+

WO2006129845A1 - Apparatus and method for fabricating nanoconstruct - Google Patents

Apparatus and method for fabricating nanoconstruct Download PDF

Info

Publication number
WO2006129845A1
WO2006129845A1 PCT/JP2006/311237 JP2006311237W WO2006129845A1 WO 2006129845 A1 WO2006129845 A1 WO 2006129845A1 JP 2006311237 W JP2006311237 W JP 2006311237W WO 2006129845 A1 WO2006129845 A1 WO 2006129845A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanostructure
dna
microchannel
temperature
self
Prior art date
Application number
PCT/JP2006/311237
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Murata
Kotaro Somei
Original Assignee
Tokyo Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute Of Technology filed Critical Tokyo Institute Of Technology
Publication of WO2006129845A1 publication Critical patent/WO2006129845A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA

Definitions

  • the present invention relates to a nanostructure production apparatus and method suitable for use in producing a nanostructure by self-assembling components such as DNA tiles, for example.
  • This application claims priority on the basis of Japanese Patent Application No. 2005-164203 filed on June 3, 2005 in Japan, and this application is incorporated herein by reference. .
  • DNA molecules have attracted attention as components of nanostructures.
  • DNA tiles, DNA junctions, DNA polygons, and DNA polyhedra have been actively studied.
  • Each of these DNA molecules has a different shape and number and position of sticky ends (single-stranded parts that do not form a double helix structure), and the structures formed by self-assembly are also different.
  • the DNA tile is expected as a component that can be used to create various nanostructures because the specific binding of each DNA tile can be designed freely by designing the four sticky ends circled in Fig. 10. Yes.
  • the self-assembly process of DNA tiles corresponds mathematically to a one-dimensional cellular automaton model called a Wang tile, and it is possible to perform some kind of parallel computation using this algorithmic self-assembly (Algorithmic Self Assembly).
  • Algorithmic Self Assembly -assembly
  • a DNA tile set with a sticky end corresponding to an XOR (exclusive OR) operation is used as a state transition rule, a two-dimensional crystal (nanostructure) of a DNA tile having a shellpin skifractal structure is obtained.
  • XOR exclusive OR
  • stepwise self-assembly in which two DNA tiles are placed in a test tube to advance self-assembly hierarchically, has been studied (for example, non-patent literature). 2).
  • FIG. 11A by adding DNA tiles with index numbers 1 to 16 in a hierarchical manner, a fully-addressable nanostructure with 4 ⁇ 4 vertical and horizontal DNA tiles as shown in FIG. 11B can be obtained. It can be realized.
  • FIG. 11B each DNA tile is conceptually shown as a square.
  • self-assembly can be performed relatively reliably.
  • the experimental operation is complicated, and it is difficult to control environmental parameters such as DNA tile concentration and temperature, as described above. There was a problem that nanostructures could not be produced.
  • An object of the present invention is to provide a device and a method for producing an effective nanostructure.
  • a nanostructure fabrication apparatus is a nanostructure fabrication apparatus that creates a nanostructure in a microchannel, and the microchannel includes a plurality of microchannels.
  • a method for manufacturing a nanostructure according to the present invention is a method for manufacturing a nanostructure in a microchannel, and the microchannel includes: Divided into a plurality of regions, a solution containing self-assembled components of the nanostructure is supplied to at least a portion of the microchannel, and the solution is provided downstream of the microchannel.
  • the nanostructure is produced in a reaction vessel in which a seed crystal of the nanostructure is fixed.
  • FIG. 1 is a diagram showing an external configuration of a microfluidic device in the present embodiment.
  • FIG. 2 is a diagram showing the shape of a microchannel.
  • FIG. 3 is a diagram showing the relationship between the position in the microchannel and the capillary force.
  • FIG. 4 is a diagram showing the flow of the solution when the solution is dropped into the service port of the microchannel.
  • FIG. 5 is a diagram showing a temperature profile of the microfluidic device when a voltage of 24 V is applied to the heater.
  • FIG. 6A and FIG. 6B are diagrams showing a conventional stepwise self-assembly using a one-pot reaction and a stepwise self-assembly using a microfluidic device.
  • FIG. 7 is a diagram showing an example of a nanostructure produced when hierarchical algorithmic self-assembly is performed using a microfluidic device.
  • FIG. 8 is a diagram showing an example of a microchannel divided into a plurality of regions.
  • FIG. 9 is a diagram showing another example of a microchannel divided into a plurality of regions.
  • FIG. 10 is a diagram schematically showing an example of a DNA tile.
  • FIG. 11A and FIG. 11B are diagrams for explaining a method for producing a nanostructure by a conventional stepwise self-assembly.
  • the present invention is applied to a microfluidic device in which DNA tiles are self-assembled in a reaction field in a microchannel (diameter / zm to several hundreds of m) and a nanostructure is produced. It is applied.
  • the microfluidic device 1 in the present embodiment is mainly formed by laminating a silicon substrate 11 on a glass substrate 10.
  • a recess 12 is formed in the center of the silicon substrate 11, and the bottom surface of the recess 12 is a microchannel 13 to 13 for flowing a solution in which a DNA tile is dissolved (hereinafter, there is no need to distinguish between them).
  • Microchannel 13 is a microchannel 13 to 13 for flowing a solution in which a DNA tile is dissolved
  • the number of microchannels 13 is three, but it is needless to say that the number is not limited to this number.
  • the microchannel 13 has an open surface so that a nanostructure crystal during or after fabrication can be observed with an AFM (Atomic Force Microscope).
  • AFM Anamic Force Microscope
  • the recess 12 is filled with oil such as mineral oil used in PCR (Polymerase Chain Reaction).
  • a heater 14 made of ITO (Indium Tin Oxide) and a temperature sensor 15 to 15 hereinafter, it is necessary to distinguish between the glass substrate 10 and the silicon substrate 11). If there is no
  • the microchannel 13 includes a service port 20 for dropping a solution in which a DNA tile is dissolved, and a service port 20 described later.
  • a stop valve 21 having a function to perform a reaction
  • a reaction chamber 22 that is a reaction field in which DNA tiles self-assemble
