film on diff ⁇ cult-to-reach areas.
- the dressing is transparent, permits easy follow-up of healing in the donor site, protects the wound against infection, and does not inconvenience trie patient.
- the treatment is simple, economical, and does not require special skills.
- the dressing peels off spontaneously after epidermal regeneration of the wound is completed. No complications or allergic reaction were observed with this treatment.
- a commercial spray bandage sold under the trade name Curad ® Spray Bandage (Beiersdorf, Inc., Winton, Connecticut) was described to have the following ingredients: poly(methyl acrylate-isobutene-mono-isopropyl maleate), ethyl acetate, menthol, pentane, and carbon dioxide. It was noted to yield a transparent, breatheable film that seals applications site from water, dirt, and germs for maximum protection.
- a second bandage spray that is water-soluble is commercialized by Swift First Aid as Swift Bandage Spray. It is advertised to provide an invisible coat for protection from dire, dust, and bacteria. It has been recommended for minor injuries, irritations, and insect bites.
- the inactive ingredients of the spray-on are ethyl alcohol, isobutane, n-butane, propane, a water-soluble copolymer of N-vinyl pyrrolidone, and vinyl acetate.
- the spray-on also contains benzethonium cliloride (0.2% w/w) and benzocaine (5% w/w) as active ingredients.
- benzethonium cliloride (0.2% w/w
- benzocaine 5% w/w
- This invention deals generally with a tissue protecting, spray-on film composition
- a tissue protecting, spray-on film composition comprising an amphiphilic film-forming, segmented/block copolymer derived from at least one water-soluble monomer and at least another water-insoluble monomer, wherein said respective film can be formed from a water soluble organic solvent such as 2-propaxiol, acetone, and ethyl acetate.
- the film can contain a bioactive agent including those to have antimicrobial, anesthetic, anti-inflammatory, and wound-healing activities.
- tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein (1) the said solvent may contain water at more than 0.1 percent of its volume; (2) the segmented/block copolymer may be derived from n-hexyl methacrylate and N-vinyl pyrrolidone; and (3) the segmented/block copolymer may be prepared by the controlled incremental addition of either or both monomers (comono
- An alternative method for preparing the segmented/block copolymer subject of this invention comprises solution or bulk polymerization through controlled/living radical polymerization (CLRP) using NiBr 2 (PPh 3 ) 2 as a catalyst and ethyl 2-bromobutyrate as an initiator.
- CLRP controlled/living radical polymerization
- a specific aspect of this invention deals with a tissue protecting spray-on film composition
- a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer, having a molecular weight of at least 15 kDa, derived from n-hexyl methacrylate and one or more monomer selected from the group represented by N-vinyl pyrrolidone and 2-hydroxy ethyl methacrylate, acrylamide, and N-methyl acrylamide.
- a general aspect of this invention addresses a tissue protecting spray-on film composition
- a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacryla_te wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein the said copolymer is made following a tellurium mediated living radical polymerization (TeRP) using one or more organotellurium compound selected from the group represented by Ph(CH 3 )CH-Te-CH 3 , PHCH 2 -TeMe, Ph-CH(CH
- tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said copolymer comprises an A-B diblock chain structure wherein the A-block is derived from n-hexyl methacrylate and the B-block is derived from a monomer selected from the group represented by N-vinyl pyrrolidone, 2-hydroxyl ethyl methacrylate, acrylamide, and N-
- the copolymer may be based on an A-B-A triblock chain structure wherein the A-block is derived from a monomer selected from the group represented by N- vinyl pyrrolidone, 2-hydroxyl ethyl methacrylate, acrylamide, and N-methyl acrylamide and the B-block is derived from one or more alkyl methacrylate monomer selected from the group represented by n-hexyl and n-butyl methacrylate or structural isomers thereof.
- A-block is derived from a monomer selected from the group represented by N- vinyl pyrrolidone, 2-hydroxyl ethyl methacrylate, acrylamide, and N-methyl acrylamide
- the B-block is derived from one or more alkyl methacrylate monomer selected from the group represented by n-hexyl and n-butyl methacrylate or structural isomers thereof.
- the copolymer may be based on a B-A-B triblock chain structure wherein the A-block is derived from a monomer selected from the group represented by N- vinyl pyrrolidone, 2-hydroxy ethyl methacrylate, acrylamide, and N-methyl acryla ⁇ mide and the B-block is derived from one or more alkyl methacrylate monomer selected from the group represented by n-hexyl and n-butyl methacrylate, or structural isomers thereof.
- A-block is derived from a monomer selected from the group represented by N- vinyl pyrrolidone, 2-hydroxy ethyl methacrylate, acrylamide, and N-methyl acryla ⁇ mide
- the B-block is derived from one or more alkyl methacrylate monomer selected from the group represented by n-hexyl and n-butyl methacrylate, or structural isomers thereof.
- tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer, having a molecular weight of at least 15 kDa, in the form of a breatheable, adhering film for protecting compromised skin, wherein said film displays higher oxygen permeability and lower water vapor transmission compared with a Nylon 6 film control at 25°C and 37 0 C, respectively.
- tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said film functions as a protective barrier for tissues of the buccal cavity, mandibular tissue, and dental varnish.
- an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of
- tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said composition comprises a UVB light-absorbing sunscreen compound for use as a protective film on skin.
- an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl
- a key aspect of this invention deals with a tissue protecting spray-on film composition
- a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 IcDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said composition comprises an antimicrobial agent selected from the group represented by miconazole and ketoconazole for use in treating athletes' foot and nail infection, and/or a biocompatible dye.
- a specific aspect of this invention pertains to a tissue protecting spray-on film composition
- a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein the said composition is used as a disinfectant spray bandage for depositing a flexible-barrier, solid microfilm onto living tissue as in intact or compromised skin, ulcers, or burns, through the combined processes of gas-propelled spray atomization and solvent evaporation.
- a disinfectant spray bandage composition comprising an alcoholic solution of at least 5 percent w/v of at least one amphiphilic, essentially water-insoluble, segmented/block copolymer having a molecular weight of at least 15 kDa, wherein the alcoholic solution comprises a copolymer of an N-vinyl lactam and an alkyl methacrylate in 2-propanol, and preferably the N-vinyl lactam is N-vinyl pyrrolidone and the alkyl methacrylate is n-hexyl methacrylate, and more preferably the copolymer is based on at least 10 mole-percent of N-vinyl pyrrolidone-derived repeat units.
- Such disinfectant spray bandage composition can be a part of a gas pressurized delivery device capable of in situ forming of an adherent film on viable tissue, such as skin, of a vertebrate animal, wherein the film displays at least 100 percent ultimate elongation, 10 percent reversible elongation, 1.0 MPa maximum stress, and Young's Modulus of less than 100 MPa. And the resulting adherent film exhibits the following properties: (1) an oxygen gas permeability of at least 0.5 cc/100 In 2 /24 hours at 25 0 C; and (2) water-vapor transmission of less than 20 g./100 In 2 /24 hours @ 37°C.
- a specific aspect of this invention deals with a disinfectant spray bandage composition
- a disinfectant spray bandage composition comprising an alcoholic solution of at least 5 percent w/v of at least one amphiphilic, essentially water-insoluble, segmented/block copolymer of N-vinyl pyrrolidone and n-hexyl methacrylate, having a molecular weight of at least 15 kDa, wherein the alcoholic solution comprises (1) a hemostatic agent; (2) one pain relieving agent, such as benzocain; (3) a bioactive agent selected from the group represented by antimicrobial, antiseptic, anesthetic, analgesic, wound healing, anti-inflammatory, and antiviral agents; and/or (4) a compatible dye, such as D&C Violet No. 2.
- tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said composition is designed as a disinfectant spray bandage for depositing a flexible-barrier, solid microfilm onto living tissue as in intact or compromised skin, ulcers, or burns, through the combined processes of gas-propelled spray atomization and solvent evaporation, wherein said copolymer is based on at least 10 mole percent of N-vinyl pyrrolidone, acrylamide,
- tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, whereas said composition is designed as a disinfectant spray bandage for depositing a flexible-barrier, solid microfilm onto living tissue as in intact or compromised skin, ulcers, or burns, through the combined processes of gas-propelled spray atomization and solvent evaporation, wherein the alcoholic composition contains trichlosan sodium to yield a clear film comprising at least
- This invention deals in general with amphiphilic, segmented/block copolymeric compositions based on at least one water-soluble monomer (or comonomer) and at least one water-insoluble monomer (comonomer).
- volatile organic solvent that can be sprayed on compromised or intact tissues to provide a compliant, resilient, stretchable film that is non- water soluble.
