+

WO2006129998A1 - Improved strains of trichoderma as biocontrol agents, methods of obtaining same and use thereof for controlling diseases caused by phytopathogenic fungi - Google Patents

Improved strains of trichoderma as biocontrol agents, methods of obtaining same and use thereof for controlling diseases caused by phytopathogenic fungi Download PDF

Info

Publication number
WO2006129998A1
WO2006129998A1 PCT/MX2005/000114 MX2005000114W WO2006129998A1 WO 2006129998 A1 WO2006129998 A1 WO 2006129998A1 MX 2005000114 W MX2005000114 W MX 2005000114W WO 2006129998 A1 WO2006129998 A1 WO 2006129998A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
trichoderma
strain
map kinase
strains
Prior art date
Application number
PCT/MX2005/000114
Other languages
Spanish (es)
French (fr)
Inventor
Alfredo Herrera Estrella
Artemio Mendoza Mendoza
Carlos CORTÉS PENAGOS
Pedro MARTÍNEZ HERNÁNDEZ
Vianey Olmedo Monfil
Original Assignee
Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional filed Critical Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional
Publication of WO2006129998A1 publication Critical patent/WO2006129998A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/30Microbial fungi; Substances produced thereby or obtained therefrom
    • A01N63/38Trichoderma

Definitions

  • Trichoderma Improved strains of Trichoderma as biocontrol agents, methods for obtaining them and their use for the control of diseases caused by phytopathogenic fungi.
  • the present invention relates to the development of modified microorganisms useful as biocontrol agents, specifically to obtain improved Trichoderma strains useful for the treatment of diseases caused by phytopathogenic fungi.
  • Trichoderma hydrolytic enzymes such as chitinases, ⁇ -1-3 glucanases, ⁇ -1-6 glucanases, and proteases, facilitate host 1 penetration.
  • Trichoderma species have been used as potent biocontrol agents against a variety of phytopathogenic fungi 2 .
  • Trichoderma asperellum T34 (2) isolates obtained from composts prepared from the organic fraction of market waste, sewage sludge and garden waste 3 , improved strains such as T. viride Li 49 4 , T. have been used.
  • harzianum YC459 5 , T-1-R9 6 virid T, or mutants deficient in the production of viridiol but retaining its effectiveness as biocontrol agents, such as T. virens TV-111, TV-115 and TV-109 7 .
  • Trichoderma spores are known in the technical field, for example by fermentative culture in bioreactors, subsequent lyophilization and filtration of the material obtained in filters that only allow the spores to pass, or by inoculation of wheat flour with Trichoderma species and subsequent dilution using diatomaceous earth.
  • these methods are low productivity, mainly due to the low spore production characteristics of the species of
  • Tr ⁇ choderma used so far.
  • Trichoderma species have been obtained that can coexist in culture by transforming some of the strains by radiation of T. longibratum by cobalt 8 , biocontrol compositions comprising two or more Trichoderma strains of the species asperellum, atroviride and inhamatum 9 , or compositions with synergistic effects of chitin degradation containing Trichoderma strain proteins in conjunction with bacterial proteins, for example Streptomyces 10 .
  • Trichoderma induces the expression of proteins of interest, such as lytic enzymes that destroy the cell wall of pathogenic fungi under certain culture conditions, to subsequently isolate the genetic sequences encoding such proteins and use them to transform selected strains of Trichoderma through expression vectors.
  • proteins of interest such as lytic enzymes that destroy the cell wall of pathogenic fungi under certain culture conditions
  • Trichoderma's antagonistic effect is due to the joint expression of several lytic enzymes, encoded by several genes that have been designated as mycoparasitism-related genes (MRGs). Due to this effect, the genetic manipulation methods aimed at the isolation of lithic enzyme genes to subsequently obtain transformed strains of Trichoderma over-producing said enzymes, only achieve the increased expression of at least two isolated genes at the same time, with which obtaining improved strains of Trichoderma for use in the fight of plant pathogenic fungi, is quite limited.
  • MRGs mycoparasitism-related genes
  • FIG. 1 Southern blot analysis of the T. virens tvkl gene.
  • the restriction enzymes used are shown in the upper part of the figure.
  • the probe used was the BamHI fragment corresponding to 3.2 Kb and containing the entire open reading frame.
  • FIG. 1 Tvkl gene sequence The possible start and end of the translation is shown. The donor and acceptor sequences of introns are indicated with underlined letters.
  • Figure 3. Strategy for the interruption of the tvkl gene and the analysis of transformants.
  • A Schematic representation of the replacement of Tvkl. The thick arrows represent the coding regions of tvkl and arg2. The lines represent regions 5 1 and 3 1 of the tvkl gene. Cross-linking events are indicated by dotted lines.
  • EV EcoRV
  • B BamHI
  • S Sa / I
  • C C / al
  • A Apa ⁇ ).
  • MAPK is a recombinant MAP kinase used as a positive control.
  • FIG. 1 Expression of MRGs in simulated mycoparasitism.
  • TO Northern type analysis of the Tv-prb ⁇ , Tv-nag1, Tv-cht1 and Tv-bgn2 genes under carbon-limiting conditions with and without R. solani walls in The wild strain and the mutant ⁇ tvk24. The numbers indicate the induction time.
  • B Northern type analysis of Tv-prb1 under conditions of nitrogen limitation and simulated mycoparasitism. The symbols (+) and
  • (-) denote the presence and absence of R solani cell walls, respectively. Fifteen micrograms of total RNA were loaded in each lane. The 28S ribosomal gene was used as a control.
  • FIG. 6 Expression of mycoparasitism-related genes (MRGs) in a confrontation with R solani.
  • MRGs mycoparasitism-related genes
  • A Schematic representation of the interaction between T. virens and R. solani. T indicates the strain of T. virens growing alone in boxes with VMS, TR is the strain of T. virens growing in the presence of R solani, and the interaction zone is indicated by the color black.
  • B Expression of MRGs in strains of T. virens. The samples were collected when the T. virens strains overgrown the colony of R solani. The probes used for the Northern type analysis were the same indicated in Figure 5. 15 ⁇ g of RNA were loaded in each lane.
  • FIG. 7 Biocontroller activity of wild strains, ⁇ tvk24 and ⁇ tvk133.
  • TO Disease index in the root system of cotton plants infected with R solani.
  • B Percentage of surviving cotton seedlings challenged with P. ultimum. The columns that appear with
  • FIG. 8 Effect of Tvk1 on the enzymatic activity produced in supernatants of wild T. virens (wt) and ⁇ tvk24 under simulated mycoparasitism.
  • the arrow indicates the activity of Prbl Total glucanase (C) and chitinase (D) activities were detected under simulated mycoparasitism in the absence of a carbon source.
  • FIG. 1 Direct confrontation of Trichoderma with various phytopathogenic fungi as hosts.
  • Phytophthora capsici A
  • Sclerotium rolfsii B
  • Rhizoctonia solani C
  • Colletotrichum lindemuthianum D
  • Tr ⁇ choderma overproducers of several lytic enzymes Provide strains of Tr ⁇ choderma overproducers of several lytic enzymes to be used as antagonists of phytopathogenic fungi
  • Tr ⁇ choderma overproducers of several lytic enzymes Provide strains of Tr ⁇ choderma overproducers of several lytic enzymes and at the same time with great capacity of spore production to be used as antagonists of phytopathogenic fungi,
  • Trichoderma genes coding for MAP kinases related to the establishment of the parasitic relationship of Trichoderma and its hosts,
  • - Provide a genetic construct for the transformation of fungal cells, which include the polynucleotide sequences described in this invention, - Provide proteins with MAP kinase activity related to the establishment of the parasitic relationship of Trichoderma and its hosts,
  • the parental strain T. virens Tv10.4 has been deposited in the American Type Culture Collection on December 20, 2004 with the number PTA-6474.
  • the strain T. virens ⁇ tvk24 was deposited in the American Type Culture Collection on December 20, 2004 with the number PTA-6474 and the strain T. virens ⁇ tvk133 was deposited in the American Type Culture Collection on December 20, 2004 with the number PTA-6474.
  • the units, prefixes and symbols may be mentioned using their abbreviation accepted by Sl.
  • the nucleic acid sequence is written from left to right in the 5 'to 3' orientation;
  • the amino acid sequence is written from left to right in the orientation of the amino edge to the carboxy terminal edge.
  • the numerical ranges are inclusive of the numbers that define the range and include each of the whole numbers that define the range.
  • Amino acids can be designated either by their known three-letter symbols or by their single-letter symbols that have been recommended by Ia
  • nucleotides can be designated by their commonly accepted unique letter code.
  • the terms of software, electrical and electronic are used as defined in the New IEEE Dictionary for Electrical and Electronic Terms 12 .
  • amplification is meant the construction of multiple copies of a nucleic acid sequence or multiple copies complementary to the sequence of a nucleic acid using at least one nucleic acid sequence as the initial reference frame.
  • the amplification systems include the polymerase chain reaction (PCR), the ligase dependent chain reaction (LCR), the nucleic acid sequence dependent amplification (NASBA, Canteen, Mississauga , Ontario), the Q-Beta Replicase system, the Transcription-dependent Amplification System (TAS), and the Strand Displacement Amplification -SDA, for its acronym in English) 13 .
  • PCR polymerase chain reaction
  • LCR ligase dependent chain reaction
  • NASBA nucleic acid sequence dependent amplification
  • TAS Transcription-dependent Amplification System
  • SDA Strand Displacement Amplification -SDA
  • antisense orientation refers to a double stranded polynucleotide sequence that is functionally linked to a promoter in an orientation in which the antisense orientation of said molecule is transcribed.
  • the antisense strand is sufficiently complementary to an endogenous transcription product so that the translation of the endogenous transcript product is inhibited.
  • chromosomal region refers to the length of a chromosome that can be measured by reference to the linear segment of DNA that said region includes.
  • the region can also be defined from two unique DNA sequences or molecular markers.
  • conservatively modified variants refers to those nucleic acids encoding identical or conservatively modified variants of the amino acid sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any type of protein. For example, the codons GCA, GCC, GCG and GCU encode the amino acid alanine. These nucleic acid variations are silent variations and represent conservatively modified variants. By Likewise, any nucleic acid sequence encoding a polypeptide herein describes all possible silent variations of the nucleic acid. In the same way, any silent variation of a nucleic acid sequence encoding a polypeptide is implicitly included in each polypeptide sequence of this document.
  • amino acid sequences it is recognized that individual substitutions, deletions or additions to a nucleic acid, a peptide, a polypeptide or a protein sequence that alters, adds or eliminates a single amino acid or a small percentage of amino acids in Ia
  • the encoded sequence is also a "conservatively modified variant" in which the alteration results in the substitution of an amino acid with a biochemically similar amino acid. Therefore, any number of amino acid residues selected from the number of intakes ranging from 1 to 15 can be altered in the manner described above. For example, 1, 2, 3, 4, 5, 7 or 10 alterations can be created.
  • Conservatively modified variants generally have a biological activity similar to that of the unmodified polypeptide sequence from which they were derived. For example, the specificity of the substrate, the enzymatic activity, or the binding properties between a receptor and its elicitor are generally from 30% to 90% of the activity of the native protein and its native substrate. Conservative substitution tables are widely known in the area.
  • nucleic encoding a protein may include untranslated sequences (introns, for example) contained within translated regions of the nucleic acid, or it may not include such sequences (as in a cDNA, for example).
  • the information of the encoded protein is specified in the use of codons.
  • the universal genetic code is used to determine the translation code of a nucleic acid sequence into an amino acid sequence.
  • the universal code in the genetic information contained within the mitochondria of some plants, animals or fungi, of the bacteroide organism Micoplasma capricolum, the ciliated organism Macronucleus can be included within the corresponding organism.
  • the codon preferences of the host organism in which the nucleic acid is intended to be expressed can be exploited.
  • the nucleotide sequences of the invention described herein can be expressed in Trichoderma species, the sequences can be modified taking into account codon preferences and GC content preference that may occur between species of the Trichoderma genus.
  • full-length sequence (of the English “full-length sequence") of a specific polynucleotide or its encoded protein refers to the complete sequence of the amino acid chain of a native (non-synthetic) endogenous protein and in its biologically active form.
  • the methods used to determine if a sequence is full length are widely known and as an example we can mention “Northern” or “Western” type hybridizations, primer extension, or ribonuclease protection 14 .
  • homologous full length sequences orthologs or paralogs
  • the consensus sequences generally present at the 3 'or 5' edge of the untranslated regions of a messenger RNA molecule (mRNA) help to identify the full length sequence of a polynucleotide.
  • mRNA messenger RNA molecule
  • the consensus sequence ANNNNAUGG 1 in which the underlined codon represents the methionine present in the N-terminal edge helps to determine if the polynucleotide has a 5 'terminal edge full.
  • Consensus sequences at the 3 'edge such as polyadenylation sequences, help determine if the 3' terminal edge is complete.
  • heterologous refers here to a nucleic acid that derives from a different species or, if derived from the same species, a nucleic acid that is substantially modified in its native form.
  • a promoter that is operatively linked to a heterologous structural gene belongs to a different species from which the structural gene was originally obtained as long as it originates from a deliberate human intervention.
  • one to several heterologous genes must be substantially modified from their original form.
  • a heterologous protein can originate from a different species, or from the same species as long as it originates from a deliberate human intervention.
  • host cell refers to a cell that contains a vector and that ensures the replication and / or expression of said vector.
  • Host cells can be prokaryotic cells such as E. coli, or eukaryotic cells such as yeast, insect, amphibian or mammalian cells.
  • the host cells are Trichoderma strains.
  • hybridization complex refers to a double stranded nucleic acid structure formed by two single stranded nucleic acid sequences hybridized together selectively.
  • the term "introduced” in reference to the act of inserting a nucleic acid into a cell means “transfecting” or “transforming” and includes the incorporation of nucleic acids into a eukaryotic or prokaryotic cell in which the nucleic acid can be incorporated into the cell. genome of the cell (in the DNA of a chromosome, of a plasmid, a plastid or a mitochondrion), or it can be converted into an autonomous replicon, or expressed transiently.
  • isolated refers to a material (nucleic acid or a protein) that is: (1) substantially or completely free of the components that they usually accompany or interact with him in his natural form.
  • the isolated material may optionally comprise another material that is not associated with the isolate in its natural form; or (2) in case the material is in its natural environment, if the material has been synthetically altered by a deliberate human intervention that modifies its composition or assigns it to a specific place in the cell (for example, an organelle) different from the place where it is in its natural environment.
  • the alteration that gives rise to the synthetic form of the material can be directed to the material (nucleic acid and / or protein) or depend on a removal from the natural environment.
  • a natural nucleic acid can be isolated if it is altered or if it is transcribed from DNA that has been previously altered from a deliberate human intervention performed in the cell from which the nucleic acid originated 15 '16 .
  • a natural nucleic acid for example, a promoter
  • Nucleic acids that are "isolated” following this definition may be referred to as "heterologous" nucleic acids.
  • nucleic acid or “nucleotide” refers to a deoxyribonucleotide or ribonucleotide polymer in its single-stranded or double-stranded form and comprises those analogous molecules that have the essential nature of natural nucleotides to hybridize to stranded nucleic acids simple in a manner similar to that of natural nucleotides.
  • nucleic acid library refers to a collection of RNA or DNA molecules that substantially comprise and represent the integrity of the transcribed fraction of the genome of a specific organism.
  • EXAMPLES constructions libraries, either genomic or cDNA libraries libraries are described conventional molecular biology references 17 '18' 19.
  • polynucleotide refers to a deoxyribonucleotide, a ribopolinucleotide, or its analogues that have the essential properties of a natural ribonucleotide, such as the fact that they hybridize, under conditions of astringent hybridization, to essentially the same nucleotide sequences as nucleotides. that occur naturally, or that allow translation in the same amino acids as natural nucleotides.
  • a polynucleotide can be full length or a sequence segment of a structural gene or a native or heterologous regulatory gene. Unless explicitly mentioned, the term includes the specified sequence as well as its complementary sequence.
  • DNA or RNA molecules that contain segments that have been modified to increase their stability or for other reasons are also "polynucleotides” for purposes of the present invention.
  • DNA or RNA molecules that include infrequent nucleotide bases, such as inosine, or modified nucleotide bases, such as tritilated bases to cite just two examples would also be considered “polynucleotides” for purposes of the present invention. It follows from this paragraph that a wide variety of modifications have been made to DNA or RNA molecules, and that such modifications serve multiple purposes.
  • the term polynucleotide is used herein to designate chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and simple or complex cells.
  • polypeptide refers to amino acid polymers in which one or more of the amino acids is an analogue of a corresponding natural amino acid.
  • the essential nature of such analogs is that when incorporated into a protein, said protein can be specifically recognized by antibodies designed to recognize that same protein when it is composed exclusively of natural amino acids.
  • polypeptide ",” peptide ", and” protein also include, without limitation, glycolization, lipid binding, sulphation, carboxylation range of residues containing glutamic acid, hydroxylation and ribosylation of ADP.
  • polypeptides are not completely linear, for example, the polypeptides may be branched as a result of ubiquitination, they may be circular, with or without branching as a result of post-translational events such as natural processes and events caused by human manipulation that they do not occur naturally, circular and / or branched polypeptides can be synthesized by natural processes that do not depend on translation and by processes completely synthetic Additionally, this invention also includes terminal amino acid variants with or without methionine of each of the proteins related to the present invention.
  • promoter refers to a region of DNA located in the 5 'direction of the codon at the start of the transcription and which is involved in the recognition and binding of an RNA polymerase and other proteins necessary for the initiation of the transcription.
  • a "promoter” is a sequence derived from another organism but capable of initiating transcription in heterologous cells. Some examples of promoters include those obtained from the DNA of plant viruses and bacteria that contain genes that are expressed in plants such as Agrobacterium or Rhizobium. Examples of promoters that are under control of developmental states include promoters that preferentially initiate transcription in certain tissues, such as leaves, roots or seeds. These types of promoters are called “tissue-preferred”.
  • a specific "cell type” promoter is a promoter that only directs expression in certain types of cells located in one or more organs, such as, for example, the cells of the vasculature in leaves and roots.
  • An "inducible” or “repressible” promoter is a promoter that responds to control signals that it emits from the environment. Some examples of environmental conditions that may have an effect on transcription dependent on inducible promoters are the presence of anaerobic conditions, or the effect of light.
  • Tissue-specific promoters, tissue-preferred promoters, specific cell-type promoters and inducible promoters constitute the class of "non-constitutive" promoters. "Constitutive" promoters are those that direct expression systemically and under most of the environmental conditions.
  • recombinant refers to a cell or a vector that has been modified by the introduction of nucleic acid or that a cell is derived from another cell that was modified by said introduction.
  • recombinant cells express genes that are not found identically within the native (non-recombinant) form of the cell or that express native genes that would otherwise be under-expressed, expressed abnormally, or not express as a result of human intervention.
  • the recombinant term does not include the alteration of the cell or of the vector by events that occur naturally (for example, spontaneous mutation, or transformation, transduction or transposition) like all those that occur without human intervention.
  • expression cassette refers to a nucleic acid construct (generated in recombinant or synthetic form) that contains a series of nucleic acid elements that allow transcription of a particular nucleic acid in a host cell.
  • the recombinant expression cassette can be incorporated into a plasmid, on a chromosome, in mitochondrial DNA, in plastidic DNA, in a virus, or in a nucleic acid fragment.
  • the portion of the recombinant expression cassette of an expression vector includes, among other sequences, the nucleic acid to be transcribed and a promoter.
  • amino acid residue or “amino acid residue” is used interchangeably to refer to an amino acid that is incorporated into a protein, a polypeptide or a peptide.
  • the amino acid may be natural or may include synthetic amino acids analogous to natural amino acids that may function similarly to natural amino acids.
  • sequences that selectively hybridize typically have 90% shared sequence identity, and preferably 100% shared sequence identity.
  • transgenic strain or “transformant” or “transformed strain” refers to a well characterized isolate of the fungus that contains in its genome a polynucleotide introduced into the laboratory by transformation techniques known in the art. Generally said polynucleotide is stably integrated and is transmitted to the offspring of said fungus. The polynucleotide can be integrated into the genome in isolation or as part of a recombination vector. He The term “transgenic” includes here any cell or cell line, for which the genotype has been altered by the introduction of a nucleic acid, including those transgenic elements that were created by transformation.
  • vector refers to a nucleic acid used for the transformation of a host cell in which a polynucleotide can be inserted. Vectors are often replicons. Expression vectors allow the transcription of a nucleic acid that has been inserted.
  • the terms indicated below are used to describe the relationship between the sequences of two or more nucleic acids or polynucleotides: (a) “reference sequence”, (b) “comparison interval”, (c) "identity of The sequence ", (d) percentage of identity of the sequence” and (e) "substantial identity”.
  • reference sequence is a defined sequence that is used as the basis for sequence comparison.
  • a reference sequence may be a portion or a complete sequence; for example, a segment of a full-length cDNA, or the full length of the cDNA or an entire gene.
  • comparison interval refers to a specific and contiguous segment of a polynucleotide sequence that can be compared to a reference sequence and for which the comparative portion of the polynucleotide sequence may include additional or missing elements (by example, "gaps") when compared with the reference sequence (which has no additional or missing elements) so that the alignment of the two sequences is optimal.
  • the comparison range is at least 20 contiguous nucleotides and can often include more than 100 nucleotides.
  • the optimal sequence alignment for comparison can be obtained from the local homology algorithm of Smith and Waterman 20 , by the algorithm of Needlman and Wunsch 21 , by the similarity search method of Pearson and Lipman 22 , by the computerized implementation of These algorithms, including but not limited to: CLUSTAL in the program
  • the family of BLAST programs that can be used for comparative sequence searches includes: BLASTN for comparative search of nucleotide sequences compared to nucleotide sequences contained in public domain databases; BLASTP for comparative search of protein sequences compared to protein sequences contained in public domain databases; TBLASTN for finding homologies between a protein sequence and a nucleotide sequence; and TBLASTX for a comparison of a nucleotide sequence with a set of nucleotide sequence databases 27 .
  • identity or similarity values of a sequence indicated in this document refer to the values obtained with the BLAST 2.0 version using the "default" parameters 28 .
  • the software to perform these analyzes is in the public domain and can be accessed or obtained through the Center's website
  • the algorithm begins by identifying pairs of sequences with a high degree of similarity from the identification of short words with a length of W in the search sequence; said words must be identical or very similar to that of a threshold of value T when aligned with a word of the same length contained in a public domain database.
  • This initial similarity between two sequences results in the beginning of a series of searches to find sequences of greater length and a high degree of similarity.
  • AT is called the word neighborhood value threshold 28 .
  • the words found extend in both directions for each of the sequences as long as the cumulative alignment value continues to grow. For nucleotide sequences the cumulative values are calculated using the M parameters (prize value for a pair of matching waste; it will always be greater than
  • BLAST also performs a statistical analysis of the similarity between 2 sequences 30 .
  • a measure of similarity provided by the BLAST algorithm is the minimum probability of sum (P (N)), which provides an indication of the probability with which the agreement between two nucleotide or amino acid sequences can occur at random.
  • BLAST searches assume that proteins can be modeled as random sequences. However, many real proteins comprise regions of non-random sequences that may be enriched with one or more amino acids. These regions of low complexity can be aligned from unrelated proteins although other regions of said proteins are completely different and have no similarity.
  • Some programs that function as low complexity filters can be used to reduce such low complexity alignments. For example, the SEG 31 and XNLJ 32 program . This type of filters can be used individually or in combinations.
  • sequence identity in the context of two nucleic acid or polypeptide sequences refers to residues in both sequences that are the same when they are aligned to look for the greatest correspondence within a window. comparative specific. When the percentage of the sequence identity is used in reference to proteins, it is recognized that the positions of residues that are not identical often differ by conserved amino acid substitutions, in which the amino acids are replaced by other amino acids that have similar biochemical properties. (load or hydrophobicity) and therefore does not change the functional properties of the molecule. If the sequences differ by the conservative nature of the substitution, the percentage of sequence identity can be adjusted upwards to correct the effect of the conservative nature of the substitution.
  • sequence similarity or “similarity”.
  • the task of making such adjustments is routine for those with art skills. It generally involves assessing a conservative substitution as a partial and non-complete sequence discrepancy, thereby increasing the percentage of sequence identity. For example, when an identical amino acid is assigned a value of 1 and a non-conservative substitution is assigned a value of zero, a conservative substitution is assigned a value between zero and 1. The value of the substitutions is calculated using the Meyers and Miller 33 algorithm, as implemented in the PC / GENE program (Intellegentics, Mountain View, California, USA).
  • the term "percentage of identity sequence” refers to the value determined from the comparison of two optimally aligned sequences from a specific comparative window, and in which the portion of the polynucleotide sequence in the comparative window may include additions or deletions (ie absences) when compared to the reference sequence (which does not include additions or deletions) for the optimal alignment of two sequences. The percentage is calculated by determining the number of positions from which the nucleotide base or amino acid residue appears in both sequences to obtain the number of matching positions, dividing said number by the total number of positions in the comparative window and multiplying per 100 to obtain the percentage of identity sequence.
  • polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 70%, preferably at least 80%, even more preferably 90% and ideally
  • sequence identity when compared to a reference sequence using one of the aforementioned alignment programs. It is recognized that these values can be appropriately adjusted to determine the corresponding identity of proteins encoded by 2 nucleotide sequences and taking into account codon degeneration or amino acid similarity.
  • substantial identity of amino acid sequences normally means an identity of at least 60%, or preferably 70%, 80%, 90% and ideally 95%.
  • nucleotide sequences are substantially identical is the fact that two molecules hybridize with one another under astringent hybridization conditions. However, nucleic acids that do not hybridize with each other under astringent conditions remain substantially identical if the polypeptides they encode are substantially identical. This can occur when, for example, a copy of the nucleic acid is created using the maximum degeneracy codon allowed by the genetic code.
  • An indication that two nucleic acid sequences are substantially identical is that the polypeptide encoded in the first nucleic acid is immunologically identical to the polypeptide encoded in the second nucleic acid.
  • substantially identical in reference to peptides indicates that a peptide comprises a sequence with at least 70%, preferably 80% or 85%, even more preferably 90%, and ideally 95% sequence identity with a reference sequence. in a specific comparative window.
  • the optimal alignment is performed using the alignment algorithm of Needleman and Wunsch 21 .
  • An indication that two peptide sequences are substantially identical is that a peptide be immunologically identical to the second peptide. For example, two peptides will be substantially identical if they differ only by a conservative substitution. ///. Detailed description.
  • the present invention allows the obtaining of Trichoderma strains that overproduce several lytic enzymes to be used as antagonists of phytopathogenic fungi.
  • the strains obtained are more efficient in the production of such enzymes and in the establishment of the mycoparasitic effect against phytopathogenic fungi. These characteristics allow the strains obtained to be used as antagonistic organisms for the effective control of plant diseases and used as a biocontrol mechanism.
  • the Trichoderma strains of the invention retain the ability to detect and respond to different environmental conditions, including the presence of a potential host, essential factors for the successful colonization of soil, organic matter and the root system of plants.
  • the present invention takes advantage of the fact that the detection of such environmental conditions can occur through a series of transduction pathways, which determine the appropriate cellular response of Trichoderma.
  • a wide variety of signals are transduced by the MAP kinase pathways, including those associated with pathogenesis.
  • MAP kinases have been directly implicated in several phenomena, such as:
  • Ustilago maydis (Ubc3 / Kpp2) 34 , b) In the expression of enzymes that degrade cell wall in several fungal systems, including phytopathogenic fungi, homologues of the MAP kinase Kss1 of S. cerevisiae. c) In the induction of the pectate lyase gene (pl1) of F. Oxysporum, since in null mutants of fmk1 this activity was abolished 35 . d) In the positive control of the expression of those enzymes involved in the penetration of the plant, for example Bmp1 of B.
  • the present invention explores the relationship between the function of genes coding for MAP kinases with the mycoparasitic function observed in Trichoderma.
  • the abolition in the expression of a gene coding for a MAP kinase, such as the tvk1 gene causes a considerable increase in the synthesis of enzymes related to the observed mycoparasitic effect of Trichoderma strains, by less with a 10-fold increase in activity compared to the parental strain or with wild strains.
  • the mycoparasitic activity of the Trichoderma strains of the invention is considerably increased with respect to wild strains, whereby the strains of the invention can be used as efficient antagonistic organisms against multiple diseases caused by phytopathogenic fungi.
  • the Trichoderma strains of the invention show a clear increase in the level of expression of mycoparasitism-related genes (MRGs) under conditions of simulated mycoparasitism and during direct confrontation with plant pathogens, such as Rhizoctonia solani. Likewise, they also show an increase in protein secretion measured as the production of lithic enzymes in the culture supernatant of these strains, compared with that of the wild strain. Consistently in biocontrol trials, the strains are considerably more effective in the control of plant diseases than the wild strain or even chemical fungicides. Additionally, the strains of the invention sporulate abundantly in submerged cultures, a condition that normally does not lead to sporulation in the wild strain.
  • MRGs mycoparasitism-related genes
  • the methodology of the invention allows to obtain Trichoderma strains with increased activities in their mycoparasitism properties, as well as in the expression of multiple enzymes involved in the antagonistic effect.
  • the abolition of the expression of the tmkA gene results in generating much less effective Trichoderma strains to be used as a potential biocontrol against pathogenic fungi and in apparent inactivation of genes that code for one or more enzymes responsible for degradation. of the host.
  • the present invention demonstrates that the Tvk1 protein (MAP kinase) plays an important role in the regulation of the expression of the genes responsible for the production of lytic enzymes, with which it is possible to manipulate the expression of this protein in Trichoderma strains in order to improve the antagonistic properties associated with it.
  • the present invention shows that in the transformed strains of Tr ⁇ choderma, in which the expression of the tvk1 gene was abolished, the chitinase and protease activities were greater than in the wild, correlating with the high levels of the transcripts detected.
  • the activity of certain enzymes is greatly increased in the strains of the invention. compared to the wild strain, for example in the total activity of ⁇ -1, 3-glucanase, further indicating that in the strains of the invention other glucanase genes could be under negative modulation by MAP kinases.
  • Trichoderma strains of the invention show reduced pigmentation with loss of the characteristic dark green color observed in the wild; the strains produce spores with reduced pigmentation in solid medium, without becoming albines. In contrast, all strains of the invention produce abundant conidia that show the characteristic dark green color of the wild in liquid cultures regardless of the medium used. These results suggest that MAP kinases could differentially regulate melanin biosynthesis as previously reported for C. lagenarium 39 . Considering the increase observed in the production of lytic enzymes in the Trichoderma strains of the invention and the importance of these enzymes in the biocontrolling activity of this microorganism, the strains of the invention can be used as more effective biocontrol agents.
  • the strains of the invention show a greater capacity than the wild strain to control and reduce the damage caused by R solani and P. ultimum.
  • T. virens has been used successfully in combination with several fungicides including metalaxyl (Apron FL) 40 .
  • the strains of the invention were more effective than metalaxyl against P. ultimum (Fig. 7B).
  • This increased biocontrol capacity seems to be associated with the expression of lytic enzymes observed in direct confrontation trials since both strains formed hooks and produced curls around R. solani and produced antibiotics at similar levels.
  • the present invention shows that the deletion of a MAP kinase gene generates a more aggressive parasite and, consequently, a better biocontrol agent.
  • any strain of Trichoderma that allows obtaining by means of the teachings described herein, Trichoderma strains overproducing lytic enzymes can be used; likewise, any species of the genus Trichoderma can be occupied, although T. virens is even more preferred.
  • the strains of the invention can be administered directly or through compatible compositions at the agronomic level, either in the soil, in the plant or in the material of the plant to be protected or treated.
  • the compositions can be made by widely known methods and can be made in any form of presentation, either in liquid or solid forms.
  • the liquid forms are capable of being applied by aerosols in the soil or in the plant, or used for the elaboration of baths in which the plants or their material are submerged.
  • the compositions containing the Trichoderma strains of the invention can be applied by conventional methods, either by aerosols or by immersion.
  • the present invention describes the isolation and characterization of the tvk1 gene of
  • Tr ⁇ choderma virens corresponding to SEQ ID NO: 2, which encodes the Tvk1 protein
  • MAP kinase mitogen activated protein kinase
  • SEQ ID NO: 3 which has an important role in several aspects of the life cycle of Tr ⁇ choderma, including growth, conidiation, expression of MRGs, secretion of enzymes that degrade cell wall and a biocontroller activity.
  • the tvk1 gene contains three intron sequences that have been reported for other fungal MAP kinase genes.
  • the intron located between nucleotide +854 and +907 is not present in its closest recently reported homologue, tmkA of strain IMI306092 of T. virens.
  • Tvk1 belongs to the family of kinases regulated by external signals (ERK), which is part of the superfamily of MAP kinases.
  • the signature sequence present in the Tvk1 protein indicates that it is related to the YERK1 family (ERK1 of yeasts and fungi) 38 .
  • the invention also comprises modified sequences of the DNA sequence shown in SEQ ID NO: 2, which code for amino acid sequences that retain the activity of the Tvk1 protein. Following the teachings of the present invention, a person versed in the technical field could easily predict the existence of such modified sequences and could easily produce them. Likewise, the invention comprises modified amino acid sequences derived from the sequence of the Tvk1 protein shown in SEQ ID NO: 3, which preserve and maintain the characteristics of the Tvk1 protein, mainly the enzymatic activity of MAP kinase as well as the ability to negative regulation in the expression of Trigoderma MRGs genes.
  • the suppression of the expression of MAP kinase genes coding for Tr ⁇ choderma strains allows to increase the capacity of the Tr ⁇ choderma strains of the invention to control other fungi that attack plant crops, coupled with the fact that due to this suppression effect, the expression levels of lytic enzymes are presented at high levels in most of the selected genes that encode lytic enzymes (MRGs) in comparison with wild strains.
  • MRGs lytic enzymes
  • the latter can be obtained by directed inhibition of the gene expression using specific probes, by interfering RNA, antisense RNA expression, by insertion of foreign polynucleotide sequences in the coding sequence of the MAP kinase gene or in its regulatory regions, by replacement of the wild gene by a mutated version, or, by eliminating the gene of interest from the genome of the organism through homologous gene recombination techniques.
  • this suppression of the expression of genes coding for MAP kinases can be achieved using the gene replacement vector of the invention, which comprises:
  • a replacement gene that allows the identification of the transformants where the coding anoint for a Trichoderma MAP kinase is replaced, b) A non-coding fragment that is naturally outside the coding region of the gene for MAP kinase at its 5 'end, flanking the 5 'end of the replacement gene, and. c) A non-coding fragment that is naturally outside the coding region of the gene for MAP kinase at its 3 'end, flanking the 3' end of the replacement gene.
  • the replacement gene may or may not come from some Trichoderma strain, although those genes that come from Trichoderma strains of the same species of the strain to be transformed are preferred.
  • any gene that allows the partial or total elimination of the gene coding for MAP kinase or that allows obtaining the interruption of the open reading frame of said gene can be used, with the consequent suppression of the expression of the protein encoded by the same and that also allows the identification of the modified strains.
  • the use of the vector of the invention avoids the use of sequences from other organisms that may cause undesirable or unexpected effects in the abolition of the expression of the gene coding for MAP kinase.
  • the MAP kinase gene fragments that flank the replacement gene are those fragments of any size that are found either before or after the beginning of the gene's open reading frame as well as those that are found before or after the end of the open reading frame of the gene, as long as they come from the wild gene or from a gene with high similarity, this with the purpose of producing specific genetic recombination events between the genome of the Tr ⁇ choderma strain to be transformed in the region of the MAP wild kinase gene and the polynucleotide replacement sequence contained in the gene replacement vector.
  • MAP kinase gene fragments that flank the replacement gene come from the tvk1 gene and are:
  • the function of the replacement gene can restore some deficiency in the strain of Tr ⁇ choderma to be transformed given by auxotrophy or allow the selection of transformants by their tolerance to a chemical compound such as in the case of the use of antibiotics or herbicides or by confer the ability to use alternative sources of carbon. and / or nitrogen, or because it can be identified through an enzymatic activity encoded by it.
  • the Tr ⁇ choderma strain to be transformed is auxotrophic
  • the replacement gene should complement said auxotrophy. In this case, it is preferred to use the Tr ⁇ derderma arg2 gene and auxotrophic strains to arginine.
  • the gene that confers hygromycin resistance (hph or hpt) of Escherichia coli, or Basta herbicide resistance genes can be used.
  • the amdS gene of Aspergillus nidulans can be used.
  • vectors can be used to clone and introduce by transformation the genes of interest that will later be useful for integrating the replacement genes into the genome of the strains of Trichoderma through efficient recombination.
  • the replacement vectors of the invention must contain characteristics that allow them to be amplified by means of conventional techniques (replication sites, promoters, etc.) and endowed with unique cloning sites, both for the insertion of the genes replacement as for the subsequent linearization necessary to transform the Trichoderma strains. In this sense, those vectors that allow the insertion of DNA fragments and that can be efficiently amplified in biological systems can be used.
  • the vectors of the invention use as a selection marker gene a replacement gene of the Trichoderma tvk1 gene with some associated function that can be identifiable, for example the synthesis of some protein that allows the growth of auxotrophic strains of Trichoderma in the appropriate culture medium (deficient in the essential nutrient) after its transformation with the vector.
  • the replacement gene preferably comes from Trichoderma strains.
  • the Trichoderma strains of the invention can be obtained by means of the methodology comprising the following steps:
  • the replacement vector of the invention in order to obtain the strains of the invention in this method it is preferred to suppress the expression of the gene tvk1, coding for the Tvk1 MAP kinase, use Trichoderma's arg2 gene as a replacement gene and use arginine auxotrophic strains.
  • the replacement vector is provided in a linear manner, this in order to provide the appropriate conditions for the genetic recombination process.
  • the selection of the transforming strains can be carried out with any selective means that allows the selection of the resulting prototrophic transformants, in direct relation with the function of the replacement gene; although Vogel minimum medium (VMS) containing sucrose is the only carbon source.
  • VMS Vogel minimum medium
  • the enzymatic activity related to the mycoparasitic activity of Trichoderma can be increased in a directed manner, generating Trichoderma strains with improved enzymatic characteristics that can be used as antagonistic organisms of phytopathogenic fungi.
  • MAP kinases are involved in the expression of MRG genes, they can be used as a regulatory factor for the expression of lytic enzymes in Trichoderma. Due to the function of MAP kinases, related substances specific to them could be obtained in order to block their function in Trichoderma strains, thereby increasing the expression of lithic enzymes and thereby increasing the mycoparasitic function of the strain of interest. For this purpose, known techniques of adsorption of biological materials could be used using MAP kinases isolated and placed on fixed supports to capture specific related substances that can subsequently be isolated by conventional biochemical methods of purification and characterization. The use of these inhibitors of the function of MAP kinases could be useful for obtaining strains of Trichoderma with an increased antagonistic activity. In this sense, the Tvk1 protein isolated in the present invention (Trichoderma MAP kinase) can be used for this purpose.
  • Trichoderma strains of the invention can be used for the protection or treatment of plants or plant materials for the fight and / or prevention of infections or diseases caused by phytopathogenic fungi, using multiple and diverse Known techniques for its application.
  • Example 2 Bacterial strains and plasmids.
  • Escherichia coli DH5 ⁇ (Bethesda Research Laboratories) and JM103 (Invitrogen) strains were used for all DNA manipulations.
  • the plasmids used were pBluescript (Stratagene) and pCB1004 (Fungal Genetics Stock Centerj. All PCR products were cloned into the vector pCR2.1 (Invitrogen).
  • the probes used for Northern blot analysis were obtained as follows: a 1.3 kb Hind ⁇ / BamH ⁇ fragment of Tv-prb1 cDNA was obtained from plasmid pPOE.
  • Tv-cht1 A 1.4 Kb Hind ⁇ / Xba ⁇ fragment of Tv-cht1 was obtained from plasmid pCOE 42. From plasmid pSZD2 a Pst ⁇ / Xho ⁇ 0.52 Kb fragment corresponding to the Tv-bgn2 gene was obtained, two fragments corresponding to Tv-cht2 (from position 988 to 1417) and Tv-nag1 (from position 513 to Ia 1608) were obtained from genomic DNA of T. virens by PCR using oligonucleotides designed based on the sequences reported by
  • Example 3 DNA and RNA manipulation. Plasmid DNA was isolated using a commercial system (Qiagen). Trichoderma DNA was obtained according to a previously described procedure 44 . Total RNA was isolated using phenol-chloroform extractions according to the procedure described by Jones 45 . Southern and Northern type analyzes were carried out using Hybond N + membranes (Amersham) according to the manufacturer's recommendations.
  • Protein extracts were prepared as previously described 37 and the protein concentration was determined using the Bradford assay (Bio-Rad) with bovine serum albumin as standard. Equivalent amounts of protein (25 ⁇ g) of each sample were resuspended in Schágger 2X 46 buffer and boiled after addition of ⁇ -mercaptoethanol (5%). The proteins were separated by SDS-PAGE in 10% gels according to Schágger and Von Jagow 46 . The proteins were transferred to extra Hybond TM -C membranes (Amersham) and the detection was performed following the instructions of the Phospho Plus ® p42 / p44 MAP kinase system (Thr / Tyr) Antibody kit (CeII Signaling Technology, Inc).
  • Genomic DNA from T. virens Gv29-8 was used as tempering in PCR amplification reactions using the primers described previously 47 .
  • the PCR product was cloned and subsequently sequenced using the Sanger 48 method with the Sequenase system (version 2.0, U. S Biochemichals).
  • a fragment that showed high similarity with the M. gr ⁇ sea pmk1 gene was selected and used as a probe for the screening of a cosmid library of T. virens Gv28-9.
  • Three clones were identified and one of them was selected for sequencing.
  • a Southern type analysis allowed the identification of a 3.3 Kb BamH ⁇ fragment containing the tvk1 gene (see figure 1), said fragment was subcloned into the BamH ⁇ site of plasmid pCB1004 (pDXG35). This fragment was sequenced in its totally and subsequently analyzed by the BLAST program using the DNA-protein data bank.
  • T. virens DNA as temperate and degenerate oligonucleotides reported by Xu and Hamer 47 .
  • several PCR amplification products were obtained. These products were subcloned into the vector pCR2.1 and sequenced. After performing a computational analysis using the BlastX algorithm, one of these showed a high similarity with the pmk1 gene of M. gr ⁇ sea.
  • This amplification product was radioactively labeled and used in a screening in a genomic library of T. virens. Three clones were obtained that gave a positive signal and one of them was selected, subcloned and sequenced.
  • the tvk1 gene contains four exons interrupted by three introns as reported for other genes in this same kinase family ( Figure 2).
  • a gene similar to the one reported here was cloned, however, unlike the genes of this family, the reported one does not present the third intron 38 .
  • a comparative analysis of the promoter region reveals the presence of possible response elements which are associated with the growth and conidiation processes, such as RAP-1, ABF-1, STUAP1 and three possible GCR1 binding sites, which is involved in the response to carbon limitation. In other systems it has been observed that the binding of RAP1 facilitates the binding of GCR1 to adjacent sites. Additionally, the promoter contains two STRE type binding sites and a possible site for the MAT-1-Mc mating factor.
  • the deduced protein sequence of tvk1 is 360 amino acids that correspond to a theoretical molecular mass of 41.6 KDaI and an isoelectric point of 6.44.
  • An alignment analysis using the MegAlign-Clustal program indicates that Tvk1 and TmkA have a 99.4% similarity, while Tmk1 has a 97.7% similarity with Tvk1.
  • the region included among residues 58 to 160 in Tvk1 contains the sequence observed in several members of the family of MAP kinases: Fx (10) -REx (72,86) -RDxKx (9) -C 49 .
  • This protein also contains the phosphorylable residues [T (184) -EY (186)] required for its phosphorylation and activation by MAP kinase 50 .
  • Example 6 Construction of the pTVK1 :: arg2 gene replacement vector.
  • a £ coRV / Sa / l fragment of 1.48 Kb containing most of the coding region of tvk1 (from amino acid 88 to the last amino acid of the protein) was replaced by a fragment 3.2 Kb SmaVEcoRV of the arg2 gene from T. virens 41 .
  • a SamHI / EcoRV fragment of pDGX35 was subcloned into the Ba / nHI / EcoRV sites of pBluescript SK (-) to generate plasmid pAM1.
  • Plasmid pAM1 was digested with EcoRV and ligated to an EcoR ⁇ // Sma ⁇ fragment of the arg2 gene (pAM2) gene.
  • pAM2 EcoR ⁇ // Sma ⁇ fragment of the arg2 gene
  • T. virens protoplasts were prepared and transformed according to a previously described method 41 .
  • Prototrophic transformants were selected using Vogel minimum medium containing sucrose as the sole source of carbon (VMS). The interruption of the tvk1 gene in the selected transformants was confirmed by Southern and Western analysis.
  • Colonies of the ⁇ tvki mutants showed a reduction in their speed of colonial growth and in the development of aerial hyphae in solid medium.
  • Conidia suspensions of the wild strain showed an intense green coloration, compared with the pale green of the conidia suspensions of the mutants.
  • the null mutants produced twice less conidia than the wild strain when they were grown in PDA medium without significant changes in the morphology of the conidophore.
  • all ⁇ ivki mutants formed pellets smaller than those formed by the wild strain.
  • the ⁇ tvki mutants massively conidia in late phases in submerged cultures (72 h), while no conidia were detected in the cultures of the parental strain even after seven days.
  • Figure 4A shows liquid cultures of the wild strain of T. virens (Gv29-8) (left panel), mutants ⁇ tvk24 and ⁇ tvk133 (two central panels) and the parental strain (Tv10.4) (right panel) after 72 hours of incubation in VMS medium.
  • the ability to conidia in liquid medium of the mutants seems to be independent of the culture medium used, since the conidiaclón was observed in both VMS and PDB.
  • Microscopic observations of samples of sporulating liquid cultures of ⁇ tvk133 showed a normal development of the conidiophore, resembling those produced in aerial hyphae ( Figure 4B-C).
  • Example 10 Simulated mycoparasitism assays. Tr ⁇ choderma spores (1 x 10 6 spores / ml) were germinated and grown for 48 h in VMS. The mycelium was then collected and transferred to fresh medium. Minimum Vogel medium without a carbon or nitrogen source (VM or VM-N, respectively) was used to assess the effect of nutrient limitation; VMS containing 0.5% of R. solani cell walls (VMSR), and Vogel medium without a source of nitrogen or carbon added with 0.5% of R solani cell walls (VM-NR or VMR, respectively) was used for similar conditions of mycoparasitism. VMS was used as a control.
  • VMSR 0.5% of R. solani cell walls
  • VM-NR or VMR Vogel medium without a source of nitrogen or carbon added with 0.5% of R solani cell walls
  • Tv-cht1 was clearly induced by cell walls in the wild strain with a maximum level of expression at 6 h. In contrast, no obvious induction was observed in the mutant strain, which reached the same level observed under conditions of carbon limitation, except that this happened before (Fig. 5A; Tv-cht1).
  • the gene encoding the Tv-bgn2 glucanase was induced by cell walls at 6 h, but no differences were observed with the wild strain and the gene was not expressed in medium without a carbon source (Fig. 5A; Tv-bgn2).
  • the expression pattern of a third chitinase gene (Tv-cht2) under conditions of simulated parasitism was similar to that of Tv-cht1, except that the maximum expression was reached after 24 hours.
  • ⁇ tvk24 showed a much more pronounced induction for Tv-cht2 than the wild strain.
  • the expression was determined under simulated conditions of mycoparasitism both in the absence and in the presence of an alternate carbon source (Fig. 5A; Tv-prb1) or in VM-NR that does not contain ammonium (Fig. 5B; Tv-prb1) of the gene prb1, which codes for a protease.
  • Cell wall induction was observed for both strains, although higher levels of transcript were detected under conditions of carbon starvation than under conditions of nitrogen limitation. In both cases, the induction was much higher for the ⁇ tvk24 strain than for the wild strain.
  • the mutant ⁇ tvk24 showed the highest levels of expression after 6 h, between seven and ten times more than the expression in the wild strain.
  • the mutant strain showed detectable levels of Tv-prb1 expression after 6 h when grown on VM-N (Fig. 5B; Tv-prb1).
  • the analysis of the acivivities in proiease gel, endocytinase, N-acetylglucosaminidase and glucanase of the culture filtrates showed ten times greater activity in the muiahids than in the silves ⁇ re strain (see figure 8). It was also interesting to observe the presence of an additional band of endocytinase activity in null mutanids under conditions of carbon limitation (see figure 8).
  • Trichoderma strains were subjected to confrontational trials without coniacio using R solani as host 51 .
  • the confrontations were carried out in modified VMS-agar medium (mVMS) containing 0.75 g / l sucrose and 0.45g / l NH 4 NO 3 .
  • the mycelium of Trichoderma was collected from the zone of interaction between fungi.
  • Example 12 Direct confrontation assays in agarpapa dextrose.
  • the Trichoderma strains of the invention were subjected to direct confrontation assays using Phytophthora capsici, Sclerotium rolfsii, Rhizoctonia solani, Colletotrichum lindemuthianum and Phytophthora citricola, as host.
  • the confrontations were carried out in half papa dextrose agar using strains T. virens Gv29.8, ⁇ tvk24 and ⁇ tvk133 for 5 days under continuous light at 28 0 C. The results obtained are shown in Figure 9.
  • Cottonseed (cultivate Stoneville 112, Pedigree Seed Co) were covered with Trichoderma strains and planted in a medium free of non-sterile soil (Metromix) infected with R solani or P. ultimum. Seeds sown in uninfected soil and seeds treated with the commercial fungicide Apron XL LS (active against P. ultimum) were used as positive controls. Survivors and healthy plants were counted at 10 days of incubation at 25 0 C in a growth chamber.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Mycology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a method of obtaining strains of Trichoderma that overproduce various lytic enzymes for use as antagonists of phytopathogenic fungi owing to the increased mycoparasitic activity thereof. According to the invention, a gene of Trichoderma virens that codes for a mitogen-activated kinase protein (MAP kinase) was cloned, said gene being related to the mycoparasitic response, conidiation and observed biocontrol of Trichoderma. Strains of Trichoderma with suppressed expression of the isolated MAP kinase gene demonstrated a clear increase in the expression level of mycoparasitism-related genes (MRGs) under simulated mycoparasitism conditions during direct confrontation with the plant pathogen Rhizoctonia solani. Biocontrol assays consistently demonstrate that the inventive strains are considerably more effective at controlling diseases than the wild strain or a chemical fungicide. In addition, the inventive strains sporulate abundantly in submerged cultures, which does not normally lead to sporulation in the wild strain.