  • a mechanical pump 23 are also configured.
  • the reaction chamber 22 is fixed with an initial strand that becomes a seed crystal of the nanostructure.
  • the microchannel 13 is designed so that the flow path width gradually becomes narrower from the end of the service port 20 to the first pump 23, and as a result, the capillary force is increased.
  • the direction of the service port 20 is expressed as upstream
  • the direction of the mechanical pump 23 is expressed as downstream.
  • FIG. 3 shows the relationship between the position in the microchannel 13 and the capillary force.
  • the flow path width becomes narrower as it goes downstream, and the capillary force also becomes stronger accordingly.
  • the stop valve 21 the capillary force suddenly increases as the flow path width suddenly narrows.
  • the capillary force decreases slightly as the flow path width increases slightly. ing.
  • the flow path width is narrowed again to the same width as the stop valve 21, and accordingly, the capillary force becomes as strong as the position of the stop valve 21.
  • a nanostructure crystal is grown around the seed crystal.
  • unnecessary by-products around the seed crystal are washed away, and a large nanostructure can be produced.
  • crystal growth can be suppressed by growing the crystal along the flow of the solution.
  • conventional one-pot reactions such as dropping ligase into the service port 20 to connect DNA tiles, or dropping restriction enzymes to cleave specific sites, etc. Difficult reactions can be handled freely.
  • FIG. 5 shows the temperature profile of the microfluidic device 1 when a voltage of 24 V is applied to the heater 14. As shown in FIG. 5, a uniform temperature field can be obtained in the three microchannels 13-13.
  • the highest temperature at which DNA tiles can be bonded to each other is preferable. This is because the bonding force between the non-complementary sticky ends is weaker than that between the complementary sticky ends, and thus defects can be suppressed by increasing the temperature as much as possible.
  • microfluidic device 1 it is also possible to extend this and perform algorithmic self-assembly using the microfluidic device 1 in a hierarchical manner.
  • the complex as shown in FIG. Patterned nanostructures can be fabricated.
  • the sequences of the sticky ends can be made the same in each DNA tile set, it is not necessary to increase the number of sticky end sequences.
  • each protein has a unique function, it is necessary to bind it to a nanostructure that also has DNA tiling power, so that a system with a useful function, for example, a group of enzymes necessary to degrade a specific molecule
  • a DNA lattice or the like in which (protein group) is optimally arranged can be constructed.
  • the solution conditions metal ion concentration and other DN
  • Various DNA effector elements whose shapes change depending on the presence of the A sequence may be dropped on the service port 20.
  • a DNA actor element between DNA tiles, for example, it is possible to construct a filter made of a lattice (the size of the mesh is dynamically changed) that recognizes and passes only specific molecules.
  • a metal colloid (for example, gold colloid) nanoparticle bonded with a DNA binding linker may be dropped onto the service port 20. By arranging them in a row, it becomes a nanowire and a wiring pattern can be formed.
  • microfluidic device 1 various chemically synthesized nanoelectronic devices (electronic elements having rectification and amplification effects) bonded with a DNA binding linker are dropped onto the service port 20.
  • a DNA binding linker bonded with a DNA binding linker
  • each microchannel 13 has been described as one.
  • the present invention is not limited to such a configuration, and the microchannel is divided into a plurality of areas, and each area is divided into a plurality of areas.
  • a service port may be provided.
  • DNA tile formation from multiple single-stranded DNAs
  • Substructure A formation from two DNA tiles
  • Substructure B formation from two substructures A Each target nanostructure Steps can be performed in each of the areas described above.
  • Each region is controlled to an optimum temperature. In general, it is preferable to increase the initial stage of fabrication of nanostructures to a high temperature and to a low temperature as the stage progresses.
  • FIG. 8 An example of such a microchannel is shown in FIG.
  • the microchannel 30 shown in FIG. 8 is divided into first to fourth regions 31 to 31, and the first region 31 is heated to a high temperature and the second to third regions 31 to 31 are divided.
  • the 1 4 1 regions 31 and 31 are controlled at a medium temperature, and the fourth region 31 is controlled at a low temperature.
  • Service port 3
  • a solution in which single-stranded DNA is dissolved is dropped into 2 and 32, and the service port 32 has a DN.
  • the solution in which the A tile is dissolved is dropped, and the service port 32 has a sub-structure of the DNA tile.
  • a DNA tile is formed from a plurality of single-stranded DNAs in the second region 31, and two in the third region 31.
  • FIG. 9 Another example of such a microchannel is shown in FIG.
  • the microchannel 40 shown in FIG. 9 is divided into first to ninth regions 41 to 41, and the first, third, and sixth regions 41, 41,
  • the ninth region 41 is controlled to a low temperature. Also, service ports 42-42 have DN
  • the solution in which the tile is dissolved is dropped, and the solution in which the DNA tile is dissolved is dropped in the service port 42.
  • the first, third, and sixth regions 41, 41, and 41 are completely decomposed into single-stranded DNA.
  • the second, fourth, and seventh areas are completely decomposed into single-stranded DNA.
  • DNA tiles are formed from a plurality of single-stranded DNAs, and the fifth and eighth regions are formed.
  • the DNA tile substructure is formed from the two DNA tiles, and the ninth region
  • region 41 two DNA tile substructures and nanostructures are formed.
  • the DNA tile itself can also be fabricated in the microchannel, thereby making it possible to fabricate nanostructures with a lower defect rate.
  • the service port includes not only single-stranded DNA and DNA tile, but also enzyme groups such as ligase and restriction enzyme, protein, DNA activator element and various nanoparticles, It ’s okay to drop nanodevices.
  • motifs such as DNA junctions, DNA polygons, DNA polyhedra, etc., which are explained using DNA tiles as examples of DNA molecules that are constituent elements of nanostructures, are used. You may use. If the component is not limited to single-stranded DNA or DNA molecules but can be self-assembled, single-stranded RN A or other components such as RNA molecules or proteins may be used.