- the spray-on composition and hence, the resulting film may contain active compounds that (1) are capable of reducing pain, as in the case of local anesthetic agents which may include benzocaine (at 0.1 to 5% w/w) and benzethonium chloride (at 0.01 to 0.5% w/w); (2) are antiseptic, such as iodine which may be complexed with the hydrophilic component of the segmented/block copolymer, as is the case with the poly-N-vinyl pyrrolidone segment or block; (3) have bacteriostatic properties, such as trichlosan (or trichlosan sodium); (4) bacteriostatic/ bacteriocidal/antitumor agent, such as dequalinium chloride; (5) have bacteriocidal properties, such as gentamicin; (6) have fungicidal properties, such as miconazole and ketoconazole; (7) are capable of promoting wound healing, such as growth promoters including epidermal growth factor and its peptid
- Another general aspect of this invention deals with a spray-on composition that results in thin films with modulated oxygen permeability and water-vapor transmission rate. This can be achieved by varying the film thickness and the ratio of the hydrophiphilic to hydrophobic component of the copolymer chain. Accordingly, these films can be used in two considerably different applications, such as a (1) wound dressing as preferred alternatives to commercially available, preformed, adhering barrier films, as for example the Opsite Flexigrid ® described earlier in tine Background of this Invention section; and (2) temporary dressing for split-thickness skin graft donor sites.
- the amphiphilic film provides a moist healing environment for many types of wounds, including abrasions, blisters, carpet burns, lacerations, poison ivy rash, road rash, and superficial burns.
- the amphiphilic tissue protecting film can be applied to cuts, burns, blisters, lacerations, or rashes to prevent or minimize scab formation. This will not obstruct the flow of cell migration freely and allow the wound to heal more naturally.
- a spray-on amphiphilic bandage can provide a highly conformable, thin film cover to compromised skin and presents a preferred alternative to regular bandages that get wet and fall off easily.
- the spray-on compositions of the present invention can form a clear cover that protects cuts, scrapes, and blisters and helps prevent the formation of calluses.
- This clear cover is also a compliant and flexible waterproof film that allows the retention of sufficient moisture at the application site and inward diffusion of oxygen, which in turn permit the tissue, as in skin, to breathe and prevent contamination with dirt and germs.
- the spray-on film for skin application is tougher and more flexible than a regular bandage. It can be applied to large areas, like legs and arms, or hard-to-reach areas. Additionally, the barrier film dressing is permeable to both water vapor and oxygen, but is impermeable to micro- organisms.
- the film subject of this invention may be used in the treatment of scalds, first-or second-degree burns, donor sites, post-operative wounds, minor injuries (including abrasions and lacerations), and for the prevention and treatment of superficial pressure areas.
- the barrier film dressing may be used also as a temporary dressing for split-thickaess, skin graft donor sites.
- a strongly bacteriocidal and fungicidal agent such as tetramethylthiuram disulfide
- a strongly bacteriocidal and fungicidal agent such as tetramethylthiuram disulfide
- the spray-on formulation is considered as a disinfectant one, without adding any antimicrobial agent.
- the medicated and unmedicated spray-on film may be used as an incise drape.
- a medicated or unmedicated spray-on film can be used as a (1) hemostatic film in periodontal surgery; (2) protective barrier during periodontal surgical procedures; and (3) protective sealant of dentine, which may also serve as a depot for the controlled delivery of bioactive agents.
- a specific aspect of this invention deals with a spray-on composition to yield a conformable, solid, adherent coating (without need to add an adhesive) on biological sites which are (1) of irregular or have acute geometries; (2) difficult to reach; and (3) difficult-to- adhere to tissues, such as wet mucous membranes.
- This invention deals generally with a tissue protecting, spray-on film composition comprising an amphiphilic film-forming, segmented/block copolymer derived form at least one water-soluble monomer and at least another water-insoluble monomer wherein said respective film can be formed from a water soluble organic solvent such as 2-propanol, acetone, and ethyl acetate.
- the film can contain a bioactive agent including those to have antimicrobial, anesthetic, anti-inflammatory, and wound-healing activities.
- a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydro>xyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein (1) the said solvent may contain water at more than 0.1 percent of its volume; (2) the segmented/block copolymer may be derived from n-hexyl methacrylate and N-viny
- An alternative method for preparing the segmented/block copolymer subject of this invention comprises solution or bulk polymerization through controlled/living radical polymerization (CLRP) using NiBr 2 (PPh 3 ) 2 as a catalyst and ethyl 2-bromobutyrate as an initiator.
- CLRP controlled/living radical polymerization
- NiBr 2 (PPh 3 ) 2 as a catalyst
- ethyl 2-bromobutyrate ethyl 2-bromobutyrate
- a specific aspect of this invention deals with a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer, having a molecular weight of at least 15 kDa, derived from n-hexyl metriacrylate and one or more monomer selected from the group represented by N-vinyl pyrrolidone and 2-hydroxy ethyl methacrylate, acrylamide, and N-methyl acrylamide.
- a general aspect of this invention addresses a tissue protecting spray-on film composition
- a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 IdDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxy ethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein the said copolymer is made following a tellurium mediated living radical polymerization (TeRP) using one or more organotellurium compound selected from the group represented by Ph(CH 3 )CH-Te-CHj , PHCH 2 -TeMe, Ph-CH(CH 3
- tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said copolymer comprises an A-B diblock chain structure wherein the A-block is derived from n-hexyl methacrylate and the B-block is derived from a monomer selected from the group represented by N-vinyl pyrrolidone, 2-hydroxyl ethyl methacrylate, acrylamide, and N-
- the copolymer may be based on an A-B-A triblock chain structure wherein the A-block is derived from a monomer selected from the group represented by N- vinyl pyrrolidone, 2-hydroxyl ethyl methacrylate, acrylamide, and N-methyl acrylamide and the B-block is derived from one or more alkyl methacrylate monomer selected from the group represented by n-hexyl and n-butyl methacrylate or structural isomers thereof.
- A-block is derived from a monomer selected from the group represented by N- vinyl pyrrolidone, 2-hydroxyl ethyl methacrylate, acrylamide, and N-methyl acrylamide
- the B-block is derived from one or more alkyl methacrylate monomer selected from the group represented by n-hexyl and n-butyl methacrylate or structural isomers thereof.
- the copolymer may be based on a B-A-B triblock chain structure wherein the A-block is derived from a monomer selected from the group represented by N- vinyl pyrrolidone, 2-hydroxy ethyl methacrylate, acrylamide, and N-methyl acrylamide and the B-block is derived from one or more alkyl methacrylate monomer selected from the group represented by n-hexyl and n-butyl methacrylate, or structural isomers thereof.
- A-block is derived from a monomer selected from the group represented by N- vinyl pyrrolidone, 2-hydroxy ethyl methacrylate, acrylamide, and N-methyl acrylamide
- the B-block is derived from one or more alkyl methacrylate monomer selected from the group represented by n-hexyl and n-butyl methacrylate, or structural isomers thereof.
- tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer, having a molecular weight of at least 15 kDa in the form of a breatheable, adhering film for protecting compromised skin, wherein said film displays higher oxygen permeabi lity and lower water vapor transmission compared with a Nylon 6 film control at 25°C and 37°C, respectively.
- tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 IcDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said film functions as a protective barrier for tissues of the buccal cavity, mandibular tissue, and dental varnish.
- an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 IcDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of
- tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said composition comprises a UVB light-absorbing sunscreen compound for use as a protective film on skin.
- an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl
- a key aspect of this invention deals with a tissue protecting spray-on film composition
- a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 IcDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said composition comprises an antimicrobial agent selected from the group represented by miconazole and ketoconazole for use in treating athletes' foot and nail infection, and/or a biocompatible dye.
- a specific aspect of this invention pertains to a tissue protecting spray-on film composition
- a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 IcDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein the said composition is used as a disinfectant spray bandage for depositing a flexible-barrier, solid microfilm onto living tissue as in intact or compromised skin, ulcers, or burns, through the combined processes of gas-propelled spray atomization and solvent evaporation.
- a disinfectant spray bandage composition comprising an alcoholic solution of at least 5 percent w/v of at least one amphiphilic, essentially water-insoluble segmented/block copolymer having a molecular weight of at least 15 IcDa, wherein the alcoholic solution comprises a copolymer of an N-vinyl lactam and an alkyl methacrylate in 2-propanol, and preferably the N-vinyl lactam is N-vinyl pyrrolidone and the alkyl methacrylate is n-hexyl methacrylate, and more preferably the copolymer is based on at least 10 mole-percent of N-vinyl pyrrolidone-derived repeat units.
