+

WO2007063257A1 - Pile a combustible integree empilable - Google Patents

Pile a combustible integree empilable Download PDF

Info

Publication number
WO2007063257A1
WO2007063257A1 PCT/FR2006/051263 FR2006051263W WO2007063257A1 WO 2007063257 A1 WO2007063257 A1 WO 2007063257A1 FR 2006051263 W FR2006051263 W FR 2006051263W WO 2007063257 A1 WO2007063257 A1 WO 2007063257A1
Authority
WO
WIPO (PCT)
Prior art keywords
recess
stack
fuel cell
substrate
front face
Prior art date
Application number
PCT/FR2006/051263
Other languages
English (en)
Inventor
Fabien Pierre
Mathieu Roy
Original Assignee
Stmicroelectronics Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stmicroelectronics Sa filed Critical Stmicroelectronics Sa
Publication of WO2007063257A1 publication Critical patent/WO2007063257A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1097Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell and more particularly to a stackable integrated fuel cell structure. Presentation of the prior art
  • FIG. 1 shows an example of an integrated fuel cell made using microelectronics techniques.
  • This cell is formed on a support plate consisting of a silicon wafer 1 coated with a first insulating thin layer 2 and a second insulating layer 3 thicker.
  • An opening is formed in a portion of the insulating layer 3. In this opening are successively deposited a support layer 4, a catalyst layer 5, an electrolyte layer 6 and a second catalyst layer 7.
  • This set of layers constitutes a active stack 8.
  • An electrode 10, placed on the first insulating layer 2 is in contact with the support layer 4 on the lower side of the cell side.
  • An opening 11 in the second insulating layer 3 provides access to the electrode 10.
  • An upper electrode 12 is in contact with the upper catalyst layer 7.
  • the electrodes 10 and 12 are provided with openings, and channels 13 are formed in the silicon wafer 1 facing openings in the lower face metallization.
  • the lower electrode 10 and the upper electrode 12 respectively constitute an anode collector and a cathode collector.
  • the electrolyte 6 is, for example, a polymeric acid such as Nafion in solid form and the catalyst layers are, for example, layers based on carbon and platinum. This is only an example of realization.
  • Various types of fuel cells that can be made in the form illustrated in FIG. 1 are known in the art. To operate the fuel cell, hydrogen is injected according to the arrow H2 on the side of the lower face and air (oxygen carrier) is injected on the side of the upper face. Hydrogen is "broken" at the catalyst layer 5 to form a part of the H + protons which are moving towards the electrolyte 6 and the other elec trons ⁇ which are directed from the outside of the stack, to the anode collector 10.
  • the H + protons pass through the electrolyte 6 to reach catalyst layer 7 where they recombi ⁇ NENT with oxygen and electrons arriving from outside of the stack by the cathode collector.
  • a positive potential is obtained on the cathode collector 12 (oxygen side) and a negative potential on the anode collector 10 (hydrogen side).
  • Figure 1 is not to scale.
  • the support plate 1 typically has a thickness of the order of 250 to 700 ⁇ m while the active stack 8 of layers 4 to 7 typically has a thickness of the order of 30 to 50 ⁇ m.
  • One of the manufacturing problems lies in the fact that it is relatively difficult to form a thick insulating layer 3 that can serve as a housing for the active stack 8.
  • a difficulty in using the fuel cell cell shown in FIG. 1 lies in the fact that the two electrodes, anode and cathode, are accessible by the same face. On the other hand, it is conventional for stacks of any kind to make stacks for serial mounting, and it is then more convenient for the electrodes to be on opposite sides of the stack. Summary of the invention
  • Another object of the present invention is to provide a fuel cell structure without a thick insulating layer. Another object of the present invention is to provide such a fuel cell which has an electrode on each of its opposite faces.
  • the present invention provides a multilayer fuel cell cell consisting of a stack of layers formed on the front face of a perforated substrate, a first electrode corresponding to the outer face of the stack, and a second electrode corresponding to the bottom of the stack and being connected to the rear face of the substrate by a conductive path extending along the perforated portion of the substrate.
  • said stack of layers is formed in a recess of the front face of the perforated substrate.
  • the substrate is made of silicon.
  • said conductive path corresponds to a coating of a conductive material such as gold extending on the front face of the substrate at the location where said stack of layers, along the perforations and up to the back side of the substrate.
  • the present invention also provides a method of manufacturing a fuel cell, comprising the steps of forming a recess on the side of the front face of a support plate, forming channels through the support plate at the bottom of the fuel cell. the recess, forming an insulating layer on the front face of the plate and on the side walls of the recess, and forming a conductive coating at uncoated locations of the insulating layer.
  • the method comprises, after the step of forming channels through the support plate, the formation of non-through channels from the front face, and the formation of a second recess from from the rear face facing the recess on the side of the front face, and to the bottom of said channels.
  • the support plate is a silicon wafer
  • said recesses are formed by wet etching
  • the perforations are formed by plasma etching
  • the insulating layer is formed by thermal oxidation
  • the conductive coating is formed by non-electrolytic deposition.
  • the present invention also provides an assembly of cells, consisting of stacking the cells on each other with the interposition of spacers arranged to allow a flow of gas between each spacer and the face opposite each cell.
  • Figure 1 is a sectional view of a known fuel cell cell
  • Figure 2 is a schematic sectional view illus trating ⁇ a first embodiment of a fuel battery cell according to the present invention
  • Figure 3 is a schematic sectional view illus trating ⁇ a second embodiment of a fuel battery cell according to the present invention
  • FIGS. 4A to 4C are sectional views illustrating steps of manufacturing a fuel cell according to the first embodiment of the present invention
  • Figs. 5A and 5B are sectional views illustrating steps of manufacturing a fuel cell according to the second embodiment of the present invention