Description

Cepas mejoradas de Trichoderma como agentes de biocontrol, métodos para su obtención y su uso para el control de enfermedades causadas por hongos fitopatógenos. Improved strains of Trichoderma as biocontrol agents, methods for obtaining them and their use for the control of diseases caused by phytopathogenic fungi.
Campo de Ia invención.Field of the invention.
La presente invención se relaciona con el desarrollo de microorganismos modificados útiles como agentes de biocontrol, específicamente a Ia obtención de cepas mejoradas de Trichoderma útiles para el tratamiento de enfermedades causadas por hongos fitopatógenos.The present invention relates to the development of modified microorganisms useful as biocontrol agents, specifically to obtain improved Trichoderma strains useful for the treatment of diseases caused by phytopathogenic fungi.
Antecedentes de Ia invención.Background of the invention.
La agricultura es una de las actividades comerciales más importantes en Io que se refiere a Ia producción de alimentos o insumos, tanto para el hombre como para el ganado, por Io que el control y combate efectivo de las enfermedades que afectan a las plantas es de vital importancia.Agriculture is one of the most important commercial activities in what refers to the production of food or inputs, both for man and for livestock, so that the effective control and control of diseases that affect plants is of Vital importance.
De todas las enfermedades que afectan a las plantas, las dos más frecuentes son aquellas que ocasionan marchitez y aquellas en las que se provoca Ia muerte de Ia misma, causada principalmente por hongos tales como Fusaríum oxysporum, Verticillium spp. y Rhizoctonia solani entre otras. La muerte de plantas causada por ésta última especie de hongo se considera como uno de los efectos más dañinos e importantes a nivel mundial que afectan Ia producción agrícola.Of all the diseases that affect the plants, the two most frequent are those that cause wilting and those in which the death of the same is caused, mainly caused by fungi such as Fusaríum oxysporum, Verticillium spp. and Rhizoctonia solani among others. The death of plants caused by the latter species of fungus is considered as one of the most harmful and important effects worldwide that affect agricultural production.
Debido a las grandes pérdidas que causan las enfermedades provocadas por estos microorganismos, se han utilizado a Ia fecha tanto sustancias químicas como pesticidas, así como microorganismos antagonistas para su combate.Due to the great losses caused by the diseases caused by these microorganisms, both chemical substances and pesticides have been used to date, as well as antagonistic microorganisms for their combat.
Actualmente los tratamientos del suelo se basan en el uso de pesticidas para eliminar hongos patógenos. Desafortunadamente, estos compuestos son con frecuencia tóxicos para los seres humanos y animales y pueden potencialmente contaminar depósitos de agua o ríos, provocando con ello daños al medio ambiente que en ocasiones son irreversibles. Debido a Io anterior, se han utilizado algunos microorganismos antagonistas específicos, especialmente dentro de los géneros Pseudomona y Trichoderma como una alternativa para el combate de las enfermedades citadas anteriormente.Currently, soil treatments are based on the use of pesticides to eliminate pathogenic fungi. Unfortunately, these compounds are often toxic to humans and animals and can potentially contaminate water deposits or rivers, thereby causing damage to the environment that are sometimes irreversible. Due to the above, some specific antagonistic microorganisms have been used, especially within the genus Pseudomona and Trichoderma as an alternative to combat the diseases mentioned above.
En el caso de Trichoderma, el efecto antagonista que se desencadena en respuesta a Ia presencia de un potencial huésped de Trichoderma, se traduce entre otros efectos, en Ia producción de antibióticos, Ia formación de estructuras especializadas y Ia degradación de Ia pared celular del huésped seguida por Ia asimilación de su contenido celular, un proceso llamado micoparasitismo. Se ha propuesto que este último fenómeno es el principal mecanismo responsable de Ia actividad antagónica que presentan las especies de Trichoderma ante hongos patógenos. En éste sentido, las enzimas hidrolíticas de Trichoderma, tales como quitinasas, β-1-3 glucanasas, β-1-6 glucanasas, y proteasas, facilitan Ia penetración del huésped 1.In the case of Trichoderma, the antagonistic effect that is triggered in response to the presence of a potential Trichoderma host, translates among other effects, in the production of antibiotics, the formation of specialized structures and the degradation of the host cell wall followed by the assimilation of its cellular content, a process called mycoparasitism. It has been proposed that this last phenomenon is the main mechanism responsible for the antagonistic activity presented by Trichoderma species to pathogenic fungi. In this sense, Trichoderma hydrolytic enzymes, such as chitinases, β-1-3 glucanases, β-1-6 glucanases, and proteases, facilitate host 1 penetration.
Muchas especies de Trichoderma han sido utilizadas como potentes agentes de biocontrol contra una variedad de hongos fitopatógenos 2. Por ejemplo se han utilizado aislados de Trichoderma asperellum T34(2) obtenidos de compostas preparadas a partir de Ia fracción orgánica de residuos de mercados, fangos de depuradora y restos de jardinería 3, cepas mejoradas tales como T. viride Li 49 4, T. harzianum YC459 5, T viride T-1-R9 6, o bien mutantes deficientes en Ia producción de viridiol pero reteniendo su efectividad como agentes de biocontrol, tales como T. virens TV-111 , TV-115 y TV-109 7.Many Trichoderma species have been used as potent biocontrol agents against a variety of phytopathogenic fungi 2 . For example, Trichoderma asperellum T34 (2) isolates obtained from composts prepared from the organic fraction of market waste, sewage sludge and garden waste 3 , improved strains such as T. viride Li 49 4 , T. have been used. harzianum YC459 5 , T-1-R9 6 virid T, or mutants deficient in the production of viridiol but retaining its effectiveness as biocontrol agents, such as T. virens TV-111, TV-115 and TV-109 7 .
A pesar de los desarrollos anteriores, en Ia práctica se ha demostrado que es muy difícil asegurar que estos microorganismos antagonistas se encuentren en el sustrato aplicado en cantidades suficientes para conseguir un control efectivo de las enfermedades de las plantas causadas por hongos patógenos. Como alternativas de solución a ello, son conocidas en el campo técnico diferentes maneras de obtener esporas de Trichoderma, por ejemplo mediante cultivo fermentativo en bioreactores, subsecuente liofilización y filtración del material obtenido en filtros que solamente permiten el paso de las esporas, o bien mediante inoculación de harina de trigo con especies de Trichoderma y posterior dilución usando tierras diatomáceas. Sin embargo estos métodos son de baja productividad, principalmente debido a las características de baja producción de esporas de las especies deDespite the previous developments, in practice it has been shown that it is very difficult to ensure that these antagonistic microorganisms are found in the substrate applied in sufficient quantities to achieve effective control of plant diseases caused by pathogenic fungi. As alternative solutions to this, different ways of obtaining Trichoderma spores are known in the technical field, for example by fermentative culture in bioreactors, subsequent lyophilization and filtration of the material obtained in filters that only allow the spores to pass, or by inoculation of wheat flour with Trichoderma species and subsequent dilution using diatomaceous earth. However, these methods are low productivity, mainly due to the low spore production characteristics of the species of
Tríchoderma utilizadas hasta el momento.Tríchoderma used so far.
Por otro lado, para tratar de eliminar el problema en Ia obtención de bajas cantidades de Tríchoderma, se han obtenido especies de Trichoderma que pueden coexistir en cultivo mediante transformación de alguna de las cepas por radiación de T. longibratum mediante cobalto 8, composiciones de biocontrol que comprenden dos o más cepas de Trichoderma de las especies asperellum, atroviride e inhamatum 9, o bien composiciones con efectos sinérgicos de degradación de quitina que contienen proteínas de cepas de Trichoderma en conjunto con proteínas bacterianas, por ejemplo de Streptomyces 10. Con ello se pretenden obtener efectos sinérgicos de biocontrol, así como una mayor cantidad de esporas, sin embargo los métodos de cultivo de estos microorganismos no permiten, dadas las características de antagonismo de las especies de Trichoderma, Ia producción al mismo tiempo de dos o más especies juntas, y por Io tanto no se obtienen enzimas líticas, ya que éstas solo son producidas en Ia presencia de otros hongos.On the other hand, to try to eliminate the problem in obtaining low amounts of Tríchoderma, Trichoderma species have been obtained that can coexist in culture by transforming some of the strains by radiation of T. longibratum by cobalt 8 , biocontrol compositions comprising two or more Trichoderma strains of the species asperellum, atroviride and inhamatum 9 , or compositions with synergistic effects of chitin degradation containing Trichoderma strain proteins in conjunction with bacterial proteins, for example Streptomyces 10 . This is intended to obtain synergistic effects of biocontrol, as well as a greater amount of spores, however the methods of culture of these microorganisms do not allow, given the characteristics of antagonism of Trichoderma species, the production at the same time of two or more species together, and therefore no lytic enzymes are obtained, since these are only produced in the presence of other fungi.
Debido a Io anterior, se han seguido generado diversas metodologías encaminadas a obtener cepas mejoradas de Trichoderma. En éste sentido, ha adquirido particular relevancia Ia observación de que cepas transformadas de Trichoderma que sobre- expresan enzimas líticas muestran ser mejores agentes de biocontrol que las cepas parentales correspondientes 1.Due to the above, several methodologies have been generated to obtain improved Trichoderma strains. In this sense, the observation that transformed strains of Trichoderma that overexpress lithic enzymes have shown to be better biocontrol agents than the corresponding parental strains 1 has acquired particular relevance.
Aunado a las metodologías de aislamiento y selección de cepas a partir de sustratos naturales para obtener cepas sobre-productoras de enzimas líticas, se han utilizado estrategias clásicas de manipulación genética para lograr este objetivo. En éste sentido, de manera general se induce en Trichoderma Ia expresión de proteínas de interés, como por ejemplo enzimas líticas que destruyen Ia pared celular de hongos patógenos bajo ciertas condiciones de cultivo, para posteriormente aislar las secuencias genéticas codificantes de tales proteínas y utilizarlas para transformar cepas seleccionadas de Trichoderma mediante vectores de expresión. Con ello se logra aumentar Ia capacidad de expresión del gen aislado anteriormente, obteniéndose así cepas transformadas de Trichoderma con mejores niveles de producción de Ia proteína de interés comparado con las cepas parentales. Como ejemplos de ello se puede mencionar el incremento en Ia expresión de enzimas extracelulares nativas de especies de Trichoderma en medios inductores o represores de tal expresión, en cepas que han sido previamente transformadas con al menos un transgene bajo el control de un promotor inducible 10, o bien mediante genes reguladores de T. viride como por ejemplo el gene cbh1 de celulasa, que permiten una alta expresión de proteínas de interés, especialmente celulasa 11.In addition to the isolation and selection methodologies of strains from natural substrates to obtain over-producing strains of lithic enzymes, classical genetic manipulation strategies have been used to achieve this objective. In this sense, in general Trichoderma induces the expression of proteins of interest, such as lytic enzymes that destroy the cell wall of pathogenic fungi under certain culture conditions, to subsequently isolate the genetic sequences encoding such proteins and use them to transform selected strains of Trichoderma through expression vectors. With this, it is possible to increase the expression capacity of the previously isolated gene, thus obtaining transformed Trichoderma strains with better production levels of the protein of interest compared to the parental strains. How Examples of this can be mentioned the increase in the expression of native extracellular enzymes of Trichoderma species in inducer or repressor media of such expression, in strains that have been previously transformed with at least one transgene under the control of an inducible promoter 10 , or either by T. viride regulatory genes such as the cellulase cbh1 gene, which allow a high expression of proteins of interest, especially cellulase 11 .
Sin embargo estos métodos utilizan secuencias genéticas de otros organismos que no forman parte del genoma propio del microorganismo, con Io que pueden existir problemas asociados al no reconocimiento de tales secuencias, tanto reguladoras como de marcos abiertos de lectura, por parte del microorganismo transformado debido a múltiples efectos, incluido el uso característico de codones del organismo.However, these methods use genetic sequences from other organisms that are not part of the genome of the microorganism, so there may be problems associated with the non-recognition of such sequences, both regulatory and open reading frames, by the transformed microorganism due to multiple effects, including the characteristic use of organism codons.
Por otro lado, se ha observado que el efecto antagonista de Trichoderma se debe a Ia expresión conjunta de varias enzimas líticas, codificadas por varios genes que han sido designados como genes relacionados al micoparasitismo (MRGs, por sus siglas en inglés). Debido a éste efecto, los métodos de manipulación genética encaminados al aislamiento de genes de enzimas líticas para posteriormente obtener cepas transformadas de Trichoderma sobre-productoras de dichas enzimas, únicamente logran Ia expresión aumentada de a Io sumo dos genes aislados al mismo tiempo, con Io cual Ia obtención de cepas mejoradas de Trichoderma para usarse en el combate de hongos patógenos de plantas, se ve bastante limitada.On the other hand, it has been observed that Trichoderma's antagonistic effect is due to the joint expression of several lytic enzymes, encoded by several genes that have been designated as mycoparasitism-related genes (MRGs). Due to this effect, the genetic manipulation methods aimed at the isolation of lithic enzyme genes to subsequently obtain transformed strains of Trichoderma over-producing said enzymes, only achieve the increased expression of at least two isolated genes at the same time, with which obtaining improved strains of Trichoderma for use in the fight of plant pathogenic fungi, is quite limited.
Esto aunado al hecho de los problemas que implica Ia obtención de varios vectores de expresión adecuados que pudiesen coexistir en Ia misma cepa transformada de Trichoderma, para permitir y regular Ia expresión de varios genes de enzimas líticas sin que ello no represente ningún problema para Ia cepa de Trichoderma transformada, como por ejemplo efectos tóxicos.This coupled with the fact that the problems involved in obtaining several suitable expression vectors that could coexist in the same transformed strain of Trichoderma, to allow and regulate the expression of several lithic enzyme genes without representing any problem for the strain of transformed Trichoderma, such as toxic effects.
Por las razones anteriormente expuestas, es necesario continuar el desarrollo de metodologías que permitan Ia obtención de cepas de Trichoderma sobre- productoras en todas o en Ia gran mayoría de las enzimas líticas, para utilizarse como organismos antagonistas eficientes para hongos fitopatógenos. Hasta antes de la presente invención, no existían metodologías que permitieran Ia obtención de cepas de Trichoderma sobre-productoras de varias enzimas líticas utilizando Ia supresión de Ia expresión de genes codificantes para proteín cinasas activadas por mitógeno (MAP cinasas) en cepas parentales.For the reasons stated above, it is necessary to continue the development of methodologies that allow obtaining over-producing Trichoderma strains in all or in the great majority of lytic enzymes, to be used as efficient antagonistic organisms for phytopathogenic fungi. Until before the present invention, there were no methodologies that allowed obtaining strains of Trichoderma overproducers of several lytic enzymes using the suppression of the expression of genes coding for mitogen activated protein kinases (MAP kinases) in parental strains.
Breve descripción de las figuras.Brief description of the figures.
Figura 1. Análisis Southern blot del gen tvkl de T. virens. Las enzimas de restricción empleadas se muestran en Ia parte superior de Ia figura. La sonda empleada fue el fragmento BamHI correspondiente a 3.2 Kb y que contiene todo el marco abierto de lectura.Figure 1. Southern blot analysis of the T. virens tvkl gene. The restriction enzymes used are shown in the upper part of the figure. The probe used was the BamHI fragment corresponding to 3.2 Kb and containing the entire open reading frame.
Figura 2. Secuencia del gen Tvkl Se muestra el posible inicio y término de Ia traducción. Se señalan con letras subrayadas las secuencias donadora y aceptora de los intrones. Figura 3. Estrategia para Ia interrupción del gen tvkl y el análisis de las transformantes. (A) Representación esquemática del reemplazo de Tvkl . Las flechas gruesas representan las regiones codificantes de tvkl y arg2. Las líneas representan las regiones 51 y 31 del gen tvkl. Los eventos de entrecruzamiento están indicados por líneas punteadas. EV (EcoRV); B (BamHI); S (Sa/I); C (C/al) y A (Apa\). (B). Análisis tipoFigure 2. Tvkl gene sequence The possible start and end of the translation is shown. The donor and acceptor sequences of introns are indicated with underlined letters. Figure 3. Strategy for the interruption of the tvkl gene and the analysis of transformants. (A) Schematic representation of the replacement of Tvkl. The thick arrows represent the coding regions of tvkl and arg2. The lines represent regions 5 1 and 3 1 of the tvkl gene. Cross-linking events are indicated by dotted lines. EV (EcoRV); B (BamHI); S (Sa / I); C (C / al) and A (Apa \). (B). Type analysis
Southern de las mutantes. DNA genómico fue digerido con BamH\. Los carriles 2-5 representan cuatro transformantes independientes; carril 1 silvestre (WT). La membrana fue hibridada con Ia sonda indicada en A. (C) Análisis por Inmunoblot de los extractos proteicos crudos de T. virens (cepas WT y Δtvk24) usando un anticuerpo policlonal especifico para ERK1/ERK2. La flecha indica Ia señal correspondiente a Tvkl p42Southern of the mutants. Genomic DNA was digested with BamH. Lanes 2-5 represent four independent transformants; wild lane 1 (WT). The membrane was hybridized with the probe indicated in A. (C) Immunoblot analysis of the crude protein extracts of T. virens (strains WT and Δtvk24) using a polyclonal antibody specific for ERK1 / ERK2. The arrow indicates the signal corresponding to Tvkl p42
MAPK es una MAP cinasa recombinante usada como control positivo.MAPK is a recombinant MAP kinase used as a positive control.
Figura 4. Conidiación en cultivo sumergido. (A) Conidiación de las mutantes ΔtvkiFigure 4. Conidiation in submerged culture. (A) Conidiation of the Δtvki mutants
(Δtvk24 y Δtvk133) en medio liquido. Las cepas fueron incubadas en PDB por 72 horas. (B & C) Análisis microscópico de Ia cepa muíante(Δtvk24 and Δtvk133) in liquid medium. The strains were incubated in PDB for 72 hours. (B & C) Microscopic analysis of the mutant strain
Δtvk133.Δtvk133.
Figura 5. Expresión de MRGs en micoparasitismo simulado. (A). Análisis tipo Northern de los genes Tv-prbí, Tv-nag1, Tv-cht1 y Tv-bgn2 bajo condiciones de limitación de carbono con y sin paredes de R. solani en Ia cepa silvestre y Ia mutante Δtvk24. Los números indican el tiempo de inducción. (B) Análisis tipo Northern de Tv-prb1 bajo condiciones de limitación de nitrógeno y micoparasitismo simulado. Los símbolos (+) yFigure 5. Expression of MRGs in simulated mycoparasitism. (TO). Northern type analysis of the Tv-prbí, Tv-nag1, Tv-cht1 and Tv-bgn2 genes under carbon-limiting conditions with and without R. solani walls in The wild strain and the mutant Δtvk24. The numbers indicate the induction time. (B) Northern type analysis of Tv-prb1 under conditions of nitrogen limitation and simulated mycoparasitism. The symbols (+) and
(-) denotan Ia presencia y ausencia de paredes celulares de R solani, respectivamente. Quince microgramos de RNA total fueron cargados en cada carril. El gen ribosomal 28S fue usado como control.(-) denote the presence and absence of R solani cell walls, respectively. Fifteen micrograms of total RNA were loaded in each lane. The 28S ribosomal gene was used as a control.
Figura 6. Expresión de genes relacionados al micoparasitismo (MRGs) en una confrontación con R solani. (A) Representación esquemática de Ia interacción entre T. virens y R. solani. T indica Ia cepa de T. virens creciendo sola en cajas con VMS, TR es Ia cepa de T. virens creciendo en presencia de R solani, y Ia zona de interacción esta indicada por el color negro. (B) Expresión de los MRGs en cepas de T. virens. Las muestras fueron colectadas cuando las cepas de T. virens sobrecrecieron Ia colonia de R solani. Las sondas usadas para el análisis tipo Northern fueron las mismas indicadas en Ia figura 5. 15 μg de RNA fueron cargados en cada carril.Figure 6. Expression of mycoparasitism-related genes (MRGs) in a confrontation with R solani. (A) Schematic representation of the interaction between T. virens and R. solani. T indicates the strain of T. virens growing alone in boxes with VMS, TR is the strain of T. virens growing in the presence of R solani, and the interaction zone is indicated by the color black. (B) Expression of MRGs in strains of T. virens. The samples were collected when the T. virens strains overgrown the colony of R solani. The probes used for the Northern type analysis were the same indicated in Figure 5. 15 μg of RNA were loaded in each lane.
Figura 7. Actividad biocontroladora de las cepas silvestre, Δtvk24 y Δtvk133. (A). índice de enfermedad en el sistema radicular de plantas de algodón infectadas con R solani. (B) Porcentaje de plántulas de algodón sobrevivientes retadas con P. ultimum. Las columnas que aparecen conFigure 7. Biocontroller activity of wild strains, Δtvk24 and Δtvk133. (TO). Disease index in the root system of cotton plants infected with R solani. (B) Percentage of surviving cotton seedlings challenged with P. ultimum. The columns that appear with
Ia misma letra no mostraron diferencias significativas de acuerdo a Ia prueba de Fisher PLSD a un nivel de significancia del 5%. (+) o (-) indicaThe same letter did not show significant differences according to the Fisher PLSD test at a significance level of 5%. (+) or (-) indicates
Ia presencia o ausencia del patógeno, respectivamente.The presence or absence of the pathogen, respectively.
Figura 8. Efecto de Tvk1 sobre Ia actividad enzimática producida en sobrenadantes de T. virens silvestre (wt) y Δtvk24 bajo micoparasitismo simulado. Análisis en gel del total de actividad de proteasa bajo condiciones simuladas de micoparasitismo en ausencia de una fuente de carbono (A), o de nitrógeno (B). La flecha indica Ia actividad de Prbl Actividades totales de glucanasa (C) y quitinasa (D) se detectaron bajo micoparasitismo simulado en ausencia de una fuente de carbono.Figure 8. Effect of Tvk1 on the enzymatic activity produced in supernatants of wild T. virens (wt) and Δtvk24 under simulated mycoparasitism. Gel analysis of total protease activity under simulated conditions of mycoparasitism in the absence of a source of carbon (A), or nitrogen (B). The arrow indicates the activity of Prbl Total glucanase (C) and chitinase (D) activities were detected under simulated mycoparasitism in the absence of a carbon source.
Análisis en gel de actividades de endoquitinasa bajo micoparasitismo simulado en ausencia de una fuente de carbono (E). La flecha indica Ia presencia de una actividad de endoquitinasa adicional. Se indica Ia presencia (+) o ausencia (-) de paredes celulares de Rhizoctonia. Todos los cultivos fueron almacenados después de 24 hrs.Gel analysis of endocytinase activities under simulated mycoparasitism in the absence of a carbon source (E). The arrow indicates the presence of an additional endocytinase activity. Ia is indicated presence (+) or absence (-) of Rhizoctonia cell walls. All cultures were stored after 24 hrs.
Figura 9. Confrontación directa de Trichoderma con diversos hongos fitopatógenos como hospederos. Phytophthora capsici (A), Sclerotium rolfsii (B), Rhizoctonia solani (C), Colletotrichum lindemuthianum (D) yFigure 9. Direct confrontation of Trichoderma with various phytopathogenic fungi as hosts. Phytophthora capsici (A), Sclerotium rolfsii (B), Rhizoctonia solani (C), Colletotrichum lindemuthianum (D) and
Phytophthora citricola (E) fueron confrontadas en placas de agar papa dextrosa contra Tríchoderma virens Gv29.8 (izquierda), Δtvk24 (centro) y Δtvk133 (derecha).Phytophthora citricola (E) were confronted on papa dextrose agar plates against Tríchoderma virens Gv29.8 (left), Δtvk24 (center) and Δtvk133 (right).
Objetivos de Ia invención.Objectives of the invention.
Existe en el campo de Ia biotecnología agrícola y Ia biología molecular de hongos una necesidad de generar cepas mejoradas como agentes de control biológico que sean más efectivas en dicho control y permitan su utilización como alternativa o ayuda en el control químico de enfermedades en plantas.There is a need in the field of agricultural biotechnology and molecular biology of fungi to generate improved strains as biological control agents that are more effective in said control and allow their use as an alternative or aid in the chemical control of plant diseases.
Por Io anterior, los objetivos de Ia invención que aquí se presenta son:Therefore, the objectives of the invention presented here are:
- Proporcionar cepas de Tríchoderma sobre-productoras de varias enzimas líticas para utilizarse como antagonistas de hongos fitopatógenos,- Provide strains of Tríchoderma overproducers of several lytic enzymes to be used as antagonists of phytopathogenic fungi,
- Proporcionar cepas de Tríchoderma sobre-productoras de varias enzimas líticas y al mismo tiempo con gran capacidad de producción de esporas para utilizarse como antagonistas de hongos fitopatógenos,- Provide strains of Tríchoderma overproducers of several lytic enzymes and at the same time with great capacity of spore production to be used as antagonists of phytopathogenic fungi,
- Proporcionar un método para obtener cepas de Tríchoderma sobre-productoras de varias enzimas líticas mediante Ia supresión de Ia expresión de genes codificantes para MAP cinasas en cepas parentales de Tríchoderma, - Proporcionar un método para incrementar Ia actividad de enzimas líticas y micoparasítica de cepas de Trichoderma mediante Ia supresión de Ia expresión de genes codificantes para MAP cinasas en cepas parentales de Trichoderma,- Provide a method to obtain Tripoderma strains overproducers of several lytic enzymes by suppressing the expression of genes coding for MAP kinases in parental strains of Tríchoderma, - Provide a method to increase the activity of lytic enzymes and mycoparasitic strains of Trichoderma by means of the suppression of the expression of genes coding for MAP kinases in parental strains of Trichoderma,
- Proporcionar genes de Trichoderma novedosos codificantes para MAP cinasas, relacionados con el establecimiento de Ia relación parasítica de Trichoderma y sus huéspedes,- Provide innovative Trichoderma genes coding for MAP kinases, related to the establishment of the parasitic relationship of Trichoderma and its hosts,
- Proporcionar una construcción genética para Ia transformación de células de hongos, que incluyan las secuencias polinucleótidicas que se describen en este invento, - Proporcionar proteínas con actividad de MAP cinasas relacionadas con el establecimiento de Ia relación parasítica de Trichoderma y sus huéspedes,- Provide a genetic construct for the transformation of fungal cells, which include the polynucleotide sequences described in this invention, - Provide proteins with MAP kinase activity related to the establishment of the parasitic relationship of Trichoderma and its hosts,
- Proporcionar un vector de reemplazo génico útil para Ia supresión de Ia expresión de genes codificantes para MAP cinasas en cepas parentales de Trichoderma, y - Proporcionar un método de biocontrol de hongos fitopatógenos, utilizando cepas de Trichoderma sobre-productoras de varias enzimas lítlcas.- Provide a gene replacement vector useful for the suppression of the expression of genes coding for MAP kinases in parental Trichoderma strains, and - Provide a method of biocontrol of phytopathogenic fungi, using Trichoderma strains over-producing several lymphatic enzymes.
Descripción detallada de Ia invención.Detailed description of the invention.
/. Depósito de microorganismos./. Deposit of microorganisms.
La cepa parental T. virens Tv10.4 ha sido depositada en American Type Culture Collection el día 20 de diciembre del 2004 con el número PTA-6474. Así mismo Ia cepa T. virens Δtvk24 ha sido depositada en American Type Culture Collection el día 20 de diciembre del 2004 con el número PTA-6474 y Ia cepa T. virens Δtvk133 ha sido depositada en American Type Culture Collection el día 20 de diciembre del 2004 con el número PTA-6474.The parental strain T. virens Tv10.4 has been deposited in the American Type Culture Collection on December 20, 2004 with the number PTA-6474. Likewise, the strain T. virens Δtvk24 was deposited in the American Type Culture Collection on December 20, 2004 with the number PTA-6474 and the strain T. virens Δtvk133 was deposited in the American Type Culture Collection on December 20, 2004 with the number PTA-6474.
//. Definición de los términos utilizados en Ia invención.//. Definition of the terms used in the invention.
Para efectos de Ia presente invención, las unidades, los prefijos y los símbolos podrán ser mencionados utilizando su abreviatura aceptada por el Sl. A menos que sea explícitamente indicado, Ia secuencia de los ácidos nucleicos está escrita de izquierda a derecha en Ia orientación 5' a 3'; Ia secuencia de aminoácidos está escrita de izquierda a derecha en Ia orientación del borde amino al borde carboxi- terminal. Los rangos numéricos son incluyentes de los números que definen el rango e incluyen cada uno de los números íntegros que definen el rango. Los aminoácidos pueden ser designados ya sea por sus conocidos símbolos de tres letras o por sus símbolos de una sola letra que han sido recomendados por IaFor the purposes of the present invention, the units, prefixes and symbols may be mentioned using their abbreviation accepted by Sl. Unless explicitly indicated, the nucleic acid sequence is written from left to right in the 5 'to 3' orientation; The amino acid sequence is written from left to right in the orientation of the amino edge to the carboxy terminal edge. The numerical ranges are inclusive of the numbers that define the range and include each of the whole numbers that define the range. Amino acids can be designated either by their known three-letter symbols or by their single-letter symbols that have been recommended by Ia
Comisión de Nomenclatura de Ia IUPAC-IUB. De Ia misma manera, los nucleótidos pueden ser designados por su comúnmente aceptado código de letra única. Los términos de software, eléctricos y electrónicos son utilizados como fueron definidos en el Nuevo Diccionario IEEE para Términos Eléctricos y Electrónicos 12.Nomenclature Commission of the IUPAC-IUB. In the same way, nucleotides can be designated by their commonly accepted unique letter code. The terms of software, electrical and electronic are used as defined in the New IEEE Dictionary for Electrical and Electronic Terms 12 .
Así mismo, para los propósitos de Ia presente invención, los siguientes términos tendrán Ia definición que a continuación se detalla. Por "amplificación" se entiende Ia construcción de múltiples copias de una secuencia de ácido nucleico o múltiples copias complementarias a Ia secuencia de un ácido nucleico utilizando al menos una secuencia de ácido nucleico como marco de referencia inicial. Los sistemas de amplificación incluyen Ia reacción de Ia polimerasa en cadena (polymerase chain reaction - por sus siglas en inglés PCR), Ia reacción en cadena dependiente de ligasa (LCR), Ia amplificación dependiente de secuencia de ácido nucleico (NASBA, Canteen, Mississauga, Ontario), el sistema Q- Beta Replicase, el sistema de amplificación dependiente de transcripción (Transcríptional-dependent Amplification System -TAS, por sus siglas en inglés), y el sistema de amplificación por desplazamiento de hebra (Strand Displacement Amplification -SDA, por sus siglas en inglés) 13. El producto de amplificación se denomina un amplicón.Likewise, for the purposes of the present invention, the following terms will have the definition detailed below. By "amplification" is meant the construction of multiple copies of a nucleic acid sequence or multiple copies complementary to the sequence of a nucleic acid using at least one nucleic acid sequence as the initial reference frame. The amplification systems include the polymerase chain reaction (PCR), the ligase dependent chain reaction (LCR), the nucleic acid sequence dependent amplification (NASBA, Canteen, Mississauga , Ontario), the Q-Beta Replicase system, the Transcription-dependent Amplification System (TAS), and the Strand Displacement Amplification -SDA, for its acronym in English) 13 . The amplification product is called an amplicon.
La "orientación antisentido" hace referencia a una secuencia polinucleotídica de doble hebra que se encuentra funcionalmente ligada a un promotor en una orientación en Ia cual se transcribe Ia orientación antisentido de dicha molécula. La hebra antisentido es suficientemente complementaria a un producto endógeno de transcripción como para que Ia traducción del producto del transcrito endógeno sea inhibida.The "antisense orientation" refers to a double stranded polynucleotide sequence that is functionally linked to a promoter in an orientation in which the antisense orientation of said molecule is transcribed. The antisense strand is sufficiently complementary to an endogenous transcription product so that the translation of the endogenous transcript product is inhibited.
Una "región cromosómica" hace referencia a Ia longitud de un cromosoma que puede ser medida por referencia al segmento lineal de ADN que dicha región incluye. La región puede ser también definida a partir de dos secuencias únicas de ADN o marcadores moleculares.A "chromosomal region" refers to the length of a chromosome that can be measured by reference to the linear segment of DNA that said region includes. The region can also be defined from two unique DNA sequences or molecular markers.