- Such disinfectant spray bandage composition can be a part of a gas pressurized delivery device capable of in situ forming of an adherent film on viable tissue, such as skin of a vertebrate animal, wherein the film displays at least 100 percent ultimate elongation, 10 percent reversible elongation, 1.0 MPa maximum stress, and Young's Modulus of less than 100 MPa. And the resulting adherent film exhibits the following properties: (1) an oxygen gas permeability of at least 0.5 cc/100 In 2 /24 hours at 25°C; and (2) water-vapor transmission of less than 20 g./100 In 2 /24 hours @ 37°C.
- a specific aspect of this invention deals with a disinfectant spray bandage composition
- a disinfectant spray bandage composition comprising an alcoholic solution of at least 5 percent w/v of at least one amphiphilic, essentially water-insoluble, segmented/block copolymer of N-vinyl pyrrolidone and n-hexyl methacrylate, having a molecular weight of at least 15 kDa, wherein the alcoholic solution comprises (1) a hemostatic agent; (2) one pain relieving agent, such as benzocain; (3) a bioactive agent selected from the group represented by antimicrobial, antiseptic, anesthetic, analgesic, wound healing, anti-inflammatory, and antiviral agents; and/or (4) a compatible dye, such as D&C Violet No. 2.
- tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said composition is designed as a disinfectant spray bandage for depositing a flexible-barrier, solid microfilm onto living tissue as in intact or compromised skin, ulcers, or burns, through the combined processes of gas-propelled spray atomization and solvent evaporation, wherein said copolymer is based on at least 10 mole percent of N-vinyl pyrrolidone, acrylamide,
- tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, whereas said composition is designed as a disinfectant spray bandage for depositing a flexible-barrier, solid microfilm onto living tissue as in intact or compromised skin, ulcers, or burns, through the combined processes of gas-propelled spray atomization and solvent evaporation, wherein the alcoholic composition contains trichlosan sodium to yield a clear film comprising at least
- Example 1 General Method of Preparation and Characterization of Segmented/Block Copolymers of Alkyl Methacrylate/N-Vinyl Pyrrolidone Copolymer Using Classical Free-radical Conditions
- the copolymerization was carried out in two steps.
- N-vinyl pyrrolidone, a small amount of an alkyl methacrylate, and a catalytic amount of a free- radical initiator were mixed under an oxygen-free environment in a mechanically stirred reaction flask.
- the mixture was heated for about 30 minutes at 65°C-85°C to allow partial polymerization of the comonomers.
- the second step commenced by adding a solution of alkyl methacrylate and an additional amount of the free-radical initiator over a long period of time. After completing the addition of the second charge, the reaction was continued for an additional 30 minutes.
- the purified copolymer was characterized for molecular weight (GPC), identify (IR), and composition (NMR and elemental nitrogen analysis).
- the polymer was precipitated in ice water in a blender, filtered using a filter fmnnel, blended in -6O 0 C methanol, filtered and dried under reduced pressure at room temperature. It was dissolved as a 20-weight-percent solution in chloroform, precipitated in -60 0 C methanol, filtered, dissolved in chloroform, poured onto a Teflon tray and dried to constant weight under reduced pressure at 45°C.
- the infrared (IR) and NMR data were consistent with the elemental analysis data.
- the polymer was precipitated in ice water in a blender, filtered using a filter funnel, blended in -60 0 C methanol, filtered and dried under reduced pressure at room temperature. It was dissolved as a 20-weight-percent solution in chloroform, precipitated in -60 0 C methanol, poured onto a Teflon tray, and dried to constant weight.
- the IR and NMR data were consistent with the elemental analysis data.
- Example 4 Copolymerization of 35/65 N-vinyl Pyrrolidone (NVPVn-Hexyl Methacrylate (HMA) to Produce Segmented/Block Copolymer SC-III
- NDPVn-Hexyl Methacrylate (HMA) 35/65 N-vinyl Pyrrolidone
- HMA N-vinyl Methacrylate
- the first charge was based on an N-vinyl-2-pyrrolidone (NVP)-rich comonomer mixture.
- NVP N-vinyl-2-pyrrolidone
- HMA n-hexyl methacrylate
- 1,4-dioxane 47 mL
- 2-2' Azo-bis-isobutyronitrile 2.20 mmole
- the polymer was precipitated in ice water in a blender, filtered using a filter funnel, blended in -60 0 C methanol, filtered and dried under reduced pressure at room temperature. It was dissolved as a 20-weight-percent solution in chloroform, precipitated in -6O 0 C methanol, poured onto a Teflon tray, and dried to constant weight. This precipitation was repeated once more to give an "extra pure" polymer.
- the IR and NMR data were consistent with the elemental analysis data.
- the desired amount of SC-I, SC-II, or SC-III, from Examples 2, 3 or 4 was dissolved in 2-propanol to yield a solution having a solid content between 10 and 25 percent (w/v), depending on the desired film thickness.
- the polymer solution was cast on a flat Teflon sheet and thickness was then adjusted with a horizontally rolling draw rod.
- the film was allowed to dry in a laminar flow hood.
- the drying time was predetermined in a pilot experiment to insure that the drying process resulted in a constant film weight.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
This invention deals with a tissue protecting, spray-on film composition comprising an amphiphilic film-forming, segmented/block copolymer derived from at least one water-soluble monomer and at least another water-insoluble monomer, wherein the film can be formed from a water soluble organic solvent such as 2-propanol, acetone, and ethyl acetate. The film can contain a bioactive agent including those to have antimicrobial, anesthetic, anti-inflammatory, and wound-healing activities.
Description
Tissue Protecting Spray-on Copolymeric Film Composition
The present application claims the benefit of prior provisional application, U.S. Serial No. 60/598,343, filed July 31, 2004. Field of the Invention
This invention deals with amphiphilic, copolymeric, sprayable, organic solvent-borne compositions so designed to provide a means to yield a medicated or unmedicated elastomeric, thin film on intact or compromised vertebrate animal tissue to protect against damaging environmental elements, aid in healing, and/or deliver needed medicaments. The physical and biomechanical properties of these compositions are due to special chain design of the constituent copolymers wherein said chains comprise highly hydrophilic as well as highly hydrophobic segments or blocks. Background of the Invention Protecting compromised tissues, as in the case of lacerated skin or mucous membrane, has been of interest to clinicians for decades. This commenced by using the now-described "traditional bandage." This was followed by the development of adhering, highly conformable, thin film, such as Opsite Flexigrid® (marketed by Smith & Nephew) and similar systems later on. The Opsite Flexigrid® consists of a thin polyurethane membrane coated with a layer of an acrylic adhesive. The dressing, which is permeable to both water vapor and oxygen, is impermeable to micro-organisms. Once in position, the film provides an effective barrier to external contamination, while producing a moist environment at the surface of the wound by reducing water vapor loss from the exposed tissue. Under these conditions in shallow wounds, scab formation is prevented and epidermal regeneration takes place at an enhanced rate, compared with that which occurs in wounds treated with traditional dry dressings. The polyurethane film is supported on a removable flexible carrier that can be drawn upon to provide a record of the size and shape of the wound to which the dressing is applied. Opsite Flexigrid® was recommended by the manufacturer for use in the treatment of
scalds, first- or second-degree burns, donor sites, post-operative wounds, minor injuries (including abrasions and lacerations), and for the prevention and treatment of superficial pressure areas. Larger sizes of the dressing without the flexible carrier are marketed as incise drapes. Concomitant with the development of Opsite and similar films, a few investigators pursued the development of the so-called liquid bandages as discussed in the following paragraphs.
Naturally occurring and derivatized naturally occurring polymers have been tested as liquid adhesive coatings for bandage applications and, in some cases, utilized commercially. Typical examples are nitrocellulose in various solvents (e.g., New Skin-Medtech Laboratories, Inc., Cody, Wyoming), agar in water and diethylene glycol (U.S. Patent No. 4,291,025), carrageenan and hydroxypropylmethyl cellulose in water ( U.S. Patent No. 4,318,746), and alginate in glycerin (U.S. Patent No. 4,393,048). All of these natural polymers can support microbial growth, hence requiring the addition of a preservative or antimicrobial agent to the product. The liquid bandages based on water, diethylene glycol, glycerin, etc., are not only susceptible to microbial growth, but are often also slow drying due to high heats of vaporization; and are often water sensitive, which can result in problems when used on areas of the body exposed to water. One commercial product, New Skin, does dry rapidly and is not water sensitive, but can cause stinging and further irritation of the skin upon appl ication. A few synthetic polymers have been patented for use as liquid adhesive coatings for bandage applications, most notably polymers containing 2-hydroxyethyl methacrylate (U.S. Patent No. 4,303,066). These bandages based on the use of solvents can sting abraded areas; and the films can swell and wash off when in contact with water. U.S. Patent No. 4,569,784 claims an ointment, not a long-lasting bandage composed of an emulsion of water and silicone fluids, among other fluids. This reference can provide for an immediate soothing, but often not long-lasting, treatment of the skin or mucous membranes. It also does not
provide for fast drying, abrasion resistance, and other attributes which a polymer film can provide.
