WO2007086819A2 - Panneaux d'aérogel de résistance élevée - Google Patents
Panneaux d'aérogel de résistance élevée Download PDFInfo
- Publication number
- WO2007086819A2 WO2007086819A2 PCT/US2005/042804 US2005042804W WO2007086819A2 WO 2007086819 A2 WO2007086819 A2 WO 2007086819A2 US 2005042804 W US2005042804 W US 2005042804W WO 2007086819 A2 WO2007086819 A2 WO 2007086819A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aerogel
- layer
- fiber
- energy
- silicon
- Prior art date
Links
- 239000004964 aerogel Substances 0.000 title claims abstract description 128
- 239000011230 binding agent Substances 0.000 claims abstract description 61
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 23
- 239000010703 silicon Substances 0.000 claims abstract description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000011368 organic material Substances 0.000 claims abstract description 8
- 239000010410 layer Substances 0.000 claims description 98
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 27
- 239000000835 fiber Substances 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 25
- 239000000126 substance Substances 0.000 claims description 12
- 150000002894 organic compounds Chemical class 0.000 claims description 10
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 125000005370 alkoxysilyl group Chemical group 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- 238000006116 polymerization reaction Methods 0.000 claims description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 5
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 claims description 4
- KEHCHOCBAJSEKS-UHFFFAOYSA-N iron(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Fe+2] KEHCHOCBAJSEKS-UHFFFAOYSA-N 0.000 claims description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical class N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 2
- 229910034327 TiC Inorganic materials 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 2
- KWVQRJCTLONBSV-UHFFFAOYSA-N [O-2].[Fe+].[Fe+] Chemical compound [O-2].[Fe+].[Fe+] KWVQRJCTLONBSV-UHFFFAOYSA-N 0.000 claims description 2
- 230000000843 anti-fungal effect Effects 0.000 claims description 2
- 230000003115 biocidal effect Effects 0.000 claims description 2
- 239000003139 biocide Substances 0.000 claims description 2
- 239000006229 carbon black Substances 0.000 claims description 2
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 2
- 238000010894 electron beam technology Methods 0.000 claims description 2
- 230000005251 gamma ray Effects 0.000 claims description 2
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 claims description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 2
- YDZQQRWRVYGNER-UHFFFAOYSA-N iron;titanium;trihydrate Chemical compound O.O.O.[Ti].[Fe] YDZQQRWRVYGNER-UHFFFAOYSA-N 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 239000011572 manganese Substances 0.000 claims description 2
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 claims description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 229910000108 silver(I,III) oxide Inorganic materials 0.000 claims description 2
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(II) oxide Inorganic materials [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 2
- 229910000859 α-Fe Inorganic materials 0.000 claims description 2
- 239000012044 organic layer Substances 0.000 claims 1
- 229920000193 polymethacrylate Polymers 0.000 description 13
- 239000002131 composite material Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 9
- 238000009413 insulation Methods 0.000 description 9
- PZJJKWKADRNWSW-UHFFFAOYSA-N trimethoxysilicon Chemical group CO[Si](OC)OC PZJJKWKADRNWSW-UHFFFAOYSA-N 0.000 description 9
- 239000000178 monomer Substances 0.000 description 8
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 238000001723 curing Methods 0.000 description 7
- 239000004926 polymethyl methacrylate Substances 0.000 description 7
- -1 trimethoxylsilyl Chemical group 0.000 description 7
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical class COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 5
- 239000004965 Silica aerogel Substances 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical class CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 229920002239 polyacrylonitrile Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- WYKYCHHWIJXDAO-UHFFFAOYSA-N tert-butyl 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(C)(C)C WYKYCHHWIJXDAO-UHFFFAOYSA-N 0.000 description 3
- LCPUCXXYIYXLJY-UHFFFAOYSA-N 1,1,2,4,4,4-hexafluorobutyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(F)(F)C(F)CC(F)(F)F LCPUCXXYIYXLJY-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920000271 Kevlar® Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical class CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 125000005372 silanol group Chemical group 0.000 description 2
- 150000004819 silanols Chemical class 0.000 description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 2
- 238000001029 thermal curing Methods 0.000 description 2
- 125000005369 trialkoxysilyl group Chemical group 0.000 description 2
- 238000010396 two-hybrid screening Methods 0.000 description 2
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000011240 wet gel Substances 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- FMQPBWHSNCRVQJ-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-yl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C(F)(F)F)C(F)(F)F FMQPBWHSNCRVQJ-UHFFFAOYSA-N 0.000 description 1
- DFVPUWGVOPDJTC-UHFFFAOYSA-N 2,2,3,4,4,4-hexafluorobutyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(F)(F)C(F)C(F)(F)F DFVPUWGVOPDJTC-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 102100026735 Coagulation factor VIII Human genes 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229920000544 Gore-Tex Polymers 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 1