  • FIG. 6 shows a fuel cell according to the first embodiment of the present invention associated with an interface module between cells
  • FIG. 7 shows a fuel cell according to the second embodiment of the present invention associated with an interface module between batteries
  • Figure 8 shows a cell assembly according to the second embodiment of the present invention.
  • Fig. 2 shows an example of a fuel cell according to a first embodiment of the present invention.
  • This cell is formed from a support plate 21 comprising a perforated region 23.
  • the recess in the front face of the support 21 has a depth that corresponds substantially to the thickness necessary to house the stack 8.
  • an anode electrode 24 is deposited on the upper face of the stack.
  • the contact with the lower cathode face of the stack 8 is carried on the lower face or rear face of the support plate 21.
  • the plate 21 is made of a highly conductive material, this Cathode contact report may be made by the material of the plate 21 itself. However, care must be taken to deposit an insulating layer 25 on the parts of the upper face of the plate 21 that may be in contact with the anode electrode 24 or insufficiently insulated from it. If the support plate 21 is insulating, the bottom of the recess formed on the side of the front face of the plate 21, the walls of the channels 23 and the rear face of the plate 21 of a highly conductive material 27, will be coated by example a layer of gold.
  • the insulating layer 25 and preferably the conducting layer 27 will be formed. This will be described later in various embodiments of the invention.
  • an insulating thin layer (not shown) is deposited beneath the conductive layer 27. It will be noted that the structure illustrated in FIG. 2 incorporates two aspects of the invention:
  • the invention aims on the one hand each of these aspects, on the other hand the combination of these aspects.
  • the second aspect of the present invention (transfer to the rear face of the support plate contact with the rear layer of the stack 8) could be implemented even with a conventional structure such as that of Figure 1 in which the opening 11 would be removed to resume contact with the electrode 10 from the front face. Nevertheless, the use of this structure could be poorly suited to an application according to the invention, described below, to the formation of cell stacks because then there would be a support on the thick insulating layer 3 which is usually not rigid.
  • Figure 3 is a schematic sectional illus trating ⁇ a second embodiment of the present invention constituting a variant embodiment shown in relation with Figure 2.
  • the support plate 31 is similar on its upper side to the plate 21 of Figure 2. It has a perforated zone 33 on the side of the lower face. In addition, facing the perforated zone 33 is provided a recess 35.
  • the upper recess has a thickness of the order of 30 to 50 microns.
  • the lower recess is as deep as possible to limit the thickness of the perforated area and simplify the perforations but must leave in place a sufficient thickness of the wafer to ensure sufficient mechanical strength of the wafer.
  • this recess will have a depth of the order of half the thickness of the support plate 31.
  • the recess 35 may have a depth of the order of 150 to 300 microns.
  • FIGS. 4A to 4C are sectional views illustrating successive steps of manufacturing the stack structure of FIG. 2.
  • an upper recess 22 is formed in a plate 21 and perforations 23 passing through the plate are made.
  • the recess 22 may be formed by wet etching, for example by KOH, and etchings 23 may be formed by definition of a mask and then plasma etching.
  • an insulating layer 25 has been formed on the upper part of the support plate and on the sides of the recess 22 (as well as possibly on selected parts, not shown, of the rear face ).
  • a conductive layer is deposited on the portions of the silicon wafer that are not protected by the silicon oxide layer 25. It will be possible, for example, to perform a non-electrolytic deposition of gold that hangs on the visible portions of silicon and not on the oxide layer 25. The conductive layer 27 is thus formed. After this, the active stack 8 is formed and the electrode is deposited. anode 24.
  • FIGS. 5A and 5B illustrate successive steps of manufacturing a fuel cell as illustrated in FIG. 3.
  • a plate 31 comprising an upper recess 22 facing a lower recess 35
  • the part the wafer between the two recesses comprising channels or perforations 33.
  • FIG. 6 is a sectional view illustrating a spacer associated with a cell as illustrated in FIG. 2 to allow stacking of cells.
  • a cell 41 formed on a support plate 21 is disposed above a spacer 42 comprising a plate 44, possibly made of silicon or metal, surrounded by a ring 46 projecting upwards and downwards relative to the plate 44. It will be understood that this spacer can be supported on the lower face of the cell 41 and that the upper face of another cell 41 can be supported on the underside of the spacer.
  • a stack of several cells can thus be constituted.
  • a circulation of hydrogen between a lower face of the cell and a spacer may be conveniently made and between a top face of the cell and a spacer a circulation of air or oxygen.
  • FIG. 7 a cell 51 of the type of that of FIG. 3, formed on a support plate 31 may be associated with a spacer 52 comprising a thin plate 54 surrounded by a ring 56 projecting only towards the bottom.
  • Figure 8 shows a stack of cells and spacers according to the second embodiment of the present invention. One can see there first 61 and second 62 cells, a spacer 63 such as that of Figure 7 disposed between the cells 61 and 62, and a spacer 64 disposed under the cell 62. Of course, the stack can be repeat. The locations where hydrogen and air circulate respectively are marked by the indications "H2" and "O2".
  • Various modes of electrical connection between the batteries can be provided. For example, if the spacers are conductive, there is provided a series circuit, the cathode terminal of a top cell being connected to the anode terminal of an NCI cell ⁇ higher.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne une cellule de pile à combustible multicouche constituée d'un empilement de couches (8) formé sur la face avant d'un substrat perforé (21, 31), une première électrode correspondant à la face externe de l'empilement, et une deuxième électrode (27) correspondant au fond de l'empilement et étant reliée à la face arrière du substrat par un chemin conducteur s ' étendant le long de la partie perforée du substrat .

