WO2007060993A1 - Process for producing fatty acid alkyl ester - Google Patents
Process for producing fatty acid alkyl ester Download PDFInfo
- Publication number
- WO2007060993A1 WO2007060993A1 PCT/JP2006/323325 JP2006323325W WO2007060993A1 WO 2007060993 A1 WO2007060993 A1 WO 2007060993A1 JP 2006323325 W JP2006323325 W JP 2006323325W WO 2007060993 A1 WO2007060993 A1 WO 2007060993A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fatty acid
- oil
- alkali
- fat
- reaction
- Prior art date
Links
- 235000014113 dietary fatty acids Nutrition 0.000 title claims abstract description 37
- 239000000194 fatty acid Substances 0.000 title claims abstract description 37
- 229930195729 fatty acid Natural products 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000008569 process Effects 0.000 title abstract description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000003513 alkali Substances 0.000 claims abstract description 60
- 235000021588 free fatty acids Nutrition 0.000 claims abstract description 50
- 239000003054 catalyst Substances 0.000 claims abstract description 44
- 238000005809 transesterification reaction Methods 0.000 claims abstract description 40
- 235000011187 glycerol Nutrition 0.000 claims abstract description 31
- 239000002283 diesel fuel Substances 0.000 claims abstract description 14
- 239000006227 byproduct Substances 0.000 claims abstract description 3
- 239000003921 oil Substances 0.000 claims description 73
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 61
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 30
- 239000002994 raw material Substances 0.000 claims description 22
- 239000002699 waste material Substances 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000008162 cooking oil Substances 0.000 claims description 10
- 150000004665 fatty acids Chemical class 0.000 claims description 8
- 230000003472 neutralizing effect Effects 0.000 claims description 5
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 239000011591 potassium Substances 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 16
- 239000002028 Biomass Substances 0.000 abstract description 4
- 239000003208 petroleum Substances 0.000 abstract description 3
- 235000019198 oils Nutrition 0.000 description 71
- 239000003925 fat Substances 0.000 description 54
- 235000019197 fats Nutrition 0.000 description 54
- 238000006243 chemical reaction Methods 0.000 description 48
- 239000008157 edible vegetable oil Substances 0.000 description 23
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 19
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 19
- 235000019441 ethanol Nutrition 0.000 description 13
- 235000015112 vegetable and seed oil Nutrition 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 125000004185 ester group Chemical group 0.000 description 8
- 238000006386 neutralization reaction Methods 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 241000219173 Carica Species 0.000 description 6
- 235000009467 Carica papaya Nutrition 0.000 description 6
- 235000019482 Palm oil Nutrition 0.000 description 5
- 235000013305 food Nutrition 0.000 description 5
- 235000014593 oils and fats Nutrition 0.000 description 5
- 239000002540 palm oil Substances 0.000 description 5
- -1 alkali metal salt Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000008158 vegetable oil Substances 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 125000005233 alkylalcohol group Chemical group 0.000 description 2
- 239000002551 biofuel Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000003346 palm kernel oil Substances 0.000 description 2
- 235000019865 palm kernel oil Nutrition 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000011973 solid acid Substances 0.000 description 2
- 238000010025 steaming Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 239000003225 biodiesel Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- JBJWASZNUJCEKT-UHFFFAOYSA-M sodium;hydroxide;hydrate Chemical compound O.[OH-].[Na+] JBJWASZNUJCEKT-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 239000010913 used oil Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/03—Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
- C10L1/026—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B3/00—Refining fats or fatty oils
- C11B3/02—Refining fats or fatty oils by chemical reaction
- C11B3/06—Refining fats or fatty oils by chemical reaction with bases
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/003—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Definitions
- the present invention relates to a method for producing a fatty acid alkyl ester. More specifically, fatty acid alkyl esters are produced by a transesterification reaction with alcohol using oils and fats derived from plants, or waste edible oils discarded from restaurants, food factories, general households, etc. as a suitable raw material fats and oils. Regarding the method. Background art
- Fatty acid alkyl esters are important as raw materials for oil and fat products, for example, various surfactants, in the oil and fat chemical industry. Therefore, the manufacturing process is one of the most important processes in the oil and chemical industry as a J11 process.
- fatty acid alkyl esters are attracting attention as a new energy alternative to petroleum because they can be used as diesel fuel derived from biomass.
- Cooking oil (waste cooking oil) that is used and discarded in restaurants, food factories, general households, etc. is treated with a coagulant and buried in the soil, or discarded as household waste and incinerated.
- a coagulant and buried in the soil, or discarded as household waste and incinerated.
- the idea of cleansing the global environment has increased, the movement of effective reuse of these edible oils has become active. .
- an attempt to produce an oil suitable for diesel fuel by obtaining fatty acid methyl ester by transesterification with methanol has begun for a while.
- fatty acid methyl esters obtained from vegetable oils used for edible oils are similar to light oil in physical properties such as viscosity and specific gravity, and combustibility, and can be used without engine modification. Although it has been pointed out for a long time, it has recently been highlighted as a recyclable biofuel and is widely used especially in the United States and Europe. However, fatty acid methyl esters derived from edible oils are mainly used in mixed systems with light oil because of the higher cost compared to light oil.
- fats and oils used as raw materials for edible oils contain about 3% by weight or less of free fatty acids, and the free fatty acids neutralize the alkali catalyst used in the transesterification reaction.
- the amount of alkali catalyst required for the transesterification reaction increases, and subsequent catalyst removal costs high. Therefore, expensive fats and oils from which free fatty acids have been removed are required for the transesterification reaction.
- the content of free fatty acid in the cooking oil before use is 0.1% by weight or less, but the cooking oil after use is usually deteriorated to 0.5%. Since it contains about 1% by weight of free fatty acids, it is necessary to remove the free fatty acids. Therefore, in order to use inexpensive fats and oils, it is necessary to solve this problem of free fatty acids.
- Non-Patent Document 1 Edited by Akio Kato, “Use of palm oil and palm kernel oil”, Sachibo, 1990, P. 35
- Non-Patent Document 2 “Biomass Handbook”, Japan Institute of Energy, 2002, P. 138
- An object of the present invention is to provide an efficient method for producing a fatty acid alkyl ester, which can be carried out at a low operating cost, using an inexpensive raw material fat and oil in view of the above-described conventional technology. .
- the present invention is a method for producing a fatty acid alkyl ester by carrying out a transesterification reaction of fats and oils in the presence of an alkali catalyst, wherein the alkali-containing glycerin by-produced by the transesterification reaction is produced. It is mixed with raw material fats and oils and fats obtained in a pretreatment step including a step of neutralizing free fatty acids in the raw material fats and oils with an alkali catalyst in an alkali-containing glycerin, and subjected to the transesterification, The present invention relates to a method for producing a fatty acid alkyl ester.
- a fatty acid alkyl ester can be efficiently produced at a low operating cost by using an inexpensive raw material fat.
- the present invention provides a method for producing a fatty acid alkyl ester by performing a transesterification reaction between an oil and a fat and an alcohol in the presence of an alkali catalyst, and treating the raw oil and fat with an alkali-containing glycerin by-produced in the transesterification reaction. Obtained in the pretreatment step It has a great feature in that fats and oils are subjected to a transesterification reaction.
- the pretreatment step includes a step of mixing the alkali-containing glycerin by-produced in the ester exchange reaction with the raw material fat and oil, and neutralizing the free fatty acid in the raw material fat with an alkali catalyst in the alkali-containing glycerin.
- a fatty acid alkyl ester can be efficiently produced by using the alkali-containing glycerin by-produced in the transesterification reaction by this pretreatment step.
- the step of neutralizing the free fatty acid in the raw oil and fat is, for example, mixing alkali-containing glycerin and the raw oil and fat, and optionally heating appropriately to proceed with the neutralization reaction. Can be implemented.
- the amount of alkali-containing glycerin used is such that the amount of the alkali catalyst contained is commensurate with the amount required for neutralization of the free fatty acid. It is preferable to adjust.
- the content of the alkali catalyst in the alkali-containing glycerin used in the pretreatment step is not particularly limited, but is preferably about 2 to 10% by weight from the viewpoint of operability.
- the usage form of alkali-containing glycerin produced as a by-product in the transesterification reaction should be selected as appropriate in consideration of the production scale and other factors, whether batch or continuous, in combination with the transesterification reaction. Can do.
- the fats and oils can be separated by separating them into a fat layer and a glycerin layer containing an alkali metal salt of a fatty acid by a method such as stationary separation.
- a method such as stationary separation.
- an intermediate layer is hardly generated even in the case of stationary separation, so that the fat and oil layer can be separated with a high yield. Therefore, it is a method having excellent viewpoint power for removing gums only by free fatty acid treatment, and the pretreatment step in the present invention can be said to be a high yield defree fatty acid step and degumming step.
- the fat and oil obtained in the pretreatment step has a reduced amount of free fatty acid, deactivation due to neutralization of the alkali catalyst used in the ester exchange reaction can be suppressed.
- the fats and oils subjected to the ester exchange reaction are preferably reduced to 0.06 wt% or less, more preferably 0.03 wt% or less, by a method such as dehydration under reduced pressure.
