+

WO2006129809A1 - 2次元画像表示装置 - Google Patents

2次元画像表示装置 Download PDF

Info

Publication number
WO2006129809A1
WO2006129809A1 PCT/JP2006/311134 JP2006311134W WO2006129809A1 WO 2006129809 A1 WO2006129809 A1 WO 2006129809A1 JP 2006311134 W JP2006311134 W JP 2006311134W WO 2006129809 A1 WO2006129809 A1 WO 2006129809A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
image display
display device
dimensional image
light source
Prior art date
Application number
PCT/JP2006/311134
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Furuya
Tetsuro Mizushima
Kiminori Mizuuchi
Kazuhisa Yamamoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007519094A priority Critical patent/JP5172336B2/ja
Priority to US11/916,372 priority patent/US7889422B2/en
Publication of WO2006129809A1 publication Critical patent/WO2006129809A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/002Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding
    • H01S3/10092Coherent seed, e.g. injection locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium

Definitions

  • the present invention relates to an image display device having a mechanism that uses a fiber laser as a light source and projects a light beam modulated by a spatial modulator by a projection lens.
  • FIG. 15 shows the schematic configuration of the laser display 1200.
  • R Red
  • G Green
  • B Blue
  • the light from the three color laser light sources 1201 to 1203 passes through a speckle removal device consisting of diffuser plates 1205a to 1205c (such as a lenticular lens or rod prism).
  • the intensity is modulated by the optical modulators 1207a to 1207c in accordance with the input video signal, and is multiplexed by a multiplexing prism (dichroic prism) 1208 formed of a dielectric multilayer mirror.
  • a multiplexing prism dichroic prism
  • a two-dimensional image is displayed on the screen 1210 by the projection lens 1209.
  • the light from each of the RGB light sources is monochromatic light.
  • a laser light source with an appropriate wavelength it is possible to display a vivid image with high color purity.
  • the use of a laser makes it possible to reduce the size of the light source and to easily collect light, so that the optical system can be reduced in size, and a palmtop type image display device can also be realized.
  • interference noise called speckle noise is generated in the displayed image by using a laser with high coherency. Therefore, speckle noise can be reduced by using a prism and adding an optical path difference depending on the polarization direction (Patent Document 1).
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-151133
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-138669
  • Patent Document 3 Japanese Patent Laid-Open No. 9-121069
  • Patent Document 4 Japanese Patent Laid-Open No. 10-294517
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-144794
  • speckle noise can be roughly divided into two methods, one based on optical components and the other based on the wavelength of laser light. Can be used so far!
  • the method of modulating the incident direction of the optical path length to the screen is as wide as the original spectral width of about lnm (FWHM). Therefore, it is very effective when using a semiconductor laser light source, but when using a solid-state laser light source with a narrow spectral width, it alone reduces speckle noise so that it is not noticeable to human eyes. It is indispensable to combine with the method of expanding the wavelength spectrum of the laser, which will be described later, and there is a problem that a complicated optical system is necessary to sufficiently reduce speckle noise.
  • Patent Document 3 As means for broadening the wavelength spectrum of the laser, methods as described in Patent Document 3 to Patent Document 5 have been proposed.
  • Patent Document 3 an optical modulator, a high-frequency signal source, an impedance matching circuit, and the like are required, and there is a disadvantage that a higher frequency is required as the spectrum width is increased in addition to increasing the material cost.
  • Patent Document 5 the semiconductor laser integrated module is large, and the green color (500 nm to 550 nm), which has the highest human eye visibility, is easy to feel speckle noise.
  • the second harmonic of a solid-state infrared laser must be used.
  • a piezo mirror drive mirror 1311 is driven by a piezo mirror drive circuit 1310, and Nd: YAG, Nd: YV04, etc.
  • Solid lei The force that changes the oscillation wavelength by injection seeding the solid
  • the fluorescence spectrum of the solid laser crystal is very sharp and the variation range of the oscillation wavelength is small.
  • the laser cavity length must be changed each time the oscillation wavelength is changed, and it was impossible to perform complex control that would apply high-speed modulation to the oscillation wavelength.
  • the present invention has been made to solve such a problem.
  • the variation range of the oscillation wavelength of the green light source can be increased, and speckle noise in the display image can be reduced.
  • An object of the present invention is to provide a two-dimensional image display device that can do this.
  • a two-dimensional image display device includes a double-clad rare earth-doped fiber as a laser active material, a pumping semiconductor laser for exciting the double-clad rare earth-doped fiber, and a polarization direction.
  • a multi-wavelength oscillation mechanism having an equipped master light source, an output controller that controls the laser output from the output value obtained from the photodiode, a current source that flows to the master light source, and a current source that controls the wavelength of the master light source.
  • the light source comprised is provided.
  • a rare earth-doped fiber as a laser active material for the light source, a peak of fluorescence spectrum can be obtained compared to the case of using conventional oxide crystals such as YAG and YV04. It can be greatly expanded.
  • a Yb-doped fiber since it is possible to oscillate efficiently between 1050 and 11 OOnm, the variation range of the oscillation wavelength can be increased compared to the conventional example.
  • the rare earth-doped fiber of the light source as a fiber amplifier without providing a laser mirror at both ends thereof, a conventional example as shown in FIG. 16 (when an oxide crystal is used as a laser medium) This eliminates the need to control the resonator length required in step (1), enabling high-speed wavelength control.
  • This power is also generated, for example, 5000 shots at a repetition frequency of 100 kHz. It is also possible to change the oscillation wavelength.
  • a plurality of light sources that generate laser beams of different colors are used, and light beams modulated by the spatial modulator are projected by the projection lens.
  • at least one of the plurality of light sources includes a rare earth-doped fiber as a laser active material, an excitation light source for exciting the rare earth-doped fiber, and a laser oscillation wavelength. Since it consists of a multi-wavelength oscillation mechanism that makes multiple wavelengths and a wavelength modification that shortens the wavelength of the laser light oscillated at the multiple wavelengths, a rare earth-doped fiber is used as the laser active material for the light source. As a result, the peak of the fluorescence spectrum can be significantly broadened compared to the case of using an oxide crystal, and the variation width of the oscillation wavelength can be increased. is there.
  • the rare earth-doped fiber as a fiber amplifier without providing laser mirrors at both ends, a resonator required in the conventional example (when an oxide crystal is used as a laser medium) is used. Since length control is not required and high-speed wavelength control is possible, there is an effect of reducing speckle noise in the display image.
  • the multi-wavelength oscillation mechanism includes the master light source using two or more wavelength tunable semiconductor lasers having different wavelengths as seed light. Can be enlarged, and the speckle noise of the displayed image can be effectively reduced.
  • the duty ratio of the plurality of oscillation wavelengths of the at least one light source can be changed, speckle noise of the display image can be reduced.
  • the duty ratio between the wavelength with high visibility and the wavelength with high color reproducibility of the at least one light source is changed according to the input video signal.
  • the ratio of using a green wavelength with high visibility is increased according to the image. This has the effect of improving the power consumption efficiency or increasing the ratio of using a green wavelength with high color reproducibility to improve the image.
  • the at least one light source includes an output monitor mechanism that monitors a light output after wavelength conversion, and an output value of the laser based on an output value of the output monitor mechanism. Since it has an output controller that controls the output or wavelength, the power fluctuation observed by the output monitor can also control the wavelength of the seed light, the temperature of the grating, the stress, etc. Can also be effective.
  • the diffusing plate, lenticular lens, hologram element, or rod prism is used as the speckle noise removal mechanism, speckle noise is further reduced. There is an effect that can be reduced.
  • FIG. 1 is a schematic configuration diagram of a green light source mounted on a two-dimensional image display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a wavelength amplitude of a master light source in a green light source mounted on the two-dimensional image display device according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic configuration diagram of a green light source mounted on a two-dimensional image display device according to Embodiment 2 of the present invention.
  • FIG. 4 is a diagram showing wavelength amplitudes of respective master light sources in a green light source mounted on the two-dimensional image display device according to Embodiment 2 of the present invention.
  • FIG. 5 is a plot diagram showing the relationship between the time waveform of the drive current of Embodiment 2 and the light output in the light source mounted on the two-dimensional image display device of the present invention.
  • FIG. 6 (a) is a plot of the visibility of the human eye against the light wavelength, and (b) is a chromaticity coordinate comparing the color reproduction range of Embodiment 2 with the color reproduction range of the SRGB standard.
  • FIG. 7 is a plot diagram showing the relationship between the center wavelength difference of the green light source and the degree of spectrum noise removal in the two-dimensional image display device of the present invention.
  • FIG. 8 is a schematic configuration diagram of a green light source mounted on the two-dimensional image display apparatus according to Embodiment 3 of the present invention.
  • Figure 9 shows the Peltier drive current, fiber grating temperature and green light output. It is a plot figure which shows the relationship with a generation wavelength.
  • FIG. 10 is a schematic configuration diagram showing a first modification of the green light source mounted on the two-dimensional image display device according to Embodiment 3 of the present invention.
  • FIG. 11 is a schematic configuration diagram showing a second modification of the green light source mounted on the two-dimensional image display device according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic configuration diagram of a two-dimensional image reproduction device according to Embodiment 4 of the present invention.
  • FIG. 13 is a plot diagram showing the relationship between the wavelength of green light and the color reproduction range.
  • FIG. 14 is a plot diagram showing the relationship between the master LD current waveform and the green light output when the light emission ratio is changed.
  • FIG. 15 is a schematic configuration diagram for explaining Embodiments 1 to 4 and a conventional two-dimensional image display device.
  • FIG. 16 is a diagram showing an example of a light source used in a conventional two-dimensional image display device.
  • the two-dimensional image display apparatus has the configuration shown in FIG. 15, and is characterized by a green light source.
  • the portable laser display (two-dimensional image display device) 1200A has three colors of red (R), green (G), and blue (B) as described in the background art.
  • Laser light sources 1201 to 1203 are used.
  • the red light source 1201 uses a GaAs semiconductor laser with a wavelength of 638 nm
  • the blue light source 1203 uses a 465 nm wavelength GaN semiconductor laser
  • the green light source 1202A has a wavelength conversion mechanism that changes the wavelength of the infrared laser to 1Z2.
  • a wavelength-converted green light source with Further, in FIG.
  • the red light source 1201 and the blue light source 1203 each have a force that uses one semiconductor laser, and the output of each of two to eight semiconductor lasers is obtained with a bundle fiber at one fiber output.
  • the wavelength spectral widths of the red light source 1201 and the blue light source 1203 are very broad, a few nm, and the generation of speckle noise can be suppressed by this wide spectrum.
  • FIG. 1 is a schematic configuration diagram of a green light source 1202A in the two-dimensional image display device 1200A according to the first embodiment.
  • a green light source 1202A uses a rare-earth doped fiber Yb-doped cladding pump fiber 103 as a laser medium, a laser diode as a pumping (pump) laser 101, and a DBR as a master light source 102.
  • a (Distributed Bragg Reflector) laser diode is used.
  • the green light source 1202A includes a polarizer 105 for making the oscillated light linearly polarized light, an SHG crystal 106 that generates the second harmonic of the oscillated light, and a photodiode (PD) that monitors the output of the SHG crystal 106.
  • an output controller 108 for controlling the wavelength of the master light source 102 and the temperature of the SHG crystal 106, and making the output constant based on the second harmonic output detected by the PD 107, and an output controller 108
  • a control current source (I current source 109, I current source 110) that controls the wavelength and output of the master light source in response to the control signal is configured.
  • the Yb-doped clad pump Fino 103 is excited by a pump LD 101 (wavelength: about 915 nm, maximum output: 30 w).
  • the master light source 102 is a light source for introducing seed light for determining the oscillation wavelength.
  • a DBR laser is used as the wavelength tunable semiconductor laser.
  • the wavelength of the master light source 102 is It becomes possible to control near 1060nm!
  • the polarizer 105 is inserted so that the oscillated fundamental wave becomes linearly polarized light.
  • the oscillated light (wavelength of about 1060 nm) is incident on SHG crystal 106 made of nonlinear optical crystal (in this example, periodically poled MgO: LiNB03 crystal, length 10 mm), and is 530 nm green light with 1Z2 wavelength. Is converted to Part of the generated green light is separated by the splitter and input to PD107. The intensity of green light is measured by this PD107. By converting the measured light intensity by the output controller 108, the output current and the oscillation wavelength of the master light source can be controlled. On the other hand, When the output stabilization by the star light source is not performed, the wavelength can be stabilized by controlling the temperature of the SHG crystal.
  • the output controller 108 controls the SHG crystal 106 to a constant temperature, and also controls the I current source 109 and the I current source 110, with a constant period.
  • Fig. 2 (a) is a diagram showing an example of a change in the wavelength of the master light source.
  • the output controller 108 changes the master light source so as to change the oscillation wavelength at a constant frequency of about several MHz, for example. To control.
  • the temperature is controlled with an accuracy of 0.01 ° C.
  • the phase matching wavelength is 1060 nm.
  • the temperature is controlled so as to be constant. In this case, the accuracy of temperature control may be lowered. In this case, the phase matching wavelength changes according to the temperature change, but the cost can be reduced.
  • the master light source 102 As described above, in the green light source 1202 A in the two-dimensional image display apparatus 1200A of the first embodiment, the master light source 102, the output controller 108, the I current source 109, and the I current source 11
  • a multi-wavelength oscillation mechanism is configured from 0, and the laser oscillation wavelength is set to a plurality of wavelengths.
  • the wavelength of the green light source 1202A is controlled by the output controller 108 so that the temperature of the SHG crystal 106 is kept constant so that the phase matching wavelength is 1060 nm, and is 50% of the allowable wavelength range of the used SHG crystal 106.
  • This can be realized by controlling the current source so as to modulate the wavelength of the master light source 102 (DBR laser) at a constant period.
  • the periodically poled MgO: LiNb03 used this time, it is possible to change the wavelength with a width of 0.1 nm, that is, with a width of ⁇ 0.05 nm from the center wavelength as shown in Fig. 2 (a). .
  • a laser having a plurality of wavelengths is output from the master light source 102, and the laser combined with the excitation laser from the pump LD 101 by the beam combiner 104 is amplified by the Yb-doped quad pump fiber. Then, the second harmonic, which is green light, is output from the SHG crystal 106 via the polarizer 105, and a part thereof is output to the PD 107.
