WO2007000379A1 - Procede de simulation assistee par informatique d'experiences biologiques d'interference d'arn - Google Patents
Procede de simulation assistee par informatique d'experiences biologiques d'interference d'arn Download PDFInfo
- Publication number
- WO2007000379A1 WO2007000379A1 PCT/EP2006/062393 EP2006062393W WO2007000379A1 WO 2007000379 A1 WO2007000379 A1 WO 2007000379A1 EP 2006062393 W EP2006062393 W EP 2006062393W WO 2007000379 A1 WO2007000379 A1 WO 2007000379A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rna
- cell
- activity
- network
- computer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000009368 gene silencing by RNA Effects 0.000 title claims abstract description 24
- 238000002474 experimental method Methods 0.000 title claims abstract description 21
- 238000004088 simulation Methods 0.000 title claims abstract description 10
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 title claims abstract description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims abstract description 58
- 230000000694 effects Effects 0.000 claims abstract description 46
- 230000001105 regulatory effect Effects 0.000 claims abstract description 8
- 230000002068 genetic effect Effects 0.000 claims abstract description 6
- 230000003993 interaction Effects 0.000 claims abstract description 6
- 230000001364 causal effect Effects 0.000 claims description 20
- 238000004590 computer program Methods 0.000 claims description 4
- 238000000018 DNA microarray Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 2
- 238000007619 statistical method Methods 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 description 19
- 108091030071 RNAI Proteins 0.000 description 16
- 230000014509 gene expression Effects 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 8
- 238000005070 sampling Methods 0.000 description 7
- 206010028980 Neoplasm Diseases 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000002493 microarray Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001243 protein synthesis Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229920002477 rna polymer Polymers 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- CPELXLSAUQHCOX-DYCDLGHISA-N deuterium bromide Chemical compound [2H]Br CPELXLSAUQHCOX-DYCDLGHISA-N 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 230000014493 regulation of gene expression Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B5/00—ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B25/00—ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
- G16B25/10—Gene or protein expression profiling; Expression-ratio estimation or normalisation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B25/00—ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
Definitions
- the invention relates to a method for the computer-aided simulation of biological RNA interference experiments and to a corresponding computer program product.
- RNA molecules ribonucleic acid molecules
- DNA genes of the genetic material
- protein molecules which perform the manifold tasks in the cell.
- the interplay or interactions of the genes with each other and with the proteins constitute a so-called regulatory genetic network, which is based on the development of the human body from a fertilized egg cell and all bodily functions.
- the process of protein synthesis from a gene via the intermediate step of RNA production is called gene expression. If more protein (or more RNA than intermediate) is produced from a gene at a certain time than in a reference state, it is called overexpression, too little protein (or too little RNA) from a lower expression.
- the expression state of all genes taken together at a time is referred to herein as the gene expression pattern.
- the gene expression pattern changes over time depending on the condition of the cell, the cellular environment as well as the type of cell considered. Since a cell undergoes different and very complex states during its lifetime, its gene expression pattern also changes continuously. A gene expression pattern thus represents a snapshot of the condition of the cell.
- ribonucleic acids were considered to be only an intermediate in protein synthesis in a cell.
- recent years' genetic research has shown that ribonucleic acids play a much more important role in the cell system and control basic mechanisms in the biological processes in a cell.
- the regulation of gene expression of a cell is primarily controlled by the proteins produced in the cell.
- Research results of recent years show, however, that short single-stranded RNA molecules can inhibit the translation of genes into proteins (so-called gene silencing) by binding the RNA molecules generated as an intermediate in the protein synthesis and thus preventing reading into the corresponding protein ,
- RNA interference RNA interference
- RNAi is of particular interest for therapeutic and pharmaceutical applications. For example, by switching off individual disease-relevant genes (eg oncogenes), disease-causing mechanisms can be inhibited and new drugs can be found.
- RNAi studies are performed as in vivo and in vitro experiments that are laborious and expensive.
- additional experimental data is needed z. For example, DNA microarray data to select the RNA molecules of interest for an RNAi experiment.
- WO 2005/003368 A2 describes a method for the computer-aided simulation of gene expression patterns, wherein a causal network is used, which describes the regulatory genetic network of a cell.
- the object of the invention is to provide a method and a corresponding computer program product with which computer-assisted RNAi experiments can be simulated.
- RNA activity patterns of a cell are determined by a) using a causal network which describes the regulatory genetic network of the cell in such a way that nodes of the causal network in each case monitor the activity of an RNA molecule species represent the cell and edges of the causal network represent regulatory interactions between the RNA molecule types of the cell; b) the activity of one or more RNA molecule types of the cell is blocked by setting their activity substantially to zero; c) using the causal network for the blocked ones
- RNA molecule species one or more RNA activity patterns of the cell are generated.