- glycerin containing an alkali metal salt of a fatty acid can be widely reused as a chemical product by removing the alkali metal salt and purifying it, or as a fuel as a heat source.
- raw oils and fats used in the pretreatment process include rapeseed oil, sesame oil, soybean oil, corn oil, sunflower oil, palm oil, palm kernel oil, palm oil, safflower oil, and papaya seed oil. And one or a mixture of two or more selected from the group consisting of vegetable oils.
- palm oil when fatty acid alkyl esters are produced in large quantities, palm oil is preferred because of its high productivity (cultivation efficiency) and easy availability.
- papaya seed oil is preferable for the viewpoint of the amount of free fatty acid.
- Papaya seed oil has a free fatty acid content of about 0.9 to 1.1% by weight, which is relatively toxic to vegetable oils. In addition to its low load, it is toxic to animals and humans.
- the raw oil and fat used in the present invention is not limited to unused clean oil, and waste edible oil is preferable from the viewpoint of economic and social demands that may be waste edible oil.
- the waste edible oil in the present invention refers to edible oil that is used and discarded in restaurants, food factories, general households, etc., and is a rational raw material. Free fatty acids contained in waste edible oil increase due to deterioration compared to unused edible oil, but 0.5 to 1 weight compared to fat and oil used as a raw material for edible oil before removal of free fatty acid Like papaya seed oil, which is a small percentage, it is also suitably used as a raw material fat in the present invention from the viewpoint of the amount of free fatty acid.
- waste edible oil and Z or papaya seed oil can be suitably used as the raw oil and fat from the viewpoint that the amount of free fatty acid can be rationally utilized.
- the alcohol used in the present invention is selected from the group consisting of alkyl alcohol having 1 to 10 carbon atoms such as methyl alcohol (methanol), ethyl alcohol (ethanol), isobutyl alcohol, etc. 1 Species or a mixture of two or more.
- the purity of the alcohol is not particularly limited, but a lower water content is preferred.
- methyl alcohol and ethyl alcohol are preferred in consideration of the use of fatty acid alkyl esters as diesel fuel oil. That's right.
- the transesterification reaction is an equilibrium reaction, it is preferable to use as much alcohol as possible.
- 100 parts by weight of fats and oils used for the transesterification reaction On the other hand, 12 to 50 parts by weight is preferred, and 15 to 35 parts by weight is more preferred.
- Examples of the alkali catalyst that promotes the transesterification reaction between fat and alcohol include sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, sodium alcoholate, and potassium alcoholate.
- the alkali catalysts at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium alcoholate and potassium alcoholate is preferred, which is preferably highly alkaline hydroxide sodium and Z or hydroxide. Potassium halide is more preferred.
- fats and oils whose free fatty acid amount has been reduced by the pretreatment step are used, so that the amount of alkali catalyst consumed for neutralization of free fatty acids contained in the fats and oils is extremely small, and the ester exchange reaction itself. Is promoted by an Al force catalyst having a catalyst amount of 0.2 to 0.5 parts by weight per 100 parts by weight of fats and oils.
- the by-produced alkali-containing glycerin is continuously used in the pretreatment step and mixed with the raw material fats and oils to neutralize the free fatty acids contained in the raw material fats and oils.
- an alkali catalyst in an amount capable of neutralizing the free fatty acid contained in the raw material oil to be mixed for the transesterification reaction. For this reason, an alkali catalyst in an amount more than that required for the transesterification reaction may be used. In the present invention, however, the alkali catalyst is not only used as a catalyst. Can be used twice as an agent. As a result, it is possible to reduce the amount of alkaline compound required to use the raw fat and oil containing free fatty acids, and to remove the used alkali catalyst after the transesterification reaction. Powerful load will be reduced.
- the amount of alkali catalyst used varies depending on the type of alkali catalyst and the type of raw material oil and fat, and cannot be determined unconditionally.
- sodium hydroxide or potassium hydroxide as an alkali catalyst, In the method for continuously producing a fatty acid alkyl ester while subjecting the alkali-containing glycerin to a pretreatment step as needed, 0.5 to 3.0 weight of free fatty acid is obtained.
- sodium hydroxide or potassium hydroxide is preferably used in an amount of 0.2 to 1.5 parts by weight with respect to 100 parts by weight of fats and oils used in the transesterification reaction. 2 to 1.0 part by weight is more preferable.
- the amount of sodium hydroxide or potassium hydroxide used is the transesterification reaction. 0.2 to 0.6 parts by weight is preferable with respect to 100 parts by weight of the fats and oils to be supplied to the oil.
- the amount of sodium hydroxide or potassium hydroxide used is 100 parts by weight of fats and oils used in the transesterification reaction. 0.5 to 1.5 parts by weight are preferred 0.5 to 1.0 parts by weight are more preferred.
- the reaction temperature is 50 to 90 ° C. preferable.
- a mixture containing the desired fatty acid alkyl ester, by-produced glycerin, an alkali catalyst, and the like is obtained by the transesterification of the above fat and alcohol.
- the progress of the reaction can be confirmed by, for example, collecting the sample solution and allowing it to stand, and then analyzing the ester content of the upper ester layer by gas chromatography.
- the residual alcohol is evaporated and removed as necessary, and the reaction mixture is phase-separated by using the difference in specific gravity by standing or centrifuging, so that the oil layer has a strong fatty acid alkyl ester strength.
- the alkali-containing glycerin layer can be easily separated.
- this alkali-containing glycerin is used in the pretreatment step in which it is mixed with newly used raw material fats and oils.
- the content of fatty acid methyl ester is at least 96% as a nanofuel. Therefore, when the content of the fatty acid methyl ester obtained by the transesterification reaction is less than 96%, an alcohol and an alkali catalyst are mixed with the oil layer made of the fatty acid alkyl ester carbonate obtained by the transesterification reaction. It is preferable to increase the content of fatty acid methyl ester to such an extent that it can be suitably used as diesel fuel by subjecting it to an ester exchange reaction again. [0031] Furthermore, when the fatty acid alkyl ester contains a trace amount of an alkali component or the like, it can be removed by a purification operation such as washing with water.
- the fatty acid alkyl ester can be produced economically and efficiently, so that the fatty acid alkyl ester as a biofuel expected as an alternative to light oil can be further spread.
- alkali-containing glycerin obtained in the first stage reaction of Reference Example 1 was pretreated as follows. Used in the process. In Reference Example 1, unused edible oil was used, the amount of free fatty acid was as small as 0.07% by weight, and when the amount of free fatty acid was less than 0.2% by weight, free fatty acid was used. The amount of alkali catalyst consumed for neutralization is negligible. Therefore, the alkali-containing glycerin obtained in the first stage reaction of Reference Example 1 contains almost 0.3 part (0.9 g) of the alkali catalyst (sodium hydroxide) used in the transesterification reaction. Remained.
- a fatty acid methyl ester was obtained in the same manner as in Example 1, except that the pretreatment step was performed using the alkali-containing glycerin obtained in the first-stage reaction of Example 1.
- the alkali-containing product obtained in the first stage reaction of Example 1 was used.
- Most of 0.3 part by weight (0.9 g) of the alkali catalyst (sodium hydroxide) used in the transesterification reaction remained in dalyserin.
- the fatty acid alkyl ester obtained by the present invention can be suitably used as a biomass-derived diesel fuel that is attracting attention as a new energy alternative to petroleum.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Fats And Perfumes (AREA)
Abstract
A process for producing a fatty acid alkyl ester by transesterification of a fat-and-oil with an alcohol in the presence of an alkaline catalyst. The process is characterized in that such a fat-and-oil is subjected to the transesterification that is obtained in a pretreatment step comprising mixing an alkali-containing glycerine produced in the transesterification as a by-product with a raw fat-and-oil to neutralize a free fatty acid contained in the raw fat-and-oil with an alkaline catalysts contained in the alkali-containing glycerine. The fatty acid alkyl ester can be suitably used as a biomass-derived diesel fuel or the like which is now receiving attention as a new alternative energy to petroleum.
Description
明 細 書 Specification
脂肪酸アルキルエステルの製造方法 Method for producing fatty acid alkyl ester
技術分野 Technical field
[0001] 本発明は、脂肪酸アルキルエステルの製造方法に関する。さらに詳しくは、植物等 由来の油脂、又はこれを利用するレストラン、食品工場、一般家庭等から廃棄される 廃食用油を好適な原料油脂として、アルコールとのエステル交換反応により脂肪酸 アルキルエステルを製造する方法に関する。 背景技術 The present invention relates to a method for producing a fatty acid alkyl ester. More specifically, fatty acid alkyl esters are produced by a transesterification reaction with alcohol using oils and fats derived from plants, or waste edible oils discarded from restaurants, food factories, general households, etc. as a suitable raw material fats and oils. Regarding the method. Background art
[0002] 脂肪酸アルキルエステルは、油脂化学工業にお!、て油脂製品、例えば各種界面 活性剤等の原料として重要である。したがって、その製造プロセスは油脂化学工業に おける J 11上プロセスとして最も重要なプロセスの 1つである。 [0002] Fatty acid alkyl esters are important as raw materials for oil and fat products, for example, various surfactants, in the oil and fat chemical industry. Therefore, the manufacturing process is one of the most important processes in the oil and chemical industry as a J11 process.