  • the laser beams emitted from the light sources 1201, 1202A, and 1203 are scanned onto the diffusion plates 1205a to 1205c by the reflective two-dimensional beam scanning means 1204a to 1204c.
  • image The data is divided into R, G, and B, and the signal is input to the spatial light modulators 1207a to 1207c and combined by the dichroic prism 1208 to form a color image.
  • the combined image is projected onto the screen 1210 by the projection lens 1209.
  • the wavelength spectrum width of the green light source 1202A can be broadened, and the red light source 1201 and the blue light source 1203 are included. Generation of speckle noise can be suppressed in each light source.
  • speckle noise removing means such as a diffusing plate and a lenticular lens is arranged in front of the two-dimensional spatial modulation device, and the speckle noise removing means is swung to be multiplexed by the dichroic prism 1208. Color images can further reduce speckle noise.
  • the green light source 1202A in the two-dimensional image display device 1200A of the first embodiment can be considered that the laser output is reduced due to the change of the oscillation wavelength.
  • the oscillation wavelength of the fundamental wave is changed based on the output detected by PD107.
  • the output controller 108 when the output value detected by the PD107 drops, I is output.
  • the wavelength control range since the wavelength control range is limited to the allowable wavelength range of the crystal, the wavelength control range depends on the type and length of the wavelength conversion crystal to be used. Is limited to the range of 0.05 to 0.5 nm.
  • the two-dimensional image display device 1200A includes the green light source 1202A as a double-clad rare earth-doped fiber as a laser active material, Yb-doped 'clad pump fiber 103, and Yb LD101 for pump that pumps the doped 'clad pump fiber 103, a polarizer 105 that makes the polarization direction linear, an SHG crystal 106 that makes the wavelength of the laser light generated from the Yb-doped' clad pump fiber 103 1Z2, and an SHG crystal PD 107 for monitoring the output of the second harmonic generated from 106, master light source 102 equipped with a wavelength tunable semiconductor laser as seed light, output controller 108 for controlling the laser output from the output value obtained from PD 107, Since it is composed of a multi-wavelength oscillation mechanism that has a current source 109 that flows to the master light source 102 and a current source 110 that controls the wavelength of the master light source, Source by using
  • the wavelength tunable range (oscillation wavelength range) can be expanded.
  • the green light source 1202A does not require control of the length of the resonator such as a laser mirror, and high-speed wavelength control is possible. Therefore, speckle noise is reduced when the green light source 1202A is mounted on a two-dimensional image display device. be able to.
  • the laser output can be stabilized and the wavelength of the green light can be arbitrarily controlled 2
  • a three-dimensional image display device can be provided.
  • the master light source 102 is controlled by the output controller 108 so as to change the oscillation wavelength at a constant frequency.
  • the wavelength of the master light source may be changed according to the phase matching wavelength of the crystal. This makes it possible to further reduce the temperature control accuracy of the SHG crystal 106. Cost can be reduced. In other words, the temperature control of the wavelength conversion crystal can be simplified and is optimal when it is desired to operate stably. Also, output fluctuation due to phase matching wavelength change at this time It is preferable to perform the stable operation for preventing the same as the output stable operation described above.
  • the force described in the case where the center wavelength is constant is limited to this.
  • the center wavelength may be controlled and varied by feeding back the output signal whose power is monitored by the PD 107.
  • the green light source uses the second harmonic of the fiber laser light source, but in order to increase the oscillation wavelength range.
  • the wavelength oscillated by one laser medium is arbitrarily set to two wavelengths, and each is provided with a wavelength conversion crystal.
  • the two-dimensional image display device 1200B according to the second embodiment has the configuration shown in Fig. 15 and is characterized by the green light source 1202B.
  • the configuration of 2D image display device 1200B is the same as that of Embodiment 1 shown in FIG.
  • FIG. 3 is a schematic configuration diagram of the green light source 1202B in the two-dimensional image display device 1200B of the second embodiment.
  • a green light source 1202B uses a Yb-doped clad pump fiber 205, which is a rare earth-doped fiber, as a laser medium, and a laser diode as a pumping laser 201, a master light source 1, 2 (202, 203) DBR (Distributed Bragg Reflector) laser diode is used.
  • a master light source 1, 2 202, 203 DBR (Distributed Bragg Reflector) laser diode
  • green light of multiple wavelengths is generated by changing the oscillation wavelength of one master light source at a constant frequency.
  • multiple master light sources with different oscillation wavelengths are used. By using a stand, green light with multiple wavelengths can be generated.
  • Such a configuration is a force that cannot be realized when a conventional oxide single crystal is used as a laser medium because the fluorescence spectrum is steep.
  • the Yb clad pump fiber 205 By using, the peak of the fluorescence spectrum can be greatly broadened and realized.
  • the green light source 1202B includes a polarizer 206 for converting the oscillated light into linearly polarized light, Outputs of multiple SHG crystals 207 that generate second harmonics of oscillated light of multiple wavelengths, photodiodes (PD) 208 that monitor the output of SHG crystals, and master light sources 1 and 2 (202, 203) Output controller 209 that controls the temperature of the SHG crystal 207 and makes the output constant based on the second harmonic output detected by PD 208, and the output controller 209
  • the control current source (I current source 210Z212, I current) that controls the wavelength and output of each of the master light sources 1, 2 (202, 20 3) in response to the control signal from
  • the oscillation wavelength of the master light source 1 (202) is about 1060 nm
  • the oscillation wavelength of the master light source 2 (203) is about 1080 nm.
  • the wavelength of the green light that can be output can oscillate between 530 nm and 540 nm.
  • the SHG crystal 207 has two crystals that are phase matched at the fundamental wave of 1060 nm and phase matched at 1080 nm.
  • the Yb-doped cladding pump fiber 205 is excited using the pump LD201 in the same way as the green light source 1202A in the two-dimensional image display device 1200A of Embodiment 1, so that the oscillated fundamental wave becomes linearly polarized light.
  • the oscillated fundamental wave is focused on the SHG crystal 207 and converted to green light with a wavelength of 1Z2.
  • the optical output after conversion is monitored by PD208, and the output of the master light source is adjusted and the wavelength is finely adjusted by the output controller 209 so that the output becomes constant.
  • the output controller 209 controls each of the plurality of SHG crystals 207 at a constant temperature, controls the I current sources 210 and 212, and the I current sources 211 and 213, and masters them at a constant cycle.
  • Light source 1 Light source 1
  • FIG. 4 (a) is a diagram showing the wavelengths of the master light sources 1 and 2 (202 and 203).
  • the outputs of the master light sources 1 and 2 (202 and 203) having different wavelengths are shown in FIG.
  • the output controller 209 can be switched at a constant cycle, for example, a frequency of several hundred kHz.
  • the temperature of the SHG crystal is controlled with an accuracy of 0.Oe, and the two-dimensional image display device of Embodiment 2 is used.
  • the temperature is constantly controlled so that the phase matching wavelengths of the respective SHG crystals are 1060 nm and 1080 nm, respectively.
  • the master light sources 1 and 2 (202, 203), the output controller 209, the I current sources 210, 212,
  • a multi-wavelength oscillation mechanism is constructed from current sources 211 and 213.
  • the wavelength of the green light source 1202B is controlled by the output controller 108 that manages the temperature constant so that the phase matching wavelengths of the multiple SHG crystals 207 are 1060 nm and 1080 nm, respectively.
  • 2 I current sources 210 and 212 and I current sources 211 and 213 are controlled so that the laser output from (202, 203) is output at regular intervals, respectively.
  • lasers with constant wavelengths are also output for the master light sources 1 and 2 (202 and 203), respectively, and the laser combined with the excitation laser from the pump LD 201 by the beam combiner 204 is Yb-doped.
  • the second harmonic wave which is green light, is output from each of the plurality of SHG crystals 207 via the polarizer 206 after being amplified by the clad pump fiber 205, and a part thereof is output to the PD 208.
  • the laser beams emitted from the light sources 1201, 1202B, and 1203 are scanned on the diffusion plates 1205a to 1205c by the reflection type two-dimensional beam scanning means 1204a to 1204c.
  • the image data is divided into R, G, and B, and the signals are input to the spatial light modulators 1207a to 1207c and combined by the dichroic prism 1208 to form a color image.
  • the combined image is projected onto the screen 1210 by the projection lens 1209.
  • the wavelength spectrum width of the green light source 1202B can be broadened, and the red light source 1201 and the blue light source 1203 are provided. Generation of speckle noise can be suppressed in each of the included light sources.
  • speckle noise removing means such as a diffusing plate and a lenticular lens is arranged in front of the two-dimensional spatial modulation device 1200B, and the speckle noise removing means is swung.
  • speckle noise can be reduced by the light sources 1201, 1202B, and 1203, and the speckle noise can be further reduced in the color image combined by the dichroic prism 1208.
  • the output stabilization operation is performed as in the first embodiment.
  • FIG. 5 shows a plot diagram in which the currents input to the respective master light sources 1 and 2 (202 and 203) with respect to the time axis and the intensity of green light are plotted.
  • the power to obtain green light with either wavelength of 540 nm or 530 nm can be set arbitrarily. For example, if the repetition frequency is 100 kHz and oscillation is performed at different wavelengths for each shot, it is possible to oscillate at different wavelengths by 5 shots or 10 shots as shown in Fig. 5. It is also possible to operate by changing the duty ratio of the current injected into the light source.
  • Figure 6 shows a plot of the relationship between the light wavelength and the human eye visibility (a) and the color reproduction range (b) shown on the chromaticity diagram.
  • the visibility of 530 nm light is about 80% of the visibility of 540 nm.
  • the human eye has high visual sensitivity to the light after wavelength conversion (540nm), so the green light output to obtain the same brightness for humans is 1060nm 2
  • the power consumption of the device can be reduced by about 80%, but on the other hand, it is inferior in color reproducibility, and conversely, when 1060 nm is adopted, it is excellent in color reproducibility.
  • the light output of green light is required to be about 1.3 times, and the efficiency of the Faber laser decreases as the oscillation wavelength becomes shorter, so the power consumption increases significantly.
  • the fundamental wave is 20 nm.
  • green light that is 5 nm away can be output.
  • both color reproducibility and brightness can be improved by switching between 540 nm light, which has high visibility, and 530 nm light, which has poor visibility but can improve color reproducibility. It is possible to solve the conventional problems.
  • Fig. 7 shows the difference between the intensity difference of light and dark when a uniform image is projected on the screen and the oscillation wavelength interval of green light having two wavelengths as an index representing speckle noise felt by human eyes. It is the plot figure which showed the relationship.
  • the standard of speckle noise intensity that human eyes perceive as “speckle noise” is roughly 0.02 or less.
  • Point 501 shown in Fig. 7 shows the speckle noise intensity when the oscillation wavelength is single.
  • Point 502 indicates the degree of speckle noise reduction in the configuration described in the first embodiment. It can be seen that it is reduced by 0.85 or 15% compared to the single wavelength.
  • Point 503 shows the degree of speckle noise reduction in the configuration shown in the present embodiment, which shows that it is reduced by 0.2% or less and 80% or more.
  • the two-dimensional image display device 1200B includes a green light source 1202B, a Yb-doped 'clad pump fiber 205 as a laser active material, and a Yb-doped clad pump fiber 205. And a plurality of master light sources 1 and 2 (202, 203) with different oscillation wavelengths, which are equipped with a wavelength tunable semiconductor laser as seed light, and are controlled by an output controller 209 and control current sources 210-213.
  • a plurality of wavelength oscillation mechanisms that output a plurality of wavelengths from each of the plurality of master light sources 1, 2 (202, 203), and a plurality of SHG crystals 207 that shorten the wavelength of the laser light output at a plurality of wavelengths, Composed of Therefore, the range of the oscillation wavelength can be further expanded, and the speckle noise of the display image can be effectively reduced.
  • the laser output can be stabilized and the wavelength of the green light can be arbitrarily controlled 2
  • a three-dimensional image display device can be provided.
  • the use of the rare earth-doped fiber makes it possible to significantly broaden the peak of the fluorescence spectrum as compared with the case where conventional oxide crystals such as YAG and YV04 are used. This indicates that the wavelength tunable range (oscillation wavelength range) can be expanded.
  • the oscillation wavelength can be changed by 5000 shots at a repetition frequency of 100 kHz, and speckle noise can be reduced when the green laser light source 1202B is mounted on a two-dimensional image display device.
  • speckle noise in the display image can be further reduced.
  • the output controller 209 controls the master light sources 1 and 2 (202, 203) having different wavelengths as shown in FIG. 4 (a) to output at a constant frequency.
  • the master controller 1, 2 (202, 203) force was output by the output controller as shown in Fig. 4 (b). Speckle noise can be further removed by changing the laser oscillation wavelength.
  • the temperature control and the output stabilization operation at this time may be the same as those in the first embodiment. Also, lower the temperature control accuracy at this time.
  • the output controller 209 causes the wavelength as shown in FIG.
  • the power described in the example of controlling the control current source so that the laser output from each of the master light sources 1 and 2 (202, 203) with different frequencies at a constant frequency is not limited to this. It is also possible to change the wavelength of the master light source in accordance with the matching wavelength. As in the first embodiment, this makes it possible to further reduce the temperature control accuracy of the SHG crystal 207 and reduce the cost. be able to. In addition, the temperature control and output stabilization operation at this time may be the same as in the first embodiment.
  • Embodiment 1 an example in which the oscillation wavelength is made constant as shown in Fig. 4 (a), and an example in which the oscillation wavelength is changed as shown in Fig. 4 (b), respectively.
  • the center wavelength may be controlled and varied by feeding back the output signal whose power is monitored by the PD208.
  • Embodiment 2 the green light source having two master light sources has been described.
  • the present invention is not limited to this, and the present invention is effective even when two or more master light sources are provided. .
  • the configuration for oscillating a plurality of wavelengths includes various modes other than the method exemplified in the second embodiment.
  • the two-dimensional image display apparatus uses a general excitation laser light source instead of using an expensive DFB laser, and includes fibers at both ends of a rare earth-doped fiber as a laser active material.
  • a green light source that changes the oscillation wavelength of the laser by providing a grating, constituting a laser resonator, and controlling the temperature of at least one of the fiber gratings is used.
  • the configuration of the two-dimensional image display device 1200C according to the third embodiment is the configuration shown in Fig. 15 and is characterized by the green light source 1202C.
  • the configuration of the two-dimensional image display device 1200C is the same as that of the first embodiment shown in FIG.
  • FIG. 8 is a schematic configuration diagram of the green light source 1202C in the two-dimensional image display device 1200C of the third embodiment.
  • a green light source 1202C uses a Yb-added clad pump fiber 603 as a laser medium, and uses a laser diode as a pumping (pump) laser 601! /.
  • a pair of fiber Bragg gratings 602a '602b for constituting a laser resonator is arranged, and at least one of them is temperature-controlled by a Peltier element.