- Activity refers to the concentration or a measure of the concentration of the corresponding RNA molecule species in the cell.
- the method essentially represents a further development of the method described in the above-mentioned publication WO 2005/003368 A2, the disclosure of which Reference is hereby made by reference to the content of the present application.
- the method according to the invention is based on the finding that the method for the simulation of gene expression patterns according to WO 2005/003368 A2 can also be used for the simulation of RNAi experiments in that the variables of the method as activities of the individual RNA molecule types in the Cell are interpreted and the activities of individual RNA molecules are essentially eliminated.
- RNAi experiments can thus be simulated on the computer, whereby the experimental and time expenditure can be minimized.
- the method according to the invention preferably uses as a causal network a Bayesian network (also known as Bayesian network), which is well known in the art.
- the causal network is also preferably of a DAG (Directed Acylic Graph) type.
- the activities of the RNA molecule species can be represented by discrete states which represent measures of particular concentrations of the RNA molecule species in the cell.
- the discrete states may include an overexpressed, normal-ex- pressed, and under-expressed state.
- an overexpressed state stands for a high activity exceeding a normal range, a normal-expressed state for a normal-range activity, and a sub-expressed state for an activity below a normal range.
- the causal network is trained using one or more known RNA activity patterns, with the nodes and edges of the causal network being adjusted.
- a computer-aided comparison of the one or more generated RNA activity pattern with one or more predetermined RNA activity patterns performed, for example, to draw conclusions about the influence of certain types of RNA molecules on RNA activity pattern.
- the computer-assisted comparison is preferably carried out using a statistical method and / or a statistical index, in particular a distance measure.
- the one or more known and / or predetermined RNA activity patterns with which the network is trained or the computer-aided comparison is performed are patterns measured using DNA microarray technology.
- the one or more known and / or predefined RNA activity patterns with which the network is trained or the computer-aided comparison are performed , from diseased cells.
- the method according to the invention can be used, in particular, as a preliminary examination for wet-biochemical RNA interference experiments, the method extracting RNA molecule species with great influence on the RNA activity patterns, so that in the subsequent RNAi experiments, preferably the extracted ones RNA molecule types are blocked.
- the invention also relates to a computer program product with a program code stored on a machine-readable carrier for carrying out the method according to the invention, when the program runs on a computer.
- FIG. 1 shows the sequence of an embodiment of the method according to the invention
- FIG. 2 shows the sequence of a method for generating a data set of samples from a Bayesian network
- FIG. 3 shows the sequence of a method of interventional sampling according to a sub-step of FIG
- FIG. 1 An exemplary embodiment of the invention will be described below with reference to FIG. 1, in which a Bayesian cell is used as a causal network for simulating an RNAi experiment
- a Bayesian network B is a special type of representation of a common multivariate probability density function (WDF) of a set of variables X by a graphical model.
- WDF probability density function
- GAG directed acyclic graph
- the edges between the nodes represent statistical dependencies and can be interpreted as causal relationships between them.
- the second component of the Bayesian network is the set of conditional DFs ⁇ P (X ⁇ ⁇ Pa ⁇ , ⁇ , G), which are parameterized by means of a vector ⁇ .
- conditional WDFs specify the nature of the dependencies of the individual variables i on the set of parent parents (Parents) Pa ⁇ .
- the common WDF in the product form
- the DAG of a Bayesian network uniquely describes the conditional dependency and independence relationships between a set of variables, but in contrast, a given statistical structure of the WDF does not result in a unique DAG.
- two DAGs describe one and the same WDF, if and only if they have the same set of edges and the same set of "colliders", where a collider is a constellation in which at least two directed edges are to lead the same node.
- knots represent the activity of an RNA species in the cell and the edges describe the
- Control mechanisms between two nodes which can be interpreted in a causal way.
- the network is initially learned structurally in accordance with step 101 of FIG.
- the structure G of the Bayesian network is found which best matches D, ie which the Bayes score (Bayes score) P (D 1 G) P (G 1 P (D)
- P (D ⁇ G) is the edge probability
- P (G) is the apriori probability of the structure
- P (D) is the evidence.
- the data set D consists of N microarray experiments, eg. From cell samples from different patients, and each data vector ⁇ d 1 ! , d 1 2 f ••• / C ⁇ n ] corresponds to the activity of n RNA molecule species in the microarray experiment.