Additionally, traditional wound and surgical bandages, such as Band-Aids (Johnson & Johnson, New Brunswick, New Jersey), comprised of film backings with adhesive, may contain silicones as part of either the adhesive or the backing (e.g., U.S. Patent No.
4,650,817). These products are not applied as liquid adhesive coating where films form and adhere directly on the skin. Thus led Salamone et al., (U.S. Patent No. 4,987,893) to develop a liquid polymer-containing coating material which can act as a bandage or dressing to protect wounds, when applied in liquid form and air-dried on the wound to foπn an adherent, solid protective film without significant stinging to the skin or mucous membranes of the user. The liquid polymer-containing coating material of U.S. Patent No. 4,987,893 was noted to consist essentially of a silo?cane-containing polymer and a solvent system comprising a polar solvent in small amount and a volatile liquid which is non-stinging to a user but provides bulk and formability to the liquid. Preferably, the polymer is present from 1 to 40% by weight, the volatile liquid from 59.9 to 98.9% by weight and the polar solvent from 0.1 to 10% by weight. When the polar solvent is eliminated, the volatile liquid can be in amounts of 60 to 99%. The solvent is minimized to obtain flowability desired at the lowest solvent level feasible which minimizes stinging. The material forms a coating or bandage in the form of a dried film when applied to a surface or the skin of a user. Collectively, U.S. Patent No. 4,987,893 claims that combinations of alky siloxy siloxane-containing polymers admixed with liquid polydimethylsiloxanes are excellent non- stinging, non-irritating liquid coating material for forming films which act as conformable bandages adhering to and protecting nails, skin, and mucous membrane wounds from abrasion, contamination, and desiccation, while stopping pain from exposed nerve ends and allowing body fluid evaporation. However to those skilled in the art of polymers, the compositions of U.S. Patent No. 4,987,893 are (1) expected to result in low tear strength
films because of being made of polysiloxane-based chains; (2) not expected to form, in a timely manner, a solid film at the application site because of the low volatility of their major constituents; (3) expected to yield hydrophobic films that have low or no tendency to adhere to moist tissue for sufficient periods of time — these films offer no advantage over regular bandages; and (4) not expected to yield thin film on diffϊcult-to-reach areas. Such undesirable features of U. S. Patent No. 4,987,893, and the prior art that preceded this patent provided a strong incentive to explore the development of the amphiphilic, water-insoluble spray-on liquid compositions subject of this invention which have been noted to represent a series of preferred medicated and unmedicated alternatives to regular bandages and all so- called liquid bandages of the prior art. A special incentive to explore the development of certain segments of the present invention dealing with pain-free, film-forming compositions was related to the effective use of Nobecutane spray as a temporary dressing of skin graft donor sites [Brodovsky, S., et al., J. Dermatol. Surg. Oncol., 12(4), 386 (1986)] in spite of using the stingy ethyl acetate as solvent. The respective clinicians noted that various methods have been used for managing split-thickness skin graft donor sites. Open and closed techniques have been suggested by various authors with the purpose of achieving smooth and rapid healing of the wound. There is growing evidence to suggest that the site and quality of the healing is improved when the wound is protected from dehydration and further mechanical trauma. A recent method is the spraying o£~ Nobecutane Spray on the donor site. Nobecutane sprayed on a wound forms a plastic film which serves as a dressing material. It contains specially modified acrylic resin in an organic solvent (ethyl acetate) and TMTD (tetramethylthiuram disulphide) which is strongly bactericidal and fungicidal. This method was used on 50 patients and found to be effective in achieving rapid and painless healing. The dressing is transparent, permits easy follow-up of healing in the donor site, protects the wound against infection, and does not inconvenience trie patient. The treatment is simple, economical, and does not require special skills. The dressing peels off spontaneously after
epidermal regeneration of the wound is completed. No complications or allergic reaction were observed with this treatment.
A commercial spray bandage sold under the trade name Curad® Spray Bandage (Beiersdorf, Inc., Winton, Connecticut) was described to have the following ingredients: poly(methyl acrylate-isobutene-mono-isopropyl maleate), ethyl acetate, menthol, pentane, and carbon dioxide. It was noted to yield a transparent, breatheable film that seals applications site from water, dirt, and germs for maximum protection. A second bandage spray that is water-soluble is commercialized by Swift First Aid as Swift Bandage Spray. It is advertised to provide an invisible coat for protection from dire, dust, and bacteria. It has been recommended for minor injuries, irritations, and insect bites. The inactive ingredients of the spray-on are ethyl alcohol, isobutane, n-butane, propane, a water-soluble copolymer of N-vinyl pyrrolidone, and vinyl acetate. The spray-on also contains benzethonium cliloride (0.2% w/w) and benzocaine (5% w/w) as active ingredients. Unfortunately, this coa/ting is not expected to reside for a practically effective period of time at the application site because of its water solubility.
None of the cited prior art has described or made obvious the conception of "the spray- on compositions of the amphiphilic, non-water-soluble, segmented/block copolymers that are capable of yielding conformable, high compliance film with modulated oxygen permeability and water vapor transmission which are the subject of the present invention.
Summary of the Invention
This invention deals generally with a tissue protecting, spray-on film composition comprising an amphiphilic film-forming, segmented/block copolymer derived from at least one water-soluble monomer and at least another water-insoluble monomer, wherein said respective film can be formed from a water soluble organic solvent such as 2-propaxiol,
acetone, and ethyl acetate. The film can contain a bioactive agent including those to have antimicrobial, anesthetic, anti-inflammatory, and wound-healing activities.
One primary aspect of this invention deals with a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein (1) the said solvent may contain water at more than 0.1 percent of its volume; (2) the segmented/block copolymer may be derived from n-hexyl methacrylate and N-vinyl pyrrolidone; and (3) the segmented/block copolymer may be prepared by the controlled incremental addition of either or both monomers (comonomers) to the polymerization reaction mixture under typical (or traditional) free-radical conditions. An alternative method for preparing the segmented/block copolymer subject of this invention comprises solution or bulk polymerization through controlled/living radical polymerization (CLRP) using NiBr2 (PPh3)2 as a catalyst and ethyl 2-bromobutyrate as an initiator.
A specific aspect of this invention deals with a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer, having a molecular weight of at least 15 kDa, derived from n-hexyl methacrylate and one or more monomer selected from the group represented by N-vinyl pyrrolidone and 2-hydroxy ethyl methacrylate, acrylamide, and N-methyl acrylamide.
A general aspect of this invention addresses a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of
N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacryla_te wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein the said copolymer is made following a tellurium mediated living radical polymerization (TeRP) using one or more organotellurium compound selected from the group represented by Ph(CH3)CH-Te-CH3, PHCH2-TeMe, Ph-CH(CH3)-Te-CH3, and (CH3)2C(COOEt)-Te-CH3. wherein Ph = phenyl group and Me = methyl group, and preferably the copolymerization entails the use of dimethyl ditelluride.
Another general aspect of this invention pertains to a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said copolymer comprises an A-B diblock chain structure wherein the A-block is derived from n-hexyl methacrylate and the B-block is derived from a monomer selected from the group represented by N-vinyl pyrrolidone, 2-hydroxyl ethyl methacrylate, acrylamide, and N-methyl acrylamide. Alternatively, the copolymer may be based on an A-B-A triblock chain structure wherein the A-block is derived from a monomer selected from the group represented by N- vinyl pyrrolidone, 2-hydroxyl ethyl methacrylate, acrylamide, and N-methyl acrylamide and the B-block is derived from one or more alkyl methacrylate monomer selected from the group represented by n-hexyl and n-butyl methacrylate or structural isomers thereof. As a second structural alternative, the copolymer may be based on a B-A-B triblock chain structure wherein the A-block is derived from a monomer selected from the group represented by N- vinyl pyrrolidone, 2-hydroxy ethyl methacrylate, acrylamide, and N-methyl acryla^mide and
the B-block is derived from one or more alkyl methacrylate monomer selected from the group represented by n-hexyl and n-butyl methacrylate, or structural isomers thereof.
Another aspect of this invention pertains to a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer, having a molecular weight of at least 15 kDa, in the form of a breatheable, adhering film for protecting compromised skin, wherein said film displays higher oxygen permeability and lower water vapor transmission compared with a Nylon 6 film control at 25°C and 370C, respectively.
Another aspect of this invention deals with a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said film functions as a protective barrier for tissues of the buccal cavity, mandibular tissue, and dental varnish.
Another aspect of this invention deals with a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said composition comprises a UVB light-absorbing sunscreen compound for use as a protective film on skin.