  • the green light source 1202C includes a polarizer 604 for making the oscillated light linearly polarized light, an SHG crystal 605 that generates the second harmonic of the oscillated light, and a photodiode (PD) that monitors the output of the SHG crystal 605 606 and an output controller 607 that controls the temperature of the fiber Bragg grating 602a and the temperature of the SHG crystal 605, and controls the output to be constant based on the second harmonic output detected by the PD 606.
  • the control current source I current source 609) that controls the output of the LD60 1 for pump and the temperature of the fiber grating in response to the control signal from
  • Yb-added clad pump Fino 603 is placed at both ends of the fiber bragg grating 602a '602b is used in pairs with a reflection band of 0.1 nm and l-5nm
  • the grating with a narrow reflection band of 0.1 nm is temperature controlled by a control signal of 607 output controllers. This temperature control can control the reflection center wavelength in narrow band gratings.
  • the temperature is controlled with an accuracy of 0. Oe, and the green color in the two-dimensional image display device of the third embodiment.
  • the temperature is controlled so as to have a constant phase matching wavelength. In this case, the accuracy of temperature control may be lowered. In this case, the phase matching wavelength changes according to the temperature change, but the cost can be reduced.
  • the fiber gratings 602a '602b, the Peltier element 610, the output controller 607, the I current source 608, and the I current source 609 have a plurality of wavelengths. Oscillation mechanism, laser oscillation wavelength
  • the wavelength of the green light source 1202C is controlled by the output controller 607, which manages the temperature of the SHG crystal 605 at a constant level and is 50% of the allowable wavelength range of the used SHG crystal 605, with a constant period.
  • This can be realized by controlling the current source so that the oscillation wavelength of the fiber laser is modulated at a constant period by modulating the temperature of the laser.
  • the periodically poled MgO: LiNb03 used this time it is possible to change it with a width of 0. Inm.
  • a laser having a plurality of wavelengths is output from the fiber grating 602a, amplified by a Yd-doped 'clad pump phosphino 603 excited by the LD 601 for pumping, passed through the polarizer 604, and SHG crystal 605
  • the second harmonic which is green light, is output from, and part of it is output to PD606.
  • the laser beams emitted from the light sources 1201, 1202C, and 1203 are scanned on the diffusion plates 1205a to 1205c by the reflective two-dimensional beam scanning means 1204a to 1204c.
  • the image data is divided into R, G, and B, and the signals are input to the spatial light modulators 1207a to 1207c and combined by the dichroic prism 1208 to form a color image.
  • the combined image is projected onto the screen 1210 by the projection lens 1209.
  • the wavelength spectrum width of the green light source 1202C can be broad, and the red light source 1201 and the blue light source 1203 are included. Generation of speckle noise can be suppressed in each light source.
  • each light source 1201, 1202C, 1203 can be reduced, and the color image combined by the dichroic prism 1208 can further reduce the speckle noise.
  • the laser output decreases due to the change in the oscillation wavelength.
  • the output detected by the PD606 is used to prevent output fluctuation due to the change in the oscillation wavelength.
  • the output wavelength is changed by changing the oscillation wavelength of the fundamental wave.
  • the master light source is the same as in the first embodiment.
  • the oscillation wavelength of the fundamental wave is changed by changing the period of the fiber grating 602a.
  • the oscillation wavelength will become longer, and if the temperature becomes lower, it will become shorter. If the output does not recover even when the wavelength control range of the fiber grating 602a is exceeded, I will be increased by tl instead of the output of the master light source in the first embodiment, and the pumping LD6 will be turned off.
  • FIG. 9 is a plot diagram in which the current input to the Peltier element 610 installed in the fiber grating with respect to the time axis, the fiber grating 602a, and the intensity of green light are plotted. As shown in Fig. 8, it is possible to set any power to obtain green light of either wavelength ⁇ 1 or 2. In the third embodiment, since wavelength control is performed using heat, the wavelength change rate is slow, so it is difficult to change the wavelength for each shot, but it is injected into the Peltier element 610. It is possible to operate by changing the duty ratio of the current.
  • the output controller 607 controls the temperature of the fiber grating 602a so as to change the laser oscillation wavelength at a constant period.
  • the wavelength shift with respect to temperature is gradual, so it is possible to change the oscillation wavelength of the laser by changing the temperature of the fiber black grating according to the phase matching wavelength of the crystal.
  • the temperature control accuracy of the SHG crystal can be lowered and the cost can be reduced.
  • FIG. 10 shows a schematic configuration diagram of the first modification of the third embodiment thus configured.
  • the green light source 1202C is connected to both ends of the Yb-doped clad pump Fino 903.
  • the fiber grating 902a and 902b are provided in the fiber grating 902a, and the fiber grating 902a is designed to have a plurality of reflection center wavelengths. Unlike the case of alternately oscillating a plurality of wavelengths as in the second embodiment, a plurality of wavelengths are used. Can oscillate simultaneously.
  • the fiber bug ratings 902a 'and 902b used individually for example, one grating (center wavelength 1075nm) with a reflection band of the fiber grating 902b is provided (center wavelength 1075nm), and the center wavelength is separated from the fiber grating 902a by 16nm (center wavelength 1064nm (1080nm) Reflection band 0.
  • Fiber gratings can be provided to oscillate two wavelengths of 532nm and 540nm simultaneously. At this time, the temperature of the (0. lnm) fiber bag 902a having a narrow reflection band is controlled by the Peltier element 910. Without temperature control, the fiber grating warms up as the optical output increases, causing the oscillation wavelength to fluctuate.
  • the fiber grating tension is controlled by an actuator instead of controlling the wavelength by the temperature of the fiber rating.
  • the configuration of the green light source 1202D in the two-dimensional image display apparatus 1200D that controls the wavelength by this will be described with reference to FIG.
  • the green light source 1202D uses a Yb-doped clad pump fiber 803 as a laser medium and a laser diode as the pump laser 801.
  • a pair of fiber Bragg gratings 802a and 802b for constituting a laser resonator are arranged at both ends of the Yb-doped clad pump fiber 803, and at least one of them is tension-controlled by a piezoelectric actuator 810.
  • the output monitor with a polarizer (PD) 606 that monitors the output of the SHG crystal 805 and the SHG crystal that generates the second harmonic of the oscillated light, the polarizer 804 that converts the oscillated light into linearly polarized light
  • the output controller 807 controls the output to be constant based on the second harmonic output, and controls the piezoelectric actuator 810 that determines the output of the excitation LD light source and the fiber grating tension by receiving the control signal from the output controller. Consists of control current source (I current source 809, I current source 808) ACT
  • Yb-added metal cladding pump Fino 803 is placed at both ends! 1Ting 802a '802b has a reflection band of 0.1 nm and 1 to 5 nm as a set, and a narrow reflection band of 0.1 nm has a piezoelectric actuator 8 10 on the grating. Is controlled. This tension control can control the reflection center wavelength in a narrow-band grating.
  • the temperature control accuracy of the SHG crystal 805 is further improved by changing the laser oscillation wavelength by changing the tension of the fiber black grating 802a according to the phase matching wavelength of the crystal. This makes it possible to lower the cost.
  • the same wavelength control effect can be obtained by the same control method as the wavelength control by temperature.
  • the configuration described in the third embodiment operates in the wavelength control speed determined by the heat capacity around the fiber as compared with the configurations described in the first and second embodiments.
  • the two-dimensional image display device 1200C uses the green light source 1202C as a double-clad rare earth-doped fiber as a laser active material.
  • Yb-doped 'pump LD 601 for exciting the pump 603 and a pair of fiber gratings 602a and 602b, one of which is used as a laser reflector and temperature controlled by a Peltier element 610.
  • the temperature of the fiber grating is used to control the laser output from the output value obtained from the PD606 and displace the grating period.
  • An output controller 607 for performing management, pump current under the control of the output controller 607 Since it is composed of a current source that flows to the light source 601 and a control current source that controls the grating period under the control of the output controller 607, it can be used when the laser output needs to be a continuous wave. This eliminates the need for a special laser and reduces the material cost.
  • the laser output can be stabilized and the wavelength of the green light can be arbitrarily controlled.
  • a two-dimensional image display device can be provided.
  • the two-dimensional image display apparatus outputs a duty cycle having a plurality of oscillation wavelengths in accordance with a video signal in order to output a video that requires brightness or a video that requires color reproducibility.
  • the ratio is changed.
  • the green light source 1202 in FIG. 15 is replaced with the green light source 120 2B described in the second embodiment in the schematic diagram of the two-dimensional image display device described above. If so, explain.
  • this green light source 1202B can oscillate any light with a wavelength of, for example, 526 nm or 540 nm, the speckle noise can be reduced to 20% or less when the single wavelength is used.
  • a diffusion plate is provided in front of a field lens arranged in front of a spatial modulator such as a liquid crystal element, and is swung to the human eye. The difference in brightness between speckle noises can be reduced to the extent that speckle noise is not felt (less than 2%).
  • Fig. 13 shows a plot showing the relationship between the wavelength of green light and the color reproduction range. Since 540 nm has high visibility, less input power is required to obtain the same brightness, but there is a problem that the “cyan” color necessary for displaying the color of the sea cannot be produced. On the other hand, at 526 nm, the power sensitivity that can reproduce “cyan” colors is low, so there is a problem that more than three times the input power is required compared to 540 nm.
  • the two-dimensional image display device 120OE according to the fourth embodiment further switches the oscillation wavelength of the laser light in accordance with the type of video and usage conditions. This makes it possible to display brighter images with the same power consumption using the visual sensitivity of the human eye.
  • FIG. 12 is a diagram showing a part of the configuration of the two-dimensional image display device 1200E according to the fourth embodiment.
  • FIG. FIG. 4 is a diagram in which a projector control circuit 1501 and a video mode switching switch 1504 are provided in the green light source 1202B of FIG. Since the green light source 1202B has the same configuration as in FIG. 3, the same reference numerals are used and description thereof is omitted.
  • the projector control circuit 1501 includes a wavelength determination circuit 1502 that outputs a wavelength selection signal for selecting a wavelength according to the input video signal, and a luminance signal that analyzes the luminance signal in the input video. And a determination circuit 1503.
  • the video signal (data) 1505 or the video signal (video) 1506 to which an external force is also input is input to the projector control circuit 1501, and the wavelength selection signal is output from the projector control circuit 1501 to the laser output controller 209. Sent over line 1507. Then, the oscillation wavelength of the laser light is selected by the wavelength selection signal.
  • video signal (data) 1505 is a video signal input from D-subl5pin 'DVI
  • video signal (video) 1506 is RCA pin' S terminal 'D terminal' HD The video signal input from Ml.
  • the luminance signal determination circuit 1503 analyzes the luminance signal in the video, and thus the video signal power is not so important because there are many bright scenes such as general TV programs (for example, programs recorded in studio). It is judged whether the video signal is a dark scene such as a movie, but a wide color reproduction range is required. In the former case? Increasing the ratio of using high-sensitivity green wavelengths, improving power consumption efficiency, and increasing the color reproducibility in the latter case by increasing the ratio of using short-wavelength green wavelengths such as 526 nm It can be improved. Then, by analyzing the luminance signal of the luminance signal determination circuit 1503, a wavelength selection signal corresponding to the luminance is output from the wavelength determination circuit 1502 to the output controller 209.
  • the operation of the green laser output from the green light source 1202B including the operation of the output controller 209 to which the wavelength selection signal is input, the formation of a color image in the 2D image device 1200E, the projection onto the screen, etc.
  • the operation is the same as in the second embodiment.
  • the power mode switching switch 1204 describes an example of selecting a wavelength to be used according to an input video signal, and the user arbitrarily uses either wavelength. You can also determine your strength. For example, if the user prefers a bright image, the green wavelength with high visibility can be specified, and if the user always wants to view a high-quality image with wide color reproducibility, the wavelength at which the color reproducibility can be expanded can be specified. Further, in the wavelength selection signal determined by the luminance signal determination circuit 1203, the user can arbitrarily determine the ratio of the oscillation wavelength.
  • any wavelength of 526 nm or 540 nm can be arbitrarily oscillated, a data projector that requires brightness rather than color reproducibility is required.
  • the brightness perceived by the human eye can be improved even with the same power consumption by increasing the light emission ratio of 540 nm, which has high visibility.
  • the color reproducibility can be improved by increasing the emission ratio of 526 nm, which has low visibility but can widen the reproduction color range.
  • FIG. 14 shows the applied current waveforms of the master light source 1 (202) and the master light source 2 (203) and the output waveform of the green light of each wavelength in the case of the light source. As shown in the figure, by changing the duty ratio of the current waveform (ratio between time 1101: t and 1102: t), the emission of each wavelength
  • Another method is to change the number of light emission pulses per unit time, for example, one million shots per second, changing the wavelength by 10 shots, or alternately switching between 526 nm0 shots and 540 nm 20 shots. The same effect can be obtained in the method of generating the same.
  • the two-dimensional image display apparatus 1200E causes the green light source 1202B to change the duty ratios of the plurality of oscillation wavelengths in accordance with the input video signal.
  • Projector control circuit 1201 When the video signal is data, the visibility is high! Increase the ratio of using the wavelength, and when the video signal is video, control to increase the ratio of using the wavelength that can expand the color reproducibility. Speckle noise can be reduced, and the proportion of green wavelengths with high visibility is increased according to the image to improve power consumption efficiency, or use of green wavelengths with high color reproducibility. It is possible to improve the image by increasing the proportion of
  • the force described in the example of changing the duty ratio of the laser outputs of the two master light sources in accordance with the video signal is not limited to this.
  • the center wavelength of the master light source may be varied according to the video signal.
  • the two-dimensional image display device using the light source exemplified in each of the above embodiments is merely an example, and can take other modes.
  • Yb-doped clad pumpfino 103 which is a rare earth-doped fiber, is used! In the f row, which is used! 205, 603, 803, and 903 are used.
  • the Yb-doped clad pump fiber 103 having the described force is desirably a double-clad fiber having a polarization maintaining function, such as! /, ⁇ 205, 603, 803, 903 or PAN DA.
  • the image display device using the wavelength-controllable laser light source as described above it is possible to effectively reduce speckle noise, which has been a problem. Furthermore, it is possible to generate a wavelength with high visibility when the brightness force S is necessary, and an optimum wavelength for expressing the color when color expression is important.
  • the power fluctuations observed on the output monitor can also have secondary effects such as controlling the wavelength of the seed light and the temperature and stress of the grating to stabilize the output.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