[0003] また、脂肪酸アルキルエステルは、バイオマス由来のディーゼル燃料として使用可 能なことから、石油代替の新エネルギーとして注目されている。 [0003] Furthermore, fatty acid alkyl esters are attracting attention as a new energy alternative to petroleum because they can be used as diesel fuel derived from biomass.
[0004] レストラン、食品工場、一般家庭等で使用されて廃棄される食用油 (廃食用油)は、 凝固剤により処理して土中に埋めたり、家庭用ごみとしてそのまま捨てられ、焼却した りする等の方法により処理されるのが一般的であった力 近年、地球環境浄化の理 念の高まりに伴 、、これら廃食用油につ 、ても有効再利用の動きが活発化して 、る。 その一つとして、メタノールとのエステル交換反応により脂肪酸メチルエステルを得て 、ディーゼル燃料に適した油を製造する試みが始まって久し 、。 [0004] Cooking oil (waste cooking oil) that is used and discarded in restaurants, food factories, general households, etc. is treated with a coagulant and buried in the soil, or discarded as household waste and incinerated. In recent years, as the idea of cleansing the global environment has increased, the movement of effective reuse of these edible oils has become active. . As one of them, an attempt to produce an oil suitable for diesel fuel by obtaining fatty acid methyl ester by transesterification with methanol has begun for a while.
[0005] すなわち、食用油に用いられる植物油から得られる脂肪酸メチルエステルは、粘度 、比重等の物性や、燃焼性が軽油に類似しており、エンジンの改造をしなくても使用 できるバイオディーゼル燃料としての可能性が古くから指摘されていたが、最近、リサ イタル可能なバイオ燃料として脚光を浴び、とくに米国や欧州で広く利用されている。 しかしながら、食用油由来の脂肪酸メチルエステルは、軽油に比べてコスト高のため に、主に軽油との混合系で使用されている。 [0005] That is, fatty acid methyl esters obtained from vegetable oils used for edible oils are similar to light oil in physical properties such as viscosity and specific gravity, and combustibility, and can be used without engine modification. Although it has been pointed out for a long time, it has recently been highlighted as a recyclable biofuel and is widely used especially in the United States and Europe. However, fatty acid methyl esters derived from edible oils are mainly used in mixed systems with light oil because of the higher cost compared to light oil.
[0006] 現在、油脂化学工業及びバイオディーゼル燃料製造にお!ヽて実用化されて!/ヽる、 油脂(トリグリセリド)とアルコールとのエステル交換反応のプロセスでは、水酸化ナトリ
ゥム、水酸ィ匕カリウム等のアルコール溶解性のアルカリ触媒が使用されている。 [0006] Currently, it has been put into practical use in the oil and fat chemical industry and biodiesel fuel production! In the process of transesterification of fats and oils (triglycerides) and alcohol, sodium hydroxide is used. Alcohol-soluble alkali catalysts such as sulfur and potassium hydroxide are used.
[0007] 一方、食用油の原料として用いられる油脂には約 3重量%以下の遊離脂肪酸が含 まれており、この遊離脂肪酸によってエステル交換反応に用いるアルカリ触媒が中和 される。そのためエステル交換反応に要するアルカリ触媒量が増大し、その後の触媒 除去にコストがかかる。従って、エステル交換反応には、遊離脂肪酸を除去した高価 な油脂が必要とされる。また、廃食用油を使用する場合でも、使用前の食用油にお ける遊離脂肪酸の含有量は 0. 1重量%以下であるが、使用後の食用油は、劣化し て通常、 0. 5〜1重量%程度の遊離脂肪酸を含むため、遊離脂肪酸の除去を要す る。従って、安価な油脂を使用するためには、この遊離脂肪酸の問題を解決する必 要がある。 [0007] On the other hand, fats and oils used as raw materials for edible oils contain about 3% by weight or less of free fatty acids, and the free fatty acids neutralize the alkali catalyst used in the transesterification reaction. As a result, the amount of alkali catalyst required for the transesterification reaction increases, and subsequent catalyst removal costs high. Therefore, expensive fats and oils from which free fatty acids have been removed are required for the transesterification reaction. Even when waste cooking oil is used, the content of free fatty acid in the cooking oil before use is 0.1% by weight or less, but the cooking oil after use is usually deteriorated to 0.5%. Since it contains about 1% by weight of free fatty acids, it is necessary to remove the free fatty acids. Therefore, in order to use inexpensive fats and oils, it is necessary to solve this problem of free fatty acids.
[0008] 従来技術では、油脂をアルカリ水で処理し生じた脂肪酸石鹼を含む水層を除 、て 遊離脂肪酸を除去する方法、 200°C程度の温度条件下で油脂を減圧(2〜5mmHg )スチーミングすることにより遊離脂肪酸を除去する方法などが提案され、これらの方 法によって処理された油脂が食用油やエステル交換反応に用いる原料油脂として供 給されて ヽる (非特許文献 1参照)。 [0008] In the prior art, a method of removing free fatty acids by removing an aqueous layer containing fatty acid sarcophagus produced by treating fats and oils with alkaline water, and reducing the fats and oils under a temperature condition of about 200 ° C (2-5mmHg ) Methods for removing free fatty acids by steaming have been proposed, and fats and oils treated by these methods are supplied as edible oils and raw oils and fats used in transesterification (see Non-Patent Document 1). ).
[0009] また、遊離脂肪酸を除去する他の方法として、固体酸触媒のもと油脂中の遊離脂 肪酸をアルコール大過剰の条件でエステルイ匕して遊離脂肪酸を減少させる方法があ る (非特許文献 2参照)。 [0009] Further, as another method for removing free fatty acids, there is a method in which free fatty acids in fats and oils are esterified under a large excess of alcohol under a solid acid catalyst to reduce free fatty acids (non-free). (See Patent Document 2).
非特許文献 1 :加藤秋男編著、「パーム油、パーム核油の利用」、幸書房、 1990年、 P . 35 Non-Patent Document 1: Edited by Akio Kato, “Use of palm oil and palm kernel oil”, Sachibo, 1990, P. 35
非特許文献 2 :「バイオマスハンドブック」、社団法人日本エネルギー学会、 2002年、 P . 138 Non-Patent Document 2: “Biomass Handbook”, Japan Institute of Energy, 2002, P. 138
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0010] し力しながら、上記のアルカリ水で処理する方法は、リン脂質、タンパク質 (ガム質)[0010] The method of treating with alkaline water while damaging the phospholipid, protein (gum)
、色素などが脂肪酸石鹼に吸着又は包含されて同時に除去されるメリットはあるが、 水を用いるため、静置分離する際、石鹼分の存在により油層と水層との間に油脂を 含む中間層が出来やすぐ収率が低下しやすいという欠点を有しており、排水処理
にも多大のコストがかかる。また減圧スチーミングする方法は、 200°C程度という高い 反応温度の下、減圧する必要があり、高温の熱源や蒸気を排気するための大きな真 空設備が必要となり、使用可能な反応設備が限定されるので経済的ではない。一方 、アルコール大過剰の条件下でのエステルィヒでは、高価な固体酸触媒や、生成した 水を除去するための、例えばモレキュラーシーブス法などの複雑な工程が必要とされ る場合がある。よって、いずれの方法も経済的には負担が大きぐノィォディーゼル 燃料の製造方法として、より経済的に脂肪酸アルキルエステルを製造し得る方法の 開発が望まれる。 Although there is a merit that pigments are adsorbed or included in fatty acid sarcophagus and removed at the same time, since water is used, oil and fat are included between the oil layer and the water layer due to the presence of sarcophagus when standing and separating Wastewater treatment has the disadvantage that an intermediate layer is formed and the yield is likely to decrease immediately. Is also very expensive. In addition, the vacuum steaming method requires a high reaction temperature of about 200 ° C, and requires a large vacuum facility for exhausting high-temperature heat sources and steam, limiting the usable reaction facilities. Is not economical. On the other hand, in Esterig under a large excess of alcohol, an expensive solid acid catalyst or a complicated process such as a molecular sieve method may be required to remove the produced water. Therefore, the development of a method that can produce fatty acid alkyl esters more economically is desired as a method for producing a new diesel fuel that is economically burdensome for both methods.
[0011] 本発明の課題は、前記従来技術に鑑みて、安価な原料油脂を用い、かつ安価な 運転費用で実施することのできる、脂肪酸アルキルエステルの効率的な製造方法を 提供することにある。 An object of the present invention is to provide an efficient method for producing a fatty acid alkyl ester, which can be carried out at a low operating cost, using an inexpensive raw material fat and oil in view of the above-described conventional technology. .
課題を解決するための手段 Means for solving the problem
[0012] 本発明者らは、上記課題を達成するために鋭意検討した結果、原料油脂中に含ま れる遊離脂肪酸を簡便な前処理工程で除去し得る方法を見出し、本発明を完成す るに至った。 [0012] As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found a method capable of removing free fatty acids contained in raw oils and fats in a simple pretreatment step, and to complete the present invention. It came.
