+

WO2007004367A1 - Optical encoder - Google Patents

Optical encoder Download PDF

Info

Publication number
WO2007004367A1
WO2007004367A1 PCT/JP2006/310348 JP2006310348W WO2007004367A1 WO 2007004367 A1 WO2007004367 A1 WO 2007004367A1 JP 2006310348 W JP2006310348 W JP 2006310348W WO 2007004367 A1 WO2007004367 A1 WO 2007004367A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
light
opening
lattice
optical encoder
Prior art date
Application number
PCT/JP2006/310348
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Oka
Yoichi Ohmura
Hajime Nakajima
Takashi Okamuro
Kosuke Shamoto
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Publication of WO2007004367A1 publication Critical patent/WO2007004367A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices

Definitions

  • the present invention relates to an optical encoder that can optically detect a relative movement amount between gratings.
  • the theory of a three-grid method (grating image) in an optical encoder using three gratings has been proposed.
  • the first grating, the second grating, and the third grating are arranged in order along the light traveling direction, and specific conditions are adjusted, the first grating is formed.
  • Predetermined spatial frequency components included can be mapped onto the third grating with a predetermined OTF (Optical Transfer Function).
  • OTF Optical Transfer Function
  • the specific conditions are determined by parameters such as the shape of the second lattice, the distance from the first lattice to the second lattice, and the second lattice force as well as the distance to the third lattice. These parameters determine the OTF up to the third lattice of each spatial frequency component contained in the first lattice.
  • Second lattice OTF for each spatial frequency from the first lattice force to the third lattice based on the shape of the second lattice, the distance from the first lattice to the second lattice, the distance from the second lattice to the third lattice, etc.
  • Third grating Transmits only the desired component from the imaged intensity distribution. It plays the role of a so-called index slit (for example, see Non-Patent Document 1).
  • a first grating is formed by arranging a plurality of shapes obtained by folding up and down a sine wave (for example, see Patent Document 1). ).
  • Patent Document 1 Japanese Patent Laid-Open No. 5-87592 (page 6, FIG. 1)
  • the first grating is formed by a single-stage slit in which a plurality of shapes obtained by folding up and down a sine wave are arranged, so that the distribution of illumination from the light source is uneven.
  • the sinusoidal intensity distribution on the first grating there was a problem that distortion occurred in the sinusoidal intensity distribution on the first grating, and distortion also occurred in the intensity distribution on the light receiving element array.
  • the present invention has been made to solve the above-mentioned problems, and even when nonuniformity occurs in the illumination distribution from the light source, the signal output distortion of the light receiving element force is extremely small. An optical encoder is obtained.
  • An optical encoder is formed by a first grating having an opening and receiving light from a light source, and an opening or a reflection part arranged on the same circumference.
  • a second grating that receives light having an intensity distribution
  • a third grating that has openings arranged on the same circumference and receives light from the second grating, and a light receiving element that receives light from the third grating;
  • the shape of the opening is characterized in that it changes in a sine wave shape symmetrically in the outer and inner directions with a concentric circle as the axis of symmetry.
  • the optical encoder according to the present invention includes a first grating that has an opening and receives light from a light source, and a light having an intensity distribution formed by the first grating that has an opening or a reflection part.
  • a three-grating optical encoder comprising: a second grating that receives light; a third grating that has an aperture and receives light of a second grating force; and a light receiving element that receives light from the third grating.
  • the opening portion of the first grating is characterized in that a plurality of slit rows in which openings having a shape in which a sine wave is folded up and down are continuously arranged are provided in the same phase.
  • the optical encoder according to the present invention is formed by a first grating having an opening and receiving light from a light source, and an opening or a reflection part arranged on the same circumference.
  • a second grating that receives light having a specified intensity distribution
  • a third grating that has openings arranged on the same circumference and receives light of the second grating force
  • a light receiving element that receives light of the third grating force
  • the optical encoder includes a first grating having an opening and receiving light from a light source, and light having an intensity distribution formed by the first grating having an opening or a reflection part.
  • a three-grating optical encoder comprising: a second grating that receives light; a third grating that has an aperture and receives light of a second grating force; and a light receiving element that receives light from the third grating.
  • the opening portion of the first grating is characterized in that an opening pattern in which the duty ratio of the transmission portion changes in a sine wave shape is continuously arranged in the direction in which the duty ratio changes.
  • the optical encoder according to the present invention is formed by a first grating having an opening and receiving light from a light source, and an opening or a reflecting part arranged on the same circumference.
  • a second grating that receives light having an intensity distribution
  • a third grating that has openings arranged on the same circumference and receives light from the second grating, and a light receiving element that receives light from the third grating;
  • the shape of the aperture is a shape that changes in a sinusoidal shape symmetrically in the outer and inner directions with a concentric circle as the axis of symmetry, so even if the illumination distribution is uneven, the signal from the light receiving element An optical encoder with extremely low output distortion can be obtained.
  • the optical encoder according to the present invention includes a first grating that has an opening and receives light from a light source, and light having an intensity distribution formed by the first grating that has an opening or a reflection part.
  • a three-grating optical encoder comprising: a second grating that receives light; a third grating that has an aperture and receives light of a second grating force; and a light receiving element that receives light from the third grating.
  • the opening of the first grating is provided with multiple rows of slits in the same phase, each of which has an opening with a sine wave folded back up and down. However, it is possible to obtain an optical encoder with extremely small distortion of signal output from the light receiving element.
  • the optical encoder according to the present invention is formed by a first grating having an opening and receiving light from a light source, and an opening or a reflection part arranged on the same circumference.
  • the A second grating that receives light having a predetermined intensity distribution, a third grating that has openings arranged on the same circumference and receives light of the second grating force, and a light receiving element that receives light of the third grating force
  • the aperture of the first grating has an opening pattern in which the duty ratio of the transmission part changes in a sine wave pattern on the same circumference, radially with respect to the center of the circle. Therefore, even if the distribution of illumination from the light source is nonuniform, an optical encoder with extremely small signal output distortion can be obtained even if the light receiving element is strong.
  • the optical encoder according to the present invention includes a first grating that has an opening and receives light from a light source, and a light having an intensity distribution formed by the first grating that has an opening or a reflection part.
  • a three-grating optical encoder comprising: a second grating that receives light; a third grating that has an aperture and receives light of a second grating force; and a light receiving element that receives light from the third grating.
  • the aperture pattern in which the duty ratio of the transmission part changes in a sine wave pattern is continuously arranged in the direction in which the duty ratio changes.
  • FIG. 1 is a configuration diagram of an optical encoder showing Embodiment 1 of the present invention.
  • FIG. 2 is an opening pattern of openings of the first lattice in the first embodiment of the present invention.
  • FIG. 3 is an example of an OTF calculation result in Embodiment 1 of the present invention.
  • FIG. 4 is a configuration diagram of an optical encoder showing Embodiment 2 of the present invention.
  • FIG. 5 shows an opening pattern of the opening of the first grating in the second embodiment of the present invention.
  • FIG. 6 is a configuration diagram of an optical encoder showing Embodiment 3 of the present invention.
  • FIG. 7 shows an opening pattern of the opening of the first grating in the third embodiment of the present invention.
  • FIG. 8 is a configuration diagram of an optical encoder showing Embodiment 4 of the present invention.
  • FIG. 9 shows an opening pattern of the opening of the first grating in the fourth embodiment of the present invention.
  • FIG. 10 is an example of the calculation result of OTF in Embodiment 4 of the present invention.
  • FIG. 11 is a configuration diagram of an optical encoder showing Embodiment 5 of the present invention.
  • FIG. 12 shows an example of the calculation result of OTF in the fifth embodiment of the present invention.
  • FIG. 13 is a configuration diagram of an optical encoder showing Embodiment 6 of the present invention.
  • FIG. 14 is a configuration diagram of an optical encoder showing Embodiment 7 of the present invention.
  • FIG. 15 is a configuration diagram of an optical encoder showing Embodiment 8 of the present invention.
  • FIG. 16 is a configuration diagram of an optical encoder showing Embodiment 9 of the present invention.
  • FIG. 1 shows a configuration diagram of an optical encoder according to Embodiment 1 for carrying out the present invention.
  • the optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings, and is applied to a rotary encoder in which gratings having a predetermined angular pitch are arranged radially.
  • the light source 4 along the light traveling direction, the light source 4, the first grating 1 that has an opening and receives light from the light source 4, and the first grating 1 that has openings arranged on the same circumference.
  • the second grating 2 that receives light having the formed intensity distribution, the third grating 3 that has openings arranged on the same circumference and receives light from the second grating 2, and the third grating 3
  • a light receiving element 7 for receiving light is provided.
  • the second grid 2 is disposed between the first grid 1 and the third grid 3.
  • the second lattice 2 is supported so as to be angularly displaceable around the central axis C of the second lattice substrate 6.
  • the light source 4 is composed of an LED or the like and emits spatially incoherent light having a center wavelength.
  • the optical axis Q of the light source 4 is parallel to the central axis C and is positioned at a radius Ra from the central axis C.
  • the first grating 1 is formed on a transparent first grating substrate 5 by patterning such as a metal thin film, and has a grating pitch P at a position where the optical axes Q intersect.
  • An aperture of an amplitude grating type with 1 and a tally scale opening is constructed to receive the light from the light source 4 to produce a sinusoidal intensity distribution.
  • FIG. 2 shows an opening pattern of the opening of the first grating 1 in the first embodiment.
  • the opening pattern includes a light transmitting portion 8 and a non-transmitting portion 9.
  • the center of the opening is arranged at the intersection of two or more concentric circles 101a to 101e and the equiangular pitch line segments 102a to 102e passing through the center of the concentric circle.
  • the shape changes in a sine wave shape symmetrically in the direction and the inner direction. For this reason, the shape of the opening is a shape that is enlarged or reduced in the circumferential direction of the concentric circles 10 la to LOLO in proportion to the distance from the center of the concentric circles 101 a to 101 e.
  • the openings are arranged so that they have the same phase in the circumferential direction.
  • a concentric circle is two or more circles that share the center.
  • the radii of the concentric circles 101a to 101e may be equally spaced or unequal.
  • each opening may contact in the radial direction of a concentric circle, and does not need to contact.
  • 1 is defined as the pitch of the aperture arranged near the position intersecting the optical axis Q.
  • the second grating 2 is formed by patterning a metal thin film or the like on the surface of the transparent second grating substrate 6 formed in a disk shape rotatable around the central axis C, and the optical axis Q intersects.
  • the rotary scale of the amplitude grating having the grating pitch P is formed at the position of the radius Ra, and is arranged at the position separated from the first grating 1 by the first distance Z.
  • Second grid 2 is
  • the intensity distribution produced by the first grating 1 in response to the light from the first grating 1 is imaged on the third grating 3 arranged at a second distance Z from the second grating 2. .
  • the third grating 3 is an amplitude grating type having a grating pitch P at a position where the optical axes Q intersect.
  • the rotary scale is configured and placed at a position 2 Z away from the 2nd grid 2
  • the light receiving element 7 is formed of a photodiode or the like, and converts light that has passed through the third grating 3 into an electrical signal.
  • the third grating 3 is provided integrally on the light receiving surface of the light receiving element 7.
  • the third grating 3 and the light receiving element 7 may be provided separately.
  • the first grid 1 and the third grid 3 are fixed to a housing or the like.
  • the second grating 2 is the optical axis It is supported so that it can be angularly displaced in the circumferential direction perpendicular to Q. If the spatial frequency component included in the first grating 1 satisfies the condition that the image is formed on the third grating 3, and if the second grating 2 is angularly displaced by rotation, the intensity distribution on the third grating 3 is also the same. Move in the direction. Therefore, the transmitted light from the third grating 3 is photoelectrically converted by the light receiving element 7, and the relative angular displacement of the second index 2 can be detected by changing the signal output.
  • the frequency characteristic of the image formed on the third grating 3 and its contrast can be obtained by obtaining the OTF.
  • OTF can be expressed by the Fourier transform of the square of the Inners response in the optical system.
  • FIG. 3 shows an example of the OTF calculation result when the image magnification is an enlargement system.
  • the vertical axis is the DC component and the OTF after the standardization
  • the horizontal axis is the second distance Z as the light source 4
  • the first distance ⁇ is fixed at a position of 1.5 ⁇ .
  • is a number
  • the spatial frequency included in the first grating 1 is imaged on the third grating 3 with a predetermined ⁇ F.
  • the grid pitch ⁇ is the number 1, the first distance ⁇ , the second distance ⁇ and
  • Equation 2 is a relational expression of image magnification using the grating pitch ⁇ .
  • [Expression 2] (2)
  • the numerical value of ⁇ represents the imaging condition of each spatial frequency component.
  • is designed as a basic spatial frequency component
  • 2, 3 ...
  • the first grating 1 since the first grating 1 has a sine wave shape, the first grating 1 does not include spatial frequency components other than the basic spatial frequency. Therefore, no matter how much OTF other than the basic spatial frequency is present, if the illumination distribution from the light source 4 is uniform and the intensity distribution on the first grating 1 is an ideal sine wave, Since harmonic components are not imaged on the third grid 3, in principle, no distortion occurs in the intensity distribution on the third grid 3. Therefore, a distortion component is not generated in the signal output obtained from the light receiving element 7 force, and an extremely accurate sine wave output can be obtained.
  • Each parameter such as P, P, P, Z, Z, and ⁇ at the time of design is a parameter of Formula 1.
  • Any design can be made by focusing on the imaging conditions corresponding to ⁇ , the image magnification of Equation 2, and the OTF of the fundamental spatial frequency component.
  • an OTF absolute value of 0.637 can be obtained at an image magnification of 2 ⁇ .
  • OTF 0.637 means that the image is formed on the third grating 3 with the image power amplitude 63.7 of the first grating 1 having the amplitude 100.
  • OTF value is negative, an inverted image of the first grating 1 is formed on the third grating 3.
  • the second grating 2 is rotated by 360 ° 1Z2000 along with the rotation of the disk that is the second grating substrate 6, the image formed on the third grating 3 also moves one period, and the signal after photoelectric conversion Can detect the angular displacement of the disk.
  • a plurality of sinusoidal openings are arranged in the same phase at the opening of the first grating 1. For this reason, even if the irradiation distribution from the light source 4 becomes non-uniform due to contamination, variation in the radiation distribution, etc., the total intensity distribution on the first grating 1 is sinusoidal due to the averaging effect of each aperture. Therefore, the light receiving element output that is transmitted through the third grating 3 and photoelectrically converted is a highly accurate sine wave output in which distortion is suppressed.
  • the image magnification is 2 has been described.
  • the image magnification can be any number. It may be an enlargement system or reduction system of other magnifications. Also, make the first distance Z equal to the second distance Z to make the image magnification equal. It is good also as a structure.
  • a force configured to move the first lattice 1 and the third lattice 3 with respect to the second lattice 2 may be any relative movement between the lattices.
  • the first lattice 1 may be moved with respect to the second lattice 2 and the third lattice 3.
  • the image formed on the third grating 3 is opposite to the moving direction of the first grating 1.
  • the number of openings having a sinusoidal shape symmetrically about the outer direction and the inner direction with the concentric circle as the axis of symmetry is five in the circumferential direction and five in the radial direction.
  • the example which arranged one by one was shown. Increase or decrease the number of apertures according to the irradiation area and design pitch.
  • the opening of the first lattice 1 has the center of the opening at the intersection of the concentric circle and the equiangular pitch line passing through the center of the concentric circle, and the shape of the opening is concentric. Therefore, even if the illumination distribution of four light sources is nonuniform, the signal output from the light receiving element 7 is extremely distorted. And small optical encoder can be obtained.
  • FIG. 4 shows a configuration diagram of an optical encoder according to Embodiment 2 for carrying out the present invention.
  • the optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings.
  • FIG. 4 along the light traveling direction, the intensity distribution formed by the light source 4, the first grating 11 having an opening and receiving light from the light source 4, and the first grating 11 having an opening is shown.
  • XI and X2 are in the same direction as X.
  • the second lattice 12 is disposed between the first lattice 11 and the third lattice 13.
  • the light source 4 includes a spatially incoherent light source 4 such as an LED, and emits spatially incoherent light having a center wavelength ⁇ .
  • the first grating 11 is formed on a transparent first grating substrate 15 by patterning such as a metal thin film, has a grating pitch ⁇ , receives light from the light source 4, and has a sinusoidal shape. Create intensity distribution Made.
  • FIG. 5 shows an opening pattern of the opening of the first grating 11 in the second embodiment.
  • the opening pattern includes a light transmitting portion 18 and a non-transmitting portion 19.
  • the opening portion of the first grating 11 has a configuration in which a plurality of slit rows in which openings having a shape in which a sine wave is folded up and down are continuously arranged are provided in the same phase.
  • the slit row is configured by continuously arranging openings with a sine wave folded up and down at a lattice pitch P. In other words, the slit row changes with one period P.
  • the XI direction is the same as the XI direction shown in FIG. 4, and the traveling direction of the sine wave is the XI direction.
  • a plurality of slit rows are provided in the amplitude direction of the sine wave so that the sine waves constituting the slit row have the same phase.
  • the size of the opening in the amplitude direction of the sine wave arranged in each slit row may be the same or different as long as the openings are arranged so as to have the same phase. Moreover, each opening may contact and does not need to contact.
  • the second grating 12 is formed on the transparent second grating substrate 16 by patterning such as a metal thin film, and constitutes an amplitude grating having a grating pitch P. 1 distance Z
  • the intensity distribution created by the first grating 11 by receiving the light from the first grating 11 is placed at a position separated by 1 and the third distance is placed at a position away from the second grating 12 by the second distance Z.
  • the image is formed on the top.
  • PZ2 grating pitch
  • the third grating 13 constitutes an amplitude grating having a grating pitch P, and the second distance from the second grating 12 is the second distance.
  • the light receiving element 17 is formed of a photodiode or the like, and converts light that has passed through the third grating 13 into an electrical signal.
  • the third grating 13 is integrally provided on the light receiving surface of the light receiving element 17.
  • the third grating 13 and the light receiving element 17 may be provided separately.
  • the first grid 11 and the third grid 13 are fixed to a housing or the like.
  • the second grating 12 is supported so as to be movable relative to the first grating 11 and the third grating 13 along the X direction intersecting the light traveling direction. If the spatial frequency component included in the first grating 11 satisfies the condition for forming an image on the third grating 13, the second grating 12 moves on the X axis, 3 The light intensity distribution on the grating 13 also moves in the same direction. Therefore, the transmitted light from the third grating 13 is photoelectrically converted by the light receiving element 17, and the signal output changing force can also detect the relative movement amount of the second grating 12.
  • the air equivalent distance from the first grid 11 to the second grid 12 is Z, and the second grid 12 to the third grid 13
  • OTF can be calculated using the lattice pitch P, P, P as Z
  • Embodiment Mode 1 The three-grid method theory as shown in Embodiment Mode 1 can be applied.
  • the opening of the first grating 11 has a plurality of rows of slit rows in which the openings having a shape in which a sine wave is folded up and down are continuously arranged in the same phase, dirt and radiation distribution Even if the irradiation distribution from the light source 4 is nonuniform due to variations in the light intensity, etc., the total intensity distribution on the first grating 11 becomes sinusoidal due to the averaging effect of each aperture.
  • the light receiving element output that is transmitted and photoelectrically converted is a highly accurate sine wave output with suppressed distortion.
  • any image magnification can be used as long as the image forming condition and the relational expression of the image magnification are satisfied. It may be an enlargement system or reduction system of other magnifications. Also, make the first distance Z equal to the second distance Z to make the image magnification equal.
  • the second grating 12 is moved with respect to the first grating 11 and the third grating 13.
  • 1 lattice 11 may be moved relative to the second lattice 12 and the third lattice 13, or the third lattice 13 may be moved relative to the first lattice 11 and the second lattice 12.
  • the image formed on the third grating 13 is opposite to the moving direction of the first grating 11.
  • the opening of the first grating 11 is provided with a plurality of slit rows in the same phase in which openings having a shape in which a sine wave is folded up and down are continuously provided. Even when the irradiation distribution is non-uniform, an optical encoder with extremely small distortion of the signal output from the light receiving element 17 can be obtained.
  • FIG. 6 shows a configuration diagram of an optical encoder according to Embodiment 3 for carrying out the present invention.
  • the optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings, and has a predetermined angular pitch using a duty modulation pattern in which the transmittance changes in a sine wave shape as the first grating. It is applied to a rotary encoder that has a grid with a radial grid.
  • the configuration other than the first lattice 21 and the first lattice substrate 25 is the same as that of the first embodiment.
  • the same reference numerals as those in FIG. 1 denote the same or equivalent parts, and this is common throughout the entire specification.