A key aspect of this invention deals with a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 IcDa derived from at least one water-insoluble alkyl
methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said composition comprises an antimicrobial agent selected from the group represented by miconazole and ketoconazole for use in treating athletes' foot and nail infection, and/or a biocompatible dye.
A specific aspect of this invention pertains to a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein the said composition is used as a disinfectant spray bandage for depositing a flexible-barrier, solid microfilm onto living tissue as in intact or compromised skin, ulcers, or burns, through the combined processes of gas-propelled spray atomization and solvent evaporation.
Another aspect of this invention deals with a disinfectant spray bandage composition comprising an alcoholic solution of at least 5 percent w/v of at least one amphiphilic, essentially water-insoluble, segmented/block copolymer having a molecular weight of at least 15 kDa, wherein the alcoholic solution comprises a copolymer of an N-vinyl lactam and an alkyl methacrylate in 2-propanol, and preferably the N-vinyl lactam is N-vinyl pyrrolidone and the alkyl methacrylate is n-hexyl methacrylate, and more preferably the copolymer is based on at least 10 mole-percent of N-vinyl pyrrolidone-derived repeat units. Such disinfectant spray bandage composition can be a part of a gas pressurized delivery device capable of in situ forming of an adherent film on viable tissue, such as skin, of a vertebrate animal, wherein the film displays at least 100 percent ultimate elongation, 10 percent
reversible elongation, 1.0 MPa maximum stress, and Young's Modulus of less than 100 MPa. And the resulting adherent film exhibits the following properties: (1) an oxygen gas permeability of at least 0.5 cc/100 In2/24 hours at 250C; and (2) water-vapor transmission of less than 20 g./100 In2/24 hours @ 37°C. A specific aspect of this invention deals with a disinfectant spray bandage composition comprising an alcoholic solution of at least 5 percent w/v of at least one amphiphilic, essentially water-insoluble, segmented/block copolymer of N-vinyl pyrrolidone and n-hexyl methacrylate, having a molecular weight of at least 15 kDa, wherein the alcoholic solution comprises (1) a hemostatic agent; (2) one pain relieving agent, such as benzocain; (3) a bioactive agent selected from the group represented by antimicrobial, antiseptic, anesthetic, analgesic, wound healing, anti-inflammatory, and antiviral agents; and/or (4) a compatible dye, such as D&C Violet No. 2.
Another specific aspect of this invention deals with a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said composition is designed as a disinfectant spray bandage for depositing a flexible-barrier, solid microfilm onto living tissue as in intact or compromised skin, ulcers, or burns, through the combined processes of gas-propelled spray atomization and solvent evaporation, wherein said copolymer is based on at least 10 mole percent of N-vinyl pyrrolidone-derived repeat units and preferably the polyvinyl pyrrolidone component is partially complexed with iodine. Yet another specific aspect of this invention pertains to a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer
having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, whereas said composition is designed as a disinfectant spray bandage for depositing a flexible-barrier, solid microfilm onto living tissue as in intact or compromised skin, ulcers, or burns, through the combined processes of gas-propelled spray atomization and solvent evaporation, wherein the alcoholic composition contains trichlosan sodium to yield a clear film comprising at least 0.01 percent w/v of trichlosan sodium.
Detailed Description of Preferred Embodiments
This invention deals in general with amphiphilic, segmented/block copolymeric compositions based on at least one water-soluble monomer (or comonomer) and at least one water-insoluble monomer (comonomer). In volatile organic solvent that can be sprayed on compromised or intact tissues to provide a compliant, resilient, stretchable film that is non- water soluble. The spray-on composition and hence, the resulting film may contain active compounds that (1) are capable of reducing pain, as in the case of local anesthetic agents which may include benzocaine (at 0.1 to 5% w/w) and benzethonium chloride (at 0.01 to 0.5% w/w); (2) are antiseptic, such as iodine which may be complexed with the hydrophilic component of the segmented/block copolymer, as is the case with the poly-N-vinyl pyrrolidone segment or block; (3) have bacteriostatic properties, such as trichlosan (or trichlosan sodium); (4) bacteriostatic/ bacteriocidal/antitumor agent, such as dequalinium chloride; (5) have bacteriocidal properties, such as gentamicin; (6) have fungicidal properties, such as miconazole and ketoconazole; (7) are capable of promoting wound healing, such as growth promoters including epidermal growth factor and its peptide analog; and (8) are
capable of protecting against sunlight and preventing sunburn, as in the case of UV-B filters [e.g., 2-phenyl-benzimadzole sulfonic acids and indoline and its tetrahydroquinoline N- (dicarboalkyloxyvinyl) substituted derivatives], and UV absorbers (e.g., benzazoles).
Another general aspect of this invention deals with a spray-on composition that results in thin films with modulated oxygen permeability and water-vapor transmission rate. This can be achieved by varying the film thickness and the ratio of the hydrophiphilic to hydrophobic component of the copolymer chain. Accordingly, these films can be used in two considerably different applications, such as a (1) wound dressing as preferred alternatives to commercially available, preformed, adhering barrier films, as for example the Opsite Flexigrid® described earlier in tine Background of this Invention section; and (2) temporary dressing for split-thickness skin graft donor sites. In effect, as a barrier film and utilizing the moist wound care principle, the amphiphilic film provides a moist healing environment for many types of wounds, including abrasions, blisters, carpet burns, lacerations, poison ivy rash, road rash, and superficial burns. The amphiphilic tissue protecting film can be applied to cuts, burns, blisters, lacerations, or rashes to prevent or minimize scab formation. This will not obstruct the flow of cell migration freely and allow the wound to heal more naturally. A spray-on amphiphilic bandage can provide a highly conformable, thin film cover to compromised skin and presents a preferred alternative to regular bandages that get wet and fall off easily. The spray-on compositions of the present invention can form a clear cover that protects cuts, scrapes, and blisters and helps prevent the formation of calluses. This clear cover is also a compliant and flexible waterproof film that allows the retention of sufficient moisture at the application site and inward diffusion of oxygen, which in turn permit the tissue, as in skin, to breathe and prevent contamination with dirt and germs. The spray-on film for skin application is tougher and more flexible than a regular bandage. It can be applied to large areas, like legs and arms, or hard-to-reach areas. Additionally, the barrier film dressing is permeable to both water vapor and oxygen, but is impermeable to micro-
organisms. Once in position, the film provides an effective barrier to external contamination, while producing a moist environment at the surface of the wound by reducing water vapor loss from the exposed tissue. Under these conditions in shallow wounds, scab formation is prevented and epidermal regeneration takes place at an enhanced rate, compared with that which occurs in wounds treated with traditional dry dressings. Hence, the film subject of this invention, may be used in the treatment of scalds, first-or second-degree burns, donor sites, post-operative wounds, minor injuries (including abrasions and lacerations), and for the prevention and treatment of superficial pressure areas. The barrier film dressing may be used also as a temporary dressing for split-thickaess, skin graft donor sites. For this application, in addition to achieving smooth and rapid wound healing through protecting the site from dehydration, a strongly bacteriocidal and fungicidal agent (such as tetramethylthiuram disulfide) can be added for protection against potential infection.
For topical skin application and specifically when the solvent of the copolymeric composition is ethanol and/or 2-propanol, the spray-on formulation is considered as a disinfectant one, without adding any antimicrobial agent. The medicated and unmedicated spray-on film may be used as an incise drape.
For oral application, a medicated or unmedicated spray-on film can be used as a (1) hemostatic film in periodontal surgery; (2) protective barrier during periodontal surgical procedures; and (3) protective sealant of dentine, which may also serve as a depot for the controlled delivery of bioactive agents.