El término "variantes modificadas conservativamente" se aplica tanto a secuencias nucleotídicas como a secuencias de aminoácidos. En referencia a secuencias nucleotídicas específicas, variantes modificadas conservativamente se refiere a aquellos ácidos nucleicos que codifican variantes idénticas o modificadas conservativamente de las secuencias de aminoácidos. A causa de Ia degeneración del código genético un número grande de ácidos nucleicos funcionalmente idénticos codifican cualquier tipo de proteína. Por ejemplo, los codones GCA, GCC, GCG y GCU codifican el aminoácido alanina. Estas variaciones del ácido nucleico son variaciones silenciosas y representan variantes modificadas conservativamente. Por Io mismo, toda secuencia de ácido nucleico que codifique un polipéptido en este documento describe todas las variaciones silenciosas posibles del ácido nucleico. De Ia misma manera, toda variación silenciosa de una secuencia de ácido nucleico que codifique un polipéptido queda implícitamente incluida en cada secuencia polipeptídica de este documento.The term "conservatively modified variants" applies to both nucleotide sequences and amino acid sequences. Referring to specific nucleotide sequences, conservatively modified variants refers to those nucleic acids encoding identical or conservatively modified variants of the amino acid sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any type of protein. For example, the codons GCA, GCC, GCG and GCU encode the amino acid alanine. These nucleic acid variations are silent variations and represent conservatively modified variants. By Likewise, any nucleic acid sequence encoding a polypeptide herein describes all possible silent variations of the nucleic acid. In the same way, any silent variation of a nucleic acid sequence encoding a polypeptide is implicitly included in each polypeptide sequence of this document.
En cuanto a las secuencias de aminoácidos, se reconoce que sustituciones individuales, deleciones o adiciones a un ácido nucleico, a un péptido, a un polipéptido o a una secuencia proteica que altere, adicione o elimine un solo aminoácido o un porcentaje pequeño de aminoácidos en Ia secuencia codificada es también una "variante modificada conservativamente" en Ia cual Ia alteración resulta en Ia substitución de un aminoácido por un aminoácido bioquímicamente similar. Por Io tanto, cualquier número de residuos de aminoácidos seleccionados a partir del número de íntegros que van del 1 al 15 puede ser alterado de Ia manera descrita aquí arriba. Por ejemplo, 1, 2, 3, 4, 5, 7 o 10 alteraciones pueden ser creadas. Las variantes conservativamente modificadas tienen generalmente una actividad biológica similar a Ia de Ia secuencia polipeptídica no modificada a partir de Ia cual fueron derivadas. Por ejemplo, Ia especificidad del substrato, Ia actividad enzimática, o las propiedades de unión entre un receptor y su elicitor son generalmente del 30% al 90% de Ia actividad de Ia proteína nativa y de su substrato nativo. Las tablas de substituciones conservativas son ampliamente conocidas en el área.As for amino acid sequences, it is recognized that individual substitutions, deletions or additions to a nucleic acid, a peptide, a polypeptide or a protein sequence that alters, adds or eliminates a single amino acid or a small percentage of amino acids in Ia The encoded sequence is also a "conservatively modified variant" in which the alteration results in the substitution of an amino acid with a biochemically similar amino acid. Therefore, any number of amino acid residues selected from the number of intakes ranging from 1 to 15 can be altered in the manner described above. For example, 1, 2, 3, 4, 5, 7 or 10 alterations can be created. Conservatively modified variants generally have a biological activity similar to that of the unmodified polypeptide sequence from which they were derived. For example, the specificity of the substrate, the enzymatic activity, or the binding properties between a receptor and its elicitor are generally from 30% to 90% of the activity of the native protein and its native substrate. Conservative substitution tables are widely known in the area.
Los siguientes 6 grupos contienen aminoácidos que representan substituciones conservativas dentro de cada uno de los grupos:The following 6 groups contain amino acids that represent conservative substitutions within each of the groups:
1) Alanina (A), Serina (S), Treonina (T).1) Alanine (A), Serine (S), Threonine (T).
2) Ácido Aspártico (D), Ácido Glutámico (E )2) Aspartic Acid (D), Glutamic Acid (E)
3) Aspargina (N), Glutamina (Q)3) Aspargina (N), Glutamine (Q)
4) Arginina (R ), Usina (K) 5) Isoleucina (I), Leucina (L), Metionina (M), Valina (V)4) Arginine (R), Usina (K) 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V)
6) Fenilalanina (F), Tirosina (Y), Triptofano (W)6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W)
El término "codificado" o "que codifica" en referencia a un ácido nucleico específico se refiere a Ia información de traducción de Ia proteína correspondiente. Un ácido nucleico que codifica una proteína puede incluir secuencias no traducidas (intrones, por ejemplo) contenidas dentro de regiones traducidas del ácido nucleico, o puede no incluir este tipo de secuencias (como en un cDNA, por ejemplo). La información de Ia proteína codificada está especificada en el uso de codones. De manera general se utiliza el código genético universal para determinar el código de traducción de una secuencia de ácido nucleico en secuencia de aminoácidos. Sin embargo, existen variantes del código universal en Ia información genética contenida dentro de las mitocondrias de algunas plantas, animales u hongos, del organismo bacteroide Micoplasma capricolum, el organismo ciliado Macronucleus pueden ser incluidas dentro del organismo correspondiente.The term "encoded" or "encoded" in reference to a specific nucleic acid refers to the translation information of the corresponding protein. An acid Nucleic encoding a protein may include untranslated sequences (introns, for example) contained within translated regions of the nucleic acid, or it may not include such sequences (as in a cDNA, for example). The information of the encoded protein is specified in the use of codons. In general, the universal genetic code is used to determine the translation code of a nucleic acid sequence into an amino acid sequence. However, there are variants of the universal code in the genetic information contained within the mitochondria of some plants, animals or fungi, of the bacteroide organism Micoplasma capricolum, the ciliated organism Macronucleus can be included within the corresponding organism.
Cuando el ácido nucleico es generado o alterado de manera sintética, se pueden aprovechar las preferencias de codones del organismo hospedero en el cual se pretende expresar el ácido nucleico. Por ejemplo, aunque las secuencias nucleotídicas del invento que aquí se describe pueden ser expresadas en especies de Trichoderma, las secuencias pueden ser modificadas tomando en cuenta las preferencias de codones y Ia preferencia de contenido GC que pueda presentarse entre las especies del género Trichoderma.When the nucleic acid is generated or synthetically altered, the codon preferences of the host organism in which the nucleic acid is intended to be expressed can be exploited. For example, although the nucleotide sequences of the invention described herein can be expressed in Trichoderma species, the sequences can be modified taking into account codon preferences and GC content preference that may occur between species of the Trichoderma genus.
El término "secuencia de longitud completa" (del inglés "full-length sequence") de un polinucleótido específico o su proteína codificada hace referencia a Ia secuencia completa de Ia cadena de aminoácidos de una proteína nativa (no sintética), endógena y en su forma biológicamente activa. Los métodos que se utilizan para determinar si una secuencia es de longitud completa son ampliamente conocidos y como ejemplo podemos mencionar hibridaciones de tipo "Northern" o "Western", extensión de primers, o protección de ribonucleasa 14. La comparación con secuencias de longitud completa homologas (ortólogas o parálogas) puede ser también utilizada para identificar Ia secuencia de longitud completa de secuencias incluidas en el invento que aquí se describe. Las secuencias consenso generalmente presentes en el borde 3' o 5' de las regiones no traducidas de una molécula de RNA mensajero (mRNA) ayudan a Ia identificación de Ia secuencia de longitud completa de un polinucleótido. Por ejemplo, Ia secuencia consenso ANNNNAUGG1 en Ia cual el codón subrayado representa Ia metionina presente en el borde N-terminal ayuda a determinar si el polinucleótido tiene un borde 5' terminal completo. Las secuencias consenso en el borde 3' tales como las secuencias de poliadenilación, ayudan a determinar si el borde 3' terminal está completo.The term "full-length sequence" (of the English "full-length sequence") of a specific polynucleotide or its encoded protein refers to the complete sequence of the amino acid chain of a native (non-synthetic) endogenous protein and in its biologically active form. The methods used to determine if a sequence is full length are widely known and as an example we can mention "Northern" or "Western" type hybridizations, primer extension, or ribonuclease protection 14 . The comparison with homologous full length sequences (orthologs or paralogs) can also be used to identify the full length sequence of sequences included in the invention described herein. The consensus sequences generally present at the 3 'or 5' edge of the untranslated regions of a messenger RNA molecule (mRNA) help to identify the full length sequence of a polynucleotide. For example, the consensus sequence ANNNNAUGG 1 in which the underlined codon represents the methionine present in the N-terminal edge helps to determine if the polynucleotide has a 5 'terminal edge full. Consensus sequences at the 3 'edge, such as polyadenylation sequences, help determine if the 3' terminal edge is complete.
El término "heterólogo" se refiere aquí a un ácido nucleico que deriva de una especie diferente o, en caso de que derive de Ia misma especie, un ácido nucleico que se encuentra sustancialmente modificado de su forma nativa. Por ejemplo, un promotor que se encuentre operativamente ligado a un gen estructural heterólogo pertenece a una especie diferente a partir de Ia cual el gen estructural fue originalmente obtenido siempre y cuando se origine de una intervención humana deliberada. En caso de pertenecer a Ia misma especie, uno a varios genes heterólogos deben estar sustancialmente modificados de su forma original. Una proteína heteróloga puede originarse a partir de una especie distinta, o de Ia misma especie siempre y cuando se origine a partir de una intervención humana deliberada.The term "heterologous" refers here to a nucleic acid that derives from a different species or, if derived from the same species, a nucleic acid that is substantially modified in its native form. For example, a promoter that is operatively linked to a heterologous structural gene belongs to a different species from which the structural gene was originally obtained as long as it originates from a deliberate human intervention. In case of belonging to the same species, one to several heterologous genes must be substantially modified from their original form. A heterologous protein can originate from a different species, or from the same species as long as it originates from a deliberate human intervention.
El término "célula huésped" hace referencia a una célula que contiene un vector y que asegura Ia replicación y/o Ia expresión de dicho vector. Las células huésped pueden ser células procarióticas como las de E. coli, o eucarióticas como las de levadura, insecto, anfibio o células de mamífero. Preferentemente, las células huésped son cepas de Trichoderma.The term "host cell" refers to a cell that contains a vector and that ensures the replication and / or expression of said vector. Host cells can be prokaryotic cells such as E. coli, or eukaryotic cells such as yeast, insect, amphibian or mammalian cells. Preferably, the host cells are Trichoderma strains.
El término "complejo de hibridación" hace referencia a una estructura doble hebra de ácido nucleico formado por dos secuencias de ácidos nucleicos de hebra sencilla hibridados conjuntamente de manera selectiva.The term "hybridization complex" refers to a double stranded nucleic acid structure formed by two single stranded nucleic acid sequences hybridized together selectively.
El término "introducido" en referencia al acto de insertar un ácido nucleico en una célula, significa "transfectar" o "transformar" e incluye Ia incorporación de ácidos nucleicos en una célula eucariota o procariota en Ia cual el ácido nucleico puede ser incorporado en el genoma de Ia célula (en el ADN de un cromosoma, de un plásmido, un plástido o una mitocondria), o puede ser convertido en un replicón autónomo, o expresado de manera transiente.The term "introduced" in reference to the act of inserting a nucleic acid into a cell, means "transfecting" or "transforming" and includes the incorporation of nucleic acids into a eukaryotic or prokaryotic cell in which the nucleic acid can be incorporated into the cell. genome of the cell (in the DNA of a chromosome, of a plasmid, a plastid or a mitochondrion), or it can be converted into an autonomous replicon, or expressed transiently.
El término "aislado" se refiere a un material (ácido nucleico o una proteína) que se encuentra: (1) sustancialmente o completamente libre de los componentes que normalmente Io acompañan o ¡nteractúan con el en su forma natural. El material aislado puede opcionalmente comprender otro material que no se encuentra asociado con el aislado en su forma natural; o bien (2) en caso de que el material se encuentre en su medio natural, si el material ha sido alterado de manera sintética por una intervención humana deliberada que modifica su composición o Io asigna a un lugar específico de Ia célula (por ejemplo, un organelo) diferente al lugar en el que se encuentra en su entorno natural. La alteración que da lugar a Ia forma sintética del material puede ser dirigida al material (ácido nucleico y/o proteína) o depender de una remoción del entorno natural. Por ejemplo, un ácido nucleico natural puede ser aislado si se Ie altera o si se Ie transcribe a partir de ADN que ha sido previamente alterado a partir de una intervención humana deliberada realizada en Ia célula de Ia cual el ácido nucleico se originó 15'16. De Ia misma manera, un ácido nucleico natural (por ejemplo, un promotor) se encuentra aislado si se Ie introduce por medios no naturales en un locus del genoma que no Ie es nativo. Los ácidos nucleicos que son "aislados" siguiendo esta definición pueden ser denominados como ácidos nucleicos "heterólogos".The term "isolated" refers to a material (nucleic acid or a protein) that is: (1) substantially or completely free of the components that they usually accompany or interact with him in his natural form. The isolated material may optionally comprise another material that is not associated with the isolate in its natural form; or (2) in case the material is in its natural environment, if the material has been synthetically altered by a deliberate human intervention that modifies its composition or assigns it to a specific place in the cell (for example, an organelle) different from the place where it is in its natural environment. The alteration that gives rise to the synthetic form of the material can be directed to the material (nucleic acid and / or protein) or depend on a removal from the natural environment. For example, a natural nucleic acid can be isolated if it is altered or if it is transcribed from DNA that has been previously altered from a deliberate human intervention performed in the cell from which the nucleic acid originated 15 '16 . In the same way, a natural nucleic acid (for example, a promoter) is isolated if it is introduced by unnatural means into a locus of the genome that is not native. Nucleic acids that are "isolated" following this definition may be referred to as "heterologous" nucleic acids.
El término "ácido nucleico" o "nucleótido" hace referencia a un polímero de desoxirribonucleótidos o ribonucleótidos en su forma de hebra sencilla o doble hebra y comprende aquellas moléculas análogas que tienen Ia naturaleza esencial de los nucleótidos naturales de poder hibridarse a ácidos nucleicos de hebra sencilla de una manera similar a Ia de los nucleótidos naturales.The term "nucleic acid" or "nucleotide" refers to a deoxyribonucleotide or ribonucleotide polymer in its single-stranded or double-stranded form and comprises those analogous molecules that have the essential nature of natural nucleotides to hybridize to stranded nucleic acids simple in a manner similar to that of natural nucleotides.
El término " biblioteca de ácidos nucleicos" se refiere a una colección de moléculas de ARN o ADN que comprenden y representan de manera sustancial Ia integridad de Ia fracción transcrita del genoma de un organismo específico. Ejemplos de construcciones de bibliotecas, ya sean bibliotecas genómicas o bibliotecas de cDNA, son descritas en referencias convencionales de biología molecular 17'18'19.The term "nucleic acid library" refers to a collection of RNA or DNA molecules that substantially comprise and represent the integrity of the transcribed fraction of the genome of a specific organism. EXAMPLES constructions libraries, either genomic or cDNA libraries libraries are described conventional molecular biology references 17 '18' 19.
El término "polinucleótido" hace referencia a un desoxirribonucleótido, un ribopolinucleótido, o sus análogos que tengan las propiedades esenciales de un ribonucleótido natural, como es el hecho de que hibriden, bajo condiciones de hibridación astringente, a esencialmente las mismas secuencias nucleotídicas que los nucleótidos que ocurren de manera natural, o que permitan Ia traducción en los mismos aminoácidos que los nucleótidos naturales. Un polinucleótido puede ser de longitud completa o un segmento de secuencia de un gen estructural o un gen regulatorio nativo o heterólogo. De no ser que se mencione explícitamente, el término incluye Ia secuencia especificada así como su secuencia complementaria. Por ello, moléculas de ADN o de ARN que contengan segmentos que han sido modificados para aumentar su estabilidad o por otras razones son también "polinucleótidos" para efectos del presente invento. Adicionalmente, moléculas de ADN o de ARN que incluyan bases nucleotídicas poco frecuentes, como inosina, o bases nucleotídicas modificadas, como las bases tritiladas por citar solo dos ejemplos, serían también consideradas "polinucleótidos" para efectos del presente invento. Se desprende de este párrafo que una gran variedad de modificaciones han sido realizadas a moléculas de ADN o de ARN, y que dichas modificaciones sirven para múltiples propósitos. El término polinucleótido se utiliza aquí para designar formas de polinucleótidos modificadas químicamente, enzimáticamente o metabólicamente, así como las formas químicas del ADN y del ARN características de los virus y de las células sencillas o complejas.The term "polynucleotide" refers to a deoxyribonucleotide, a ribopolinucleotide, or its analogues that have the essential properties of a natural ribonucleotide, such as the fact that they hybridize, under conditions of astringent hybridization, to essentially the same nucleotide sequences as nucleotides. that occur naturally, or that allow translation in the same amino acids as natural nucleotides. A polynucleotide can be full length or a sequence segment of a structural gene or a native or heterologous regulatory gene. Unless explicitly mentioned, the term includes the specified sequence as well as its complementary sequence. Therefore, DNA or RNA molecules that contain segments that have been modified to increase their stability or for other reasons are also "polynucleotides" for purposes of the present invention. Additionally, DNA or RNA molecules that include infrequent nucleotide bases, such as inosine, or modified nucleotide bases, such as tritilated bases to cite just two examples, would also be considered "polynucleotides" for purposes of the present invention. It follows from this paragraph that a wide variety of modifications have been made to DNA or RNA molecules, and that such modifications serve multiple purposes. The term polynucleotide is used herein to designate chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and simple or complex cells.
El término "polipéptido", "péptido", y "proteína" se utilizan aquí de manera intercambiable para designar a un polímero de aminoácidos. Los términos hacen referencia a polímeros de aminoácidos en el cual uno o mas de los aminoácidos es un análogo de un aminoácido natural correspondiente. La naturaleza esencial de dichos análogos es que cuando están incorporados en una proteína, dicha proteína puede ser reconocida de manera específica por anticuerpos diseñados para reconocer esa misma proteína cuando está compuesta exclusivamente de aminoácidos naturales. Los términos polipéptido", "péptido", y "proteína" incluyen también, sin limitaciones, Ia glicolisación, Ia unión con lípidos, Ia sulfatación, Ia gama carboxilación de residuos que contengan ácido glutámico, Ia hidroxilación y Ia ribosilación de ADP. Es importante mencionar que los polipéptidos no son completamente lineales. Por ejemplo, los polipéptidos pueden estar ramificados como resultado de Ia ubiquitinación, pueden ser circulares, con o sin ramificaciones como resultado de eventos post-traduccionales tales como procesos naturales y eventos causados por Ia manipulación humana que no ocurren de manera natural. Polipéptidos circulares y/o ramificados pueden ser sintetizados por procesos naturales que no dependen de Ia traducción y por procesos completamente sintéticos. Adicionalmente, este invento incluye también las variantes terminales de aminoácidos con o sin metionina de cada una de las proteínas referentes al presente invento.The term "polypeptide", "peptide", and "protein" are used interchangeably herein to designate an amino acid polymer. The terms refer to amino acid polymers in which one or more of the amino acids is an analogue of a corresponding natural amino acid. The essential nature of such analogs is that when incorporated into a protein, said protein can be specifically recognized by antibodies designed to recognize that same protein when it is composed exclusively of natural amino acids. The terms polypeptide "," peptide ", and" protein "also include, without limitation, glycolization, lipid binding, sulphation, carboxylation range of residues containing glutamic acid, hydroxylation and ribosylation of ADP. It is important mention that the polypeptides are not completely linear, for example, the polypeptides may be branched as a result of ubiquitination, they may be circular, with or without branching as a result of post-translational events such as natural processes and events caused by human manipulation that they do not occur naturally, circular and / or branched polypeptides can be synthesized by natural processes that do not depend on translation and by processes completely synthetic Additionally, this invention also includes terminal amino acid variants with or without methionine of each of the proteins related to the present invention.
El término "promotor" hace referencia a una región de ADN localizada en dirección 5' del codón de inicio de Ia transcripción y que está involucrada en el reconocimiento y Ia unión de una RNA polimerasa y de otras proteínas necesarias para el inicio de Ia transcripción. Un "promotor" es una secuencia derivada de otro organismo pero capaz de iniciar Ia transcripción en células heterólogas. Algunos ejemplos de promotores incluyen aquellos obtenidos a partir del ADN de virus de plantas y de bacterias que contienen genes que se expresan en plantas como Agrobacterium o Rhizobium. Ejemplos de promotores que están bajo control de estados de desarrollo incluyen promotores que de manera preferencial inician Ia transcripción en ciertos tejidos, tales como hojas, raíces o semillas. Este tipo de promotores son denominados "tejido-preferentes". Aquellos promotores que solo inician Ia transcripción en ciertos tejidos se denominan "promotores específicos". Un promotor específico de "tipo celular" es un promotor que solo dirige Ia expresión en ciertos tipos de células localizada en uno o varios órganos, como por ejemplo las células de Ia vasculatura en hojas y raíces. Un promotor "inducible" o "reprimible" es un promotor que responde a señales de control que emite del medio ambiente. Algunos ejemplos de condiciones ambientales que pueden tener un efecto sobre Ia transcripción dependiente de promotores inducibles son Ia presencia de condiciones anaeróbicas, o el efecto de Ia luz. Los promotores tejido-específicos, los promotores tejido-preferentes, los promotores específicos de tipo celular y los promotores inducibles constituyen Ia clase de promotores "no constitutivos" Los promotores "constitutivos" son aquellos que dirigen Ia expresión de manera sistémica y bajo Ia mayoría de condiciones ambientales.The term "promoter" refers to a region of DNA located in the 5 'direction of the codon at the start of the transcription and which is involved in the recognition and binding of an RNA polymerase and other proteins necessary for the initiation of the transcription. A "promoter" is a sequence derived from another organism but capable of initiating transcription in heterologous cells. Some examples of promoters include those obtained from the DNA of plant viruses and bacteria that contain genes that are expressed in plants such as Agrobacterium or Rhizobium. Examples of promoters that are under control of developmental states include promoters that preferentially initiate transcription in certain tissues, such as leaves, roots or seeds. These types of promoters are called "tissue-preferred". Those promoters that only initiate transcription in certain tissues are called "specific promoters". A specific "cell type" promoter is a promoter that only directs expression in certain types of cells located in one or more organs, such as, for example, the cells of the vasculature in leaves and roots. An "inducible" or "repressible" promoter is a promoter that responds to control signals that it emits from the environment. Some examples of environmental conditions that may have an effect on transcription dependent on inducible promoters are the presence of anaerobic conditions, or the effect of light. Tissue-specific promoters, tissue-preferred promoters, specific cell-type promoters and inducible promoters constitute the class of "non-constitutive" promoters. "Constitutive" promoters are those that direct expression systemically and under most of the environmental conditions.
El término "recombinante" hace referencia a una célula o a un vector que ha sido modificado por Ia introducción de ácido nucleico o que una célula es derivada de otra célula que fue modificada por dicha introducción. Por ejemplo, células recombinantes expresan genes que no se encuentran en forma idéntica dentro de Ia forma nativa (no recombinante) de Ia célula o que expresan genes nativos que de otra manera se sub-expresarían, se expresarían de manera anormal, o no se expresarían como resultado de Ia intervención humana. El término recombinante no incluye Ia alteración de Ia célula o del vector por eventos ocurridos en forma natural (por ejemplo, mutación espontánea, o transformación, transducción o transposición) como todos aquellos que ocurren sin Ia intervención humana.The term "recombinant" refers to a cell or a vector that has been modified by the introduction of nucleic acid or that a cell is derived from another cell that was modified by said introduction. For example, recombinant cells express genes that are not found identically within the native (non-recombinant) form of the cell or that express native genes that would otherwise be under-expressed, expressed abnormally, or not express as a result of human intervention. The recombinant term does not include the alteration of the cell or of the vector by events that occur naturally (for example, spontaneous mutation, or transformation, transduction or transposition) like all those that occur without human intervention.
El término "caset de expresión" se refiere a una construcción de ácido nucleico (generada en forma recombinante o sintética) que contiene una serie de elementos de ácidos nucleicos que permiten Ia transcripción de un ácido nucleico particular en una célula huésped. El caset de expresión recombinante puede ser incorporado en un plásmido, en un cromosoma, en ADN mitocondrial, en ADN plastídico, en un virus, o en un fragmento de ácido nucleico. Típicamente, Ia porción del caset de expresión recombinante de un vector de expresión incluye, entre otras secuencias, el ácido nucleico que va a ser transcrito y un promotor.The term "expression cassette" refers to a nucleic acid construct (generated in recombinant or synthetic form) that contains a series of nucleic acid elements that allow transcription of a particular nucleic acid in a host cell. The recombinant expression cassette can be incorporated into a plasmid, on a chromosome, in mitochondrial DNA, in plastidic DNA, in a virus, or in a nucleic acid fragment. Typically, the portion of the recombinant expression cassette of an expression vector includes, among other sequences, the nucleic acid to be transcribed and a promoter.
El término "residuo" o "residuo de aminoácido" se usan de manera intercambiable para referirse a un aminoácido que está incorporado en una proteína, un polipéptido o un péptido. El aminoácido puede ser natural o puede incluir aminoácidos sintéticos análogos de aminoácidos naturales que puedan funcionar de manera similar a los aminoácidos naturales.The term "residue" or "amino acid residue" is used interchangeably to refer to an amino acid that is incorporated into a protein, a polypeptide or a peptide. The amino acid may be natural or may include synthetic amino acids analogous to natural amino acids that may function similarly to natural amino acids.
El término "híbrida selectivamente" hace referencia a Ia hibridación (en condiciones de hibridación astringentes) de una secuencia de ácido nucleico a una secuencia blanco específica de ácido nucleico que pueda ser distinguida por detección de su hibridación a una secuencia de ácido nucleico no-blanco, Io que sirve para excluir de manera sustancial ácidos nucleicos no blanco. Las secuencias que hibridan selectivamente típicamente tienen 90% de identidad de secuencia compartida, y preferentemente 100% de identidad de secuencia compartida.The term "selectively hybrid" refers to the hybridization (under astringent hybridization conditions) of a nucleic acid sequence to a specific white nucleic acid sequence that can be distinguished by detection of its hybridization to a non-white nucleic acid sequence , Which serves to substantially exclude non-white nucleic acids. Sequences that selectively hybridize typically have 90% shared sequence identity, and preferably 100% shared sequence identity.
El término "cepa transgénica" o "transformante" o "cepa transformada" hace referencia a un aislado bien caracterizado del hongo que contiene en su genoma un polinucleótido introducido en el laboratorio por técnicas de transformación conocidas en el arte. Generalmente dicho polinucleótido está integrado de manera estable y se transmite a Ia descendencia de dicho hongo. El polinucleótido puede estar integrado en el genoma en forma aislada o como parte de un vector de recombinación. El término "transgénico" incluye aquí cualquier célula ó línea celular, para Ia cual el genotipo ha sido alterado por Ia introducción de un ácido nucleico, incluyendo aquellos elementos transgénicos que fueron creados por transformación. El término "vector" hace referencia a un ácido nucleico utilizado para Ia transformación de una célula huésped en Ia cual puede ser insertado un polinucleótido. Los vectores son a menudo replicones. Los vectores de expresión permiten Ia transcripción de un ácido nucleico que les ha sido insertado. Los términos que se indican a continuación son utilizados para describir Ia relación que tienen las secuencias de dos o más ácidos nucleicos o polinucleótidos: (a) "secuencia de referencia", (b) "intervalo de comparación", (c) "identidad de Ia secuencia", (d) porcentaje de identidad de Ia secuencia" y (e) "identidad sustancial".The term "transgenic strain" or "transformant" or "transformed strain" refers to a well characterized isolate of the fungus that contains in its genome a polynucleotide introduced into the laboratory by transformation techniques known in the art. Generally said polynucleotide is stably integrated and is transmitted to the offspring of said fungus. The polynucleotide can be integrated into the genome in isolation or as part of a recombination vector. He The term "transgenic" includes here any cell or cell line, for which the genotype has been altered by the introduction of a nucleic acid, including those transgenic elements that were created by transformation. The term "vector" refers to a nucleic acid used for the transformation of a host cell in which a polynucleotide can be inserted. Vectors are often replicons. Expression vectors allow the transcription of a nucleic acid that has been inserted. The terms indicated below are used to describe the relationship between the sequences of two or more nucleic acids or polynucleotides: (a) "reference sequence", (b) "comparison interval", (c) "identity of The sequence ", (d) percentage of identity of the sequence" and (e) "substantial identity".
(a) El término "secuencia de referencia" es una secuencia definida que se utiliza como base para Ia comparación de secuencias. Una secuencia de referencia puede ser una porción o una secuencia completa; por ejemplo, un segmento de un cDNA de longitud completa, o bien Ia longitud completa del cDNA o un gen entero.(a) The term "reference sequence" is a defined sequence that is used as the basis for sequence comparison. A reference sequence may be a portion or a complete sequence; for example, a segment of a full-length cDNA, or the full length of the cDNA or an entire gene.
(b) El término "intervalo de comparación" hace referencia a un segmento específico y contiguo de una secuencia polinucleotídica que puede ser comparado a una secuencia de referencia y para el cual Ia porción comparativa de Ia secuencia polinucleotídica puede incluir elementos adicionales o ausentes (por ejemplo, "gaps") al ser comparada con Ia secuencia de referencia (que no tiene elementos adicionales o ausentes) de manera que el alineamiento de las dos secuencias sea óptimo. Por Io general el intervalo de comparación es de ai menos 20 nucleótidos contiguos y a menudo puede incluir más de 100 nucleótidos. Aquellos técnicos en el arte que conocen como realizar este tipo de análisis entienden que para evitar una similaridad elevada con Ia secuencia de referencia a causa de "gaps" en Ia secuencia polinucleotídica, valores de penalización por el "gap" pueden ser utilizados. Se conocen bien varios métodos de alineamiento de secuencias.(b) The term "comparison interval" refers to a specific and contiguous segment of a polynucleotide sequence that can be compared to a reference sequence and for which the comparative portion of the polynucleotide sequence may include additional or missing elements (by example, "gaps") when compared with the reference sequence (which has no additional or missing elements) so that the alignment of the two sequences is optimal. In general, the comparison range is at least 20 contiguous nucleotides and can often include more than 100 nucleotides. Those skilled in the art who know how to perform this type of analysis understand that in order to avoid a high similarity with the reference sequence due to "gaps" in the polynucleotide sequence, penalty values for the "gap" can be used. Several sequence alignment methods are well known.
El alineamiento óptimo de secuencias para comparación puede ser obtenido a partir del algoritmo de homología local de Smith y Waterman 20, por el algoritmo de Needlman y Wunsch 21, por el método de búsqueda de similaridad de Pearson y Lipman 22, por Ia implementación computarizada de estos algoritmos, incluyendo pero no limitada a: CLUSTAL en el programaThe optimal sequence alignment for comparison can be obtained from the local homology algorithm of Smith and Waterman 20 , by the algorithm of Needlman and Wunsch 21 , by the similarity search method of Pearson and Lipman 22 , by the computerized implementation of These algorithms, including but not limited to: CLUSTAL in the program