[0013] 本発明は、油脂とアルコールのエステル交換反応をアルカリ触媒の存在下で行つ て脂肪酸アルキルエステルを製造する方法であって、前記エステル交換反応にぉ 、 て副生したアルカリ含有グリセリンを原料油脂と混合し、該原料油脂中の遊離脂肪酸 をアルカリ含有グリセリン中のアルカリ触媒で中和する工程を含む前処理工程で得ら れた油脂を前記エステル交換反応に供することを特徴とする、脂肪酸アルキルエス テルの製造方法に関する。 [0013] The present invention is a method for producing a fatty acid alkyl ester by carrying out a transesterification reaction of fats and oils in the presence of an alkali catalyst, wherein the alkali-containing glycerin by-produced by the transesterification reaction is produced. It is mixed with raw material fats and oils and fats obtained in a pretreatment step including a step of neutralizing free fatty acids in the raw material fats and oils with an alkali catalyst in an alkali-containing glycerin, and subjected to the transesterification, The present invention relates to a method for producing a fatty acid alkyl ester.
発明の効果 The invention's effect
[0014] 本発明によれば、安価な原料油脂を用いて、脂肪酸アルキルエステルを、安価な 運転費用で、効率的に製造することができる。 [0014] According to the present invention, a fatty acid alkyl ester can be efficiently produced at a low operating cost by using an inexpensive raw material fat.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明は、油脂とアルコールのエステル交換反応をアルカリ触媒の存在下で行つ て、脂肪酸アルキルエステルを製造する方法において、原料油脂をエステル交換反 応において副生したアルカリ含有グリセリンによって処理する前処理工程で得られた
油脂をエステル交換反応に供する点に大きな特徴を有する。前処理工程とは、エス テル交換反応にぉ 、て副生したアルカリ含有グリセリンを原料油脂と混合し、該原料 油脂中の遊離脂肪酸をアルカリ含有グリセリン中のアルカリ触媒で中和する工程を含 む工程であり、本発明においては、この前処理工程により、エステル交換反応におい て副生したアルカリ含有グリセリンを利用して効率よく脂肪酸アルキルエステルを製 造することができる。 [0015] The present invention provides a method for producing a fatty acid alkyl ester by performing a transesterification reaction between an oil and a fat and an alcohol in the presence of an alkali catalyst, and treating the raw oil and fat with an alkali-containing glycerin by-produced in the transesterification reaction. Obtained in the pretreatment step It has a great feature in that fats and oils are subjected to a transesterification reaction. The pretreatment step includes a step of mixing the alkali-containing glycerin by-produced in the ester exchange reaction with the raw material fat and oil, and neutralizing the free fatty acid in the raw material fat with an alkali catalyst in the alkali-containing glycerin. In the present invention, a fatty acid alkyl ester can be efficiently produced by using the alkali-containing glycerin by-produced in the transesterification reaction by this pretreatment step.
[0016] 前処理工程において原料油脂中の遊離脂肪酸を中和する工程は、例えば、アル カリ含有グリセリンと原料油脂とを混合し、場合によっては中和反応を進めるために適 宜加熱して、実施することができる。 [0016] In the pretreatment step, the step of neutralizing the free fatty acid in the raw oil and fat is, for example, mixing alkali-containing glycerin and the raw oil and fat, and optionally heating appropriately to proceed with the neutralization reaction. Can be implemented.
[0017] アルカリ含有グリセリンの使用量は、混合する原料油脂に含まれる遊離脂肪酸量を 考慮して、含有するアルカリ触媒が遊離脂肪酸の中和に必要とされる量に見合う量と なるように、調整することが好ましい。前処理工程に用いるアルカリ含有グリセリン中 のアルカリ触媒の含有量は、特に限定されないが、操作性の観点から、 2〜10重量 %程度が好ま 、。エステル交換反応で副生したアルカリ含有グリセリンの使用形態 は、エステル交換反応との組み合わせで、回分式及び連続式のいずれであってもよ ぐ生産規模やその他の要因を考慮して適宜選択することができる。 [0017] In consideration of the amount of free fatty acid contained in the raw material fat to be mixed, the amount of alkali-containing glycerin used is such that the amount of the alkali catalyst contained is commensurate with the amount required for neutralization of the free fatty acid. It is preferable to adjust. The content of the alkali catalyst in the alkali-containing glycerin used in the pretreatment step is not particularly limited, but is preferably about 2 to 10% by weight from the viewpoint of operability. The usage form of alkali-containing glycerin produced as a by-product in the transesterification reaction should be selected as appropriate in consideration of the production scale and other factors, whether batch or continuous, in combination with the transesterification reaction. Can do.
[0018] 中和後は、静置分離等の方法により、油脂の層と脂肪酸のアルカリ金属塩を含む グリセリンの層とに分離して、油脂を分離することができる。アルカリ含有グリセリンを 利用する本発明の方法では、静置分離にぉ 、ても中間層がほとんど生じな 、ため、 高収率で油脂の層を分取することができる。従って、遊離脂肪酸処理だけでなぐガ ム質除去の観点力 も優れた方法であり、本発明における前処理工程は、高収率の 脱遊離脂肪酸工程、脱ガム工程ともいえる。 [0018] After neutralization, the fats and oils can be separated by separating them into a fat layer and a glycerin layer containing an alkali metal salt of a fatty acid by a method such as stationary separation. In the method of the present invention using an alkali-containing glycerin, an intermediate layer is hardly generated even in the case of stationary separation, so that the fat and oil layer can be separated with a high yield. Therefore, it is a method having excellent viewpoint power for removing gums only by free fatty acid treatment, and the pretreatment step in the present invention can be said to be a high yield defree fatty acid step and degumming step.
[0019] 前処理工程で得られた油脂は、遊離脂肪酸量が低減されているため、エステル交 換反応で用いられるアルカリ触媒の中和による失活を抑制することができる。エステ ル交換反応に供する油脂は、減圧脱水等の方法により、水分を好ましくは 0. 06重量 %以下、より好ましくは 0. 03重量%以下に低減することが好ましい。一方、脂肪酸の アルカリ金属塩を含むグリセリンは、アルカリ金属塩を除去して精製することによりィ匕 学品として、またそのまま熱源となる燃料として、幅広く再利用することができる。
[0020] 前処理工程に供される原料油脂としては、具体的には、菜種油、ごま油、大豆油、 とうもろこし油、ひまわり油、パーム油、パーム核油、やし油、紅花油、パパイヤ種子 油等の植物油からなる群より選択される 1種又は 2種以上の混合物等が挙げられる。 これらの植物油において、脂肪酸アルキルエステルを大量に生産する場合は、生産 性 (栽培効率)が高ぐ入手容易なことからパーム油が好ましい。また、遊離脂肪酸量 の観点力もは、パパイヤ種子油が好ましい。パパイヤ種子油は、遊離脂肪酸量が 0. 9〜1. 1重量%程度と植物油のなかでは比較的少なぐ遊離脂肪酸の除去に力かる 負荷が小さいことに加えて、動物、人間に対して有毒な成分が含まれており、食用油 として利用することはできない(JOUNAL OF FOOD SCIENCE, Vol.43(1978), P225、 Food Chemistry, 22(1986), P259)。従って、ディーゼル燃料等に用いられる脂肪酸 アルキルエステルの原料として用いることにより、合理的に利用することができる。 [0019] Since the fat and oil obtained in the pretreatment step has a reduced amount of free fatty acid, deactivation due to neutralization of the alkali catalyst used in the ester exchange reaction can be suppressed. The fats and oils subjected to the ester exchange reaction are preferably reduced to 0.06 wt% or less, more preferably 0.03 wt% or less, by a method such as dehydration under reduced pressure. On the other hand, glycerin containing an alkali metal salt of a fatty acid can be widely reused as a chemical product by removing the alkali metal salt and purifying it, or as a fuel as a heat source. [0020] Specific examples of raw oils and fats used in the pretreatment process include rapeseed oil, sesame oil, soybean oil, corn oil, sunflower oil, palm oil, palm kernel oil, palm oil, safflower oil, and papaya seed oil. And one or a mixture of two or more selected from the group consisting of vegetable oils. In these vegetable oils, when fatty acid alkyl esters are produced in large quantities, palm oil is preferred because of its high productivity (cultivation efficiency) and easy availability. Moreover, papaya seed oil is preferable for the viewpoint of the amount of free fatty acid. Papaya seed oil has a free fatty acid content of about 0.9 to 1.1% by weight, which is relatively toxic to vegetable oils. In addition to its low load, it is toxic to animals and humans. It is not available as an edible oil (JOUNAL OF FOOD SCIENCE, Vol. 43 (1978), P225, Food Chemistry, 22 (1986), P259). Therefore, it can be used rationally by using it as a raw material for fatty acid alkyl esters used in diesel fuel and the like.