- a Bayesian network learned from such data encodes the probability distribution of n RNA molecule species obtained from these N microarray experiments.
- a so-called interventional sampling (B, E, N) is carried out, with which data sets of N independent samples are generated in the learned Bayesian network given a given evidence.
- the procedure of interventional sampling will be explained in more detail below with reference to FIG.
- the evidence here represents the amount of observations of the RNAi experiment to be simulated in the method according to the invention.
- E represents one or more blocked RNA species whose activity value is set to substantially zero.
- variable set X is first ordered according to the condition that parent (s) Pa ⁇ are arranged in front of the X ⁇ .
- the node X 1 with the highest order number in the bar sample that is not instantiated is selected (step 202). If X 1 is a root node (ie a node without parent node), a random state with the probability P (state) is selected (step 203). Otherwise, a random state with conditional probability P (state
- extracted states of Pa ⁇ ) is selected (step 204). Finally, in step 205, the node X 1 is instantiated with the random state, ie X 1 state. After instantiation of all X ⁇ for all samples N, a data set DB of N independent samples was obtained.
- variable set Xq is first ordered according to the condition that parent (s) Pa ⁇ are arranged in front of the X ⁇ .
- the node X 1 with the highest order number in the bar sample that is not instantiated is selected (step 302). If X 1 is a root node (ie, a node without parent node), a random state with probability P (state
- extracted states of Pa ⁇ , E) is selected (step 304). Finally, in step 305, the node X 1 is instantiated with the random state, ie X 1 state.
- This data set represents the simulated activities of the RNA molecule species of an RNAi experiment in which, according to Evidence E, certain types of RNA molecules were blocked.
- the simulation method described above can be extended by estimating the quality of the influence of the evidence E on the behavior of the Bayesian network B in order to obtain biological or medical findings from the method.
- E compared to a set of data sets D of known states S.
- the influence of observed evidence in the form of blocked RNA species on cancer characteristic behavior of the model is measurable.
- N ES is the number of samples of D B ⁇ E which statistically come closest to data set D 5
- N is the total number of samples of D B ⁇ E.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Evolutionary Biology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Physiology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Procédé de simulation assistée par informatique d'expériences biologiques d'interférence d'ARN pour déterminer des modèles d'activité d'ARN d'une cellule. Selon ledit procédé, (a) un réseau causal est utilisé, qui décrit le réseau génétique régulateur de la cellule de manière telle que des noeuds du réseau causal représentent chacun l'activité d'un type de molécule d'ARN dans la cellule et que les bords du réseau causal représentent des interactions régulatrices entre les types de molécules d'ARN de la cellule, (b) l'activité d'un ou plusieurs types de molécules d'ARN de la cellule est bloquée, ladite activité étant réduite à zéro et (c) un ou plusieurs modèles d'activité d'ARN de la cellule sont produits pour les types de molécules d'ARN bloquées, à l'aide du réseau causal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005030136.3 | 2005-06-28 | ||
DE102005030136A DE102005030136B4 (de) | 2005-06-28 | 2005-06-28 | Verfahren zur rechnergestützten Simulation von biologischen RNA-Interferenz-Experimenten |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007000379A1 true WO2007000379A1 (fr) | 2007-01-04 |
Family
ID=36809053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/062393 WO2007000379A1 (fr) | 2005-06-28 | 2006-05-17 | Procede de simulation assistee par informatique d'experiences biologiques d'interference d'arn |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102005030136B4 (fr) |
WO (1) | WO2007000379A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107391961A (zh) * | 2011-09-09 | 2017-11-24 | 菲利普莫里斯生产公司 | 用于基于网络的生物活性评估的系统与方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005003368A2 (fr) * | 2003-07-04 | 2005-01-13 | Siemens Aktiengesellschaft | Procede, programme informatique avec moyens de codage de programme et produit programme informatique pour l'analyse du reseau genetique regulatoire d'une cellule |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10159262B4 (de) * | 2001-12-03 | 2007-12-13 | Siemens Ag | Identifizieren pharmazeutischer Targets |