  • the first grating 21 is formed on the transparent first grating substrate 25 by patterning such as a metal thin film, and at the position where the optical axes Q intersect, the grating pitch P
  • An aperture of an amplitude grid type rotary scale with 1 is constructed to receive light from the light source 4 to produce a sinusoidal intensity distribution.
  • FIG. 7 shows an opening pattern of the openings of the first grating 21 in the third embodiment.
  • the opening pattern includes a light transmitting portion 28 and a non-transmitting portion 29.
  • the opening portion of the first grating 21 has a duty modulation pattern in which the transmittance changes in a sine wave shape, that is, an opening pattern in which the duty ratio of the transmission portion changes in a sine wave shape is radial with respect to the circle center on the same circumference Are arranged continuously.
  • FIG. 7 shows a duty modulation pattern for one period, and this pattern is continuously arranged on the same circumference in the opening of the first grating 21. As shown in Fig. 7, the grating pitch P at the position intersecting the optical axis Q
  • the pitch P is divided into 8 periods, and the period S is 1 period.
  • the transmittance changes in a sinusoidal pattern every 1 and a sinusoidal light intensity distribution is created.
  • the air equivalent distance from the first grid 21 to the second grid 2 is Z, and from the second grid 2 to the third grid 3
  • the OTF in the rotary encoder can be calculated, and the theory of the three-grid method can be applied.
  • the intensity distribution produced by the first grating 21 has a basic spatial frequency.
  • the intensity distribution on the third grating 3 is also sinusoidal, and thus the signal output obtained from the light receiving element 7 is However, no distortion component is generated.
  • the OTF in the division period constituting the duty modulation is set to zero, the generation of higher-order components due to the division period can be suppressed.
  • the first grating 21 has a duty modulation pattern in which the transmittance changes in a sine wave shape, even if the irradiation distribution from the light source 4 is uneven due to variations in the radiation distribution, the first grating 21 is 1 Since the intensity distribution on grid 21 is sinusoidal, it passes through third grid 3 and The light receiving element output obtained by the conversion is a highly accurate sine wave output with suppressed distortion.
  • Each parameter such as P, P, P, Z, Z, and E at the time of design corresponds to the parameter N in Equation 1.
  • the second grating 2 is rotated by 1Z2000 of 360 ° along with the rotation of the disk that is the second grating substrate 6, the image formed on the third grating 3 also moves by one period, Signal force after photoelectric conversion The angular displacement of the disc can be detected.
  • the image magnification is 2 has been described.
  • the image magnification may be any amount, and an enlargement system or a reduction system with other magnifications may be used. Also, make the first distance ⁇ equal to the second distance ⁇ to make the image magnification equal.
  • the second grating 2 is moved with respect to the first grating 21 and the third grating 3.
  • the first lattice 21 may be moved relative to the second lattice 2 and the third lattice 3 as long as the relative movement is between the lattices.
  • the image formed on the third grating 3 is in the opposite direction to the moving direction of the first grating 21.
  • the lattice pitch ⁇ of the first lattice 21 is divided into eight and A key modulation pattern was constructed.
  • the duty ratio changes in a sine wave pattern it can be divided into any number of divisions. For example, if the number of divisions is increased, a smoother sine wave intensity distribution can be obtained.
  • the opening portion of the first grating 21 has the opening pattern in which the duty ratio of the transmission portion changes in a sine wave shape continuously arranged on the same circumference in the radial direction of the center force of the circle. Even when the irradiation distribution from the light source 4 is nonuniform, an optical encoder with extremely small distortion of the signal output from the light receiving element 7 can be obtained.
  • FIG. 8 shows a configuration diagram of an optical encoder according to the fourth embodiment for carrying out the present invention.
  • the optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings, and uses a duty modulation pattern whose transmittance changes in a sine wave shape as the first grating.
  • the configuration other than the first grating 31 and the first grating substrate 35 is the same as that of the second embodiment.
  • the first grating 31 is formed on the transparent first grating substrate 35 by patterning such as a metal thin film, has a grating pitch P, receives light from the light source 4, and has a sinusoidal shape. Create intensity distribution
  • FIG. 9 shows an opening pattern of the opening of first grating 31 in the fourth embodiment for carrying out the present invention.
  • the opening pattern is composed of a light transmitting portion 38 and a non-transmitting portion 39.
  • a duty modulation pattern in which the transmittance changes in a sine wave form that is, an opening pattern in which the duty ratio of the transmission part changes in a sine wave form is continuously arranged in the direction in which the duty ratio changes.
  • Lattice pitch P is the length of the aperture pattern whose transmittance changes sinusoidally for one period.
  • the aperture pattern shown in Fig. 9 has a grating pitch P, and a period S obtained by dividing the grating pitch P by eight is defined as one period.
  • the transmittance changes in a sine wave shape, and a sinusoidal intensity distribution is produced.
  • the air equivalent distance from the first grid 31 to the second grid 12 is the first distance Z, and the second grid 12
  • the air equivalent distance to the third grid 13 is the second distance Z.
  • Z and Z It is better to set the OTF at the division period S of the tee modulation pattern as close to zero as possible.
  • the first lattice 31 is fixed to a housing or the like.
  • the third grating 13 is fixed to the light receiving element 17 and the like.
  • the second grating 12 is supported so as to be movable along the X direction intersecting the light traveling direction.
  • the spatial frequency component included in the first grating 31 satisfies the condition for forming an image on the third grating 13
  • the second grating 12 moves on the X axis
  • the light intensity distribution also moves in the same direction. Therefore, the transmitted light from the third grating 13 is photoelectrically converted by the light receiving element 17, and the signal output changing force can also detect the relative movement amount of the second grating 12. Even in such a configuration, the theory of the three-grid method is similarly applied.
  • the intensity distribution produced by the first grating 31 becomes a basic spatial frequency.
  • the intensity distribution on the third grating 13 is also sinusoidal, so that no distortion component is generated in the signal output obtained from the light receiving element 17.
  • the OTF in the division period constituting the duty modulation is set to zero, the generation of higher-order components due to the division period can be suppressed.
  • the first grating 31 has a duty modulation pattern in which the transmittance changes in a sine wave shape, even if the irradiation distribution from the light source 4 is uneven due to dirt or variations in the radiation distribution, the first grating 31 Since the intensity distribution on 31 is sinusoidal, the light receiving element output obtained by photoelectric conversion through the third grating 13 is an extremely accurate sine wave output with suppressed distortion.
  • Each parameter such as P, P, P, Z, Z, and E at the time of design corresponds to the parameter N in Equation 1.
  • FIG. 10 shows an example of the OTF calculation result when the image magnification is an enlargement system.
  • the vertical axis is the DC component and the OTF after standardization
  • the horizontal axis is the second distance Z and the wavelength ⁇ of the light source 4 and the second
  • the image is formed on the third grating 13 by OTFO. 637.
  • the grating pitch P of the first grating 31 is a relational expression of image magnification.
  • the force is 45 / z m.
  • the image magnification is 2 has been described.
  • the image magnification may be any amount, and an enlargement system or a reduction system with other magnifications may be used. Also, make the first distance ⁇ equal to the second distance ⁇ to make the image magnification equal.
  • the second grating 12 is moved with respect to the first grating 31 and the third grating 13.
  • a configuration in which one lattice 31 is moved with respect to the second lattice 12 and the third lattice 13 or a configuration in which the third lattice 13 is moved with respect to the first lattice 31 and the second lattice 12 may be employed.
  • the image formed on the third grating 13 is opposite to the moving direction of the first grating 31.
  • the lattice pitch ⁇ of the first lattice 31 is divided into eight and
  • the duty ratio is a sine wave pattern, it can be divided into any number of divisions.For example, if the number of divisions is increased, the sine wave intensity becomes smoother. Distribution can be obtained.
  • the opening portion of the first grating 31 has the opening pattern in which the duty ratio of the transmission portion changes in a sine wave shape continuously arranged in the direction in which the duty ratio changes. Even if the irradiation distribution is uneven, it is possible to obtain an optical encoder in which the distortion of the signal output from the light receiving element 17 is extremely small.
  • FIG. 11 shows a configuration diagram of an optical encoder according to the fifth embodiment for carrying out the present invention.
  • the optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings, and includes a reflective amplitude grating as the second grating.
  • a spatially incoherent light source 4 a first grating 11 that has an aperture and receives light from the light source 4, and a light having an intensity distribution formed by the first grating 11 that has a reflection part.
  • the opening portion of the first grating 11 is provided with a plurality of stages of slit rows in the same phase in which openings having a shape in which a sine wave is folded up and down are continuously arranged.
  • the lattice pitch of the first lattice 11 is P
  • the lattice pitch of the second lattice 52 is P
  • the lattice pitch of the third lattice 13 is P.
  • ⁇ 4 consists of a spatially incoherent light source such as an LED, and emits spatially incoherent light with a central wavelength.
  • the third grating 13 is arranged on the same side as the first grating 11 with respect to the second grating 52.
  • the slit direction of each of the first lattice 11, the second lattice 52, and the third lattice 13 is set to the vertical direction on the paper surface, and the moving direction of the second lattice 52 is set to the vertical direction parallel to the paper surface.
  • the second grating 52 is provided on the second grating substrate 56, and the second grating 52 is moved by the movement of the second grating substrate 56.
  • Light from the light source 4 passes through the first grating 11 obliquely, is reflected obliquely by the second grating 52, passes obliquely through the third grating 13, and reaches the light receiving element 17. 1st distance Z, 2nd distance
  • Z is the distance between the first grating 11 and the second grating 52, and between the second grating 52 and the third grating 13, respectively.
  • the first grating 11, the second grating 52, and the third grating 13 are arranged, and the image magnification is equal.
  • Z and Z are different by changing the arrangement of the first lattice 11 and the third lattice 13. You may make it become a distance. Any enlargement system or reduction system may be used as long as it satisfies the imaging condition and the relational expression of image magnification.
  • FIG. 12 shows the calculation result of OTF in this configuration.
  • the vertical axis is the DC component and the normalized OTF
  • the horizontal axis shows the values of the first distance Z and the second distance Z.
  • OTF a maximum or minimum value of OTF can be obtained at a position that is an integral multiple of 2T for the fundamental spatial frequency component of 1.
  • the pitches of the first grating 11 and the third grating 13 may be determined so as to satisfy the imaging condition at this position.
  • the light source 4, the first grating 11, the third grating 13, and the light receiving element 17 can be arranged on the same side with respect to the second grating 52.
  • the body configuration can be made compact.
  • the openings of the first grating 11 are provided with a plurality of rows of slits in the same phase in which openings having a shape in which a sine wave is folded up and down are provided in the same phase. Even if the irradiation distribution from the light source 4 is non-uniform due to the cause, it is possible to obtain a highly accurate sine wave output in which distortion is suppressed in the light receiving element 17.
  • the opening of the first grating 11 is a duty modulation pattern in which the transmittance changes in a sine wave shape as shown in Embodiment 4, that is, an opening in which the duty ratio of the transmissive portion changes in a sine wave shape.
  • the pattern is arranged continuously in the direction in which the duty ratio changes.
  • the openings of the first grating 11 are provided with a plurality of slit rows in the same phase in which openings having a shape in which a sine wave is folded up and down are continuously arranged. Even when the irradiation distribution is non-uniform, an optical encoder with extremely small distortion of the signal output from the light receiving element 17 can be obtained. Further, since the third grating 13 is arranged on the same side as the first grating 11 with respect to the second grating 52, an optical encoder having a compact overall configuration can be obtained.
  • FIG. 13 shows a configuration diagram of an optical encoder according to the sixth embodiment for carrying out the present invention.
  • the optical encoder in this embodiment is composed of three gratings. This is a three-grid optical encoder.
  • the configuration other than setting the slit direction of the first grating 11, the second grating 52, and the third grating 13 in the vertical direction parallel to the paper surface and setting the moving direction of the second grating 52 in the vertical direction on the paper surface is as follows. This is the same as the fifth embodiment.
  • the light from the light source 4 passes through the first grating 11 obliquely, is reflected obliquely by the second grating 52, passes obliquely through the third grating 13, and reaches the light receiving element 17.
  • the theory of the three-grid method is applied. As shown in Fig. 13, the first grid 11 force is also the first distance Z from the second grid 52, and the second distance from the second grid 52 to the third grid 13.
  • the separation Z is defined as the distance along the light traveling direction. Z and Z are equal distance
  • the first grating 11, the second grating 52, and the third grating 13 are arranged, and the image magnification is equal. Note that Z and Z have different distances by changing the arrangement of the first grating 11 and the third grating 13.
  • the light source 4, the first grating 11, the third grating 13, and the light receiving element 17 can be arranged on the same side with respect to the second grating 52.
  • the body configuration can be made compact.
  • the openings of the first grating 11 are provided with a plurality of rows of slits in the same phase in which openings having a shape in which a sine wave is folded up and down are provided in the same phase. Even if the irradiation distribution from the light source 4 is non-uniform due to the cause, it is possible to obtain a highly accurate sine wave output in which distortion is suppressed in the light receiving element 17.
  • the opening of the first grating 11 is a duty modulation pattern in which the transmittance changes in a sine wave shape as shown in Embodiment 4, that is, an opening in which the duty ratio of the transmissive portion changes in a sine wave shape.
  • the pattern is arranged continuously in the direction in which the duty ratio changes.
  • the opening of the first grating 11 is provided with a plurality of slit rows in the same phase in which openings having a shape in which a sine wave is folded up and down are continuously arranged. Even when the irradiation distribution is non-uniform, an optical encoder with extremely small distortion of the signal output from the light receiving element 17 can be obtained. Further, since the third grating 13 is arranged on the same side as the first grating 11 with respect to the second grating 52, an optical encoder having a compact overall configuration is obtained. It can be done.
  • FIG. 14 shows a configuration diagram of an optical encoder according to the seventh embodiment for carrying out the present invention.
  • the optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings, and is applied to a rotary encoder in which gratings having a predetermined angular pitch are arranged radially.
  • a reflection type amplitude grating is provided as the second grating.
  • a spatially incoherent light source 4 a first grating 1 that has an opening and receives light from the light source 4, and a reflective part arranged on the same circumference along the light traveling direction are shown.
  • the opening of the first grid 1 has the center of the opening at the intersection of two or more concentric circles and an equiangular pitch line segment passing through the center of the concentric circle as shown in FIG.
  • the shape of the opening is a shape that changes in a sine wave shape symmetrically in the outer and inner directions with a concentric circle as the axis of symmetry.
  • the lattice pitch of the first lattice 11 is P
  • the lattice pitch of the second lattice 52 is P
  • Light source 4 is a spatially incoherent light source such as an LED.
  • the third grid 3 is arranged on the same side as the first grid 1 with respect to the second grid 42.
  • the second lattice 42 is provided on the second lattice substrate 46, and the second lattice 42 is moved by the rotation of the second lattice substrate 46.
  • Light from the light source 4 passes through the first grating 1 obliquely, is reflected obliquely by the second grating 42, passes obliquely through the third grating 3, and reaches the light receiving element 7. ⁇ and ⁇ etc.
  • the first grid 1, the second grid 42, and the third grid 3 may be arranged so that the distance is 1 2. Also, as shown in Fig. 14, the arrangement of the first lattice 1 and the third lattice 3 is changed so that ⁇ and ⁇
  • the image magnification can be an enlargement system or a reduction system.
  • the light source 4 and the first grating 1 Since the third grating 3 and the light receiving element 7 can be arranged on the same side with respect to the second grating 42, the overall configuration can be made compact.
  • the shape of the opening of the first grid 1 is a shape that changes in a sine wave shape symmetrically in the outer and inner directions with a concentric circle as the axis of symmetry. Even when the irradiation distribution is non-uniform, it is possible to obtain a highly accurate sine wave output in which distortion is suppressed in the light receiving element 7.
  • the opening of the first grating has a duty modulation pattern in which the transmittance changes in a sine wave shape as shown in Embodiment 3, that is, the duty ratio of the transmissive portion changes in a sine wave shape.
  • the opening pattern may be arranged radially continuously with respect to the center of the circle on the same circumference.
  • the opening center of the first lattice 1 is arranged at the intersection of the concentric circle and the equiangular pitch line segment passing through the center of the concentric circle, and the shape of the opening is The shape is a sinusoidal shape that changes symmetrically in the outer and inner directions with the concentric circle as the axis of symmetry.Therefore, even if the irradiation distribution from the light source 4 is uneven, the signal output from the light receiving element 7 is extremely distorted. A small optical encoder can be obtained. Further, since the third grating 3 is disposed on the same side as the first grating 1 with respect to the second grating 42, an optical encoder having a compact overall configuration can be obtained.
  • FIG. 15 shows a configuration diagram of an optical encoder according to the eighth embodiment for carrying out the present invention.
  • the optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings, and is applied to a rotary encoder in which gratings having a predetermined angular pitch are arranged radially.
  • a reflection type amplitude grating is provided as the second grating 42.
  • the configuration except that the slit direction of the first grating 1, the second grating 42 and the third grating 3 is set to the vertical direction parallel to the paper surface, and the moving direction of the second grating 42 is set to the vertical direction of the paper surface. The same as in the seventh embodiment.
  • the second grating 42 is provided on the second grating substrate 46, and the second grating 42 is moved by the rotation of the second grating substrate 46.
  • Light from the light source 4 passes through the first grating 1 obliquely, is reflected obliquely by the second grating 42, passes obliquely through the third grating 3, and reaches the light receiving element 7.
  • 1st distance The separation Z and the second distance Z are defined by the distance along the light traveling direction. Z is equal to Z
  • the first grid 1, the second grid 42, and the third grid 3 may be arranged so that In addition, as shown in Fig. 15, the distance between Z and Z is changed by changing the arrangement of the first grid 1 and the third grid.
  • the light source 4, the first grating 1, the third grating 3, and the light receiving element 7 can be arranged on the same side with respect to the second grating 42.
  • the configuration can be made compact.
  • the shape of the opening of the first grid 1 is a shape that changes in a sine wave shape symmetrically in the outer and inner directions with a concentric circle as the axis of symmetry. Even when the irradiation distribution is non-uniform, it is possible to obtain a highly accurate sine wave output in which distortion is suppressed in the light receiving element 7.
  • the opening of the first grating 1 is a duty modulation pattern in which the transmittance changes in a sine wave shape as shown in Embodiment 3, that is, an opening in which the duty ratio of the transmissive portion changes in a sine wave shape. It is also possible to arrange the patterns continuously in a radial pattern with respect to the center of the circle on the same circumference.
  • the opening center of the first lattice 1 is arranged at the intersection of the concentric circle and the equiangular pitch line passing through the center of the concentric circle, and the shape of the opening is Since it has a sine wave shape symmetrically about the concentric circle in the outer and inner directions, the light source
  • FIG. 16 shows a configuration diagram of an optical encoder according to the ninth embodiment for carrying out the present invention.
  • the optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings.
  • the configuration other than the Dich user 111 is the same as that of the second embodiment.
  • the Dich user 111 has a function of scattering light rays from the light source 4, and the scattered light rays irradiate the first grating 11.
  • the above-mentioned scattering direction is an in-plane direction in order to improve the light detection efficiency or to suppress crosstalk when another scale pattern is provided on the first grating substrate 15. However, it is desirable to design so that it does not scatter in the vertical direction of the paper.
  • Diffraction of the light beam from the light source 4 is substantially parallel light and the pitch P of the first grating 11 is large.
  • the Dich user 111 can be manufactured by, for example, a resin molding technique (embossing) using an ultraviolet ray curing resin.
  • the Dich user 111 has the force provided on the light source 4 side on the first grid substrate 15 on the first grid 11 after the first grid 11 is formed by patterning such as a metal thin film. May be.
  • the present embodiment can also be applied to the first to eighth embodiments.
  • the diffusion angle from each sinusoidal opening of the first grating 11 can be controlled by the Dich user 111, so the pitch P of the first grating 11
  • a grating in which optical features other than amplitude such as phase are periodically formed may be used as the second grating.
  • the intensity distribution on the first grating can be imaged on the third grating. In this case as well, if a sinusoidal intensity distribution is produced on the first grating, distortion does not occur in the intensity distribution on the third grating, and an extremely accurate sine wave output can be obtained.
  • the pitch of the grating may be determined and designed as a basic spatial frequency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

An optical encoder which is very small in distortion of a signal output from a light reception element even when a non-uniform irradiation distribution is given by a light source. The optical encoder comprises a light source, a fist lattice having openings and receiving light from the light source, a second lattice having openings arranged on the same circumference and receiving light having a intensity distribution formed by the first lattice, a third lattice having openings arranged on the same circumference and receiving light passed through the second lattice, and a light reception element receiving light from the third lattice, wherein the opening of the first lattice are such that the centers of the openings are arranged at the intersections between concentric circles and equiangular-pitch line segments passing the center of the concentric circles, and the shape of an opening changes in a sinusoidal form symmetrically in an outward direction and an inward direction with an concentric circle as a symmetric axis.

