+

WO2006121440A1 - Laminate suspension system - Google Patents

Laminate suspension system Download PDF

Info

Publication number
WO2006121440A1
WO2006121440A1 PCT/US2005/016273 US2005016273W WO2006121440A1 WO 2006121440 A1 WO2006121440 A1 WO 2006121440A1 US 2005016273 W US2005016273 W US 2005016273W WO 2006121440 A1 WO2006121440 A1 WO 2006121440A1
Authority
WO
WIPO (PCT)
Prior art keywords
glazing
glazing unit
unit
embedded
polymer
Prior art date
Application number
PCT/US2005/016273
Other languages
French (fr)
Inventor
Nelson Bolton
Novis Smith
Original Assignee
Nelson Bolton
Novis Smith
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nelson Bolton, Novis Smith filed Critical Nelson Bolton
Priority to PCT/US2005/016273 priority Critical patent/WO2006121440A1/en
Publication of WO2006121440A1 publication Critical patent/WO2006121440A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10293Edge features, e.g. inserts or holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10743Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing acrylate (co)polymers or salts thereof
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/54Fixing of glass panes or like plates
    • E06B3/5436Fixing of glass panes or like plates involving holes or indentations in the pane

Definitions

  • the present invention relates to a glazing unit and particularly a novel glazing unit having unique means for mechanically fastening such glazing units to be fixed to a supporting structural glazing assembly for forming a continuous facade having an extensively smooth outer surface from such glazing units.
  • glazed facade assembly in the form of glass panels or units is mechanically secured to a substructure of the facade.
  • the substructure is mounted on the outside of a load bearing building skeleton of metal or reinforced concrete.
  • the means for mechanical fastening for this purpose involves some projecting parts and/or providing fastening holes through the layers of glass which distort the outer surface of the panels.
  • each unit is a multiple glazing unit which is secured to the supporting member by bolts whose heads are countersunk into holes countersunk in the outer face of the unit outside of the seal of the unit.
  • the outer surface of the outside sheet of the glazing unit is protected against destructive stress cracks by cushioning and bushings and washers placed between the bolt and the glazing surfaces. The bushings and washers prevent glass-to-metal contact and prevent damage to the glazing sheets.
  • the McCann patent does not disclose any laminated structure.
  • the critical feature of the present invention is a glazing unit having embedded in an ionomer polymer layer a mechanical securing element.
  • U.S. Patent No. 4,799,346 to Bolton and Smith which is incorporated herein by reference, discloses an attachment member mounting embedded in a transparent resinous layer of a laminate glazing unit.
  • the attachment member mounting is fastened to a frame or support structure by bolting or clamping.
  • a resistance means for preventing removal of the mounting is in form of protrusions which extend from the plane of the member on that portion which is embedded within the interlayer.
  • resins suitable for use as interlayers for the laminate are mentioned ionomer resins.
  • the present case distinguishes from the Bolton and Smith patent in that the present invention is a glazing unit integrated with a mechanical securing element which eliminates the need for the attachment mounting element of the patent.
  • a novel glazing unit having at least one mechanical securing element embedded within a polymer layer, preferably an ionomer, bonded to at least one monolithic glazing element to provide an integrated mounting system enabling such units to be fixed to a support without disruption or distortion of the monolithic structure of the glazing element.
  • a plurality of glazing units are capable of being mounted in a planar array on the outer surface of a building having a concealed framework to produce a continuous glazed facade.
  • the present invention relates to a novel glazing unit comprising: at least one monolithic glazing element bonded to at least one rigid polymeric layer having embedded therein a mechanical securing element selected from male or female interactive fastening means. Either the male of the female securing element can be embedded in the polymer.
  • the invention is applicable to any glazing construction ranging from single laminates and/or multiple panes.
  • a hole or slot is formed in the internal glazing element to accommodate the stem of a male securing element.
  • the male stem is aligned with and passes through a hole or slot in a support structure regardless which securing element is embedded.
  • the external and/or internal glazing sheets may be any well known commercial plate, float or sheet glass composition.
  • plastics which are well known in the plastics art such as polycarbonate polymers may be used either alone or in combination with glass glazing or with other plastics.