Description

PILE A COMBUSTIBLE INTEGREE EMPIIABLE
Domaine de l' invention
La présente invention concerne une pile à combustible et plus particulièrement une structure de pile à combustible intégrée empilable. Exposé de l'art antérieur
La figure 1 représente un exemple de cellule de pile à combustible intégrée réalisée en utilisant des techniques de microélectronique . Cette cellule est formée sur une plaque support constituée d'une plaquette de silicium 1 revêtue d'une première couche isolante 2 fine et d'une seconde couche isolante 3 plus épaisse. Une ouverture est formée dans une partie de la couche isolante 3. Dans cette ouverture sont successivement déposées une couche support 4, une couche de catalyseur 5, une couche d'électrolyte 6 et une seconde couche de catalyseur 7. Cet ensemble de couches constitue un empilement actif 8. Une électrode 10, placée sur la première couche isolante 2, est en contact avec la couche support 4 du côté de la face inférieure de la cellule de pile. Une ouverture 11 dans la seconde couche isolante 3 permet d'accéder à l'électrode 10. Une électrode supérieure 12 est en contact avec la couche de catalyseur supérieure 7. Les électrodes 10 et 12 sont munies d'ouvertures, et des canaux 13 sont formés dans la plaquette de silicium 1 en regard des ouvertures dans la métallisation de face inférieure. L'électrode inférieure 10 et l'électrode supérieure 12 constituent respectivement un collecteur d'anode et un collecteur de cathode .
L'électrolyte 6 est par exemple un acide polymère tel que du Nafion sous forme solide et les couches de catalyseur sont par exemple des couches à base de carbone et de platine. Ceci ne constitue qu'un exemple de réalisation. Divers types de piles à combustible réalisables sous la forme illustrée en figure 1 sont connus dans la technique. Pour faire fonctionner la pile à combustible, on injecte de l'hydrogène selon la flèche H2 du côté de la face inférieure et de l'air (porteur d'oxygène) est injecté du côté de la face supérieure. L'hydrogène est "décomposé" au niveau de la couche de catalyseur 5 pour former d'une part des protons H+ qui se dirigent vers l'électrolyte 6 et d'autre part des élec¬ trons qui se dirigent, par l'extérieur de la pile, vers le collecteur d'anode 10. Les protons H+ traversent l'électrolyte 6 jusqu'à rejoindre la couche de catalyseur 7 où ils se recombi¬ nent avec l ' oxygène et des électrons arrivant de l ' extérieur de la pile par le collecteur de cathode. De façon connue, avec une telle structure, on obtient un potentiel positif sur le collecteur de cathode 12 (côté oxygène) et un potentiel négatif sur le collecteur d'anode 10 (côté hydrogène).
On soulignera que la figure 1 n'est pas à l'échelle. En particulier, la plaque support 1 a typiquement une épaisseur de l'ordre de 250 à 700 μm tandis que l'empilement actif 8 des couches 4 à 7 a typiquement une épaisseur de l'ordre de 30 à 50 μm.
La structure décrite en relation avec la figure 1 pose de nombreux problèmes de fabrication et d'utilisation.
L'un des problèmes de fabrication réside dans le fait qu'il est relativement difficile de former une couche isolante épaisse 3 pouvant servir de logement à l'empilement actif 8.
Une difficulté d'utilisation de la cellule de pile à combustible représentée en figure 1 réside dans le fait que les deux électrodes, anode et cathode, sont accessibles par une même face. Par contre, il est classique pour des piles quelles qu'elles soient de réaliser des empilements pour effectuer des montages série et il est alors plus commode que les électrodes se trouvent sur des faces opposées de la pile. Résumé de l' invention
Un objet de la présente invention est de prévoir une structure de pile à combustible qui pallie au moins certains des inconvénients des structures de l'art antérieur. Un autre objet de la présente invention est de prévoir une telle pile à combustible de structure simple.
Un autre objet de la présente invention est de prévoir une structure de pile à combustible sans couche isolante épaisse. Un autre objet de la présente invention est de prévoir une telle pile à combustible qui présente une électrode sur chacune de ses faces opposées .