Description

明 細 書  Specification
光学式エンコーダ  Optical encoder
技術分野  Technical field
[0001] この発明は、格子間の相対移動量を光学的に検出できる光学式エンコーダに関す る。  The present invention relates to an optical encoder that can optically detect a relative movement amount between gratings.
背景技術  Background art
[0002] 従来の光学式エンコーダでは、 3枚の格子を用いた光学式エンコーダにおける三 格子法 (グレーティングイメージ)の理論が提案されている。この理論〖こよると、空間的 にインコヒーレントな光源を用い、光進行方向に沿って順に第 1格子、第 2格子、第 3 格子を並べて、特定の条件を整えれば、第 1格子に含まれる所定の空間周波数成分 を、所定の OTF (光学伝達関数: Optical Transfer Function)で第 3格子上に結 像することができる。特定の条件とは、第 2格子の形状、第 1格子から第 2格子までの 距離、第 2格子力も第 3格子までの距離などのパラメータで決まるものである。これら のパラメータによって、第 1格子に含まれる各々の空間周波数成分のうちの第 3格子 までの OTFが決定される。  In the conventional optical encoder, the theory of a three-grid method (grating image) in an optical encoder using three gratings has been proposed. According to this theory, if a spatially incoherent light source is used, the first grating, the second grating, and the third grating are arranged in order along the light traveling direction, and specific conditions are adjusted, the first grating is formed. Predetermined spatial frequency components included can be mapped onto the third grating with a predetermined OTF (Optical Transfer Function). The specific conditions are determined by parameters such as the shape of the second lattice, the distance from the first lattice to the second lattice, and the second lattice force as well as the distance to the third lattice. These parameters determine the OTF up to the third lattice of each spatial frequency component contained in the first lattice.
[0003] 三格子法の理論における、それぞれ 3つの格子の作用は、次のとおりである。 1)第 1格子:入射面での空間周波数分布を決定する。 2)第 2格子:第 2格子の形状、第 1 格子から第 2格子までの距離、第 2格子から第 3格子までの距離などから、第 1格子 力 第 3格子までの空間周波数毎の OTFを決定する。 3)第 3格子:結像された強度 分布から、所望の成分のみを透過させる。いわゆるインデックススリットの役割を担う( 例えば、非特許文献 1参照)。  [0003] The action of each of the three lattices in the theory of the three-grid method is as follows. 1) First grating: Determines the spatial frequency distribution on the entrance surface. 2) Second lattice: OTF for each spatial frequency from the first lattice force to the third lattice based on the shape of the second lattice, the distance from the first lattice to the second lattice, the distance from the second lattice to the third lattice, etc. To decide. 3) Third grating: Transmits only the desired component from the imaged intensity distribution. It plays the role of a so-called index slit (for example, see Non-Patent Document 1).
[0004] また、幾何学的な理論を応用した光学式エンコーダでは、正弦波を上下に折り返し た形状を複数個配列することで、第 1格子が構成されている (例えば、特許文献 1参 照)。  [0004] In addition, in an optical encoder that applies a geometric theory, a first grating is formed by arranging a plurality of shapes obtained by folding up and down a sine wave (for example, see Patent Document 1). ).
[0005] 特許文献 1 :特開平 5— 87592号公報 (第 6頁、第 1図)  Patent Document 1: Japanese Patent Laid-Open No. 5-87592 (page 6, FIG. 1)
特干文献 1 : K.Hane and C.P.urover, Imaging with rectangular transmission grati ngs," J.Opt.Soc.Am.A4, 706—711, 1987 発明の開示 Special Reference 1: K. Hane and CPurover, Imaging with rectangular transmission gratins, "J. Opt. Soc. Am. A4, 706-711, 1987 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 従来の光学式エンコーダでは、正弦波を上下に折り返した形状を複数個配列した 一段分のスリットによって、第 1格子が構成されているので、光源からの照射分布に 不均一が存在した場合には、第 1格子上の正弦波状の強度分布に歪みが発生し、 受光素子アレイ上の強度分布にも歪みが生じる問題があった。  [0006] In the conventional optical encoder, the first grating is formed by a single-stage slit in which a plurality of shapes obtained by folding up and down a sine wave are arranged, so that the distribution of illumination from the light source is uneven. In such a case, there was a problem that distortion occurred in the sinusoidal intensity distribution on the first grating, and distortion also occurred in the intensity distribution on the light receiving element array.
[0007] この発明は、上述のような課題を解決するためになされたものであり、光源からの照 射分布に不均一が生じた場合でも、受光素子力 の信号出力の歪みが極めて小さ V、光学式エンコーダを得るものである。  [0007] The present invention has been made to solve the above-mentioned problems, and even when nonuniformity occurs in the illumination distribution from the light source, the signal output distortion of the light receiving element force is extremely small. An optical encoder is obtained.
課題を解決するための手段  Means for solving the problem
[0008] この発明に係る光学式エンコーダは、開口部を有し光源からの光を受ける第 1格子 と、同一円周上に並んだ開口部または反射部を有し第 1格子によって形成された強 度分布をもつ光を受ける第 2格子と、同一円周上に並んだ開口部を有し第 2格子か らの光を受ける第 3格子と、第 3格子からの光を受ける受光素子とを備えた三格子法 の光学式エンコーダであって、第 1格子の開口部には、同心円と同心円の中心を通 る等角度ピッチの線分との交点の位置に開口の中心が配置され、開口の形状は、同 心円を対称軸として外側方向と内側方向とに対称に正弦波状に変化した形状である ことを特徴とするものである。 [0008] An optical encoder according to the present invention is formed by a first grating having an opening and receiving light from a light source, and an opening or a reflection part arranged on the same circumference. A second grating that receives light having an intensity distribution, a third grating that has openings arranged on the same circumference and receives light from the second grating, and a light receiving element that receives light from the third grating; An optical encoder of the three-grid method with the center of the opening disposed at the intersection of the concentric circle and a line segment of equiangular pitch passing through the center of the concentric circle in the opening of the first grating, The shape of the opening is characterized in that it changes in a sine wave shape symmetrically in the outer and inner directions with a concentric circle as the axis of symmetry.
[0009] また、この発明に係る光学式エンコーダは、開口部を有し光源からの光を受ける第 1格子と、開口部または反射部を有し第 1格子によって形成された強度分布をもつ光 を受ける第 2格子と、開口部を有し第 2格子力 の光を受ける第 3格子と、第 3格子か らの光を受ける受光素子とを備えた三格子法の光学式エンコーダであって、第 1格子 の開口部は、正弦波を上下に折り返した形状の開口が連続して配置されたスリット列 を同位相に複数段設けたことを特徴とするものである。  [0009] The optical encoder according to the present invention includes a first grating that has an opening and receives light from a light source, and a light having an intensity distribution formed by the first grating that has an opening or a reflection part. A three-grating optical encoder comprising: a second grating that receives light; a third grating that has an aperture and receives light of a second grating force; and a light receiving element that receives light from the third grating. The opening portion of the first grating is characterized in that a plurality of slit rows in which openings having a shape in which a sine wave is folded up and down are continuously arranged are provided in the same phase.
[0010] また、この発明に係る光学式エンコーダは、開口部を有し光源からの光を受ける第 1格子と、同一円周上に並んだ開口部または反射部を有し第 1格子によって形成さ れた強度分布をもつ光を受ける第 2格子と、同一円周上に並んだ開口部を有し第 2 格子力 の光を受ける第 3格子と、第 3格子力 の光を受ける受光素子とを備えた三 格子法の光学式エンコーダであって、第 1格子の開口部は、透過部のデューティー 比が正弦波状に変化する開口パターンを同一円周上に円の中心に対して放射状に 連続して配置したことを特徴とするものである。 [0010] Further, the optical encoder according to the present invention is formed by a first grating having an opening and receiving light from a light source, and an opening or a reflection part arranged on the same circumference. A second grating that receives light having a specified intensity distribution, a third grating that has openings arranged on the same circumference and receives light of the second grating force, and a light receiving element that receives light of the third grating force With three In the optical encoder of the grating method, an opening pattern in which the duty ratio of the transmission part changes in a sine wave shape is continuously arranged radially on the same circumference with respect to the center of the circle. It is characterized by this.
[0011] また、この発明に係る光学式エンコーダは、開口部を有し光源からの光を受ける第 1格子と、開口部または反射部を有し第 1格子によって形成された強度分布をもつ光 を受ける第 2格子と、開口部を有し第 2格子力 の光を受ける第 3格子と、第 3格子か らの光を受ける受光素子とを備えた三格子法の光学式エンコーダであって、第 1格子 の開口部は、透過部のデューティー比が正弦波状に変化する開口パターンをデュー ティー比が変化する方向に連続して配置したことを特徴とするものである。  [0011] Further, the optical encoder according to the present invention includes a first grating having an opening and receiving light from a light source, and light having an intensity distribution formed by the first grating having an opening or a reflection part. A three-grating optical encoder comprising: a second grating that receives light; a third grating that has an aperture and receives light of a second grating force; and a light receiving element that receives light from the third grating. The opening portion of the first grating is characterized in that an opening pattern in which the duty ratio of the transmission portion changes in a sine wave shape is continuously arranged in the direction in which the duty ratio changes.
発明の効果  The invention's effect
[0012] この発明に係る光学式エンコーダは、開口部を有し光源からの光を受ける第 1格子 と、同一円周上に並んだ開口部または反射部を有し第 1格子によって形成された強 度分布をもつ光を受ける第 2格子と、同一円周上に並んだ開口部を有し第 2格子か らの光を受ける第 3格子と、第 3格子からの光を受ける受光素子とを備えた三格子法 の光学式エンコーダであって、第 1格子の開口部には、同心円と同心円の中心を通 る等角度ピッチの線分との交点の位置に開口の中心が配置され、開口の形状は、同 心円を対称軸として外側方向と内側方向とに対称に正弦波状に変化した形状である ので、光源力もの照射分布に不均一が生じた場合でも、受光素子からの信号出力の 歪みが極めて小さい光学式エンコーダを得ることができる。  The optical encoder according to the present invention is formed by a first grating having an opening and receiving light from a light source, and an opening or a reflecting part arranged on the same circumference. A second grating that receives light having an intensity distribution, a third grating that has openings arranged on the same circumference and receives light from the second grating, and a light receiving element that receives light from the third grating; An optical encoder of the three-grid method with the center of the opening disposed at the intersection of the concentric circle and a line segment of equiangular pitch passing through the center of the concentric circle in the opening of the first grating, The shape of the aperture is a shape that changes in a sinusoidal shape symmetrically in the outer and inner directions with a concentric circle as the axis of symmetry, so even if the illumination distribution is uneven, the signal from the light receiving element An optical encoder with extremely low output distortion can be obtained.
[0013] また、この発明に係る光学式エンコーダは、開口部を有し光源からの光を受ける第 1格子と、開口部または反射部を有し第 1格子によって形成された強度分布をもつ光 を受ける第 2格子と、開口部を有し第 2格子力 の光を受ける第 3格子と、第 3格子か らの光を受ける受光素子とを備えた三格子法の光学式エンコーダであって、第 1格子 の開口部は、正弦波を上下に折り返した形状の開口が連続して配置されたスリット列 を同位相に複数段設けたので、光源力もの照射分布に不均一が生じた場合でも、受 光素子からの信号出力の歪みが極めて小さい光学式エンコーダを得ることができる。  [0013] Further, the optical encoder according to the present invention includes a first grating that has an opening and receives light from a light source, and light having an intensity distribution formed by the first grating that has an opening or a reflection part. A three-grating optical encoder comprising: a second grating that receives light; a third grating that has an aperture and receives light of a second grating force; and a light receiving element that receives light from the third grating. The opening of the first grating is provided with multiple rows of slits in the same phase, each of which has an opening with a sine wave folded back up and down. However, it is possible to obtain an optical encoder with extremely small distortion of signal output from the light receiving element.
[0014] また、この発明に係る光学式エンコーダは、開口部を有し光源からの光を受ける第 1格子と、同一円周上に並んだ開口部または反射部を有し第 1格子によって形成さ れた強度分布をもつ光を受ける第 2格子と、同一円周上に並んだ開口部を有し第 2 格子力 の光を受ける第 3格子と、第 3格子力 の光を受ける受光素子とを備えた三 格子法の光学式エンコーダであって、第 1格子の開口部は、透過部のデューティー 比が正弦波状に変化する開口パターンを同一円周上に円の中心に対して放射状に 連続して配置したので、光源からの照射分布に不均一が生じた場合でも、受光素子 力もの信号出力の歪みが極めて小さい光学式エンコーダを得ることができる。 [0014] Further, the optical encoder according to the present invention is formed by a first grating having an opening and receiving light from a light source, and an opening or a reflection part arranged on the same circumference. The A second grating that receives light having a predetermined intensity distribution, a third grating that has openings arranged on the same circumference and receives light of the second grating force, and a light receiving element that receives light of the third grating force The aperture of the first grating has an opening pattern in which the duty ratio of the transmission part changes in a sine wave pattern on the same circumference, radially with respect to the center of the circle. Therefore, even if the distribution of illumination from the light source is nonuniform, an optical encoder with extremely small signal output distortion can be obtained even if the light receiving element is strong.
[0015] また、この発明に係る光学式エンコーダは、開口部を有し光源からの光を受ける第 1格子と、開口部または反射部を有し第 1格子によって形成された強度分布をもつ光 を受ける第 2格子と、開口部を有し第 2格子力 の光を受ける第 3格子と、第 3格子か らの光を受ける受光素子とを備えた三格子法の光学式エンコーダであって、第 1格子 の開口部は、透過部のデューティー比が正弦波状に変化する開口パターンをデュー ティー比が変化する方向に連続して配置したので、光源からの照射分布に不均一が 生じた場合でも、受光素子力 の信号出力の歪みが極めて小さい光学式エンコーダ を得ることができる。 [0015] The optical encoder according to the present invention includes a first grating that has an opening and receives light from a light source, and a light having an intensity distribution formed by the first grating that has an opening or a reflection part. A three-grating optical encoder comprising: a second grating that receives light; a third grating that has an aperture and receives light of a second grating force; and a light receiving element that receives light from the third grating. In the opening of the first grating, the aperture pattern in which the duty ratio of the transmission part changes in a sine wave pattern is continuously arranged in the direction in which the duty ratio changes. However, it is possible to obtain an optical encoder with extremely small signal output distortion due to light receiving element force.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]この発明の実施の形態 1を示す光学式エンコーダの構成図である。 FIG. 1 is a configuration diagram of an optical encoder showing Embodiment 1 of the present invention.
[図 2]この発明の実施の形態 1における第 1格子の開口部の開口パターンである。  FIG. 2 is an opening pattern of openings of the first lattice in the first embodiment of the present invention.
[図 3]この発明の実施の形態 1における OTFの計算結果の一例である。  FIG. 3 is an example of an OTF calculation result in Embodiment 1 of the present invention.
[図 4]この発明の実施の形態 2を示す光学式エンコーダの構成図である。  FIG. 4 is a configuration diagram of an optical encoder showing Embodiment 2 of the present invention.
[図 5]この発明の実施の形態 2における第 1格子の開口部の開口パターンである。  FIG. 5 shows an opening pattern of the opening of the first grating in the second embodiment of the present invention.
[図 6]この発明の実施の形態 3を示す光学式エンコーダの構成図である。  FIG. 6 is a configuration diagram of an optical encoder showing Embodiment 3 of the present invention.
[図 7]この発明の実施の形態 3における第 1格子の開口部の開口パターンである。  FIG. 7 shows an opening pattern of the opening of the first grating in the third embodiment of the present invention.
[図 8]この発明の実施の形態 4を示す光学式エンコーダの構成図である。  FIG. 8 is a configuration diagram of an optical encoder showing Embodiment 4 of the present invention.
[図 9]この発明の実施の形態 4における第 1格子の開口部の開口パターンである。  FIG. 9 shows an opening pattern of the opening of the first grating in the fourth embodiment of the present invention.
[図 10]この発明の実施の形態 4における OTFの計算結果の一例である。  FIG. 10 is an example of the calculation result of OTF in Embodiment 4 of the present invention.
[図 11]この発明の実施の形態 5を示す光学式エンコーダの構成図である。  FIG. 11 is a configuration diagram of an optical encoder showing Embodiment 5 of the present invention.
[図 12]この発明の実施の形態 5における OTFの計算結果の一例である。  FIG. 12 shows an example of the calculation result of OTF in the fifth embodiment of the present invention.
[図 13]この発明の実施の形態 6を示す光学式エンコーダの構成図である。 [図 14]この発明の実施の形態 7を示す光学式エンコーダの構成図である。 FIG. 13 is a configuration diagram of an optical encoder showing Embodiment 6 of the present invention. FIG. 14 is a configuration diagram of an optical encoder showing Embodiment 7 of the present invention.
[図 15]この発明の実施の形態 8を示す光学式エンコーダの構成図である。  FIG. 15 is a configuration diagram of an optical encoder showing Embodiment 8 of the present invention.
[図 16]この発明の実施の形態 9を示す光学式エンコーダの構成図である。  FIG. 16 is a configuration diagram of an optical encoder showing Embodiment 9 of the present invention.
符号の説明  Explanation of symbols
[0017] 1, 11, 21, 31 第 1格子、 2, 12, 42, 52 第 2格子、 3, 13 第 3格子、 4 光源、 5, 15, 25, 35 第 1格子用基板、 6, 16, 46, 56 第 2格子用基板、 7, 17 受光素 子、 8, 18, 28, 38 透過部、 9, 19, 29, 39 非透過部、 101a〜101e 同一円、 1 02a〜102e 線分、 111 ディヒユーザ。  [0017] 1, 11, 21, 31 First grating, 2, 12, 42, 52 Second grating, 3, 13 Third grating, 4 Light source, 5, 15, 25, 35 First grating substrate, 6, 16, 46, 56 Substrate for second grating, 7, 17 Light receiving element, 8, 18, 28, 38 Transmitting part, 9, 19, 29, 39 Non-transmitting part, 101a to 101e Same circle, 102a to 102e line Min, 111 users.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 実施の形態 1.  [0018] Embodiment 1.
図 1は、この発明を実施するための実施の形態 1における光学式エンコーダの構成 図を示すものである。本実施の形態における光学式エンコーダは、 3つの格子からな る三格子法の光学式エンコーダであり、所定の角度ピッチを有する格子を放射状に 配置したロータリーエンコーダへ適用したものである。図 1において、光進行方向に 沿って、光源 4と、開口部を有し光源 4からの光を受ける第 1格子 1と、同一円周上に 並んだ開口部を有し第 1格子 1によって形成された強度分布をもつ光を受ける第 2格 子 2と、同一円周上に並んだ開口部を有し第 2格子 2からの光を受ける第 3格子 3と、 第 3格子 3からの光を受ける受光素子 7とが設けられている。  FIG. 1 shows a configuration diagram of an optical encoder according to Embodiment 1 for carrying out the present invention. The optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings, and is applied to a rotary encoder in which gratings having a predetermined angular pitch are arranged radially. In FIG. 1, along the light traveling direction, the light source 4, the first grating 1 that has an opening and receives light from the light source 4, and the first grating 1 that has openings arranged on the same circumference. The second grating 2 that receives light having the formed intensity distribution, the third grating 3 that has openings arranged on the same circumference and receives light from the second grating 2, and the third grating 3 A light receiving element 7 for receiving light is provided.
[0019] 第 2格子 2は、第 1格子 1と第 3格子 3との間に配置されている。第 2格子 2は、第 2格 子用基板 6の中心軸 Cの周りに角変位可能なように支持されている。光源 4は、 LED などで構成され、中心波長えの空間的にインコヒーレントな光を放射する。光源 4の 光軸 Qは、中心軸 Cに平行で、中心軸 Cから半径 Raの位置に位置決めされている。  The second grid 2 is disposed between the first grid 1 and the third grid 3. The second lattice 2 is supported so as to be angularly displaceable around the central axis C of the second lattice substrate 6. The light source 4 is composed of an LED or the like and emits spatially incoherent light having a center wavelength. The optical axis Q of the light source 4 is parallel to the central axis C and is positioned at a radius Ra from the central axis C.
[0020] 第 1格子 1は、透明な第 1格子用基板 5上に金属薄膜などのパターユングによって 形成され、光軸 Qが交差する位置において、格子ピッチ P  [0020] The first grating 1 is formed on a transparent first grating substrate 5 by patterning such as a metal thin film, and has a grating pitch P at a position where the optical axes Q intersect.
1を有する振幅格子型の口 一タリースケールの開口部を構成して、光源 4からの光を受けて正弦波状の強度分 布を作製している。  An aperture of an amplitude grating type with 1 and a tally scale opening is constructed to receive the light from the light source 4 to produce a sinusoidal intensity distribution.