  • An ionomer copolymer forms excellent strong bonds with glass, metals and plastic materials.
  • the polymers useful in this invention for forming a bonding layer (single glazing) or laminate interlayer and embedding a mechanical securing element are those capable of providing the high tensile strength necessary to support multiple glazing units. Furthermore, the ionomer copolymer layer maintains the integrity of the glazing units when they are subjected to physical impact or thermal stress.
  • ionically crosslinked copolymers of ethylene-methacrylic or acrylic acid or ethylene-methacrylic or acrylic-acid-polyamine provides the toughness, high clarity, and superior tensile strength, are most useful.
  • the ionomers are at least partially neutralized with an alkali metal cation.
  • the mechanical securing element which is embedded within the ionomer layer may be any male-female coacting mechanical fastening means. As mentioned above, either the male or the female securing elements can be embedded.
  • the mechanical securing elements in combination are a means for securing the glazing unit to a supporting frame or other load bearing structure. Preferably, a bolt and nut provides a mechanical connection by simply screw-tightening the glazing unit against the supporting structure. Other mechanical securing combinations include snap together couplings, clamps, and the like.
  • a compressible and/or flexible material may be interposed at metal to glass or metal to plastic interfaces in the form of bushings, gaskets, sleeves, seals, or washers.
  • a further object of this invention is to ensure a safe retention of the glazing unit in position even in case of the breakage or cracking of the glazing element.
  • a still further object of this invention is that the glazing unit secured I the manner disclosed appears devoid of any projection or visible fixing element.
  • Yet another object of this invention is to provide a plurality of an improved glazing unit for producing a planar array on a building exterior having an uninterrupted surface, uniformity and continuity in reflection and color.
  • Still yet another object of the invention is to provide a laminate for the fixed windows of automobiles and aircraft such as windshields and canopies.
  • Fig. 1 is a cross-sectional view of a single glazing unit having a male mechanical securing element, a bolt head, embedded in a bonded ionomer copolymer layer.
  • Fig. 2 is a cross-sectional view of a double glazing unit having a female mechanical securing element, a capped nut, embedded in the bonded ionomer copolymer layer.
  • Fig. 3 shows a sectional view of a plurality of the laminated glass glazing units 20 as illustrated in Fig.2 forming a glazing assembly of planar rectangular panels.
  • Fig. 4 is a cross-sectional view of a double glazing unit having a female securing element in the form of a flange and stud.
  • Fig. 4A is a cross sectional view along line y-y of Fig. 4.
  • Figs. 1 to 4 there are illustrated a novel single glazing unit, a laminated glazing unit and a glazing assembly according to his invention.
  • a plurality of these glazing units when arranged in a planar array and mechanically secured to a concealed structural support member of a building form a glazing assembly having a monolithic facade with aesthetical and practical architectural benefits.
  • Fig. 1 The simplest application of this invention as shown in Fig. 1 involves a single monolithic glazing unit 10 which comprises a monolithic external glazing element 11 such as a glass glazing having a smooth outer surface 11a and an inner surface lib bonded to an internal polymer layer 12 which is preferably an ionomer having surfaces 12a and 12b and embedded therein at least one male mechanical securing element 7 such as bolt 17.
  • the bolt 17 comprises a flat head 18 and a threaded stem 16. As shown in the figure, the flat head 18 is totally embedded within the polymer layer 12 in a fixed position with the threaded stem 16 projecting from the glazing unit 10.
  • a female mechanical fixing element nut 19 is connected to the threaded stem 16 to form a mechanical securing assembly and enables the monolithic glazing unit to be secured to a structural support 14 (partially shown) by tightening the nut 19.
  • the inherent properties of adhesive strength and high tensile strength of the polymer locks the flat head 18, increases the load bearing capacity of the mechanical securing assembly and accepts increased load bearing pressure.
  • the installation of the monolithic glazing unit 10 to a support structure 14 involves passing the threaded end 16 of the bolt 17 through a bushing 13 and circular hole 15 of support structure 14.
  • the hole 15 has a diameter slightly larger than the threaded stem 16 to provide adequate clearance to compensate for the monolithic glazing unit 10 which is secured to the support structure 14 by tightening nut 19 on the threaded stem 16 at face 12b of the ionomer layer 12.