A specific aspect of this invention deals with a spray-on composition to yield a conformable, solid, adherent coating (without need to add an adhesive) on biological sites which are (1) of irregular or have acute geometries; (2) difficult to reach; and (3) difficult-to- adhere to tissues, such as wet mucous membranes. This invention deals generally with a tissue protecting, spray-on film composition comprising an amphiphilic film-forming, segmented/block copolymer derived form at least
one water-soluble monomer and at least another water-insoluble monomer wherein said respective film can be formed from a water soluble organic solvent such as 2-propanol, acetone, and ethyl acetate. The film can contain a bioactive agent including those to have antimicrobial, anesthetic, anti-inflammatory, and wound-healing activities. One primary aspect of this invention deals with a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydro>xyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein (1) the said solvent may contain water at more than 0.1 percent of its volume; (2) the segmented/block copolymer may be derived from n-hexyl methacrylate and N-vinyl pyrrolidone; and (3) the segmented/block copolymer may be prepared by the controlled incremental addition of either or both monomers (comonomers) to the polymerization reaction mixture under typical (or traditional) free-radical conditions. An alternative method for preparing the segmented/block copolymer subject of this invention comprises solution or bulk polymerization through controlled/living radical polymerization (CLRP) using NiBr2 (PPh3)2 as a catalyst and ethyl 2-bromobutyrate as an initiator. A specific aspect of this invention deals with a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer, having a molecular weight of at least 15 kDa, derived from n-hexyl metriacrylate and one or more monomer selected from the group represented by N-vinyl pyrrolidone and 2-hydroxy ethyl methacrylate, acrylamide, and N-methyl acrylamide. A general aspect of this invention addresses a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a
molecular weight of at least 15 IdDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxy ethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein the said copolymer is made following a tellurium mediated living radical polymerization (TeRP) using one or more organotellurium compound selected from the group represented by Ph(CH3)CH-Te-CHj , PHCH2-TeMe, Ph-CH(CH3)-Te-CH3, and (CH3)2C(COOEt)-Te-CH3. wherein Ph = phenyl group and Me = methyl group, and preferably the copolymerization entails the use of dimethyl ditelluride.
Another general aspect of this invention pertains to a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said copolymer comprises an A-B diblock chain structure wherein the A-block is derived from n-hexyl methacrylate and the B-block is derived from a monomer selected from the group represented by N-vinyl pyrrolidone, 2-hydroxyl ethyl methacrylate, acrylamide, and N-methyl acrylamide. Alternatively, the copolymer may be based on an A-B-A triblock chain structure wherein the A-block is derived from a monomer selected from the group represented by N- vinyl pyrrolidone, 2-hydroxyl ethyl methacrylate, acrylamide, and N-methyl acrylamide and the B-block is derived from one or more alkyl methacrylate monomer selected from the group represented by n-hexyl and n-butyl methacrylate or structural isomers thereof. As a second structural alternative, the copolymer may be based on a B-A-B triblock chain structure
wherein the A-block is derived from a monomer selected from the group represented by N- vinyl pyrrolidone, 2-hydroxy ethyl methacrylate, acrylamide, and N-methyl acrylamide and the B-block is derived from one or more alkyl methacrylate monomer selected from the group represented by n-hexyl and n-butyl methacrylate, or structural isomers thereof. Another aspect of this invention pertains to a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer, having a molecular weight of at least 15 kDa in the form of a breatheable, adhering film for protecting compromised skin, wherein said film displays higher oxygen permeabi lity and lower water vapor transmission compared with a Nylon 6 film control at 25°C and 37°C, respectively. Another aspect of this invention deals with a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 IcDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said film functions as a protective barrier for tissues of the buccal cavity, mandibular tissue, and dental varnish.
Another aspect of this invention deals with a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said composition comprises a UVB light-absorbing sunscreen compound for use as a protective film on skin.
A key aspect of this invention deals with a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 IcDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said composition comprises an antimicrobial agent selected from the group represented by miconazole and ketoconazole for use in treating athletes' foot and nail infection, and/or a biocompatible dye. A specific aspect of this invention pertains to a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 IcDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein the said composition is used as a disinfectant spray bandage for depositing a flexible-barrier, solid microfilm onto living tissue as in intact or compromised skin, ulcers, or burns, through the combined processes of gas-propelled spray atomization and solvent evaporation. Another aspect of this invention deals with a disinfectant spray bandage composition comprising an alcoholic solution of at least 5 percent w/v of at least one amphiphilic, essentially water-insoluble segmented/block copolymer having a molecular weight of at least 15 IcDa, wherein the alcoholic solution comprises a copolymer of an N-vinyl lactam and an alkyl methacrylate in 2-propanol, and preferably the N-vinyl lactam is N-vinyl pyrrolidone and the alkyl methacrylate is n-hexyl methacrylate, and more preferably the copolymer is based on at least 10 mole-percent of N-vinyl pyrrolidone-derived repeat units. Such
disinfectant spray bandage composition can be a part of a gas pressurized delivery device capable of in situ forming of an adherent film on viable tissue, such as skin of a vertebrate animal, wherein the film displays at least 100 percent ultimate elongation, 10 percent reversible elongation, 1.0 MPa maximum stress, and Young's Modulus of less than 100 MPa. And the resulting adherent film exhibits the following properties: (1) an oxygen gas permeability of at least 0.5 cc/100 In2/24 hours at 25°C; and (2) water-vapor transmission of less than 20 g./100 In2/24 hours @ 37°C.
A specific aspect of this invention deals with a disinfectant spray bandage composition comprising an alcoholic solution of at least 5 percent w/v of at least one amphiphilic, essentially water-insoluble, segmented/block copolymer of N-vinyl pyrrolidone and n-hexyl methacrylate, having a molecular weight of at least 15 kDa, wherein the alcoholic solution comprises (1) a hemostatic agent; (2) one pain relieving agent, such as benzocain; (3) a bioactive agent selected from the group represented by antimicrobial, antiseptic, anesthetic, analgesic, wound healing, anti-inflammatory, and antiviral agents; and/or (4) a compatible dye, such as D&C Violet No. 2.
Another specific aspect of this invention deals with a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, wherein said composition is designed as a disinfectant spray bandage for depositing a flexible-barrier, solid microfilm onto living tissue as in intact or compromised skin, ulcers, or burns, through the combined processes of gas-propelled spray atomization and solvent evaporation, wherein said
copolymer is based on at least 10 mole percent of N-vinyl pyrrolidone-derived repeat units and preferably the polyvinyl pyrrolidone component is partially complexed with iodine.
Yet another specific aspect of this invention pertains to a tissue protecting spray-on film composition comprising an amphiphilic, film-forming, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water-insoluble alkyl methacrylate and at least one water-soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N-methyl acrylamide, 2-hydroxyethyl methacrylate wherein said copolymer is soluble in one or more water soluble solvent selected from the group represented by ethyl acetate, ethanol, 2-propanol, and acetone, whereas said composition is designed as a disinfectant spray bandage for depositing a flexible-barrier, solid microfilm onto living tissue as in intact or compromised skin, ulcers, or burns, through the combined processes of gas-propelled spray atomization and solvent evaporation, wherein the alcoholic composition contains trichlosan sodium to yield a clear film comprising at least 0.01 percent w/v of trichlosan sodium. Further illustrations of the present invention are provided by the following examples:
Example 1, General Method of Preparation and Characterization of Segmented/Block Copolymers of Alkyl Methacrylate/N-Vinyl Pyrrolidone Copolymer Using Classical Free-radical Conditions
The copolymerization was carried out in two steps. In the first step, N-vinyl pyrrolidone, a small amount of an alkyl methacrylate, and a catalytic amount of a free- radical initiator were mixed under an oxygen-free environment in a mechanically stirred reaction flask. The mixture was heated for about 30 minutes at 65°C-85°C to allow partial polymerization of the comonomers. At this point, the second step commenced by adding a solution of alkyl methacrylate and an additional amount of the free-radical initiator over a long period of time. After completing the addition of the second charge, the reaction was continued for an additional 30 minutes. When the copolymer formation practically ceased, as
determined by gel permeation chromatographic analysis of unreacted comonomer, the reaction was terminated and the copolymer was precipitated in water, rinsed with dry ice- cooled methanol. Further purification of the copolymer was accomplished by precipitating its chloroform solution into dry ice-cooled methanol. The purified product was then filtered and dried at room temperature in a laminar flow hood and then at 40°C under reduced pressure until a constant weight is attained.
The purified copolymer was characterized for molecular weight (GPC), identify (IR), and composition (NMR and elemental nitrogen analysis).
Example 2. Copolymerization of 25/75 N-vinyl Pyrrolidone (NVPVn-Hexyl Methacrylate
(HMA) to Produce Segmented/Block Copolymer SC-I The preparation of SC-I, its isolation, purification, and characterization were conducted following the general methods described in Example 1. More specific details are provided below. The first charge was based on an N-vinyl-2-pyrrolidone (NVP) rich comonomer mixture. Thus NVP (0.163 mole), n-hexyl methacrylate (HMA) (0.0654 mole), 1,4-dioxane (49 mL) and 2-2' Azo-bis-isobutyronitrile (2.31 mmole) were mixed/dissolved. The mixture was sparged with nitrogen for two minutes, added to a flask that was kept under a positive nitrogen pressure, and mechanically stirred at 60 RPM in a 65°C silicon oil bath for a total of 30 minutes. For the second charge, HMA (0.422 mole), 1,4-dioxane (49 mL), and 2-2 ' Azo- bis-isobutyronitrile (2.31 mmole) were mixed/dissolved. The mixture was sparged with nitrogen for 2 minutes and added to the product of the first charge at a constant flow rate (controlled by a peristaltic pump) over a period of 17 hours. The reaction was allowed to continue at 65°C for an additional 30 minutes. The polymer was precipitated in ice water in a blender, filtered using a filter fmnnel, blended in -6O0C methanol, filtered and dried under reduced pressure at room temperature. It
was dissolved as a 20-weight-percent solution in chloroform, precipitated in -600C methanol, filtered, dissolved in chloroform, poured onto a Teflon tray and dried to constant weight under reduced pressure at 45°C.