- 239000004967 Metal oxide aerogel Substances 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- 229920000784 Nomex Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229920002334 Spandex Polymers 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical class OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 1
- 239000004775 Tyvek Substances 0.000 description 1
- 229920000690 Tyvek Polymers 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000011021 bench scale process Methods 0.000 description 1
- KVBYPTUGEKVEIJ-UHFFFAOYSA-N benzene-1,3-diol;formaldehyde Chemical compound O=C.OC1=CC=CC(O)=C1 KVBYPTUGEKVEIJ-UHFFFAOYSA-N 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000000495 cryogel Substances 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000004763 nomex Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229920002883 poly(2-hydroxypropyl methacrylate) Polymers 0.000 description 1
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 1
- 229920003208 poly(ethylene sulfide) Polymers 0.000 description 1
- 229920002577 polybenzoxazole Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical class CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000004759 spandex Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000000194 supercritical-fluid extraction Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000010399 three-hybrid screening Methods 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/16—Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/283—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/32—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0246—Acrylic resin fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0253—Polyolefin fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
- B32B2262/0269—Aromatic polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0276—Polyester fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/104—Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/10—Properties of the layers or laminate having particular acoustical properties
- B32B2307/102—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/558—Impact strength, toughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2419/00—Buildings or parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
Definitions
- the present invention relates in general to structures formed from bonding fiber-reinforced aerogel layers to each other and/or a non-aerogel surface with a binder layer.
- Said binder layer can also be utilized as a coating.
- Aerogels first prepared by Kistler in 1931[S. S. Kistler, Nature, 1931, 127, 764], are a type of material structure rather than a specific material, and can be prepared by replacing the liquid solvent in a wet gel with air without substantially altering the network structure (e.g., pore characteristics) or the volume of the gel body. Supercritical and subcritical fluid extraction technologies are commonly used to extract the fluid from the gel without causing the collapse of the pores. "Aerogels” refers to "gels containing air as a dispersion medium" in a broad sense and include, xerogels and cryogels in a narrow sense. A variety of different aerogel compositions are known and may be inorganic, organic or organic-inorganic hybrids. Inorganic aerogels
- Organic aerogels include, but are not limited to, urethane aerogels [G. Biesmans et al, 1998, 225, 36], resorcinol formaldehyde aerogels[R. W. Pekala, US-A4873218], and polyimide aerogels [W Rhine et al, US2004132845].
- Organic-inorganic hybrid aerogels are mainly ormosil (organically modified silica) aerogels [D. A. Loy et al, J. Non-Cryst. Solid, 1995, 186, 44].
- the organic components in these aerogels are either dispersed throughout or chemically bonded to the silica network. It is usually preferred to have covalently bound organic components in such structures to minimize the amount of washout during solvent extraction from the wet gel.
- Low to moderate density aerogel materials are widely considered to be the best solid thermal insulators, and have thermal conductivities of about 12 mW/m-K and below at 37.8 0 C and atmospheric pressure. Aerogels function as thermal insulators primarily by minimizing conduction (low density, tortuous path for heat transfer through the solid nanostructure), convection (very small pore sizes minimize convection), and radiation (IR absorbing or scattering dopants are readily dispersed throughout the aerogel matrix). Aerogel materials also display many other interesting acoustic, optical, and chemical properties that make them useful in both consumer and industrial markets.
- Embodiments of the present invention describe strengthened fiber-reinforced aerogels without any of the aforementioned drawbacks. Such structures provide increased mechanical stability, ability to support more than their own weight when standing on edge, and a host of other benefits while maintaining the exceptional insulation properties of fiber-reinforced aerogels.
- Embodiments of the present invention describe a structure comprising at least one fiber-reinforced aerogel layer and at least one binder layer, said binder layer comprising a silicon-containing organic material and where the binder layer is bonded to at least one surface of at least one fiber-reinforced aerogel layer.
- Embodiments of the present invention describe structures comprising at least one fiber- reinforced aerogel layer and at least one binder layer, said binder layer comprising a silicon- containing organic material. Such structures are highly useful as thermal insulators, acoustic insulators or both.
- the binder layer can be used as a coating, an adhesive, or both for the fiber-reinforced aerogel composites.
- the unique combination of at least one binder layer and at least one fiber-reinforced aerogel layer, as described herein allows a variety of useful configurations for fiber reinforced aerogels such as but not limited to: adhesion to like and/or dissimilar surfaces, high strength coatings, molded fiber-reinforced aerogel forms, mechanically stable multi-ply structures, and a host of others.