  • the tightening action causes pressure to be distributed through the bushing 13.
  • the bushing 13 is of sufficient size and elasticity to accommodate relative movements between the ionomer layer 12 and the structural support 14.
  • a plurality of the monolithic glazing units 10 may be employed in a planar array as a building facade or an interior ceiling and wall assembly in which each of the laminated glazing units are secured to a support structure by mechanical securing assembly wherein at least one element of the assembly is embedded in the polymer layer of the laminate.
  • thermoplastic as used herein relates to a glazing element to be integral, i.e., without holes or fragmentations.
  • a laminated multiple glazing unit specifically a glass double glazing unit 20 comprising an external glass element 21 having an outer surface 21a and an inner surface 21b and an internal glass element 23 also having outer and inner surfaces 23a and 23b which are bonded together with polymer interlayer 22.
  • the interlayer 22 has embedded therein a female securing element such as a capped nut 27.
  • a circular fixing hole 24 is formed through the internal glass element 23 and has a diameter slightly larger than that of the mechanical fixing element 26.
  • the male fixing element is a bolt 26 comprising a head 25 and a threaded end which is sized to engage the embedded capped nut 27.
  • the laminated glazing assembly 30 Fig.
  • each glazing unit has an uninterrupted outer surface which can be secured to a concealed supporting framework to provide an uninterrupted planar appearance of the outside of the assembly.
  • the multiple glazing unit is a laminated glass double glazing unit 20 as described in Fig. 2.
  • This glazing unit 20 is integrated with the mechanical connection with bolt 26.
  • the facade assembly procedure for attachment of each glazing unit 20 typically involves units having rectangular or square shapes with the mechanical securing element embedded in each corner. In this case the threaded end of bolt 26 is passed through hold 15 in support structure 14 through bushing 28 and through fixing hold 24 to connect with embedded capped nut 27.
  • the critical feature of the invention resides in that at least one of the mechanical securing elements is embedded in an ionomer or polymer layer or interlayer.
  • the mechanical securing assembly useful in this invention results from the interaction of male-female components either of which may be embedded in the ionomer layer without any consequence.
  • Fig. 3 illustrates a laminated glass double glazing assembly 30 comprising a planar array of laminated glass double glazing units 20 as shown in Fig. 2 each of which are mechanically secured at their respective comers to conceal support members 14 behind the array which are part of a structural framework to which the glazing assembly
  • the outer glass glazing surface 21a of the double glazing units 20 are positioned edge-to-edge so as to appear to be continuous. However, a small gap between adjacent edgers can remain and this can be sealed with a silicone sealant as indicated at
  • Fig. 4 shows another embodiment of this invention in which a female mechanical securing element 50 as shown in Fig. 4A is embedded in the polymer layer 42.
  • the construction of the securing element 50 involves a metal flange 49 attached to an internally threaded stud 48. Additionally the flange has a plurality of spaced apart circular holes 51. These holes provide additional surface areas for adhesion to the ionomer polymer layer 42.
  • the laminated double glazing unit 40 comprises external glass glazing element 41 and internal glass glazing element 43 bonded together with the polymer interlayer 42 having embedded therein the female securing element 50.
  • a bolt 45 having a threaded end provides the necessary male securing element.
  • the bolt head 44 is torqued to tighten the glazing unit for attachment to a support structure 14.
  • the weight of the glazing unit is borne by the polymer layer 42.
  • the flange and stud are welded together and employ stainless steel as the material of construction.
  • the glazing material preferred for either external or internal elements may be any with known commercial plate float or sheet glass compositions.
  • the glass may be tempered or non-tempered or chemically strengthened. Synthetic polymers to which the ionomer polymer resin provides good adhesion which includes polycarbonate resins, fused acrylic/polycarbonate resins, polyurethane, etc.
  • the invention contemplates the use of one or more inner or outer layer of various polymer combinations preferably the inner layer is an ionomer layer and has embedded therein the mechanical securing element.
  • the glazing material may range from transparent to opaque, may be tinted or deeply colored.
  • the glazing material may include coatings which provide specific properties or special effects such as reflecting and non-reflecting properties, ultraviolet radiation absorbing, etc.