Pour atteindre ces objets, la présente invention prévoit une cellule de pile à combustible multicouche constituée d'un empilement de couches formé sur la face avant d'un substrat perforé, une première électrode correspondant à la face externe de l'empilement, et une deuxième électrode correspondant au fond de l'empilement et étant reliée à la face arrière du substrat par un chemin conducteur s ' étendant le long de la partie perforée du substrat.
Selon un mode de réalisation de la présente invention, ledit empilement de couches est formé dans un évidement de la face avant du substrat perforé.
Selon un mode de réalisation de la présente invention, le substrat est en silicium.
Selon un mode de réalisation de la présente invention, ledit chemin conducteur correspond à un revêtement d'un matériau conducteur tel que de l'or s ' étendant sur la face avant du substrat à l'emplacement où est déposé ledit empilement de couches, le long des perforations et jusqu'à la face arrière du substrat.
La présente invention prévoit aussi un procédé de fabrication d'une cellule de pile à combustible, comprenant les étapes consistant à former un évidement du côté de la face avant d'une plaque support, former des canaux traversant la plaque support au niveau du fond de l' évidement, former une couche isolante sur la face avant de la plaque et sur les parois latérales de l' évidement, et former un revêtement conducteur aux emplacements non revêtus de la couche isolante.
Selon un mode de réalisation de la présente invention, le procédé comprend, après l'étape de formation de canaux traversant la plaque support, la formation de canaux non traversants à partir de la face avant, et la formation d'un deuxième évidement à partir de la face arrière en regard de l' évidement du côté de la face avant, et jusqu'au fond desdits canaux.
Selon un mode de réalisation de la présente invention, la plaque support est une plaquette de silicium, lesdits évidements sont formés par gravure humide, les perforations sont formées par gravure plasma, la couche isolante est formée par oxydation thermique, et le revêtement conducteur est formé par dépôt non-électrolytique.
La présente invention prévoit aussi un assemblage de cellules, consistant à empiler les cellules les unes sur les autres avec interposition d' entretoises agencées pour permettre une circulation de gaz entre chaque entretoise et la face en regard de chaque cellule. Brève description des dessins Ces objets, caractéristiques et avantages, ainsi que d' autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : la figure 1 est une vue en coupe d'une cellule de pile à combustible connue ; la figure 2 est une vue en coupe schématique illus¬ trant un premier mode de réalisation d'une cellule de pile à combustible selon la présente invention ; la figure 3 est une vue en coupe schématique illus¬ trant un deuxième mode de réalisation d'une cellule de pile à combustible selon la présente invention ; les figures 4A à 4C sont des vues en coupe illustrant des étapes de fabrication d'une pile à combustible selon le premier mode de réalisation de la présente invention ; les figures 5A et 5B sont des vues en coupe illustrant des étapes de fabrication d'une pile à combustible selon le deuxième mode de réalisation de la présente invention ; la figure 6 représente une pile à combustible selon le premier mode de réalisation de la présente invention associée à un module d'interface entre piles ; la figure 7 représente une pile à combustible selon le deuxième mode de réalisation de la présente invention associé à un module d'interface entre piles ; et la figure 8 représente un assemblage de cellules selon le deuxième mode de réalisation de la présente invention.
Par souci de clarté, comme cela est habituel dans la représentation des microcomposants, les éléments des diverses vues en coupe et en perspective ne sont pas tracés à l'échelle.
Description détaillée
La figure 2 représente un exemple de cellule de pile à combustible selon un premier mode de réalisation de la présente invention. Cette cellule est formée à partir d'une plaque support 21 comprenant une région perforée 23. Du côté de la face supérieure ou face avant de la plaquette, dans la région où sont disposés les perforations ou canaux 23, est formé un évidement dans lequel est disposé l'empilement 8 de couches actives décrit en relation avec la figure 1. L ' évidement dans la face avant du support 21 a une profondeur qui correspond sensiblement à l'épaisseur nécessaire pour loger l'empilement 8. Sur la face supérieure de l'empilement, est déposée une électrode d'anode 24.