- aerogel materials refers to aerogel particles and monoliths. Fiber-reinforced forms of aerogel materials may additionally comprise chopped fibers, mats, battings, felts or a combination thereof. Furthermore, aerogel materials can be prepared from inorganic, organic or hybrid organic-inorganic precursors, whereby the resultant chemical structure will comprise the same or substances derived there from. Density of aerogels is generally between about 0.03g/cm 3 and about 0.3 g/cm 3 with surface areas typically between about 300 - 1000 m 2 /g with greater than 90% porosity. Surface treatment of aerogels with compounds such as silyalting agents yields a hydrophobic surface.
- blades or "aerogel blankets” refers to fiber- reinforced aerogel materials which comprise a batting. Aerogels reinforced with a batting is described in published US patent application US2002/094426 (Stepanian et al.) which hereby incorporated by reference. Of course fiber-reinforced forms of organic, inorganic and hybrid organic-inorganic aerogels can also be prepared.
- a fiber- reinforced form of inorganic aerogels is described in Stepanian et al., the teachings of which can be used in an analogous manner for preparing organic or organic-inorganic hybrid forms of the same.
- a non-limiting example of fiber reinforced form of hybrid organic-inorganic aerogels can be obtained from US patent applications 2005/0192367 and 2005/019366 (which is based on US provisional application 60/594,359), all three which are hereby incorporated by reference.
- Another non-limiting example involves, silica-organic polymer hybrid aerogels with urea linkages, as described in US provisional patent application 60/692,100 which is hereby incorporated by reference.
- Yet another non-limiting example involving silica-chitosan hybrid aerogels and variation thereof is described in US provisional patent application 60/594,359 also incorporated by reference.
- the binder layer in embodiments of the present invention may serve as a coating to coat at least one surface of at least one fiber-reinforced aerogel material.
- the binder may also serve as an adhesive to bind at least two layers of fiber-reinforced aerogels, or at least one layer of a fiber-reinforced aerogel to another surface, or any combination of the preceding.
- another surface it is intended to include a surface that is chemically or structurally, dissimilar to that of said fiber-reinforced aerogels. Examples of such surfaces include but are not limited to non-aerogel forms of polymeric, ceramic or metallic surfaces.
- the binder layer is a silicon-containing organic material.
- silicon-containing polymeric materials are silicon-containing polymeric materials.
- This type of binder layer is formed from organic compounds (i.e. precursors) which contain at least one silicon atom, the polymerization and/or three-dimensional cross-linking of said compound yields the silicon containing organic material.
- Precursors can be in the form of monomers, oligomers or both and comprise a silicon-containing segment and an organic segment.
- a non-limiting example of the silicon-containing segment is an alkoxysilyl or silanol group.
- alkoxysilanes include mono-, di- or tri-alkoxysilanes where the alkoxy groups comprise 1 to 12 carbon atoms.
- the organic segment can comprise acrylics such as but not limited to methacrylates, methyl methacrylates, ethyl methacrylates, propyl methacrylates, butyl methacrylates, and the higher alkyl or aryl chain relatives in the methacrylate series.
- Other polymerizable monomers may be reacted with the cross-linking silicon containing reagent such as, but not limited to: cyanoacrylate, styrene, and other activated olefinic monomers to form the organic segment.
- the binder layer is applied to at least one surface of at least one fiber-reinforced aerogel and exposed to an energy flux suitable for initiating polymerization, cross-linking or both in said binder layer.
- energy forms include but are not limited to heat, electromagnetic energy, an infrared energy, an x-ray energy, a microwave energy, a gamma ray energy, acoustic energy, ultrasound energy, particle beam energy, electron beam energy, beta particle energy, an alpha particle energy, and combinations thereof.
- the binder layer Upon polymerization, cross-linking or both, the binder layer adheres to the surface of the fiber-reinforced aerogel and further strengthens itself.
- the application of a suitable energy flux results in hydrolysis/condensation of alkoxy groups thereby resulting in siloxane (Si-O-Si) linkages within the binder layer and between the binder layer and the silica aerogel material.
- Si-O-Si siloxane
- both hydrolysis/condensation and free radical polymerization can take place.
- the free radical polymerization of acrylic moieties results in cross-linkages within the binder layer and may also form chemical bonds with at least one surface of an aerogel material (such as silica aerogels), or another surface or both.
- Figure 1 illustrates the chemical structure of a silicon-containing organic compound as a binder layer (alkoxysilyl-containing methacrylate oligomer) before curing, placed between two hybrid silica-PMA aerogel blankets.
- a binder layer alkoxysilyl-containing methacrylate oligomer
- Figure 2 illustrates the structure of figure 1 after thermal curing is carried out, indicating siloxane and other chemical bonds formed.
- Figure 3 is a cylindrically shaped structure according to an embodiment of the present invention.