  • the thickness of the glazing may vary from about 8 mm to 19 mm for the external unit and between about 5 to 15 mm for the internal unit.
  • the thickness of the ionomer polymer layer or interlayer will range from 3 to 60 mm.
  • the good adhesion and the high tensile strength of the ionomer polymer allows for multiple glazing units in excess of three or more glazing elements. Further the thickness of each element may vary which allows for a wide latitude in glazing design.
  • Thermoplastic interlayer usable in the invention must be capable of strongly bonding to a rigid panel such as glass to form an impact-dissipating layer in a laminated safety glass assembly.
  • exemplary thermoplastics include poly(ethyl-vinyl acetate), poly(ethylene-vinyl acetate-vinyl alcohol), poly(ethylene-methyl, methacrylate-acrylic acid), polyurethane, plasticized polyvinyl chloride, polycarbonate, etc.
  • Polyvinyl butyral (PVB) and more particularly partial PVB containing about 10 to 30 weight % hydroxyl groups expressed as polyvinyl alcohol is preferred.
  • Such partial PVB further comprises about 0 to 2.5 weight % acetate expressed as polyvinyl acetate with the balance being butyral, expressed as polyvinyl butyral.
  • the non-critical thickness of the thermoplastic sheet can vary and is typically about 0.25 to 1.5, preferably about 0.35 to 0.75 mm.
  • PVB sheet is commercially available from Monosanto Company as Saflex ® sheet and E.I. Dupont de Nemours and Co. as Butacite ® polyvinyl butyral resin sheeting.
  • Preferred interlayers are ionomers such as disclosed in U.S. Patent No. 5,763,062 and 4,663,228 which are herein incorporated by reference. Most preferable are the ionomers which have been at least partially neutralized with an alkali metal cation and a polyamine.
  • the mechanical securing assembly can be of a typical mechanical fastening means, besides the nut and bolt assembly mentioned above, various retention clamps, clips and means for snap together engagement are usable for this purpose.
  • the glazing assembly is not only easy to install by virtue of the simple construction of the fixing means but the integrity of the external units is maintained so that continuous uninterrupted planar appearance of the outside assembly is provided.
  • Suitable metals useful as materials for the mechanical securing assembly include aluminum and steel but preferably corrosion resistant materials such as stainless steel and high impact plastics including fiberglass and thermoset phenolic-aldhyde polyation and a polyamine.
  • Fixing inserts of compressible and/or flexible materials are used at metal-glazing material contact areas to prevent stress cracking as well as to improve impact resistance, compression for thermal expansion and to secure water-tightness.
  • Fixing inserts of elastomeric material in form of bushings, gaskets, sleeves, spacers and washers are used in bolt-fixing insert, nut-fixing assembly systems.
  • the specific securing assembly of the mechanical connection will vary depending on the size and design of the individual glazing units and the final facade design.
  • a windshield is prepared by inserting a 3-4 mm interlayer of an ionomer (NOVIFLEX ® sold by AGP Plastics, Inc. of Trumbauersville, PA) between two sheets of glass of 10 mm thickness in which aligned holes are prebored partially in the ionomer and completely through the inside layer of the glass.
  • a stainless steel stud having a tapered head with a standard 82 degree taper was inserted into the ionomer.
  • the barrel of the stud is 20-25 mm in diameter and the head is tapped with a 9 mm coarse thread.
  • a metal or plastic bushing is used to hold the inner glass layer in place.
  • the assembly is placed in a so called "polymer" bag of the type disclosed in U.S. Patent No.
  • the bag comprises an outer ply of polyethylene terephthalate and an inner ply of polyethylene bonded thereto.
  • the bag is inserted into a second bag evacuated and sealed.
  • the unit is placed in an autoclave at 225°F for three minutes under 150-200 psi pressure in a vacuum. The vacuum causes the ionomer to flow and seal the opening and set the bolt.
  • a large washer or metal strip with plastic cushioning may be used to tighten the assembly and to provide further security in the event that the outer glass is broken.
  • several fastening means can be used.
  • a cross-link partially neutralized ethylene-acrylic acid ionomer resin was added to the resin port of a small extruder having an extruding barrel temperature which was maintained at 165-205 0 C.