[0021] 図 2は実施の形態 1における第 1格子 1の開口部の開口パターンを示すものである 。開口パターンは光の透過部 8と非透過部 9とで構成される。第 1格子 1の開口部に は、 2以上の複数の同心円 101a〜101eと同心円の中心を通る等角度ピッチの線分 102a〜102eとの交点の位置に開口の中心が配置され、開口の形状は、同心円を 対称軸として外側方向と内側方向とに対称に正弦波状に変化した形状である。この ため、開口の形状は、同心円 101a〜101eの中心からの距離に比例して同心円 10 la〜: LOleの円周方向に拡大縮小した形状になっている。開口は円周方向に同一 位相になるように配置されている。なお、同心円とは、中心を共有する 2つ以上の円 のことである。同心円 101a〜101eの半径は等間隔であっても、不等間隔であっても よい。また、それぞれの開口は同心円の半径方向には接触してもよいし、接触しなく てもよい。格子ピッチ P FIG. 2 shows an opening pattern of the opening of the first grating 1 in the first embodiment. The opening pattern includes a light transmitting portion 8 and a non-transmitting portion 9. At the opening of the first grid 1 The center of the opening is arranged at the intersection of two or more concentric circles 101a to 101e and the equiangular pitch line segments 102a to 102e passing through the center of the concentric circle. The shape changes in a sine wave shape symmetrically in the direction and the inner direction. For this reason, the shape of the opening is a shape that is enlarged or reduced in the circumferential direction of the concentric circles 10 la to LOLO in proportion to the distance from the center of the concentric circles 101 a to 101 e. The openings are arranged so that they have the same phase in the circumferential direction. A concentric circle is two or more circles that share the center. The radii of the concentric circles 101a to 101e may be equally spaced or unequal. Moreover, each opening may contact in the radial direction of a concentric circle, and does not need to contact. Lattice pitch P
1は、光軸 Qに交差する位置近傍における配置される開口のピ ツチとして定義されている。  1 is defined as the pitch of the aperture arranged near the position intersecting the optical axis Q.
[0022] 第 2格子 2は、中心軸 Cの周りに回転可能な円板状に形成された透明な第 2格子用 基板 6の表面に金属薄膜などのパターニングによって形成され、光軸 Qが交差する 半径 Raの位置にぉ 、て、格子ピッチ Pを有する振幅格子のロータリースケールを構 成して、第 1格子 1から第 1距離 Zだけ離れた位置に配置されている。第 2格子 2は、  [0022] The second grating 2 is formed by patterning a metal thin film or the like on the surface of the transparent second grating substrate 6 formed in a disk shape rotatable around the central axis C, and the optical axis Q intersects. The rotary scale of the amplitude grating having the grating pitch P is formed at the position of the radius Ra, and is arranged at the position separated from the first grating 1 by the first distance Z. Second grid 2 is
1  1
第 1格子 1からの光を受けて第 1格子 1によって作製された強度分布を、第 2格子 2か ら第 2距離 Zだけ離れた位置に配置した第 3格子 3上に結像させている。ロータリー  The intensity distribution produced by the first grating 1 in response to the light from the first grating 1 is imaged on the third grating 3 arranged at a second distance Z from the second grating 2. . Rotary
2  2
スケールの形状は、光軸 Qが交差する半径 Raの位置において、格子ピッチ Pの半分 ( = PZ2)ごとに透過部と非透過部とを交互に配置して、デューティー比 50%の振幅 格子を形成したほうがよい。  The shape of the scale is such that at the radius Ra where the optical axis Q intersects, an transmissive part and a non-transmissive part are alternately arranged for every half of the grating pitch P (= PZ2) to form an amplitude grating with a duty ratio of 50%. It is better to form.
[0023] 第 3格子 3は、光軸 Qが交差する位置において格子ピッチ Pを有する振幅格子型 [0023] The third grating 3 is an amplitude grating type having a grating pitch P at a position where the optical axes Q intersect.
2  2
のロータリースケールを構成して、第 2格子 2から第 2距離 Zだけ離れた位置に配置  The rotary scale is configured and placed at a position 2 Z away from the 2nd grid 2
2  2
されている。ロータリースケールの形状は、光軸 Qが交差する位置において、格子ピ ツチ Pの半分(=P Z2)ごとに透過部と非透過部とを交互に配置して、デューティー Has been. The shape of the rotary scale is such that at the position where the optical axis Q intersects, a transmissive part and a non-transmissive part are alternately arranged for every half of the grating pitch P (= P Z2).
2 2 twenty two
比 50%の振幅格子を形成したほうがよい。受光素子 7は、フォトダイオード等で形成 され、第 3格子 3を通過した光を電気信号に変換する。第 3格子 3は受光素子 7の受 光面に一体的に設けられている。なお、第 3格子 3と受光素子 7とは別々に設けられ てもよい。  It is better to form a 50% amplitude grating. The light receiving element 7 is formed of a photodiode or the like, and converts light that has passed through the third grating 3 into an electrical signal. The third grating 3 is provided integrally on the light receiving surface of the light receiving element 7. The third grating 3 and the light receiving element 7 may be provided separately.
[0024] 第 1格子 1および第 3格子 3はハウジングなどに固定されている。第 2格子 2は、光軸 Qに直交する円周方向に角変位可能なように支持される。第 1格子 1に含まれる空間 周波数成分が第 3格子 3上に結像される条件を満たす場合には、回転によって第 2 格子 2が角変位すると、第 3格子 3上の強度分布も同一の方向へ移動する。そこで、 第 3格子 3からの透過光を受光素子 7で光電変換し、その信号出力の変化力 第 2格 子 2の相対角変位量を検出することができる。 [0024] The first grid 1 and the third grid 3 are fixed to a housing or the like. The second grating 2 is the optical axis It is supported so that it can be angularly displaced in the circumferential direction perpendicular to Q. If the spatial frequency component included in the first grating 1 satisfies the condition that the image is formed on the third grating 3, and if the second grating 2 is angularly displaced by rotation, the intensity distribution on the third grating 3 is also the same. Move in the direction. Therefore, the transmitted light from the third grating 3 is photoelectrically converted by the light receiving element 7, and the relative angular displacement of the second index 2 can be detected by changing the signal output.
[0025] ここで、三格子法の理論に基づいた、第 1格子 1に含まれる空間周波数成分が第 3 格子 3上に結像される条件の設計法について説明する。図 1に示した光学式ェンコ ーダの構成において、 OTFを求めることによって、第 3格子 3上に結像される像の周 波数特性およびそのコントラストが得られる。 OTFは、光学系におけるインノルス応 答の二乗のフーリエ変換で表現できる。  Here, a design method for conditions under which the spatial frequency component included in the first grating 1 is imaged on the third grating 3 based on the theory of the three-grid method will be described. In the configuration of the optical encoder shown in FIG. 1, the frequency characteristic of the image formed on the third grating 3 and its contrast can be obtained by obtaining the OTF. OTF can be expressed by the Fourier transform of the square of the Inners response in the optical system.
[0026] 図 3に像倍率が拡大系での OTFの計算結果の一例を示す。第 2格子 2の形状が、 格子ピッチ Pの半分( = PZ2)ごとに透過部と非透過部とを交互に配置したデューテ ィー比 50%の振幅格子である場合には、図 3に示した OTFの計算結果が得られる。 図 3において、縦軸は DC成分で規格ィ匕後の OTFであり、横軸は第 2距離 Zを光源 4  FIG. 3 shows an example of the OTF calculation result when the image magnification is an enlargement system. When the shape of the second grating 2 is an amplitude grating with a duty ratio of 50% in which transmissive parts and non-transmissive parts are alternately arranged for each half of the grating pitch P (= PZ2), it is shown in FIG. OTF calculation results are obtained. In Fig. 3, the vertical axis is the DC component and the OTF after the standardization, and the horizontal axis is the second distance Z as the light source 4
2 の波長 λと第 2格子 2の格子ピッチ Ρとを用いて、 Τ=Ρ2/ λで規格ィ匕したものである 。第 1距離 Ζは、一例として、 1. 5Τの位置で固定されている。図 3において、 Νは数 Using the wavelength λ of 2 and the grating pitch の of the second grating 2, it is standardized with で = Ρ 2 / λ. As an example, the first distance Ζ is fixed at a position of 1.5 Τ. In Figure 3, Ν is a number
1  1
1で定義される結像条件のパラメータ Νに対応している。  This corresponds to the imaging condition parameter 定義 defined in 1.
[0027] [数 1]
Figure imgf000009_0001
[0027] [Equation 1]
Figure imgf000009_0001
[0028] この Νが整数になった場合のみ、第 1格子 1に含まれる空間周波数が、所定の ΟΤ Fで第 3格子 3上に結像される。格子ピッチ Ρは、数 1と、第 1距離 Ζ、第 2距離 Ζおよ  [0028] Only when this Ν becomes an integer, the spatial frequency included in the first grating 1 is imaged on the third grating 3 with a predetermined ΟΤ F. The grid pitch 、 is the number 1, the first distance Ζ, the second distance Ζ and
1 1 2 び第 3格子 3の格子ピッチ Ρを用いた像倍率の関係式である数 2とによって決定され  1 1 2 and 3rd grating 3 is determined by Equation 2 which is a relational expression of image magnification using the grating pitch 格子.
2  2
る。  The
[0029] [数 2] = … ( 2 ) ここで、 Νの数値が各空間周波数成分の結像条件をあらわしている。例えば Ν = を基本の空間周波数成分として設計した場合には、 Ν = 2、 3 · · ·は高次の空間周 数成分、すなわち高調波成分となり、第 3格子 3上における歪み成分の原因となる。 本実施の形態では、第 1格子 1を正弦波状にしたので、第 1格子 1には基本の空間周 波数以外の空間周波数成分は含まれない。このため、基本の空間周波数以外の OT Fがいくら存在しても、光源 4からの照射分布が一様で、第 1格子 1上の強度分布が 理想的な正弦波状である場合には、第 3格子 3上には高調波成分は結像されないの で、原理上、第 3格子 3上の強度分布に歪みは発生しない。したがって、受光素子 7 力 得られる信号出力にも、歪み成分は発生せず、極めて高精度の正弦波出力を得 ることがでさる。 [0029] [Expression 2] = (2) Here, the numerical value of Ν represents the imaging condition of each spatial frequency component. For example, when Ν = is designed as a basic spatial frequency component, Ν = 2, 3 ... Several components, that is, harmonic components, cause distortion components on the third grating 3. In the present embodiment, since the first grating 1 has a sine wave shape, the first grating 1 does not include spatial frequency components other than the basic spatial frequency. Therefore, no matter how much OTF other than the basic spatial frequency is present, if the illumination distribution from the light source 4 is uniform and the intensity distribution on the first grating 1 is an ideal sine wave, Since harmonic components are not imaged on the third grid 3, in principle, no distortion occurs in the intensity distribution on the third grid 3. Therefore, a distortion component is not generated in the signal output obtained from the light receiving element 7 force, and an extremely accurate sine wave output can be obtained.
[0031] なお、設計時の P、 P、 P、 Z、 Zおよび λなどの各パラメータは、数 1のパラメータ  [0031] Each parameter such as P, P, P, Z, Z, and λ at the time of design is a parameter of Formula 1.
1 2 1 2  1 2 1 2
Νに対応した結像条件、数 2の像倍率および基本空間周波数成分の OTFに着目し て設計をすればょ 、ので、あらゆる組み合わせが可能となる。  Any design can be made by focusing on the imaging conditions corresponding to Ν, the image magnification of Equation 2, and the OTF of the fundamental spatial frequency component.
[0032] 一例として、 Ra = 9. 55mmの円周上に mピッチの格子を形成した場合(1回 転あたりのスリット数は 2000本)について説明する。光源 4の波長え = 900nmおよ び Z = 1. 5Tにおける OTFは、図 3と同様の結果となる。したがって、 Z = 3Tの位置[0032] As an example, a case where an m-pitch lattice is formed on the circumference of Ra = 9.55 mm (the number of slits per rotation is 2000) will be described. The OTF at the wavelength of light source 4 = 900nm and Z = 1.5T is the same as in Fig. 3. Therefore, Z = 3T position
1 2 にて、像倍率 2倍で OTF絶対値 0. 637を得ることができる。 OTF=0. 637とは、振 幅 100の第 1格子 1の像力 振幅 63. 7で第 3格子 3上に結像されることを意味してい る。また、 OTFの値が負の場合には、第 1格子 1の反転像が第 3格子 3上に結像され る。第 2格子用基板 6である円板の回転に伴い、第 2格子 2が 360° の 1Z2000だけ 回転すると、第 3格子 3上に結像される像も 1周期移動し、光電変換後の信号から円 板の角変位量を検出できる。 At 1 2, an OTF absolute value of 0.637 can be obtained at an image magnification of 2 ×. OTF = 0.637 means that the image is formed on the third grating 3 with the image power amplitude 63.7 of the first grating 1 having the amplitude 100. When the OTF value is negative, an inverted image of the first grating 1 is formed on the third grating 3. When the second grating 2 is rotated by 360 ° 1Z2000 along with the rotation of the disk that is the second grating substrate 6, the image formed on the third grating 3 also moves one period, and the signal after photoelectric conversion Can detect the angular displacement of the disk.
[0033] また、第 1格子 1の開口部には、同一位相に複数の正弦波状の開口が配置されて いる。このため、汚れや放射分布のばらつきなどが原因で光源 4からの照射分布に 不均一が生じた場合でも、各開口の平均化効果によって第 1格子 1上のトータルの強 度分布は正弦波状になるので、第 3格子 3を透過し、光電変換して得られる受光素子 出力は、歪みが抑制された極めて高精度の正弦波出力となる。  In addition, a plurality of sinusoidal openings are arranged in the same phase at the opening of the first grating 1. For this reason, even if the irradiation distribution from the light source 4 becomes non-uniform due to contamination, variation in the radiation distribution, etc., the total intensity distribution on the first grating 1 is sinusoidal due to the averaging effect of each aperture. Therefore, the light receiving element output that is transmitted through the third grating 3 and photoelectrically converted is a highly accurate sine wave output in which distortion is suppressed.
[0034] 本実施の形態にお!、ては、像倍率が 2倍の場合にっ 、て述べたが、結像条件と像 倍率の関係式とを満足する構成であれば像倍率はいくらでもよぐ他の倍率の拡大 系または縮小系でもよい。また、第 1距離 Zと第 2距離 Zとを等しくして像倍率を等倍 とする構成としてもよい。 [0034] In the present embodiment, the case where the image magnification is 2 has been described. However, as long as the image forming condition and the relational expression of the image magnification are satisfied, the image magnification can be any number. It may be an enlargement system or reduction system of other magnifications. Also, make the first distance Z equal to the second distance Z to make the image magnification equal. It is good also as a structure.
[0035] また、本実施の形態においては、第 1格子 1と第 3格子 3とを第 2格子 2に対して移 動させる構成とした力 各格子間の相対移動であればよいので、例えば、第 1格子 1 を第 2格子 2と第 3格子 3とに対して移動させる構成としてもよい。第 1格子 1を移動さ せる場合には、第 3格子 3上に結像される像は、第 1格子 1の移動方向に対し逆方向 となる。  Further, in the present embodiment, a force configured to move the first lattice 1 and the third lattice 3 with respect to the second lattice 2 may be any relative movement between the lattices. The first lattice 1 may be moved with respect to the second lattice 2 and the third lattice 3. When the first grating 1 is moved, the image formed on the third grating 3 is opposite to the moving direction of the first grating 1.
[0036] また、本実施の形態においては、同心円を対称軸として外側方向と内側方向とに 対称に正弦波状に変化した形状の開口の数が円周方向に 5個ずつ、半径方向に 5 個ずつ配置した例を示した。開口の数は、照射領域や設計ピッチなどに応じて、増 やしてち減らしてちょい。  [0036] In the present embodiment, the number of openings having a sinusoidal shape symmetrically about the outer direction and the inner direction with the concentric circle as the axis of symmetry is five in the circumferential direction and five in the radial direction. The example which arranged one by one was shown. Increase or decrease the number of apertures according to the irradiation area and design pitch.
[0037] 以上のように、第 1格子 1の開口部には、同心円と同心円の中心を通る等角度ピッ チの線分との交点の位置に開口の中心が配置され、開口の形状は同心円を対称軸 として外側方向と内側方向とに対称に正弦波状に変化した形状であるので、光源 4 力もの照射分布に不均一が生じた場合でも、受光素子 7からの信号出力の歪みが極 めて小さ 、光学式エンコーダを得ることができる。  [0037] As described above, the opening of the first lattice 1 has the center of the opening at the intersection of the concentric circle and the equiangular pitch line passing through the center of the concentric circle, and the shape of the opening is concentric. Therefore, even if the illumination distribution of four light sources is nonuniform, the signal output from the light receiving element 7 is extremely distorted. And small optical encoder can be obtained.
[0038] 実施の形態 2.  [0038] Embodiment 2.
図 4は、この発明を実施するための実施の形態 2における光学式エンコーダの構成 図を示すものである。本実施の形態における光学式エンコーダは、 3つの格子からな る三格子法の光学式エンコーダである。図 4において、光進行方向に沿って、光源 4 と、開口部を有し光源 4からの光を受ける第 1格子 11と、開口部を有し第 1格子 11に よって形成された強度分布をもつ光を受ける第 2格子 12と、開口部を有し第 2格子 1 2からの光を受ける第 3格子 13と、第 3格子 13からの光を受ける受光素子 17とが設 けられている。 XIと X2とは Xと同じ方向である。  FIG. 4 shows a configuration diagram of an optical encoder according to Embodiment 2 for carrying out the present invention. The optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings. In FIG. 4, along the light traveling direction, the intensity distribution formed by the light source 4, the first grating 11 having an opening and receiving light from the light source 4, and the first grating 11 having an opening is shown. A second grating 12 for receiving light, a third grating 13 having an opening for receiving light from the second grating 12, and a light receiving element 17 for receiving light from the third grating 13. . XI and X2 are in the same direction as X.
[0039] 第 2格子 12は、第 1格子 11と第 3格子 13との間に配置されている。光源 4は、 LED など空間的にインコヒーレントな光源 4で構成され、中心波長 λの空間的にインコヒー レントな光を放射する。  The second lattice 12 is disposed between the first lattice 11 and the third lattice 13. The light source 4 includes a spatially incoherent light source 4 such as an LED, and emits spatially incoherent light having a center wavelength λ.
[0040] 第 1格子 11は、透明な第 1格子用基板 15上に金属薄膜などのパターユングによつ て形成され、格子ピッチ Ρを有し、光源 4からの光を受けて正弦波状の強度分布を作 製している。 [0040] The first grating 11 is formed on a transparent first grating substrate 15 by patterning such as a metal thin film, has a grating pitch Ρ, receives light from the light source 4, and has a sinusoidal shape. Create intensity distribution Made.
[0041] 図 5は実施の形態 2における第 1格子 11の開口部の開口パターンを示すものであ る。開口パターンは光の透過部 18と非透過部 19とで構成される。第 1格子 11の開口 部は、正弦波を上下に折り返した形状の開口が連続して配置されたスリット列を同位 相に複数段設けた構成である。スリット列は、正弦波を上下に折り返した形状の開口 が格子ピッチ Pで連続して配置されて構成される。つまり、スリット列は、 1周期 Pで変  FIG. 5 shows an opening pattern of the opening of the first grating 11 in the second embodiment. The opening pattern includes a light transmitting portion 18 and a non-transmitting portion 19. The opening portion of the first grating 11 has a configuration in which a plurality of slit rows in which openings having a shape in which a sine wave is folded up and down are continuously arranged are provided in the same phase. The slit row is configured by continuously arranging openings with a sine wave folded up and down at a lattice pitch P. In other words, the slit row changes with one period P.
1 1 化する複数周期分の正弦波を上下に折り返すことにより構成される。図 5において、 XIの方向は、図 4に示した XIの方向と同じであり、正弦波の進行方向が XIの方向 となる。スリット列を構成する正弦波が同位相になるように、スリット列は正弦波の振幅 方向に複数段設けられる。それぞれのスリット列に配置された正弦波の振幅方向の 開口の大きさは、開口が同一位相になるように配置されれば、同じでもよいし、異なつ てもよい。また、それぞれの開口は接触してもよいし、接触しなくてもよい。  1 It is composed by folding up and down sine waves for multiple periods. In FIG. 5, the XI direction is the same as the XI direction shown in FIG. 4, and the traveling direction of the sine wave is the XI direction. A plurality of slit rows are provided in the amplitude direction of the sine wave so that the sine waves constituting the slit row have the same phase. The size of the opening in the amplitude direction of the sine wave arranged in each slit row may be the same or different as long as the openings are arranged so as to have the same phase. Moreover, each opening may contact and does not need to contact.
[0042] 第 2格子 12は、透明な第 2格子用基板 16上に金属薄膜などのパターユングによつ て形成され、格子ピッチ Pを有する振幅格子を構成して、第 1格子 11から第 1距離 Z [0042] The second grating 12 is formed on the transparent second grating substrate 16 by patterning such as a metal thin film, and constitutes an amplitude grating having a grating pitch P. 1 distance Z
1 だけ離れた位置に配置し、第 1格子 11からの光を受けて第 1格子 11によって作製さ れた強度分布を、第 2格子 12から第 2距離 Zだけ離れた位置に配置した第 3格子 13  The intensity distribution created by the first grating 11 by receiving the light from the first grating 11 is placed at a position separated by 1 and the third distance is placed at a position away from the second grating 12 by the second distance Z. Lattice 13
2  2
上に結像させている。格子形状は、格子ピッチ Pの半分( = PZ2)ごとに透過部と非 透過部とを交互に配置して、デューティー比 50%の振幅格子を形成したほうがよい。  The image is formed on the top. For the grating shape, it is better to form an amplitude grating with a duty ratio of 50% by alternately arranging transmissive parts and non-transmissive parts for each half of the grating pitch P (= PZ2).
[0043] 第 3格子 13は、格子ピッチ Pを有する振幅格子を構成し、第 2格子 12から第 2距離 [0043] The third grating 13 constitutes an amplitude grating having a grating pitch P, and the second distance from the second grating 12 is the second distance.
2  2
Zだけ離れた位置に配置されている。格子形状は、格子ピッチ Pの半分(=P /2) It is located at a position separated by Z. The lattice shape is half of the lattice pitch P (= P / 2)