Selon un aspect de l'invention, le contact avec la face inférieure, de cathode, de l'empilement 8 est reporté sur la face inférieure ou face arrière de la plaque support 21. Si la plaque 21 est en un matériau fortement conducteur, ce report de contact de cathode pourra être effectué par le matériau de la plaque 21 lui-même. Il faudra toutefois alors veiller à déposer une couche isolante 25 sur les parties de la face supérieure de la plaque 21 susceptibles d'être en contact avec l'électrode d'anode 24 ou insuffisamment isolées de celle-ci. Si la plaque support 21 est isolante, on revêtira le fond de l'évidement formé du côté de la face avant de la plaque 21, les parois des canaux 23 et la face arrière de la plaque 21 d'un matériau fortement conducteur 27, par exemple une couche d'or. Dans le cas où la plaque support 21 est une plaquette de silicium, qui est un matériau conducteur mais relativement résistif, on formera la couche isolante 25 et de préférence la couche conduc- trice 27. C'est ce qui sera décrit par la suite dans des divers modes de réalisation de l'invention. En outre, si on veut éviter que le matériau de la plaque 21 soit au potentiel de la cathode, on dépose sous la couche conductrice 27 une couche mince isolante (non représentée) . On notera que la structure illustrée en figure 2 incorpore deux aspects de l'invention :
- la formation de l'empilement 8 dans un évidement de la plaque support ;
- le report d'un contact avec la couche de face arrière de l'empilement 8 vers la face arrière de la plaque support.
L'invention vise d'une part chacun de ces aspects, d'autre part la combinaison de ces aspects. Le second aspect de la présente invention (report vers la face arrière de la plaque support du contact avec la couche arrière de l'empilement 8) pourrait être mis en oeuvre même avec une structure classique telle que celle de la figure 1 dans laquelle on supprimerait l'ouverture 11 pour reprendre le contact avec l'électrode 10 à partir de la face avant. Néanmoins, l'utilisation de cette structure risquerait d'être mal adaptée à une application selon l'invention, décrite ci-après, à la formation d'empilements de cellules car alors, il y aurait un appui sur la couche isolante épaisse 3 qui est généralement peu rigide.
La figure 3 est une vue en coupe schématique illus¬ trant un deuxième mode de réalisation de la présente invention constituant une variante du mode de réalisation illustré en relation avec la figure 2. Dans cette figure, de mêmes éléments et couches sont désignés par de mêmes références qu'en figure 2. La plaque support 31 est similaire de son côté supérieur à la plaque 21 de la figure 2. Elle comporte une zone perforée 33 du côté de la face inférieure. En outre, en regard de la zone perforée 33 est prévu un évidement 35. Comme on l'a indiqué précédemment, l' évidement supérieur a une épaisseur de l'ordre de 30 à 50 μm. L 'évidement inférieur est aussi profond que possible pour limiter l'épaisseur de la zone perforée et simplifier la réalisation des perforations mais doit laisser en place une épaisseur suffisante de la plaquette pour assurer une tenue mécanique suffisante de la plaquette. Par exemple, cet évidement aura une profondeur de l'ordre de la moitié de l'épaisseur de la plaque support 31. Dans le cas où la plaque support est une plaquette de silicium d'une épaisseur de 300 à 500 μm, l' évidement 35 pourra avoir une profondeur de l'ordre de 150 à 300 μm.
Les figures 4A à 4C sont des vues en coupe illustrant des étapes successives de fabrication de la structure de pile de la figure 2.
Dans une première étape illustrée en figure 4A, on forme un évidement supérieur 22 dans une plaquette 21 et on réalise des perforations 23 traversant la plaque. Dans le cas où la plaque support 21 est une plaquette de silicium, l' évidement 22 peut être formé par gravure humide, par exemple par du KOH, et des gravures 23 peuvent être formées par définition d'un masque puis gravure plasma.
A l'étape illustrée en figure 4B, on a formé une couche isolante 25 sur la partie supérieure de la plaque support et sur les flancs de l'évidement 22 (ainsi qu'éventuellement sur des parties choisies, non représentées, de la face arrière) .