  • a film 50-60 mils was extruded and cut into 12 squares of about 25.4 mm, stacked to about 13 mm thickness between two sheets of tempered glass one of which had a hole of 12 mm drilled in the center of the sheet.
  • a 9 mm stainless steel capped nut was placed in the hole.
  • the glazing unit was placed in a vacuum bag comprising an outer ply of polyethylene terephthalate and an inner ply of polyethylene bonded thereto. The bag was inserted into a second bag of the same material, evacuated and sealed.
  • the sealed bag assembly was placed in an autoclave at 125°C for three minutes under 150-200 psi in a vacuum.
  • the autoclave was reduced in pressure and cooled to room temperature.
  • the bag assembly was removed from the autoclave and plastic wrappings were removed from the glass unit. This procedure embedded and fixed bonded the capped nut.
  • a 9 mm stainless steel bolt was connected and screwed into the fixed capped nut.
  • the glazing unit was then tested with tension applied at the head of the bolt. This indicated a strong adhesive bond of the ionomer polymer with the capped nut and a high tensile strength of the inherent in the ionomer layer.
  • the glazing units constructed in accordance with the invention will be in the commercial glazing industry, particularly when flash glazing is required.
  • the glazing units can provide the same effect for a decorative interior wall or ceiling.
  • the glazing units of this invention can be used for automobiles and other vehicles. Multiple glazing units of this invention can be used in security glazing for banks, prisons, armored trucks, inter alia.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

A glazing unit comprising at least one monolithic glazing element (11) bonded to at least one layer of a polymer (12) having embedded therein at least one element of a fastening means (16,19) for mounting to a support (structure 14). This construction provides and integrated connecting arrangement for the mechanical fastening of monolithic glazing units to a support structure to obtain a glazing assembly.

Description

Laminate Suspension System
Field of the Invention
The present invention relates to a glazing unit and particularly a novel glazing unit having unique means for mechanically fastening such glazing units to be fixed to a supporting structural glazing assembly for forming a continuous facade having an extensively smooth outer surface from such glazing units.
Description of the Prior Art
Various technological arrangements are known for mounting glazing units to provide the aesthetical and architectural benefits of continuous glazed facades which are typically fixed on high rise buildings. Generally the glazed facade assembly in the form of glass panels or units is mechanically secured to a substructure of the facade. The substructure is mounted on the outside of a load bearing building skeleton of metal or reinforced concrete. However, the means for mechanical fastening for this purpose involves some projecting parts and/or providing fastening holes through the layers of glass which distort the outer surface of the panels.
In an attempt to obtain the desired smooth outer surface of the facade form which no parts are projecting and the individual glass units remain integral, the glass panes were mounted exclusively by means of adhesive bonding. For safety reasons, building authorities have not generally permitted such glass facades without positive locking. Moreover, the prior art methods are limited to certain thickness of glass.
The current practice in facade construction is described in U.S. Patent No. 4,481,868 to McCann, which is incorporated herein by reference, discloses mechanically fastening sections of glass panels to the supports of a building. That patented glass assembly comprises a planar array of sealed multiple glazing units each comprising two opposed spaced sheets with a seal between the sheets defining a sealed gas space, which units are secured to supporting members with the outer surface of the units sealed edge- to-edge, at least some of the units being secured to the supporting members by a mechanical fixing passing through the outer sheets of the units outside the seals of the units. In a preferred embodiment each unit is a multiple glazing unit which is secured to the supporting member by bolts whose heads are countersunk into holes countersunk in the outer face of the unit outside of the seal of the unit. The outer surface of the outside sheet of the glazing unit is protected against destructive stress cracks by cushioning and bushings and washers placed between the bolt and the glazing surfaces. The bushings and washers prevent glass-to-metal contact and prevent damage to the glazing sheets.
There are several disadvantages in the patented glass assembly directed to aesthetics and the manner of assembly. The holes required to accommodate the attaching bolts weaken the entire unit, destroy the integrity and smooth surface of the outer panel. The flat headed bolts even if countersunk into the glass detract from the uninterrupted planar appearance of the outside of the assembly. The necessity to carefully drill through multiple layers of glass and align these pieces constitutes a difficult and costly manufacturing problem. The drilling of glass to produce a countersunk hole usually requires two steps and may entail considerable glass breakage. Likewise, if the holes are not properly aligned, during assembly of the fa<?ade the tightening procedure will result in breakage resulting in down time and material loss.