Landscapes

  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A solution is dropped into a service port (20) in a microchannel (13) and then fed into a capillary pump (23) due to the capillary force. The temperature in a reaction chamber (22), in which a starting strand serving as a crystal seed for a nanoconstruct is fixed, is controlled with a heater and a temperature sensor. In fabricating the nanoconstruct, for example, solutions each containing a single DNA tile dissolved therein are successively dropped into the service port (20) and crystals of the nanoconstruct grow around the seed crystal in the solution flows.

Description

ナノ構造物の作製装置及び方法  Nanostructure fabrication apparatus and method
技術分野  Technical field
[0001] 本発明は、例えば DNAタイル等の構成要素を自己集合させることによってナノ構 造物を作製する際に用いて好適なナノ構造物の作製装置及びその方法に関する。 本出願は、 日本国において 2005年 6月 3日に出願された日本特許出願番号 2005 - 164203を基礎として優先権を主張するものであり、この出願は参照することにより 、本出願に援用される。  The present invention relates to a nanostructure production apparatus and method suitable for use in producing a nanostructure by self-assembling components such as DNA tiles, for example. This application claims priority on the basis of Japanese Patent Application No. 2005-164203 filed on June 3, 2005 in Japan, and this application is incorporated herein by reference. .
背景技術  Background art
[0002] 近年、ナノ構造物の構成要素として DNA分子が注目を集めて ヽる。構成要素とな る DNA分子のモチーフとしては様々なものがあり、例えば DNAタイル、 DNAジヤン クシヨン、 DNA多角形、 DNA多面体等が精力的に研究されている。これらの DNA 分子は、それぞれ形状や、粘着末端 (2重螺旋構造を形成していない 1本鎖部分)の 個数及び位置が異なっており、自己集合してできる構造も異なる。その中でも DNA タイルは、図 10において丸で囲った 4つの粘着末端の配列設計により、 DNAタイル 毎の特異的結合が自由に設計できるため、様々なナノ構造物を作製できる構成要素 として期待されている。  [0002] In recent years, DNA molecules have attracted attention as components of nanostructures. There are various motifs of the DNA molecules that constitute the constituent elements. For example, DNA tiles, DNA junctions, DNA polygons, and DNA polyhedra have been actively studied. Each of these DNA molecules has a different shape and number and position of sticky ends (single-stranded parts that do not form a double helix structure), and the structures formed by self-assembly are also different. Among them, the DNA tile is expected as a component that can be used to create various nanostructures because the specific binding of each DNA tile can be designed freely by designing the four sticky ends circled in Fig. 10. Yes.
ところで、 DNAタイルの自己集合プロセスは、数学的には Wangタイルと称される 1 次元セルオートマトンモデルに対応し、これを用いてある種の並列計算を行うことをァ ルゴリズミックセルフアセンブリ(Algorithmic Self-assembly)という。例えば、状態遷移 ルールとして XOR (排他的論理和)演算に対応する粘着末端を有する DNAタイルセ ットを用いると、シェルピンスキフラクタル構造を持つ DNAタイルの 2次元結晶(ナノ 構造物)が得られる(例えば、非特許文献 1を参照)。この際、各 DNAタイルの濃度を 一定に制御し、温度を成長臨界点付近の最適温度に保つことができれば、理論的に は、計算素子として十分な 10一6〜 10_8程度の極めて低い欠陥率を持つナノ構造物 が作製可能であるとされて 、る。 By the way, the self-assembly process of DNA tiles corresponds mathematically to a one-dimensional cellular automaton model called a Wang tile, and it is possible to perform some kind of parallel computation using this algorithmic self-assembly (Algorithmic Self Assembly). -assembly). For example, if a DNA tile set with a sticky end corresponding to an XOR (exclusive OR) operation is used as a state transition rule, a two-dimensional crystal (nanostructure) of a DNA tile having a shellpin skifractal structure is obtained. (For example, refer nonpatent literature 1). At this time, by controlling the concentration of each DNA tile constant, if it is possible to keep the temperature optimal temperature for growth near the critical point, theoretically, extremely low defect sufficient 10 one 6-10_ about 8 as calculated element It is said that nanostructures with a rate can be produced.
し力しながら、従来は全ての DNAタイルを 1本の試験管内で自己集合させるワンポ ット反応によってナノ構造物を作製して 、たため、各 DNAタイルの濃度や温度等の 環境パラメータの制御が困難であり、作製されるナノ構造物に欠陥が多くなるという問 題があった。具体的に、ワンポット反応ではナノ構造物の結晶が大きくなるに従って 各 DNAタイルの濃度が低下するため、濃度低下に応じて反応液の温度を下げる必 要があるが、そのような環境パラメータの制御は困難であるため、 1%程度までしか欠 陥率を下げることができない。また、試験管内には目的のナノ構造物以外の結晶が 多数できるため、それらが互いに成長を阻害してしまい、大きなナノ構造物が作製で きな力つた。さらに、ワンポット反応では、ナノ構造物の結晶が溶液中に作製されるた め、その後利用することが困難であった。 However, in the past, all DNA tiles were self-assembled in a single test tube. Since the nanostructures were produced by the batch reaction, it was difficult to control the environmental parameters such as the concentration and temperature of each DNA tile, and the produced nanostructures had many problems. Specifically, in the one-pot reaction, the concentration of each DNA tile decreases as the nanostructure crystals grow larger, so it is necessary to lower the temperature of the reaction solution as the concentration decreases. Is difficult, so the defect rate can only be reduced to about 1%. In addition, since many crystals other than the target nanostructure were formed in the test tube, they inhibited each other's growth, and it was not possible to produce a large nanostructure. Furthermore, in the one-pot reaction, crystals of nanostructures are produced in a solution, so that it is difficult to use them thereafter.
一方、別のアプローチとして、試験管内に 2つずつ DNAタイルをカ卩えることにより、 階層的に自己集合を進めるステップワイズセルフアセンブリ(Stepwise Self-assembly) も研究されている(例えば、非特許文献 2を参照)。例えば図 11Aに示すように、イン デッタス番号が 1〜 16の DNAタイルを階層的に加えることにより、図 11 Bに示すよう な縦横 4 X 4の DNAタイル力 なるフルアドレッシング可能なナノ構造物を実現する ことができる。なお、図 11Bでは各 DNAタイルを四角で概念的に示している。この方 法では、比較的確実に自己集合させることが可能であるが、実験操作が煩雑である 上に、上述と同様に DNAタイルの濃度や温度等の環境パラメータの制御が困難で あり、且つ大きなナノ構造物が作製できないという問題があった。  On the other hand, as another approach, stepwise self-assembly, in which two DNA tiles are placed in a test tube to advance self-assembly hierarchically, has been studied (for example, non-patent literature). 2). For example, as shown in FIG. 11A, by adding DNA tiles with index numbers 1 to 16 in a hierarchical manner, a fully-addressable nanostructure with 4 × 4 vertical and horizontal DNA tiles as shown in FIG. 11B can be obtained. It can be realized. In FIG. 11B, each DNA tile is conceptually shown as a square. In this method, self-assembly can be performed relatively reliably. However, the experimental operation is complicated, and it is difficult to control environmental parameters such as DNA tile concentration and temperature, as described above. There was a problem that nanostructures could not be produced.
非特許文献 1 Non-patent literature 1
Paul W. K. Rothemuna, Nick Papadakins, Eric Winfree, Algorithmic ¾elf— Assembly of DNA Sierpinski Triangles.", PLoS Biology, 2(12) e424, 2004  Paul W. K. Rothemuna, Nick Papadakins, Eric Winfree, Algorithmic ¾elf— Assembly of DNA Sierpinski Triangles. ", PLoS Biology, 2 (12) e424, 2004