2 2 2 ごとに透過部と非透過部とを交互に配置して、デューティー比 50%の振幅格子を形 成したほうがよい。受光素子 17は、フォトダイオード等で形成され、第 3格子 13を通 過した光を電気信号に変換する。第 3格子 13が受光素子 17の受光面に一体的に設 けられている。なお、第 3格子 13と受光素子 17とは別々に設けられてもよい。 It is better to form an amplitude grating with a duty ratio of 50% by arranging transmissive parts and non-transmissive parts alternately every 2 2 2. The light receiving element 17 is formed of a photodiode or the like, and converts light that has passed through the third grating 13 into an electrical signal. The third grating 13 is integrally provided on the light receiving surface of the light receiving element 17. The third grating 13 and the light receiving element 17 may be provided separately.
[0044] 第 1格子 11および第 3格子 13はハウジングなどに固定されている。一方、第 2格子 12は、光進行方向に交差する X方向に沿って、第 1格子 11および第 3格子 13に対し 相対移動可能に支持されている。第 1格子 11に含まれる空間周波数成分が第 3格 子 13上に結像される条件を満たす場合には、第 2格子 12が X軸上を移動すると、第 3格子 13上の光強度分布も同一の方向へ移動する。そこで、第 3格子 13からの透過 光を受光素子 17で光電変換し、その信号出力の変化力も第 2格子 12の相対移動量 を検出することができる。 [0044] The first grid 11 and the third grid 13 are fixed to a housing or the like. On the other hand, the second grating 12 is supported so as to be movable relative to the first grating 11 and the third grating 13 along the X direction intersecting the light traveling direction. If the spatial frequency component included in the first grating 11 satisfies the condition for forming an image on the third grating 13, the second grating 12 moves on the X axis, 3 The light intensity distribution on the grating 13 also moves in the same direction. Therefore, the transmitted light from the third grating 13 is photoelectrically converted by the light receiving element 17, and the signal output changing force can also detect the relative movement amount of the second grating 12.
[0045] 第 1格子 11から第 2格子 12までの空気換算距離を Z、第 2格子 12から第 3格子 13 [0045] The air equivalent distance from the first grid 11 to the second grid 12 is Z, and the second grid 12 to the third grid 13
1  1
までの空気換算距離を Zとし、格子ピッチ P、 P、 Pを使って OTFを算出することが  OTF can be calculated using the lattice pitch P, P, P as Z
2 1 2  2 1 2
でき、実施の形態 1で示したような三格子法の理論を適用することができる。  The three-grid method theory as shown in Embodiment Mode 1 can be applied.
[0046] 一例として、第 1距離 Z = 1. 5Tで、 N= lを基本の空間周波数として場合について [0046] As an example, for the first distance Z = 1.5T and N = l as the basic spatial frequency
1  1
、具体的に説明する。光源 4の波長え = 900nm、第 2格子 12の格子ピッチ P = 30 mとした場合には、 T= lmmとなり、 Z = 1. 5T( = 1. 5mm)では Z = 3T( = 3mm)  This will be described in detail. If the wavelength of the light source 4 is 900nm and the grating pitch P of the second grating 12 is P = 30m, then T = lmm, and Z = 1.5T (= 1.5mm), Z = 3T (= 3mm)
1 2  1 2
の位置にて N= lの OTF絶対値が最大の 0. 637となる。第 1距離 Zと第 2距離 Zと  The absolute value of OTF for N = l is the maximum 0.637 at position. 1st distance Z and 2nd distance Z
1 2 の比が 2であることから、本実施の形態のような構成においては、第 1格子 11の 2倍 の反転像が、 OTF0. 637で第 3格子 13上に結像される。第 3格子 13の格子ピッチ P は、 N= lにおける結像条件式から 90 mとなり、第 1格子 11の格子ピッチ Pは像 Since the ratio of 1 2 is 2, in the configuration as in the present embodiment, an inverted image twice that of the first grating 11 is formed on the third grating 13 with OTF 0.637. The grating pitch P of the third grating 13 is 90 m from the imaging condition formula at N = l, and the grating pitch P of the first grating 11 is the image
2 1 倍率の関係式力も 45 mとなる。本構成にて、第 2格子 12が X軸方向に 1周期移動 すると、第 3格子 13上に結像される像も同じ方向に 1周期移動し、光電変換後の信 号力も第 2格子 12の移動量を検出できる。 2 1 The relational force of magnification is also 45 m. In this configuration, when the second grating 12 moves by one period in the X-axis direction, the image formed on the third grating 13 also moves by one period in the same direction, and the signal power after photoelectric conversion is also the second grating 12. Can be detected.
[0047] Z = 3Tの位置において、 N= lと同時に N = 2以上の周波数成分に対しても OTF [0047] At the position of Z = 3T, OTF is also applied to frequency components of N = 2 or more at the same time as N = l.
2  2
が存在している。ところが、第 1格子 11が正弦波状で基本の空間周波数成分のみで あることから、第 3格子 13上には、 N = 2以上の高次成分は現れない。したがって、光 源 4からの照射分布が一様で第 1格子 11上の強度分布が理想的な正弦波状である 場合には、原理上、第 3格子 13上の強度分布に歪みが発生しないので、極めて高 精度の正弦波出力を得ることができる。  Is present. However, since the first grating 11 is sinusoidal and has only basic spatial frequency components, higher-order components of N = 2 or higher do not appear on the third grating 13. Therefore, if the irradiation distribution from the light source 4 is uniform and the intensity distribution on the first grating 11 is an ideal sine wave, in principle, no distortion occurs in the intensity distribution on the third grating 13. Therefore, extremely accurate sine wave output can be obtained.
[0048] さらに、第 1格子 11の開口部には、正弦波を上下に折り返した形状の開口が連続 して配置されたスリット列を同位相に複数段配置されているため、汚れや放射分布の ばらつきなどが原因で光源 4からの照射分布に不均一が生じた場合でも、各開口の 平均化効果によって第 1格子 11上のトータルの強度分布は正弦波状になるので、第 3格子 13を透過し、光電変換して得られる受光素子出力は、歪みが抑制された極め て高精度の正弦波出力となる。 [0049] 本実施の形態にお!、ては、像倍率が 2倍の場合にっ 、て述べたが、結像条件と像 倍率の関係式とを満足する構成であれば像倍率はいくらでもよぐ他の倍率の拡大 系または縮小系でもよい。また、第 1距離 Zと第 2距離 Zとを等しくして像倍率を等倍 [0048] Further, since the opening of the first grating 11 has a plurality of rows of slit rows in which the openings having a shape in which a sine wave is folded up and down are continuously arranged in the same phase, dirt and radiation distribution Even if the irradiation distribution from the light source 4 is nonuniform due to variations in the light intensity, etc., the total intensity distribution on the first grating 11 becomes sinusoidal due to the averaging effect of each aperture. The light receiving element output that is transmitted and photoelectrically converted is a highly accurate sine wave output with suppressed distortion. [0049] In the present embodiment, as described above, when the image magnification is two times, any image magnification can be used as long as the image forming condition and the relational expression of the image magnification are satisfied. It may be an enlargement system or reduction system of other magnifications. Also, make the first distance Z equal to the second distance Z to make the image magnification equal.
1 2  1 2
にする構成としてもよい。なお、結像条件と像倍率との関係は数 1および数 2を完全 に満たさずとも、ほぼ満たせば上述と同様の動作が可能である。  It is good also as composition to make. Even if the relationship between the imaging condition and the image magnification does not completely satisfy Equations 1 and 2, the same operation as described above can be performed as long as it is substantially satisfied.
[0050] また、本実施の形態においては、第 2格子 12を第 1格子 11と第 3格子 13とに対して 移動させる構成としたが、各格子間の相対移動であればよいので、第 1格子 11を第 2 格子 12と第 3格子 13とに対して移動させる構成としてもよいし、第 3格子 13を第 1格 子 11と第 2格子 12とに対して移動させる構成としてもよい。第 1格子 11を移動させる 場合には、第 3格子 13上に結像される像は、第 1格子 11の移動方向に対し逆方向と なる。 [0050] In the present embodiment, the second grating 12 is moved with respect to the first grating 11 and the third grating 13. However, since the relative movement between the gratings is sufficient, 1 lattice 11 may be moved relative to the second lattice 12 and the third lattice 13, or the third lattice 13 may be moved relative to the first lattice 11 and the second lattice 12. . When the first grating 11 is moved, the image formed on the third grating 13 is opposite to the moving direction of the first grating 11.
[0051] また、本実施の形態においては、正弦波を上下に折り返した開口の数力 個ずつ 配置されたスリット列を 5段配置した例を示した。開口の数は、照射領域や設計ピッチ などに応じて、増やしても減らしてもよい。  [0051] Further, in the present embodiment, an example is shown in which five rows of slit rows are arranged, each having several openings each of which has a sine wave folded up and down. The number of openings may be increased or decreased depending on the irradiation area, the design pitch, and the like.
[0052] 以上のように、第 1格子 11の開口部は、正弦波を上下に折り返した形状の開口が 連続して配置されたスリット列を同位相に複数段設けたので、光源 4からの照射分布 に不均一が生じた場合でも、受光素子 17からの信号出力の歪みが極めて小さい光 学式エンコーダを得ることができる。  [0052] As described above, the opening of the first grating 11 is provided with a plurality of slit rows in the same phase in which openings having a shape in which a sine wave is folded up and down are continuously provided. Even when the irradiation distribution is non-uniform, an optical encoder with extremely small distortion of the signal output from the light receiving element 17 can be obtained.
[0053] 実施の形態 3.  [0053] Embodiment 3.
図 6は、この発明を実施するための実施の形態 3における光学式エンコーダの構成 図を示すものである。本実施の形態における光学式エンコーダは、 3つの格子からな る三格子法の光学式エンコーダであり、第 1格子として透過率が正弦波状に変化す るデューティー変調パターンを使用した所定の角度ピッチを有する格子を放射状に 配置したロータリーエンコーダへ適用したものである。図 6において、第 1格子 21およ び第 1格子用基板 25以外の構成は実施の形態 1と同じである。図 6において、図 1と 同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書 の全文において共通することである。また、明細書全文に表れている構成要素の形 容は、あくまで例示であってこれらの記載に限定されるものではない。 [0054] 第 1格子 21は、透明な第 1格子用基板 25上に金属薄膜などのパターユングによつ て形成され、光軸 Qが交差する位置において、格子ピッチ P FIG. 6 shows a configuration diagram of an optical encoder according to Embodiment 3 for carrying out the present invention. The optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings, and has a predetermined angular pitch using a duty modulation pattern in which the transmittance changes in a sine wave shape as the first grating. It is applied to a rotary encoder that has a grid with a radial grid. In FIG. 6, the configuration other than the first lattice 21 and the first lattice substrate 25 is the same as that of the first embodiment. In FIG. 6, the same reference numerals as those in FIG. 1 denote the same or equivalent parts, and this is common throughout the entire specification. In addition, the description of the constituent elements appearing in the entire specification is merely an example, and is not limited to these descriptions. [0054] The first grating 21 is formed on the transparent first grating substrate 25 by patterning such as a metal thin film, and at the position where the optical axes Q intersect, the grating pitch P
1を有する振幅格子型の ロータリースケールの開口部を構成して、光源 4からの光を受けて正弦波状の強度分 布を作製している。  An aperture of an amplitude grid type rotary scale with 1 is constructed to receive light from the light source 4 to produce a sinusoidal intensity distribution.
[0055] 図 7は実施の形態 3における第 1格子 21の開口部の開口パターンを示すものであ る。開口パターンは光の透過部 28と非透過部 29とで構成される。第 1格子 21の開口 部は、透過率が正弦波状に変化するデューティー変調パターン、つまり、透過部の デューティー比が正弦波状に変化する開口パターンを同一円周上に円の中心に対 して放射状に連続して配置したものである。図 7には、 1周期分のデューティー変調 パターンを示しており、第 1格子 21の開口部には、このパターンが同一円周上に連 続して配置される。図 7に示すように、光軸 Qに交差する位置における格子ピッチ P  FIG. 7 shows an opening pattern of the openings of the first grating 21 in the third embodiment. The opening pattern includes a light transmitting portion 28 and a non-transmitting portion 29. The opening portion of the first grating 21 has a duty modulation pattern in which the transmittance changes in a sine wave shape, that is, an opening pattern in which the duty ratio of the transmission portion changes in a sine wave shape is radial with respect to the circle center on the same circumference Are arranged continuously. FIG. 7 shows a duty modulation pattern for one period, and this pattern is continuously arranged on the same circumference in the opening of the first grating 21. As shown in Fig. 7, the grating pitch P at the position intersecting the optical axis Q
1 で、格子ピッチ Pを 8分割した周期 Sを 1周期として、そのデューティー比が格子ピッ  1 and the pitch P is divided into 8 periods, and the period S is 1 period.
1  1
チ P  H P
1で正弦波状に変化するデューティー変調パターンで構成されている。周期 Sで デューティー比が正弦波状に変化するので、格子ピッチ P  It consists of a duty modulation pattern that changes in a sine wave shape at 1. Since the duty ratio changes sinusoidally at period S, the grating pitch P
1毎に透過率が正弦波状 に変化し、正弦波状の光の強度分布が作製される。  The transmittance changes in a sinusoidal pattern every 1 and a sinusoidal light intensity distribution is created.
[0056] 第 1格子 21から第 2格子 2までの空気換算距離を Z、第 2格子 2から第 3格子 3まで  [0056] The air equivalent distance from the first grid 21 to the second grid 2 is Z, and from the second grid 2 to the third grid 3
1  1
の空気換算距離を Zとし、光軸 Qに直交する位置での格子ピッチを使用することによ  By using the lattice pitch at a position perpendicular to the optical axis Q as Z
2  2
つて、ロータリーエンコーダにおける OTFを算出することができ、三格子法の理論を 適用することができる。  Therefore, the OTF in the rotary encoder can be calculated, and the theory of the three-grid method can be applied.
[0057] 第 1格子 21を透過率が正弦波状に変化するデューティー変調パターンとしたので 、第 1格子 21によって作製される強度分布は基本の空間周波数となる。光源 4からの 照射分布が一様で第 1格子 21上の強度分布が正弦波状である場合には、第 3格子 3上の強度分布も正弦波状となり、したがって受光素子 7から得られる信号出力にも、 歪み成分は発生しない。また、デューティー変調を構成する分割周期における OTF をゼロとすることによって、分割周期による高次成分の発生を抑制できる。さらに、第 1格子 21を透過率が正弦波状に変化するデューティー変調パターンとしたので、汚 れゃ放射分布のばらつきなどが原因で光源 4からの照射分布に不均一が生じた場 合でも、第 1格子 21上の強度分布は正弦波状となるので、第 3格子 3を透過し光電 変換して得られる受光素子出力は、歪みが抑制された極めて高精度の正弦波出力と なる。 [0057] Since the first grating 21 has a duty modulation pattern in which the transmittance changes in a sine wave shape, the intensity distribution produced by the first grating 21 has a basic spatial frequency. When the irradiation distribution from the light source 4 is uniform and the intensity distribution on the first grating 21 is sinusoidal, the intensity distribution on the third grating 3 is also sinusoidal, and thus the signal output obtained from the light receiving element 7 is However, no distortion component is generated. In addition, by setting the OTF in the division period constituting the duty modulation to zero, the generation of higher-order components due to the division period can be suppressed. In addition, since the first grating 21 has a duty modulation pattern in which the transmittance changes in a sine wave shape, even if the irradiation distribution from the light source 4 is uneven due to variations in the radiation distribution, the first grating 21 is 1 Since the intensity distribution on grid 21 is sinusoidal, it passes through third grid 3 and The light receiving element output obtained by the conversion is a highly accurate sine wave output with suppressed distortion.
[0058] 設計時の P、 P、 P、 Z、 Zおよびえなどの各パラメータは、数 1のパラメータ Nに対  [0058] Each parameter such as P, P, P, Z, Z, and E at the time of design corresponds to the parameter N in Equation 1.
1 2 1 2  1 2 1 2
応した結像条件、数 2の像倍率および基本空間周波数成分の OTFに着目して設計 をすればよぐあらゆる組み合わせが可能となる。  Any combination is possible if the design is focused on the corresponding imaging conditions, the image magnification of Equation 2, and the OTF of the fundamental spatial frequency component.
[0059] 一例として、 Ra = 9. 55mmの円周上に 30 μ mピッチの格子を形成した場合(1回 転あたりのスリット数は 2000本)について、具体的に説明する。光源 4の波長え = 90 Onm、 Z = 1. 5Tにおける OTFは、実施の形態 1で示した図 3と同様の結果となり、[0059] As an example, the case where a lattice with a pitch of 30 μm is formed on the circumference of Ra = 9.55 mm (the number of slits per rotation is 2000) will be specifically described. The OTF at the wavelength of the light source 4 = 90 Onm, Z = 1.5T is the same as that shown in Fig. 3 in the first embodiment.
1 1
したがって、 Z = 3Tの位置にて、像倍率 2倍で OTF絶対値 0. 637を得ることができ  Therefore, at the position of Z = 3T, an OTF absolute value of 0.637 can be obtained at an image magnification of 2x.
2  2
る。この場合には、第 2格子用基板 6である円板の回転に伴い、第 2格子 2が 360° の 1Z2000だけ回転すると、第 3格子 3上に結像される像も 1周期移動し、光電変換 後の信号力 円板の角変位量を検出できる。  The In this case, if the second grating 2 is rotated by 1Z2000 of 360 ° along with the rotation of the disk that is the second grating substrate 6, the image formed on the third grating 3 also moves by one period, Signal force after photoelectric conversion The angular displacement of the disc can be detected.
[0060] Ζ = 3Τの位置にて、 N= lと同時に高次の周波数成分に対しても OTFが存在する [0060] OTF exists for higher frequency components at the same time as N = l at Ζ = 3Τ
2  2
。第 1格子 21が正弦波状のデューディー変調パターンで基本の空間周波数成分で あり、デューティー変調パターンの分割周期である Ν=8については、 OTFは 0. 01 以下であることから、第 3格子 3上には高次成分は実質的に現れない。したがって、 第 3格子 3上の強度分布も正弦波状になり、極めて高精度の正弦波出力を得ることが できる。  . The first grating 21 is a sinusoidal duedy modulation pattern, which is a basic spatial frequency component, and for 分割 = 8, which is the division period of the duty modulation pattern, the OTF is less than 0.01. Higher order components do not appear substantially above. Therefore, the intensity distribution on the third grating 3 is also sinusoidal, and an extremely accurate sine wave output can be obtained.
[0061] 本実施の形態にお!ヽては、像倍率が 2倍の場合につ ヽて述べた。結像条件と像倍 率の関係式とを満足する構成であれば像倍率はいくらでもよぐ他の倍率の拡大系ま たは縮小系でもよい。また、第 1距離 Ζと第 2距離 Ζとを等しくして像倍率を等倍とす  [0061] In the present embodiment, the case where the image magnification is 2 has been described. As long as the image forming condition and the relational expression of image magnification are satisfied, the image magnification may be any amount, and an enlargement system or a reduction system with other magnifications may be used. Also, make the first distance Ζ equal to the second distance Ζ to make the image magnification equal.
1 2  1 2
る構成としてちよい。  It is good as a configuration.
[0062] また、本実施の形態においては、第 2格子 2を第 1格子 21と第 3格子 3とに対して移 動させる構成とした。各格子間の相対移動であればよぐ例えば第 1格子 21を第 2格 子 2と第 3格子 3とに対して移動させる構成としてもよい。第 1格子 21を移動させる場 合には、第 3格子 3上に結像される像は、第 1格子 21の移動方向に対し逆方向となる  Further, in the present embodiment, the second grating 2 is moved with respect to the first grating 21 and the third grating 3. For example, the first lattice 21 may be moved relative to the second lattice 2 and the third lattice 3 as long as the relative movement is between the lattices. When the first grating 21 is moved, the image formed on the third grating 3 is in the opposite direction to the moving direction of the first grating 21.
[0063] また、本実施の形態においては、第 1格子 21の格子ピッチ Ρを 8分割してデューデ ィー変調パターンを構成した。デューティー比が正弦波状に変化するパターンであ れば何分割でもよぐ例えば分割数を増やしていくと、より滑らかな正弦波状の強度 分布を得ることができる。 [0063] In the present embodiment, the lattice pitch Ρ of the first lattice 21 is divided into eight and A key modulation pattern was constructed. As long as the duty ratio changes in a sine wave pattern, it can be divided into any number of divisions. For example, if the number of divisions is increased, a smoother sine wave intensity distribution can be obtained.
[0064] 以上のように、第 1格子 21の開口部は、透過部のデューティー比が正弦波状に変 化する開口パターンを同一円周上に円の中心力 放射状に連続して配置したので、 光源 4からの照射分布に不均一が生じた場合でも、受光素子 7からの信号出力の歪 みが極めて小さい光学式エンコーダを得ることができる。  [0064] As described above, the opening portion of the first grating 21 has the opening pattern in which the duty ratio of the transmission portion changes in a sine wave shape continuously arranged on the same circumference in the radial direction of the center force of the circle. Even when the irradiation distribution from the light source 4 is nonuniform, an optical encoder with extremely small distortion of the signal output from the light receiving element 7 can be obtained.
[0065] 実施の形態 4.  Embodiment 4.
図 8は、この発明を実施するための実施の形態 4における光学式ェンコーダの構成 図を示すものである。本実施の形態における光学式エンコーダは、 3つの格子からな る三格子法の光学式エンコーダであり、第 1格子として透過率が正弦波状に変化す るデューティー変調パターンを使用したものである。図 8において、第 1格子 31およ び第 1格子用基板 35以外の構成は実施の形態 2と同じである。  FIG. 8 shows a configuration diagram of an optical encoder according to the fourth embodiment for carrying out the present invention. The optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings, and uses a duty modulation pattern whose transmittance changes in a sine wave shape as the first grating. In FIG. 8, the configuration other than the first grating 31 and the first grating substrate 35 is the same as that of the second embodiment.
[0066] 第 1格子 31は、透明な第 1格子用基板 35上に金属薄膜などのパターユングによつ て形成され、格子ピッチ Pを有し、光源 4からの光を受けて正弦波状の強度分布を作  [0066] The first grating 31 is formed on the transparent first grating substrate 35 by patterning such as a metal thin film, has a grating pitch P, receives light from the light source 4, and has a sinusoidal shape. Create intensity distribution
1  1
製している。  Made.