[0021] また、本発明において使用する原料油脂は、未使用の清浄なものに限らず廃食用 油であってもよぐ経済面及び社会的要請面の観点からは、廃食用油が好ましい。本 発明における廃食用油とは、レストラン、食品工場、一般家庭等で使用されて廃棄さ れる食用油をいい、合理的な原料である。廃食用油に含まれる遊離脂肪酸は、未使 用の食用油と比較すると劣化により増加するものの、遊離脂肪酸を除去する前の食 用油の原料として用いられる油脂と比べると 0. 5〜1重量%と少なぐパパイヤ種子 油と同様に、遊離脂肪酸量の観点からも、本発明における原料油脂として好適に用 いられる。 [0021] In addition, the raw oil and fat used in the present invention is not limited to unused clean oil, and waste edible oil is preferable from the viewpoint of economic and social demands that may be waste edible oil. The waste edible oil in the present invention refers to edible oil that is used and discarded in restaurants, food factories, general households, etc., and is a rational raw material. Free fatty acids contained in waste edible oil increase due to deterioration compared to unused edible oil, but 0.5 to 1 weight compared to fat and oil used as a raw material for edible oil before removal of free fatty acid Like papaya seed oil, which is a small percentage, it is also suitably used as a raw material fat in the present invention from the viewpoint of the amount of free fatty acid.
[0022] 従って、本発明においては、遊離脂肪酸量が少なぐ合理的に利用することができ る観点から、廃食用油及び Z又はパパイヤ種子油を、原料油脂として好適に用いる ことができる。 [0022] Therefore, in the present invention, waste edible oil and Z or papaya seed oil can be suitably used as the raw oil and fat from the viewpoint that the amount of free fatty acid can be rationally utilized.
[0023] 本発明にお!/、て用いるアルコールとしては、例えば、メチルアルコール (メタノール) 、エチルアルコール(エタノール)、イソブチルアルコール等の炭素数 1〜10のアルキ ルアルコール力 なる群より選ばれる 1種又は 2種以上の混合物が挙げられる。アル コールの純度は、特に限定されないが、水分含有量の少ない方が好ましい。また、炭 素数 1〜10のアルキルアルコールのなかでは、脂肪酸アルキルエステルのディーゼ ル燃料油としての使用を考慮すると、メチルアルコール及びェチルアルコールが好ま
しい。 [0023] The alcohol used in the present invention is selected from the group consisting of alkyl alcohol having 1 to 10 carbon atoms such as methyl alcohol (methanol), ethyl alcohol (ethanol), isobutyl alcohol, etc. 1 Species or a mixture of two or more. The purity of the alcohol is not particularly limited, but a lower water content is preferred. Of the alkyl alcohols having 1 to 10 carbon atoms, methyl alcohol and ethyl alcohol are preferred in consideration of the use of fatty acid alkyl esters as diesel fuel oil. That's right.
[0024] エステル交換反応が平衡反応であるため、アルコールはできるだけ多量に使用す ることが好ましいが、使用量に見合った反応率向上効果を得る観点から、エステル交 換反応に供する油脂 100重量部に対して、 12〜50重量部が好ましぐ 15〜35重量 部がより好ましい。 [0024] Since the transesterification reaction is an equilibrium reaction, it is preferable to use as much alcohol as possible. However, from the viewpoint of obtaining a reaction rate improvement effect commensurate with the amount of use, 100 parts by weight of fats and oils used for the transesterification reaction On the other hand, 12 to 50 parts by weight is preferred, and 15 to 35 parts by weight is more preferred.
[0025] また、油脂とアルコールとのエステル交換反応を促進するアルカリ触媒としては、水 酸ィ匕ナトリウム、炭酸ナトリウム、水酸ィ匕カリウム、炭酸カリウム、ナトリウムアルコラート 、カリウムアルコラート等が挙げられ、これらのアルカリ触媒の中では、水酸化ナトリウ ム、水酸ィ匕カリウム、ナトリウムアルコラート及びカリウムアルコラートからなる群より選 ばれた少なくとも 1種が好ましぐアルカリ性の強い水酸ィ匕ナトリウム及び Z又は水酸 化カリウムがより好ましい。 [0025] Examples of the alkali catalyst that promotes the transesterification reaction between fat and alcohol include sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, sodium alcoholate, and potassium alcoholate. Among the alkali catalysts, at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium alcoholate and potassium alcoholate is preferred, which is preferably highly alkaline hydroxide sodium and Z or hydroxide. Potassium halide is more preferred.
[0026] 本発明では、前処理工程により遊離脂肪酸量を低減した油脂を使用するため、油 脂に含まれる遊離脂肪酸の中和に消費されるアルカリ触媒は極微量であり、エステ ル交換反応自体は、油脂 100重量部に対して 0. 2〜0. 5重量部の触媒量のアル力 リ触媒により促進される。しかしながら、本発明において、反応終了後、副生したアル カリ含有グリセリンを連続的に前処理工程に利用し、原料油脂と混合して、原料油脂 中に含まれる遊離脂肪酸を中和するためには、混合する原料油脂に含まれる遊離 脂肪酸を中和し得る量のアルカリ触媒をエステル交換反応に用いることが好ましい。 そのため、エステル交換反応に必要とされる触媒量以上の量のアルカリ触媒を使用 する場合もあるが、本発明では、アルカリ触媒を、触媒として利用するだけではなぐ 原料油脂中の遊離脂肪酸の中和剤として二重に使用することができる。従って、結 果として、遊離脂肪酸を含む原料油脂を使用するために必要とされるアルカリィ匕合物 の使用量を低減することができ、またエステル交換反応終了後、使用済みのアルカリ 触媒の除去に力かる負荷も軽減されることになる。 [0026] In the present invention, fats and oils whose free fatty acid amount has been reduced by the pretreatment step are used, so that the amount of alkali catalyst consumed for neutralization of free fatty acids contained in the fats and oils is extremely small, and the ester exchange reaction itself. Is promoted by an Al force catalyst having a catalyst amount of 0.2 to 0.5 parts by weight per 100 parts by weight of fats and oils. However, in the present invention, after the reaction is completed, the by-produced alkali-containing glycerin is continuously used in the pretreatment step and mixed with the raw material fats and oils to neutralize the free fatty acids contained in the raw material fats and oils. It is preferable to use an alkali catalyst in an amount capable of neutralizing the free fatty acid contained in the raw material oil to be mixed for the transesterification reaction. For this reason, an alkali catalyst in an amount more than that required for the transesterification reaction may be used. In the present invention, however, the alkali catalyst is not only used as a catalyst. Can be used twice as an agent. As a result, it is possible to reduce the amount of alkaline compound required to use the raw fat and oil containing free fatty acids, and to remove the used alkali catalyst after the transesterification reaction. Powerful load will be reduced.
[0027] アルカリ触媒の使用量は、アルカリ触媒の種類や原料油脂の種類によっても異なる ため一概には決定できないが、アルカリ触媒として水酸ィ匕ナトリウムや水酸ィ匕カリウム を使用し、副生したアルカリ含有グリセリンを随時前処理工程に供しながら連続的に 脂肪酸アルキルエステルを製造する方法において、遊離脂肪酸を 0. 5〜3. 0重量
%含有する原料油脂を使用する場合、水酸化ナトリウム又は水酸化カリウムの使用 量は、エステル交換反応に供する油脂 100重量部に対して、 0. 2〜1. 5重量部が好 ましぐ 0. 2〜1. 0重量部がより好ましい。例えば、原料油脂として遊離脂肪酸を 0. 5〜1重量%含有する廃食用油やパパイヤ種子油を使用する場合は、水酸ィ匕ナトリウ ム又は水酸ィ匕カリウムの使用量は、エステル交換反応に供する油脂 100重量部に対 して 0. 2〜0. 6重量部が好ましぐ 0. 2〜0. 4重量部がより好ましい。また、遊離脂 肪酸を 2〜3重量%含有するパーム油を使用する場合は、水酸ィ匕ナトリウム又は水酸 化カリウムの使用量は、エステル交換反応に供する油脂 100重量部に対して、 0. 5 〜1. 5重量部が好ましぐ 0. 5〜1. 0重量部がより好ましい。 [0027] The amount of alkali catalyst used varies depending on the type of alkali catalyst and the type of raw material oil and fat, and cannot be determined unconditionally. However, by using sodium hydroxide or potassium hydroxide as an alkali catalyst, In the method for continuously producing a fatty acid alkyl ester while subjecting the alkali-containing glycerin to a pretreatment step as needed, 0.5 to 3.0 weight of free fatty acid is obtained. When using raw material fats and oils containing 0.1%, sodium hydroxide or potassium hydroxide is preferably used in an amount of 0.2 to 1.5 parts by weight with respect to 100 parts by weight of fats and oils used in the transesterification reaction. 2 to 1.0 part by weight is more preferable. For example, when using waste edible oil or papaya seed oil containing 0.5 to 1% by weight of free fatty acid as the raw oil or fat, the amount of sodium hydroxide or potassium hydroxide used is the transesterification reaction. 0.2 to 0.6 parts by weight is preferable with respect to 100 parts by weight of the fats and oils to be supplied to the oil. In addition, when using palm oil containing 2 to 3% by weight of free fatty acid, the amount of sodium hydroxide or potassium hydroxide used is 100 parts by weight of fats and oils used in the transesterification reaction. 0.5 to 1.5 parts by weight are preferred 0.5 to 1.0 parts by weight are more preferred.