非特許文献 2 Non-Patent Document 2
T. Η. LaBean et al., "Stepwise DNA Self-Assembly of Fixed-size Nanostructures. , Proc. FNANO'05, pp.179- 181  T. Η. LaBean et al., "Stepwise DNA Self-Assembly of Fixed-size Nanostructures., Proc. FNANO'05, pp.179- 181
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
本発明の技術課題は、このような従来の実情に鑑みて提案されたものであり、複雑 で大きなナノ構造物を、欠陥を殆ど生じさせることなく所望の場所に作製することが可 能なナノ構造物の作製装置及びその方法を提供することにある。 The technical problem of the present invention has been proposed in view of such a conventional situation, and it is possible to fabricate a complicated and large nanostructure at a desired place with almost no defects. An object of the present invention is to provide a device and a method for producing an effective nanostructure.
課題を解決するための手段  Means for solving the problem
[0004] 上述した目的を達成するために、本発明に係るナノ構造物の作製装置は、マイクロ チャネル内でナノ構造物を作製するナノ構造物の作製装置であって、上記マイクロ チャネルは、複数の領域に分割されており、上記マイクロチャネルの少なくとも一部の 領域に対して、上記ナノ構造物の自己集合可能な構成要素を含む溶液を供給する 供給手段と、上記マイクロチャネルの下流に設けられ、上記ナノ構造物の種結晶が 固定化される反応槽とを備えることを特徴とする。  [0004] In order to achieve the above-described object, a nanostructure fabrication apparatus according to the present invention is a nanostructure fabrication apparatus that creates a nanostructure in a microchannel, and the microchannel includes a plurality of microchannels. A supply means for supplying a solution containing self-assembling components of the nanostructure to at least a part of the microchannel, and provided downstream of the microchannel. And a reaction vessel in which the seed crystal of the nanostructure is immobilized.
また、上述した目的を達成するために、本発明に係るナノ構造物の作製方法は、マ イクロチャネル内でナノ構造物を作製するナノ構造物の作製方法であって、上記マイ クロチャネルは、複数の領域に分割されており、上記マイクロチャネルの少なくとも一 部の領域に対して、上記ナノ構造物の自己集合可能な構成要素を含む溶液を供給 し、上記マイクロチャネルの下流に設けられ、上記ナノ構造物の種結晶が固定ィ匕され た反応槽で上記ナノ構造物を作製することを特徴とする。  In order to achieve the above-described object, a method for manufacturing a nanostructure according to the present invention is a method for manufacturing a nanostructure in a microchannel, and the microchannel includes: Divided into a plurality of regions, a solution containing self-assembled components of the nanostructure is supplied to at least a portion of the microchannel, and the solution is provided downstream of the microchannel. The nanostructure is produced in a reaction vessel in which a seed crystal of the nanostructure is fixed.
発明の効果  The invention's effect
[0005] 本発明に係るナノ構造物の作製装置及びその方法によれば、複雑で大きなナノ構 造物を、欠陥を殆ど生じさせることなく所望の場所に作製することが可能とされる。 図面の簡単な説明  [0005] According to the nanostructure manufacturing apparatus and method according to the present invention, a complex and large nanostructure can be manufactured at a desired place with almost no defects. Brief Description of Drawings
[0006] [図 1]図 1は、本実施の形態におけるマイクロ流体デバイスの外観構成を示す図であ る。  [0006] FIG. 1 is a diagram showing an external configuration of a microfluidic device in the present embodiment.
[図 2]図 2は、マイクロチャネルの形状を示す図である。  FIG. 2 is a diagram showing the shape of a microchannel.
[図 3]図 3は、マイクロチャネル内の位置と毛管力との関係を示す図である。  FIG. 3 is a diagram showing the relationship between the position in the microchannel and the capillary force.
[図 4]図 4は、マイクロチャネルのサービスポートに溶液を滴下した場合の溶液の流れ を示す図である。  [FIG. 4] FIG. 4 is a diagram showing the flow of the solution when the solution is dropped into the service port of the microchannel.
[図 5]図 5は、ヒータに 24Vの電圧を印加した際のマイクロ流体デバイスの温度プロフ アイルを示す図である。  FIG. 5 is a diagram showing a temperature profile of the microfluidic device when a voltage of 24 V is applied to the heater.
[図 6]図 6A及び図 6Bは、従来のワンポット反応によるステップワイズセルフアセンブリ と、マイクロ流体デバイスを用いたステップワイズセルフアセンブリとを示す図である。 [図 7]図 7は、マイクロ流体デバイスを用 、てアルゴリズミックセルフアセンブリを階層 的に行った場合に作製されるナノ構造物の一例を示す図である。 FIG. 6A and FIG. 6B are diagrams showing a conventional stepwise self-assembly using a one-pot reaction and a stepwise self-assembly using a microfluidic device. [FIG. 7] FIG. 7 is a diagram showing an example of a nanostructure produced when hierarchical algorithmic self-assembly is performed using a microfluidic device.
[図 8]図 8は、複数の領域に分割されたマイクロチャネルの一例を示す図である。 FIG. 8 is a diagram showing an example of a microchannel divided into a plurality of regions.
[図 9]図 9は、複数の領域に分割されたマイクロチャネルの他の例を示す図である。 FIG. 9 is a diagram showing another example of a microchannel divided into a plurality of regions.
[図 10]図 10は、 DNAタイルの一例を模式的に示す図である。 FIG. 10 is a diagram schematically showing an example of a DNA tile.
[図 11]図 11 A及び図 11Bは、従来のステップワイズセルフアセンブリによってナノ構 造物を作製する方法を説明するための図である。 FIG. 11A and FIG. 11B are diagrams for explaining a method for producing a nanostructure by a conventional stepwise self-assembly.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細 に説明する。この実施の形態は、本発明を、マイクロチャネル (直径数/ z m〜数百 m程度の微細な流路)内の反応場で DNAタイルを自己集合させ、ナノ構造物を作製 するマイクロ流体デバイスに適用したものである。  Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. In this embodiment, the present invention is applied to a microfluidic device in which DNA tiles are self-assembled in a reaction field in a microchannel (diameter / zm to several hundreds of m) and a nanostructure is produced. It is applied.
先ず、本実施の形態におけるマイクロ流体デバイスの外観構成を図 1に示す。図 1 に示すように、本実施の形態におけるマイクロ流体デバイス 1は、主としてガラス基板 10上にシリコン基板 11が積層されてなる。シリコン基板 11の中央には凹部 12が形 成されており、凹部 12の底面には、 DNAタイルが溶解された溶液を流すためのマイ クロチャネル 13〜13 (以下、特に区別する必要がない場合、「マイクロチャネル 13」  First, the external configuration of the microfluidic device in the present embodiment is shown in FIG. As shown in FIG. 1, the microfluidic device 1 in the present embodiment is mainly formed by laminating a silicon substrate 11 on a glass substrate 10. A recess 12 is formed in the center of the silicon substrate 11, and the bottom surface of the recess 12 is a microchannel 13 to 13 for flowing a solution in which a DNA tile is dissolved (hereinafter, there is no need to distinguish between them). , "Microchannel 13"
1 3  13
と総称する。)が形成されている。なお、図 1ではマイクロチャネル 13の数を 3つとして いるが、この数に限定されないことは勿論である。このマイクロチャネル 13は、作製途 中又は作製後のナノ構造物の結晶を AFM (Atomic Force Microscope)で観察可能 とするため、表面がオープンな形状とされている。このようにオープンな形状とするこ とに伴う溶液の蒸発を抑えるため、凹部 12には PCR (Polymerase Chain Reaction)で 用いられるミネラルオイル等のオイルが充填される。また、自己集合の際の温度を制 御するため、ガラス基板 10とシリコン基板 11との間には、 ITO (Indium Tin Oxide)製 のヒータ 14及び温度センサ 15〜15 (以下、特に区別する必要がない場合、「温度 Collectively. ) Is formed. In FIG. 1, the number of microchannels 13 is three, but it is needless to say that the number is not limited to this number. The microchannel 13 has an open surface so that a nanostructure crystal during or after fabrication can be observed with an AFM (Atomic Force Microscope). In order to suppress the evaporation of the solution due to such an open shape, the recess 12 is filled with oil such as mineral oil used in PCR (Polymerase Chain Reaction). In addition, in order to control the temperature during self-assembly, a heater 14 made of ITO (Indium Tin Oxide) and a temperature sensor 15 to 15 (hereinafter, it is necessary to distinguish between the glass substrate 10 and the silicon substrate 11). If there is no