PC/Gene de Intelligenetics, Mountain View, California; GAP, BESTFIT, BLAST, FASTA y TFASTA en el paquete denominado Wisconsin Genetics Software, Genetics Computer Group (GCG), 575 Sciende Dr., Madison Wisconsin, USA; el programa CLUSTAL está descrito en detalle en Higgins yPC / Gene from Intelligenetics, Mountain View, California; GAP, BESTFIT, BLAST, FASTA and TFASTA in the package called Wisconsin Genetics Software, Genetics Computer Group (GCG), 575 Sciende Dr., Madison Wisconsin, USA; the CLUSTAL program is described in detail in Higgins and
Sharp 23 24'25'26. La familia de programas BLAST que pueden ser utilizados para búsquedas comparativas de secuencias incluye: BLASTN para búsqueda comparativa de secuencias nucleotídicas comparadas a las secuencias nucleotídicas contenidas en bases de datos del dominio público; BLASTP para búsqueda comparativa de secuencias proteicas comparadas a las secuencias proteicas contenidas en bases de datos del dominio público; TBLASTN para búsqueda de homologías entre una secuencia proteica y una secuencia nucleotídica; y TBLASTX para una comparación de una secuencia nucleotídica con un conjunto de bases de datos de secuencias nucleotídicas27.Sharp 23 24 ' 25 ' 26 . The family of BLAST programs that can be used for comparative sequence searches includes: BLASTN for comparative search of nucleotide sequences compared to nucleotide sequences contained in public domain databases; BLASTP for comparative search of protein sequences compared to protein sequences contained in public domain databases; TBLASTN for finding homologies between a protein sequence and a nucleotide sequence; and TBLASTX for a comparison of a nucleotide sequence with a set of nucleotide sequence databases 27 .
A menos que se indique otra cosa de manera explícita, los valores de identidad o similaridad de una secuencia que se indiquen en este documento se refieren a los valores obtenidos con Ia versión BLAST 2.0 usando los parámetros "default" 28. El software para realizar estos análisis es del dominio público y se puede acceder u obtener a través del sitio de internet del CentroUnless explicitly stated otherwise, the identity or similarity values of a sequence indicated in this document refer to the values obtained with the BLAST 2.0 version using the "default" parameters 28 . The software to perform these analyzes is in the public domain and can be accessed or obtained through the Center's website
Nacional de Información Biotecnológica de los Estados-Unidos de Norteamérica (National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov). El algoritmo empieza por identificar pares de secuencias con alto grado de similaridad a partir de Ia identificación de palabras cortas con una longitud de W en Ia secuencia de búsqueda; dichas palabras deben ser idénticas o muy similares a Ia de un umbral de valor T cuando se alinean con una palabra de Ia misma longitud contenida en una base de datos del dominio público. Esta similitud inicial entre dos secuencias da lugar al inicio de una serie de búsquedas para encontrar secuencias de mayor longitud y alto grado de similaridad. A T se Ie denomina el umbral de valor de vecindad de palabra 28. Las palabras encontradas se extienden en ambas direcciones para cada una de las secuencias siempre y cuando el valor de alineamiento acumulativo siga creciendo. Para secuencias nucleotídicas los valores acumulativos se calculan usando los parámetros M (valor de premio par un par de residuos coincidentes; siempre será superior aNational Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov). The algorithm begins by identifying pairs of sequences with a high degree of similarity from the identification of short words with a length of W in the search sequence; said words must be identical or very similar to that of a threshold of value T when aligned with a word of the same length contained in a public domain database. This initial similarity between two sequences results in the beginning of a series of searches to find sequences of greater length and a high degree of similarity. AT is called the word neighborhood value threshold 28 . The words found extend in both directions for each of the sequences as long as the cumulative alignment value continues to grow. For nucleotide sequences the cumulative values are calculated using the M parameters (prize value for a pair of matching waste; it will always be greater than
O) y (valor de castigo para residuos no coincidentes; siempre será inferior a 0). Para secuencias de aminoácidos, se utiliza un valor de matriz para calcular el valor acumulativo. La extensión de las palabras encontradas se detiene en cada una de las dos direcciones cuando: a) el valor de alineamiento acumulativo decae por Ia cantidad X inferior al máximo valor obtenido; b) el valor acumulativo llega a ser inferior o igual a cero debido a Ia acumulación de uno o más residuos de alineamiento con valor negativo; o c) el final de cada secuencia es alcanzado. Los parámetros W, T y X del algoritmo BLAST determinan Ia sensibilidad y Ia velocidad del alineamiento de secuencias. El programa BLASTN (para secuencias nucleotídicas) utiliza como valores "default" una longitud de palabra W de 11 , un valor de espectancia E de 10, un umbral de corte de 100, M=5, N=-4, y efectúa Ia comparación de ambas hebras de secuencias nucleotídicas 29. Además de calcular el porcentaje de identidad de secuencia, el algoritmoO) and (penalty value for mismatched waste; it will always be less than 0). For amino acid sequences, a matrix value is used to calculate the cumulative value. The extension of the words found stops in each of the two directions when: a) the cumulative alignment value falls by the amount X less than the maximum value obtained; b) the cumulative value becomes less than or equal to zero due to the accumulation of one or more alignment residues with negative value; or c) the end of each sequence is reached. Parameters W, T and X of the BLAST algorithm determine the sensitivity and speed of sequence alignment. The BLASTN program (for nucleotide sequences) uses as a "default" value a word length W of 11, an audience value E of 10, a cut-off threshold of 100, M = 5, N = -4, and makes the comparison of both strands of nucleotide sequences 29 . In addition to calculating the percentage of sequence identity, the algorithm
BLAST también efectúa un análisis estadístico de Ia similaridad entre 2 secuencias 30. Una medida de similaridad proporcionada por el algoritmo BLAST es Ia probabilidad mínima de suma (P (N)), que proporciona una indicación de Ia probabilidad con Ia cual Ia concordancia entre dos secuencias nucleotídicas o de aminoácidos pueda ocurrir al azar.BLAST also performs a statistical analysis of the similarity between 2 sequences 30 . A measure of similarity provided by the BLAST algorithm is the minimum probability of sum (P (N)), which provides an indication of the probability with which the agreement between two nucleotide or amino acid sequences can occur at random.
Las búsquedas BLAST asumen que las proteínas pueden ser modelizadas como secuencias aleatorias. Sin embargo, muchas proteínas reales comprenden regiones de secuencias no aleatorias que pueden estar enriquecidas con uno o más amino-ácidos. Esas regiones de complejidad baja pueden ser alineadas a partir de proteínas no relacionadas aunque otras regiones de dichas proteínas sean completamente diferentes y no presenten similitud. Algunos programas que funcionan como filtros de baja complejidad pueden ser utilizados para reducir ese tipo de alineamientos de baja complejidad. Por ejemplo, el programa SEG 31 y XNLJ 32. Este tipo de filtros pueden ser utilizados de manera individual o en combinaciones.BLAST searches assume that proteins can be modeled as random sequences. However, many real proteins comprise regions of non-random sequences that may be enriched with one or more amino acids. These regions of low complexity can be aligned from unrelated proteins although other regions of said proteins are completely different and have no similarity. Some programs that function as low complexity filters can be used to reduce such low complexity alignments. For example, the SEG 31 and XNLJ 32 program . This type of filters can be used individually or in combinations.
(c) Los términos "identidad de secuencia" o "identidad" en el contexto de dos secuencias de ácidos nucleicos o de polipéptidos hace referencia a los residuos en ambas secuencias que son los mismos cuando se alinean para buscar Ia mayor correspondencia dentro de una ventana comparativa específica. Cuando el porcentaje de Ia identidad de secuencia se usa en referencia a proteínas se reconoce que las posiciones de los residuos que no son idénticas a menudo difieren por substituciones de aminoácidos conservados, en los cuales los aminoácidos se substituyen por otros aminoácidos que tienen propiedades bioquímicas similares (carga o hidrofobicidad) y por Io tanto no cambia las propiedades funcionales de Ia molécula. Si las secuencias difieren por Ia naturaleza conservativa de Ia substitución, el porcentaje de identidad de secuencia puede ser ajustado hacia arriba para corregir el efecto de Ia naturaleza conservativa de Ia substitución. Se dice que aquellas secuencias que difieren en substituciones conservativas tienen "similaridad de secuencia" o "similaridad". La tarea de realizar este tipo de ajustes es rutinaria para aquellos con destrezas en el arte. Generalmente involucra valorar una substitución conservativa como una discrepancia de secuencias parcial y no completa, incrementando así el porcentaje de identidad de secuencia. Por ejemplo, cuando a un aminoácido idéntico se Ie asigna un valor de 1 y a una substitución no conservativa se Ie asigna un valor de cero, a una substitución conservativa se Ie asigna un valor comprendido entre cero y 1. El valor de las substituciones se calcula utilizando el algoritmo de Meyers and Miller 33, tal y como fue implementado en el programa PC/GENE (Intellegentics, Mountain View, California, USA).(c) The terms "sequence identity" or "identity" in the context of two nucleic acid or polypeptide sequences refers to residues in both sequences that are the same when they are aligned to look for the greatest correspondence within a window. comparative specific. When the percentage of the sequence identity is used in reference to proteins, it is recognized that the positions of residues that are not identical often differ by conserved amino acid substitutions, in which the amino acids are replaced by other amino acids that have similar biochemical properties. (load or hydrophobicity) and therefore does not change the functional properties of the molecule. If the sequences differ by the conservative nature of the substitution, the percentage of sequence identity can be adjusted upwards to correct the effect of the conservative nature of the substitution. It is said that those sequences that differ in conservative substitutions have "sequence similarity" or "similarity". The task of making such adjustments is routine for those with art skills. It generally involves assessing a conservative substitution as a partial and non-complete sequence discrepancy, thereby increasing the percentage of sequence identity. For example, when an identical amino acid is assigned a value of 1 and a non-conservative substitution is assigned a value of zero, a conservative substitution is assigned a value between zero and 1. The value of the substitutions is calculated using the Meyers and Miller 33 algorithm, as implemented in the PC / GENE program (Intellegentics, Mountain View, California, USA).
(d) El término " porcentaje de secuencia de identidad" hace referencia al valor determinado a partir de Ia comparación de dos secuencias óptimamente alineadas a partir de una ventana comparativa específica, y en Ia cual Ia porción de secuencia polinucleotídica en Ia ventana comparativa puede incluir adiciones o deleciones (es decir ausencias) cuando se Ie compara a Ia secuencia de referencia (que no incluye adiciones o deleciones) para el alineamiento óptimo de dos secuencias. El porcentaje se calcula determinando el número de posiciones a partir del cual Ia base nucleotídica o el residuo de amino-ácidos aparece en ambas secuencias para obtener el número de posiciones coincidentes, dividiendo dicho número por el número total de posiciones en Ia ventana comparativa y multiplicando por 100 para obtener el porcentaje de secuencia de identidad.(d) The term "percentage of identity sequence" refers to the value determined from the comparison of two optimally aligned sequences from a specific comparative window, and in which the portion of the polynucleotide sequence in the comparative window may include additions or deletions (ie absences) when compared to the reference sequence (which does not include additions or deletions) for the optimal alignment of two sequences. The percentage is calculated by determining the number of positions from which the nucleotide base or amino acid residue appears in both sequences to obtain the number of matching positions, dividing said number by the total number of positions in the comparative window and multiplying per 100 to obtain the percentage of identity sequence.
(e) El término "identidad substancial" de secuencias polinucleotídicas significa que un polinucleótido comprende una secuencia que tiene al menos 70%, preferentemente al menos 80%, aún mas preferentemente 90% e idealmente(e) The term "substantial identity" of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 70%, preferably at least 80%, even more preferably 90% and ideally
95% de identidad de secuencia cuando se Ie compara con una secuencia de referencia utilizando uno de los programas de alineamiento antes mencionados. Se reconoce que estos valores pueden ser apropiadamente ajustados para determinar Ia identidad correspondiente de proteínas codificadas por 2 secuencias nucleotídicas y tomando en cuenta Ia degeneración de codones o Ia similaridad de aminoácidos. Para este propósito Ia identidad substancial de secuencias de aminoácidos significa normalmente una identidad de al menos 60%, o preferentemente 70%, 80%, 90% e idealmente 95%.95% sequence identity when compared to a reference sequence using one of the aforementioned alignment programs. It is recognized that these values can be appropriately adjusted to determine the corresponding identity of proteins encoded by 2 nucleotide sequences and taking into account codon degeneration or amino acid similarity. For this purpose the substantial identity of amino acid sequences normally means an identity of at least 60%, or preferably 70%, 80%, 90% and ideally 95%.
Otra indicación de que secuencias nucleotídicas son substancialmente idénticas es el hecho de que dos moléculas hibriden una con Ia otra bajo condiciones astringentes de hibridación. Sin embargo, los ácidos nucleicos que no hibridan el uno con el otro bajo condiciones astringentes siguen siendo substancialmente idénticos si los polipéptidos que codifican son substancialmente idénticos. Esto puede ocurrir cuando, por ejemplo, una copia del ácido nucleico es creada usando el máximo codón de degeneración permitido por el código genético. Una indicación de que dos secuencias de ácidos nucleicos son substancialmente idénticas es que el polipéptido codificado en el primer ácido nucleico sea inmunológicamente idéntico al polipéptido codificado en el segundo ácido nucleico.Another indication that nucleotide sequences are substantially identical is the fact that two molecules hybridize with one another under astringent hybridization conditions. However, nucleic acids that do not hybridize with each other under astringent conditions remain substantially identical if the polypeptides they encode are substantially identical. This can occur when, for example, a copy of the nucleic acid is created using the maximum degeneracy codon allowed by the genetic code. An indication that two nucleic acid sequences are substantially identical is that the polypeptide encoded in the first nucleic acid is immunologically identical to the polypeptide encoded in the second nucleic acid.
El término "identidad substancial" en referencia a péptidos indica que un péptido comprende una secuencia con por Io menos 70%, preferentemente 80% o 85%, aún más preferentemente 90%, e idealmente 95% de identidad de secuencia con una secuencia de referencia en una ventana comparativa específica. De manera opcional, el alineamiento óptimo es efectuado utilizando el algoritmo de alineamiento de Needleman y Wunsch 21. Una indicación de que dos secuencias de péptidos son substancialmente idénticas es que un péptido sea inmunológicamente idéntico al segundo péptido. Por ejemplo, dos péptidos serán substancialmente idénticos si solo difieren por una substitución conservativa. ///. Descripción detallada.The term "substantial identity" in reference to peptides indicates that a peptide comprises a sequence with at least 70%, preferably 80% or 85%, even more preferably 90%, and ideally 95% sequence identity with a reference sequence. in a specific comparative window. Optionally, the optimal alignment is performed using the alignment algorithm of Needleman and Wunsch 21 . An indication that two peptide sequences are substantially identical is that a peptide be immunologically identical to the second peptide. For example, two peptides will be substantially identical if they differ only by a conservative substitution. ///. Detailed description.
La presente invención permite Ia obtención de cepas de Trichoderma sobre- productoras de varias enzimas líticas para utilizarse como antagonistas de hongos fitopatógenos. Las cepas obtenidas son más eficientes en Ia producción de tales enzimas y en el establecimiento del efecto micoparasítico en contra de hongos fitopatógenos. Estas características permiten que las cepas obtenidas puedan ocuparse como organismos antagonistas para el control efectivo de enfermedades de plantas y utilizarse como mecanismo de biocontrol. Las cepas de Trichoderma de Ia invención conservan Ia habilidad para detectar y responder a diferentes condiciones ambientales, incluida Ia presencia de un potencial huésped, factores esenciales para Ia colonización exitosa del suelo, materia orgánica y el sistema radicular de las plantas.The present invention allows the obtaining of Trichoderma strains that overproduce several lytic enzymes to be used as antagonists of phytopathogenic fungi. The strains obtained are more efficient in the production of such enzymes and in the establishment of the mycoparasitic effect against phytopathogenic fungi. These characteristics allow the strains obtained to be used as antagonistic organisms for the effective control of plant diseases and used as a biocontrol mechanism. The Trichoderma strains of the invention retain the ability to detect and respond to different environmental conditions, including the presence of a potential host, essential factors for the successful colonization of soil, organic matter and the root system of plants.
La presente invención aprovecha el hecho de que Ia detección de tales condiciones ambientales puede ocurrir a través de una serie de vías de transducción, las cuales determinan Ia respuesta celular adecuada de Trichoderma. En éste caso es conocido que mediante las vías de MAP cinasas se transducen una gran variedad de señales, incluyendo aquellas asociadas con patogénesis.The present invention takes advantage of the fact that the detection of such environmental conditions can occur through a series of transduction pathways, which determine the appropriate cellular response of Trichoderma. In this case, it is known that a wide variety of signals are transduced by the MAP kinase pathways, including those associated with pathogenesis.
El parasitismo ejercido por Trichoderma, se asemeja en muchos aspectos a Ia interacción de un hongo fitopatógeno con su huésped. En este sentido, las MAP cinasas han sido implicadas directamente en varios fenómenos, tales como:The parasitism exerted by Trichoderma, resembles in many ways the interaction of a phytopathogenic fungus with its host. In this sense, MAP kinases have been directly implicated in several phenomena, such as:
a) Patogenicidad en Magnaporthe grísea (Pmk1, Pms1), Botrytis cinérea (Bmp1), Fusarium oxysporum (Fmk1), Cochliobolus heterostrophus (Cmk1) ya) Pathogenicity in Magnaporthe grísea (Pmk1, Pms1), Botrytis cinerea (Bmp1), Fusarium oxysporum (Fmk1), Cochliobolus heterostrophus (Cmk1) and
Ustilago maydis (Ubc3/Kpp2) 34, b) En Ia expresión de enzimas que degradan pared celular en varios sistemas fúngicos, incluyendo hongos fitopatógenos, homólogos de Ia MAP cinasa Kss1 de S. cerevisiae. c) En Ia inducción del gen de Ia pectato liasa (pl1) de F. Oxysporum, ya que en mutantes nulas de fmk1 esta actividad fue abolida 35. d) En el control positivo de Ia expresión de aquellas enzimas involucradas en Ia penetración de Ia planta, por ejemplo de Bmp1 de B. cinérea 36, y e) En Ia regulación de Ia transcripción del gen prb1 que codifica una proteasa producida en respuesta a limitación de nitrógeno de Trichoderma atroviríde (especie cercanamente relacionada a Trichoderma virens), Ia cual fue bloqueada por Ia adición de un inhibidor especifico de las MAP cinasas 37.Ustilago maydis (Ubc3 / Kpp2) 34 , b) In the expression of enzymes that degrade cell wall in several fungal systems, including phytopathogenic fungi, homologues of the MAP kinase Kss1 of S. cerevisiae. c) In the induction of the pectate lyase gene (pl1) of F. Oxysporum, since in null mutants of fmk1 this activity was abolished 35 . d) In the positive control of the expression of those enzymes involved in the penetration of the plant, for example Bmp1 of B. cinérea 36 , and e) In the regulation of the transcription of the prb1 gene that encodes a protease produced in response to nitrogen limitation of Trichoderma atroviride (species closely related to Trichoderma virens), which was blocked by the addition of a specific inhibitor of MAP kinases 37 .
La presente invención explora Ia relación entre Ia función de genes codificantes para MAP cinasas con Ia función micoparasítica que se observa en Trichoderma. Inesperadamente como Ia invención Io muestra, Ia abolición en Ia expresión de un gen codificante para una MAP cinasa, como por ejemplo del gene tvk1 , provoca un aumento considerable en Ia síntesis de enzimas relacionadas con el efecto micoparasítico observado de cepas de Trichoderma, por Io menos con un incremento de 10 veces más de actividad en comparación con Ia cepa parental o bien con cepas silvestres.The present invention explores the relationship between the function of genes coding for MAP kinases with the mycoparasitic function observed in Trichoderma. Unexpectedly as the invention shows, the abolition in the expression of a gene coding for a MAP kinase, such as the tvk1 gene, causes a considerable increase in the synthesis of enzymes related to the observed mycoparasitic effect of Trichoderma strains, by less with a 10-fold increase in activity compared to the parental strain or with wild strains.
Debido a Io anterior, Ia actividad micoparasítica de las cepas de Trichoderma de Ia invención se ve incrementada considerablemente con respecto de cepas silvestres, con Io cual las cepas de Ia invención pueden ocuparse como organismos antagonistas eficientes en contra de múltiples enfermedades causadas por hongos fitopatógenos.Due to the above, the mycoparasitic activity of the Trichoderma strains of the invention is considerably increased with respect to wild strains, whereby the strains of the invention can be used as efficient antagonistic organisms against multiple diseases caused by phytopathogenic fungi.
Así mismo con los resultados observados en el comportamiento de las cepas sobre- productoras de enzimas de Ia invención, se puede establecer que estas MAP cinasas están directamente involucradas en el establecimiento de Ia relación parasítica de Trichoderma y sus huéspedes, con Io cual Ia invención permite obtener cepas de Trichoderma con mayor capacidad para controlar hongos fitopatógenos.Likewise, with the results observed in the behavior of the enzyme-producing strains of the invention, it can be established that these MAP kinases are directly involved in the establishment of the parasitic relationship of Trichoderma and its hosts, with which the invention allows Obtain Trichoderma strains with greater capacity to control phytopathogenic fungi.
Las cepas de Trichoderma de Ia invención muestran un claro incremento en el nivel de expresión de genes relacionados al micoparasitismo (MRGs) bajo condiciones de micoparasitismo simulado y durante Ia confrontación directa con patógenos de plantas, como por ejemplo Rhizoctonia solani. Así mismo también muestran un incremento en Ia secreción de proteínas medido como Ia producción de enzimas líticas en el sobrenadante de los cultivos de estas cepas, comparada con Ia de Ia cepa silvestre. De manera consistente en ensayos de biocontrol, las cepas son considerablemente más efectivas en el control de enfermedades de plantas que Ia cepa silvestre o incluso que fungicidas químicos. Adicionalmente, las cepas de Ia invención esporulan de manera abundante en cultivos sumergidos, condición que normalmente no conduce a Ia esporulación en Ia cepa silvestre.The Trichoderma strains of the invention show a clear increase in the level of expression of mycoparasitism-related genes (MRGs) under conditions of simulated mycoparasitism and during direct confrontation with plant pathogens, such as Rhizoctonia solani. Likewise, they also show an increase in protein secretion measured as the production of lithic enzymes in the culture supernatant of these strains, compared with that of the wild strain. Consistently in biocontrol trials, the strains are considerably more effective in the control of plant diseases than the wild strain or even chemical fungicides. Additionally, the strains of the invention sporulate abundantly in submerged cultures, a condition that normally does not lead to sporulation in the wild strain.
A diferencia de Io reportado por Mukherjee en donde mutaciones dirigidas a Ia inactivación del gen tmkA codificante para una MAP cinasa, provocan en cepas mutantes de T. virens IMI304061 una baja importante en Ia colonización de hongos patógenos (R. solaní), así como una disminución importante en las propiedades antagonistas hacia Sclerotium rolfsii en comparación con Ia cepa silvestre 38, Ia metodología de Ia invención permite obtener cepas de Trichoderma con actividades aumentadas en sus propiedades de micoparasitismo, así como en Ia expresión de múltiples enzimas involucradas en el efecto antagonista.Unlike the one reported by Mukherjee, where mutations directed to the inactivation of the tmkA gene coding for a MAP kinase, cause in mutant strains of T. virens IMI304061 an important decrease in the colonization of pathogenic fungi (R. solaní), as well as a significant decrease in the antagonistic properties towards Sclerotium rolfsii in comparison with the wild strain 38 , the methodology of the invention allows to obtain Trichoderma strains with increased activities in their mycoparasitism properties, as well as in the expression of multiple enzymes involved in the antagonistic effect.
Por otra parte, según Mukherjee Ia abolición de Ia expresión del gen tmkA resulta en generar cepas de Trichoderma mucho menos efectivas para usarse como biocontrol potencial en contra de hongos patógenos y en inactivación aparente de genes que codifican para una o más enzimas responsables de Ia degradación del hospedero. En contraste con Io anterior, Ia presente invención demuestra que Ia proteína Tvk1 (MAP cinasa) juega un papel importante en Ia regulación de Ia expresión de los genes responsables de Ia producción de enzimas líticas, con Io cual es posible manipular Ia expresión de ésta proteína en cepas de Trichoderma con Ia finalidad de mejorar las propiedades antagonistas asociadas a Ia misma.On the other hand, according to Mukherjee, the abolition of the expression of the tmkA gene results in generating much less effective Trichoderma strains to be used as a potential biocontrol against pathogenic fungi and in apparent inactivation of genes that code for one or more enzymes responsible for degradation. of the host. In contrast to the above, the present invention demonstrates that the Tvk1 protein (MAP kinase) plays an important role in the regulation of the expression of the genes responsible for the production of lytic enzymes, with which it is possible to manipulate the expression of this protein in Trichoderma strains in order to improve the antagonistic properties associated with it.
Mientras que Ia presente invención presenta evidencia de Ia expresión aumentada de genes codificantes para enzimas líticas, así como Ia efectividad de las cepas de Ia invención para el combate efectivo en campo de enfermedades de plantas, los datos experimentales de Mukherjee no muestran tales efectos.While the present invention presents evidence of the increased expression of genes coding for lytic enzymes, as well as the effectiveness of the strains of the invention for effective combat in the field of plant diseases, the Mukherjee experimental data does not show such effects.
En contraste, Ia presente invención muestra que en las cepas transformadas de Tríchoderma, en las que se abolió Ia expresión del gen tvk1 , las actividades de quitinasa y proteasa fueron mayores que en Ia silvestre, correlacionándose con los elevados niveles de los transcritos detectados. Además Ia actividad de ciertas enzimas se ve incrementada notablemente en las cepas de Ia invención comparadas con Ia cepa silvestre, por ejemplo en Ia actividad total de β-1 ,3- glucanasa, indicando además que en las cepas de Ia invención otros genes de glucanasas podrían estar bajo modulación negativa por MAP cinasas. Así mismo, el incremento obtenido en Ia producción de enzimas en las cepas de Trichoderma de Ia invención, se observa también en un incremento considerable en Ia secreción de proteínas en medio liquido, siete veces más cuando Ia cepa crece sin ninguna fuente de nitrógeno en presencia de paredes celulares del hongo fitopatógeno, o bien cuatro veces más cuando Ia cepa crece sin ninguna fuente de carbono en presencia de paredes celulares del hongo fitopatógeno (figura 8).In contrast, the present invention shows that in the transformed strains of Tríchoderma, in which the expression of the tvk1 gene was abolished, the chitinase and protease activities were greater than in the wild, correlating with the high levels of the transcripts detected. In addition, the activity of certain enzymes is greatly increased in the strains of the invention. compared to the wild strain, for example in the total activity of β-1, 3-glucanase, further indicating that in the strains of the invention other glucanase genes could be under negative modulation by MAP kinases. Likewise, the increase obtained in the production of enzymes in the Trichoderma strains of the invention is also observed in a considerable increase in the secretion of proteins in liquid medium, seven times more when the strain grows without any source of nitrogen in the presence cell walls of the phytopathogenic fungus, or four times more when the strain grows without any carbon source in the presence of cell walls of the phytopathogenic fungus (Figure 8).
Los resultados expuestos por Mukherjee, sugieren que Ia deleción del gene tmkA codificante para una MAP cinasa de Trichoderma , reduce Ia eficiencia de biocontrol de T. virens con base en ensayos de confrontación directa con hongos fitopatógenos, resultados que resultan ser completamente opuestos a Io mostrado en Ia presente invención. Esta aparente contradicción puede ser explicada por el hecho de que los experimentos realizados por Mukherjee se llevaron a cabo en medio de agar papa dextrosa, donde Ia expresión de Ia mayoría de los genes MGR se reprime debido a los altos niveles de glucosa presentes en el medio 43. Esta afirmación se comprueba con los resultados obtenidos con las cepas transformadas de Trichoderma de Ia invención en experimentos similares utilizando el medio de agar papa dextrosa con varios hongos fitopatógenos, incluyendo Sclerotium rolfsii y R. solani. Los resultados obtenidos indican que variando el ambiente de las cepas de Ia invención en comparación con Ia cepa parental, pueden presentar un decremento en Ia capacidad de inhibición de crecimiento dependiendo de Ia cepa fitopatógena hospedera (figura 9).The results presented by Mukherjee, suggest that the deletion of the tmkA gene coding for a Trichoderma MAP kinase, reduces the efficiency of T. virens biocontrol based on tests of direct confrontation with phytopathogenic fungi, results that turn out to be completely opposite to what has been shown. in the present invention. This apparent contradiction can be explained by the fact that the experiments performed by Mukherjee were carried out in the middle of papa dextrose agar, where the expression of most of the MGR genes is repressed due to the high levels of glucose present in the medium. 43 This statement is verified with the results obtained with the transformed Trichoderma strains of the invention in similar experiments using the papa dextrose agar medium with several phytopathogenic fungi, including Sclerotium rolfsii and R. solani. The results obtained indicate that by varying the environment of the strains of the invention compared to the parental strain, they may have a decrease in the capacity for growth inhibition depending on the host phytopathogenic strain (Figure 9).
Todas las cepas de Trichoderma de Ia invención muestran una pigmentación reducida con pérdida del color verde oscuro característico observado en Ia silvestre; las cepas producen esporas con pigmentación reducida en medio sólido, sin llegar a ser albinas. En contraste, todas las cepas de Ia invención producen abundantes conidias que muestran el característico color verde oscuro de Ia silvestre en cultivos líquidos independientemente del medio usado. Estos resultados sugieren que MAP cinasas podrían regular de manera diferencial Ia biosíntesis de melanina como se reportó previamente para C. lagenarium 39. Considerando el incremento observado en Ia producción de enzimas líticas en las cepas de Trichoderma de Ia invención y Ia importancia de estas enzimas en Ia actividad biocontroladora de éste microorganismo, las cepas de Ia invención pueden usarse como agentes de biocontrol más efectivos.All Trichoderma strains of the invention show reduced pigmentation with loss of the characteristic dark green color observed in the wild; the strains produce spores with reduced pigmentation in solid medium, without becoming albines. In contrast, all strains of the invention produce abundant conidia that show the characteristic dark green color of the wild in liquid cultures regardless of the medium used. These results suggest that MAP kinases could differentially regulate melanin biosynthesis as previously reported for C. lagenarium 39 . Considering the increase observed in the production of lytic enzymes in the Trichoderma strains of the invention and the importance of these enzymes in the biocontrolling activity of this microorganism, the strains of the invention can be used as more effective biocontrol agents.