 レーザを用いた2次元画像表示装置でスペックルノイズという干渉ノイズが生じるという課題があり、多波長光源を用いることで低減可能だが、適用できる緑色光源がなかった。本発明は、レーザ活性物質として希土類添加ファイバであるYbドープクラッドポンプファイバ(103)を用い、酸化物結晶を使用した場合と比較して蛍光スペクトルのピークを大幅に広げることが可能で発振波長の変化幅を大きくすることができる。また、希土類添加ファイバを、その両端にレーザミラーを設けず、ファイバアンプとして使用することにより、従来例(酸化物結晶をレーザ媒質にした場合)で必要となっていた共振器長の制御が不要となり、高速な波長制御が可能となるため、2次元画像表示装置に搭載した場合スペックルノイズを低減することができる。

Description

2次元画像表示装置
技術分野
[0001] 本発明は、ファイバレーザを光源として用い、空間変調器により変調された光線を 投影レンズにより投射する機構を持つ画像表示装置に関する。
背景技術
[0002] 近年、その優れた色再現性や消費電力の点でレーザを用いた画像表示装置(レー ザディスプレイ)が注目されている。図 15にレーザディスプレイ 1200の概略構成を示 す。 R (赤)、 G (緑)、 B (青) 3色のレーザ光源 1201〜1203からの光は、拡散板 120 5a〜 1205c (レンチキュラーレンズあるいはロッドプリズムなど)からなるスペックル除 去装置を通過させた後、入力映像信号に応じて光変調器 1207a〜 1207cで強度変 調され、誘電体多層ミラーで構成された合波プリズム (ダイクロイツクプリズム) 1208に て合波される。さらに投影レンズ 1209によってスクリーン 1210上に 2次元の画像が 表示される。この構成のディスプレイでは、 RGBそれぞれの光源の光が単色光であ るため、適当な波長のレーザ光源を用いることで、色純度が高ぐ鮮やかな画像の表 示が可能となる。さらに、レーザを用いることで光源の小型化さらには容易に集光で きるため光学系の小型化が可能となり、パームトップ型の画像表示装置も実現出来る という特徴を持っている。一方、コヒーレンシ一の高いレーザを用いることで表示画像 にスペックルノイズと呼ばれる干渉ノイズが生じるため、プリズムを用い、偏光方向に より光路差をつけることによりスペックルノイズを低減させたり(特許文献 1)、図 15の 模式図のよう【こ 2次元ヒ、、一ム走查手段 1204a〜 1204c,ある!/ヽ ίま拡散板 1205a〜 1 205cなどの光学部品を揺動し、光源のビームパスを変化させることによりスクリーン に照射する光の波面をランダムにしたり(特許文献 2)、光変調器を用いてスペクトル にサイドバンドを発生させ、見かけ上の光のスペクトルをよりブロードにしたり(特許文 献 3)、固体レーザへのインジェクションシーデイング技術(図 16:従来構成)を用いて 発振波長を操作したり(特許文献 4)、複数波長の半導体レーザをモジュールにして 使用したりする(特許文献 5)ことでスペックルノイズを除去する方法が提案されて!ヽる 特許文献 1:特開 2004 - 151133号公報
特許文献 2:特開 2004— 138669号公報
特許文献 3:特開平 9 - 121069号公報
特許文献 4:特開平 10— 294517号公報
特許文献 5 :特開 2004— 144794号公報
発明の開示
発明が解決しょうとする課題
[0003] 先に述べたようにレーザを光源とした 2次元画像表示装置において、スペックルノィ ズを低減する方法は、大まかに分けて、光学部品によるものとレーザ光の波長による ものの二通りに分けることができ、これまで使用されて!、た。
[0004] しカゝしながら、特許文献 1や特許文献 2に記載されているような、光路長ゃスクリー ンへの入射方向を変調させる方法は、元々のスペクトル幅が lnm (FWHM)程度広 がって 、る半導体レーザ光源を使用する際には非常に有効であるが、スペクトル幅 が狭い固体レーザ光源を使用する際には、それだけでスペックルノイズをヒトの目に 目立たないよう低減することが困難になっており、後で述べるレーザの波長スペクトル を広げる方法と組み合わせることが必須で、なおかつスペックルノイズを十分低減す るには複雑な光学系が必要などの問題があった。
[0005] 一方、レーザの波長スペクトルを広げる手段としては、前記特許文献 3〜特許文献 5に記載されているような方法が提案されている。特許文献 3においては、光変調器 や高周波信号源、インピーダンスマッチング回路等が必要となり、部材コストが高くな るうえ、スペクトル幅を広げようとすればするほど高い周波数が必要になるという欠点 も存在する。特許文献 5においては、半導体レーザ集積モジュールが大型となる上、 最もヒトの目の視感度が高ぐスペックルノイズを感じさせやすい緑色(500nm〜550 nm)は半導体レーザ光源を実現することが材料的に困難であり、固体赤外線レーザ の第 2高調波を使わざるを得ない。また、本願の提案に近い特許文献 4の技術にお いて、図 16の光源に示すように、例えばピエゾミラー駆動回路 1310により、ピエゾァ クチユエータ駆動ミラー 1311を駆動させ、 Nd: YAGや Nd: YV04などの固体レー ザにインジェクションシーデイングすることで発振波長に変化を与えている力 固体レ 一ザ結晶の蛍光スペクトルは非常にシャープであり、発振波長の変化幅は小さい。ま た、発振波長を変えるごとにレーザの共振器長も変化させなければならず、発振波 長に高速な変調を掛けるような複雑な制御を行うことはできな力つた。
[0006] 本発明は、このような問題に解決するためになされたものであり、特に緑色光源の 発振波長の変化幅を大きくすることができ、表示画像のスペックルノイズを低減するこ とのできる 2次元画像表示装置を提供することを目的とする。
課題を解決するための手段
[0007] 上記課題を解決するため、本発明の 2次元画像表示装置は、レーザ活性物質とし てのダブルクラッド希土類添加ファイバと、ダブルクラッド希土類添加ファイバを励起 する励起用半導体レーザと、偏光方向を直線方向にするボラライザと希土類ファイバ より発生したレーザ光の波長を 1Z2にする SHG結晶と、 SHG結晶より発生した第 2 高調波の出力をモニターするフォトダイオードと、波長可変半導体レーザを種光とし て具備したマスター光源、フォトダイオードから得られた出力値よりレーザの出力を制 御する出力コントローラ、マスター光源へ流す電流源、及びマスター光源の波長を制 御する電流源を有する複数波長発振機構とで構成されてなる光源を備えている。
[0008] また、複数波長発振機構として、上記マスター光源を波長の異なる 2つのマスター 光源とし、発生した基本波に合わせた波長変換結晶を具備した構成も提案している
[0009] これにより、上記光源にレーザ活性物質として希土類添加ファイバを用いることで、 従来からの YAGや YV04などの酸ィ匕物結晶を使用した場合と比較して蛍光スぺタト ルのピークを大幅に広げることが可能となる。たとえば、 Yb添加ファイバの場合 1050 〜 11 OOnmの間で効率的に発振させることが可能となるため、従来例と比較して発 振波長の変化幅を大きくすることができる。
[0010] また、上記光源の希土類添加ファイバを、その両端にレーザミラーを設けず、フアイ バアンプとして使用することにより、図 16に示すような従来例(酸ィ匕物結晶をレーザ 媒質にした場合)で必要となっていた共振器長の制御が不要となり、高速な波長制 御が可能となる。このこと力も例えば繰り返し周波数 100kHzで 5000ショットずつ発 振波長を変化させるといったことも可能となる。
発明の効果
[0011] 以上のように、本発明の 2次元画像表示装置によれば、それぞれ異なる色のレーザ 光を発生する複数個の光源を用い、空間変調器により変調された光線を投影レンズ により投射する 2次元画像表示装置において、前記複数個の光源のうち、少なくとも 1つの光源を、レーザ活性物質としての希土類添加ファイバと、前記希土類添加ファ ィバを励起する励起用光源と、レーザの発振波長を複数波長にする複数波長発振 機構と、前記複数波長で発振されたレーザ光の波長をそれぞれ短波長化する波長 変 構とで構成したので、光源にレーザ活性物質として希土類添加ファイバを用 V、ることにより、酸化物結晶を使用した場合と比較して蛍光スペクトルのピークを大幅 に広げることが可能で発振波長の変化幅を大きくすることができる効果がある。
[0012] また、希土類添加ファイバを、その両端にレーザミラーを設けることなぐファイバァ ンプとして使用することにより、従来例 (酸ィ匕物結晶をレーザ媒質にした場合)で必要 となっていた共振器長の制御が不要となり、高速な波長制御が可能となるため、表示 画像のスペックルノイズを低減することが出来る効果がある。
[0013] また、本発明の 2次元画像表示装置によれば、複数波長発振機構として、波長の 異なる 2つ以上の波長可変半導体レーザを種光とするマスター光源を備えたので、 発振波長の範囲をより拡大することができ、表示画像のスペックルノイズを効果的に 低減することができる効果がある。
[0014] また、本発明の 2次元画像表示装置によれば、前記少なくとも 1つの光源の複数の 発振波長のデューティー比を変更可能としたので、表示画像のスペックルノイズを低 減することができるとともに、明るさが必要な場合には視感度の大きな波長を、色表 現が重視される場合にはその色を表現するために最適な波長を発生させることがで きる効果がある。
[0015] また、本発明の 2次元画像表示装置によれば、入力された映像信号に応じて、前記 少なくとも 1つの光源の視感度の高い波長と色再現性が高い波長とのデューティー 比を変更させるプロジェクタ制御回路を備えたので、スペックルノイズを削減すること ができるとともに、映像に応じて、視感度の高い緑色波長を使用する割合を増やし、 消費電力の効率を向上させる、あるいは色再現性の高 ヽ緑色波長を使用する割合 を増やし、画像を向上させることを実現することができる効果がある。
[0016] また、本発明の 2次元画像表示装置によれば、前記少なくとも 1つの光源は、波長 変換後の光出力をモニターする出力モニター機構と、出力モニター機構の出力値を 元にしてレーザの出力あるいは波長を制御する出力コントローラとを具備するようにし たので、出力モニターで観測したパワー変動力も種光の波長やグレーティングの温 度'応力などを制御し出力を安定ィ匕できるなどの副次的な効果も得る事ができる。
[0017] また、本発明の 2次元画像表示装置によれば、スペックルノイズ除去機構として、拡 散板、レンチキュラーレンズ、ホログラム素子、又はロッドプリズムを使用するようにし たので、スペックルノイズをさらに低減することができる効果がある。
図面の簡単な説明
[0018] [図 1]図 1は、本発明の実施の形態 1に係る 2次元画像表示装置に搭載される緑色光 源の概略構成図である。
[図 2]図 2は、本発明の実施の形態 1に係る 2次元画像表示装置に搭載される緑色光 源におけるマスター光源の波長振幅を示す図である。
[図 3]図 3は、本発明の実施の形態 2に係る 2次元画像表示装置に搭載される緑色光 源の概略構成図である。
[図 4]図 4は、本発明の実施の形態 2に係る 2次元画像表示装置に搭載される緑色光 源におけるそれぞれのマスター光源の波長振幅を示す図である。
[図 5]図 5は、本発明の 2次元画像表示装置に搭載される光源における実施の形態 2 の駆動電流の時間波形と、光出力との関係を示すプロット図である。
[図 6]図 6において、(a)は光波長に対するヒトの目の視感度のプロット図、(b)は実施 の形態 2の色再現範囲と SRGB規格の色再現範囲を比較した色度座標図である。
[図 7]図 7は、本発明の 2次元画像表示装置における緑色光源の中心波長差とスぺッ クルノイズ除去度合いとの関係を示すプロット図である。
[図 8]図 8は、本発明の実施の形態 3に係る 2次元画像表示装置に搭載される緑色光 源の概略構成図である。
[図 9]図 9は、ペルチヱ駆動電流およびファイバグレーティングの温度と緑色光出力の 発生波長との関係を示すプロット図である。
[図 10]図 10は、本発明の実施の形態 3に係る 2次元画像表示装置に搭載される緑色 光源の第 1の変形例を示す概略構成図である。
[図 11]図 11は、本発明の実施の形態 3に係る 2次元画像表示装置に搭載される緑色 光源の第 2の変形例を示す概略構成図である。
[図 12]図 12は、本発明の実施の形態 4に係る 2次元画像再生装置の概略構成図で ある。
[図 13]図 13は、緑色光の波長と色再現範囲との関係を表したプロット図である。
[図 14]図 14は、発光割合を変化させる場合における、マスター LD電流波形と緑色 光出力との関係を示すプロット図である。
[図 15]図 15は、実施の形態 1〜実施の形態 4、及び従来における 2次元画像表示装 置を説明するための概略構成図である。
[図 16]図 16は、従来の 2次元画像表示装置に用いられる光源の一例を示す図であ る。
符号の説明
101 ポンプ用 LD
102 マスター光源
103 Ybドープクラッドポンプファイバ
104 ビームコンノイナ
105 ボラライザ
106 SHG結晶
107 PD
108 出力コントローラ
109 I電流源
110 I 電流源
DBR
201 ポンプ用 LD
202 マスター光源 1
203 マスター光源 2 204 ビームコンノイナ
205 Ybドープクラッドポンプファイバ
206 ポラライザ
207 SHG結晶
208 PD
209 出力コントローラ
210 I電流源 1
L
211 I 電流源 1
DBR
212 I電流源 2
L
213 I 電流源 2
DBR
601 ポンプ用 LD
602a, 602b ファイノくグレーティング 603 Ybドープクラッドポンプファイバ 604 ポラライザ
605 SHG結晶
606 PD
607 出力コントローラ
608 I 電流源
TEC
609 I電流源
L
610 ペルチェ素子
801 ポンプ用 LD
802a, 802b ファイノくグレーティング 803 Ybドープクラッドポンプファイバ 804 ポラライザ
805 SHG結晶
806 PD
807 出力コントローラ
808 I 電流源 809 I電流源
L
810 圧電ァクチユエータ
901 ポンプ用 LD
902a, 902b ファイノくグレーティング
903 Ybドープクラッドポンプファイバ
904 ポラライザ
905 SHG結晶
906 PD
907 出力コントローラ
908 I 電流源
TEC
909 I電流源
L
1101、 1102 電流波形時間
1200 (1200A~1200E) 可搬レーザディスプレイ
1201 赤色レーザ光源
1202 (1202A〜1202D) 緑色レーザ光源
1203 青色レーザ光源
1204a〜 1204c 2次元ビーム走査手段
1205a〜 1205c 拡散板
1206a〜 1206c フィールドレンズ
1207a〜 1207c 空間光変調素子
1208 タ"ィクロイツクプリズム
1209 投射レンズ
1210 スクリーン
1301 ポンプ用 LD
1302 シード光 LD
1303 レーザ結晶
1304 偏光制御機構
1305 SHG結晶 1306 PD
1307 結晶温度コントローラ (I 電流源)
TEC
1308 出力コントローラ
1309 I
L電流源
1310 ピエゾミラー駆動回路
1311 ピエゾァクチユエータ駆動ミラー
1501 プロジェクタ制御回路
1502 波長決定回路
1503 輝度信号判定回路
1504 映像モード切替スィッチ
1505 映像信号 (データ)
1506 映像信号 (ビデオ)
1507 波長選択信号線
発明を実施するための最良の形態
[0020] 以下本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態 1)
本発明の実施の形態 1に係る 2次元画像表示装置は、図 15に示す構成であり、緑 色光源に特徴を有するものである。
[0021] 以下、本実施の形態 1に係る 2次元画像表示装置 1200Aについて、図 1、図 2、図 15を用いて説明する。
図 15において、本実施の形態 1に係る可搬型レーザディスプレイ(2次元画像表示 装置) 1200Aは、背景技術で説明したように、赤 (R)、緑 (G)、青 (B)の 3色のレーザ 光源 1201〜 1203を用いている。赤色光源 1201には波長 638nmの GaAs系半導 体レーザを、青色光源 1203には波長 465nmの GaN系半導体レーザを用いており 、緑色光源 1202Aには赤外レーザの波長を 1Z2にする波長変換機構を具備した 波長変換緑色光源を用いている。また、図 15において、赤色光源 1201及び青色光 源 1203には、それぞれ 1つの半導体レーザを使用している力 それぞれ 2個〜 8個 の半導体レーザの出力をバンドルファイバにより 1本のファイバ出力で得られるような 構造をとつてもよい。その場合、赤色光源 1201及び青色光源 1203の波長スぺタト ル幅は数 nmと非常にブロードな物となり、それぞれこの広いスペクトルによりスペック ルノイズの発生を抑制することが出来る。