[0067] 図 9は、この発明を実施するための実施の形態 4における第 1格子 31の開口部の 開口パターンを示すものである。開口パターンは光の透過部 38と非透過部 39とで構 成される。第 1格子 31の開口部は、透過率が正弦波状に変化するデューティー変調 パターン、つまり、透過部のデューティー比が正弦波状に変化する開口パターンをデ ユーティー比が変化する方向に連続して配置したものである。透過率が正弦波状に 1 周期分変化する開口パターンの長さが格子ピッチ P  FIG. 9 shows an opening pattern of the opening of first grating 31 in the fourth embodiment for carrying out the present invention. The opening pattern is composed of a light transmitting portion 38 and a non-transmitting portion 39. In the opening of the first grating 31, a duty modulation pattern in which the transmittance changes in a sine wave form, that is, an opening pattern in which the duty ratio of the transmission part changes in a sine wave form is continuously arranged in the direction in which the duty ratio changes. Is. Lattice pitch P is the length of the aperture pattern whose transmittance changes sinusoidally for one period.
1である。図 9に示した開口のバタ ーンは、格子ピッチ Pで、格子ピッチ Pを 8分割した周期 Sを 1周期として、そのデュ  1. The aperture pattern shown in Fig. 9 has a grating pitch P, and a period S obtained by dividing the grating pitch P by eight is defined as one period.
1 1  1 1
一ティー比が格子ピッチ Pで正弦波状に変化するデューティー変調パターンで構成  Consists of a duty modulation pattern in which the tee ratio changes sinusoidally at a grating pitch P
1  1
されている。周期 Sでデューティー比が正弦波状に変化するので、格子ピッチ Pごと  Has been. Since the duty ratio changes sinusoidally at period S, every grating pitch P
1 に透過率が正弦波状に変化し、正弦波状の強度分布が作製される。  1, the transmittance changes in a sine wave shape, and a sinusoidal intensity distribution is produced.
[0068] また、第 1格子 31から第 2格子 12までの空気換算距離を第 1距離 Z、第 2格子 12  [0068] Further, the air equivalent distance from the first grid 31 to the second grid 12 is the first distance Z, and the second grid 12
1  1
力も第 3格子 13までの空気換算距離を第 2距離 Zとする。この時、 Zと Zとを、デュー ティー変調パターンの分割周期 Sにおける OTFが極力ゼロに近づけるように、設定し たほうがよい。 For the force, the air equivalent distance to the third grid 13 is the second distance Z. At this time, Z and Z It is better to set the OTF at the division period S of the tee modulation pattern as close to zero as possible.
[0069] 第 1格子 31はハウジングなどに固定されている。第 3格子 13は受光素子 17などに 固定されている。第 2格子 12は、光進行方向に交差する X方向に沿って移動可能に 支持されている。一例として、第 1格子 31に含まれる空間周波数成分が第 3格子 13 上に結像される条件を満たす場合には、第 2格子 12が X軸上を移動すると、第 3格 子 13上の光強度分布も同一の方向へ移動する。そこで、第 3格子 13からの透過光 を受光素子 17で光電変換し、その信号出力の変化力も第 2格子 12の相対移動量を 検出することができる。このような構成においても三格子法の理論が同様に適用され る。  [0069] The first lattice 31 is fixed to a housing or the like. The third grating 13 is fixed to the light receiving element 17 and the like. The second grating 12 is supported so as to be movable along the X direction intersecting the light traveling direction. As an example, when the spatial frequency component included in the first grating 31 satisfies the condition for forming an image on the third grating 13, if the second grating 12 moves on the X axis, The light intensity distribution also moves in the same direction. Therefore, the transmitted light from the third grating 13 is photoelectrically converted by the light receiving element 17, and the signal output changing force can also detect the relative movement amount of the second grating 12. Even in such a configuration, the theory of the three-grid method is similarly applied.
[0070] 第 1格子 31を透過率が正弦波状に変化するデューティー変調パターンとしたので 、第 1格子 31によって作製される強度分布は基本の空間周波数となる。第 3格子 13 上の強度分布も正弦波状になり、したがって受光素子 17から得られる信号出力にも 、歪み成分は発生しない。また、デューティー変調を構成する分割周期における OT Fをゼロとすることによって、分割周期による高次成分の発生を抑制できる。さらに、 第 1格子 31を透過率が正弦波状に変化するデューティー変調パターンとしたので、 汚れや放射分布のばらつきなどが原因で光源 4からの照射分布に不均一が生じた 場合でも、第 1格子 31上の強度分布は正弦波状となるので、第 3格子 13を透過し光 電変換して得られる受光素子出力は、歪みが抑制された極めて高精度の正弦波出 力になる。  Since the first grating 31 has a duty modulation pattern in which the transmittance changes in a sine wave shape, the intensity distribution produced by the first grating 31 becomes a basic spatial frequency. The intensity distribution on the third grating 13 is also sinusoidal, so that no distortion component is generated in the signal output obtained from the light receiving element 17. In addition, by setting the OTF in the division period constituting the duty modulation to zero, the generation of higher-order components due to the division period can be suppressed. In addition, since the first grating 31 has a duty modulation pattern in which the transmittance changes in a sine wave shape, even if the irradiation distribution from the light source 4 is uneven due to dirt or variations in the radiation distribution, the first grating 31 Since the intensity distribution on 31 is sinusoidal, the light receiving element output obtained by photoelectric conversion through the third grating 13 is an extremely accurate sine wave output with suppressed distortion.
[0071] 設計時の P、 P、 P、 Z、 Zおよびえなどの各パラメータは、数 1のパラメータ Nに対  [0071] Each parameter such as P, P, P, Z, Z, and E at the time of design corresponds to the parameter N in Equation 1.
1 2 1 2  1 2 1 2
応した結像条件、数 2の像倍率および基本空間周波数成分の OTFに着目して設計 をすればよぐあらゆる組み合わせが可能となる。  Any combination is possible if the design is focused on the corresponding imaging conditions, the image magnification of Equation 2, and the OTF of the fundamental spatial frequency component.
[0072] 図 10に像倍率が拡大系での OTFの計算結果の一例を示す。図 10において、縦 軸は DC成分で規格ィ匕後の OTFであり、横軸は第 2距離 Zを光源 4の波長 λと第 2 FIG. 10 shows an example of the OTF calculation result when the image magnification is an enlargement system. In Fig. 10, the vertical axis is the DC component and the OTF after standardization, and the horizontal axis is the second distance Z and the wavelength λ of the light source 4 and the second
2  2
格子 12の格子ピッチ Ρとを用いて、 Τ=Ρ2 /えで規格ィ匕したものである。ここで、第 1 距離 Ζ = 1. 5Τで、 N= lを基本の空間周波数とし、第 1格子 31のデューティー変調Using the lattice pitch の of the lattice 12, it is standardized by Τ = Ρ 2 / e. Where the first distance Ζ = 1.5Τ, N = l as the basic spatial frequency, and the duty modulation of the first grating 31
1 1
ノターンを図 9に示したような 8分割で構成した場合について、具体的に説明する。 図 10に示すように、光源 4の波長え = 900nm、第 2格子 12の格子ピッチ P = 30 m とすると、 T= lmmとなる。したがって、 Z = 1. 5T( = 1. 5mm)で、像倍率 2倍の場 A specific description will be given of the case where the non-turn is composed of eight divisions as shown in FIG. As shown in FIG. 10, when the wavelength of the light source 4 is 900 nm and the grating pitch P of the second grating 12 is P = 30 m, T = lmm. Therefore, if Z = 1.5T (= 1.5mm) and the image magnification is 2x
1  1
合には、 Z = 3T( = 3mm)の位置にて N= lの OTF絶対値が最大の 0. 637となる。  In this case, the absolute value of OTF for N = l is the maximum 0.637 at the position of Z = 3T (= 3mm).
2  2
[0073] 第 1距離 Zと第 2距離 Zとの比が 2であることから、第 1格子 31の 2倍の反転像が、  [0073] Since the ratio of the first distance Z and the second distance Z is 2, the inverted image twice that of the first grating 31 is
1 2  1 2
OTFO. 637で第 3格子 13上に結像される。第 3格子 13の格子ピッチ Pは、 N= lに  The image is formed on the third grating 13 by OTFO. 637. The lattice pitch P of the third lattice 13 is N = l
2  2
おける結像条件式から 90 mとなり、第 1格子 31の格子ピッチ Pは像倍率の関係式  From the imaging condition formula in this case, it is 90 m, and the grating pitch P of the first grating 31 is a relational expression of image magnification.
1  1
力ら 45 /z mとなる。このような構成により、第 2格子 12が X軸方向に 1周期移動すると 、第 3格子 13上に結像される像も同じ方向に 1周期移動し、光電変換後の信号から 第 2格子 12の移動量を検出できる。  The force is 45 / z m. With this configuration, when the second grating 12 moves by one period in the X-axis direction, the image formed on the third grating 13 also moves by one period in the same direction, and the second grating 12 Can be detected.
[0074] 図 10に示すように、第 1格子 31のデューティー変調パターンを 8分割で構成した場 合を考慮して、 N = 8における OTFを計算すると、その絶対値は 0. 01以下となる。 Z [0074] As shown in Fig. 10, considering the case where the duty modulation pattern of the first grating 31 is configured by 8 divisions, when calculating the OTF at N = 8, its absolute value is less than 0.01. . Z
2 2
= 3Tの位置にて、 N= lと同時に高次の周波数成分に対しても OTFが存在する。こ のことから、第 3格子 13上には高次成分は実質的に現れない。したがって、第 3格子 13上の強度分布も正弦波状になり、極めて高精度の正弦波出力を得ることができる At the position of 3T, OTF exists for higher frequency components at the same time as N = l. For this reason, higher-order components do not substantially appear on the third lattice 13. Therefore, the intensity distribution on the third grating 13 is also sinusoidal, and an extremely accurate sine wave output can be obtained.
[0075] 本実施の形態にお!ヽては、像倍率が 2倍の場合につ ヽて述べた。結像条件と像倍 率の関係式とを満足する構成であれば像倍率はいくらでもよぐ他の倍率の拡大系ま たは縮小系でもよい。また、第 1距離 Ζと第 2距離 Ζとを等しくして像倍率を等倍とす [0075] In the present embodiment, the case where the image magnification is 2 has been described. As long as the image forming condition and the relational expression of image magnification are satisfied, the image magnification may be any amount, and an enlargement system or a reduction system with other magnifications may be used. Also, make the first distance Ζ equal to the second distance Ζ to make the image magnification equal.
1 2  1 2
る構成としてちよい。  It is good as a configuration.
[0076] また、本実施の形態においては、第 2格子 12を第 1格子 31と第 3格子 13とに対して 移動させる構成としたが、各格子間の相対移動であればよいので、第 1格子 31を第 2 格子 12と第 3格子 13とに対して移動させる構成としてもよいし、第 3格子 13を第 1格 子 31と第 2格子 12とに対して移動させる構成としてもよい。第 1格子 31を移動させる 場合には、第 3格子 13上に結像される像は、第 1格子 31の移動方向に対し逆方向と なる。  [0076] In the present embodiment, the second grating 12 is moved with respect to the first grating 31 and the third grating 13. However, since the relative movement between the gratings is sufficient, A configuration in which one lattice 31 is moved with respect to the second lattice 12 and the third lattice 13 or a configuration in which the third lattice 13 is moved with respect to the first lattice 31 and the second lattice 12 may be employed. . When the first grating 31 is moved, the image formed on the third grating 13 is opposite to the moving direction of the first grating 31.
[0077] また、本実施の形態においては、第 1格子 31の格子ピッチ Ρを 8分割してデューデ  [0077] In the present embodiment, the lattice pitch の of the first lattice 31 is divided into eight and
1  1
ィー変調パターンを構成したが、デューティー比が正弦波状に変化するパターンであ れば何分割でもよぐ例えば分割数を増やしていくと、より滑らかな正弦波状の強度 分布を得ることができる。 However, if the duty ratio is a sine wave pattern, it can be divided into any number of divisions.For example, if the number of divisions is increased, the sine wave intensity becomes smoother. Distribution can be obtained.
[0078] 以上のように、第 1格子 31の開口部は、透過部のデューティー比が正弦波状に変 化する開口パターンをデューティー比が変化する方向に連続して配置したので、光 源 4からの照射分布に不均一が生じた場合でも、受光素子 17からの信号出力の歪 みが極めて小さい光学式エンコーダを得ることができる。  As described above, the opening portion of the first grating 31 has the opening pattern in which the duty ratio of the transmission portion changes in a sine wave shape continuously arranged in the direction in which the duty ratio changes. Even if the irradiation distribution is uneven, it is possible to obtain an optical encoder in which the distortion of the signal output from the light receiving element 17 is extremely small.
[0079] 実施の形態 5.  [0079] Embodiment 5.
図 11は、この発明を実施するための実施の形態 5における光学式エンコーダの構 成図を示すものである。本実施の形態における光学式エンコーダは、 3つの格子から なる三格子法の光学式エンコーダであり、第 2格子として反射型の振幅格子を備えて いる。図 11において、空間的にインコヒーレントな光源 4と、開口部を有し光源 4から の光を受ける第 1格子 11と、反射部を有し第 1格子 11によって形成された強度分布 をもつ光を受ける第 2格子 52と、開口部を有し第 2格子 52からの光を受ける第 3格子 13と、第 3格子 13からの光を受ける受光素子 17とが設けられている。第 1格子 11の 開口部は、実施の形態 2で示したような、正弦波を上下に折り返した形状の開口が連 続して配置されたスリット列を同位相に複数段設けられている。第 1格子 11の格子ピ ツチは P、第 2格子 52の格子ピッチは P、第 3格子 13の格子ピッチは Pである。光源 FIG. 11 shows a configuration diagram of an optical encoder according to the fifth embodiment for carrying out the present invention. The optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings, and includes a reflective amplitude grating as the second grating. In FIG. 11, a spatially incoherent light source 4, a first grating 11 that has an aperture and receives light from the light source 4, and a light having an intensity distribution formed by the first grating 11 that has a reflection part. A second grating 52 for receiving light, a third grating 13 having an opening for receiving light from the second grating 52, and a light receiving element 17 for receiving light from the third grating 13. As shown in the second embodiment, the opening portion of the first grating 11 is provided with a plurality of stages of slit rows in the same phase in which openings having a shape in which a sine wave is folded up and down are continuously arranged. The lattice pitch of the first lattice 11 is P, the lattice pitch of the second lattice 52 is P, and the lattice pitch of the third lattice 13 is P. light source
1 2 1 2
4は、 LEDなど空間的にインコヒーレントな光源で構成され、中心波長えの空間的に インコヒーレントな光を放射する。  4 consists of a spatially incoherent light source such as an LED, and emits spatially incoherent light with a central wavelength.
[0080] 第 3格子 13は、第 2格子 52に対して第 1格子 11と同じ側に配置されている。第 1格 子 11、第 2格子 52、第 3格子 13のそれぞれのスリット方向を紙面垂直方向に設定し 、第 2格子 52の移動方向を紙面に平行な上下方向に設定する。第 2格子 52は第 2 格子用基板 56に設けられており、第 2格子用基板 56の移動によって第 2格子 52が 移動する。光源 4からの光は、第 1格子 11を斜めに通過し、第 2格子 52で斜めに反 射し、第 3格子 13を斜めに通過して、受光素子 17に到達する。第 1距離 Z、第 2距離 The third grating 13 is arranged on the same side as the first grating 11 with respect to the second grating 52. The slit direction of each of the first lattice 11, the second lattice 52, and the third lattice 13 is set to the vertical direction on the paper surface, and the moving direction of the second lattice 52 is set to the vertical direction parallel to the paper surface. The second grating 52 is provided on the second grating substrate 56, and the second grating 52 is moved by the movement of the second grating substrate 56. Light from the light source 4 passes through the first grating 11 obliquely, is reflected obliquely by the second grating 52, passes obliquely through the third grating 13, and reaches the light receiving element 17. 1st distance Z, 2nd distance
1  1
Zは、それぞれ第 1格子 11と第 2格子 52との間隔、第 2格子 52と第 3格子 13との間 Z is the distance between the first grating 11 and the second grating 52, and between the second grating 52 and the third grating 13, respectively.
2 2
隔を示す。光進行方向に沿った距離で定義される。 Zと Zとが等しい距離になるよう  Indicates a gap. It is defined by the distance along the light traveling direction. Z and Z are the same distance
1 2  1 2
に、第 1格子 11、第 2格子 52および第 3格子 13は配置され、像倍率は等倍になって いる。なお、第 1格子 11、第 3格子 13のそれぞれの配置を変えて、 Zと Zとが異なる 距離になるようにしてもよい。結像条件と像倍率の関係式とを満足する構成であれば 像倍率はいくらでもよぐ拡大系または縮小系でもよい。 In addition, the first grating 11, the second grating 52, and the third grating 13 are arranged, and the image magnification is equal. Note that Z and Z are different by changing the arrangement of the first lattice 11 and the third lattice 13. You may make it become a distance. Any enlargement system or reduction system may be used as long as it satisfies the imaging condition and the relational expression of image magnification.
[0081] 図 12に、この構成における OTFの計算結果を示す。図 12において、縦軸は DC成 分で規格化後の OTFであり、横軸は第 1距離 Zおよび第 2距離 Zの値を示す。 N =  FIG. 12 shows the calculation result of OTF in this configuration. In Fig. 12, the vertical axis is the DC component and the normalized OTF, and the horizontal axis shows the values of the first distance Z and the second distance Z. N =
1 2  1 2
1の基本空間周波数成分にぉ 、て、 2Tの整数倍の位置にて OTFの極大値または 極小値を得られることが分かる。例えば、 Z =Z = 2Tの条件では OTF絶対値が 0. 6  It can be seen that a maximum or minimum value of OTF can be obtained at a position that is an integral multiple of 2T for the fundamental spatial frequency component of 1. For example, the absolute value of OTF is 0.6 when Z = Z = 2T.
1 2  1 2
37となり、この位置で結像条件を満足させるように第 1格子 11と第 3格子 13との各ピ ツチを決定すればよい。  Therefore, the pitches of the first grating 11 and the third grating 13 may be determined so as to satisfy the imaging condition at this position.
[0082] 第 2格子 52として反射型の振幅格子を備えることにより、光源 4および第 1格子 11、 第 3格子 13および受光素子 17を第 2格子 52に対して同じ側に配置できるため、全 体構成をコンパクトにすることができる。また、第 1格子 11の開口部には、正弦波を上 下に折り返した形状の開口が連続して配置されたスリット列を同位相に複数段設けた ので、汚れや放射分布のばらつきなどが原因で光源 4からの照射分布に不均一が生 じた場合でも、受光素子 17において歪みが抑制された極めて高精度の正弦波出力 を得ることができる。 By providing a reflection type amplitude grating as the second grating 52, the light source 4, the first grating 11, the third grating 13, and the light receiving element 17 can be arranged on the same side with respect to the second grating 52. The body configuration can be made compact. In addition, the openings of the first grating 11 are provided with a plurality of rows of slits in the same phase in which openings having a shape in which a sine wave is folded up and down are provided in the same phase. Even if the irradiation distribution from the light source 4 is non-uniform due to the cause, it is possible to obtain a highly accurate sine wave output in which distortion is suppressed in the light receiving element 17.
[0083] なお、第 1格子 11の開口部は、実施の形態 4で示したような、透過率が正弦波状に 変化するデューティー変調パターン、つまり、透過部のデューティー比が正弦波状に 変化する開口パターンをデューティー比が変化する方向に連続して配置したもので ちょい。  Note that the opening of the first grating 11 is a duty modulation pattern in which the transmittance changes in a sine wave shape as shown in Embodiment 4, that is, an opening in which the duty ratio of the transmissive portion changes in a sine wave shape. The pattern is arranged continuously in the direction in which the duty ratio changes.
[0084] 以上のように、第 1格子 11の開口部は、正弦波を上下に折り返した形状の開口が 連続して配置されたスリット列を同位相に複数段設けたので、光源 4からの照射分布 に不均一が生じた場合でも、受光素子 17からの信号出力の歪みが極めて小さい光 学式エンコーダを得ることができる。また、第 3格子 13は、第 2格子 52に対して第 1格 子 11と同じ側に配置されているので、全体構成がコンパクトな光学式エンコーダを得 ることがでさる。  [0084] As described above, the openings of the first grating 11 are provided with a plurality of slit rows in the same phase in which openings having a shape in which a sine wave is folded up and down are continuously arranged. Even when the irradiation distribution is non-uniform, an optical encoder with extremely small distortion of the signal output from the light receiving element 17 can be obtained. Further, since the third grating 13 is arranged on the same side as the first grating 11 with respect to the second grating 52, an optical encoder having a compact overall configuration can be obtained.
[0085] 実施の形態 6.  [0085] Embodiment 6.
図 13は、この発明を実施するための実施の形態 6における光学式エンコーダの構 成図を示すものである。本実施の形態における光学式エンコーダは、 3つの格子から なる三格子法の光学式エンコーダである。図 13において、第 1格子 11、第 2格子 52 および第 3格子 13のスリット方向を紙面に平行な上下方向に設定し、第 2格子 52の 移動方向を紙面垂直方向に設定する以外の構成は実施の形態 5と同じである。光源 4からの光は、第 1格子 11を斜めに通過し、第 2格子 52で斜めに反射し、第 3格子 1 3を斜めに通過して、受光素子 17に到達する。 FIG. 13 shows a configuration diagram of an optical encoder according to the sixth embodiment for carrying out the present invention. The optical encoder in this embodiment is composed of three gratings. This is a three-grid optical encoder. In FIG. 13, the configuration other than setting the slit direction of the first grating 11, the second grating 52, and the third grating 13 in the vertical direction parallel to the paper surface and setting the moving direction of the second grating 52 in the vertical direction on the paper surface is as follows. This is the same as the fifth embodiment. The light from the light source 4 passes through the first grating 11 obliquely, is reflected obliquely by the second grating 52, passes obliquely through the third grating 13, and reaches the light receiving element 17.