1 4  14
センサ 15」と総称する。)が設けられている。 Collectively referred to as “Sensor 15”. ) Is provided.
上述したマイクロチャネル 13の形状を図 2に示す。マイクロチャネル 13は、図 2に示 すように、 DNAタイルが溶解された溶液を滴下するためのサービスポート 20と、後述 する機能を有するストップバルブ 21と、 DNAタイルが自己集合する反応場であるリア クシヨンチャンバ 22と、キヤビラリ一ポンプ 23と力も構成されている。このうちリアクショ ンチャンバ 22には、ナノ構造物の種結晶となる初期ストランドが固定ィ匕されている。 このマイクロチャネル 13は、全体としては、サービスポート 20の末端からキヤビラリ 一ポンプ 23にかけて次第に流路幅が狭くなり、その結果、毛管力が強くなるように設 計されており、この毛管力によりサービスポート 20からキヤビラリ一ポンプ 23への溶液 の流れが生じる。以下、サービスポート 20の方向を上流と表現し、キヤビラリ一ポンプ 23の方向を下流と表現する。 The shape of the microchannel 13 described above is shown in FIG. As shown in FIG. 2, the microchannel 13 includes a service port 20 for dropping a solution in which a DNA tile is dissolved, and a service port 20 described later. A stop valve 21 having a function to perform a reaction, a reaction chamber 22 that is a reaction field in which DNA tiles self-assemble, and a mechanical pump 23 are also configured. Among these, the reaction chamber 22 is fixed with an initial strand that becomes a seed crystal of the nanostructure. As a whole, the microchannel 13 is designed so that the flow path width gradually becomes narrower from the end of the service port 20 to the first pump 23, and as a result, the capillary force is increased. There is a flow of solution from port 20 to the cylinder pump 23. Hereinafter, the direction of the service port 20 is expressed as upstream, and the direction of the mechanical pump 23 is expressed as downstream.
マイクロチャネル 13内の位置と毛管力との関係を図 3に示す。図 3に示すように、サ 一ビスポート 20では、溶液をキヤビラリ一ポンプ 23へと導くために、下流に進むに従 つて流路幅が狭くなり、それに応じて毛管力も強くなつている。ストップバルブ 21では 、流路幅が急激に狭くなるのに応じて毛管力が急激に強くなつており、リアクションチ ヤンバ 22では、流路幅が若干広くなるのに応じて毛管力が若干弱くなつている。そし て、キヤビラリ一ポンプ 23では、流路幅が再びストップバルブ 21と同じ幅まで狭くなり 、それに応じて毛管力もストップバルブ 21の位置と同程度に強くなつている。  FIG. 3 shows the relationship between the position in the microchannel 13 and the capillary force. As shown in FIG. 3, in the service port 20, in order to guide the solution to the chiral pump 23, the flow path width becomes narrower as it goes downstream, and the capillary force also becomes stronger accordingly. In the stop valve 21, the capillary force suddenly increases as the flow path width suddenly narrows. In the reaction chamber 22, the capillary force decreases slightly as the flow path width increases slightly. ing. In the first pump 23, the flow path width is narrowed again to the same width as the stop valve 21, and accordingly, the capillary force becomes as strong as the position of the stop valve 21.
このようなマイクロチャネル 13において、サービスポート 20に溶液を滴下した場合 の溶液の流れについて図 4を用いて説明する。なお、この図 4においては、毛管力が 働く方向を矢印で表し、毛管力の強さを矢印の大きさで表す。サービスポート 20に対 してピペットで溶液を滴下すると(同図 (A) )、溶液は毛管力によって下流方向に流 れる(同図(B) )。溶液の最後尾力ストップノ レブ 21に到達すると、キヤピラリーボン プ 23における下流方向への毛管力とストップバルブ 21における上流方向への毛管 力とが釣り合い、溶液はリアクションチャンバ 22を含む周辺領域で滞留する(同図(C ) )。次に、再びサービスポート 20に対してピペットで溶液を滴下すると(同図(D) )、 ストップバルブ 21の位置での境界面がなくなり、溶液は毛管力によって下流方向に 流れる(同図(E) )。そして、溶液の最後尾がストップバルブ 21に到達すると、溶液は リアクションチャンバ 22を含む周辺領域で滞留する(同図(F) )。このように、サービス ポート 20に溶液を滴下する毎に、サービスポート 20からキヤビラリ一ポンプ 23への溶 液の流れが生じる。 本実施の形態におけるマイクロ流体デバイス 1では、サービスポート 20に DNAタイ ルが溶解された溶液を滴下し、 DNAタイルの濃度が一定とされた溶液の流れ中で、 リアクションチャンバ 22に固定ィ匕した種結晶の周囲にナノ構造物の結晶を成長させ る。このように、溶液の流れ中で結晶を成長させることで、種結晶の周囲の不要な副 生成物が押し流され、大きなナノ構造物を作製することができる。また、溶液の流れ に沿って結晶を成長させることで、結晶の歪みを抑制することができる。さらに、この ようなマイクロ流体デバイス 1によれば、サービスポート 20にリガーゼを滴下して DNA タイルを連結したり、制限酵素を滴下して特定部位を切断したりするなど、従来のワン ポット反応では困難な反応を自由に扱うことができる。 The flow of the solution when the solution is dropped into the service port 20 in the microchannel 13 will be described with reference to FIG. In FIG. 4, the direction in which the capillary force acts is indicated by an arrow, and the strength of the capillary force is indicated by the size of the arrow. When the solution is dropped onto the service port 20 with a pipette (Fig. (A)), the solution flows downstream by capillary force (Fig. (B)). When reaching the final stop force 21 of the solution, the capillary force in the downstream direction of the capillary pump 23 is balanced with the capillary force in the upstream direction of the stop valve 21, and the solution stays in the peripheral region including the reaction chamber 22. (Figure (C)). Next, when the solution is dropped again with the pipette to the service port 20 (FIG. (D)), the boundary surface at the position of the stop valve 21 disappears, and the solution flows downstream by capillary force (FIG. (E )). Then, when the tail end of the solution reaches the stop valve 21, the solution stays in the peripheral region including the reaction chamber 22 ((F) in the figure). Thus, each time a solution is dropped into the service port 20, a flow of the solution from the service port 20 to the chiral pump 23 occurs. In the microfluidic device 1 in the present embodiment, a solution in which DNA tiles are dissolved is dropped into the service port 20 and fixed in the reaction chamber 22 in the flow of the solution in which the concentration of DNA tiles is constant. A nanostructure crystal is grown around the seed crystal. Thus, by growing the crystal in the flow of the solution, unnecessary by-products around the seed crystal are washed away, and a large nanostructure can be produced. In addition, crystal growth can be suppressed by growing the crystal along the flow of the solution. Furthermore, according to such a microfluidic device 1, conventional one-pot reactions such as dropping ligase into the service port 20 to connect DNA tiles, or dropping restriction enzymes to cleave specific sites, etc. Difficult reactions can be handled freely.
また、 DNAタイルの自己集合によりナノ構造物を作製する際には、 DNAタイルの 濃度のみならず、反応時の温度も重要な環境パラメータとなる力 本実施の形態に おけるマイクロ流体デバイス 1では、ヒータ 14及び温度センサ 15により、リアクション チャンバ 22の温度を制御することができる。具体的にヒータ 14に 24Vの電圧を印加 した際のマイクロ流体デバイス 1の温度プロファイルを図 5に示す。図 5から分力るよう に、 3つのマイクロチャネル 13〜13において均一な温度場を得ることができる。反  When nanostructures are produced by self-assembly of DNA tiles, not only the concentration of DNA tiles but also the temperature at the time of reaction is an important environmental parameter. In the microfluidic device 1 in this embodiment, The temperature of the reaction chamber 22 can be controlled by the heater 14 and the temperature sensor 15. Specifically, Figure 5 shows the temperature profile of the microfluidic device 1 when a voltage of 24 V is applied to the heater 14. As shown in FIG. 5, a uniform temperature field can be obtained in the three microchannels 13-13. Anti