-
2005
- 2005-06-28 DE DE102005030136A patent/DE102005030136B4/de not_active Expired - Fee Related
-
2006
- 2006-05-17 WO PCT/EP2006/062393 patent/WO2007000379A1/fr active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005003368A2 (fr) * | 2003-07-04 | 2005-01-13 | Siemens Aktiengesellschaft | Procede, programme informatique avec moyens de codage de programme et produit programme informatique pour l'analyse du reseau genetique regulatoire d'une cellule |
Non-Patent Citations (3)
Title |
---|
"Analyzing gene-expression data with bayesian networks", DIPLOMARBEIT TECHNISCHE UNIVERSITAET GRAZ. TUG, XX, XX, June 2002 (2002-06-01), pages 1 - 55, XP002320819 * |
FRIEDMAN N ET AL: "Using bayesian networks to analyze expression data", JOURNAL OF COMPUTATIONAL BIOLOGY, MARY ANN LIEBERT, LARCHMONT, NY, US, vol. 7, no. 3/4, 2000, pages 601 - 620, XP002963504, ISSN: 1066-5277 * |
YOO C ET AL: "Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational DNA microarray data", PROCEEDINGS OF THE PACIFIC SYMPOSIUM ON BIOCOMPUTING, 2002, pages 498 - 509, XP002320820 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107391961A (zh) * | 2011-09-09 | 2017-11-24 | 菲利普莫里斯生产公司 | 用于基于网络的生物活性评估的系统与方法 |
Also Published As
Publication number | Publication date |
---|---|
DE102005030136B4 (de) | 2010-09-23 |
DE102005030136A1 (de) | 2007-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102009032649B4 (de) | Massenspektrometrische Identifizierung von Mikroben nach Unterarten | |
DE112005002331T5 (de) | Verfahren, System und Vorrichtung zur Zusammenstellung und Nutzung von biologischem Wissen | |
EP1934895A2 (fr) | Procede d'apprentissage assiste par ordinateur d'un reseau neuronal, et reseau neuronal correspondant | |
EP3540632A1 (fr) | Procédé et appareil d'analyse destinés à la classification des échantillons tissulaires | |
DE10162927A1 (de) | Auswerten von mittels funktionaler Magnet-Resonanz-Tomographie gewonnenen Bildern des Gehirns | |
DE10159262B4 (de) | Identifizieren pharmazeutischer Targets | |
WO2007000379A1 (fr) | Procede de simulation assistee par informatique d'experiences biologiques d'interference d'arn | |
DE112018006190T5 (de) | Subtypisierung von tnbc und methoden | |
EP3425519A1 (fr) | Procédé de configuration assistée par ordinateur d'un modèle commandé par des données en fonction de données d'apprentissage | |
WO2005003368A2 (fr) | Procede, programme informatique avec moyens de codage de programme et produit programme informatique pour l'analyse du reseau genetique regulatoire d'une cellule | |
DE102006033267B4 (de) | Verfahren zur rechnergestützten Ermittlung von quantitativen Vorhersagen aus qualitativen Informationen mit Hilfe von Bayesianischen Netzwerken | |
DE102005028975B4 (de) | Verfahren zur Ermittlung eines Biomarkers zur Kennzeichnung eines spezifischen biologischen Zustands eines Organismus aus mindestens einem Datensatz | |
DE102005015000A1 (de) | Verfahren und System zur Analyse von arraybasierten Komparativhybridisierungsdaten | |
DE10350525A1 (de) | Verfahren zur Visualisierung der ADME-Eigenschaften chemischer Substanzen | |
DE102004030296A1 (de) | Verfahren, Computerprogramm mit Programmcode-Mitteln und Computerprogramm-Produkt zur Analyse eines regulatorischen genetischen Netzwerks einer Zelle | |
Richter et al. | Does weed control by precision spray technology favour the emergence of resistance | |
DE102007039917A1 (de) | Verfahren zur rechnergestützten Analyse eines Interaktionsnetzwerks von biomedizinischen Entitäten | |
EP2491508A2 (fr) | Procédés de production de motifs de référence pour biomarqueurs | |
EP1527406A2 (fr) | Procede, dispositif, programme informatique comprenant un systeme de code de programmation et produit de programme informatique pour analyser des activites neuronales dans des zones neuronales | |
WO2006013131A2 (fr) | Procede pour analyser un reseau de regulation genetique d'une cellule | |
DE102022212416A1 (de) | Verfahren und Vorrichtung zur Positionsrekonstruktion von Zellen in einem dreidimensionalen Gewebe | |
WO2010060746A2 (fr) | Procédé et dispositif d'analyse automatique de modèles | |
EP1451750B1 (fr) | Procede pour identifier des pharmacophores | |
DE102007022170A1 (de) | Verfahren zur rechnergestützten Verarbeitung von biomedizinischen Daten | |
DE102023200020A1 (de) | Verfahren zum Trainieren eines Algorithmus des maschinellen Lernens und Verfahren zum Einstellen mindestens eines in einem induktiven Härteverfahren mindestens eines Bauteils einstellbaren Prozessparameters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06777223 Country of ref document: EP Kind code of ref document: A1 |