The McCann patent does not disclose any laminated structure. The critical feature of the present invention is a glazing unit having embedded in an ionomer polymer layer a mechanical securing element.
It is known in U.S. Patent No. 2,310,402 to Dennison, which is incorporated herein by reference, to provide a glass insulation unit of a glass laminate wherein a metal border is embedded in plastic interlayers.
U.S. Patent No. 4,029,942 to Levin, which is incorporated herein by reference, discloses bus bars embedded in transparent laminates to provide electrical contacts to heat windows for defrosting and defogging.
U.S. Patent No. 4,799,346 to Bolton and Smith, which is incorporated herein by reference, discloses an attachment member mounting embedded in a transparent resinous layer of a laminate glazing unit. The attachment member mounting is fastened to a frame or support structure by bolting or clamping. In a preferred embodiment a resistance means for preventing removal of the mounting is in form of protrusions which extend from the plane of the member on that portion which is embedded within the interlayer. Among the resins suitable for use as interlayers for the laminate are mentioned ionomer resins.
The present case distinguishes from the Bolton and Smith patent in that the present invention is a glazing unit integrated with a mechanical securing element which eliminates the need for the attachment mounting element of the patent. Summary of the Invention
According to the present invention a novel glazing unit is disclosed having at least one mechanical securing element embedded within a polymer layer, preferably an ionomer, bonded to at least one monolithic glazing element to provide an integrated mounting system enabling such units to be fixed to a support without disruption or distortion of the monolithic structure of the glazing element. A plurality of glazing units are capable of being mounted in a planar array on the outer surface of a building having a concealed framework to produce a continuous glazed facade.
In its broadest aspect the present invention relates to a novel glazing unit comprising: at least one monolithic glazing element bonded to at least one rigid polymeric layer having embedded therein a mechanical securing element selected from male or female interactive fastening means. Either the male of the female securing element can be embedded in the polymer. The invention is applicable to any glazing construction ranging from single laminates and/or multiple panes.
When a laminated multiple glazing unit such as a double glazing unit is involved, a hole or slot is formed in the internal glazing element to accommodate the stem of a male securing element. In a glazing facade assembly procedure the male stem is aligned with and passes through a hole or slot in a support structure regardless which securing element is embedded.
The external and/or internal glazing sheets may be any well known commercial plate, float or sheet glass composition. Also plastics which are well known in the plastics art such as polycarbonate polymers may be used either alone or in combination with glass glazing or with other plastics. An ionomer copolymer forms excellent strong bonds with glass, metals and plastic materials.
The polymers useful in this invention for forming a bonding layer (single glazing) or laminate interlayer and embedding a mechanical securing element are those capable of providing the high tensile strength necessary to support multiple glazing units. Furthermore, the ionomer copolymer layer maintains the integrity of the glazing units when they are subjected to physical impact or thermal stress.
It has been found that ionically crosslinked copolymers of ethylene-methacrylic or acrylic acid or ethylene-methacrylic or acrylic-acid-polyamine provides the toughness, high clarity, and superior tensile strength, are most useful. The ionomers are at least partially neutralized with an alkali metal cation.
The mechanical securing element which is embedded within the ionomer layer may be any male-female coacting mechanical fastening means. As mentioned above, either the male or the female securing elements can be embedded. The mechanical securing elements in combination are a means for securing the glazing unit to a supporting frame or other load bearing structure. Preferably, a bolt and nut provides a mechanical connection by simply screw-tightening the glazing unit against the supporting structure. Other mechanical securing combinations include snap together couplings, clamps, and the like.
A compressible and/or flexible material may be interposed at metal to glass or metal to plastic interfaces in the form of bushings, gaskets, sleeves, seals, or washers.
It is the primary object of the present invention to provide a glazing unit having means for securing the glazing unit to a frame or other structural support. Another object of this invention is to improve the integrity of the glazing unit in the frame or structural support when subjected to high physical impact or thermal stress.