1 3  13
応時の温度としては、 DNAタイル同士が結合可能な最も高い温度が好ましい。これ は、相補的でない粘着末端同士の結合力は相補的な粘着末端同士の結合力よりも 弱いため、温度を可能な限り高くすることで欠陥を抑制することができるためである。 このためには、精密な温度制御が必要であるが、マイクロ流体デバイス 1は、単位容 積当たりの表面積が非常に大きいため、熱交換の効率が極めて高ぐ非常に精密な 温度制御を容易に行うことができる。 As the temperature at the time, the highest temperature at which DNA tiles can be bonded to each other is preferable. This is because the bonding force between the non-complementary sticky ends is weaker than that between the complementary sticky ends, and thus defects can be suppressed by increasing the temperature as much as possible. This requires precise temperature control, but the microfluidic device 1 has a very large surface area per unit volume, making it extremely easy to achieve very precise temperature control with extremely high heat exchange efficiency. It can be carried out.
このようなマイクロ流体デバイス 1を用いてアルゴリズミックセルフアセンブリを行う場 合には、複数の DNAタイル(DNAタイルセット)が溶解された溶液をサービスポート 20に滴下することになる。これにより、リアクションチャンバ 22に固定ィ匕した初期ストラ ンドを種結晶として、周囲の DNAタイルの濃度を一定に保ちながらナノ構造物の結 晶を成長させ、欠陥率が理論通りに極めて低!ヽ大きなナノ構造物を作製することが できる。  When performing algorithmic self-assembly using such a microfluidic device 1, a solution in which a plurality of DNA tiles (DNA tile sets) are dissolved is dropped onto the service port 20. As a result, the initial strand fixed in the reaction chamber 22 is used as a seed crystal to grow nanostructure crystals while keeping the concentration of the surrounding DNA tile constant, and the defect rate is extremely low as theoretically! Large nanostructures can be fabricated.
また、マイクロ流体デバイス 1を用いてステップワイズセルフアセンブリを行う場合に は、それぞれ 1種類の DNAタイルが溶解された溶液を順次サービスポート 20に滴下 することになる。このように、 DNAタイルを 1種類ずつ滴下することにより、 DNAタイ ルの粘着末端の配列が極めて限定されたものであっても、従来のワンポット反応では 不可能な階層的なナノ構造物を作製することができる。 When performing stepwise self-assembly using microfluidic device 1. In this case, a solution in which one type of DNA tile is dissolved is dropped into the service port 20 sequentially. In this way, by dropping DNA tiles one by one, even if the sequence of the sticky ends of the DNA tile is extremely limited, a hierarchical nanostructure that is impossible with the conventional one-pot reaction is created. can do.
一例として、図 6に示すように白、黒、灰色の 3種類の DNAタイルが存在し、白及び 黒の DNAタイルは全く同じ配列の粘着末端を有し、灰色の DNAタイルはそれらを 繋ぐコネクタとなる配列の粘着末端を有しているという状況を想定する。なお、図 6で は、四角で表した DNAタイルの各片の形状(凹凸)で粘着末端の配列を概念的に示 している。従来のワンポット反応では、図 6Aに示すように、 3種類の DNAタイルがラ ンダムに集合したナノ構造物しか得ることができない。これに対して、本実施の形態 におけるマイクロ流体デバイス 1を用いた場合には、図 6Bに示すように、各色の DN Aタイルが層状に集合したナノ構造物を作製することができる。なお、各色の DNAタ ィルを流す前に DN Aタイルを含まな!/、水を流し、結合しなかった余分な DN Aタイル を除去することが好ましい。  As an example, there are three types of white, black, and gray DNA tiles, as shown in Figure 6. White and black DNA tiles have sticky ends with exactly the same arrangement, and the gray DNA tile is a connector that connects them. Assume a situation where the sequence has sticky ends of the sequence. In addition, in FIG. 6, the arrangement of the sticky ends is conceptually shown by the shape (unevenness) of each piece of the DNA tile represented by a square. In the conventional one-pot reaction, as shown in Fig. 6A, only a nanostructure in which three types of DNA tiles are randomly assembled can be obtained. On the other hand, when the microfluidic device 1 according to the present embodiment is used, as shown in FIG. 6B, a nanostructure in which the DNA tiles of each color are assembled in layers can be produced. Before flowing the DNA tile of each color, it is preferable not to include the DNA tile! /, It is preferable to flow water to remove the extra DNA tile that has not been combined.
また、これを拡張して、マイクロ流体デバイス 1を用いてアルゴリズミックセルファセン プリを階層的に行うことも可能である。この場合、例えば異なる状態遷移ルールに対 応した偶数層用の DN Aタイルセットと奇数層用の DN Aタイルセットとを交互にサー ビスポート 20に滴下することにより、図 7に示すような複雑なパターンのナノ構造物を 作製することができる。特に、マイクロ流体デバイス 1によれば、各 DNAタイルセット で粘着末端の配列を同じにすることができるため、粘着末端の配列数を増やす必要 がない。  It is also possible to extend this and perform algorithmic self-assembly using the microfluidic device 1 in a hierarchical manner. In this case, for example, by evenly dropping a DNA tile set for even layers and a DNA tile set for odd layers corresponding to different state transition rules to the service port 20, the complex as shown in FIG. Patterned nanostructures can be fabricated. In particular, according to the microfluidic device 1, since the sequences of the sticky ends can be made the same in each DNA tile set, it is not necessary to increase the number of sticky end sequences.
さらに、このマイクロ流体デバイス 1においては、特定の DNA配列に特異的に結合 する各種のタンパク質をサービスポート 20に滴下するようにしても構わない。タンパク 質はそれぞれ固有の機能を有するため、それを DNAタイル力もなるナノ構造物に結 合させること〖こより、有用な機能を有するシステム、例えば、特定の分子を分解するた めに必要な酵素群 (タンパク質群)が最適に配置された DNA格子等を構築すること ができる。  Furthermore, in the microfluidic device 1, various proteins that specifically bind to a specific DNA sequence may be dropped onto the service port 20. Since each protein has a unique function, it is necessary to bind it to a nanostructure that also has DNA tiling power, so that a system with a useful function, for example, a group of enzymes necessary to degrade a specific molecule A DNA lattice or the like in which (protein group) is optimally arranged can be constructed.
また、マイクロ流体デバイス 1においては、溶液条件 (金属イオン濃度や、他の DN A配列の存在)によって形を変える各種の DNAァクチユエータ要素をサービスポート 20に滴下するようにしても構わない。このような DNAァクチユエータ要素を DNAタイ ルの間に組み込むことで、例えば特定の分子のみを認識して通す格子 (網目の大き さを動的に変える)でできたフィルタを構築することができる。 In the microfluidic device 1, the solution conditions (metal ion concentration and other DN Various DNA effector elements whose shapes change depending on the presence of the A sequence may be dropped on the service port 20. By incorporating such a DNA actor element between DNA tiles, for example, it is possible to construct a filter made of a lattice (the size of the mesh is dynamically changed) that recognizes and passes only specific molecules.
また、マイクロ流体デバイス 1においては、金属コロイド (例えば金コロイド)のナノ粒 子に DNA結合用のリンカ一を結合させたものをサービスポート 20に滴下するように しても構わない。これを一列に並べることでナノワイヤになり配線パターンを形成する ことができる。  In the microfluidic device 1, a metal colloid (for example, gold colloid) nanoparticle bonded with a DNA binding linker may be dropped onto the service port 20. By arranging them in a row, it becomes a nanowire and a wiring pattern can be formed.