- trialkoxysilyl-containing polymethacrylate oligomers are used as a binder layer to attach at least two fiber-reinforced silica-PMMA aerogel blankets thereby forming a rigid insulation panel with increased insulation value (R- value), or to coat such hybrid aerogel blankets, or both.
- a two-ply structure comprising two hybrid aerogel blankets and a binder layer disposed there between can resist up to 4000psi compression stress and 200psi flexural stress, before rupture.
- the thermal conductivity values are typically below 16mW/mK. Accordingly, structures with dimensions of up to 100 square feet and over 10 inch thick can be prepared.
- the binder layer when used as a coating for these hybrid aerogel blankets provides an effective barrier to damage from contact with water or common organic solvents (such as THF, ethanol, etc.)
- the polymer content in the silica-polymer hybrid aerogel is less than about 90% or less that about 80% or less than about 70% or less than about 60% or less than about 50% or less than about 40% or less than about 30% or less than about 20% or less than about 10% or less than about 5 %(wt).
- Trialkoxysilyl-containing polymethacrylate oligomers can be prepared by thermal (usually in the presence of a radial initiator) or UV initiated polymerization between a methacrylate monomer and a cross linker such as trimethoxylsilyl propylmethymethacrylate (referred as TMSPM here after). Thermal initiated polymerization was used in this embodiment, unless stated otherwise. Suitable initiators include, but are not limited to:
- the methacrylate monomer includes, but not limited to methylmethacrylate (referred as MMA there after), ethylmethacrylate (referred as EMA thereafter), butylmethacrylate (referred as BMA there after), hydroxyethylmethacrylate (referred as HEMA there after), hexafluorobutyl methacrylate (referred as HFBMA there after), etc.
- MMA methylmethacrylate
- EMA ethylmethacrylate
- BMA butylmethacrylate
- HEMA hydroxyethylmethacrylate
- HFBMA hexafluorobutyl methacrylate
- the reactant concentration in alcohol solution needs to be in the range between 5 and 95 weight percent, and preferably from 40 to 70 weight percent.
- the mole ratio of TMSPM/methacylate monomer is in the range between 1 and 10 and preferably between 1 and 4.
- the resulting trimethoxysilyl containing polymethacrylate oligomer has a molecular weight between about 30,000 and about 350,000 and is soluble in common organic solvents.
- trimethoxysilyl containing polymethacrylate oligomer was co-condensed with a silicon alkoxide such as tetraethylorthosilicate (TEOS), tetramethylorthosilicate (TMOS) or partially hydrolyzed an oligomerized silicon alkoxide materials (e.g. polyethylsilicates commercially available as Silbond 50, Silbond 40, Silbond H-5 or Dynasil 40) in alcohol solution to form a hybrid alcogel.
- TEOS tetraethylorthosilicate
- TMOS tetramethylorthosilicate
- partially hydrolyzed an oligomerized silicon alkoxide materials e.g. polyethylsilicates commercially available as Silbond 50, Silbond 40, Silbond H-5 or Dynasil 40
- a suitable fibrous batting material with the x-y oriented tensile strengthening layers was added to the hybrid alcogel prior to its gelation.
- trimethoxysilyl containing polymethacrylate oligomer was coated onto the surface of a fiber reinforced silica-PMA aerogel blanket, before attaching to a second piece of the fiber reinforced silica-PMA aerogel blanket.
- a unique characteristic of the trimethoxysilyl-containing polymethacrylate oligomer i.e. binder layer
- the surface of a silica-PMA hybrid aerogel blanket has silanol (Si-OH) and methacrylate pendent groups.
- Trimethoxysilyl-containing polymethacrylate oligomer also contains methacrylate as well as alkoxysilyl pendant groups.
- the multiple layers of PMMA/silica aerogel blanket glued together by trimethoxysilyl-containing polymethacrylate oligomer (i.e. binder layer) were placed in an oven for the final fixing step.
- the curing temperature ranges between 4O 0 C to 100 0 C and preferably 7O 0 C to 8O 0 C.
- the methacrylate functions in the oligomer binder will react with the similar functions on the surface of the hybrid aerogel blanket to form covalent bonds; the alkoxysilyl functions in the binder layer reacts with the silanol groups on the surface of the hybrid aerogel to form a strong Si-O-Si covalent bond thereto, as illustrated in figure 2.
- the multiple plies of aerogel blanket are thus strongly affixed to each other.
- the trimethoxysilyl-containing polymethacrylate oligomer coatings turn into a rigid layer sandwiched between the aerogel blankets after curing, which will add strength in the resulting structure (e.g. panel).
- MMA Monomer was purchased from Aldrich; cross- linker TMSPM was obtained from Ashland Chemicals as Dow Corning Z6030 silane, catalyst tert-butylperoxy-2-ethyl hexanoate was obtained from Degussa.
- This example illustrates the formation of trimethoxysilyl containing polymethymethacrylate oligomer binder.