[0022] 次に、本実施の形態 1に係る 2次元画像表示装置 1200Aにおける緑色光源 1202 Aの構成について図 1を用いて説明する。
図 1は、本実施の形態 1の 2次元画像表示装置 1200Aにおける緑色光源 1202A の概略構成図である。
[0023] 図 1において、緑色光源 1202Aは、レーザ媒質として希土類添加ファイバである Y b添加クラッドポンプファイバ 103を使用し、励起用(ポンプ用)レーザ 101としてレー ザダイオードを、マスター光源 102として DBR (Distributed Bragg Reflector)レ 一ザダイオードを使用している。また、緑色光源 1202Aは、発振した光を直線偏光 にするためのボラライザ 105と、発振した光の第 2高調波を発生させる SHG結晶 106 と、 SHG結晶 106の出力をモニターするフォトダイオード(PD) 107と、マスター光源 102の波長及び SHG結晶 106の温度を制御するとともに、 PD107で検出した第 2 高調波出力をもとに出力を一定にする制御を行う出力コントローラ 108と、出力コント ローラ 108による制御信号を受けマスター光源の波長と出力を制御する制御電流源 (I電流源 109、 I 電流源 110)とを構成している。
L DBR
[0024] Ybドープクラッドポンプファイノ 103は、ポンプ用 LD101 (波長約 915nm、最大出 力 30w)で励起されている。マスター光源 102は、発振波長を決定するための種光を 導入するための光源であり、本実施の形態 1では波長可変半導体レーザとして DBR レーザを使用しており、例えば、マスター光源 102の波長は 1060nm近辺で制御で きるようになって!/、る。ボラライザ 105は発振した基本波が直線偏光となるように挿入 されているものである。そして、発振した光 (波長約 1060nm)は非線形光学結晶(本 実施例では周期分極反転 MgO: LiNB03結晶、長さ 10mm)からなる SHG結晶 10 6に入射され、 1Z2の波長である 530nmの緑色光に変換される。発生した緑色光の 一部はスプリッタにより分離され、 PD107に入力される。この PD107により緑色光の 強度が計測される。計測した光の強度を出力コントローラ 108により換算することで、 マスター光源の出力電流や発振波長をコントロールすることが可能となる。一方、マ スター光源による出力安定ィ匕を行わない場合は、 SHG結晶の温度コントロールによ り波長を安定ィ匕することもできる。出力コントローラ 108は、 SHG結晶 106を一定の 温度に制御するとともに、 I電流源 109及び I 電流源 110を制御し、一定の周期で
L DBR
マスター光源 102の波長を変調させる。図 2 (a)はマスター光源の波長の変化例を示 す図であり、図 2に示すように、出力コントローラ 108は、例えば、数 MHz程度の一定 の周波数で発振波長を変化させるようマスター光源を制御する。
[0025] また、一般的に SHG結晶は結晶の温度により位相整合波長が変化するため 0. 01 °Cの精度で温度制御されており、本実施の形態 1では、位相整合波長が 1060nmと なるよう一定に温度制御されている。なお、このときの温度制御の精度は低くしてもよ ぐこの場合、温度変化に応じて位相整合波長は変化するが、コストを低減することが できる。
[0026] このように、本実施の形態 1の 2次元画像表示装置 1200Aにおける緑色光源 1202 Aでは、マスター光源 102、出力コントローラ 108、 I電流源 109、及び I 電流源 11
L DBR
0から複数波長発振機構を構成し、レーザの発振波長を複数波長にしている。
[0027] 次に、本発明の実施の形態 1に係る 2次元画像表示装置 1200Aの動作を図 1、図 15を用いて説明する。
まず、緑色光源 1202Aの波長の制御は、出力コントローラ 108が、 SHG結晶 106 の温度を位相整合波長が 1060nmとなるよう一定に管理し、使用した SHG結晶 106 の波長許容幅の 50%の幅で、一定の周期でマスター光源 102 (DBRレーザ)の波 長を変調させるよう電流源を制御することにより実現できる。今回使用した、周期分極 反転 MgO :LiNb03を用いた場合 0. lnmの幅の波長、すなわち、図 2 (a)に示すよ うに中心波長から ±0. 05nmの幅で変化させることが可能となる。
[0028] そして、マスタ光源 102からは、複数の波長のレーザが出力され、ビームコンパイナ 104によりポンプ用 LD101からの励起用レーザと合成されたレーザは、 Ybドープ 'ク ラッドポンプファイバにより増幅され、ポラライザ 105を経由して、 SHG結晶 106から 緑色光である第 2高調波が出力され、一部は PD107に出力される。
[0029] そして、各光源 1201、 1202A、 1203より発せられたレーザビームは、反射型 2次 元ビーム走査手段 1204a〜 1204cで拡散板 1205a〜 1205c上に走査される。画像 データは R、 G、 Bそれぞれに分割されており、その信号を空間光変調素子 1207a〜 1207cに入力し、ダイクロイツクプリズム 1208で合波することによりカラー画像を形成 する。このように合波した画像は投射レンズ 1209によりスクリーン 1210に投影される
[0030] このように、本実施の形態 1に係る 2次元画像表示装置 1200Aでは、緑色光源 12 02Aの波長スペクトル幅をブロードなものとすることができ、赤色光源 1201及び青色 光源 1203を含めた各光源においてスペックルノイズの発生を抑制することができる。
[0031] さらに、拡散板やレンチキュラーレンズなどスペックルノイズ除去手段を 2次元空間 変調装置の手前に配置し、前記スペックルノイズ除去手段を揺動することにより、ダイ クロイツクプリズム 1208で合波されたカラー画像は、さらにスペックルノイズを低減す ることがでさる。
[0032] また、本実施の形態 1の 2次元画像表示装置 1200Aにおける緑色光源 1202Aは 、発振波長が変化することにより、レーザ出力が低下することが考えられるが、本実施 の形態 1では、この発振波長変化による出力変動を防ぐための出力安定ィ匕動作とし て、 PD107が検出した出力をもとにして基本波の発振波長を変化させている。出力 コントローラ 108では PD107により検出された出力値が低下した場合、 I を出力が
DBR
増加するように変化させる。マスター光源 102 (DBRレーザ)の波長制御範囲を超え ても出力が回復しない場合には、 Iしを増加させて基本波レーザ自体の出力を増加さ せて対応させることができる。
[0033] また、上記緑色光源 1202Aの波長制御動作においては、波長制御範囲が結晶の 波長許容幅に制限されているため、波長制御幅は、使用する波長変換用結晶の種 類と長さによるが 0. 05-0. 5nmの範囲に限られる。例えば、波長変換結晶として分 極反転 MgO :LiNb03結晶で長さ 10mmの素子を使用した場合、波長変換効率に 起因する非線形光学定数は(16££= 14〜15 1117 と大きぃが、波長許容幅が 0. 2n m'cmであるため、 0. 2nmの波長範囲で走査した場合、出力が 100〜50%の範囲 で揺らぐこととなる。つまり、この場合シード光の波長を振動させることによる波長可変 幅は小さい。一方、この結晶に替わって、リチウムトリボレート結晶を使用した場合、 波長許容幅が 5ηπ!〜 lOnm程度あるため波長走査範囲を広げることが可能となるが 、 deff=0. 7pmZVと非常に小さくなつてしまうため外部共振器構成とする必要があ る。以上のことから、装置の取り扱いやすさや、物理的な安定性を考えると、分極反 転 MgO: LiNbO 3を使用するのが望ましい。
[0034] 以上のような、実施の形態 1に係る 2次元画像表示装置 1200Aは、緑色光源 1202 Aを、レーザ活性物質としてのダブルクラッド希土類添加ファイバとして Ybドープ 'ク ラッドポンプファイバ 103と、 Ybドープ 'クラッドポンプファイバ 103を励起するポンプ 用 LD101と、偏光方向を直線方向にするボラライザ 105と、 Ybドープ 'クラッドポンプ ファイバ 103より発生したレーザ光の波長を 1Z2にする SHG結晶 106と、 SHG結晶 106より発生した第 2高調波の出力をモニターする PD107と、波長可変半導体レー ザを種光として具備したマスタ光源 102、 PD107から得られた出力値よりレーザの出 力を制御する出力コントローラ 108、マスター光源 102へ流す電流源 109、及びマス ター光源の波長を制御する電流源 110を有する複数波長発振機構とで構成したの で、緑色光源 1202Aに希土類添加ファイバを用いることで、従来からの YAGや YV 04などの酸ィ匕物結晶を使用した場合と比較して蛍光スペクトルのピークを大幅に広 げることが可能になる。このことは、波長可変範囲 (発振波長範囲)を広げることが可 能になることを示している。また、緑色光源 1202Aにおいて、レーザミラー等の共振 器長の制御が不要となり、高速な波長制御が可能となるため、係る緑色光源 1202A を 2次元画像表示装置に搭載した場合スペックルノイズを低減することができる。
[0035] また、 PD107を用いて、 SHG結晶 106からの第 2高調波出力をモニターするように したので、レーザ出力を安定ィ匕させると共に、緑色光の波長を任意に制御することが できる 2次元画像表示装置を提供することができる。
[0036] なお、本実施の形態 1の 2次元画像表示装置 1200Aにおける緑色光源 1202Aで は、出力コントローラ 108により、一定の周波数で発振波長を変化させるようにマスタ 一光源 102を制御する例について説明したが、温度変化に応じて、結晶の位相整合 波長に合わせてマスター光源の波長を変化させるようにしてもよぐこれにより、より S HG結晶 106の温度制御の精度を低くすることが可能となりコストを低減することがで きる。すなわち、波長変換結晶の温度制御を簡便にすることができると共に出力安定 動作させたい場合に最適である。また、このときの位相整合波長変化による出力変動 を防ぐための安定ィ匕動作は、上述した出力安定ィ匕動作と同様に行うとよい。
[0037] また、本実施の形態 1の 2次元画像表示装置 1200Aにおける緑色光源 1202Aで は、図 2 (a)に示すように、中心波長を一定とした場合について説明した力 これに限 るものではなぐ図 2 (b)に示すように、 PD107でパワーをモニターされた出力信号を フィードバックすることにより中心波長を制御し、変動させてもよい。
[0038] (実施の形態 2)
本発明の実施の形態 2に係る 2次元画像表示装置は、実施の形態 1と同様、緑色 光源を、ファイバレーザ光源の第 2高調波を用いたものとしているが、発振波長範囲 を拡大させるために、 1つのレーザ媒質で発振する波長を任意の 2波長とし、それぞ れに波長変換結晶を設けたものである。
[0039] 本実施の形態 2に係る 2次元画像表示装置 1200Bは、図 15に示す構成であり、緑 色光源 1202Bに特徴を有するものである。 2次元画像表示装置 1200Bの構成につ いては実施の形態 1と同様、図 15に示す構成であるので、説明を省略する。
[0040] 以下、本実施の形態 2に係る 2次元画像表示装置 1200Bについて、図 3〜図 7、図 15を用いて説明する。
図 3は、本実施の形態 2の 2次元画像表示装置 1200Bにおける緑色光源 1202B の概略構成図である。
[0041] 図 3において、緑色光源 1202Bは、レーザ媒質として希土類添加ファイバである Y b添加クラッドポンプファイバ 205を使用し、励起(ポンプ)用レーザ 201としてレーザ ダイオードをマスター光源 1、 2 (202、 203)として DBR (Distributed Bragg Refl ector)レーザダイオードを使用している。実施の形態 1では 1つのマスター光源の発 振波長を一定の周波数で変化させることにより、複数波長の緑色光を発生させてい たが、本実施の形態 2では、発振波長の異なるマスター光源を複数台使用することに より、複数波長の緑色光を発生可能としている。このような構成は、従来酸化物単結 晶をレーザ媒質として使用する場合には、その蛍光スペクトルが急峻であるために実 現不可能であった力 本実施の形態 2では Ybクラッドポンプファイバ 205を使用して いることにより、蛍光スペクトルのピークを大幅に広げることが可能になり実現できる。
[0042] また、緑色光源 1202Bは、発振した光を直線偏光にするためのボラライザ 206と、 発振した複数波長の光の第 2高調波を発生させる複数個の SHG結晶 207と、 SHG 結晶の出力をモニターするフォトダイオード (PD) 208と、マスター光源 1、 2 (202、 2 03)の出力を一定の周波数で制御するとともに、 SHG結晶 207の温度制御、及び P D208で検出した第 2高調波出力をもとに出力を一定にする制御を行う出力コント口 ーラ 209と、出力コントローラ 209による制御信号を受けマスター光源 1、 2 (202、 20 3)のそれぞれの波長と出力を制御する制御電流源 (I電流源 210Z212、 I 電流
L DBR
源 211Z213)とを構成している。
[0043] また、本実施の形態 2の 2次元画像表示装置 1200Bにおける緑色光源 1202Bで は、マスター光源 1 (202)の発振波長として約 1060nm、マスター光源 2 (203)の発 振波長として約 1080nmを選択しており、出力可能な緑色光の波長は 530nmと 540 nmのどちらかを発振可能としている。 SHG結晶 207は基本波 1060nmで位相整合 するものと、 1080nmで位相整合する 2つの結晶を備えている。 Yb添加クラッドボン プファイバ 205の励起には、実施の形態 1の 2次元画像表示装置 1200Aにおける緑 色光源 1202Aと同様に、ポンプ用 LD201を用いて行っており、発振した基本波が 直線偏光となるように内部にボラライザ 206を設けている。発振した基本波は、 SHG 結晶 207に集光され、 1Z2の波長の緑色光に変換される。変換後の光出力は PD2 08よりモニターされており、出力が一定になるように出力コントローラ 209により、マス ター光源の出力を調整したり、波長の微調整を行ったりしている。また、出力コント口 ーラ 209は、複数の SHG結晶 207をそれぞれ一定の温度に制御するとともに、 I電 し 流源 210、 212、及び I 電流源 211、 213を制御し、一定の周期でマスター光源 1、
DBR
2 (202、 203)力もそれぞれ出力させる。
[0044] 図 4 (a)はマスター光源 1、 2 (202、 203)のそれぞれの波長を示す図である力 そ れぞれ異なる波長のマスター光源 1、 2 (202、 203)の各出力は、出力コントローラ 2 09により一定の周期、例えば数百 kHzの周波数で切り替えられる。
[0045] また、一般的に SHG結晶は結晶の温度により位相整合波長が変化するため SHG 結晶を 0. O eの精度で温度制御されており、本実施の形態 2の 2次元画像表示装 置 1200Bにおける緑色光源 1202Bでは、各 SHG結晶の位相整合波長がそれぞれ 1060nm及び 1080nmとなるよう一定に温度制御されている。 [0046] このように、本実施の形態 2の 2次元画像表示装置 1200Bにおける緑色光源 1202 Bでは、マスター光源 1、 2 (202、 203)、出力コントローラ 209、 I電流源 210、 212、
L
I 電流源 211、 213から複数波長発振機構を構成し、レーザの発振波長を複数波
DBR
長にしている。
[0047] 次に、本発明の実施の形態 2に係る 2次元画像表示装置 1200Bの動作について 図 3、図 15を用いて説明する。
まず、緑色光源 1202Bの波長の制御は、出力コントローラ 108が、複数の SHG結 晶 207の位相整合波長がそれぞれ 1060nm、 1080nmとなるよう温度をそれぞれ一 定に管理し、異なる波長のマスター光源 1、 2 (202、 203)からのレーザ出力が一定 の周期でそれぞれ出力するよう I電流源 210、 212及び I 電流源 211、 213を制御
L DBR
すること〖こより実現できる。
[0048] そして、マスター光源 1、 2 (202、 203)力もはそれぞれ一定の波長のレーザが出力 され、ビームコンパイナ 204によりポンプ用 LD201からの励起用レーザと合成された レーザは、 Ybドープ 'クラッドポンプファイバ 205により増幅され、ポラライザ 206を経 由して複数の SHG結晶 207のそれぞれから緑色光である第 2高調波が出力され、一 部は PD208に出力される。