[0028] エステル交換反応にぉ 、て反応温度が反応率に与える影響は小さ 、が、反応速 度及び油脂の酸化反応などの副反応防止の観点から、反応温度は、 50〜90°Cが 好ましい。 [0028] In the transesterification reaction, the influence of the reaction temperature on the reaction rate is small, but from the viewpoint of preventing side reactions such as reaction speed and oxidation reaction of fats and oils, the reaction temperature is 50 to 90 ° C. preferable.
[0029] 以上の油脂とアルコールのエステル交換反応により、目的とする脂肪酸アルキルェ ステル、副生するグリセリン、アルカリ触媒等を含む混合物が得られる。反応の進行 は、サンプル液を採取して、静置後、上層のエステル層のエステル含有量をガスクロ マトグラフィ一で分析すること等により確認することができる。反応終了後は、例えば、 必要に応じて残存したアルコールを蒸発除去し、静置又は遠心分離により、比重差 を利用して反応混合物を相分離させることによって、脂肪酸アルキルエステル力ゝらな る油層とアルカリ含有グリセリンの層とを容易に分離することができる。アルカリ含有グ リセリンには、触媒として用いたアルカリ触媒のほとんどが残存しており、本発明では 、このアルカリ含有グリセリンを、新たに用いる原料油脂と混合する前記前処理工程 に利用する。 [0029] A mixture containing the desired fatty acid alkyl ester, by-produced glycerin, an alkali catalyst, and the like is obtained by the transesterification of the above fat and alcohol. The progress of the reaction can be confirmed by, for example, collecting the sample solution and allowing it to stand, and then analyzing the ester content of the upper ester layer by gas chromatography. After completion of the reaction, for example, the residual alcohol is evaporated and removed as necessary, and the reaction mixture is phase-separated by using the difference in specific gravity by standing or centrifuging, so that the oil layer has a strong fatty acid alkyl ester strength. And the alkali-containing glycerin layer can be easily separated. Almost all of the alkali catalyst used as a catalyst remains in the alkali-containing glycerin, and in the present invention, this alkali-containing glycerin is used in the pretreatment step in which it is mixed with newly used raw material fats and oils.
[0030] ノィォ燃料として、脂肪酸メチルエステルの含有率は少なくとも 96%以上であること が好ましい。従って、前記エステル交換反応により得られた脂肪酸メチルエステルの 含有率が 96%未満である場合には、エステル交換反応により得られた脂肪酸アルキ ルエステルカゝらなる油層に、アルコールとアルカリ触媒を混合して、再度エステル交 換反応に供することにより、ディーゼル燃料等として好適に用いられる程度まで脂肪 酸メチルエステルの含有率を高めることが好まし 、。
[0031] さらに、脂肪酸アルキルエステルに極微量のアルカリ成分等が含まれている場合に は、水洗などの精製操作により除去することができる。 [0030] It is preferable that the content of fatty acid methyl ester is at least 96% as a nanofuel. Therefore, when the content of the fatty acid methyl ester obtained by the transesterification reaction is less than 96%, an alcohol and an alkali catalyst are mixed with the oil layer made of the fatty acid alkyl ester carbonate obtained by the transesterification reaction. It is preferable to increase the content of fatty acid methyl ester to such an extent that it can be suitably used as diesel fuel by subjecting it to an ester exchange reaction again. [0031] Furthermore, when the fatty acid alkyl ester contains a trace amount of an alkali component or the like, it can be removed by a purification operation such as washing with water.
[0032] 本発明により、経済的に、効率よぐ脂肪酸アルキルエステルを製造することができ るため、軽油代替燃料として期待されるバイオ燃料としての脂肪酸アルキルエステル の一層の普及が可能となる。 [0032] According to the present invention, the fatty acid alkyl ester can be produced economically and efficiently, so that the fatty acid alkyl ester as a biofuel expected as an alternative to light oil can be further spread.
実施例 Example
[0033] 以下、本発明を実施例に基づいてさらに詳細に説明する力 本発明はかかる実施 例のみに限定されるものではない。 [0033] Hereinafter, the present invention will be described in more detail based on examples. The present invention is not limited to such examples.
[0034] 参考例 1 [0034] Reference Example 1
遊離脂肪酸がほとんど含まれて!/、な 、市販のてんぷら油(日清オイリオ (株)製、サ ラダエース、〔試験時測定〕酸価 : 0. 15mgKOH/g,遊離脂肪酸: 0. 07重量%)を 原料油脂としてそのままエステル交換反応に供し、アルカリ触媒として水酸化ナトリウ ムを用いて、以下の方法により、脂肪酸アルキルエステルを調製した。なお、酸価は 、中和滴定法により、遊離脂肪酸の含有量は、ガスクロマトグラフィーにより測定した( 以下同様)。 Almost free fatty acids are included! /, Commercially available tempura oil (Nisshin Oilio Co., Ltd., Salada Ace, [measured during testing] acid value: 0.15 mg KOH / g, free fatty acids: 0.07% by weight ) Was directly subjected to a transesterification reaction as a raw oil and fat, and fatty acid alkyl ester was prepared by the following method using sodium hydroxide as an alkali catalyst. The acid value was measured by neutralization titration, and the free fatty acid content was measured by gas chromatography (the same applies hereinafter).
[0035] [第一段反応] [0035] [First stage reaction]
撹拌機を備えた 500mL容のガラス製容器中で、市販のてんぷら油(酸価: 0. 15m gKOH/g,遊離脂肪酸: 0. 07重量%) 100重量部(300g)、メタノール 30重量部( 90g)及び水酸ィ匕ナトリウム 0. 3重量部(0. 9g)を混合し、通常の反応条件 (反応温 度 60°C、撹拌機回転数 500rZmin、反応時間 2時間)でエステル交換反応を行った 。反応物よりメタノールを蒸発除去後、 500mL容の分液ロートを使用し、静置分離に よりアルカリ含有グリセリンの層を除去して、脂肪酸メチルエステル力もなる油層を分 取した。 In a 500 mL glass container equipped with a stirrer, commercially available tempura oil (acid value: 0.15 mg KOH / g, free fatty acid: 0.07 wt%) 100 parts by weight (300 g), methanol 30 parts by weight ( 90g) and 0.3 parts by weight of sodium hydroxide (0.9g) were mixed, and the ester exchange reaction was carried out under the usual reaction conditions (reaction temperature 60 ° C, stirrer rotation speed 500rZmin, reaction time 2 hours). went . After evaporating and removing methanol from the reaction product, a 500-mL separatory funnel was used, and the alkali-containing glycerin layer was removed by stationary separation, and an oil layer having fatty acid methyl ester strength was separated.
[0036] [第二段反応] [0036] [Second stage reaction]
第一段反応により得られた油層 100重量部、メタノール 20重量部、水酸化ナトリウ ム 0. 05重量部を混合し、第一段反応と同様の反応条件でエステル交換反応を行つ た。その後、メタノールを蒸発除去後、 500mL容の分液ロートを使用し、静置分離に よりグリセリンの層を除去して、脂肪酸メチルエステルカゝらなる油層を得た。
[0037] 第一段反応及び第二段反応で得られた各油層に含まれる脂肪酸メチルエステル の含有量を、ガスクロマトグラフィーで分析したところ、それぞれ 90. 0% (第一段反応 後)、 97. 3% (第二段反応後)であり、ディーゼル燃料として品質を満足する脂肪酸 メチルエステルを得ることができた。 100 parts by weight of the oil layer obtained by the first stage reaction, 20 parts by weight of methanol and 0.05 part by weight of sodium hydroxide were mixed, and a transesterification reaction was carried out under the same reaction conditions as in the first stage reaction. Then, after removing the methanol by evaporation, a 500 mL separatory funnel was used, and the glycerin layer was removed by stationary separation to obtain an oil layer made of fatty acid methyl ester. [0037] The content of fatty acid methyl ester contained in each oil layer obtained in the first-stage reaction and the second-stage reaction was analyzed by gas chromatography. As a result, it was found that 90.0% (after the first-stage reaction), 97. It was 3% (after the second stage reaction), and it was possible to obtain a fatty acid methyl ester satisfying quality as a diesel fuel.