- 35.4g of tert-butylperoxy-2-ethyl hexanoate were added to a mixture of 78Og of MMA, 975.Og of TMSPM and 422g of methanol, following by vigorous stirring at 68 to 78 0 C for 40 minutes.
- the polymethylmethacrylate oligomer binder was obtained as a viscous liquid in concentrated methanol solution.
- GPC shows 70% of the monomer was polymerized and the oligomer has Mw of 632570.
- This example illustrates the formation of a rigid thermal insulation panel.
- the binder of example 1 was coated as a layer between three pieces of 1 ' x 1 ' foot fiber- reinforced PMA/silica hybrid aerogel blankets with a density of about 0.16g/cm 3 .
- the three hybrid aerogel blankets were affixed to one another with a binder layer between every two blankets .
- the five-layer coupon was placed into an oven set at 75 0 C for 2 hours.
- the resultant structure which is in the form of a panel shows a density of about 0.17g/cm 3 ; thermal conductivity of about 13.9mW/mK under ambient conditions and flexural strength at rupture of about lOlpsi.
- this rigid insulation panel is 1' x 1' foot and 2" inches thick. This panel deforms lass than 10% under 17.5psi compression. For much higher compression loading of 4000psi, this panel recovery up to 90% of its original thickness within 2 hours after compression.
- Ultra large size rigid aerogel insulation panels with over 90 square feet dimension can be prepared. For example, 30'x3' dimension and 1/8" thick silica-PMA aerogel composite (two blankets and a binder layer as a glue) was prepared according to this approach. In theory, there is no limitation on the size of the composite prepared with the embodiments of the present invention. It is only currently limited by the space available for drying the composite sheet. Such high strength aerogel panels show good compression resistant properties ( ⁇ 10% under 17.5psi, up to 98% recovery strain after 4000psi loading). The resulting high strength aerogel panels also exhibit good flexural strength (resist lOOpsi flexural pressure). The improvement of mechanical properties in this hybrid aerogels composite was achieved without sacrificing other inherent properties of aerogel such as low density and low thermal conductivity.
- a shaped structure is formed from at least one binder layer and at least one fiber-reinforced aerogel layer.
- a fiber-reinforced aerogel layer can be shaped to a desired geometry and subsequently coated with a binder layer. Upon curing, the binder layer further rigidifies permanently maintaining the aerogel layer in the desired geometry.
- the same can be practiced with two or more fiber-reinforced aerogel layers where these layers sandwich a binder layer, and/or are coated with a binder layer where again upon curing, the desired shape of the aerogel layers is achieved.
- Examples of such geometries include, but are not limited to: spherical, hemispherical, cylindrical, hemi cylindrical, half-pipe, annular, helical, navicular, corrugated, grooved, rippled, and various others.
- a shaped structure using silica-PMMA hybrid aerogel layer or layers is described, and also illustrated in figure 3.
- a Trimethoxysilyl-containing polymethacrylate oligomer was coated onto a silica-PMMA blanket which was fixed on a cylindrical template prior to thermal curing.
- the cylindrical shaped structure (as illusrated in figure 2) was formed after curing at 8O 0 C for 2hr.
- a structure comprises at least one fibrous layer in addition to at least one fiber-reinforced aerogel layer and at least one binder layer.
- the fibrous layer can comprise energy absorbing ballistic fibers such as polyaramids (e.g. Kevlar®) ultrahigh molecular weight polyethylene (e.g. Specra®), PBO as well as others, and can be in the form of a batting, a matt or a felt.
- the binder layer (such as a trimethysilyl-containing polymethacrylate) is capable of impregnating the fibrous layer thereby affixing the same to at least one fiber-reinforced aerogel layer after curing.
- the benefits of such structure include added reinforcement and insulation capability.
- a fiber-reinforced aerogel layer is adhered to another surface via the binder layer.
- the binder layer can affix the aerogel layer there to via chemical bonds.
- Exemplary surfaces include but are not limited to polymeric, ceramic or metallic surfaces and non-aerogel forms thereof.
- the binder layer can act as an all purpose glue for fiber-reinforce aerogel layers.
- a protective layer is formed by coating a fiber-reinforced aerogel layer with at least one binder layer.
- a binder layer such as the trimethoxysilyl- containing polymethacrylates, when cured is an effective barrier to damage from contact with water or common organic solvents (such as THF, ethanol, etc.)
- the cured binder layer can be useful as an abrasion resistant, or corrosion resistant coating.
- the coatings can be 0.1 mm in thickness or greater depending on the desired application.
- additives are added to the fiber-reinforced aerogel layer for added performance.
- additives include, but are not limited to, biocide compounds, anti- fungal compounds, flame retardant compounds, opacification compounds or combinations thereof.