[0049] そして、各光源 1201、 1202B、 1203より発せられたレーザビームは、反射型 2次 元ビーム走査手段 1204a〜 1204cで拡散板 1205a〜 1205c上に走査される。画像 データは R、 G、 Bそれぞれに分割されており、その信号を空間光変調素子 1207a〜 1207cに入力し、ダイクロイツクプリズム 1208で合波することによりカラー画像を形成 する。このように合波した画像は投射レンズ 1209によりスクリーン 1210に投影される
[0050] このように、本実施の形態 2に係る 2次元画像表示装置 1200Bでは、緑色光源 120 2Bの波長スペクトル幅をよりブロードなものとすることができ、赤色光源 1201及び青 色光源 1203を含めた各光源においてスペックルノイズの発生を抑制することができ る。
[0051] さらに、拡散板やレンチキュラーレンズなどスペックルノイズ除去手段を 2次元空間 変調装置 1200Bの手前に配置し、前記スペックルノイズ除去手段を揺動すること〖こ より、各光源 1201、 1202B、 1203により、スペックルノイズを低減することができると ともに、ダイクロイツクプリズム 1208で合波されたカラー画像は、さらにスペックルノィ ズを低減することができる。
[0052] また、緑色光源 1202Bのレーザ出力が低下したときは、実施の形態 1と同様に出 力安定化動作を行う。
[0053] 次に、本実施の形態 2の 2次元画像表示装置 1200Bにおける緑色光源 1202Bの 出力コントローラ 209によるマスター光源 1、 2 (202、 203)のレーザ出力の切り替え タイミングについて、図 5を用いて説明する。
[0054] 図 5は、時間軸に対するそれぞれのマスター光源 1、 2 (202、 203)へ入力される電 流と、緑色光の強度をプロットしたプロット図を示している。図 5のように 540nmと 530 nmのどちらの波長の緑色光を得る力 f壬意に設定することが可能となる。例えば繰り 返し周波数 100kHzで 1ショットずつ異なる波長で発振させた場合、図 5のようなタイ ムチャートとなる力 5ショットずつあるいは 10ショットずつ異なる波長で発振させること も可能であり、また、それぞれのマスター光源に注入される電流のデューティー比を 変化させて動作させることも可能である。
[0055] 従来、ファイバレーザを用いた光源でも 1060nm、 1080nmそれぞれを発振させ、 さらに波長変換して緑色光(530nm、 540nm)を得ることが出来るということは知られ ていた。図 6に光波長に対するヒトの目の視感度との関係(a)と色度図上に示した色 再現範囲 (b)のプロット図を示す。
[0056] 図 6 (a)に示すように、 530nm光の視感度は 540nmの視感度の 8割程度であるこ と力解る。このことから 1080nmを選択した場合、波長変換した後の光(540nm)に 対してヒトの目の視感度が大きいため、ヒトにとつて同じ明るさを得るための緑色光出 力が 1060nmの 2倍波と比較して、 80%程度でよぐ装置の消費電力を低減すること が可能であるが、一方で色再現性に劣り、逆に 1060nmを採用した場合、色再現性 には優れているが、緑色光の光出力が 1. 3倍程度必要となる、カロえて、発振波長が 短くなるにつれファーバレーザの効率も低下するため、大幅に消費電力が増加する という、相反する課題力 Sこれまでの構成では存在した。そこで、緑色光源 1202Bを用 Vヽた本実施の形態 2の 2次元画像表示装置 1200Bの優位点として、基本波で 20nm 以上離れた光が切り替え出力可能となることで、緑色光で 5nm離れた光を出力する ことが可能となる。このことから、たとえば視感度が高い 540nmの光と、視感度は劣る ものの色再現性の向上が可能な 530nmの光とを切り替えながら出力させることにより 、色再現性と明るさの両方を向上することが可能となり、従来の課題を解決することが 出来る。
[0057] また、複数の波長を同時に発振させた場合、モード競合による出力パワー変動が 生じることがあるため、本実施の形態 2の構成とすることにより、発振波長を任意に設 定可能で、瞬間的には 1波長でし力発振せず出力パワー変動を低減できるため望ま しい構成であるといえる。
[0058] また、図 7は、ヒトの目に感じるスペックルノイズを表す指標として、スクリーンに一様 映像を投影した際の明暗の強度差と 2つの波長を持つ緑色光の発振波長間隔との 関係を示したプロット図である。ヒトの目にとつて「スペックルノイズがある」と感じるスぺ ックルノイズ強度の基準は大まかに 0. 02以下である。図 7に示した点 501は発振波 長が単一である場合のスペックルノイズ強度を示しており、この場合を 1と規定する。 点 502は実施の形態 1で述べた構成におけるスペックルノイズ低減度合いを示して いる。単一波長と比較して 0. 85と 15%ほど低減していることがわかる。点 503が本 実施の形態で示した構成におけるスペックルノイズ低減度合いを示しており、 0. 2以 下と 80%以上低減されていることがわかる。これらの光源に揺動拡散板など光学部 品を用いたスペックルノイズ低減機構を組み合わせた場合、さらに 98%以上低減す ることが可能となるため、ヒトの目にはスペックルノイズが感じられなくなるようにするこ とがでさる。
[0059] 以上のような、本発明の実施の形態 2に係る 2次元画像表示装置 1200Bは、緑色 光源 1202Bを、レーザ活性物質としての Ybドープ 'クラッドポンプファイバ 205と、 Yb ドープクラッドポンプファイバ 205を励起するポンプ用 LD201と、波長可変半導体レ 一ザを種光として具備した発振波長の異なる複数のマスタ光源 1、 2 (202、 203)を 備え、出力コントローラ 209及び制御電流源 210〜213により、該複数のマスタ光源 1、 2 (202、 203)のそれぞれから複数の波長を出力する複数波長発振機構と、複数 波長で出力されたレーザ光の波長を短波長化する複数の SHG結晶 207とで構成し たので、発振波長の範囲をより拡大することができ、表示画像のスペックルノイズを効 果的に低減することができる。
[0060] また、 PD208を用いて、 SHG結晶 207からの第 2高調波出力をモニターするように したので、レーザ出力を安定ィ匕させると共に、緑色光の波長を任意に制御することが できる 2次元画像表示装置を提供することができる。
[0061] また、希土類添加ファイバを用いることで、従来からの YAGや YV04などの酸化物 結晶を使用した場合と比較して蛍光スペクトルのピークを大幅に広げることが可能に なる。このことは、波長可変範囲 (発振波長範囲)を広げることが可能になることを示し ている。
[0062] また、レーザミラー等の共振器長の制御が不要となり、高速な波長制御が可能とな る。このことから例えば繰り返し周波数 100kHzで 5000ショットずつ発振波長を変化 させるといったことも可能となり、係る緑色レーザ光源 1202Bを 2次元画像表示装置 に搭載した場合スペックルノイズを低減することができる。
[0063] また、スペックルノイズ除去機構として、拡散板、レンチキュラーレンズ、ホログラム 素子、ロッドプリズム等を使用するようにしたので、表示画像のスペックルノイズをさら に低減することができる。
[0064] また、それぞれのマスター光源に注入される電流のデューティー比を変化させるこ とにより、明るさが必要な場合には視感度の大きな波長を、色表現が重視される場合 にはその色を表現するのに最適な波長を発生させることが可能となる。
[0065] なお、本実施の形態 2では、出力コントローラ 209により、図 4 (a)に示すような波長 の異なるマスター光源 1、 2 (202、 203)を一定の周波数でそれぞれ出力させるよう に制御電流源を制御する例について説明した力 このとき、図 4 (b)に示すように、実 施の形態 1と同様、出力コントローラによりそれぞれのマスター光源 1、 2 (202、 203) 力 出力されたレーザの発振波長をそれぞれ変化させてもよぐこれにより、スペック ルノイズをさらに除去することができる。また、このときの温度制御、及び出力安定ィ匕 動作は実施の形態 1と同様にするとよい。また、このときの温度制御の精度は低くして ちょい。
[0066] また、本実施の形態 2では、出力コントローラ 209により、図 4 (a)に示すような波長 の異なるマスター光源 1、 2 (202、 203)から一定の周波数でそれぞれレーザ出力さ せるように制御電流源を制御する例について説明した力 これに限るものではなぐ 温度変化に応じて、結晶の位相整合波長に合わせてマスター光源の波長を変化さ せるようにしてもよぐこれにより、実施の形態 1と同様、より SHG結晶 207の温度制 御の精度を低くすることが可能となりコストを低減することができる。また、このときの温 度制御、及び出力安定ィ匕動作は実施の形態 1と同様にするとよい。
[0067] また、本実施の形態 1では、図 4 (a)に示すように、それぞれ発振波長を一定にさせ る例、及び図 4 (b)に示すように、それぞれ発振波長を変化させる例について説明し た力 これに限るものではなぐ図 4 (c)に示すように、 PD208でパワーをモニターさ れた出力信号をフィードバックすることにより中心波長を制御し、変動させてもよい。
[0068] また、本実施の形態 2では、 2つのマスタ光源を具備する緑色光源について説明し たが、これに限るものではなぐ 2つ以上のマスタ光源を具備する場合でも本発明は 有効である。
[0069] また、複数の波長を発振させる構成としては本実施の形態 2に例示した方法以外に も様々な態様があることは言うまでもない。
[0070] (実施の形態 3)
本発明の実施の形態 3に係る 2次元画像表示装置は、高価な DFBレーザを使用す る代わりに、一般的な励起用レーザ光源を使用し、レーザ活性物質としての希土類 添加ファイバの両端にファイバグレーティングを設け、レーザ共振器を構成し、フアイ バグレーティングの少なくとも一方を温度制御することによりレーザの発振波長を変 化させる緑色光源を用いたものである。
[0071] 本実施の形態 3に係る 2次元画像表示装置 1200Cの構成は、図 15に示す構成で あり、緑色光源 1202Cに特徴を有するものである。 2次元画像表示装置 1200Cの構 成については実施の形態 1と同様、図 15に示す構成であるので説明を省略する。
[0072] 以下、本実施の形態 3に係る 2次元画像表示装置 1200Cについて、図 8〜図 11、 図 15を用いて説明する。
図 8は、本実施の形態 3の 2次元画像表示装置 1200Cにおける緑色光源 1202C の概略構成図である。 [0073] 図 8において、緑色光源 1202Cは、レーザ媒質として Yb添加クラッドポンプフアイ バ 603を使用し、励起(ポンプ)用レーザ 601としてレーザダイオードを使用して!/、る 。Yb添加クラッドポンプファイバ 603の両端にはレーザ共振器を構成するためのファ ィパーブラッググレーティング 602a ' 602bがー組配置されており、その少なくとも一 方はペルチヱ素子により温度制御されている。また、緑色光源 1202Cは、発振した 光を直線偏光にするためのボラライザ 604と、発振した光の第 2高調波を発生させる SHG結晶 605と、 SHG結晶 605の出力をモニターするフォトダイオード(PD) 606と 、ファイバーブラッググレーティング 602aの温度及び SHG結晶 605の温度を制御す るとともに、 PD606で検出した第 2高調波出力をもとに出力を一定にする制御を行う 出力コントローラ 607と、出力コントローラ 607による制御信号を受けポンプ用 LD60 1の出力とファイバグレーティングの温度を制御する制御電流源 (I電流源 609
L 、 I
TEC
電流源 608)とを構成して!/ヽる。
[0074] Yb添カ卩クラッドポンプファイノ 603の両端に配置されて!、るファイバーブラッググレ 一ティング 602a ' 602bは、反射帯域が 0. lnmのものと l〜5nmのものが一組で用 いられており、反射帯域が狭い 0. lnmの方のグレーティングが出力コントローラ 607 力もの制御信号により温度制御されている。この温度制御により狭帯域のグレーティ ングにおける反射中心波長を制御することが出来る。
[0075] 一般的に SHG結晶 605は結晶の温度により位相整合波長が大きく変化するため 0 . O eの精度で温度制御されており、本実施の形態 3の 2次元画像表示装置におけ る緑色光源 1202Cでは、一定の位相整合波長となるよう温度制御されている。なお 、温度制御の精度を低くしてもよぐこの場合、温度変化に応じて位相整合波長は変 化するが、コストを低減することができる。
[0076] このように、本実施の形態 3の 2次元画像表示装置における緑色光源 1202Cでは 、ファイバーグレーティング 602a' 602b、ペルチェ素子 610、出力コントローラ 607、 I 電流源 608、 I電流源 609から複数波長発振機構を構成し、レーザの発振波長
TEC L
を複数波長にしている。
[0077] 次に、本発明の実施の形態 3に係る 2次元画像表示装置 1200Cの動作について 図 8、図 15を用いて説明する。 まず、緑色光源 1202Cの波長の制御は、出力コントローラ 607が、 SHG結晶 605 の温度を一定に管理し、使用した SHG結晶 605の波長許容幅の 50%の幅で、一定 の周期でファイバグレーティング 602aの温度を変調させることによりファイバレーザの 発振波長を一定の周期で変調させるよう電流源を制御することにより実現できる。今 回使用した、周期分極反転 MgO :LiNb03を用いた場合 0. Inmの幅で変化させる ことが可能となる。
[0078] そして、ファイバグレーティング 602aからは複数の波長のレーザが出力され、ポン プ用 LD601により励起された Ydドープ 'クラッドポンプファイノく 603により増幅され、 ボラライザ 604を経由して、 SHG結晶 605から緑色光である第 2高調波が出力され、 一部は PD606に出力される。
[0079] そして、各光源 1201、 1202C、 1203より発せられたレーザビームは、反射型 2次 元ビーム走査手段 1204a〜 1204cで拡散板 1205a〜 1205c上に走査される。画像 データは R、 G、 Bそれぞれに分割されており、その信号を空間光変調素子 1207a〜 1207cに入力し、ダイクロイツクプリズム 1208で合波することによりカラー画像を形成 する。このように合波した画像は投射レンズ 1209によりスクリーン 1210に投影される
[0080] このように、本実施の形態 3に係る 2次元画像表示装置 1200Cでは、緑色光源 12 02Cの波長スペクトル幅をブロードなものとすることができ、赤色光源 1201及び青色 光源 1203を含めた各光源においてスペックルノイズの発生を抑制することができる。
[0081] さらに、拡散板やレンチキュラーレンズなどスペックルノイズ除去手段を 2次元空間 変調装置の手前に配置し、前記スペックルノイズ除去手段を揺動することにより、各 光源 1201、 1202C、 1203により、スペックルノイズを低減することができるとともに、 ダイクロイツクプリズム 1208で合波されたカラー画像は、さらにスペックルノイズを低 減することができる。
[0082] また、発振波長が変化することにより、レーザ出力が低下することが考えられるが、 本実施の形態 3では、この発振波長変化による出力変動を防ぐため PD606が検出 した出力をもとにして基本波の発振波長を変化させ、出力安定ィ匕を行っているのは 実施の形態 1と同様である。本実施の形態 3では実施の形態 1のようにマスター光源 の発振波長を変化させるのではなくファイバグレーティング 602aの周期を変化させる ことで基本波の発振波長を変化させている。 PD606により検出された出力値が低下 した場合、 I を出力が増加するように変化させる。一般的にファイバグレーティング 6
TEC
02aの温度が上昇すれば発振波長は長波長化し温度が低くなれば短波長化する。 ファイバグレーティング 602aの波長制御範囲を超えても出力が回復しない場合には 、実施の形態 1におけるマスター光源の出力に代わって Iを増力 tlさせて励起用 LD6 し
01の出力を増カロさせ基本波レーザ自体の出力を増加させて対応させることができる
[0083] 図 9に時間軸に対するファイバグレーティングに設置されているペルチヱ素子 610 へ入力される電流およびファイバグレーティング 602aと、緑色光の強度をプロットし たプロット図を示している。図 8のように λ 1とえ 2のどちらの波長の緑色光を得る力任 意に設定することが可能となる。本実施の形態 3においては熱を利用して波長制御を 行っているため波長変化速度が緩やかであるため 1ショットごとに波長を変化させるこ とは困難であるが、ペルチェ素子 610に注入される電流のデューティー比を変化させ て動作させることは可能である。