Ceci peut être réalisé en effectuant successivement :
- une oxydation thermique pour former une couche d'oxyde de silicium sur toutes les surfaces exposées de la plaquette de silicium,
- un masquage des zones que l'on veut conserver, et
- une élimination par gravure chimique des autres parties d'oxyde de silicium.
Aux étapes suivantes illustrées en figure 4C, on procède au dépôt d'une couche conductrice sur les parties de la plaquette de silicium non protégées par la couche d'oxyde de silicium 25. On pourra par exemple effectuer un dépôt non élec- trolytique d'or qui vient accrocher sur les parties apparentes de silicium et pas sur la couche d'oxyde 25. On forme ainsi la couche conductrice 27. Après cela, on procède à la formation de l'empilement actif 8 et au dépôt de l'électrode d'anode 24.
Les figures 5A et 5B illustrent des étapes successives de fabrication d'une cellule de pile à combustible telle qu'illustrée en figure 3. On part d'une plaquette 31 comprenant un évidément supérieur 22 en regard d'un évidément inférieur 35, la partie de la plaquette comprise entre les deux évidements comportant des canaux ou perforations 33. Pour obtenir cette structure, on procède par exemple à la suite d'étapes suivantes : - formation de l'évidement de face avant 22 par gravure humide ;
- perçage par attaque plasma de canaux non traversants 33 s 'étendant seulement sur la profondeur qu'ils auront après formation d'un évidément de face arrière ;
- oxydation de la structure ; - formation de l ' évidément de face arrière 35 par gravure humide ; et
- désoxydation.
Ensuite, sur la face avant de la plaquette illustrée en figure 5A, on procède aux étapes décrites précédemment en relation avec les figures 4B et 4C pour obtenir la structure illustrée en figure 5B dans laquelle de mêmes éléments qu'en figure 4C sont désignés par de mêmes références .
La figure 6 est une vue en coupe illustrant une entre- toise associée à une cellule telle qu'illustrée en figure 2 pour permettre un empilement de cellules. Une cellule 41 formée sur une plaque support 21 est disposée au-dessus d'une entretoise 42 comportant une plaque 44, éventuellement en silicium ou en métal, entourée d'un anneau 46 en saillie vers le haut et vers le bas par rapport à la plaque 44. On comprendra que cette entretoise peut s'appuyer sur la face inférieure de la cellule 41 et que la face supérieure d'une autre cellule 41 peut s'appuyer sur la face inférieure de l' entretoise. Un empilement de plusieurs cellules peut ainsi être constitué. On pourra réaliser de façon appropriée entre une face inférieure de cellule et une entretoise une circulation d'hydrogène et entre une face supérieure de cellule et une entretoise une circulation d'air ou d'oxygène.
De mêmes entretoises pourront être utilisées en relation avec des cellules du type de celles de la figure 3.
Toutefois, comme l'illustre la figure 7, une cellule 51 du type de celle de la figure 3, formée sur une plaque support 31 peut être associé à une entretoise 52 comprenant une plaque mince 54 entourée d'une bague 56 faisant saillie seulement vers le bas. La figure 8 représente un empilement de cellules et d' entretoises selon le deuxième mode de réalisation de la présente invention. On peut y voir des première 61 et deuxième 62 cellules, une entretoise 63 telle que celle de la figure 7 disposée entre les cellules 61 et 62, et une entretoise 64 disposée sous la cellule 62. Bien entendu, l'empilement peut se répéter. On a marqué par les indications "H2" et "O2" les emplacements où circulent respectivement l'hydrogène et l'air. On pourra prévoir divers modes de connexion électrique entre les piles. Par exemple, si les entretoises sont conductrices, on réalise un montage série, la borne de cathode d'une cellule supérieure étant reliée à la borne d'anode d'une cellule infé¬ rieure.
On comprendra que plusieurs empilements tels que celui de la figure 8 pourront être réalisés côte à côte et que l'on pourra ainsi réaliser des montages série-parallèle. On pourra également prévoir divers types d'ouvertures sur les faces laté¬ rales des entretoises ou des cellules entre deux cellules adjacentes pour permettre une circulation dans le sens perpendi¬ culaire à la figure ou dans le plan de la figure d'oxygène et/ou d ' hydrogène .