Las cepas de Ia invención muestran una mayor capacidad que Ia cepa silvestre de controlar y reducir el daño causado por R solani y P. ultimum. T. virens ha sido usado de manera exitosa en combinación con varios fungicidas incluyendo metalaxyl (Apron FL) 40. Sorprendentemente, las cepas de Ia invención fueron más efectivas que el metalaxyl contra P. ultimum (Fig. 7B). Esta capacidad incrementada de biocontrol parece estar asociada con Ia expresión de enzimas líticas observada en ensayos de confrontación directa ya que ambas cepas formaron ganchos y produjeron enrollamientos alrededor de R. solani y produjeron antibióticos en niveles similares. La presente invención muestra que Ia deleción de un gen de MAP cinasa genera un parásito más agresivo y, consecuentemente un mejor agente de biocontrol.The strains of the invention show a greater capacity than the wild strain to control and reduce the damage caused by R solani and P. ultimum. T. virens has been used successfully in combination with several fungicides including metalaxyl (Apron FL) 40 . Surprisingly, the strains of the invention were more effective than metalaxyl against P. ultimum (Fig. 7B). This increased biocontrol capacity seems to be associated with the expression of lytic enzymes observed in direct confrontation trials since both strains formed hooks and produced curls around R. solani and produced antibiotics at similar levels. The present invention shows that the deletion of a MAP kinase gene generates a more aggressive parasite and, consequently, a better biocontrol agent.
Dentro del alcance de Ia invención puede ocuparse cualquier cepa de Trichoderma que permita obtener mediante las enseñanzas descritas aquí, cepas de Trichoderma sobre-productoras de enzimas líticas; así mismo puede ocuparse cualquier especie del genero Trichoderma, aunque se prefiere más aun T. virens. Con Ia finalidad de proteger o bien tratar plantas o materiales de plantas contra infecciones o enfermedades causadas por hongos fitopatógenos, las cepas de Ia invención pueden ser administradas de manera directa o bien a través de composiciones compatibles a nivel agronómico, ya sea en el suelo, en Ia planta o bien en el material de Ia planta a ser protegido o tratado. Las composiciones pueden ser elaboradas mediante métodos conocidos ampliamente y pueden elaborarse en cualquier forma de presentación, ya sea en formas líquidas o sólidas. Las formas líquidas son susceptibles de aplicarse mediante aerosoles en el suelo o en Ia planta, o bien utilizarse para Ia elaboración de baños en los cuales se sumergen las plantas o el material de éstas. Las composiciones que contengan las cepas de Trichoderma de Ia invención, pueden aplicarse por métodos convencionales, ya sea por aerosoles o mediante inmersión. La presente invención describe el aislamiento y caracterización del gen tvk1 deWithin the scope of the invention, any strain of Trichoderma that allows obtaining by means of the teachings described herein, Trichoderma strains overproducing lytic enzymes can be used; likewise, any species of the genus Trichoderma can be occupied, although T. virens is even more preferred. With the purpose of protecting or treating plants or plant materials against infections or diseases caused by phytopathogenic fungi, the strains of the invention can be administered directly or through compatible compositions at the agronomic level, either in the soil, in the plant or in the material of the plant to be protected or treated. The compositions can be made by widely known methods and can be made in any form of presentation, either in liquid or solid forms. The liquid forms are capable of being applied by aerosols in the soil or in the plant, or used for the elaboration of baths in which the plants or their material are submerged. The compositions containing the Trichoderma strains of the invention can be applied by conventional methods, either by aerosols or by immersion. The present invention describes the isolation and characterization of the tvk1 gene of
Tríchoderma virens, correspondiente a Ia SEQ ID NO: 2, que codifica Ia proteína Tvk1 , una proteín cinasa activada por mitógeno (MAP cinasa) correspondiente a Ia SEQ ID NO: 3, Ia cual tiene un papel importante en varios aspectos del ciclo de vida de Tríchoderma, incluyendo crecimiento, conidiación, expresión de MRGs, secreción de enzimas que degradan pared celular y una actividad biocontroladora.Tríchoderma virens, corresponding to SEQ ID NO: 2, which encodes the Tvk1 protein, a mitogen activated protein kinase (MAP kinase) corresponding to SEQ ID NO: 3, which has an important role in several aspects of the life cycle of Tríchoderma, including growth, conidiation, expression of MRGs, secretion of enzymes that degrade cell wall and a biocontroller activity.
Como se muestra en Ia figura 2, el gen tvk1 contiene tres secuencias de intrones que han sido reportadas para otros genes de MAP cinasa de hongos. El intrón localizado entre el nucleótido +854 y +907 no está presente en su más cercano homólogo recientemente reportado, tmkA de Ia cepa IMI306092 de T. virens. Tvk1 pertenece a Ia familia de cinasas reguladas por señales externas (ERK), Ia cual constituye parte de Ia superfamilia de las MAP cinasas. La secuencia firma presente en Ia proteína Tvk1, indica que está relacionada a Ia familia YERK1 (ERK1 de levaduras y hongos) 38.As shown in Figure 2, the tvk1 gene contains three intron sequences that have been reported for other fungal MAP kinase genes. The intron located between nucleotide +854 and +907 is not present in its closest recently reported homologue, tmkA of strain IMI306092 of T. virens. Tvk1 belongs to the family of kinases regulated by external signals (ERK), which is part of the superfamily of MAP kinases. The signature sequence present in the Tvk1 protein indicates that it is related to the YERK1 family (ERK1 of yeasts and fungi) 38 .
La invención también comprende secuencias modificadas de Ia secuencia de DNA mostrada en Ia SEQ ID NO: 2, las cuales codifican para secuencias de aminoácidos que conservan Ia actividad de Ia proteína Tvk1. Siguiendo las enseñanzas de Ia presente invención, una persona versada en el campo técnico podría fácilmente predecir Ia existencia de tales secuencias modificadas y podría fácilmente producirlas. Así mismo Ia invención comprende secuencias modificadas de aminoácidos derivadas de Ia secuencia de Ia proteína Tvk1 mostrada en Ia SEQ ID NO: 3, las cuales conservan y mantienen las características de Ia proteína Tvk1, principalmente Ia actividad enzimática de MAP cinasa así como Ia capacidad de regulación negativa en Ia expresión de genes MRGs de Tríchoderma.The invention also comprises modified sequences of the DNA sequence shown in SEQ ID NO: 2, which code for amino acid sequences that retain the activity of the Tvk1 protein. Following the teachings of the present invention, a person versed in the technical field could easily predict the existence of such modified sequences and could easily produce them. Likewise, the invention comprises modified amino acid sequences derived from the sequence of the Tvk1 protein shown in SEQ ID NO: 3, which preserve and maintain the characteristics of the Tvk1 protein, mainly the enzymatic activity of MAP kinase as well as the ability to negative regulation in the expression of Trigoderma MRGs genes.
Según como se describe aquí, Ia supresión de Ia expresión de genes MAP cinasas codificantes de cepas de Tríchoderma, permite incrementar Ia capacidad de las cepas de Tríchoderma de Ia invención para controlar otros hongos que atacan cultivos vegetales, aunado al hecho de que debido a éste efecto de supresión, los niveles de expresión de enzimas líticas se presentan en niveles altos en Ia mayoría de los genes seleccionados que codifican enzimas líticas (MRGs) en comparación con cepas silvestres. Para lograr Io anterior, puede ocuparse Ia inhibición de Ia función de una MAP cinasa mediante sustancias antagonistas específicas, o bien mediante supresión de Ia expresión del gene codificante para Ia misma. Esto último puede obtenerse mediante inhibición dirigida de Ia expresión del gene usando sondas específicas, mediante RNA interferente, expresión de RNA antisentido, mediante inserción de secuencias polinucleotídicas extrañas en Ia secuencia codificante del gen de Ia MAP cinasa o en sus regiones reguladoras, mediante el reemplazo del gen silvestre por una versión mutada, o bien, mediante eliminación del gene de interés del genoma del organismo a través de técnicas de recombinación homologa de genes. Tal como Io muestra Ia invención, ésta supresión de Ia expresión de genes codificantes para MAP cinasas, puede lograrse utilizando el vector de reemplazo génico de Ia invención, el cual comprende:As described herein, the suppression of the expression of MAP kinase genes coding for Tríchoderma strains, allows to increase the capacity of the Tríchoderma strains of the invention to control other fungi that attack plant crops, coupled with the fact that due to this suppression effect, the expression levels of lytic enzymes are presented at high levels in most of the selected genes that encode lytic enzymes (MRGs) in comparison with wild strains. In order to achieve the above, the inhibition of the function of a MAP kinase by specific antagonistic substances, or by suppression of the expression of the gene coding for it can be used. The latter can be obtained by directed inhibition of the gene expression using specific probes, by interfering RNA, antisense RNA expression, by insertion of foreign polynucleotide sequences in the coding sequence of the MAP kinase gene or in its regulatory regions, by replacement of the wild gene by a mutated version, or, by eliminating the gene of interest from the genome of the organism through homologous gene recombination techniques. As the invention shows, this suppression of the expression of genes coding for MAP kinases can be achieved using the gene replacement vector of the invention, which comprises:
a) Un gen de reemplazo que permite identificar las transformantes donde se reemplaza ungen codificante para una MAP cinasa de Trichoderma, b) Un fragmento no codificante que naturalmente se encuentre fuera de Ia región codificante del gene para MAP cinasa en su extremo 5', flanqueando el extremo 5' del gen de reemplazo, y. c) Un fragmento no codificante que naturalmente se encuentre fuera de Ia región codificante del gene para MAP cinasa en su extremo 3', flanqueando el extremo 3' del gen de reemplazo.a) A replacement gene that allows the identification of the transformants where the coding anoint for a Trichoderma MAP kinase is replaced, b) A non-coding fragment that is naturally outside the coding region of the gene for MAP kinase at its 5 'end, flanking the 5 'end of the replacement gene, and. c) A non-coding fragment that is naturally outside the coding region of the gene for MAP kinase at its 3 'end, flanking the 3' end of the replacement gene.
Para efectos de Ia invención, el gen de reemplazo puede o no provenir de alguna cepa de Trichoderma, aunque se prefieren aquellos genes que provengan de cepas de Trichoderma de Ia misma especie de Ia cepa a transformar. Como gen de reemplazo puede ocuparse cualquier gene que permita Ia eliminación parcial o total del gen codificante para Ia MAP cinasa o bien que permita obtener Ia interrupción del marco abierto de lectura de dicho gen, con Ia consecuente supresión de Ia expresión de Ia proteína codificada por el mismo y que además permita Ia identificación de las cepas modificadas. Con Io anterior, el uso del vector de Ia invención evita el uso de secuencias provenientes de otros organismos que puedan provocar efectos indeseables o inesperados en Ia abolición de Ia expresión del gen codificante para Ia MAP cinasa. Por otra parte, los fragmentos del gen de Ia MAP cinasa que flanquean al gen de reemplazo, son aquellos fragmentos de cualquier tamaño que se encuentran ya sea antes o después del comienzo del marco abierto de lectura del gene así como aquellos que se encuentran antes o después del término del marco abierto de lectura del gen, siempre y cuando provengan del gen silvestre o de un gen con alta similaridad, esto con Ia finalidad de producir eventos de recombinación genética específicos entre el genoma de Ia cepa de Tríchoderma a transformar en Ia región del gen MAP cinasa silvestre y Ia secuencia polinucleotídica de reemplazo contenida en el vector de reemplazo génico.For purposes of the invention, the replacement gene may or may not come from some Trichoderma strain, although those genes that come from Trichoderma strains of the same species of the strain to be transformed are preferred. As a replacement gene, any gene that allows the partial or total elimination of the gene coding for MAP kinase or that allows obtaining the interruption of the open reading frame of said gene can be used, with the consequent suppression of the expression of the protein encoded by the same and that also allows the identification of the modified strains. With the foregoing, the use of the vector of the invention avoids the use of sequences from other organisms that may cause undesirable or unexpected effects in the abolition of the expression of the gene coding for MAP kinase. On the other hand, the MAP kinase gene fragments that flank the replacement gene are those fragments of any size that are found either before or after the beginning of the gene's open reading frame as well as those that are found before or after the end of the open reading frame of the gene, as long as they come from the wild gene or from a gene with high similarity, this with the purpose of producing specific genetic recombination events between the genome of the Tríchoderma strain to be transformed in the region of the MAP wild kinase gene and the polynucleotide replacement sequence contained in the gene replacement vector.
Preferentemente los fragmentos del gen MAP cinasa que flanquean al gen de reemplazo, provienen del gen tvk1 y son:Preferably the MAP kinase gene fragments that flank the replacement gene, come from the tvk1 gene and are:
- Para el extremo 5' los fragmentos BamHI/EcoRV más pequeños que se muestran en Ia figura 3A, aunque más preferentemente se prefieren aquellos fragmentos que comprendan Ia secuencia del nucleótido no. 1 al nucleótido no. 1210 de Ia SEQ ID NO: 1, y- For the 5 'end, the smaller BamHI / EcoRV fragments shown in Figure 3A, although more preferably those fragments comprising nucleotide sequence no. 1 to nucleotide no. 1210 of SEQ ID NO: 1, and
- Para el extremo 3' los fragmentos Sall/Sall que se muestran en Ia figura 3A, aunque más preferentemente se prefieren aquellos fragmentos que comprendan Ia secuencia del nucleótido no. 2692 al nucleótido 5892 de Ia SEQ ID NO: !- For the 3 'end, the Sall / Sall fragments shown in Figure 3A, although more preferably those fragments comprising nucleotide sequence no. 2692 to nucleotide 5892 of SEQ ID NO:!
Así mismo Ia función del gen de reemplazo puede restaurar alguna deficiencia en Ia cepa de Tríchoderma a ser transformada dada por auxotrofía o bien permitir Ia selección de transformantes por su tolerancia a un compuesto químico tal como en el caso del uso de antibióticos o herbicidas o por conferirle Ia capacidad de utilizar fuentes alternas de carbono. y/o nitrógeno, o por poder identificarse a través de una actividad enzimática codificada por este. Por ejemplo, si Ia cepa de Tríchoderma a ser transformada es auxotrófica el gen de reemplazo debe complementar dicha auxotrofía. En este caso se prefiere utilizar el gene arg2 de Tríchoderma y cepas auxotróficas a arginina. En el caso de resistencia a compuestos químicos pueden usarse el gen que confiere resistencia a higromicina (hph o hpt) de Escherichia coli, o genes de resistencia al herbicida Basta. En el caso de Ia utilización de fuentes alternas de carbono o nitrógeno puede usarse el gen amdS de Aspergillus nidulans. Para la obtención de los vectores de reemplazo génico útiles para Ia obtención de las cepas de Ia invención, pueden ocuparse vectores que permitan clonar e introducir mediante transformación los genes de interés que posteriormente serán útiles para integrar los genes de reemplazo en el genoma de las cepas de Trichoderma por medio de una recombinación eficiente. Es importante notar que los vectores de reemplazo de Ia invención deben contener características tales que les permitan ser amplificados por medio de técnicas convencionales (sitios de replicación, promotores, etc.) y dotados de sitios únicos de clonación, tanto para Ia inserción de los genes de reemplazo como para Ia linearización posterior necesaria para transformar las cepas de Trichoderma. En éste sentido pueden ocuparse aquellos vectores que permitan Ia inserción de fragmentos de DNA y que puedan amplificarse en sistemas biológicos de manera eficiente. Así mismo, en una modalidad preferida de Ia invención, los vectores de Ia invención utilizan como gen marcador de selección un gen de reemplazo del gen tvk1 de Trichoderma con alguna función asociada que pueda ser identificable, por ejemplo Ia síntesis de alguna proteína que permita el crecimiento de cepas auxotróficas de Trichoderma en el medio de cultivo adecuado (deficiente en el nutriente esencial) después de su transformación con el vector. Así mismo el gen de reemplazo proviene preferentemente de cepas de Trichoderma.Likewise, the function of the replacement gene can restore some deficiency in the strain of Tríchoderma to be transformed given by auxotrophy or allow the selection of transformants by their tolerance to a chemical compound such as in the case of the use of antibiotics or herbicides or by confer the ability to use alternative sources of carbon. and / or nitrogen, or because it can be identified through an enzymatic activity encoded by it. For example, if the Tríchoderma strain to be transformed is auxotrophic, the replacement gene should complement said auxotrophy. In this case, it is preferred to use the Tríderderma arg2 gene and auxotrophic strains to arginine. In the case of resistance to chemical compounds, the gene that confers hygromycin resistance (hph or hpt) of Escherichia coli, or Basta herbicide resistance genes can be used. In the case of the use of alternative sources of carbon or nitrogen, the amdS gene of Aspergillus nidulans can be used. To obtain the gene replacement vectors useful for obtaining the strains of the invention, vectors can be used to clone and introduce by transformation the genes of interest that will later be useful for integrating the replacement genes into the genome of the strains of Trichoderma through efficient recombination. It is important to note that the replacement vectors of the invention must contain characteristics that allow them to be amplified by means of conventional techniques (replication sites, promoters, etc.) and endowed with unique cloning sites, both for the insertion of the genes replacement as for the subsequent linearization necessary to transform the Trichoderma strains. In this sense, those vectors that allow the insertion of DNA fragments and that can be efficiently amplified in biological systems can be used. Likewise, in a preferred embodiment of the invention, the vectors of the invention use as a selection marker gene a replacement gene of the Trichoderma tvk1 gene with some associated function that can be identifiable, for example the synthesis of some protein that allows the growth of auxotrophic strains of Trichoderma in the appropriate culture medium (deficient in the essential nutrient) after its transformation with the vector. Likewise, the replacement gene preferably comes from Trichoderma strains.
Utilizando el vector de reemplazo génico descrito anteriormente, pueden obtenerse las cepas de Trichoderma de Ia invención mediante Ia metodología que comprende las siguientes etapas:Using the gene replacement vector described above, the Trichoderma strains of the invention can be obtained by means of the methodology comprising the following steps:
a) Suprimir Ia capacidad de Trichoderma para producir al menos una MAP cinasa, mediante Ia transformación de una cepa de Trichoderma con el vector de reemplazo génico de Ia invención, donde Ia cepa es auxotrófica al nutriente para el cual el gen de reemplazo contenido en el vector confiere prototrofía, b) Seleccionar las transformantes protótrofas generadas en medio selectivo, y c) Corroborar Ia eliminación de Ia producción de Ia MAP cinasa.a) Suppress the ability of Trichoderma to produce at least one MAP kinase, by transforming a Trichoderma strain with the gene replacement vector of the invention, where the strain is auxotrophic to the nutrient for which the replacement gene contained in the vector confers prototrophy, b) Select the prototrophic transformants generated in selective medium, and c) Corroborate the elimination of the production of MAP kinase.
Al igual que para el vector de reemplazo de Ia invención, para Ia obtención de las cepas de Ia invención en éste método se prefiere suprimir Ia expresión del gene tvk1, codificante para Ia MAP cinasa Tvk1, ocupar como gene de reemplazo el gene arg2 de Trichoderma y utilizar cepas auxotróficas a arginina.As with the replacement vector of the invention, in order to obtain the strains of the invention in this method it is preferred to suppress the expression of the gene tvk1, coding for the Tvk1 MAP kinase, use Trichoderma's arg2 gene as a replacement gene and use arginine auxotrophic strains.
Para Ia transformación de Ia cepa de Trichoderma, es preferible que el vector de reemplazo se proporcione de forma lineal, esto con Ia finalidad de proporcionar las condiciones adecuadas para el proceso de recombinación genética.For the transformation of the Trichoderma strain, it is preferable that the replacement vector is provided in a linear manner, this in order to provide the appropriate conditions for the genetic recombination process.
La selección de las cepas transformantes puede realizarse con cualquier medio selectivo que permita Ia selección de las transformantes prototróficas que resulten, en relación directa con Ia función del gene de reemplazo; aunque se prefiere medio mínimo de Vogel (VMS) que contenga sacarosa como única fuente de carbono.The selection of the transforming strains can be carried out with any selective means that allows the selection of the resulting prototrophic transformants, in direct relation with the function of the replacement gene; although Vogel minimum medium (VMS) containing sucrose is the only carbon source.
Para corroborar en las transformantes seleccionadas Ia eliminación de Ia síntesis de Ia MAP cinasa, esta puede realizarse mediante ensayos de Western blot usando anticuerpos específicos para Ia proteína y corroborarse Ia eliminación del gen MAP cinasa codificante por medio de ensayos de Southern blot, utilizando sondas específicas.To corroborate in the selected transformants the elimination of the synthesis of the MAP kinase, this can be carried out by means of Western blot assays using specific antibodies for the protein and the elimination of the coding MAP kinase gene by means of Southern blot assays, using specific probes, is corroborated. .
Por otra parte, por medio de Ia metodología de obtención de las cepas de Ia invención, se puede incrementar de manera dirigida Ia actividad enzimática relacionada con Ia actividad micoparasítica de Trichoderma, generando cepas de Trichoderma con características enzimáticas mejoradas que puedan ocuparse como organismos antagonistas de hongos fitopatógenos.On the other hand, by means of the methodology for obtaining the strains of the invention, the enzymatic activity related to the mycoparasitic activity of Trichoderma can be increased in a directed manner, generating Trichoderma strains with improved enzymatic characteristics that can be used as antagonistic organisms of phytopathogenic fungi.
Debido a que las MAP cinasas están involucradas en Ia expresión de genes MRGs, éstas pueden ocuparse como factor regulador de Ia expresión de enzimas líticas en Trichoderma. Debido a Ia función de las MAP cinasas, podrían obtenerse sustancias afines específicas a éstas con Ia finalidad de bloquear su función en cepas de Trichoderma, aumentando con ello Ia expresión de enzimas líticas y viéndose incrementada en consecuencia Ia función micoparasítica de Ia cepa de interés. Para tal fin podrían ocuparse técnicas conocidas de adsorción de materiales biológicos utilizando MAP cinasas aisladas y colocadas en soportes fijos para capturar sustancias afines específicas que posteriormente puedan ser aisladas por métodos bioquímicos convencionales de purificación y caracterización. El uso de estos inhibidores de Ia función de las MAP cinasas podrían ser útiles para Ia obtención de cepas de Trichoderma con una actividad antagonista incrementada. En este sentido Ia proteína Tvk1 aislada en Ia presente invención (MAP cinasa de Trichoderma), puede utilizarse para tal fin.Because MAP kinases are involved in the expression of MRG genes, they can be used as a regulatory factor for the expression of lytic enzymes in Trichoderma. Due to the function of MAP kinases, related substances specific to them could be obtained in order to block their function in Trichoderma strains, thereby increasing the expression of lithic enzymes and thereby increasing the mycoparasitic function of the strain of interest. For this purpose, known techniques of adsorption of biological materials could be used using MAP kinases isolated and placed on fixed supports to capture specific related substances that can subsequently be isolated by conventional biochemical methods of purification and characterization. The use of these inhibitors of the function of MAP kinases could be useful for obtaining strains of Trichoderma with an increased antagonistic activity. In this sense, the Tvk1 protein isolated in the present invention (Trichoderma MAP kinase) can be used for this purpose.
Las cepas de Trichoderma de Ia invención así como las composiciones que las contengan, pueden ocuparse para Ia protección o el tratamiento de plantas o materiales de plantas para el combate y/o prevención de infecciones o bien enfermedades causadas por hongos fitopatógenos, utilizando múltiples y diversas técnicas conocidas para su aplicación.The Trichoderma strains of the invention, as well as the compositions containing them, can be used for the protection or treatment of plants or plant materials for the fight and / or prevention of infections or diseases caused by phytopathogenic fungi, using multiple and diverse Known techniques for its application.
Como una manera de ilustrar Ia presente invención, se presentan los siguientes ejemplos, sin que ello limite el alcance de Ia misma.As a way of illustrating the present invention, the following examples are presented, without limiting the scope thereof.
Ejemplo 1. Cepas de hongos.Example 1. Mushroom strains.
La cepa silvestre T. virens Gv29-8 y Ia muíante auxotrófica para arginina TV10.4 derivada de ésta, fueron usadas en Ia presente invención 41. Los fitopatógenos R. solani AG-4 y Pythium ultimum aislados de raíces y de plántulas enfermas fueron usados como huéspedes. Todas las cepas de hongos fueron mantenidas en Papa dextrosa agar (PDA, Difco), a menos que se especifique de otra manera.The wild strain T. virens Gv29-8 and the auxotrophic mutant for arginine TV10.4 derived from it, were used in the present invention 41 . The phytopathogens R. solani AG-4 and Pythium ultimum isolated from diseased roots and seedlings were used as hosts. All fungal strains were maintained in Papa dextrose agar (PDA, Difco), unless otherwise specified.
Ejemplo 2. Cepas bacterianas y plásmidos.Example 2. Bacterial strains and plasmids.
Las cepas de Escherichia coli DH5α (Bethesda Research Laboratories) y JM103 (Invitrogen) fueron usadas para todas las manipulaciones de DNA. Los plásmidos usados fueron pBluescript (Stratagene) y pCB1004 (Fungal Genetics Stock Centerj. Todos los productos de PCR fueron clonados en el vector pCR2.1 (Invitrogen). Las sondas usadas para el análisis tipo Northern blot fueron obtenidas de Ia siguiente manera: un fragmento Hind\\\/BamH\ de 1.3 Kb de cDNA de Tv-prb1 fue obtenido del plásmido pPOE. Un fragmento Hind\\\/Xba\ de 1.4 Kb de Tv-cht1 fue obtenido del plásmido pCOE 42. A partir del plásmido pSZD2 se obtuvo un fragmento Pst\/Xho\ de 0.52 Kb que corresponde al gen Tv-bgn2. Dos fragmentos correspondientes a Tv-cht2 (de Ia posición 988 a Ia 1417) y a Tv-nag1 (de Ia posición 513 a Ia 1608) fueron obtenidos de DNA genómico de T. virens por PCR usando oligonucleótidos diseñados con base en las secuencias reportadas porEscherichia coli DH5α (Bethesda Research Laboratories) and JM103 (Invitrogen) strains were used for all DNA manipulations. The plasmids used were pBluescript (Stratagene) and pCB1004 (Fungal Genetics Stock Centerj. All PCR products were cloned into the vector pCR2.1 (Invitrogen). The probes used for Northern blot analysis were obtained as follows: a 1.3 kb Hind \\\ / BamH \ fragment of Tv-prb1 cDNA was obtained from plasmid pPOE. A 1.4 Kb Hind \\\ / Xba \ fragment of Tv-cht1 was obtained from plasmid pCOE 42. From plasmid pSZD2 a Pst \ / Xho \ 0.52 Kb fragment corresponding to the Tv-bgn2 gene was obtained, two fragments corresponding to Tv-cht2 (from position 988 to 1417) and Tv-nag1 (from position 513 to Ia 1608) were obtained from genomic DNA of T. virens by PCR using oligonucleotides designed based on the sequences reported by
Kim43.Kim 43 .
Ejemplo 3. Manipulación de DNA y RNA. El DNA plasmídico fue aislado usando un sistema comercial (Qiagen). El DNA de Trichoderma fue obtenido de acuerdo a un procedimiento previamente descrito 44. El RNA total fue aislado usando extracciones con fenol-cloroformo de acuerdo al procedimiento descrito por Jones 45. Los análisis tipo Southern y Northern fueron llevados acabo usando membranas Hybond N+ (Amersham) de acuerdo a las recomendaciones del fabricante.Example 3. DNA and RNA manipulation. Plasmid DNA was isolated using a commercial system (Qiagen). Trichoderma DNA was obtained according to a previously described procedure 44 . Total RNA was isolated using phenol-chloroform extractions according to the procedure described by Jones 45 . Southern and Northern type analyzes were carried out using Hybond N + membranes (Amersham) according to the manufacturer's recommendations.
Ejemplo 4. Inmunodetección.Example 4. Immunodetection.
Los extractos proteicos fueron preparados como se describió previamente 37 y Ia concentración de proteína se determinó usando el ensayo de Bradford (Bio-Rad) con albúmina de suero bovino como estándar. Cantidades equivalentes de proteína (25 μg) de cada muestra fueron resuspendidas en amortiguador de Schágger 2X 46 y hervidas después de adicionarles β-mercaptoetanol (5%). Las proteínas fueron separadas por SDS-PAGE en geles al 10% de acuerdo a Schágger y Von Jagow 46. Las proteínas fueron transferidas a membranas Hybond ™-C extra (Amersham) y Ia detección se realizó siguiendo las instrucciones del sistema Phospho Plus ® p42/p44 MAP kinase (Thr/Tyr) Antibody kit (CeII Signalling Technology, Inc).Protein extracts were prepared as previously described 37 and the protein concentration was determined using the Bradford assay (Bio-Rad) with bovine serum albumin as standard. Equivalent amounts of protein (25 μg) of each sample were resuspended in Schágger 2X 46 buffer and boiled after addition of β-mercaptoethanol (5%). The proteins were separated by SDS-PAGE in 10% gels according to Schágger and Von Jagow 46 . The proteins were transferred to extra Hybond ™ -C membranes (Amersham) and the detection was performed following the instructions of the Phospho Plus ® p42 / p44 MAP kinase system (Thr / Tyr) Antibody kit (CeII Signaling Technology, Inc).
Ejemplo 5. Clonación y secuenciación de tvk1.Example 5. Cloning and sequencing of tvk1.
Se utilizó DNA genómico de T. virens Gv29-8 como templado en reacciones de amplificación por PCR usando los iniciadores descritos previamente 47. El producto de PCR se clonó y se secuenció posteriormente usando el método de Sanger 48 con el sistema Sequenase (versión 2.0, U. S Biochemichals). Un fragmento que mostró alta similitud con el gen pmk1 de M. grísea fue seleccionado y usado como sonda para el escrutinio de una biblioteca de cósmidos de T. virens Gv28-9. Se identificaron tres clonas y una de ellas fue seleccionada para secuenciación. Un análisis tipo Southern permitió Ia identificación de un fragmento BamH\ de 3.3 Kb conteniendo el gen tvk1 (ver figura 1), dicho fragmento fue subclonado en el sitio BamH\ del plásmido pCB1004 (pDXG35). Este fragmento fue secuenciado en su totalidad y analizado posteriormente mediante el programa BLAST utilizando el banco de datos de DNA-proteína.Genomic DNA from T. virens Gv29-8 was used as tempering in PCR amplification reactions using the primers described previously 47 . The PCR product was cloned and subsequently sequenced using the Sanger 48 method with the Sequenase system (version 2.0, U. S Biochemichals). A fragment that showed high similarity with the M. grísea pmk1 gene was selected and used as a probe for the screening of a cosmid library of T. virens Gv28-9. Three clones were identified and one of them was selected for sequencing. A Southern type analysis allowed the identification of a 3.3 Kb BamH \ fragment containing the tvk1 gene (see figure 1), said fragment was subcloned into the BamH \ site of plasmid pCB1004 (pDXG35). This fragment was sequenced in its totally and subsequently analyzed by the BLAST program using the DNA-protein data bank.
Utilizando DNA de T. virens como templado y los oligonucleótidos degenerados reportados por Xu y Hamer 47, se obtuvieron varios productos de amplificación por PCR. Estos productos fueron subclonados en el vector pCR2.1 y secuenciados. Después de realizar un análisis computacional usando el algoritmo BlastX uno de estos presentó una alta similitud con el gen pmk1 de M. grísea. Este producto de amplificación fue marcado radiactivamente y empleado en un escrutinio en una biblioteca genómica de T. virens. Se obtuvieron tres clonas que dieron señal positiva y una de ellas se seleccionó, subclonó y secuenció. Un análisis tipo Southern blot empleando DNA de T. Virens y el gen tvk1 obtenido, sugiere que este gen se encuentra como copia única en el genoma de Trichoderma (figura 1).Using T. virens DNA as temperate and degenerate oligonucleotides reported by Xu and Hamer 47 , several PCR amplification products were obtained. These products were subcloned into the vector pCR2.1 and sequenced. After performing a computational analysis using the BlastX algorithm, one of these showed a high similarity with the pmk1 gene of M. grísea. This amplification product was radioactively labeled and used in a screening in a genomic library of T. virens. Three clones were obtained that gave a positive signal and one of them was selected, subcloned and sequenced. A Southern blot type analysis using T. Virens DNA and the tvk1 gene obtained, suggests that this gene is found as a single copy in the Trichoderma genome (Figure 1).
El gen tvk1 contiene cuatro exones interrumpidos por tres intrones como se ha reportado para otros genes de esta misma familia de cinasas (figura 2).The tvk1 gene contains four exons interrupted by three introns as reported for other genes in this same kinase family (Figure 2).
Recientemente se clonó un gen parecido al que aquí se reporta, sin embargo, a diferencia de los genes de esta familia, el reportado no presenta el tercer intrón 38. Un análisis comparativo de Ia región promotora revela Ia presencia de posibles elementos de respuesta los cuales están asociados con los procesos de crecimiento y conidiación, tales como RAP-1, ABF-1, STUAP1 y tres posibles sitios de unión a GCR1 , el cual está implicado en Ia respuesta a limitación por carbono. En otros sistemas se ha observado que Ia unión de RAP1 facilita Ia unión de GCR1 a los sitios adyacentes. Adicionalmente el promotor contiene dos sitios de unión tipo STRE y un posible sitio para el factor de apareamiento MAT-1-Mc.Recently, a gene similar to the one reported here was cloned, however, unlike the genes of this family, the reported one does not present the third intron 38 . A comparative analysis of the promoter region reveals the presence of possible response elements which are associated with the growth and conidiation processes, such as RAP-1, ABF-1, STUAP1 and three possible GCR1 binding sites, which is involved in the response to carbon limitation. In other systems it has been observed that the binding of RAP1 facilitates the binding of GCR1 to adjacent sites. Additionally, the promoter contains two STRE type binding sites and a possible site for the MAT-1-Mc mating factor.