また、マイクロ流体デバイス 1においては、化学的に合成した各種のナノ電子デバイ ス (整流、増幅効果を有する電子素子)に DNA結合用のリンカ一を結合させたものを サービスポート 20に滴下するようにしても構わな!/、。これを一定のパターンで並べる ことにより、演算回路やメモリ回路を構築することができる。  In the microfluidic device 1, various chemically synthesized nanoelectronic devices (electronic elements having rectification and amplification effects) bonded with a DNA binding linker are dropped onto the service port 20. Anyway! Arranging them in a certain pattern makes it possible to construct an arithmetic circuit and a memory circuit.
ところで、図 2では、各マイクロチャネル 13のサービスポートの数を 1つとして説明し たが、このような構成に限定されるものではなぐマイクロチャネルを複数の領域に分 割し、各領域に対してサービスポートを設けるようにしても構わない。この場合、複数 の 1本鎖 DNAからの DNAタイル形成→2つの DNAタイルからのサブ構造 A形成→ 2つのサブ構造 Aからのサブ構造 B形成→ · · ·■目的のナノ構造物、という各段階を 上述の各領域で行わせることができる。なお、各領域はそれぞれ最適温度に制御さ れる。一般的には、ナノ構造物を作製する最初の段階を高温にし、段階が進むに従 つて低温にすることが好まし 、。  In FIG. 2, the number of service ports of each microchannel 13 has been described as one. However, the present invention is not limited to such a configuration, and the microchannel is divided into a plurality of areas, and each area is divided into a plurality of areas. A service port may be provided. In this case, DNA tile formation from multiple single-stranded DNAs → Substructure A formation from two DNA tiles → Substructure B formation from two substructures A → Each target nanostructure Steps can be performed in each of the areas described above. Each region is controlled to an optimum temperature. In general, it is preferable to increase the initial stage of fabrication of nanostructures to a high temperature and to a low temperature as the stage progresses.
このようなマイクロチャネルの一例を図 8に示す。図 8に示すマイクロチャネル 30は、 第 1〜第 4の領域 31〜31に分割されており、第 1の領域 31は高温に、第 2,第 3の  An example of such a microchannel is shown in FIG. The microchannel 30 shown in FIG. 8 is divided into first to fourth regions 31 to 31, and the first region 31 is heated to a high temperature and the second to third regions 31 to 31 are divided.
1 4 1 領域 31 , 31は中温に、第 4の領域 31は低温に制御される。また、サービスポート 3 The 1 4 1 regions 31 and 31 are controlled at a medium temperature, and the fourth region 31 is controlled at a low temperature. Service port 3
2 3 4 2 3 4
2, 32には 1本鎖 DNAが溶解された溶液が滴下され、サービスポート 32には DN A solution in which single-stranded DNA is dissolved is dropped into 2 and 32, and the service port 32 has a DN.
1 2 3 one two Three
Aタイルが溶解された溶液が滴下され、サービスポート 32には DNAタイルのサブ構  The solution in which the A tile is dissolved is dropped, and the service port 32 has a sub-structure of the DNA tile.
4  Four
造が溶解された溶液が滴下される。このようなマイクロチャネル 30において、第 2の領 域 31では複数の 1本鎖 DNAから DNAタイルが形成され、第 3の領域 31では 2つThe solution in which the structure is dissolved is dropped. In such a microchannel 30, a DNA tile is formed from a plurality of single-stranded DNAs in the second region 31, and two in the third region 31.
2 3 の DNAタイルから DNAタイルのサブ構造が形成され、第 4の領域 31では 2つの D NAタイルのサブ構造力 ナノ構造物が形成され、そのナノ構造物がリアクションチヤ ンバ 33で固定ィ匕される。結晶化できな力つた構成要素はマイクロポンプ 34によって 還流され、第 1の領域 31で 1本鎖 DNAに分解される。なお、全体の溶液の流れは マイクロポンプ 35によって生じる。 2 3 DNA tiles form the DNA tile substructure, and in the fourth region 31 there are 2 D Sub-structural strength of NA tiles Nanostructures are formed and fixed by reaction chamber 33. Powerful components that cannot be crystallized are refluxed by the micropump 34 and decomposed into single-stranded DNA in the first region 31. The entire solution flow is generated by the micropump 35.
また、このようなマイクロチャネルの他の例を図 9に示す。図 9に示すマイクロチヤネ ル 40は、第 1〜第 9の領域 41〜41 に分割されており、第 1,第 3,第 6の領域 41 ,  Another example of such a microchannel is shown in FIG. The microchannel 40 shown in FIG. 9 is divided into first to ninth regions 41 to 41, and the first, third, and sixth regions 41, 41,
1 9 1 1 9 1
41 , 41 ίま高温に、第 2,第 4,第 5,第 7,第 8の領域 41 , 41 , 41 , 41 , 41 ίま中The second, fourth, fifth, seventh and eighth regions 41, 41, 41, 41, 41 ί
3 6 2 4 5 7 8 温に、第 9の領域 41は低温に制御される。また、サービスポート 42〜42には DN 3 6 2 4 5 7 8 The ninth region 41 is controlled to a low temperature. Also, service ports 42-42 have DN
9 1 6  9 1 6
Αタイルが溶解された溶液が滴下され、サービスポート 42には DNAタイルが溶解さ れた溶液が滴下される。このようなマイクロチャネル 40において、第 1,第 3,第 6の領 域 41 , 41 , 41では完全に 1本鎖 DNAに分解される。また、第 2,第 4,第 7の領域 The solution in which the tile is dissolved is dropped, and the solution in which the DNA tile is dissolved is dropped in the service port 42. In such a microchannel 40, the first, third, and sixth regions 41, 41, and 41 are completely decomposed into single-stranded DNA. The second, fourth, and seventh areas
1 3 6 1 3 6
41, 41, 41では複数の 1本鎖 DNAから DNAタイルが形成され、第 5,第 8の領 In 41, 41, and 41, DNA tiles are formed from a plurality of single-stranded DNAs, and the fifth and eighth regions are formed.
2 4 7 2 4 7
域 41, 41では 2つの DNAタイルから DNAタイルのサブ構造が形成され、第 9の領In regions 41 and 41, the DNA tile substructure is formed from the two DNA tiles, and the ninth region
5 8 5 8
域 41では 2つの DNAタイルのサブ構造カゝらナノ構造物が形成され、そのナノ構造In region 41, two DNA tile substructures and nanostructures are formed.
9 9
物がリアクションチャンバ 43で固定ィ匕される。なお、全体の溶液の流れはマイクロポ ンプ 44によって生じる。 Objects are fixed in the reaction chamber 43. The entire solution flow is generated by the micro pump 44.
この図 8,図 9に示すように、 DNAタイル自体もマイクロチャネル内で作製すること で、より欠陥率の低 、ナノ構造物を作製することが可能となる。  As shown in Figs. 8 and 9, the DNA tile itself can also be fabricated in the microchannel, thereby making it possible to fabricate nanostructures with a lower defect rate.
なお、この図 8,図 9においても、サービスポートには、 1本鎖 DNAや DNAタイル等 の他、リガーゼ、制限酵素等の酵素群や、タンパク質、或いは DNAァクチユエータ要 素や各種のナノ粒子、ナノデバイスを滴下するようにしても構わな 、。  In FIG. 8 and FIG. 9, the service port includes not only single-stranded DNA and DNA tile, but also enzyme groups such as ligase and restriction enzyme, protein, DNA activator element and various nanoparticles, It ’s okay to drop nanodevices.
以上、本発明を適用した最良の形態について説明したが、本発明は上述した実施 の形態のみに限定されるものではなぐ本発明の要旨を逸脱しない範囲において種 々の変更が可能であることは勿論である。  Although the best mode to which the present invention is applied has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. Of course.
例えば、上述した実施の形態では、ナノ構造物の構成要素となる DNA分子のモチ ーフとして DN Aタイルを例に挙げて説明した力 DNAジャンクション、 DNA多角形 、 DNA多面体等の他のモチーフを用いても構わない。また、構成要素が 1本鎖 DN A又は DNA分子に限られるものではなぐ自己集合可能なものであれば、 1本鎖 RN A又は RNA分子やタンパク質等の他の構成要素を用いても構わな 、。 For example, in the above-described embodiment, other motifs such as DNA junctions, DNA polygons, DNA polyhedra, etc., which are explained using DNA tiles as examples of DNA molecules that are constituent elements of nanostructures, are used. You may use. If the component is not limited to single-stranded DNA or DNA molecules but can be self-assembled, single-stranded RN A or other components such as RNA molecules or proteins may be used.