[0086] このような構成においても、三格子法の理論が適用される。図 13に示すように、第 1 格子 11力も第 2格子 52までの第 1距離 Z、第 2格子 52から第 3格子 13までの第 2距 [0086] Even in such a configuration, the theory of the three-grid method is applied. As shown in Fig. 13, the first grid 11 force is also the first distance Z from the second grid 52, and the second distance from the second grid 52 to the third grid 13.
1  1
離 Zは、光進行方向に沿った距離で定義される。 Zと Zとが等しい距離になるように The separation Z is defined as the distance along the light traveling direction. Z and Z are equal distance
2 1 2 2 1 2
、第 1格子 11、第 2格子 52および第 3格子 13は配置され、像倍率は等倍になってい る。なお、第 1格子 11、第 3格子 13のそれぞれの配置を変えて、 Zと Zとが異なる距  The first grating 11, the second grating 52, and the third grating 13 are arranged, and the image magnification is equal. Note that Z and Z have different distances by changing the arrangement of the first grating 11 and the third grating 13.
1 2  1 2
離になるようにしてもょ ヽ。結像条件と像倍率の関係式とを満足する構成であれば像 倍率はいくらでもよぐ拡大系または縮小系でもよい。  Let ’s get away. As long as the image forming condition and the relational expression of the image magnification are satisfied, an enlargement system or a reduction system may be used regardless of the image magnification.
[0087] 第 2格子 52として反射型の振幅格子を備えることにより、光源 4および第 1格子 11、 第 3格子 13および受光素子 17を第 2格子 52に対して同じ側に配置できるため、全 体構成をコンパクトにすることができる。また、第 1格子 11の開口部には、正弦波を上 下に折り返した形状の開口が連続して配置されたスリット列を同位相に複数段設けた ので、汚れや放射分布のばらつきなどが原因で光源 4からの照射分布に不均一が生 じた場合でも、受光素子 17において歪みが抑制された極めて高精度の正弦波出力 を得ることができる。 By providing a reflection type amplitude grating as the second grating 52, the light source 4, the first grating 11, the third grating 13, and the light receiving element 17 can be arranged on the same side with respect to the second grating 52. The body configuration can be made compact. In addition, the openings of the first grating 11 are provided with a plurality of rows of slits in the same phase in which openings having a shape in which a sine wave is folded up and down are provided in the same phase. Even if the irradiation distribution from the light source 4 is non-uniform due to the cause, it is possible to obtain a highly accurate sine wave output in which distortion is suppressed in the light receiving element 17.
[0088] なお、第 1格子 11の開口部は、実施の形態 4で示したような、透過率が正弦波状に 変化するデューティー変調パターン、つまり、透過部のデューティー比が正弦波状に 変化する開口パターンをデューティー比が変化する方向に連続して配置したもので ちょい。  Note that the opening of the first grating 11 is a duty modulation pattern in which the transmittance changes in a sine wave shape as shown in Embodiment 4, that is, an opening in which the duty ratio of the transmissive portion changes in a sine wave shape. The pattern is arranged continuously in the direction in which the duty ratio changes.
[0089] 以上のように、第 1格子 11の開口部は、正弦波を上下に折り返した形状の開口が 連続して配置されたスリット列を同位相に複数段設けたので、光源 4からの照射分布 に不均一が生じた場合でも、受光素子 17からの信号出力の歪みが極めて小さい光 学式エンコーダを得ることができる。また、第 3格子 13は、第 2格子 52に対して第 1格 子 11と同じ側に配置されているので、全体構成がコンパクトな光学式エンコーダを得 ることがでさる。 [0089] As described above, the opening of the first grating 11 is provided with a plurality of slit rows in the same phase in which openings having a shape in which a sine wave is folded up and down are continuously arranged. Even when the irradiation distribution is non-uniform, an optical encoder with extremely small distortion of the signal output from the light receiving element 17 can be obtained. Further, since the third grating 13 is arranged on the same side as the first grating 11 with respect to the second grating 52, an optical encoder having a compact overall configuration is obtained. It can be done.
[0090] 実施の形態 7.  [0090] Embodiment 7.
図 14は、この発明を実施するための実施の形態 7における光学式エンコーダの構 成図を示すものである。本実施の形態における光学式エンコーダは、 3つの格子から なる三格子法の光学式エンコーダであり、所定の角度ピッチを有する格子を放射状 に配置したロータリーエンコーダへ適用したものである。また、第 2格子として反射型 の振幅格子を備えている。図 14において、光進行方向に沿って、空間的にインコヒ 一レントな光源 4と、開口部を有し光源 4からの光を受ける第 1格子 1と、同一円周上 に並んだ反射部を有し第 1格子 1によって形成された強度分布をもつ光を受ける第 2 格子 42と、同一円周上に並んだ開口部を有し第 2格子 42からの光を受ける第 3格子 3と、第 3格子 3からの光を受ける受光素子 7とが設けられて 、る。  FIG. 14 shows a configuration diagram of an optical encoder according to the seventh embodiment for carrying out the present invention. The optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings, and is applied to a rotary encoder in which gratings having a predetermined angular pitch are arranged radially. A reflection type amplitude grating is provided as the second grating. In FIG. 14, a spatially incoherent light source 4, a first grating 1 that has an opening and receives light from the light source 4, and a reflective part arranged on the same circumference along the light traveling direction are shown. A second grating 42 for receiving light having an intensity distribution formed by the first grating 1; a third grating 3 having openings arranged on the same circumference and receiving light from the second grating 42; A light receiving element 7 for receiving light from the third grating 3 is provided.
[0091] 第 1格子 1の開口部には、図 2に示したような、 2以上の複数の同心円と同心円の中 心を通る等角度ピッチの線分との交点の位置に開口の中心が配置され、開口の形状 は、同心円を対称軸として外側方向と内側方向とに対称に正弦波状に変化した形状 である。第 1格子 11の格子ピッチは P、第 2格子 52の格子ピッチは P、第 3格子 13の  [0091] The opening of the first grid 1 has the center of the opening at the intersection of two or more concentric circles and an equiangular pitch line segment passing through the center of the concentric circle as shown in FIG. The shape of the opening is a shape that changes in a sine wave shape symmetrically in the outer and inner directions with a concentric circle as the axis of symmetry. The lattice pitch of the first lattice 11 is P, the lattice pitch of the second lattice 52 is P, and the third lattice 13
1  1
格子ピッチは Pである。光源 4は、 LEDなど空間的にインコヒーレントな光源で構成さ  The lattice pitch is P. Light source 4 is a spatially incoherent light source such as an LED.
2  2
れ、中心波長 λの空間的にインコヒーレントな光を放射する。  It emits spatially incoherent light with a center wavelength λ.
[0092] 第 3格子 3は、第 2格子 42に対して第 1格子 1と同じ側に配置されている。第 1格子 1、第 2格子 42、第 3格子 3のそれぞれのスリット方向が紙面垂直方向になるように設 定し、第 2格子 42の移動方向を紙面に平行な上下方向になるように設定する。第 2 格子 42は第 2格子用基板 46に設けられており、第 2格子用基板 46の回転によって 第 2格子 42が移動する。光源 4からの光は、第 1格子 1を斜めに通過し、第 2格子 42 で斜めに反射し、第 3格子 3を斜めに通過して、受光素子 7に到達する。 Ζと Ζとが等 The third grid 3 is arranged on the same side as the first grid 1 with respect to the second grid 42. Set the slit direction of the 1st grid 1, 2nd grid 42, and 3rd grid 3 so that each slit direction is perpendicular to the page, and set the movement direction of the 2nd grid 42 to be the vertical direction parallel to the page. To do. The second lattice 42 is provided on the second lattice substrate 46, and the second lattice 42 is moved by the rotation of the second lattice substrate 46. Light from the light source 4 passes through the first grating 1 obliquely, is reflected obliquely by the second grating 42, passes obliquely through the third grating 3, and reaches the light receiving element 7. Ζ and Ζ etc.
1 2 しい距離になるように、第 1格子 1、第 2格子 42および第 3格子 3を配置してもよい。ま た、図 14に示すように、第 1格子 1、第 3格子 3のそれぞれの配置を変えて、 Ζと Ζと  The first grid 1, the second grid 42, and the third grid 3 may be arranged so that the distance is 1 2. Also, as shown in Fig. 14, the arrangement of the first lattice 1 and the third lattice 3 is changed so that Ζ and Ζ
1 2 が異なる距離になるようにしてもよい。結像条件と像倍率の関係式とを満足する構成 であれば像倍率は 、くらでもよぐ拡大系または縮小系でもよ 、。  1 2 may be at different distances. If the configuration satisfies the imaging conditions and the relational expression of the image magnification, the image magnification can be an enlargement system or a reduction system.
[0093] 第 2格子 42として反射型の振幅格子を備えることにより、光源 4および第 1格子 1、 第 3格子 3および受光素子 7を第 2格子 42に対して同じ側に配置できるため、全体構 成をコンパクトにすることができる。また、第 1格子 1の開口の形状は、同心円を対称 軸として外側方向と内側方向とに対称に正弦波状に変化した形状であるので、汚れ や放射分布のばらつきなどが原因で光源 4からの照射分布に不均一が生じた場合で も、受光素子 7において歪みが抑制された極めて高精度の正弦波出力を得ることが できる。 [0093] By providing a reflective amplitude grating as the second grating 42, the light source 4 and the first grating 1, Since the third grating 3 and the light receiving element 7 can be arranged on the same side with respect to the second grating 42, the overall configuration can be made compact. In addition, the shape of the opening of the first grid 1 is a shape that changes in a sine wave shape symmetrically in the outer and inner directions with a concentric circle as the axis of symmetry. Even when the irradiation distribution is non-uniform, it is possible to obtain a highly accurate sine wave output in which distortion is suppressed in the light receiving element 7.
[0094] なお、第 1格子の開口部は、実施の形態 3で示したような、透過率が正弦波状に変 化するデューティー変調パターン、つまり、透過部のデューティー比が正弦波状に変 化する開口パターンを同一円周上に円の中心に対して放射状に連続して配置したも のでもよい。  Note that the opening of the first grating has a duty modulation pattern in which the transmittance changes in a sine wave shape as shown in Embodiment 3, that is, the duty ratio of the transmissive portion changes in a sine wave shape. The opening pattern may be arranged radially continuously with respect to the center of the circle on the same circumference.
[0095] 以上のように、第 1格子 1の開口部には、同心円と同心円の中心を通る等角度ピッ チの線分との交点の位置に開口の中心が配置され、開口の形状は、同心円を対称 軸として外側方向と内側方向とに対称に正弦波状に変化した形状であるので、光源 4からの照射分布に不均一が生じた場合でも、受光素子 7からの信号出力の歪みが 極めて小さい光学式エンコーダを得ることができる。また、第 3格子 3は、第 2格子 42 に対して第 1格子 1と同じ側に配置されているので、全体構成がコンパクトな光学式 エンコーダを得ることができる。  [0095] As described above, the opening center of the first lattice 1 is arranged at the intersection of the concentric circle and the equiangular pitch line segment passing through the center of the concentric circle, and the shape of the opening is The shape is a sinusoidal shape that changes symmetrically in the outer and inner directions with the concentric circle as the axis of symmetry.Therefore, even if the irradiation distribution from the light source 4 is uneven, the signal output from the light receiving element 7 is extremely distorted. A small optical encoder can be obtained. Further, since the third grating 3 is disposed on the same side as the first grating 1 with respect to the second grating 42, an optical encoder having a compact overall configuration can be obtained.
[0096] 実施の形態 8.  [0096] Embodiment 8.
図 15は、この発明を実施するための実施の形態 8における光学式エンコーダの構 成図を示すものである。本実施の形態における光学式エンコーダは、 3つの格子から なる三格子法の光学式エンコーダであり、所定の角度ピッチを有する格子を放射状 に配置したロータリーエンコーダへ適用したものである。また、第 2格子 42として反射 型の振幅格子を備えている。図 15において、第 1格子 1、第 2格子 42および第 3格子 3のスリット方向を紙面に平行な上下方向に設定し、第 2格子 42の移動方向を紙面 垂直方向に設定する以外の構成は実施の形態 7と同じである。  FIG. 15 shows a configuration diagram of an optical encoder according to the eighth embodiment for carrying out the present invention. The optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings, and is applied to a rotary encoder in which gratings having a predetermined angular pitch are arranged radially. In addition, a reflection type amplitude grating is provided as the second grating 42. In FIG. 15, the configuration except that the slit direction of the first grating 1, the second grating 42 and the third grating 3 is set to the vertical direction parallel to the paper surface, and the moving direction of the second grating 42 is set to the vertical direction of the paper surface. The same as in the seventh embodiment.
[0097] 第 2格子 42は第 2格子用基板 46に設けられており、第 2格子用基板 46の回転によ つて第 2格子 42が移動する。光源 4からの光は、第 1格子 1を斜めに通過し、第 2格 子 42で斜めに反射し、第 3格子 3を斜めに通過して、受光素子 7に到達する。第 1距 離 Z ,第 2距離 Zは、光進行方向に沿った距離で定義される。 Zと Zとが等しい距離The second grating 42 is provided on the second grating substrate 46, and the second grating 42 is moved by the rotation of the second grating substrate 46. Light from the light source 4 passes through the first grating 1 obliquely, is reflected obliquely by the second grating 42, passes obliquely through the third grating 3, and reaches the light receiving element 7. 1st distance The separation Z and the second distance Z are defined by the distance along the light traveling direction. Z is equal to Z
1 2 1 2 1 2 1 2
になるように、第 1格子 1、第 2格子 42および第 3格子 3を配置してもよい。また、図 15 に示すように、第 1格子 1、第 3格子のそれぞれの配置を変えて、 Zと Zとが異なる距  The first grid 1, the second grid 42, and the third grid 3 may be arranged so that In addition, as shown in Fig. 15, the distance between Z and Z is changed by changing the arrangement of the first grid 1 and the third grid.
1 2  1 2
離になるようにしてもょ ヽ。結像条件と像倍率の関係式とを満足する構成であれば像 倍率はいくらでもよぐ拡大系または縮小系でもよい。  Let ’s get away. As long as the image forming condition and the relational expression of the image magnification are satisfied, an enlargement system or a reduction system may be used regardless of the image magnification.
[0098] 第 2格子 42として反射型の振幅格子を備えることにより、光源 4および第 1格子 1、 第 3格子 3および受光素子 7を第 2格子 42に対して同じ側に配置できるため、全体構 成をコンパクトにすることができる。また、第 1格子 1の開口の形状は、同心円を対称 軸として外側方向と内側方向とに対称に正弦波状に変化した形状であるので、汚れ や放射分布のばらつきなどが原因で光源 4からの照射分布に不均一が生じた場合で も、受光素子 7において歪みが抑制された極めて高精度の正弦波出力を得ることが できる。 [0098] By providing a reflection-type amplitude grating as the second grating 42, the light source 4, the first grating 1, the third grating 3, and the light receiving element 7 can be arranged on the same side with respect to the second grating 42. The configuration can be made compact. In addition, the shape of the opening of the first grid 1 is a shape that changes in a sine wave shape symmetrically in the outer and inner directions with a concentric circle as the axis of symmetry. Even when the irradiation distribution is non-uniform, it is possible to obtain a highly accurate sine wave output in which distortion is suppressed in the light receiving element 7.
[0099] なお、第 1格子 1の開口部は、実施の形態 3で示したような、透過率が正弦波状に 変化するデューティー変調パターン、つまり、透過部のデューティー比が正弦波状に 変化する開口パターンを同一円周上に円の中心に対して放射状に連続して配置し たものでもよい。  Note that the opening of the first grating 1 is a duty modulation pattern in which the transmittance changes in a sine wave shape as shown in Embodiment 3, that is, an opening in which the duty ratio of the transmissive portion changes in a sine wave shape. It is also possible to arrange the patterns continuously in a radial pattern with respect to the center of the circle on the same circumference.
[0100] 以上のように、第 1格子 1の開口部には、同心円と同心円の中心を通る等角度ピッ チの線分との交点の位置に開口の中心が配置され、開口の形状は、同心円を対称 軸として外側方向と内側方向とに対称に正弦波状に変化した形状であるので、光源 [0100] As described above, the opening center of the first lattice 1 is arranged at the intersection of the concentric circle and the equiangular pitch line passing through the center of the concentric circle, and the shape of the opening is Since it has a sine wave shape symmetrically about the concentric circle in the outer and inner directions, the light source
4からの照射分布に不均一が生じた場合でも、受光素子 7からの信号出力の歪みが 極めて小さい光学式エンコーダを得ることができる。また、第 3格子 3は、第 2格子 42 に対して第 1格子 1と同じ側に配置されているので、全体構成がコンパクトな光学式 エンコーダを得ることができる。 Even if the irradiation distribution from 4 is non-uniform, an optical encoder with a very small distortion of the signal output from the light receiving element 7 can be obtained. Further, since the third grating 3 is disposed on the same side as the first grating 1 with respect to the second grating 42, an optical encoder having a compact overall configuration can be obtained.
[0101] 実施の形態 9.  [0101] Embodiment 9.
図 16は、この発明を実施するための実施の形態 9における光学式エンコーダの構 成図を示すものである。本実施の形態における光学式エンコーダは、 3つの格子から なる三格子法の光学式エンコーダである。図 16において、ディヒユーザ 111以外の 構成は実施の形態 2と同じである。 [0102] ディヒユーザ 111は、光源 4からの光線を散乱させる機能を持っており、散乱した光 線が第 1格子 11を照射する。上述の散乱の方向は、光線の検出効率を向上するた めに、または、第 1格子用基板 15上に他のスケールパターンが備えられた場合のク ロストークを抑制するために、紙面面内方向が望ましぐ紙面垂直方向には散乱しな いよう設計することが望ましい。 FIG. 16 shows a configuration diagram of an optical encoder according to the ninth embodiment for carrying out the present invention. The optical encoder in the present embodiment is a three-grid optical encoder composed of three gratings. In FIG. 16, the configuration other than the Dich user 111 is the same as that of the second embodiment. The Dich user 111 has a function of scattering light rays from the light source 4, and the scattered light rays irradiate the first grating 11. The above-mentioned scattering direction is an in-plane direction in order to improve the light detection efficiency or to suppress crosstalk when another scale pattern is provided on the first grating substrate 15. However, it is desirable to design so that it does not scatter in the vertical direction of the paper.
[0103] 光源 4からの光線が略平行光で、かつ第 1格子 11のピッチ Pが大きぐ光線の回折  [0103] Diffraction of the light beam from the light source 4 is substantially parallel light and the pitch P of the first grating 11 is large.
1  1
角度が小さい場合でも、第 1格子 11の正弦波状の各開口からの拡散角度を第 2格子 12の開口 4個以上、望ましくは 10個以上を照射できるようにディヒユーザ 111の形状 、寸法など、つまりは散乱角度を設計すれば良い。ディヒユーザ 111は、例えば紫外 線硬化榭脂を用いた榭脂成形技術 (ェンボッシング)で製作することが可能である。  Even if the angle is small, the diffusion angle from each sinusoidal opening of the first grating 11 can irradiate 4 or more apertures of the second grating 12, preferably 10 or more. What is necessary is just to design a scattering angle. The Dich user 111 can be manufactured by, for example, a resin molding technique (embossing) using an ultraviolet ray curing resin.
[0104] 図 16では、ディヒユーザ 111は第 1格子用基板 15上の光源 4側に備えられている 力 第 1格子 11を金属薄膜などのパターユングによって形成したあとに第 1格子 11 上に備えても良い。また、本実施の形態は、実施の形態 1ないし 8にも適用が可能で ある。 [0104] In FIG. 16, the Dich user 111 has the force provided on the light source 4 side on the first grid substrate 15 on the first grid 11 after the first grid 11 is formed by patterning such as a metal thin film. May be. The present embodiment can also be applied to the first to eighth embodiments.
[0105] このように第 1格子 11の正弦波状の各開口からの拡散角度をディヒユーザ 111により 制御可能となるので、第 1格子 11のピッチ P  [0105] In this way, the diffusion angle from each sinusoidal opening of the first grating 11 can be controlled by the Dich user 111, so the pitch P of the first grating 11
1が大きぐ光線の回折角度が小さい場合 でも、第 3格子 13上に三格子法に基づいた正弦波状の光量分布を結像させることが でき、受光素子 17からの信号出力の歪みが極めて小さい光学式エンコーダを得るこ とがでさる。  Even if the diffraction angle of a light beam with a large 1 is small, a sinusoidal light distribution based on the three-grid method can be imaged on the third grating 13, and the distortion of the signal output from the light receiving element 17 is extremely small. It is possible to obtain an optical encoder.
[0106] なお、全ての実施の形態において、第 2格子として、振幅格子の代わりに、例えば 位相など、振幅以外の他の光学的な特徴量が周期的に形成された格子を用いても、 第 1格子上の強度分布を第 3格子上に結像させることができる。この場合も、第 1格子 にて正弦波状の強度分布を作製すれば、第 3格子上の強度分布に歪みは発生しな くなり、極めて高精度の正弦波出力を得ることができる。  In all the embodiments, instead of the amplitude grating, for example, a grating in which optical features other than amplitude such as phase are periodically formed may be used as the second grating. The intensity distribution on the first grating can be imaged on the third grating. In this case as well, if a sinusoidal intensity distribution is produced on the first grating, distortion does not occur in the intensity distribution on the third grating, and an extremely accurate sine wave output can be obtained.
[0107] また、全ての実施の形態において、基本の空間周波数を N= 1以外の周波数を基 本周波数として設計してもよぐ例えば N = 2の結像条件と像倍率とに応じて各格子 のピッチを決定し、これを基本の空間周波数として設計してもよい。この場合には、 N = 2に対する 2次の高調波成分は N=4、 3次の高調波成分は N= 6となる。  In all the embodiments, the basic spatial frequency may be designed with a frequency other than N = 1 as a basic frequency. For example, according to the imaging condition of N = 2 and the image magnification. The pitch of the grating may be determined and designed as a basic spatial frequency. In this case, the second-order harmonic component for N = 2 is N = 4, and the third-order harmonic component is N = 6.