La secuencia proteica deducida de tvk1 es de 360 aminoácidos que corresponden a una masa molecular teórica de 41.6 KDaI y un punto isoeléctrico de 6.44. Un análisis de alineamiento empleando el programa MegAlign-Clustal indica que Tvk1 y TmkA tienen un 99.4% de similitud, mientras que Tmk1 presenta un 97.7% de similitud con Tvk1. Las MAP cinasas Cmk1, Pmk1 y Fmk1 de Colletotrichum lagenarium, M. grísea, y F. oxysporum, respectivamente, tienen un 95.8% de identidad con Tvk1 , y Kss1 de S. cerevisae tiene un 54.7%. La región comprendida entre los residuos 58 a 160 en Tvk1 contiene Ia secuencia observada en varios miembros de Ia familia de las MAP cinasas: F-x(10)-R-E-x(72,86)-R-D-x-K-x(9)-C 49. Esta proteína también contiene los residuos fosforilables [T(184)-E-Y(186)] requeridos para su fosforilación y activación por Ia MAP cinasa 50.The deduced protein sequence of tvk1 is 360 amino acids that correspond to a theoretical molecular mass of 41.6 KDaI and an isoelectric point of 6.44. An alignment analysis using the MegAlign-Clustal program indicates that Tvk1 and TmkA have a 99.4% similarity, while Tmk1 has a 97.7% similarity with Tvk1. The MAP kinases Cmk1, Pmk1 and Fmk1 of Colletotrichum lagenarium, M. grísea, and F. oxysporum, respectively, have a 95.8% identity with Tvk1, and S. cerevisae Kss1 has 54.7%. The region included among residues 58 to 160 in Tvk1 contains the sequence observed in several members of the family of MAP kinases: Fx (10) -REx (72,86) -RDxKx (9) -C 49 . This protein also contains the phosphorylable residues [T (184) -EY (186)] required for its phosphorylation and activation by MAP kinase 50 .
Ejemplo 6. Construcción del vector pTVK1::arg2 de reemplazo génico.Example 6. Construction of the pTVK1 :: arg2 gene replacement vector.
Para construir el vector de reemplazo del gen tvk1, un fragmento £coRV/Sa/l de 1.48 Kb conteniendo Ia mayor parte de Ia región codificante de tvk1 (a partir del aminoácido 88 hasta el último aminoácido de Ia proteína) fue sustituido por un fragmento SmaVEcoRV de 3.2 Kb del gen arg2 de T. virens 41. Un fragmento SamHI/EcoRV de pDGX35 fue subclonado en los sitios Ba/nHI/EcoRV de pBluescript SK (-) para generar el plásmido pAM1. El plásmido pAM1 fue digerido con EcoRV y ligado a un fragmento EcoR\//Sma\ del gen arg2 gene (pAM2). Con el propósito de obtener Ia región C-terminal de Tvk1, se usó un fragmento Sa/l/SamHI de 0.4 Kb de pDGX35 como sonda contra DNA del cósmido digerido con varias enzimas. Un fragmento Sa/I de 3.2 Kb se clonó en pBluescript KS(+) que después fue subclonado como un fragmento Cla\/Apa\ en pAM2. El vector resultante (pTVK1::arg2) fue linearizado y usado para transformar Ia cepa auxotrófica TV10.4 de T. virens (ver figura 3A).To construct the replacement vector of the tvk1 gene, a £ coRV / Sa / l fragment of 1.48 Kb containing most of the coding region of tvk1 (from amino acid 88 to the last amino acid of the protein) was replaced by a fragment 3.2 Kb SmaVEcoRV of the arg2 gene from T. virens 41 . A SamHI / EcoRV fragment of pDGX35 was subcloned into the Ba / nHI / EcoRV sites of pBluescript SK (-) to generate plasmid pAM1. Plasmid pAM1 was digested with EcoRV and ligated to an EcoR \ // Sma \ fragment of the arg2 gene (pAM2) gene. With the purpose of obtaining the C-terminal region of Tvk1, a 0.4 Kb Sa / l / SamHI fragment of pDGX35 was used as a probe against cosmid DNA digested with several enzymes. A 3.2 Kb Sa / I fragment was cloned into pBluescript KS (+) which was then subcloned as a Cla \ / Apa \ fragment into pAM2. The resulting vector (pTVK1 :: arg2) was linearized and used to transform the auxotrophic strain TV10.4 of T. virens (see Figure 3A).
Ejemplo 7. Transformación de hongos.Example 7. Fungal transformation.
Se prepararon y transformaron protoplastos de T. virens de acuerdo a un método descrito previamente 41. Se seleccionaron transformantes prototróficas usando medio mínimo de Vogel conteniendo sacarosa como única fuente de carbono (VMS). La interrupción del gen tvk1 en las transformantes seleccionadas fue confirmada por análisis tipo Southern y Western.T. virens protoplasts were prepared and transformed according to a previously described method 41 . Prototrophic transformants were selected using Vogel minimum medium containing sucrose as the sole source of carbon (VMS). The interruption of the tvk1 gene in the selected transformants was confirmed by Southern and Western analysis.
Ejemplo 8. Generación de mutantes nulas de tvk1.Example 8. Generation of null mutants of tvk1.
La interrupción de tvk1 fue evaluada en 20 mutantes estables por medio de análisis tipo Southern usando como sonda un fragmento βamHI/EcoRV de 1.4 Kb del plásmido pDGX35. Esperándose que hibridara un fragmento 3.3 Kb para Ia cepa silvestre, un fragmento de 4.8 Kb en las mutantes nulas y ambas bandas en caso de integraciones ectópicas fueron detectadas (figura 3B). Siete transformantes con el patrón de hibridación esperado fueron seleccionadas y analizadas para verificar que no hubiesen ocurrido eventos de integración adicionales. Ninguna de las transformantes seleccionadas mostró bandas adicionales a Ia correspondiente al evento de reemplazo. Las transformantes designadas Atvk24 y Δtvk133 fueron escogidas arbitrariamente para su análisis fenotípico y estudios fisiológicos. Para verificar que Tvk1 no se producía en las mutantes, extractos proteicos totales de Ia cepa silvestre de T. virens y de Ia cepa Δtvk24 fueron analizadas usando un anticuerpo policlonal que reconoce las cinasas MAP p42/p44 de células animales (figura 3C). Como se esperaba, dos proteínas de 42 KDa y 44 KDa fueron detectadas en Ia cepa silvestre (figura 3C, carril 1). En cambio, solo una señal correspondiente a Ia MAP cinasa de 44kDa MAP fue detectada en Ia cepa Δtvk24 (figura 3C, carril 2). Estos resultados demostraron que Ia cepa Δtvk24 no producía el homólogo de Ia cinasa MAP p42. Resultados semejantes fueron obtenidos al analizar otras mutantes.The interruption of tvk1 was evaluated in 20 stable mutants by means of Southern type analysis using a 1.4 Kb βamHI / EcoRV fragment of plasmid pDGX35 as a probe. Waiting for a 3.3 Kb fragment to hybridize to the wild strain, a 4.8 Kb fragment in the null mutants and both bands in case of ectopic integrations were detected (Figure 3B). Seven transformants with the expected hybridization pattern were selected and analyzed to verify that no additional integration events had occurred. None of the transformants selected showed additional bands to the one corresponding to the replacement event. The transformants designated Atvk24 and Δtvk133 were arbitrarily chosen for phenotypic analysis and physiological studies. To verify that Tvk1 was not produced in the mutants, total protein extracts of the wild T. virens strain and of the Δtvk24 strain were analyzed using a polyclonal antibody that recognizes p42 / p44 MAP kinases of animal cells (Figure 3C). As expected, two proteins of 42 KDa and 44 KDa were detected in the wild strain (Figure 3C, lane 1). On the other hand, only a signal corresponding to the MAP kinase of 44kDa MAP was detected in the strain Δtvk24 (Figure 3C, lane 2). These results demonstrated that the Δtvk24 strain did not produce the MAP p42 kinase homologue. Similar results were obtained by analyzing other mutants.
Ejemplo 9. Análisis de cultivos sumergidos.Example 9. Analysis of submerged crops.
Esporas (1x106 esporas/ml) de Ia cepa silvestre y de las mutantes Δtvk24 y Δtvk133 fueron inoculadas en PDB (Caldo de Papa Dextrosa, Difco), medio de Vogel (VMS) o medio mínimo (MM) 51 e incubadas por 72 horas a 280C. Las muestras fueron analizadas usando un microscopio de luz (Olympus BX60). Las imágenes fueron capturadas y modificadas usando los programas Image-Pro Plus 4.0 y Adobe Photoshop, respectivamente.Spores (1x10 6 spores / ml) of the wild strain and of the mutants Δtvk24 and Δtvk133 were inoculated in PDB (Potato Broth Dextrose, Difco), Vogel medium (VMS) or minimum medium (MM) 51 and incubated for 72 hours at 28 0 C. Samples were analyzed using a light microscope (Olympus BX60). The images were captured and modified using the Image-Pro Plus 4.0 and Adobe Photoshop programs, respectively.
Colonias de las mutantes Δtvki mostraron una reducción en su velocidad de crecimiento colonial y en el desarrollo de hifas aéreas en medio sólido. Suspensiones de conidias de Ia cepa silvestre mostraron una coloración verde intenso, comparadas con el verde pálido de las suspensiones de conidias de las mutantes. Adicionalmente, las mutantes nulas produjeron dos veces menos conidias que Ia cepa silvestre cuando se crecieron en medio PDA sin cambios significativos en Ia morfología del conidióforo. Cuando el crecimiento en medio liquido fue analizado, todas las mutantes Δivki formaron "pellets" más pequeños que los formados por Ia cepa silvestre. Sorprendentemente, las mutantes Δtvki conidiaron masivamente en fases tardías en cultivos sumergidos (72 h), mientras que no se detectaron conidias en los cultivos de Ia cepa parental aun después de siete días. La figura 4A muestra cultivos líquidos de Ia cepa silvestre de T. virens (Gv29-8) (panel izquierdo), mutantes Δtvk24 y Δtvk133 (dos paneles centrales) y Ia cepa parental (Tv10.4) (panel derecho) después de 72 horas de incubación en medio VMS. La habilidad para conidiar en medio liquido de las mutantes parece ser independiente del medio de cultivo usado, ya que Ia conidiaclón fue observada tanto en VMS como en PDB. Observaciones al microscopio de muestras de cultivos líquidos esporulantes de Δtvk133 mostraron un desarrollo normal del conidióforo, semejando aquellos producidos en hifas aéreas (figura 4B-C).Colonies of the Δtvki mutants showed a reduction in their speed of colonial growth and in the development of aerial hyphae in solid medium. Conidia suspensions of the wild strain showed an intense green coloration, compared with the pale green of the conidia suspensions of the mutants. Additionally, the null mutants produced twice less conidia than the wild strain when they were grown in PDA medium without significant changes in the morphology of the conidophore. When the growth in liquid medium was analyzed, all Δivki mutants formed pellets smaller than those formed by the wild strain. Surprisingly, the Δtvki mutants massively conidia in late phases in submerged cultures (72 h), while no conidia were detected in the cultures of the parental strain even after seven days. Figure 4A shows liquid cultures of the wild strain of T. virens (Gv29-8) (left panel), mutants Δtvk24 and Δtvk133 (two central panels) and the parental strain (Tv10.4) (right panel) after 72 hours of incubation in VMS medium. The ability to conidia in liquid medium of the mutants seems to be independent of the culture medium used, since the conidiaclón was observed in both VMS and PDB. Microscopic observations of samples of sporulating liquid cultures of Δtvk133 showed a normal development of the conidiophore, resembling those produced in aerial hyphae (Figure 4B-C).
Ejemplo 10. Ensayos de micoparasitismo simulado. Esporas de Tríchoderma (1x 106 esporas/ml) fueron germinadas y crecidas por 48 h en VMS. El micelio fue entonces colectado y transferido a medio fresco. Medio mínimo de Vogel sin fuente de carbono o de nitrógeno (VM o VM-N, respectivamente) fue usado para evaluar el efecto de limitación de nutrientes; VMS conteniendo 0.5% de paredes celulares de R. solani (VMSR), y medio de Vogel sin fuente de nitrógeno o carbono adicionado con 0.5% de paredes celulares de R solani (VM-NR o VMR, respectivamente) fue usado para similar las condiciones de micoparasitismo. VMS fue usado como control. Se colectaron muestras después de transcurridas 3, 6 y 24 h de incubación, estas se congelaron en nitrógeno liquido y se almacenaron a -7O0C hasta ser usadas. Para el análisis de las actividades enzimáticas, se recuperó el filtrado de los cultivos, se congeló a -2O0C y se almacenó a Ia misma temperatura hasta su uso.Example 10. Simulated mycoparasitism assays. Tríchoderma spores (1 x 10 6 spores / ml) were germinated and grown for 48 h in VMS. The mycelium was then collected and transferred to fresh medium. Minimum Vogel medium without a carbon or nitrogen source (VM or VM-N, respectively) was used to assess the effect of nutrient limitation; VMS containing 0.5% of R. solani cell walls (VMSR), and Vogel medium without a source of nitrogen or carbon added with 0.5% of R solani cell walls (VM-NR or VMR, respectively) was used for similar conditions of mycoparasitism. VMS was used as a control. Samples were collected after 3, 6 and 24 h of incubation, these were frozen in liquid nitrogen and stored at -7O 0 C until used. For the analysis of the enzymatic activities, the filtrate was recovered from the cultures, frozen at -2O 0 C and stored at the same temperature until use.
Análisis tipo Northern blot mostraron que en Ia cepa silvestre el gen Tv-nag1 que codifica una N-acetilglucosaminidasa se expresaba en medio sin carbono 3 h después de Ia transferencia y que el RNAm no podía ser detectado a las 6 h. Mientras que en Ia mutante Ia expresión fue detectada después de 3 h y ésta se incrementó a las 6 h. En medio conteniendo paredes celulares de R. solani fue expresado solo después de 6 h tanto para Ia cepa silvestre como para Ia mutante, pero alcanzó niveles muy superiores en Ia mutante (Fig. 5A; Tv-nag1). El segundo gen codificante de quitinasas analizado (Jv-cht1) se expresó en ambas cepas en ausencia de carbono pero alcanzó niveles superiores en Δtvk24 a las 6 h. Tv-cht1 era claramente inducido por paredes celulares en Ia cepa silvestre con un nivel máximo de expresión a las 6 h. En contraste, no se observó una inducción obvia en Ia cepa mutante, Ia cual alcanzó el mismo nivel observado bajo condiciones de limitación de carbono, excepto que esto ocurrió antes (Fig. 5A; Tv-cht1). El gene que codifica Ia glucanasa Tv-bgn2 se indujo por paredes celulares a las 6 h, pero no se observaron diferencias con Ia cepa silvestre y el gen no se expresó en medio sin fuente de carbono (Fig. 5A; Tv-bgn2). El patrón de expresión de un tercer gen de quitinasa (Tv-cht2) bajo condiciones de parasitismo simulado fue similar al de Tv- cht1, excepto que Ia máxima expresión fue alcanzada después de 24 horas. De manera consistente con Io observado para otros MRG analizados, Δtvk24 mostró una inducción mucho más pronunciada para Tv-cht2 que Ia cepa silvestre. Se determinó Ia expresión bajo condiciones simuladas de micoparasitismo tanto en ausencia como en presencia de una fuente alterna de carbono (Fig. 5A; Tv-prb1) o en VM-NR que no contiene amonio (Fig. 5B; Tv-prb1) del gen prb1 , el cual codifica para una proteasa. Se observó inducción por paredes celulares para ambas cepas, aunque se detectaron niveles más altos de transcrito bajo condiciones de inanición de carbono que bajo condiciones de limitación de nitrógeno. En ambos casos, Ia inducción fue muy superior para Ia cepa Δtvk24 que para Ia cepa silvestre. La muíante Δtvk24 mostró los niveles más altos de expresión después de 6 h, entre siete y diez veces más que Ia expresión en Ia cepa silvestre. La cepa muíante mostró niveles detectables de expresión de Tv-prb1 después de 6 h cuando se creció en VM-N (Fig. 5B; Tv-prb1). De acuerdo con esías observaciones, el análisis de las acíividades en gel de proíeasa, endoquitinasa, N-acetilglucosaminidasa y glucanasa de los filtrados del cultivo mosíró hasía diez veces mayor actividad en las muíaníes que en Ia cepa silvesíre (ver figura 8). Por demás interesante fue observar Ia presencia de una banda adicional de actividad de endoquitinasa en las mutaníes nulas bajo condiciones de limitación de carbono (ver figura 8).Northern blot analysis showed that in the wild strain the Tv-nag1 gene encoding an N-acetylglucosaminidase was expressed in a carbon-free medium 3 h after transfer and that the mRNA could not be detected at 6 h. While in the mutant the expression was detected after 3 h and it increased at 6 h. In medium containing R. solani cell walls, it was expressed only after 6 h for both the wild strain and the mutant, but reached much higher levels in the mutant (Fig. 5A; Tv-nag1). The second chitinase coding gene analyzed (Jv-cht1) was expressed in both strains in the absence of carbon but reached higher levels in Δtvk24 at 6 h. Tv-cht1 was clearly induced by cell walls in the wild strain with a maximum level of expression at 6 h. In contrast, no obvious induction was observed in the mutant strain, which reached the same level observed under conditions of carbon limitation, except that this happened before (Fig. 5A; Tv-cht1). The gene encoding the Tv-bgn2 glucanase was induced by cell walls at 6 h, but no differences were observed with the wild strain and the gene was not expressed in medium without a carbon source (Fig. 5A; Tv-bgn2). The expression pattern of a third chitinase gene (Tv-cht2) under conditions of simulated parasitism was similar to that of Tv-cht1, except that the maximum expression was reached after 24 hours. Consistent with what was observed for other MRGs analyzed, Δtvk24 showed a much more pronounced induction for Tv-cht2 than the wild strain. The expression was determined under simulated conditions of mycoparasitism both in the absence and in the presence of an alternate carbon source (Fig. 5A; Tv-prb1) or in VM-NR that does not contain ammonium (Fig. 5B; Tv-prb1) of the gene prb1, which codes for a protease. Cell wall induction was observed for both strains, although higher levels of transcript were detected under conditions of carbon starvation than under conditions of nitrogen limitation. In both cases, the induction was much higher for the Δtvk24 strain than for the wild strain. The mutant Δtvk24 showed the highest levels of expression after 6 h, between seven and ten times more than the expression in the wild strain. The mutant strain showed detectable levels of Tv-prb1 expression after 6 h when grown on VM-N (Fig. 5B; Tv-prb1). According to these observations, the analysis of the acivivities in proiease gel, endocytinase, N-acetylglucosaminidase and glucanase of the culture filtrates showed ten times greater activity in the muiahids than in the silvesíre strain (see figure 8). It was also interesting to observe the presence of an additional band of endocytinase activity in null mutanids under conditions of carbon limitation (see figure 8).
Ejemplo 11. Ensayos de confrontación.Example 11. Confrontation trials.
Las cepas de Trichoderma fueron sujetas a ensayos de confrontación sin coníacío usando R solani como huésped 51. Las confroníaciones se llevaron acabo en medio VMS-agar modificado (mVMS) coníeniendo 0.75 g/l de sacarosa y 0.45g/l de NH4NO3. El micelio de Trichoderma fue colecíado de Ia zona de interacción eníre los hongos.Trichoderma strains were subjected to confrontational trials without coniacio using R solani as host 51 . The confrontations were carried out in modified VMS-agar medium (mVMS) containing 0.75 g / l sucrose and 0.45g / l NH 4 NO 3 . The mycelium of Trichoderma was collected from the zone of interaction between fungi.
Se llevó acabo el análisis de expresión del mismo conjunío de genes en las cepas Atvk24 y silvestre durante ensayos de confrontación (figura 6A). Cuando Δtvk24 sobrecreció en presencia de Ia colonia de R solani (TR), se detectó una clara inducción de Tv-prb1, Tv-nag1, Tv-cht1, y Tv-bgn2, al compararse con las condiciones control donde Ia mutante creció sola (T) (figura 6B). Es interesante que se observaron niveles detectables de expresión de todos los genes utilizados en el control (T). La acumulación de transcritos de todos los MRGs en Átvk24 no solo se vio incrementada por Ia presencia del huésped sino que alcanzó niveles mucho más altos que para Ia cepa silvestre. En el momento del rnuestreo no se observaron diferencias en Ia expresión de los MRGs cuando Ia cepa silvestre se creció sola (T) o en presencia de R. solani (TR) (figura 6B).The analysis of the expression of the same set of genes in the Atvk24 and wild strains was carried out during confrontational trials (Figure 6A). When Δtvk24 overgrowth in the presence of the R solani (TR) colony, a clear induction of Tv-prb1, Tv-nag1, Tv-cht1, and Tv-bgn2 was detected, when compared with the control conditions where the mutant grew alone (T) (figure 6B). It is interesting that detectable levels of expression of all genes used in the control (T) were observed. The accumulation of transcripts of all MRGs in Átvk24 was not only increased by the presence of the host but also reached much higher levels than for the wild strain. At the time of the sampling, no differences were observed in the expression of the MRGs when the wild strain was grown alone (T) or in the presence of R. solani (TR) (Figure 6B).
Ejemplo 12. Ensayos de confrontación directa en agarpapa dextrosa. Las cepas de Trichoderma de Ia invención fueron sujetas a ensayos de confrontación directa usando Phytophthora capsici, Sclerotium rolfsii, Rhizoctonia solani, Colletotrichum lindemuthianum y Phytophthora citricola, como huésped. Las confrontaciones se llevaron acabo en medio agar papa dextrosa utilizando las cepas T. virens Gv29.8, Δtvk24 y Λtvk133 durante 5 días bajo luz continua a 280C. Los resultados obtenidos se muestran en Ia figura 9. Como puede observarse, no existieron diferencias significativas en el comportamiento de las cepas de Ia invención con respecto de Ia cepa control, implicando un efecto inhibitorio del medio de cultivo en el comportamiento micoparasítico observado con anterioridad (ver figuras 6 y 7), acorde a Io reportado por Kim 43.Example 12. Direct confrontation assays in agarpapa dextrose. The Trichoderma strains of the invention were subjected to direct confrontation assays using Phytophthora capsici, Sclerotium rolfsii, Rhizoctonia solani, Colletotrichum lindemuthianum and Phytophthora citricola, as host. The confrontations were carried out in half papa dextrose agar using strains T. virens Gv29.8, Δtvk24 and Λtvk133 for 5 days under continuous light at 28 0 C. The results obtained are shown in Figure 9. As can be seen, they did not exist significant differences in the behavior of the strains of the invention with respect to the control strain, implying an inhibitory effect of the culture medium on the mycoparasitic behavior observed previously (see figures 6 and 7), according to what was reported by Kim 43 .
Ejemplo 13. Ensayos de biocontrol.Example 13. Biocontrol tests.
Los ensayos se llevaron acabo como fue descrito previamente 42. Semillas de algodón (cultivar Stoneville 112, Pedigree Seed Co) fueron cubiertas con las cepas de Trichoderma y sembradas en medio libre de suelo no estéril (Metromix) infectadas con R solani o P. ultimum. Semillas sembradas en suelo no-infectado y semillas tratadas con el fungicida comercial Apron XL LS (activo contra P. ultimum) fueron usadas como controles positivos. Las plantas sobrevivientes y saludables fueron contadas a los 10 días de incubación a 250C en una cámara de crecimiento. Adicionalmente, Ia extensión de síntomas de Ia enfermedad en el sistema radicular fue evaluada en plantas infectadas con R solani usando una escala arbitraria de 0 (no síntomas) a 5 (todo el sistema radicular decolorado y decaimiento) con un valor máximo de 6 para semillas muertas no germinadas. Cada tratamiento se realizó en 6 replicas, con 10 semillas cada una, y el experimento completo se repitió dos veces.The tests were carried out as previously described 42 . Cottonseed (cultivate Stoneville 112, Pedigree Seed Co) were covered with Trichoderma strains and planted in a medium free of non-sterile soil (Metromix) infected with R solani or P. ultimum. Seeds sown in uninfected soil and seeds treated with the commercial fungicide Apron XL LS (active against P. ultimum) were used as positive controls. Survivors and healthy plants were counted at 10 days of incubation at 25 0 C in a growth chamber. Additionally, the extension of symptoms of the disease in the root system was evaluated in plants infected with R solani using an arbitrary scale from 0 (no symptoms) to 5 (the entire discolored root system and decay) with a maximum value of 6 for seeds dead not germinated. Each treatment was performed in 6 replicates, with 10 seeds each, and the entire experiment was repeated twice.
Se evaluó Ia capacidad de biocontrol de Δtvk24 y Δtvk133 in vivo contra dos patógenos de raíz, R solani y P. ultimum. La mortalidad de las plantas fue muy baja en los tratamientos con R solani (10 %). Aunque Ia protección por Δtvk24 y Δtvk133 fue mayor (mortalidades 0% y 5%, respectivamente) que con Ia silvestre (mortalidad 8%), las diferencias no fueron significativas estadísticamente. Sin embargo, cuando los síntomas de enfermedad fueron evaluados en el sistema radicular, se detectaron diferencias significativas (Fig. 7A). El índice de enfermedad fue significativamente menor para las cepas mutantes en Δtvki que para Ia silvestre. Cuando se infectaron plantas de algodón con Pythium, tan solo el 10% de las semillas no tratadas sobrevivieron. Sin embargo, Ia sobrevivencia se incrementó a 70 y 80% en los tratamientos con Δtvk24 y Δtvk133, respectivamente, comparado con solo 20% para Ia cepa silvestre. El nivel de protección alcanzado por las dos cepas mutantes fue comparable e incluso significativamente superior que Ia protección obtenida por el tratamiento de las semillas con el fungicida comercial Apron (Fig 7B).The biocontrol capacity of Δtvk24 and Δtvk133 was evaluated in vivo against two root pathogens, R solani and P. ultimum. The mortality of the plants was very low in the treatments with R solani (10%). Although the protection by Δtvk24 and Δtvk133 was greater (mortality 0% and 5%, respectively) than with the wild (mortality 8%), the differences were not statistically significant. However, when disease symptoms were evaluated in the root system, significant differences were detected (Fig. 7A). The disease index was significantly lower for mutant strains in Δtvki than for wild. When cotton plants were infected with Pythium, only 10% of the untreated seeds survived. However, survival was increased to 70 and 80% in the treatments with Δtvk24 and Δtvk133, respectively, compared with only 20% for the wild strain. The level of protection achieved by the two mutant strains was comparable and even significantly higher than the protection obtained by treating the seeds with the commercial fungicide Apron (Fig 7B).
Referencias. 1. Herrera-Estrella, A., & Chet, I. 2003. In Handbook of Fungal Biotechnology, ed. Arora, D. (Marcel Dekker, Inc., New York), In press.References. 1. Herrera-Estrella, A., & Chet, I. 2003. In Handbook of Fungal Biotechnology, ed. Arora, D. (Marcel Dekker, Inc., New York), In press.
2. Papavizas, G. C. 1985. Ann. Review Phytopathol. 23, 23-54.2. Papavizas, G. C. 1985. Ann. Review Phytopathol. 23, 23-54.
3. Trillas Gay, María Isabel, et.al. 2003. Sustratos que contienen una cepa de Trichoderma asperellum para el control biológico de Fusarium y Rhizoctonia. Solicitud de Patente Internacional PCT/ES02/00311.3. Trillas Gay, María Isabel, et.al. 2003. Substrates containing a strain of Trichoderma asperellum for the biological control of Fusarium and Rhizoctonia. International Patent Application PCT / ES02 / 00311.
4. Muñoz, Antonio. 2003. Biological control of soil-born fungal pathogens. US Patent Application, US2003/0092574.4. Muñoz, Antonio. 2003. Biological control of soil-born fungal pathogens. US Patent Application, US2003 / 0092574.
5. Chung, Young-Ryun. 2001. A microbial pesticide active against plant fungal pathogens and process for preparation thereof. PCT application, PCT/KR01/00616.5. Chung, Young-Ryun. 2001. A microbial pesticide active against plant fungal pathogens and process for preparation thereof. PCT application, PCT / KR01 / 00616.
6. Papavizas, George C. 1984. Strain of Trichoderma viride to control Fusarium wilt. USPat 4489161. 7. Howell, Charles, R. 1999. Viridiol deficient mutant strains of the biocontrol agent Trichoderma virens, process of making and using as biocontrol agent. USPat 5882915.6. Papavizas, George C. 1984. Strain of Trichoderma viride to control Fusarium wilt. USPat 4489161. 7. Howell, Charles, R. 1999. Viridiol deficient mutant strains of the biocontrol agent Trichoderma virens, process of making and using as biocontrol agent. USPat 5882915.
8. Reyes Salinas, Mario. 2004. Bactericidal, bacteriostatic and fungicidal composition comprísing two or more Uve species of Trichoderma. EP 1384405.8. Reyes Salinas, Mario. 2004. Bactericidal, bacteriostatic and fungicidal composition compressing two or more Uve species of Trichoderma. EP 1384405.
9. Hermosa Prieto, María Rosa. 2004. Composition comprísing fungí of genus Trichoderma used as biological control agent and the applications thereof. EP 1279335.9. Beautiful Tight, Maria Rosa. 2004. Composition checking fungí of genus Trichoderma used as biological control agent and the applications thereof. EP 1279335.
10. Harman, Gary, E. 2002. Production and use of inducible enzymes from Trichoderma and bacteria for control of plant pests and for industrial processes.10. Harman, Gary, E. 2002. Production and use of inducible enzymes from Trichoderma and bacteria for control of plant pests and for industrial processes.
PCT application, PCT/US01/25058.PCT application, PCT / US01 / 25058.
11. Watanabe, Manabu., et. al. 2001. Regulatory sequence of cellulase cbh1 genes originating in Trichoderma viride and system for mass-producing proteins orpeptides therewith. USPat 6277596. 12. New IEEE Standard Dictionary of electrical and Electronic Terms. 5th edition, 1993.11. Watanabe, Manabu., Et. to the. 2001. Regulatory sequence of cellulase cbh1 genes originating in Trichoderma viride and system for mass-producing proteins orpeptides therewith. USPat 6277596. 12. New IEEE Standard Dictionary of electrical and Electronic Terms. 5th edition, 1993.
13. Diagnostic Molecular Microbiology. Principies and Applications. 1993. D. H Persing et al., Ed., American Society for Microbiology, Washington D.C.13. Diagnostic Molecular Microbiology. Principies and Applications. 1993. D. H Persing et al., Ed., American Society for Microbiology, Washington D.C.
14. Plant Molecular Biology: A Laboratory Manual. 1997. Clark Ed., Springer- Verlag Berlín.14. Plant Molecular Biology: A Laboratory Manual. 1997. Clark Ed., Springer-Verlag Berlin.
15. Kmiec. Compounds and Methods for Site Directed Mutagenesis in Eukaryotic CeIIs. U.S. Patent No. 5,565,350.15. Kmiec. Compounds and Methods for Site Directed Mutagenesis in Eukaryotic CeIIs. U.S. Patent No. 5,565,350.
16. Zarling et al. In Vivo Homologous Sequence Targeting in Eukaryotic CeIIs. PCT/US93/03868. 17. Berger and Kimmel, Guide to Molecular Biology techniques, Methods ¡n Enzymology, VoI. 152, Academic Press, Inc., San Diego CA (Berger).16. Zarling et al. In Vivo Homologous Sequence Targeting in Eukaryotic CeIIs. PCT / US93 / 03868. 17. Berger and Kimmel, Guide to Molecular Biology techniques, Methods in Enzymology, VoI. 152, Academic Press, Inc., San Diego CA (Berger).
18. Sambrok et al. 1999. Molecular Cloning. A Laboratory Manual, 2nd Ed., VoI 1- 3.18. Sambrok et al. 1999. Molecular Cloning. A Laboratory Manual, 2nd Ed., VoI 1- 3.
19. FM Ausubel et al. 1994. Current Protocols in Molecular Biology. Eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. Y John19. FM Ausubel et al. 1994. Current Protocols in Molecular Biology. Eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John
Wiley and Sons, Inc.Wiley and Sons, Inc.
20. Adv. Appl. Math. 2:482 (1981).20. Adv. Appl. Math 2: 482 (1981).
21. J. Mol. Biol. 48:443 (1970).21. J. Mol. Biol. 48: 443 (1970).
22. Proc. Nati. Acad. ScL USA 85:2444 (1988). 23. CABIOS 5:151-153 (1989).22. Proc. Nati Acad. ScL USA 85: 2444 (1988). 23. CABIOS 5: 151-153 (1989).
24. Corpet et al. 1988. Nucleic Acids Research 16:10881-90.24. Corpet et al. 1988. Nucleic Acids Research 16: 10881-90.
25. Pearson et al. 1994. Methods in Molecular Biology 24:307-331.25. Pearson et al. 1994. Methods in Molecular Biology 24: 307-331.
26. Huang et al. 1992. Computer Applications in the Biosciences 8:155-65. 27. Current Protocols in Molecular Biology. 1995. Chapt 19, Ausubel et al. Eds Grenne Publishing and Wiley-lnterscience, New York.26. Huang et al. 1992. Computer Applications in the Biosciences 8: 155-65. 27. Current Protocols in Molecular Biology. 1995. Chapt 19, Ausubel et al. Eds Grenne Publishing and Wiley-lnterscience, New York.
28. Altschul et al. 1997. Nucleic Acids Research 25:3389-3402.28. Altschul et al. 1997. Nucleic Acids Research 25: 3389-3402.
29. Henikoff y Henikoff. 1989. Proc. Nati. Acad. Sci. USA 89:10915.29. Henikoff and Henikoff. 1989. Proc. Nati Acad. Sci. USA 89: 10915.
30. Karlin y Altschul. 1993. Proc. Nati. Acad. Sc. 90:5787-5873. 31. Wooten and Federhen. 1993. Comput Chem., 17:149-163.30. Karlin and Altschul. 1993. Proc. Nati Acad. Sc. 90: 5787-5873. 31. Wooten and Federhen. 1993. Comput Chem., 17: 149-163.
32. Claverie and States. 1993. Comput. Chem. 17:191-201.32. Claverie and States. 1993. Comput. Chem. 17: 191-201.
33. Comput. Appl. Biol. Sci. 4:11-17 (1988).33. Comput. Appl. Biol. Sci. 4: 11-17 (1988).
34. Xu, J-R. 2000. Fungal Genet Biol. 31, 137-152.34. Xu, J-R. 2000. Fungal Genet Biol. 31, 137-152.
35. Di Pietro, A., García-Maceira, F.I., Méglecz, E., & Roncero, I. G. 2001. Mol. Microbiol. 39, 1140-1152.35. Di Pietro, A., García-Maceira, F.I., Méglecz, E., & Roncero, I. G. 2001. Mol. Microbiol 39, 1140-1152.
36. Zheng, L., Campbell, M., Murphy, J., Lam, S., & Xu J-R. 2000. Mol. Plant- Microbe Internet 13, 724-732.36. Zheng, L., Campbell, M., Murphy, J., Lam, S., & Xu J-R. 2000. Mol. Plant- Microbe Internet 13, 724-732.
37. Olmedo-Monfil, V., Mendoza-Mendoza, A., Gómez, I., Cortés, C, & Herrera- Estrella, A. 2002. Mol. Gen. Genomics 267, 703-712. 38. Mukherjee, P.K., Latha, J., Hadar, R., & Horwitz, B.A. 2003. Eukaryotic CeII 2, 446-455.37. Olmedo-Monfil, V., Mendoza-Mendoza, A., Gómez, I., Cortés, C, & Herrera-Estrella, A. 2002. Mol. Gen. Genomics 267, 703-712. 38. Mukherjee, P.K., Latha, J., Hadar, R., & Horwitz, B.A. 2003. Eukaryotic CeII 2, 446-455.
39. Takano, Y. 2000. Mol. Plant-Microbe Interact. 13, 374-383.39. Takano, Y. 2000. Mol. Plant-Microbe Interact. 13, 374-383.
40. Howell, C. R., Stipanovic, R. D, & Lumsden, R. D. 1993. Biocontrol Sci. and Tech. 3, 435-441. 41. Baek, J.-M., & Kenerley, CM. 1998. Fungal Genet. Biol. 23, 34-44.40. Howell, C. R., Stipanovic, R. D, & Lumsden, R. D. 1993. Biocontrol Sci. And Tech. 3, 435-441. 41. Baek, J.-M., & Kenerley, CM. 1998. Fungal Genet. Biol. 23, 34-44.
42. Baek, J-M., Howell, C.R., & Kenerley, CM. 1999. Curr. Genet. 35, 41-50.42. Baek, J-M., Howell, C.R., & Kenerley, CM. 1999. Curr. Genet 35, 41-50.
43. Kim, D-J., Baek, J-M., Uribe, P., Kenerley, C, & Cook, D.R. 2002. Curr Genet 40, 374-384.43. Kim, D-J., Baek, J-M., Uribe, P., Kenerley, C, & Cook, D.R. 2002. Curr Genet 40, 374-384.
44. Reader, U., & Broda, P. 1985. Lett. Appl. Microbiol. 1, 17-20. 45. Jones, J., Dunsmuir, P., & Bedbrook J. 1985. EMBO J. 4, 2411-2418.44. Reader, U., & Broda, P. 1985. Lett. Appl. Microbiol 1, 17-20. 45. Jones, J., Dunsmuir, P., & Bedbrook J. 1985. EMBO J. 4, 2411-2418.
46. Schágger, H & Von Jagow, G. 1987. Analytical Bioch. 166, 368-379.46. Schágger, H & Von Jagow, G. 1987. Analytical Bioch. 166, 368-379.
47. Xu, J.-R., & Hamer, J. E. 1996. Genes Dev. 10, 2696-2706.47. Xu, J.-R., & Hamer, J. E. 1996. Genes Dev. 10, 2696-2706.
48. Sanger, F., Nicklen, S., & Coulson, A.R. 1977. Proc. Nati. Academ. Sci. USA 74, 5463-5467. 49. Dorin, D., Alano, P., Boccaccio, I., Cicerón, L, Doerig, C1 Sulpice, R., Parzy,48. Sanger, F., Nicklen, S., & Coulson, AR 1977. Proc. Nati Academ Sci. USA 74, 5463-5467. 49. Dorin, D., Alano, P., Boccaccio, I., Cicero, L, Doerig, C 1 Sulpice, R., Parzy,
D., & Doerig, D. 1999. J. Biol. Chem. 274, 29912-29920.D., & Doerig, D. 1999. J. Biol. Chem. 274, 29912-29920.
50. Kultz, D. 1998. J. Mol. Evol. 46, 571-588.50. Kultz, D. 1998. J. Mol. Evol 46, 571-588.
51. Cortés, C, Gutiérrez, A., Olmedo, V., Chet, I., & Herrera-Estrella, A. 1998. Mol. Gen. Genet 260, 218-225. 51. Cortés, C, Gutiérrez, A., Olmedo, V., Chet, I., & Herrera-Estrella, A. 1998. Mol. Gen. Genet 260, 218-225.