[0038] 実施例 1 [0038] Example 1
原料油脂として廃食用油 (酸価: 1. 8mgKOHZg、遊離脂肪酸含量: 0. 9重量% )を使用し、参考例 1の第一段反応で得られたアルカリ含有グリセリンを、以下の前処 理工程に用いた。なお、参考例 1では、未使用の食用油を使用しており、遊離脂肪 酸量も 0. 07重量%と少量であり、遊離脂肪酸量が 0. 2重量%未満の場合、遊離脂 肪酸の中和に消費されるアルカリ触媒の量は無視し得るほどの微量である。そのた め、参考例 1の第一段階反応で得られたアルカリ含有グリセリンには、エステル交換 反応に供されたアルカリ触媒 (水酸ィ匕ナトリウム) 0. 3重量部(0. 9g)のほとんどが残 存していた。 Using waste edible oil (acid value: 1.8 mgKOHZg, free fatty acid content: 0.9 wt%) as raw oil and fat, alkali-containing glycerin obtained in the first stage reaction of Reference Example 1 was pretreated as follows. Used in the process. In Reference Example 1, unused edible oil was used, the amount of free fatty acid was as small as 0.07% by weight, and when the amount of free fatty acid was less than 0.2% by weight, free fatty acid was used. The amount of alkali catalyst consumed for neutralization is negligible. Therefore, the alkali-containing glycerin obtained in the first stage reaction of Reference Example 1 contains almost 0.3 part (0.9 g) of the alkali catalyst (sodium hydroxide) used in the transesterification reaction. Remained.
[0039] [前処理工程] [0039] [Pretreatment step]
参考例 1の第一段反応で得られたアルカリ含有グリセリン 39gと廃食用油(酸価: 1. 8mgKOHZg、遊離脂肪酸含量: 0. 9重量0 /0) 300gとを、 500mL容の反応器中で 混合し、 60°Cで 3時間中和反応を行った。その後、反応液を分液ロートに移し、静置 分離することにより、グリセリンの層を除去して、前処理された廃食用油を得た (酸価: 0. 34mgKOHZg、遊離脂肪酸: 0. 17重量%)。得られた廃食用油には、 0. 22重 量%の水分が含まれていたため、 90°Cで減圧脱水して、水分を 0. 02重量%に低減 した。なお、水分は、カールフィッシャー法により測定した(以下同様)。 The first stage alkali-containing glycerin 39g and cooking oil obtained by reaction of Reference Example 1 (acid value: 1. 8mgKOHZg, free fatty acid content: 0.9 wt 0/0) and 300 g, reactor in 500mL volume And the mixture was neutralized at 60 ° C for 3 hours. Thereafter, the reaction solution was transferred to a separatory funnel and allowed to stand and separate to remove the glycerin layer to obtain a pretreated waste cooking oil (acid value: 0.34 mg KOHZg, free fatty acid: 0.17). weight%). Since the obtained edible oil contained 0.22% by weight of moisture, it was dehydrated under reduced pressure at 90 ° C to reduce the moisture to 0.02% by weight. The water content was measured by the Karl Fischer method (the same applies hereinafter).
[0040] 以降、てんぷら油の代わりに、前処理工程によって得られた廃食用油を使用した以 外は、参考例 1と同様に第一段反応と第二段反応を行って、脂肪酸メチルエステル を得た。 [0040] Thereafter, the first-stage reaction and the second-stage reaction were carried out in the same manner as in Reference Example 1 except that the waste edible oil obtained in the pretreatment step was used instead of the tempura oil, and the fatty acid methyl ester Got.
[0041] 参考例 1と同様にして、第一段反応及び第二段反応で得られた各油層に含まれる 脂肪酸メチルエステルの含有量を分析したところ、それぞれ 89. 4% (第一段反応後 )、 97. 1% (第二段反応後)であり、ディーゼル燃料として品質を満足する脂肪酸メ チルエステルを得ることができた。
[0042] 実施例 2 [0041] In the same manner as in Reference Example 1, the content of fatty acid methyl ester contained in each oil layer obtained in the first-stage reaction and second-stage reaction was analyzed. After) 97.1% (after the second stage reaction), a fatty acid methyl ester satisfying quality as a diesel fuel could be obtained. [0042] Example 2
実施例 1の第一段反応で得られたアルカリ含有グリセリンを使用して前処理工程を 行った以外は、実施例 1と同様にして脂肪酸メチルエステルを得た。なお、実施例 1 では、前処理工程により、遊離脂肪酸量を 0. 17重量%に低減した廃食用油をエス テル交換反応に供したため、実施例 1の第一段階反応で得られたアルカリ含有ダリ セリンには、エステル交換反応に供されたアルカリ触媒 (水酸ィ匕ナトリウム) 0. 3重量 部(0. 9g)のほとんどが残存していた。 A fatty acid methyl ester was obtained in the same manner as in Example 1, except that the pretreatment step was performed using the alkali-containing glycerin obtained in the first-stage reaction of Example 1. In Example 1, since the waste edible oil whose free fatty acid content was reduced to 0.17% by weight in the pretreatment step was subjected to the ester exchange reaction, the alkali-containing product obtained in the first stage reaction of Example 1 was used. Most of 0.3 part by weight (0.9 g) of the alkali catalyst (sodium hydroxide) used in the transesterification reaction remained in dalyserin.
[0043] 参考例 1と同様にして、第一段反応及び第二段反応で得られた各油層に含まれる 脂肪酸メチルエステルの含有量を分析したところ、それぞれ 89. 5% (第一段反応後 )、 97. 2% (第二段反応後)であり、ディーゼル燃料として品質を満足する脂肪酸メ チルエステルを得ることができた。 [0043] In the same manner as in Reference Example 1, when the content of fatty acid methyl ester contained in each oil layer obtained in the first-stage reaction and second-stage reaction was analyzed, 89.5% each (first-stage reaction) After), 97.2% (after the second stage reaction), it was possible to obtain a fatty acid methyl ester satisfying quality as a diesel fuel.
[0044] 比較例 1 [0044] Comparative Example 1
てんぷら油の代わりに、実施例 1に用いたのと同様の廃食用油(酸価: 1. 8mgKO HZg、遊離脂肪酸含量: 0. 9重量%) 100重量部を使用した以外は、参考例 1と同 様にして、脂肪酸メチルエステルを得た。ただし、廃食用油には 0. 2重量%の水分 が含まれていたため、予め、 90°Cで減圧脱水により、水分量を 0. 02重量%に低減 したものを使用した。 Reference Example 1 except that 100 parts by weight of waste edible oil similar to that used in Example 1 (acid value: 1.8 mgKO HZg, free fatty acid content: 0.9% by weight) was used instead of tempura oil. In the same manner, fatty acid methyl ester was obtained. However, since waste edible oil contained 0.2% by weight of water, we used oil whose water content was reduced to 0.02% by weight at 90 ° C by dehydration under reduced pressure.
[0045] 参考例 1と同様にして、第一段反応及び第二段反応で得られた各油層に含まれる 脂肪酸メチルエステルの含有量を分析したところ、それぞれ 52. 4% (第一段反応後 )、 72. 1% (第二段反応後)であり、ディーゼル燃料として品質を満足するものではな かった。これは、アルカリ触媒 (水酸化ナトリウム)の大半が廃食用油に含まれる遊離 脂肪酸の中和に消費されたためと推定される。即ち、使用した廃食用油 100重量部 に含まれる遊離脂肪酸の中和に必要とされる水酸化ナトリウムは、ォレイン酸を基準 にして分子量を勘案して計算すると、 0. 25重量部程度である。従って、エステル交 換反応に供した水酸ィ匕ナトリウム 0. 3重量部のうち、触媒として使用されるのは、わず 力に 0. 3— 0. 25 = 0. 05重量咅程度となる。 [0045] The content of fatty acid methyl ester contained in each oil layer obtained in the first-stage reaction and second-stage reaction was analyzed in the same manner as in Reference Example 1. After), it was 72.1% (after the second stage reaction), and did not satisfy the quality as diesel fuel. This is presumably because most of the alkali catalyst (sodium hydroxide) was consumed to neutralize free fatty acids contained in the waste cooking oil. That is, sodium hydroxide required for neutralization of free fatty acid contained in 100 parts by weight of used cooking oil is about 0.25 part by weight when calculated based on molecular weight based on oleic acid. . Therefore, out of 0.3 parts by weight of sodium hydroxide used in the ester exchange reaction, the amount used as a catalyst is about 0.3—0.25. .
[0046] 以上の結果より、実施例の方法によれば、 0. 3重量部の水酸ィ匕ナトリウムの使用に よって、十分な触媒作用が発揮され、第一段反応で、 85%以上の含有率で脂肪酸メ
チルエステルが得られている。これに対し、比較例の方法においては、アルカリ触媒 として用いられる水酸ィ匕ナトリウムの量が少ないため、得られる脂肪酸メチルエステル の含有率が低い。比較例において、水酸ィ匕ナトリウムがアルカリ触媒としての機能を 実施例と同等に発揮するためには、 0. 3 + 0. 25 = 0. 55重量部程度の多量の水酸 化ナトリウムが必要となる力 多量のアルカリ触媒の使用は、コスト高であるだけでなく 、エステル交換反応終了後のグリセリンの精製や処理のコスト負担も増加することに なる。従って、実施例の方法により、ディーゼル燃料油としての品質を満足する脂肪 酸アルキルエステルを、安価な運転費用で、容易に製造し得ることが分かる。 [0046] From the above results, according to the method of the example, by using 0.3 part by weight of sodium hydroxide, sufficient catalytic action was exhibited, and in the first stage reaction, 85% or more Fatty acid content by content A chill ester is obtained. On the other hand, in the method of the comparative example, since the amount of sodium hydroxide used as an alkali catalyst is small, the content of fatty acid methyl ester obtained is low. In the comparative example, sodium hydroxide requires a large amount of sodium hydroxide of about 0.3 + 0.25 = 0.55 parts by weight in order for the sodium hydroxide hydroxide to function as an alkali catalyst in the same way as the examples. The use of a large amount of alkali catalyst is not only costly, but also increases the cost burden of purification and treatment of glycerin after the transesterification reaction. Therefore, it can be seen that the fatty acid alkyl ester satisfying the quality as a diesel fuel oil can be easily produced at a low operating cost by the method of the example.