Claims

REVENDICATIONS
1. Cellule de pile à combustible muIticouche constituée d'un empilement de couches (8) formé sur la face avant d'un substrat perforé (21, 31) , une première électrode correspondant à la face externe de l'empilement, et une deuxième électrode correspondant au fond de l'empilement et étant reliée à la face arrière du substrat par un chemin conducteur s ' étendant le long de la partie perforée du substrat .
2. Cellule de pile à combustible selon la revendication 1, dans laquelle ledit empilement de couches (8) est formé dans un évidement de la face avant du substrat perforé (21, 31) .
3. Cellule de pile à combustible selon la revendication 1 ou 2, dans laquelle le substrat est en silicium.
4. Cellule de pile à combustible selon l'une quelconque des revendications 1 à 3, dans laquelle ledit chemin conducteur correspond à un revêtement d'un matériau conducteur tel que de l'or s 'étendant sur la face avant du substrat à l'emplacement où est déposé ledit empilement de couche, le long des perforations et jusqu'à la face arrière du substrat.
5. Procédé de fabrication d'une cellule de pile à combustible selon la revendication 1, comprenant les étapes suivantes : former un évidement (22) du côté de la face avant d'une plaque support (21) , former des canaux (23) traversant la plaque support au niveau du fond de l ' évidement, former une couche isolante (25) sur la face avant de la plaque et sur les parois latérales de l' évidement, et former un revêtement conducteur aux emplacements non revêtus de la couche isolante.
6. Procédé selon la revendication 5, comprenant, après l'étape de formation de canaux traversant la plaque support, la formation de canaux (33) non traversants à partir de la face avant, et la formation d'un deuxième évidement (35) à partir de la face arrière en regard de l ' évidément (22) du côté de la face avant, et jusqu'au fond desdits canaux.
7. Procédé selon la revendication 5 ou 6, dans lequel la plaque support est une plaquette de silicium, lesdits évidements sont formés par gravure humide, les perforations sont formées par gravure plasma, la couche isolante est formée par oxydation thermique, et le revêtement conducteur est formé par dépôt non-électrolytique.
8. Assemblage de cellules selon l'une quelconque des revendications 1 à 4, consistant à empiler les cellules les unes sur les autres avec interposition d' entretoises agencées pour permettre une circulation de gaz entre chaque entretoise et la face en regard de chaque cellule.
PCT/FR2006/051263 2005-11-30 2006-11-30 Pile a combustible integree empilable WO2007063257A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0553632 2005-11-30
FR0553632 2005-11-30