[0084] なお、本実施の形態 3では、出力コントローラ 607により、一定の周期でレーザの発 振波長を変化させるようにファイバーグレーティング 602aの温度を制御する例につ いて説明している力 ファイバグレーティングは SHG結晶と比較して温度に対する波 長シフトが緩やかであるため、結晶の位相整合波長に合わせてファイバーブラックグ レーティングの温度を変化させレーザの発振波長を変化させるようにしてもよぐこれ により、より SHG結晶の温度制御の精度を低くすることが可能となりコストを低減する ことができる。
[0085] また、本実施の形態 3の 2次元画像表示装置 1200Cにおける緑色光源 1202Cで は、ペルチェ素子により温度制御される 1つファイバーグレーティングを用いた例につ いて述べている力 該ファイバグレーティングを複数設けた構成にすることにより、実 施の形態 2で説明した 2つのマスター光源を使用している 2次元画像表示装置にお ける緑色光源と同様の効果が得られる。このようにした本実施の形態 3の第 1の変形 例の構成概略図を図 10に示す。 [0086] 図 10において、緑色光源 1202Cは、 Ybドープクラッドポンプファイノ 903の両端
2
にファイバグレーティング 902a · 902bを設け、ファイバグレーティング 902aは複数の 反射中心波長を持つように設計されており、実施の形態 2の様に複数の波長を交互 に発振するのとは異なり、複数の波長が同時に発振可能となる。個々で用いるフアイ バグレーティング 902a' 902bの組み合わせとして例えば、ファイバグレーティング 90 2bの反射帯域が 22nmのグレーティング(中心波長 1075nm)を 1本設け、ファイバ グレーティング 902aに中心波長が 16nm離れた (中心波長 1064nmと 1080nm)反 射帯域 0. lnmのファイバグレーティングを 1本ずつ設けることで 532nmと 540nmの 二つの波長が同時に発振させることが出来る。この際、反射帯域の狭い (0. lnm)フ アイバグレーティング 902aは、ペルチェ素子 910で温度制御されている。温度制御 を行わない場合、光出力が増加するにつれ、ファイバグレーティングが暖まり、発振 波長が揺らぐ原因となる。
[0087] また、本実施の形態 3と同様の効果を得る実施の形態 3の第 2の変形例として、ファ ィバグレーティングの温度により波長制御する代わりに、ァクチユエータでファイバグ レーティングの張力をコントロールすることにより波長制御する 2次元画像表示装置 1 200Dにおける緑色光源 1202D構成にっ 、て、図 11を用いて説明する。
[0088] 緑色光源 1202Dは、レーザ媒質として Yb添加クラッドポンプファイバ 803を使用し 、ポンプ用レーザ 801としてレーザダイオードを使用している。 Yb添加クラッドポンプ ファイバ 803の両端にはレーザ共振器を構成するためのファイバーブラッググレーテ イング 802a ' 802bがー組配置されており、その少なくとも一方は圧電ァクチユエータ 810により張力制御されている。また、発振した光を直線偏光にするためのボラライザ 804と発振した光の第 2高調波を発生させる SHG結晶 805と SHG結晶の出力をモ 二ターするフォトダイオード (PD) 606と出力モニターで検出した第 2高調波出力をも とに出力を一定にする制御を行う出力コントローラ 807、出力コントローラによる制御 信号を受け励起用 LD光源の出力とファイバグレーティングの張力を決定する圧電ァ クチユエータ 810を制御する制御電流源(I電流源 809、 I 電流源 808)で構成さ し ACT
れている。
[0089] Yb添カ卩クラッドポンプファイノ 803の両端に配置されて!、るファイバーブラッググレ 一ティング 802a ' 802bは、反射帯域が 0. lnmのものと l〜5nmのものが一組で用 いられており、反射帯域が狭い 0. lnmの方のグレーティングに圧電ァクチユエータ 8 10を設け張力が制御されている。この張力制御により狭帯域のグレーティングにおけ る反射中心波長を制御することが出来る。
[0090] 一般的に SHG結晶は結晶の温度により位相整合波長が大きく変化するため 0. 01 °Cの精度で温度制御されて!、る。一方ファイバグレーティング 802aは SHG結晶 805 の温度に対する波長シフトと比較して張力に対する波長シフトが緩やかである。この ことに着目して本実施の形態では、結晶の位相整合波長に合わせてファイバーブラ ックグレーティング 802aの張力を変化させレーザの発振波長を変化させることにより 、より SHG結晶 805の温度制御の精度を低くすることが可能となりコストを低減するこ とを可能にしている。
[0091] 本構成においても、温度による波長制御と同様の制御方法により、同様の波長制 御効果が得られる。
[0092] このように、実施の形態 3に述べた構成は、実施の形態 1や実施の形態 2に述べた 構成と比較して、ファイバ周辺の熱容量で波長制御スピードが決定されるため、動作 が低速になるという特徴を持つ、そのために決められたショット数ごとに波長を変化さ せるといったことは困難であるが、連続波の光で、周期的に波長を変化させることに 適している。
[0093] 以上のような、実施の形態 3に係る 2次元画像表示装置 1200Cは、緑色光源 1202 Cを、レーザ活性物質としてのダブルクラッド希土類添加ファイバとして Ybドープ 'クラ ッドポンプファイノく 603と、 Ybドープ 'クラッドポンプファイノく 603を励起するポンプ用 LD601と、レーザ反射鏡として使用し、一方がペルチェ素子 610により温度制御さ れた一組のファイバグレーティング 602a、 602bと、偏光方向を直線方向にするボラ ライザ 604と、 Ybドープ 'クラッドポンプファイノ 603より発生したレーザ光の波長を 1 Z2にする SHG結晶 605と、 SHG結晶より発生した第 2高調波の出力をモニターす る PD606と、複数波長発振機構として、 PD606から得られた出力値よりレーザの出 力を制御し、グレーティング周期を変位させるためのファイバグレーティングの温度管 理を行う出力コントローラ 607と、出力コントローラ 607の制御により電流をポンプ用 光源 601へ流す電流源と、出力コントローラ 607の制御によりグレーティングの周期 を制御する制御電流源とで構成したので、レーザの出力が連続波である必要がある 場合に使用でき、また、インジェクションシーデイング用のレーザが不要となるため部 材コストを低減することができる。
[0094] また、フォトダイオードを用いて、 SHG結晶からの第 2高調波出力をモニターするよ うにしたので、レーザ出力を安定ィ匕させると共に、緑色光の波長を任意に制御するこ とができる 2次元画像表示装置を提供することができる。
[0095] (実施の形態 4)
実施の形態 4に係る 2次元画像表示装置は、明るさが要求される映像、あるいは色 再現性が要求される映像をそれぞれ出力するために、映像信号に応じて、複数の発 振波長のデューティー比を変更させるようにしたものである。
[0096] 本実施の形態 4の 2次元画像表示装置 1200Eでは、先に示した 2次元画像表示装 置の模式図、図 15における緑色光源 1202を、実施の形態 2に記載の緑色光源 120 2Bとした場合にっ 、て説明する。
[0097] この緑色光源 1202Bでは、例えば波長が 526nmと 540nmといったどちらかの光 を任意に発振可能であるので、スペックルノイズが単一波長の場合の 2割以下に低 下させることが出来ることは、実施の形態 2で述べたとおりである、さらに液晶素子な どの空間変調器の手前に配置されているフィールドレンズのさらに手前に拡散板を 設け揺動することにより、ヒトの目にとつてスペックルノイズが感じられない程度(2%以 下)にスペックルノイズによる明暗の高低差を低減することが出来る。
[0098] 緑色光の発振波長が変化すると映像の色再現範囲が変化することが知られている 。図 13に緑色光の波長と色再現範囲との関係を表したプロット図を示す。 540nmは 視感度が高いため、同じ明るさを得る場合には少ない投入電力でよいが、海の色な どを表示するのに必要な「シアン系」の色が出せないという問題がある。一方 526nm では「シアン系」の色を再現できる力 視感度が低いため 540nmの場合と比較して 3 倍以上の投入電力を必要とするという問題点があった。
[0099] このような問題を解決するために、本実施の形態 4に係る 2次元画像表示装置 120 OEでは、さらに映像の種類や使用状況に応じてレーザ光の発振波長を切り替えるこ とにより、ヒトの目の視感度を利用して同じ消費電力でより明るい映像を表示させるこ とを可能にしている。
[0100] 図 12は、本実施の形態 4に係る 2次元画像表示装置 1200Eの構成の一部分を示 す図であり、映像の種類や使用状況に応じてレーザ光の発振波長を切り替えるため に、図 3の緑色光源 1202Bにプロジェクタ制御回路 1501及び映像モード切替スイツ チ 1504を備えた図である。緑色光源 1202Bについては図 3と同じ構成であるので 同様の符号を用い説明を省略する。
[0101] 図 12において、プロジェクタ制御回路 1501は、入力した映像信号に応じて波長を 選択するための波長選択信号を出力する波長決定回路 1502と、入力した映像中の 輝度信号を解析する輝度信号判定回路 1503とから構成されている。
[0102] 外部力も入力された映像信号 (データ) 1505あるいは映像信号 (ビデオ) 1506は、 プロジェクタ制御回路 1501に入力され、プロジェクタ制御回路 1501からはレーザの 出力コントローラ 209へ波長選択信号が波長選択信号線 1507を介して送信される。 そして波長選択信号によりレーザ光の発振波長が選択される。
[0103] 次に、本発明の実施の形態 4に係る 2次元画像表示装置 1200Eの動作について 説明する。
外部信号が D - sub 15pin · DVI · RCAピン · S端子 · D端子 · HDMI等、入力され た端子に応じて発振波長を変化させる場合について説明する。
[0104] 本実施の形態 4において、映像信号(データ) 1505は、 D— subl5pin'DVIから入 力された映像信号とし、映像信号 (ビデオ) 1506は、 RCAピン ' S端子 'D端子 'HD Mlから入力された映像信号とする。
[0105] まず、 D— subl5pin'DVIから映像信号が入力される場合、すなわちプロジェクタ 制御回路 1501に映像信号 (データ) 1505が入力される場合は、この映像信号は、 ほぼプレゼンテーションに用いるような、明るさが重要視されるデータ信号であるため 、波長決定回路 1502より視感度が高い波長の緑色光を選択するよう波長選択信号 が波長選択信号線 1507を介して出力コントローラ 209へ送信される。また、 RCAピ ン · S端子 · D端子 · HDMIと ヽつた端子カゝら映像信号が入力された場合、すなわち プロジェクタ制御回路 1501に映像信号 (ビデオ) 1506が入力される場合には、輝度 信号判定回路 1503により映像ソースの明るさを判定する。輝度信号判定回路 1503 では、映像中の輝度信号を解析することにより、一般的なテレビ番組 (例えばスタジ ォ収録された番組)のような明るい場面が多ぐそれほど色が重要視されない映像信 号力 映画のような暗い場面が多いが、広い色再現範囲が求められるような映像信 号かを判別する。前者の場合は、?見感度の高い緑色波長を使用する割合を増やし、 消費電力の効率を向上させ、後者の場合には色再現性が拡大できる 526nmなどの 短波長の緑色波長を使用する割合を増やすことで画質を向上させることが可能とな る。そして、輝度信号判定回路 1503の輝度信号の解析により、輝度に応じた波長選 択信号が波長決定回路 1502から出力コントローラ 209へ出力される。
[0106] 以降、波長選択信号が入力された出力コントローラ 209の動作を含む緑色光源 12 02Bからの緑色レーザ出力の動作、及び該 2次元画像装置 1200Eにおけるカラー 画像の形成やスクリーンへ投影する等の動作は実施の形態 2と同様である。
[0107] また、本実施の形態 4では、入力した映像信号に応じて使用する波長を選択する例 について説明している力 映像モード切替スィッチ 1204により、ユーザーが任意にど ちらの波長を使用する力決定することもできる。例えば、ユーザーが明るい映像を好 む場合には視感度の高い緑色波長を指定でき、色再現性が広い高画質な映像を常 に見たい場合には色再現性が拡大できる波長を指定できる。また、輝度信号判定回 路 1203で決定される波長選択信号において、発振波長の割合をユーザーが任意 に決定することちできる。
[0108] また、本実施の形態 4に係る 2次元画像表示装置 1200Eでは、 526nm、 540nm のどちらかの波長が任意に発振可能となるため、色再現性よりも明るさが要求される データプロジェクタ一として使用する際には、視感度の高い 540nmの発光比率を大 きくすることで同じ消費電力でもヒトの目に感じる明るさを向上することができ、また、 明るさよりも映画などの色再現性が要求される場合においては、視感度は低いが再 現色範囲を広げることが可能な 526nmの発光比率を大きくして、色再現性を高める ことが出来る。
[0109] レーザの発光比率を変化させる方法の一つとして、それぞれのレーザの発光時間 のデューティー比を変化させる方法が挙げられる。発光時間のデューティー比を変 化させた場合のマスター光源 1 (202)およびマスター光源 2 (203)の印加電流波形 と各波長の緑色光の出力波形を図 14に示している。図に示すように、電流波形のデ ユーティー比(時間 1101:tと 1102:tとの比)を変化させることにより、各波長の発光
1 2
時間が変化できる。
[0110] このほかの方法として、単位時間あたりの発光パルス数を変化させる方法、たとえ ば 1秒間に 100万ショット発生させるうち、 10ショットずつ波長を変えたり、 526nml0 ショットと 540nm20ショットとを交互に発生させたりする方法においても同様の効果 が得られる。
[0111] また、マイクロミラーデバイスや反射型液晶素子等を用いて、各色の光源を順次点 灯させ映像を表示させる構成の場合には、赤 ·青 ·緑と順番に光源を点灯させる代わ りに、赤 '青'緑(526nm) ·緑(540nm)の様に点灯させて使用しても同様の効果が 得られる。
[0112] 以上の発光比率を変化させる方法としては、以上に挙げた限りでなぐ他の方法を 適用しても同様の効果が得られるものである。
[0113] 以上のような、実施の形態 4に係る 2次元画像表示装置 1200Eは、緑色光源 1202 Bに、入力された映像信号に応じて複数の発振波長のデューティー比を変更させる プロジェクタ制御回路 1201を備え、映像信号がデータのときは視感度の高!、波長を 使用する割合を増やし、映像信号がビデオのときは色再現性が拡大できる波長を使 用する割合を増やすように制御するので、スペックルノイズを削減することができると ともに、映像に応じて、視感度の高い緑色波長を使用する割合を増やし、消費電力 の効率を向上させる、あるいは色再現性の高 、緑色波長を使用する割合を増やし、 画像を向上させることを実現することができる。
[0114] なお、本実施の形態 4では、実施の形態 2の 2次元画像表示装置における緑色光 源 1202Bを用いた例について説明したが、実施の形態 1、及び実施の形態 3の 2次 元画像表示装置【こお ίナる緑色光源 1202A、 1202C, 1202C、 1202D【こお!ヽても
2
本実施の形態が有効であるのは言うまでもな 、。
[0115] また、本実施の形態 4では、映像信号に応じて、 2つのマスター光源のレーザ出力 のデューティー比を変更させる例について説明した力 これに限るものではなぐ図 2 (b)、図 4 (c)に示すように、映像信号に応じて、マスタ光源の中心波長を変動させる ようにしてもよい。
[0116] また、以上の各実施形態に例示した光源を用いた 2次元画像表示装置はあくまで も一例であり、他の態様をとることが可能であることは言うまでもない。
[0117] なお、実施の形態 1〜4において、希土類添加ファイバとして、 Ybドープクラッドポ ンプファイノ 103、ある!/ヽ ίま 205、 603、 803、 903を用!ヽた f列につ!ヽて説明した力 係る Ybドープクラッドポンプファイノく 103、ある!/、 ίま 205、 603、 803、 903ίま、 PAN DAなどの偏波保持機能を有したダブルクラッドファイバであることが望ましい。
産業上の利用可能性
[0118] 以上に示した波長制御可能なレーザ光源を用いた画像表示装置において、課題と なっていた、スペックルノイズを効果的に低減することが可能となる。さらに、明るさ力 S 必要な場合には視感度の大きな波長を、色表現が重視される場合にはその色を表 現するのに最適な波長を発生させることも可能となる。カロえて、出力モニターで観測 したパワー変動力も種光の波長やグレーティングの温度 ·応力などを制御し出力を安 定ィ匕できるなどの副次的な効果も得る事ができる。