- opacification compounds are B 4 C, Diatomite, Manganese ferrite, MnO , NiO , SnO , Ag 2 O , Bi 2 O 3 , TiC, WC, carbon black, titanium oxide, iron titanium oxide, zirconium silicate, zirconium oxide, iron (I) oxide, iron (III) oxide, manganese dioxide, iron titanium oxide (ilmenite), chromium oxide, silicon carbide or mixtures thereof.
- the binder layer comprises a polyacrylate, polymethacrylate, polybutylmethacrylate, polyethylmethacrylate, polypropylmethacrylate, poly (2- hydroxyethylmethacrylate), poly (2-hydroxypropylmethacrylate), poly (hexafluorobutylmethacrylate), poly (hexafluoroisopropylmethacrylate) and combinations thereof.
- the fiber for the fiber-reinforced aerogel is selected from Polyester based fibers, polyolefin terephthalates, poly(ethylene) naphthalate, polycarbonates, Rayon, Nylon, cotton based lycra® (manufactured by DuPont), Carbon based fibers like graphite, precursors for carbon fibers like polyacrylonitrile(PAN), oxidized PAN, uncarbonized heat treated PAN such as the one manufactured by SGL carbon, fiberglass based material like S-glass, 901 glass, 902 glass, 475 glass, E-glass, silica based fibers like quartz, quartzel (manufactured by Saint-Gobain), Q-felt (manufactured by Johns Manville), Saffil ® (manufactured by Saffil), Durablanket ( manufactured by Unifrax) and other silica fibers, Polyaramid fibers like Kevlar®, Nomex®, Sontera® ( all manufactured by DuPont) Conex
- the silicon-containing organic compound is an organopolysiloxane or a non-organopolysiloxane.
- the binder layer is applied to the surface of the aerogel layer with a brush, or a double roll in a continuous or semi-continuous manner.
Landscapes
- Laminated Bodies (AREA)
Abstract
Des modes de réalisations de la présente invention décrivent une structure comportant au moins une couche d'aérogel renforcée par des fibres et au moins une couche de liant qui renferme une matière organique contenant du silicium et qui est liée à au moins une surface d'une couche d'aérogel renforcée par des fibres.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63121704P | 2004-11-24 | 2004-11-24 | |
US60/631,217 | 2004-11-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007086819A2 true WO2007086819A2 (fr) | 2007-08-02 |
WO2007086819A3 WO2007086819A3 (fr) | 2009-04-16 |
Family
ID=38309620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/042804 WO2007086819A2 (fr) | 2004-11-24 | 2005-11-23 | Panneaux d'aérogel de résistance élevée |
Country Status (2)
Country | Link |
---|---|
US (1) | US20060263587A1 (fr) |
WO (1) | WO2007086819A2 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2180104A1 (fr) | 2008-10-21 | 2010-04-28 | Rockwool International A/S | Système d'isolation de façades |
EP2581216A1 (fr) | 2011-10-12 | 2013-04-17 | Dow Global Technologies LLC | Panneau avec barrière ignifuge |
CN103084220A (zh) * | 2012-12-20 | 2013-05-08 | 中国科学院合肥物质科学研究院 | 一种高效提高以硅藻土为载体的硫酸催化剂催化效率的方法 |
EP2665876B1 (fr) | 2011-01-17 | 2015-03-18 | Construction Research & Technology GmbH | Système d'isolation thermique composite |
CN107417234A (zh) * | 2017-09-20 | 2017-12-01 | 中国核动力研究设计院 | 具有γ辐照屏蔽性能的气凝胶保温隔热材料及其制备方法 |
WO2022012887A1 (fr) | 2020-07-15 | 2022-01-20 | Outlast Technologies Gmbh | Couche d'isolation comportant un aérogel |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060264133A1 (en) * | 2005-04-15 | 2006-11-23 | Aspen Aerogels,Inc. | Coated Aerogel Composites |
DE102006049179B4 (de) * | 2006-10-18 | 2016-07-07 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Aerogelfasern, Verfahren zu deren Herstellung sowie deren Verwendung |
US8067478B1 (en) * | 2006-10-19 | 2011-11-29 | The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration | Process for preparing polymer reinforced silica aerogels |