The purified copolymer was shown (1) to be soluble in 2-propanol, but not water- soluble; (2) by GPC (using dichloromethane, DCM, as a solvent) to have an Mn = 54.6 kDa, Mw = 99.1 kDa, and PDI = 1.82; and (3) by elemental nitrogen analysis to be based on 18.4/81.6 (molar) NVP/HMA. The infrared (IR) and NMR data were consistent with the elemental analysis data.
Example 3. Copolymerization of 30/70 N-vinyl Pyrrolidone (NVPVn-Hexyl Methacrylate
(HMA) to Produce Segmented/Block Copolymer SC-II The preparation of SC-II, its isolation, purification, and characterization were conducted following the general methods described in Example 1. More specific details are provided below. The first charge was based on an N-vinyl-2-pyrrolidone (NVP) rich comonomer mixture. Thus NVP (0.189 mole), n-hexyl methacrylate (HMA) (0.0633 mole), 1,4-dioxane (47 mL) and 2-2' Azo-bis-isobutyronitrile (2.19 mmole) were mixed/dissolved. The mixture was sparged with nitrogen for two minutes, added to a flask that was kept under a positive nitrogen pressure, and mechanically stirred at 60 RPM in a 65°C silicon oil bath for a total of 30 minutes. For the second charge, HMA (0.377 mole), 1,4-dioxane (47 mL), and 2-2' Azo- bis-isobutyronitrile (2.19 mmole) were mixed/dissolved. The mixture was sparged with nitrogen for 2 minutes and added to the product of the first charge at a constant flow rate (controlled by a peristaltic pump) over a period of 16 hours. The reaction was allowed to continue at 65°C for an additional 30 minutes. The polymer was precipitated in ice water in a blender, filtered using a filter funnel, blended in -600C methanol, filtered and dried under reduced pressure at room temperature. It
was dissolved as a 20-weight-percent solution in chloroform, precipitated in -600C methanol, poured onto a Teflon tray, and dried to constant weight.
The purified copolymer was shown (1) to be soluble in 2-propanol, but not water- soluble; (2) by GPC (in DCM) to have an Mn = 48.0 kDa, Mw = 1 1 1.4 kDa, and PDI = 2.32; and (3) by elemental nitrogen analysis to be based on 24.8/75.2 (molar) NVP/HMA. The IR and NMR data were consistent with the elemental analysis data.
Example 4. Copolymerization of 35/65 N-vinyl Pyrrolidone (NVPVn-Hexyl Methacrylate (HMA) to Produce Segmented/Block Copolymer SC-III The preparation of SC-III, its isolation, purification, and characterization were conducted following the general methods described in Example 1. More specific details are provided below.
The first charge was based on an N-vinyl-2-pyrrolidone (NVP)-rich comonomer mixture. Thus NVP (0.226 mole), n-hexyl methacrylate (HMA) (0.0647 mole), 1,4-dioxane (47 mL) and 2-2' Azo-bis-isobutyronitrile (2.20 mmole) were mixed/dissolved. The mixture was sparged with nitrogen for two minutes, added to a flask that was kept under a positive nitrogen pressure, and mechanically stirred at 60 RPM in a 65°C silicon oil bath for a total of 30 minutes. For the second charge, HMA (0.355 mole), 1,4-dioxane (47 mL), and 2-2' Azo- bis-isobutyronitrile (2.20 mmole) were mixed/dissolved. The mixture was sparged with nitrogen for 2 minutes and added to the product of the first charge at a constant flow rate (controlled by a peristaltic pump) over a period of 14.5 hours. The reaction was allowed to continue at 65°C for an additional 30 minutes.
The polymer was precipitated in ice water in a blender, filtered using a filter funnel, blended in -600C methanol, filtered and dried under reduced pressure at room temperature. It was dissolved as a 20-weight-percent solution in chloroform, precipitated in -6O0C methanol,
poured onto a Teflon tray, and dried to constant weight. This precipitation was repeated once more to give an "extra pure" polymer.
The purified copolymer was shown (1) to be soluble in 2-propanol, but not water- soluble; (2) by GPC (in DCM) to have an Mn - 41.7 IcDa, Mw = 101.1 kDa, and PDI = 2.42; and (3) by elemental nitrogen analysis to be based on 25.8/74.2 (molar) NVP/HMA. The IR and NMR data were consistent with the elemental analysis data.
Example 5. Film Formation — General Method
The desired amount of SC-I, SC-II, or SC-III, from Examples 2, 3 or 4, was dissolved in 2-propanol to yield a solution having a solid content between 10 and 25 percent (w/v), depending on the desired film thickness. The polymer solution was cast on a flat Teflon sheet and thickness was then adjusted with a horizontally rolling draw rod. The film was allowed to dry in a laminar flow hood. The drying time was predetermined in a pilot experiment to insure that the drying process resulted in a constant film weight. These films were used to test their tensile properties, oxygen, permeability and water vapor transmission.
Example 6. Measurement of Film Tensile Properties
Film of SC-I to SC-III from Examples 2 to 4 were prepared as described in Example 5. The tensile properties were measured using an MTX MiniBionix Universal Tester, Model 858, at a strain rate of 1 mm/sec. The tensile properties of the different films (about 0.1 mm thick) are summarized in Table I. Table I. Tensile Properties of Films Made of Copolymers SC-I, SC-II, and SC-III
Example 7. Measurement of Film Oxygen Permeability
Films of SC-I to SC-III from Examples 2 to 4 were prepared as described in Example 5. The oxygen permeability (OP) on the individual films was measured on a Mocon Oxtran 2/20 (ST system) at 35°C, according to ASTM Method Number D-3985-02. Oxygen permeability data of the different films are summarized in Table II.
Table II. Oxygen Permeability Dataa
Example 8. Measurement of Film Water Vapor Transmission (WVT)
Films of SC-I to SC-III from Examples 2 to 4 were prepared as described in Example 5. The WVT of the individual films was measured using a Mocon Permatran-W600 at 37°C and RH = 100%, according to ASTM Method Number F- 1770-97. The oxygen permeability data of the different films are summarized in Table III.
Table III. Water-Vapor Transmission Dataa
Preferred embodiments of the invention have been described using specific terms and devices. The words and terms used are for illustrative purposes only. The words and terms are words and terms of description, rather than of limitation. It is to be understood that
changes and variations may be made by those of ordinary skill art without departing from the spirit or scope of the invention, which is set forth in the following claims. In addition it should be understood that aspects of the various embodiments may be interchanged in whole or in part. Therefore, the spirit and scope of the appended claims should not be limited to descriptions and examples herein.
Claims
1. A tissue protecting, spray-on film composition comprising an amphiphilic, segmented/block copolymer having a molecular weight of at least 15 kDa derived from at least one water- insoluble monomer comprising an alkyl methacrylate and at least one water- soluble monomer selected from the group consisting of N-vinyl pyrrolidone, acrylamide, N- methyl acrylamide, and 2-hydroxyethyl methacrylate, wherein said copolymer is dissolved in at least one water soluble solvent selected from the group consisting of ethyl acetate, ethanol, 2-propanol, and acetone.
2. A tissue protecting, spray-on film composition as in claim 1 wherein the water soluble solvent further comprises at least about 0.1% by volume of water.
3. A tissue protecting, spray-on film composition as in claim 1 wherein the alkyl methacrylate comprises n-hexyl methacrylate.
4. A tissue protecting, spray-on film composition as in claim 3 wherein the water- soluble monomer comprises N-vinyl pyrrolidone.
5. A tissu e protecting, spray-on film composition as in claim 1 comprising an essentially A-B diblock chain structure, wherein the A-block is derived from n-hexyl methacrylate and wherein the B -block is derived from a monomer selected from the group consisting of N- vinyl pyrrolidone, 2-hydroxyl ethyl methacrylate, acrylamide, and N-methyl acrylamide.
6. A tissue protecting, spray-on film composition as in claim 1 comprising an essentially A-B-A tribloc k chain structure, wherein the A-blocks are derived from a monomer selected from the grou p consisting of N-vinyl pyrrolidone, 2-hydroxyl ethyl methacrylate, acrylamide, and N-methyL acrylamide and the B-block is derived from at least one alkyl methacrylate monomer selected from the group consisting of n-hexyl methacrylate and n-butyl methacrylate .