Claims

請求の範囲 The scope of the claims
[1] 1.マイクロチャネル内でナノ構造物を作製するナノ構造物の作製装置であって、 上記マイクロチャネルは、複数の領域に分割されており、  [1] 1. A nanostructure fabrication apparatus for fabricating a nanostructure in a microchannel, wherein the microchannel is divided into a plurality of regions,
上記マイクロチャネルの少なくとも一部の領域に対して、上記ナノ構造物の自己集 合可能な構成要素を含む溶液を供給する供給手段と、  Supply means for supplying a solution containing a self-assembled component of the nanostructure to at least a partial region of the microchannel;
上記マイクロチャネルの下流に設けられ、上記ナノ構造物の種結晶が固定ィ匕される 反応槽と  A reaction vessel provided downstream of the microchannel and in which a seed crystal of the nanostructure is fixed;
を備えることを特徴とするナノ構造物の作製装置。  An apparatus for producing a nanostructure, comprising:
[2] 2.上記マイクロチャネルの各領域及び上記反応槽の温度をそれぞれ制御する温度 制御手段をさらに備えることを特徴とする請求の範囲第 1項記載のナノ構造物の作製 装置。  [2] 2. The apparatus for producing a nanostructure according to claim 1, further comprising temperature control means for controlling the temperature of each region of the microchannel and the temperature of the reaction vessel.
[3] 3.上記反応槽は、その一部が開放された形状であることを特徴とする請求の範囲第 [3] 3. The reaction tank has a shape in which a part thereof is opened.
1項記載のナノ構造物の作製装置。 A nanostructure production apparatus according to item 1.
[4] 4.上記自己集合可能な構成要素は、 1本鎖 DNA又は複数の 1本鎖 DNAからなる[4] 4. The self-assembling component consists of single-stranded DNA or multiple single-stranded DNAs.
DNA分子であることを特徴とする請求の範囲第 1項記載のナノ構造物の作製装置。 2. The nanostructure production apparatus according to claim 1, which is a DNA molecule.
[5] 5.上記 DNA分子は、 DNAタイルであることを特徴とする請求の範囲第 4項記載の ナノ構造物の作製装置。 [5] 5. The apparatus for producing a nanostructure according to claim 4, wherein the DNA molecule is a DNA tile.
[6] 6.マイクロチャネル内でナノ構造物を作製するナノ構造物の作製方法であって、 上記マイクロチャネルは、複数の領域に分割されており、 [6] 6. A nanostructure fabrication method for fabricating a nanostructure in a microchannel, wherein the microchannel is divided into a plurality of regions,
上記マイクロチャネルの少なくとも一部の領域に対して、上記ナノ構造物の自己集 合可能な構成要素を含む溶液を供給し、上記マイクロチャネルの下流に設けられ、 上記ナノ構造物の種結晶が固定化された反応槽で上記ナノ構造物を作製する ことを特徴とするナノ構造物の作製方法。  A solution containing a self-assembled component of the nanostructure is supplied to at least a partial region of the microchannel, provided downstream of the microchannel, and the seed crystal of the nanostructure is fixed. A method for producing a nanostructure, characterized in that the nanostructure is produced in a structured reaction tank.
[7] 7.上記マイクロチャネルの各領域及び上記反応槽の温度がそれぞれ制御されること を特徴とする請求の範囲第 6項記載のナノ構造物の作製方法。 [7] 7. The method for producing a nanostructure according to claim 6, wherein the temperature of each region of the microchannel and the temperature of the reaction vessel are respectively controlled.
[8] 8.上記反応槽は、その一部が開放された形状であることを特徴とする請求の範囲第[8] 8. The reaction tank has a shape in which a part thereof is opened.
6項記載のナノ構造物の作製方法。 6. A method for producing a nanostructure according to item 6.
[9] 9.上記自己集合可能な構成要素は、 1本鎖 DNA又は複数の 1本鎖 DNAからなる DNA分子であることを特徴とする請求の範囲第 6項記載のナノ構造物の作製方法。 [9] 9. The self-assembling component consists of single-stranded DNA or multiple single-stranded DNAs. 7. The method for producing a nanostructure according to claim 6, wherein the nanostructure is a DNA molecule.
10.上記 DNA分子は、 DNAタイルであることを特徴とする請求の範囲第 9項記載の ナノ構造物の作製方法。 10. The method for producing a nanostructure according to claim 9, wherein the DNA molecule is a DNA tile.
PCT/JP2006/311237 2005-06-03 2006-06-05 Apparatus and method for fabricating nanoconstruct WO2006129845A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005164203A JP2006334741A (en) 2005-06-03 2005-06-03 Nanostructure fabrication apparatus and method
JP2005-164203 2005-06-03

Publications (1)

Publication Number Publication Date
WO2006129845A1 true WO2006129845A1 (en) 2006-12-07

Family

ID=37481759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311237 WO2006129845A1 (en) 2005-06-03 2006-06-05 Apparatus and method for fabricating nanoconstruct

Country Status (2)

Country Link
JP (1) JP2006334741A (en)
WO (1) WO2006129845A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2230504B1 (en) * 2008-01-08 2013-04-24 Nippon Telegraph and Telephone Corporation Capillary pump unit and flow cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522963A (en) * 2000-02-18 2003-07-29 アクララ バイオサイエンシーズ, インコーポレイテッド Multi-site reaction device and method
US20040091399A1 (en) * 2002-11-11 2004-05-13 Chung Kwang Hyo Device for controlling fluid using surface tension
WO2004050967A1 (en) * 2002-12-03 2004-06-17 Motorola Inc Linkage of nanomorphic carbon to a nucleic acid
JP2004194652A (en) * 2002-12-06 2004-07-15 Dainippon Ink & Chem Inc Microfluidic device having soluble substance attachment channel and method of using the same
JP2005091246A (en) * 2003-09-19 2005-04-07 Fujitsu Ltd Device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522963A (en) * 2000-02-18 2003-07-29 アクララ バイオサイエンシーズ, インコーポレイテッド Multi-site reaction device and method
US20040091399A1 (en) * 2002-11-11 2004-05-13 Chung Kwang Hyo Device for controlling fluid using surface tension
WO2004050967A1 (en) * 2002-12-03 2004-06-17 Motorola Inc Linkage of nanomorphic carbon to a nucleic acid
JP2004194652A (en) * 2002-12-06 2004-07-15 Dainippon Ink & Chem Inc Microfluidic device having soluble substance attachment channel and method of using the same
JP2005091246A (en) * 2003-09-19 2005-04-07 Fujitsu Ltd Device and manufacturing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNCKER D. ET AL.: "Autonomous Microfluidic Capillary System", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, vol. 74, no. 24, 15 December 2002 (2002-12-15), pages 6139 - 6144, XP001162255 *
WINFREE E. ET AL.: "Tile Sets: Error Correction for Algorithmic Self-Assembly", LECTURE NOTES IN COMPUTER SCIENCE (DNA COMPUTING), DE, SPRINGER, vol. 2943, 2004, pages 126 - 144, XP019002510 *

Also Published As

Publication number Publication date
JP2006334741A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
Hu et al. From DNA nanotechnology to material systems engineering
Daems et al. Three-dimensional DNA origami as programmable anchoring points for bioreceptors in fiber optic surface plasmon resonance biosensing
Mohammed et al. Directing self-assembly of DNA nanotubes using programmable seeds
Feng et al. DNA patchy particles
Tørring et al. DNA origami: a quantum leap for self-assembly of complex structures
Zhang et al. Prescribing silver chirality with DNA origami
Heuer-Jungemann et al. From DNA tiles to functional DNA materials
McGinley et al. Crystal-templated colloidal clusters exhibit directional DNA interactions
KR20170009929A (en) Scalable nucleic acid-based nanofabrication
Julin et al. Reconfigurable pH-responsive DNA origami lattices
WO2003074693A1 (en) Dna nanocage by self-organization of dna and process for producing the same, and dna nanotube and molecule carrier using the same
Gates et al. DNA‐templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry
Agrawal et al. Terminating DNA tile assembly with nanostructured caps
JP2018533490A (en) Programmable self-assembled patch nanoparticles and associated devices, systems and methods
Yu et al. Dynamic properties of DNA-programmable nanoparticle crystallization
Zhu et al. Modular assembly of plasmonic nanoparticles assisted by DNA origami
Pistol et al. Scalable, low-cost, hierarchical assembly of programmable DNA nanostructures
Kong et al. Exploring the potential of three‐dimensional DNA crystals in nanotechnology: design, optimization, and applications
WO2009093558A1 (en) Nucleic acid construction member, nucleic acid construct using the same and method of producing the nucleic acid construct
Tagawa et al. Stabilization of DNA nanostructures by photo-cross-linking
WO2006129845A1 (en) Apparatus and method for fabricating nanoconstruct
KR100833492B1 (en) Nucleic acid nanostructures and fabrication method thereof
Lundberg et al. Controlling and monitoring orientation of DNA nanoconstructs on lipid surfaces
Li et al. Crystalline Assemblies of DNA Nanostructures and Their Functional Properties
Xiao et al. High-density, aligned SiO2 nanowire arrays: microscopic imaging of the unique growth style and their ultraviolet light emission properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756983

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载