US7954283B1 (en) | 2008-05-21 | 2011-06-07 | Serious Materials, Inc. | Fibrous aerogel spacer assembly |
US8402716B2 (en) * | 2008-05-21 | 2013-03-26 | Serious Energy, Inc. | Encapsulated composit fibrous aerogel spacer assembly |
US20100139193A1 (en) * | 2008-12-09 | 2010-06-10 | Goldberg Michael J | Nonmetallic ultra-low permeability butyl tape for use as the final seal in insulated glass units |
DK2616230T3 (en) | 2010-09-15 | 2018-03-26 | Jeld Wen Inc | Method and System for Manufacturing a Moisture Resistant Thin Layer Fiber Composite Material |
EP2481859A1 (fr) * | 2011-01-17 | 2012-08-01 | Aspen Aerogels Inc. | Système composite d'isolation thermique d'aérogel |
US10252490B2 (en) * | 2011-07-18 | 2019-04-09 | Rilco Manufacturing Company, Inc. | Method and system for reinforced pipe insulation |
US11053369B2 (en) | 2012-08-10 | 2021-07-06 | Aspen Aerogels, Inc. | Segmented flexible gel composites and rigid panels manufactured therefrom |
JP6145948B2 (ja) * | 2013-02-28 | 2017-06-14 | パナソニックIpマネジメント株式会社 | エアロゲルを用いた断熱構造体 |
US9593206B2 (en) | 2013-03-08 | 2017-03-14 | Aspen Aerogels, Inc. | Aerogel insulation panels and manufacturing thereof |
DE102013111459A1 (de) | 2013-10-17 | 2015-04-23 | Elringklinger Ag | Akustisch wirksame Abschirmteile und Abdeckungen |
US11380953B2 (en) | 2014-06-23 | 2022-07-05 | Aspen Aerogels, Inc. | Thin aerogel materials |
KR102412103B1 (ko) | 2014-10-03 | 2022-06-22 | 아스펜 에어로겔, 인코포레이티드 | 개선된 소수성 에어로겔 물질 |
EP3328631B1 (fr) * | 2015-07-27 | 2021-09-08 | Basf Se | Mousse en tant qu'adhésif pour composites d'isolation thermique |
US11180627B2 (en) * | 2017-01-11 | 2021-11-23 | The Regents Of The University Of Colorado, A Body Corporate | Cellulose enabled orientationally ordered flexible gels |
EP3801868A1 (fr) | 2018-05-31 | 2021-04-14 | Aspen Aerogels Inc. | Compositions d'aérogel renforcées de classe ignifuge |
CN115036622A (zh) | 2021-03-03 | 2022-09-09 | 江苏时代新能源科技有限公司 | 隔热垫及其制备方法、电池组和装置 |
CN114057433A (zh) * | 2021-11-22 | 2022-02-18 | 中凝科技(湖北)有限公司 | 一种气凝胶保温管壳及其制备方法 |
KR20240009013A (ko) * | 2022-07-12 | 2024-01-22 | 주식회사 엘지화학 | 고흡수성 수지층을 포함한 복합 단열재 |
KR20250025859A (ko) * | 2023-08-16 | 2025-02-25 | 삼성에스디아이 주식회사 | 배터리 단열시트, 이의 제조방법 및 이를 포함하는 배터리 모듈 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5306555A (en) * | 1991-09-18 | 1994-04-26 | Battelle Memorial Institute | Aerogel matrix composites |
GB9919083D0 (en) * | 1999-08-13 | 1999-10-13 | Dow Corning | Silicone coated textile fabrics |
US6318124B1 (en) * | 1999-08-23 | 2001-11-20 | Alliedsignal Inc. | Nanoporous silica treated with siloxane polymers for ULSI applications |
US6528153B1 (en) * | 1999-09-30 | 2003-03-04 | Novellus Systems, Inc. | Low dielectric constant porous materials having improved mechanical strength |
CN1197702C (zh) * | 1999-11-10 | 2005-04-20 | 松下电工株式会社 | 气凝胶基板及其制造方法 |
RU2310702C2 (ru) * | 2000-12-22 | 2007-11-20 | Эспен Аэроджелз, Инк. | Аэрогелевый композит с волокнистым ватином |
US6846852B2 (en) * | 2001-08-16 | 2005-01-25 | Goldschmidt Ag | Siloxane-containing compositions curable by radiation to silicone elastomers |
KR100560751B1 (ko) * | 2003-12-17 | 2006-03-13 | 삼성전자주식회사 | 정전 검출 장치 |
WO2005098553A2 (fr) * | 2004-01-06 | 2005-10-20 | Aspen Aerogels, Inc. | Aerogels d'ormosil contenant un polymethacrylate lie a une silicium |
BRPI0506437A (pt) * | 2004-01-06 | 2006-12-26 | Aspen Aerogels Inc | aerogéis de ormosil contendo polìmeros lineares ligados a silìcio |
US7270851B2 (en) * | 2004-11-04 | 2007-09-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method |
US20060261304A1 (en) * | 2004-11-05 | 2006-11-23 | Aspen Aerogels, Inc. | Thermal management of electronic devices |