Claims

Reivindicaciones. Claims
1. Una cepa de Trichoderma sobre-productora de enzimas líticas para el combate de hongos fitopatógenos, caracterizada porque ha perdido Ia capacidad de producir al menos una MAP cinasa.1. A strain of Trichoderma over-producing lithic enzymes for the fight against phytopathogenic fungi, characterized in that it has lost the ability to produce at least one MAP kinase.
5 2. La cepa de Ia reivindicación 1 , caracterizada porque en su genoma se ha eliminado al menos Ia función de un gen codificante para una MAP cinasa.The strain of claim 1, characterized in that in its genome at least the function of a gene coding for a MAP kinase has been eliminated.
3. La cepa de Ia reivindicación 2, caracterizada porque se selecciona del grupo que comprende cualquier especie de Tríchoderma.3. The strain of claim 2, characterized in that it is selected from the group comprising any species of Tríchoderma.
4. La cepa de Ia reivindicación 3, caracterizada porque Ia cepa es Trichoderma 10 virens.4. The strain of claim 3, characterized in that the strain is Trichoderma 10 virens.
5. La cepa de Ia reivindicación 4, caracterizada porque el gen eliminado codificante para Ia MAP cinasa tiene Ia secuencia de DNA correspondiente a Ia SEQ ID NO: 2.5. The strain of claim 4, characterized in that the deleted gene coding for the MAP kinase has the DNA sequence corresponding to SEQ ID NO: 2.
6. La cepa de Ia reivindicación 5, caracterizada porque es Ia cepa Trichoderma 15 virens Δtvk24 con el número de depósito PTA-6474.6. The strain of claim 5, characterized in that it is the Trichoderma 15 virens Δtvk24 strain with the deposit number PTA-6474.
7. La cepa de Ia reivindicación 5, caracterizada porque es Ia cepa Trichoderma virens Δtvk133 con el número de depósito PTA-6474.7. The strain of claim 5, characterized in that it is the strain Trichoderma virens Δtvk133 with the deposit number PTA-6474.
8. Una composición fungicida para el control y combate de hongos fitopatógenos, caracterizada porque comprende una cepa de Trichoderma seleccionada del8. A fungicidal composition for the control and control of phytopathogenic fungi, characterized in that it comprises a Trichoderma strain selected from the
20 grupo que comprende las cepas de Ia reivindicación 1 a 7.20 group comprising the strains of claim 1 to 7.
9. La composición de Ia reivindicación 8, caracterizada porque Ia cepa de Trichoderma es Ia cepa de Ia reivindicación 1.9. The composition of claim 8, characterized in that the strain of Trichoderma is the strain of claim 1.
10. La composición de Ia reivindicación 8, caracterizada porque Ia cepa de Trichoderma es Ia cepa de Ia reivindicación 6.10. The composition of claim 8, characterized in that the strain of Trichoderma is the strain of claim 6.
25 11. La composición de Ia reivindicación 8, caracterizada porque Ia cepa deThe composition of claim 8, characterized in that the strain of
Trichoderma es Ia cepa de Ia reivindicación 7.Trichoderma is the strain of claim 7.
12. La composición de Ia reivindicación 8 a 11 , caracterizada porque Ia cepa de Trichoderma se encuentra en cualquiera de sus fases vegetativas de crecimiento, micelios y/o esporas. - 30 13. La composición de Ia reivindicación 12, caracterizada porque Ia cepa de12. The composition of claim 8 to 11, characterized in that the Trichoderma strain is in any of its vegetative growth phases, mycelia and / or spores. - The composition of claim 12, characterized in that the strain of
Trichoderma se encuentra como esporas.Trichoderma is found as spores.
14. Una MAP cinasa de Trichoderma, caracterizada porque tiene Ia secuencia de aminoácidos correspondiente a Ia SEQ ID NO: 3. 14. A Trichoderma MAP kinase, characterized in that it has the amino acid sequence corresponding to SEQ ID NO: 3.
15. Una molécula de DNA, caracterizada porque codifica para Ia MAP cinasa de Ia reivindicación 14.15. A DNA molecule, characterized in that it codes for the MAP kinase of claim 14.
16. La molécula de DNA de Ia reivindicación 15, caracterizada porque tiene Ia secuencia que corresponde a Ia SEQ ID NO: 2. 16. The DNA molecule of claim 15, characterized in that it has the sequence corresponding to SEQ ID NO: 2.
17. Un vector recombinante caracterizado porque contiene Ia molécula de DNA de Ia reivindicación 15.17. A recombinant vector characterized in that it contains the DNA molecule of claim 15.
18. Un vector recombinante caracterizado porque contiene Ia molécula de DNA de Ia reivindicación 16.18. A recombinant vector characterized in that it contains the DNA molecule of claim 16.
19. Un organismo transformado con el vector recombinante de Ia reivindicación 17. 19. An organism transformed with the recombinant vector of claim 17.
20. Un organismo transformado con el vector recombinante de Ia reivindicación 18.20. An organism transformed with the recombinant vector of claim 18.
21. Un método para Ia producción de Ia proteína de Ia reivindicación 14, caracterizado porque comprende cultivar el organismo transformado de Ia reivindicación 19 a 20, producir y acumular Ia proteína y recuperar Ia misma.21. A method for the production of the protein of claim 14, characterized in that it comprises culturing the transformed organism of claim 19 to 20, producing and accumulating the protein and recovering it.
22. Un vector de reemplazo génico para suprimir Ia capacidad de Trichoderma para producir al menos una MAP cinasa, caracterizado porque comprende: a) Un gen de reemplazo que permite identificar las transformantes donde se reemplaza un gen codificante para una MAP cinasa de Trichoderma, b) Un fragmento no codificante que naturalmente se encuentre fuera de Ia región codificante del gene para MAP cinasa en su extremo 5', flanqueando el extremo 5' del gen de reemplazo, y. c) Un fragmento no codificante que naturalmente se encuentre fuera de Ia región codificante del gene para MAP cinasa en su extremo 3!, flanqueando el extremo 3' del gen de reemplazo.22. A gene replacement vector to suppress Trichoderma's ability to produce at least one MAP kinase, characterized in that it comprises: a) A replacement gene that identifies the transformants where a gene coding for a Trichoderma MAP kinase is replaced, b ) A non-coding fragment that is naturally outside the coding region of the gene for MAP kinase at its 5 'end, flanking the 5' end of the replacement gene, and. c) A non-coding fragment that is naturally outside the coding region of the gene for MAP kinase at its 3 ! , flanking the 3 'end of the replacement gene.
23. El vector de Ia reivindicación 22, caracterizado porque el gen de reemplazo proviene de cepas de Trichoderma.23. The vector of claim 22, characterized in that the replacement gene comes from Trichoderma strains.
24. El vector de Ia reivindicación 22, caracterizado porque el gen de reemplazo se selecciona del grupo que comprende los genes hph y hpt de E. coli, genes de resistencia al herbicida Basta, el gen amdS de Aspergillus nidulans y el gen arg2 de Trichoderma. 24. The vector of claim 22, characterized in that the replacement gene is selected from the group comprising the hph and hpt genes of E. coli, Basta herbicide resistance genes, the amdS gene of Aspergillus nidulans and the arg2 gene of Trichoderma .
25. El vector de Ia reivindicación 24, caracterizado porque el gen de reemplazo es arg2.25. The vector of claim 24, characterized in that the replacement gene is arg2.
26. El vector de Ia reivindicación 22 a 25, caracterizado porque el fragmento del inciso b) comprende Ia secuencia del nucleótido no. 1 al nucleótido no. 1210 de Ia SEQ ID NO: 1. 26. The vector of claim 22 to 25, characterized in that the fragment of part b) comprises nucleotide sequence no. 1 to nucleotide no. 1210 of SEQ ID NO: 1.
27. El vector de Ia reivindicación 22 a 26, caracterizado porque el fragmento del inciso c) comprende Ia secuencia del nucleótido no. 2692 al nucleótido no. 5892 de Ia SEQ ID NO: 1.27. The vector of claim 22 to 26, characterized in that the fragment of part c) comprises nucleotide sequence no. 2692 to nucleotide no. 5892 of SEQ ID NO: 1.
28. Un organismo transformado con el vector de reemplazo génico de Ia reivindicación 22 a 27.28. An organism transformed with the gene replacement vector of claim 22 to 27.
29. Un organismo transformado con el vector de reemplazo génico de Ia reivindicación 25.29. An organism transformed with the gene replacement vector of claim 25.
30. Un organismo transformado con el vector de reemplazo génico de Ia reivindicación 27. 30. An organism transformed with the gene replacement vector of claim 27.
31. Un método para Ia obtención de cepas de Tríchoderma sobre-productoras de enzimas líticas para hongos fitopatógenos, caracterizado porque comprende las etapas de: a) Suprimir Ia capacidad de Tríchoderma para producir al menos una MAP cinasa, b) Seleccionar las cepas sobre-productoras de enzimas líticas, y c) Corroborar Ia supresión de Ia producción de Ia MAP cinasa.31. A method for obtaining strains of Tríchoderma overproducers of lytic enzymes for phytopathogenic fungi, characterized in that it comprises the steps of: a) Suppressing the ability of Tríchoderma to produce at least one MAP kinase, b) Select strains over- producers of lithic enzymes, and c) Corroborate the suppression of the production of MAP kinase.
32. El método de Ia reivindicación 31 , caracterizado porque Ia etapa del inciso a) se realiza mediante eliminación de Ia secuencia codificante para MAP cinasa.32. The method of claim 31, characterized in that the stage of part a) is performed by eliminating the coding sequence for MAP kinase.
33. El método de Ia reivindicación 32, caracterizado porque Ia eliminación de Ia secuencia se realiza por reemplazo mediante recombinación homologa.33. The method of claim 32, characterized in that the elimination of the sequence is performed by replacement by homologous recombination.
34. El método de Ia reivindicación 33, caracterizado porque Ia recombinación homologa se realiza mediante Ia transformación de una cepa de Tríchoderma con el vector de Ia reivindicación 22 a 27.34. The method of claim 33, characterized in that the homologous recombination is carried out by means of the transformation of a Tríchoderma strain with the vector of claim 22 to 27.
35. El método de Ia reivindicación 34, caracterizado porque el vector es el descrito en Ia reivindicación 24.35. The method of claim 34, characterized in that the vector is that described in claim 24.
36. El método de Ia reivindicación 34, caracterizado porque el vector es el descrito en Ia reivindicación 25.36. The method of claim 34, characterized in that the vector is that described in claim 25.
37. El método de Ia reivindicación 32, caracterizado porque Ia secuencia codificante para MAP cinasa se selecciona del grupo que comprende, Ia secuencia de Ia reivindicación 15 y el gen correspondiente a Ia SEQ ID NO: 2.37. The method of claim 32, characterized in that the coding sequence for MAP kinase is selected from the group comprising, the sequence of claim 15 and the gene corresponding to SEQ ID NO: 2.
38. El método de Ia reivindicación 37, caracterizado porque el gen codificante para MAP cinasa es el gen correspondiente a Ia SEQ ID NO: 2.38. The method of claim 37, characterized in that the gene coding for MAP kinase is the gene corresponding to SEQ ID NO: 2.
39. El método de Ia reivindicación 31 a 38, caracterizado porque Ia cepa de Tríchoderma es Tríchoderma virens. 39. The method of claim 31 to 38, characterized in that the Tríchoderma strain is Tríchoderma virens.
40. El método de Ia reivindicación 31, caracterizado porque Ia etapa del inciso b) se realiza mediante selección de las transformantes generadas en medio selectivo.40. The method of claim 31, characterized in that the stage of part b) is performed by selecting the transformants generated in selective medium.
41. El método de Ia reivindicación 40, caracterizado porque Ia selección de las cepas protótrofas se realiza en medio mínimo de Vogel. 41. The method of claim 40, characterized in that the selection of the prototrophic strains is carried out in a minimal Vogel medium.
42. El método de Ia reivindicación 31, caracterizado porque Ia supresión de Ia producción de Ia MAP cinasa se corrobora utilizando anticuerpos específicos para Ia MAP cinasa mediante ensayos de Western blot.42. The method of claim 31, characterized in that the suppression of the production of MAP kinase is corroborated using antibodies specific for MAP kinase by Western blot assays.
43. El método de Ia reivindicación 31 , caracterizado porque Ia supresión de Ia producción de Ia MAP cinasa se corrobora utilizando sondas específicas para el gene codificante para Ia MAP cinasa mediante ensayos de Southern blot.43. The method of claim 31, characterized in that the suppression of the production of MAP kinase is corroborated using specific probes for the gene coding for MAP kinase by Southern blot assays.
44. Un método para incrementar Ia expresión de enzimas líticas de Trichodθrma para el control de hongos fitopatógenos, caracterizado porque comprende las etapas de: a) Suprimir Ia capacidad de Tríchoderma para producir al menos una MAP cinasa, b) Cultivar el organismo obtenido en a) en un medio con bajos niveles de fuentes de carbono y/o nitrógeno, y c) Corroborar el incremento de Ia expresión de enzimas líticas.44. A method to increase the expression of Trichodθrma lytic enzymes for the control of phytopathogenic fungi, characterized in that it comprises the steps of: a) Suppressing the ability of Tríchoderma to produce at least one MAP kinase, b) Cultivate the organism obtained in a ) in a medium with low levels of carbon and / or nitrogen sources, and c) Corroborate the increase in the expression of lithic enzymes.
45. El método de Ia reivindicación 44, caracterizado porque Ia supresión se realiza mediante Ia eliminación de Ia secuencia codificante para Ia MAP cinasa mediante un gene de reemplazo por recombinación homologa.45. The method of claim 44, characterized in that the deletion is carried out by means of the elimination of the coding sequence for the MAP kinase by means of a homologous recombination replacement gene.
46. El método de Ia reivindicación 45, caracterizado porque el gen de reemplazo proviene de cepas de Tríchoderma.46. The method of claim 45, characterized in that the replacement gene comes from Tríchoderma strains.
47. El método de Ia reivindicación 45, caracterizado porque el gen de reemplazo se selecciona del grupo que comprende los genes hph y hpt de E. coli, genes de resistencia al herbicida Basta, el gen amdS de Aspergillus nidulans y el gen arg2 de Tríchoderma.47. The method of claim 45, characterized in that the replacement gene is selected from the group comprising the hph and hpt genes of E. coli, herbicide resistance genes Basta, the amdS gene of Aspergillus nidulans and the arg2 gene of Tríchoderma .
48. El método de Ia reivindicación 47, caracterizado porque el gen de reemplazo es arg2. 48. The method of claim 47, characterized in that the replacement gene is arg2.
49. El método de Ia reivindicación 44, caracterizado porque Ia secuencia codificante para MAP cinasa se selecciona del grupo que comprende Ia secuencia de Ia reivindicación 15 y el gen correspondiente a Ia SEQ ID NO: 2. 49. The method of claim 44, characterized in that the coding sequence for MAP kinase is selected from the group comprising the sequence of claim 15 and the gene corresponding to SEQ ID NO: 2.
50. El método de Ia reivindicación 49, caracterizado porque el gen codificante para MAP cinasa es el gen correspondiente a Ia SEQ ID NO: 2. 50. The method of claim 49, characterized in that the gene coding for MAP kinase is the gene corresponding to SEQ ID NO: 2.
51. El método de Ia reivindicación 47 a 50, caracterizado porque Ia cepa de51. The method of claim 47 to 50, characterized in that the strain of
Trichoderma es Trichoderma virens.Trichoderma is Trichoderma virens.
52. El método de Ia reivindicación 51, caracterizado porque adicionalmente se agrega en Ia etapa b) paredes celulares de hongos fitopatógenos. 52. The method of claim 51, characterized in that, additionally, in step b) cell walls of phytopathogenic fungi are added.
53. El método de Ia reivindicación 47 a 52, caracterizado porque el incremento de Ia expresión se corrobora utilizando sondas específicas para los genes codificantes para enzimas líticas de Trichoderma mediante ensayos de Northern blot.53. The method of claim 47 to 52, characterized in that the increase in expression is corroborated using specific probes for the coding genes for lytic enzymes of Trichoderma by Northern blot assays.
54. Un método para Ia protección o el tratamiento de plantas o materiales de plantas contra infecciones o enfermedades causadas por hongos fitopatógenos, caracterizado porque comprende Ia aplicación de una cantidad efectiva de una cepa de Trichoderma seleccionada del grupo que comprende las cepas de Ia reivindicación 1 a 7.54. A method for the protection or treatment of plants or plant materials against infections or diseases caused by phytopathogenic fungi, characterized in that it comprises the application of an effective amount of a Trichoderma strain selected from the group comprising the strains of claim 1 to 7.
55. El método de Ia reivindicación 54, caracterizado porque Ia cepa de Trichoderma es Ia cepa de Ia reivindicación 1.55. The method of claim 54, characterized in that the Trichoderma strain is the strain of claim 1.
56. El método de Ia reivindicación 54, caracterizado porque Ia cepa de Trichoderma es Ia cepa de Ia reivindicación 6.56. The method of claim 54, characterized in that the strain of Trichoderma is the strain of claim 6.
57. El método de Ia reivindicación 54, caracterizado porque Ia cepa de Trichoderma es Ia cepa de Ia reivindicación 7. 57. The method of claim 54, characterized in that the strain of Trichoderma is the strain of claim 7.
58. Un método para Ia protección o el tratamiento de plantas o materiales de plantas contra infecciones o enfermedades causadas por hongos fitopatógenos, caracterizado. porque comprende Ia aplicación de una cantidad efectiva de una composición acorde a cualquiera de las reivindicaciones 8 a 13, en el suelo o en Ia planta o en el material de Ia planta a ser protegido o tratado. 58. A method for the protection or treatment of plants or plant materials against infections or diseases caused by phytopathogenic fungi, characterized. because it comprises the application of an effective amount of a composition according to any of claims 8 to 13, in the soil or in the plant or in the material of the plant to be protected or treated.
59. El método de Ia reivindicación 58, caracterizado porque Ia composición es Ia descrita en Ia reivindicación 9.59. The method of claim 58, characterized in that the composition is that described in claim 9.
60. El método de Ia reivindicación 58, caracterizado porque Ia composición es Ia descrita en Ia reivindicación 10.60. The method of claim 58, characterized in that the composition is that described in claim 10.
61. El método de Ia reivindicación 58, caracterizado porque Ia composición es Ia descrita en Ia reivindicación 11. 61. The method of claim 58, characterized in that the composition is that described in claim 11.
PCT/MX2005/000114 2004-12-10 2005-12-09 Improved strains of trichoderma as biocontrol agents, methods of obtaining same and use thereof for controlling diseases caused by phytopathogenic fungi WO2006129998A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXPA04012451A MXPA04012451A (en) 2004-12-10 2004-12-10 Improved trichoderma strains as biocontrol agents, method for obtaining the same and use thereof for controlling diseases caused by phytopathogen fungi.
MXPA/A/2004/012451 2004-12-10

Publications (1)

Publication Number Publication Date
WO2006129998A1 true WO2006129998A1 (en) 2006-12-07

Family

ID=36775509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2005/000114 WO2006129998A1 (en) 2004-12-10 2005-12-09 Improved strains of trichoderma as biocontrol agents, methods of obtaining same and use thereof for controlling diseases caused by phytopathogenic fungi

Country Status (2)

Country Link
MX (1) MXPA04012451A (en)
WO (1) WO2006129998A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001329A2 (en) 2010-07-02 2012-01-05 Centre National De La Recherche Scientifique - Cnrs Use of a natural grape marc extract in order to stimulate the natural defenses of plants

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808917B1 (en) * 2001-02-02 2004-10-26 Thomas D. Johnson Controlling plant pathogens with fungal/bacterial anatagonist combinations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808917B1 (en) * 2001-02-02 2004-10-26 Thomas D. Johnson Controlling plant pathogens with fungal/bacterial anatagonist combinations

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MENDOZA-MENDOZA A. ET AL.: "Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 100, no. 26, December 2003 (2003-12-01), pages 15965 - 15970, XP003004411 *
MUKHERJEE P.K. ET AL.: "TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidation in the dark", EUKARYOTIC CELL, vol. 2, no. 3, June 2003 (2003-06-01), pages 446 - 455, XP003004412 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001329A2 (en) 2010-07-02 2012-01-05 Centre National De La Recherche Scientifique - Cnrs Use of a natural grape marc extract in order to stimulate the natural defenses of plants

Also Published As

Publication number Publication date
MXPA04012451A (en) 2006-06-14

Similar Documents

Publication Publication Date Title
Pozo et al. Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens
Timpner et al. The Cpc1 regulator of the cross-pathway control of amino acid biosynthesis is required for pathogenicity of the vascular pathogen Verticillium longisporum
Afroz et al. Comparative proteomic analysis of bacterial wilt susceptible and resistant tomato cultivars
Hammami et al. Purification and characterization of the novel bacteriocin BAC IH7 with antifungal and antibacterial properties
EP0623672A1 (en) New alkaline serine protease of Paecilomyces lilacinus
US9534025B2 (en) Method for inducing resistance to stress caused by pathogens in plants
KR101112656B1 (en) Novel pathogenicity gene in blast fungus to suppress basal defenses of host and uses thereof
CN109476710B (en) Novel proteins against fungal pathogens
WO2022234569A1 (en) Bacterial strains having fungicidal activity, compositions comprising same and use thereof
US20090104165A1 (en) Transgenic strains of trichoderma and their use in biocontrol
Meir et al. Transforming a NEP1 toxin gene into two Fusarium spp. to enhance mycoherbicide activity on Orobanche—failure and success
CN113684199B (en) Rice cysteine protease coding gene OsRD21 and application thereof in rice blast resistance
WO2006129998A1 (en) Improved strains of trichoderma as biocontrol agents, methods of obtaining same and use thereof for controlling diseases caused by phytopathogenic fungi
JP4516258B2 (en) Novel proteins, genes encoding the same, and uses thereof
US20070162998A1 (en) CeCPI: taro cysteine protease inhibitor
US20220411769A1 (en) Methods of using bacterial quorum quenching enzymes
CN112391391B (en) Anti-insect gene and its application
EP4549575A1 (en) Antimicrobial peptides for the containment of oomycetes in agriculture
Yun et al. Plant defence responses: current status and future exploitation
Lin et al. Pathogenic fungal protein-induced resistance and its effects on vegetable diseases
Rathi Purification and phytotoxic analysis of ceratoplatanin proteins in Botrytis cinerea
CN116240227A (en) Application of a β-1,3-glucanase derived from myxobacteria and its composition in the biological control of Phytophthora phytophthora
da Silva Characterization and expression of subtilases involved in grapevine resistance to Plasmopara viticola
Tan et al. Oil Palm Defensin: A Thermal Stable Peptide that Restricts the Mycelial Growth of Ganoderma boninense
JP2000083675A (en) New protein, gene coding for the protein and their use

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05857864

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载