Claims

請求の範囲 The scope of the claims
[1] 開口部を有し光源力 の光を受ける第 1格子と、  [1] a first grating having an opening and receiving light from a light source;
同一円周上に並んだ開口部または反射部を有し前記第 1格子によって形成された強 度分布をもつ光を受ける第 2格子と、  A second grating for receiving light having an intensity distribution formed by the first grating and having openings or reflecting portions arranged on the same circumference;
同一円周上に並んだ開口部を有し前記第 2格子からの光を受ける第 3格子と、 前記第 3格子からの光を受ける受光素子とを備えた三格子法の光学式エンコーダで あって、  A three-grid optical encoder comprising a third grating having openings arranged on the same circumference and receiving light from the second grating, and a light receiving element receiving light from the third grating. And
前記第 1格子の開口部には、同心円と前記同心円の中心を通る等角度ピッチの線分 との交点の位置に開口の中心が配置され、  In the opening of the first lattice, the center of the opening is disposed at the intersection of a concentric circle and a line segment of equiangular pitch passing through the center of the concentric circle,
前記開口の形状は、前記同心円を対称軸として外側方向と内側方向とに対称に正 弦波状に変化した形状であることを特徴とする光学式エンコーダ。  2. The optical encoder according to claim 1, wherein the shape of the opening is a shape that changes in a sine wave shape symmetrically in an outer direction and an inner direction with the concentric circle as an axis of symmetry.
[2] 開口部を有し光源力 の光を受ける第 1格子と、 [2] a first grating having an opening and receiving light of a light source power;
開口部または反射部を有し前記第 1格子によって形成された強度分布をもつ光を受 ける第 2格子と、  A second grating having an opening or a reflection part and receiving light having an intensity distribution formed by the first grating;
開口部を有し前記第 2格子からの光を受ける第 3格子と、  A third grating having an opening and receiving light from the second grating;
前記第 3格子からの光を受ける受光素子とを備えた三格子法の光学式エンコーダで あって、  A three-grating optical encoder comprising a light-receiving element that receives light from the third grating,
前記第 1格子の開口部は、正弦波を上下に折り返した形状の開口が連続して配置さ れたスリット列を同位相に複数段設けたことを特徴とする光学式エンコーダ。  The optical encoder according to claim 1, wherein the opening portion of the first grating is provided with a plurality of slit rows in the same phase in which slits having a shape in which a sine wave is folded up and down are continuously arranged.
[3] 開口部を有し光源力 の光を受ける第 1格子と、 [3] a first grating having an opening and receiving light of a light source power;
同一円周上に並んだ開口部または反射部を有し前記第 1格子によって形成された強 度分布をもつ光を受ける第 2格子と、  A second grating for receiving light having an intensity distribution formed by the first grating and having openings or reflecting portions arranged on the same circumference;
同一円周上に並んだ開口部を有し前記第 2格子からの光を受ける第 3格子と、 前記第 3格子からの光を受ける受光素子とを備えた三格子法の光学式エンコーダで あって、  A three-grid optical encoder comprising a third grating having openings arranged on the same circumference and receiving light from the second grating, and a light receiving element receiving light from the third grating. And
前記第 1格子の開口部は、透過部のデューティー比が正弦波状に変化する開口パ ターンを同一円周上に円の中心に対して放射状に連続して配置したことを特徴とす る光学式エンコーダ。 開口部を有し光源力 の光を受ける第 1格子と、 The opening portion of the first grating has an optical pattern in which an opening pattern in which the duty ratio of the transmission portion changes sinusoidally is continuously arranged radially on the same circumference with respect to the center of the circle. Encoder. A first grating having an opening to receive light from a light source;
開口部または反射部を有し前記第 1格子によって形成された強度分布をもつ光を受 ける第 2格子と、 A second grating having an opening or a reflection part and receiving light having an intensity distribution formed by the first grating;
開口部を有し前記第 2格子からの光を受ける第 3格子と、 A third grating having an opening and receiving light from the second grating;
前記第 3格子からの光を受ける受光素子とを備えた三格子法の光学式エンコーダで あって、 A three-grating optical encoder comprising a light-receiving element that receives light from the third grating,
前記第 1格子の開口部は、透過部のデューティー比が正弦波状に変化する開口パ ターンを前記デューティー比が変化する方向に連続して配置したことを特徴とする光 学式エンコーダ。 The optical encoder is characterized in that an opening pattern in which the duty ratio of the transmission part changes in a sinusoidal manner is continuously arranged in the direction in which the duty ratio changes in the opening part of the first grating.
PCT/JP2006/310348 2005-06-30 2006-05-24 Optical encoder WO2007004367A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-192346 2005-06-30
JP2005192346A JP2008241243A (en) 2005-06-30 2005-06-30 Optical encoder

Publications (1)

Publication Number Publication Date
WO2007004367A1 true WO2007004367A1 (en) 2007-01-11

Family

ID=37604243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310348 WO2007004367A1 (en) 2005-06-30 2006-05-24 Optical encoder

Country Status (3)

Country Link
JP (1) JP2008241243A (en)
TW (1) TW200702636A (en)
WO (1) WO2007004367A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121508A (en) * 2013-12-25 2015-07-02 株式会社ミツトヨ Optical encoder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5984364B2 (en) * 2011-11-22 2016-09-06 キヤノン株式会社 Optical encoder and apparatus equipped with the same
CN112444277A (en) 2019-09-04 2021-03-05 台达电子工业股份有限公司 Optical reflection component and optical encoder using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157203A (en) * 1982-02-25 1983-09-19 フエランテイ・ピ−エルシ− Optical device for generating sinusoidal wave of low harmonic wave content
JPH10512374A (en) * 1995-11-02 1998-11-24 レニショウ パブリック リミテッド カンパニー Optoelectronic rotary encoder
JPH11351911A (en) * 1998-06-08 1999-12-24 Tamagawa Seiki Co Ltd Encoder sine wave signal output method
JP2002174536A (en) * 2000-12-08 2002-06-21 Nidec Copal Corp Encoder device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157203A (en) * 1982-02-25 1983-09-19 フエランテイ・ピ−エルシ− Optical device for generating sinusoidal wave of low harmonic wave content
JPH10512374A (en) * 1995-11-02 1998-11-24 レニショウ パブリック リミテッド カンパニー Optoelectronic rotary encoder
JPH11351911A (en) * 1998-06-08 1999-12-24 Tamagawa Seiki Co Ltd Encoder sine wave signal output method
JP2002174536A (en) * 2000-12-08 2002-06-21 Nidec Copal Corp Encoder device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121508A (en) * 2013-12-25 2015-07-02 株式会社ミツトヨ Optical encoder

Also Published As

Publication number Publication date
TW200702636A (en) 2007-01-16
JP2008241243A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP6312505B2 (en) Optical encoder and apparatus equipped with the same
US7470892B2 (en) Optical encoder
KR101240413B1 (en) Origin detection apparatus, displacement measurement apparatus and optical apparatus
US9024251B2 (en) Encoder having a scale that includes block patterns
JPH0132450B2 (en)
JPH07286861A (en) Device and method for optical conversion
JPH02285214A (en) Length measuring machine and scale member used for the same
JPH06109484A (en) Signal processing method and encoder using the same
Lee et al. Incremental optical encoder based on a sinusoidal transmissive pattern
WO2007004367A1 (en) Optical encoder
JP3312086B2 (en) Encoder device
JP4509615B2 (en) Encoder
JP2562479B2 (en) Reflective XY encoder
CN204188180U (en) Motor, the servo-drive system of scrambler, band scrambler
JP6157392B2 (en) Optical encoder
JP2004271271A (en) Projection rotary encoder
JP2001343256A (en) Optical encoder
JP7532176B2 (en) Optical Encoder and Control Device
JP2021012190A (en) Optical encoder and drive control device
JP4409269B2 (en) Optical encoder
JP2002139353A (en) Optical rotary encoder
JP2822225B2 (en) Optical displacement detector
US11221238B2 (en) Optical encoder and drive control device comprising a light receiving element to receive a first interference fringe formed by a first periodic pattern and a second diffracted light from a second periodic pattern toward the first periodic pattern
JP2005291794A (en) Optical encoder
CN114485745A (en) Small-size high reliability blue light reflective encoder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载