産業上の利用可能性 Industrial applicability
本発明により得られる脂肪酸アルキルエステルは、石油代替の新エネルギーとして 注目されているバイオマス由来のディーゼル燃料等として好適に使用することができ る。
The fatty acid alkyl ester obtained by the present invention can be suitably used as a biomass-derived diesel fuel that is attracting attention as a new energy alternative to petroleum.
Claims
[1] 油脂とアルコールのエステル交換反応をアルカリ触媒の存在下で行って脂肪酸ァ ルキルエステルを製造する方法であって、前記エステル交換反応にぉ ヽて副生した アルカリ含有グリセリンを原料油脂と混合し、該原料油脂中の遊離脂肪酸をアルカリ 含有グリセリン中のアルカリ触媒で中和する工程を含む前処理工程で得られた油脂 を前記エステル交換反応に供することを特徴とする、脂肪酸アルキルエステルの製 造方法。 [1] A method for producing a fatty acid alkyl ester by performing a transesterification reaction between an oil and a fat in the presence of an alkali catalyst, wherein the alkali-containing glycerin produced as a by-product through the transesterification reaction is mixed with the raw oil and fat. And the fatty acid obtained in the pretreatment step including the step of neutralizing the free fatty acid in the raw material fat with an alkali catalyst in the alkali-containing glycerin is subjected to the transesterification reaction. Manufacturing method.
[2] アルカリ触媒力 水酸化ナトリウム、水酸ィ匕カリウム、ナトリウムアルコラート及びカリ ゥムアルコラートからなる群より選ばれた少なくとも 1種である請求項 1記載の製造方 法。 [2] The method according to claim 1, wherein the catalyst is at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium alcoholate and potassium alcoholate.
[3] 原料油脂が、廃食用油である請求項 1又は 2記載の製造方法。 [3] The production method according to claim 1 or 2, wherein the raw material fat is waste cooking oil.
[4] ディーゼル燃料用の脂肪酸アルキルエステルを製造する、請求項 1〜3いずれか 記載の製造方法。
[4] The production method according to any one of claims 1 to 3, wherein a fatty acid alkyl ester for diesel fuel is produced.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-342668 | 2005-11-28 | ||
JP2005342668A JP2007145759A (en) | 2005-11-28 | 2005-11-28 | Method for producing alkyl ester of fatty acid |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007060993A1 true WO2007060993A1 (en) | 2007-05-31 |
Family
ID=38067218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/323325 WO2007060993A1 (en) | 2005-11-28 | 2006-11-22 | Process for producing fatty acid alkyl ester |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007145759A (en) |
WO (1) | WO2007060993A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020175661A1 (en) * | 2019-02-27 | 2020-09-03 | バイオ燃料技研工業株式会社 | Water treatment method, and production method and production system for denitrification agent/nitrification-promoting agent |
CN111690468A (en) * | 2020-06-24 | 2020-09-22 | 海南绿新新能源有限公司 | Production method of novel biological grease blended clean fuel oil |
CN114196482A (en) * | 2021-12-23 | 2022-03-18 | 湖北新铭生物能源科技有限公司 | Method for preparing biodiesel from kitchen waste grease |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5124764B2 (en) * | 2006-07-21 | 2013-01-23 | 国立大学法人 鹿児島大学 | Method for producing biodiesel fuel |
BRPI1004589A2 (en) * | 2010-11-10 | 2013-02-26 | Arak Idea Servicos De Design E Patentes Ltda | hinged fractal structure |
JP6457839B2 (en) * | 2015-02-27 | 2019-01-23 | 関西化学機械製作株式会社 | Method for producing modified fat and oil and method for producing fatty acid ester using the same |
EP4071226A1 (en) * | 2021-04-08 | 2022-10-12 | AT Agrar-Technik Int. GmbH | Process for producing fatty acid alkyl esters |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5434279A (en) * | 1991-11-06 | 1995-07-18 | Wimmer; Theodor | Process for preparing fatty acid esters of short-chain monohydric alcohols |
JPH10182518A (en) * | 1996-12-27 | 1998-07-07 | Someya Shoten:Kk | Process for continuous production of higher fatty acid methyl ester and glycerol from waste food oil, etc., and apparatus therefor |
US6538146B2 (en) * | 1999-06-07 | 2003-03-25 | At Agrar-Technik Gmbh | Method for producing fatty acid esters of monovalent alkyl alcohols and use thereof |
-
2005
- 2005-11-28 JP JP2005342668A patent/JP2007145759A/en active Pending
-
2006
- 2006-11-22 WO PCT/JP2006/323325 patent/WO2007060993A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5434279A (en) * | 1991-11-06 | 1995-07-18 | Wimmer; Theodor | Process for preparing fatty acid esters of short-chain monohydric alcohols |
JPH10182518A (en) * | 1996-12-27 | 1998-07-07 | Someya Shoten:Kk | Process for continuous production of higher fatty acid methyl ester and glycerol from waste food oil, etc., and apparatus therefor |
US6538146B2 (en) * | 1999-06-07 | 2003-03-25 | At Agrar-Technik Gmbh | Method for producing fatty acid esters of monovalent alkyl alcohols and use thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020175661A1 (en) * | 2019-02-27 | 2020-09-03 | バイオ燃料技研工業株式会社 | Water treatment method, and production method and production system for denitrification agent/nitrification-promoting agent |
JPWO2020175661A1 (en) * | 2019-02-27 | 2021-12-23 | バイオ燃料技研工業株式会社 | Water treatment method, manufacturing method and manufacturing system of denitrifying agent or nitrification accelerator |
JP7527657B2 (en) | 2019-02-27 | 2024-08-05 | バイオ燃料技研工業株式会社 | Water treatment method, method and system for producing denitrification agent or nitrification promoter |
CN111690468A (en) * | 2020-06-24 | 2020-09-22 | 海南绿新新能源有限公司 | Production method of novel biological grease blended clean fuel oil |
CN114196482A (en) * | 2021-12-23 | 2022-03-18 | 湖北新铭生物能源科技有限公司 | Method for preparing biodiesel from kitchen waste grease |
Also Published As
Publication number | Publication date |
---|---|
JP2007145759A (en) | 2007-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fonseca et al. | Biodiesel from waste frying oils: Methods of production and purification | |
Leung et al. | A review on biodiesel production using catalyzed transesterification | |
Sulaiman et al. | Reactive extraction of solid coconut waste to produce biodiesel | |
CA2657180C (en) | Process for production of fatty acids, fatty acid esters and sterolesters from soapstock | |
RU2503714C2 (en) | Integrated method of producing biofuel from different types of raw material and related products | |
WO2007060993A1 (en) | Process for producing fatty acid alkyl ester | |
MX2007009932A (en) | Production of biodiesel and glycerin from high free fatty acid feedstocks. | |
Yuliana et al. | Utilization of waste capiz shell–Based catalyst for the conversion of leather tanning waste into biodiesel | |
Fadhil et al. | Ethanolysis of fish oil via optimized protocol and purification by dry washing of crude ethyl esters | |
BRPI0617283B1 (en) | process for the preparation of hydrocarbon fuel | |
EP2145011A1 (en) | Method for producing biodiesel | |
JP2005350632A (en) | Method for producing biodiesel fuel | |
KR20150011306A (en) | Method for preparing fatty acid alkyl ester using fat | |
Malabadi et al. | Biodiesel production via transesterification reaction | |
Sanchez et al. | Optimization of biodiesel production process using sunflower oil and tetramethyl ammonium hydroxide as catalyst | |
Saputro et al. | A biodiesel production technology from used cooking oil: A review | |
Ala’a Alsoudy et al. | Influence on process parameters in transesterification of vegetable and waste oil–a review | |
KR100790298B1 (en) | Process for preparing high purity fatty acid alkyl ester and fatty acid alkyl ester prepared therefrom | |
Đorđević et al. | Triethanolamine-based deep eutectic solvents as cosolvents in biodiesel production from black mustard (Brassica nigra L.) seed oil | |
JP2022045359A (en) | Downstream processing of fatty alcohol compositions produced by recombinant host cells | |
Sarma et al. | Recent inventions in biodiesel production and processing-a review | |
JP7252588B2 (en) | Method for producing biodiesel fuel | |
Rashid et al. | Advances in production of biodiesel from vegetable oils and animal fats | |
Guana et al. | Biodiesel production from waste oily sludge by acid-catalyzed esterification | |
WO2006016492A1 (en) | Process for production of biodiesel fuel compositions and equipment therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06833147 Country of ref document: EP Kind code of ref document: A1 |