US20060264133A1 (en) * | 2005-04-15 | 2006-11-23 | Aspen Aerogels,Inc. | Coated Aerogel Composites |
-
2005
- 2005-11-23 WO PCT/US2005/042804 patent/WO2007086819A2/fr active Application Filing
- 2005-11-23 US US11/287,475 patent/US20060263587A1/en not_active Abandoned
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2180104A1 (fr) | 2008-10-21 | 2010-04-28 | Rockwool International A/S | Système d'isolation de façades |
WO2010046074A1 (fr) | 2008-10-21 | 2010-04-29 | Rockwool International A/S | Système d’isolation de façade |
EP3216933A1 (fr) | 2008-10-21 | 2017-09-13 | Rockwool International A/S | Système d'isolation de façades |
EP2665876B1 (fr) | 2011-01-17 | 2015-03-18 | Construction Research & Technology GmbH | Système d'isolation thermique composite |
US10344484B2 (en) | 2011-01-17 | 2019-07-09 | Basf Se | Composite thermal insulation system |
EP2581216A1 (fr) | 2011-10-12 | 2013-04-17 | Dow Global Technologies LLC | Panneau avec barrière ignifuge |
WO2013053566A1 (fr) | 2011-10-12 | 2013-04-18 | Dow Global Technologies Inc. | Panneau à barrière anti-incendie |
EP3613583A1 (fr) | 2011-10-12 | 2020-02-26 | Dow Global Technologies Llc | Panneau comportant une barrière ignifuge |
CN103084220A (zh) * | 2012-12-20 | 2013-05-08 | 中国科学院合肥物质科学研究院 | 一种高效提高以硅藻土为载体的硫酸催化剂催化效率的方法 |
CN107417234A (zh) * | 2017-09-20 | 2017-12-01 | 中国核动力研究设计院 | 具有γ辐照屏蔽性能的气凝胶保温隔热材料及其制备方法 |
WO2022012887A1 (fr) | 2020-07-15 | 2022-01-20 | Outlast Technologies Gmbh | Couche d'isolation comportant un aérogel |
DE102020118734A1 (de) | 2020-07-15 | 2022-01-20 | Outlast Technologies Gmbh | Aerogel-haltige Isolationsschicht |
Also Published As
Publication number | Publication date |
---|---|
WO2007086819A3 (fr) | 2009-04-16 |
US20060263587A1 (en) | 2006-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060263587A1 (en) | High strength aerogel panels | |
US12103291B2 (en) | Laminates comprising reinforced aerogel composites | |
JP4338788B2 (ja) | 少なくとも1個のエーロゲル含有層および少なくとも1個の、ポリエチレンテレフタレート繊維含有層を有する多層複合材料、その製造法およびその使用 | |
US7560062B2 (en) | High strength, nanoporous bodies reinforced with fibrous materials | |
US20050192366A1 (en) | Ormosil aerogels containing silicon bonded polymethacrylate | |
RU2676289C1 (ru) | Сегментированные гелевые композиты и жесткие панели, изготовленные из них | |
EP2281962B1 (fr) | Aérogel contenant des matériaux composites | |
TW202128594A (zh) | 管理電動汽車電池之熱失控問題之組件及系統 | |
JP4562210B2 (ja) | 少なくとも1個のエーロゲル含有層および少なくとも1個の別の層を有する多層複合材料、その製造法およびその使用 | |
CN115038580A (zh) | 用于电动车辆热管理的气凝胶基组件和系统 | |
US20070173157A1 (en) | Flexible coherent insulating structures | |
EP1358373A2 (fr) | Composite d'aerogel a structure fibreuse gonflante | |
CN103261293A (zh) | 包含纳米多孔颗粒的复合材料 | |
US9370915B2 (en) | Composite material | |
JP2003127158A (ja) | 不燃性高強度重合体複合パネル | |
US20230265347A1 (en) | Fiber-containing fire protection material | |
WO2023164547A2 (fr) | Matériau de protection contre l'incendie contenant des fibres | |
KR100741698B1 (ko) | 개질된 에어로겔, 이를 포함하는 코팅제 및 이로부터제조되는 투명 단열재 | |
Kong et al. | Preparation and Characteristic of the Novel Multiple-Layer Thermal Insulation Nanocomposite Materials | |
JPH11303369A (ja) | 耐火性複合建築材料および耐火性複合床材 | |
Maleki et al. | Silica Aerogels: Synthesis and Different Mechanical Reinforcement Strategies | |
Rahman et al. | Clay Dispersed Styrene-co-glycidyl Methacrylate Impregnated Kumpang Wood Polymer Nanocomposites: Impact on Mechanical and Morphological Properties | |
KR20070022004A (ko) | 규소 결합된 폴리메타크릴레이트를 함유하는 오르모실에어로겔 | |
AU2002232688A1 (en) | Aerogel composite with fibrous batting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 05858754 Country of ref document: EP Kind code of ref document: A2 |