7. A tiss lie protecting, spray-on film composition as in claim 1 comprising an essentially B-A-B triblock chain structure wherein the A-block is derived from a monomer selected from the group consisting of TM-vinyl pyrrolidone, 2-hydroxy ethyl methacrylate, acrylamide, and N-methyl acrylamide and the B-blocks are derived from at least one alkyl methacrylate monomer selected from the group consisting of n-hexyl methacrylate and n-butyl methacrylate.
8. A tissue protecting, spray-on film composition as in claim 1 wherein the film functions as a protective barrier for tissues of the buccal cavity and mandibular tissue.
9. A tissue protecting, spray-on film composition as in claim 1 wherein the film functions as a dental varnish.
10. A tissue protecting, spray-on film composition as in claim 1 further comprising a UVB light-absorbing sunscreen compound for use as a protective film on skin.
11. A tissue protecting, spray-on film composition as in claim 1 further comprising an antimicrobial agent selected from the group consisting of miconazole and ketoconazole, for use in treating athletes' foot and nail infections.
12. A tissue protecting, spray-on film composition as in claim 1 further comprising a biocompatible dye.
13. A tissue protecting, spray-on film composition as in claim 1 wherein the water soluble solvent comprises 2-propanol and wherein the film is formed through the combined processes of gas-propelled spray atomization and solvent evaporation.
14. A tissue protecting, spray-on film composition as in claim 1 wherein the segmented/block copolymer is made by a method comprising controlled, incremental addition of at least one of the monomers to a polymerization reaction mixture under typical free-radical conditions.
15. A tissue protecting, spray-on film composition as in claim 1 wherein the segmented/block copolymer is made by a method comprising controlled/living radical polymerization (CLRP) wherein the catalyst comprises NiBr2 (PPh3)2 and ethyl 2- bromobutyrate is employed as an initiator.
16. A tissue protecting, spray-on film composition as in claim 1 wherein the segmented/block copolymer is made by a method comprising tellurium mediated living radical polymerization (TeRP) employing at least one organotellurium compound selected from the group consisting of dimethyl ditelluride, Ph(CH3)CH-Te-CH3, PHCH2-TeMe, Ph- CH(CH3)-Te-CH3, and (CH3)2C(COOEt)-Te-CH3> wherein Ph represents phenyl groups and Me represents methyl groups.
17. A tissue protecting, spray-on film composition as in claim 16 wherein the organotellurium compound comprises dimethyl ditelluride.
18. A disinfectant spray "bandage composition comprising an alcoholic solution of at least 5 percent w/v of at least one amphiphilic, essentially water-insoluble, segmented/block copolymer, having a molecular weight of at least 15 kDa.
19. A disinfectant spray bandage composition as in claim 18 wherein the alcoholic solution comprises a copolymer of an N-vinyl lactam and an alkyl methacrylate in a solvent comprising 2-propanol.
20. A disinfectant spray bandage composition as in claim 19 wherein the N-vinyl lactam comprises N-vinyl pyrrolidone and wherein the alkyl methacrylate comprises n-hexyl methacrylate.
21. A disinfectant spray bandage composition as in claim 20 wherein the copolymer is based on at least 10 mole-percent of N-vinyl pyrrolidone-derived repeat units.
22. A disinfectant spray bandage composition as in claim 21 as part of a gas pressurized delivery device capable of in situ forming of an adherent film on viable tissue of a vertebrate animal, wherein the film displays at least 100 percent ultimate elongation, 10 percent reversible elongation, 1.0 IVlPa maximum stress, and Young's Modulus of less than 100 MPa.
23. A disinfectant spray bandage composition as in claim 22 wherein the film has an oxygen gas permeability of at least 0.5 cc/100 In2/24 hours at 25°C and a water-vapor transmission of less than 2O g./100 In2/24 hours @ 37°C.
24. A disinfectant spray bandage composition as in claim 18 further comprising a hemostatic agent.
25. A disinfectant spray bandage composition as in claim 18 further comprising at least one pain relieving agent.
26. A disinfectant spray bandage composition as in claim 25 wherein the at least one pain relieving agent comprises benzocain.
27. A disinfectant spray bandage composition as in claim 18 further comprising a bioactive agent selected from the group consisting of antimicrobial, antiseptic, anesthetic, analgesic, wound healing, anti-inflammatory, and antiviral agents.
28. A disinfectant spray bandage composition as in claim 21 wherein the polyvinyl pyrrolidone component is partially complexed with iodine.
29. A disinfectant spray bandage composition as in claim 28 for use as an incise surgical drape.
30. A disinfectant spray bandage composition as in claim 18 that is a precursor of a clear film comprising at least 0.01 percent w/v of trichlosan sodium.
31. A disinfectant spray bandage composition as in claim 18 further comprising a biocompatible dye.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05770860A EP1904574A2 (en) | 2005-07-05 | 2005-07-08 | Tissue protecting spray-on copolymer film composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/175,636 US7842749B2 (en) | 2004-08-02 | 2005-07-05 | Tissue protecting spray-on copolymeric film composition |
US11/175,636 | 2005-07-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007005029A2 true WO2007005029A2 (en) | 2007-01-11 |
WO2007005029A3 WO2007005029A3 (en) | 2009-04-16 |
Family
ID=37604902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/024120 WO2007005029A2 (en) | 2005-07-05 | 2005-07-08 | Tissue protecting spray-on copolymer film composition |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1904574A2 (en) |
WO (1) | WO2007005029A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102272224A (en) * | 2008-12-30 | 2011-12-07 | 3M创新有限公司 | Acrylic block copolymers for aerosols and aerosol adhesives |
WO2022234081A1 (en) * | 2021-05-07 | 2022-11-10 | Laboratorios Inibsa, S.A. | In-situ film-forming composition |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3577516A (en) * | 1969-12-02 | 1971-05-04 | Nat Patent Dev Corp | Preparation of spray on bandage |
US6743880B2 (en) * | 2000-03-31 | 2004-06-01 | Avery Denison Corporation | Hydrophilic polymers and methods of preparation |
-
2005
- 2005-07-08 WO PCT/US2005/024120 patent/WO2007005029A2/en active Application Filing
- 2005-07-08 EP EP05770860A patent/EP1904574A2/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102272224A (en) * | 2008-12-30 | 2011-12-07 | 3M创新有限公司 | Acrylic block copolymers for aerosols and aerosol adhesives |
EP2382267A4 (en) * | 2008-12-30 | 2012-06-27 | 3M Innovative Properties Co | ACRYLIC BLOCK COPOLYMERS FOR AEROSOLS AND AEROSOL ADHESIVES |
US8637595B2 (en) | 2008-12-30 | 2014-01-28 | 3M Innovative Properties Company | Acrylic block copolymers for aerosols and aerosol adhesives |
CN102272224B (en) * | 2008-12-30 | 2014-12-24 | 3M创新有限公司 | Acrylic block copolymers for aerosols and aerosol adhesives |
US8993663B2 (en) | 2008-12-30 | 2015-03-31 | 3M Innovative Properties Company | Acrylic block copolymers for aerosols and aerosol adhesives |
WO2022234081A1 (en) * | 2021-05-07 | 2022-11-10 | Laboratorios Inibsa, S.A. | In-situ film-forming composition |
Also Published As
Publication number | Publication date |
---|---|
EP1904574A2 (en) | 2008-04-02 |
WO2007005029A3 (en) | 2009-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7842749B2 (en) | Tissue protecting spray-on copolymeric film composition | |
JP2918263B2 (en) | Compatible bandages and coating materials | |
JP3221877B2 (en) | Bandage and coating material with good shape flexibility | |
CA2926294C (en) | Non-self-adherent coating materials | |
JP5150508B2 (en) | Liquid polymer-containing coating material | |
AU2006227606A1 (en) | Liquid coating compositions | |
CA2407596A1 (en) | Methods for treating burns on mammalian skin to reduce the risk of infection and to minimize fluid loss | |
US8951552B2 (en) | In situ film-forming bioactive solutions of absorbable multiblock copolymers | |
US20210178009A1 (en) | Wound care products comprising alexidine | |
JPH0368369A (en) | Liquid polymer bandage for dermic injury treat- ment | |
WO2008079606A1 (en) | Method and kit for skin lesion prevention and/or protection | |
WO2007005029A2 (en) | Tissue protecting spray-on copolymer film composition | |
US9402932B2 (en) | In situ-formed bioactive tissue adherent films of absorbable crystallizable polymers | |
EP3824005B1 (en) | Liquid wound dressing composition | |
RU2829321C1 (en) | Liquid aerosol plaster and wound protection method with its help | |
RU2191034C2 (en) | Gel-like medicinal form |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005770860 Country of ref document: EP |