Publications (1)

Publication Number Publication Date
WO2007063257A1 true WO2007063257A1 (fr) 2007-06-07

Family

ID=36699235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/051263 WO2007063257A1 (fr) 2005-11-30 2006-11-30 Pile a combustible integree empilable

Country Status (1)

Country Link
WO (1) WO2007063257A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001194A1 (fr) * 1995-06-21 1997-01-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Systeme de cellules electrochimiques a electrolyte solide
US20040253496A1 (en) * 2001-03-30 2004-12-16 Foster Ronald B. Planar substrate-based fuel cell membrane electrode assembly and integrated circuitry
FR2857163A1 (fr) * 2003-07-01 2005-01-07 Commissariat Energie Atomique Pile a combustible dans laquelle un fluide circule sensiblement parallelement a la membrane electrolytique et procede de fabrication d'une telle pile a combustible
US20050042499A1 (en) * 2002-04-23 2005-02-24 Jean-Yves Laurent Fuel cell base element that limits the methanol passing through the electrolyte

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001194A1 (fr) * 1995-06-21 1997-01-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Systeme de cellules electrochimiques a electrolyte solide
US20040253496A1 (en) * 2001-03-30 2004-12-16 Foster Ronald B. Planar substrate-based fuel cell membrane electrode assembly and integrated circuitry
US20050042499A1 (en) * 2002-04-23 2005-02-24 Jean-Yves Laurent Fuel cell base element that limits the methanol passing through the electrolyte
FR2857163A1 (fr) * 2003-07-01 2005-01-07 Commissariat Energie Atomique Pile a combustible dans laquelle un fluide circule sensiblement parallelement a la membrane electrolytique et procede de fabrication d'une telle pile a combustible

Similar Documents

Publication Publication Date Title
EP1456902B1 (fr) Pile a combustible et procede de fabrication d'une telle pile a surface active importante et a volume reduit
EP1356536A1 (fr) Procede de fabrication d'un assemblage d'elements de base pour un etage de pile a combustible
FR2914111A1 (fr) Pile a combustible a electrolyte polymere
EP1497883B1 (fr) Element de base de pile a combustible limitant la traversee de l'electrolyte par le methanol
EP1982380B1 (fr) Cellule de pile a combustible integree et procede de fabrication
FR2857162A1 (fr) Pile a combustible comportant des collecteurs de courant integres a l'empilement electrode-membrane-electrode.
FR2846797A1 (fr) Module de base monobloc et a relief de pile a combustible miniature et son procede de fabrication
CA2560761C (fr) Pile a combustible a electrolyte solide a structure etanche
EP2301101B1 (fr) Pile à combustible à empilement membrane/électrodes perpendiculaire au substrat de support et procédé de réalisation
EP2191531B1 (fr) Support de cellules de pile a combustible
WO2007063257A1 (fr) Pile a combustible integree empilable
FR2926679A1 (fr) Boitier pour piles a combustible miniatures
FR2880200A1 (fr) Plaquette munie de conducteurs transverses et application a une pile a combustible
FR2894075A1 (fr) Support de pile a combustible integree
FR2918799A1 (fr) Substrat poreux etanche pour piles a combustible planaires et packaging integre.
EP1763100B1 (fr) Micropile à combustible avec une membrane renforcée par un élément d'ancrage et procédé de fabrication d'une micropile à combustible
EP1807897B1 (fr) Module de pile a combustible, son procede de fabrication et unite contenant plusieurs de ceux-ci
EP2211406B1 (fr) Electrode de pile à combustible
EP2545203B1 (fr) Dispositif formant interconnecteur electrique et fluidique pour reacteur d'electrolyse de l'eau a haute temperature
CA3230063A1 (fr) Interconnecteur pour empilement de cellules a oxydes solides de type soec/sofc comportant des elements en relief differents
FR2963483A1 (fr) Pile a combustible comportant une pluralite de cellules elementaires connectees en serie et son procede de realisation
WO2010092281A1 (fr) Pile a combustible a elimination d'eau de cathode
FR3116373A1 (fr) Dispositif électrochimique tel une micro batterie
FR2911009A1 (fr) Boitier pour pile a combustible miniature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06842074

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载