Claims

請求の範囲
[1] それぞれ異なる色のレーザ光を発生する複数個の光源を用い、空間変調器により 変調された光線を投影レンズにより投射する 2次元画像表示装置において、 前記複数個の光源のうち、少なくとも 1つの光源を、
レーザ活性物質としての希土類添加ファイバと、
前記希土類添加ファイバを励起する励起用光源と、
レーザの発振波長を複数波長にする複数波長発振機構と、
前記複数波長で発振されたレーザ光の波長をそれぞれ短波長化する波長変換機 構とで構成した、
ことを特徴とする 2次元画像表示装置。
[2] 請求項 1に記載の 2次元画像表示装置にお 、て、
前記複数波長発振機構として、波長の異なる少なくとも 2つの波長可変半導体レー ザを種光としたマスター光源を備えた、
ことを特徴とする 2次元画像表示装置。
[3] 請求項 1に記載の 2次元画像表示装置にお 、て、
前記少なくとも 1つの光源は、
前記波長変換機構での波長変換後の光出力をモニターする出力モニター機構と、 前記出力モニター機構の出力値を元にしてレーザの出力あるいは波長を制御する 出力コントローラを具備する、
ことを特徴とする 2次元画像表示装置。
[4] 請求項 2に記載の 2次元画像表示装置において、
前記少なくとも 1つの光源は、
前記波長変換機構での波長変換後の光出力をモニターする出力モニター機構と、 前記出力モニター機構の出力値を元にしてレーザの出力あるいは波長を制御する 出力コントローラを具備する、
ことを特徴とする 2次元画像表示装置。
[5] 請求項 1な!、し 4の 、ずれかに記載の 2次元画像表示装置にお 、て、
前記少なくとも 1つの光源における波長変換後の光波長が 450ηπ!〜 550nmの範 囲である、
ことを特徴とする 2次元画像表示装置。
[6] 請求項 1な!、し 4の 、ずれかに記載の 2次元画像表示装置にお 、て、
前記少なくとも 1つの光源は、発振波長を 0. Inmから 25nmの範囲で任意に変更 可能とした、
ことを特徴とする 2次元画像表示装置。
[7] 請求項 1な!、し 4の 、ずれかに記載の 2次元画像表示装置にお 、て、
前記少なくとも 1つの光源の複数の発振波長のデューティー比を変更可能とした、 ことを特徴とする 2次元画像表示装置。
[8] 請求項 7に記載の 2次元画像表示装置において、
入力された映像信号に応じて、前記光源の視感度の高い波長と色再現性が高い 波長とのデューティー比を変更させるプロジェクタ制御回路を備えた、
ことを特徴とする 2次元画像表示装置。
[9] 請求項 1な!、し 4の 、ずれかに記載の 2次元画像表示装置にお 、て、
スペックルノイズ除去機構として、拡散板、レンチキュラーレンズ、ホログラム素子、 又はロッドプリズムを使用する、
ことを特徴とする 2次元画像表示装置。
PCT/JP2006/311134 2005-06-02 2006-06-02 2次元画像表示装置 WO2006129809A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007519094A JP5172336B2 (ja) 2005-06-02 2006-06-02 2次元画像表示装置
US11/916,372 US7889422B2 (en) 2005-06-02 2006-06-02 Two-dimensional image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-162248 2005-06-02
JP2005162248 2005-06-02

Publications (1)

Publication Number Publication Date
WO2006129809A1 true WO2006129809A1 (ja) 2006-12-07

Family

ID=37481736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311134 WO2006129809A1 (ja) 2005-06-02 2006-06-02 2次元画像表示装置

Country Status (4)

Country Link
US (1) US7889422B2 (ja)
JP (1) JP5172336B2 (ja)
CN (1) CN100566051C (ja)
WO (1) WO2006129809A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042178A (ja) * 2006-07-06 2008-02-21 Matsushita Electric Ind Co Ltd ファイバ装置、波長変換装置及び画像表示装置
JP2008198874A (ja) * 2007-02-14 2008-08-28 Furukawa Electric Co Ltd:The パルスレーザ装置
JP2010040443A (ja) * 2008-08-07 2010-02-18 Ricoh Co Ltd 照明装置及び投影型画像表示装置
US20100183037A1 (en) * 2007-03-12 2010-07-22 Hiroyuki Furuya Fiber cutting mechanism and laser light source application apparatus comprising the mechanism
JP2011197195A (ja) * 2010-03-18 2011-10-06 Fuji Electric Co Ltd 光源装置及び波長制御方法
WO2015045843A1 (ja) * 2013-09-30 2015-04-02 ウシオ電機株式会社 レーザ光源装置
JP6272597B1 (ja) * 2017-05-17 2018-01-31 三菱電機株式会社 波長変換装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8411352B2 (en) * 2009-08-17 2013-04-02 Coherent, Inc. Pulsed fiber-MOPA with widely-variable pulse-duration
US8798104B2 (en) * 2009-10-13 2014-08-05 Nanda Nathan Pulsed high-power laser apparatus and methods
US8259385B2 (en) * 2009-10-22 2012-09-04 Corning Incorporated Methods for controlling wavelength-converted light sources to reduce speckle
US8437059B2 (en) * 2010-01-21 2013-05-07 Technion Research & Development Foundation Limited Method for reconstructing a holographic projection
JP5371838B2 (ja) * 2010-03-10 2013-12-18 株式会社フジクラ ファイバレーザ装置
WO2012069612A2 (en) * 2010-11-24 2012-05-31 Fianium Limited Optical systems
TW201228161A (en) * 2010-12-16 2012-07-01 Ind Tech Res Inst Mode locked fiber laser system
CN102354907B (zh) * 2011-09-21 2013-03-27 中国人民解放军总装备部军械技术研究所 多波长一体化红外半导体激光光源
WO2016134332A1 (en) * 2015-02-20 2016-08-25 Hrl Laboratories, Llc Chip-scale power scalable ultraviolet optical source
US10274809B1 (en) * 2017-11-17 2019-04-30 Bae Systems Information And Electronic Systems Integration Inc. Multiwavelength laser source
DE102020204892A1 (de) * 2020-04-17 2021-10-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Hochleistungs-Faserlaseranordnung mit phasensteuerbarer Emission

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508476A (ja) * 1994-01-31 1997-08-26 エス・ディー・エル・インコーポレイテッド レーザ照明ディスプレイシステム
JPH10107354A (ja) * 1996-09-30 1998-04-24 Ando Electric Co Ltd 半導体レーザ光源のスペクトル線幅制御装置
JPH1124169A (ja) * 1997-07-03 1999-01-29 Hitachi Ltd 背面投写式ディスプレイ
JP2001509911A (ja) * 1997-01-31 2001-07-24 ダイムラークライスラー・アクチェンゲゼルシャフト 走査レーザー画像投影における画像スペックルを除去する方法と装置
JP2003005714A (ja) * 2001-06-18 2003-01-08 Sony Corp 光源制御装置および方法、ならびに投射型表示装置
JP2004144936A (ja) * 2002-10-23 2004-05-20 Sony Corp 照明装置及び画像表示装置
JP2004151133A (ja) * 2002-10-28 2004-05-27 Sony Corp 画像表示装置における照明光学装置及び画像表示装置
JP2004163817A (ja) * 2002-11-15 2004-06-10 Seiko Epson Corp プロジェクタ
JP2004279943A (ja) * 2003-03-18 2004-10-07 Toshiba Corp レーザ装置、映像表示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330791A (ja) * 1991-01-25 1992-11-18 Hamamatsu Photonics Kk 光変調器
JP3113364B2 (ja) * 1992-01-16 2000-11-27 住友大阪セメント株式会社 走査型光学検査装置
US5832009A (en) * 1995-08-18 1998-11-03 Sony Corporation Laser light emitting device, laser beacon device and laser imager display device
JPH09121069A (ja) 1995-08-18 1997-05-06 Sony Corp レーザ光発生装置、レーザビーコン装置及びレーザ画像表示装置
EP1012818A4 (en) * 1996-11-29 2000-11-08 Laser Optics Res Corp SYSTEM AND METHOD FOR MONOCHROMATIC R, V, B LASER LIGHT SOURCE DISPLAY
JP3646465B2 (ja) 1997-04-18 2005-05-11 ソニー株式会社 レーザ光発生装置
JPH11251681A (ja) * 1998-03-03 1999-09-17 Sony Corp 半導体レーザ装置
KR100841147B1 (ko) * 1998-03-11 2008-06-24 가부시키가이샤 니콘 레이저 장치, 자외광 조사 장치 및 방법, 물체의 패턴 검출장치 및 방법
US6597494B2 (en) * 2001-07-13 2003-07-22 Fujikura Ltd. Polarization maintaining optical fiber amplifier and optical amplifier
JP4175078B2 (ja) 2002-10-15 2008-11-05 ソニー株式会社 照明装置及び画像表示装置
JP4165179B2 (ja) 2002-10-21 2008-10-15 ソニー株式会社 照明装置及び画像表示装置
US20080075130A1 (en) * 2004-07-15 2008-03-27 Kiminori Mizuuchi Coherent Light Source and Optical Device Using the Same
JP4862821B2 (ja) * 2005-02-25 2012-01-25 パナソニック株式会社 波長変換光学装置、レーザ光源、及び画像表示光学装置
US7413311B2 (en) * 2005-09-29 2008-08-19 Coherent, Inc. Speckle reduction in laser illuminated projection displays having a one-dimensional spatial light modulator
US7443903B2 (en) * 2006-04-19 2008-10-28 Mobius Photonics, Inc. Laser apparatus having multiple synchronous amplifiers tied to one master oscillator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508476A (ja) * 1994-01-31 1997-08-26 エス・ディー・エル・インコーポレイテッド レーザ照明ディスプレイシステム
JPH10107354A (ja) * 1996-09-30 1998-04-24 Ando Electric Co Ltd 半導体レーザ光源のスペクトル線幅制御装置
JP2001509911A (ja) * 1997-01-31 2001-07-24 ダイムラークライスラー・アクチェンゲゼルシャフト 走査レーザー画像投影における画像スペックルを除去する方法と装置
JPH1124169A (ja) * 1997-07-03 1999-01-29 Hitachi Ltd 背面投写式ディスプレイ
JP2003005714A (ja) * 2001-06-18 2003-01-08 Sony Corp 光源制御装置および方法、ならびに投射型表示装置
JP2004144936A (ja) * 2002-10-23 2004-05-20 Sony Corp 照明装置及び画像表示装置
JP2004151133A (ja) * 2002-10-28 2004-05-27 Sony Corp 画像表示装置における照明光学装置及び画像表示装置
JP2004163817A (ja) * 2002-11-15 2004-06-10 Seiko Epson Corp プロジェクタ
JP2004279943A (ja) * 2003-03-18 2004-10-07 Toshiba Corp レーザ装置、映像表示装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042178A (ja) * 2006-07-06 2008-02-21 Matsushita Electric Ind Co Ltd ファイバ装置、波長変換装置及び画像表示装置
JP2008198874A (ja) * 2007-02-14 2008-08-28 Furukawa Electric Co Ltd:The パルスレーザ装置
US20100183037A1 (en) * 2007-03-12 2010-07-22 Hiroyuki Furuya Fiber cutting mechanism and laser light source application apparatus comprising the mechanism
US8269139B2 (en) * 2007-03-12 2012-09-18 Panasonic Corporation Fiber cutting mechanism and laser light source application apparatus comprising the mechanism
JP2010040443A (ja) * 2008-08-07 2010-02-18 Ricoh Co Ltd 照明装置及び投影型画像表示装置
JP2011197195A (ja) * 2010-03-18 2011-10-06 Fuji Electric Co Ltd 光源装置及び波長制御方法
WO2015045843A1 (ja) * 2013-09-30 2015-04-02 ウシオ電機株式会社 レーザ光源装置
JP6272597B1 (ja) * 2017-05-17 2018-01-31 三菱電機株式会社 波長変換装置
WO2018211637A1 (ja) * 2017-05-17 2018-11-22 三菱電機株式会社 波長変換装置

Also Published As

Publication number Publication date
US7889422B2 (en) 2011-02-15
CN100566051C (zh) 2009-12-02
US20090141753A1 (en) 2009-06-04
JP5172336B2 (ja) 2013-03-27
JPWO2006129809A1 (ja) 2009-01-08
CN101189767A (zh) 2008-05-28

Similar Documents

Publication Publication Date Title
JP5172336B2 (ja) 2次元画像表示装置
US7542491B2 (en) Wavelength converter and two-dimensional image display device
US7733927B2 (en) Laser light source device and image display device
JP5191692B2 (ja) レーザ光源装置及び画像表示装置
JP6667533B2 (ja) プロジェクターシステムの照射のためのrgbレーザー源
US7296897B2 (en) Projection display apparatus, system, and method
JP5096379B2 (ja) 固体レーザー装置、表示装置及び波長変換素子
JP5231990B2 (ja) 照明光源及びレーザ投射装置
US8350789B2 (en) Image display apparatus
US6233025B1 (en) Process and apparatus for generating at least three laser beams of different wavelength for the display of color video pictures
US7354157B2 (en) Image display device and light source device
JP2012230414A (ja) 帯域幅強調によるスペックル低減のためのシステム及び方法
WO2006006701A1 (ja) コヒーレント光源およびこれを用いた光学装置
JP2008535263A (ja) 周波数安定化した垂直拡大キャビティ面発光レーザ
US7965916B2 (en) Laser light source device, image display and illuminator
US6567605B1 (en) Fiber optic projection device
US7489437B1 (en) Fiber laser red-green-blue (RGB) light source
WO2009130894A1 (ja) パルスファイバレーザ光源、波長変換レーザ光源、2次元画像表示装置、液晶表示装置、レーザ加工装置及びファイバ付レーザ光源
JP2004157217A (ja) 波長変換レーザ光源
Lee et al. OPO-based compact laser projection display
Gollier et al. P‐233: Multimode DBR Laser Operation for Frequency Doubled Green Lasers in Projection Displays
Chernysheva et al. High-efficiency high-power solid-state CW visible lasers for large-format-display applications

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680019434.X

Country of ref document: CN

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007519094

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11916372

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756955

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载