A further object of this invention is to ensure a safe retention of the glazing unit in position even in case of the breakage or cracking of the glazing element.
A still further object of this invention is that the glazing unit secured I the manner disclosed appears devoid of any projection or visible fixing element.
Yet another object of this invention is to provide a plurality of an improved glazing unit for producing a planar array on a building exterior having an uninterrupted surface, uniformity and continuity in reflection and color.
Still yet another object of the invention is to provide a laminate for the fixed windows of automobiles and aircraft such as windshields and canopies.
Other objects and a fuller understanding of the invention will be had by referring to the following description and claims of a preferred embodiment, taken in conjunction with the accompanying drawings, wherein like reference characters refer to similar parts throughout the several views.
Brief Description of the Drawings
Fig. 1 is a cross-sectional view of a single glazing unit having a male mechanical securing element, a bolt head, embedded in a bonded ionomer copolymer layer.
Fig. 2 is a cross-sectional view of a double glazing unit having a female mechanical securing element, a capped nut, embedded in the bonded ionomer copolymer layer. Fig. 3 shows a sectional view of a plurality of the laminated glass glazing units 20 as illustrated in Fig.2 forming a glazing assembly of planar rectangular panels.
Fig. 4 is a cross-sectional view of a double glazing unit having a female securing element in the form of a flange and stud.
Fig. 4A is a cross sectional view along line y-y of Fig. 4.
Detailed Description of the Preferred Embodiments
Referring to drawings Figs. 1 to 4 there are illustrated a novel single glazing unit, a laminated glazing unit and a glazing assembly according to his invention. A plurality of these glazing units when arranged in a planar array and mechanically secured to a concealed structural support member of a building form a glazing assembly having a monolithic facade with aesthetical and practical architectural benefits.
The simplest application of this invention as shown in Fig. 1 involves a single monolithic glazing unit 10 which comprises a monolithic external glazing element 11 such as a glass glazing having a smooth outer surface 11a and an inner surface lib bonded to an internal polymer layer 12 which is preferably an ionomer having surfaces 12a and 12b and embedded therein at least one male mechanical securing element 7 such as bolt 17. The bolt 17 comprises a flat head 18 and a threaded stem 16. As shown in the figure, the flat head 18 is totally embedded within the polymer layer 12 in a fixed position with the threaded stem 16 projecting from the glazing unit 10. A female mechanical fixing element nut 19 is connected to the threaded stem 16 to form a mechanical securing assembly and enables the monolithic glazing unit to be secured to a structural support 14 (partially shown) by tightening the nut 19. The inherent properties of adhesive strength and high tensile strength of the polymer locks the flat head 18, increases the load bearing capacity of the mechanical securing assembly and accepts increased load bearing pressure.
In practice the installation of the monolithic glazing unit 10 to a support structure 14 involves passing the threaded end 16 of the bolt 17 through a bushing 13 and circular hole 15 of support structure 14. The hole 15 has a diameter slightly larger than the threaded stem 16 to provide adequate clearance to compensate for the monolithic glazing unit 10 which is secured to the support structure 14 by tightening nut 19 on the threaded stem 16 at face 12b of the ionomer layer 12. The tightening action causes pressure to be distributed through the bushing 13. The bushing 13 is of sufficient size and elasticity to accommodate relative movements between the ionomer layer 12 and the structural support 14.
A plurality of the monolithic glazing units 10 may be employed in a planar array as a building facade or an interior ceiling and wall assembly in which each of the laminated glazing units are secured to a support structure by mechanical securing assembly wherein at least one element of the assembly is embedded in the polymer layer of the laminate.
The term "monolithic" as used herein relates to a glazing element to be integral, i.e., without holes or fragmentations.
In Fig. 2 there is shown a laminated multiple glazing unit, specifically a glass double glazing unit 20 comprising an external glass element 21 having an outer surface 21a and an inner surface 21b and an internal glass element 23 also having outer and inner surfaces 23a and 23b which are bonded together with polymer interlayer 22. The interlayer 22 has embedded therein a female securing element such as a capped nut 27. A circular fixing hole 24 is formed through the internal glass element 23 and has a diameter slightly larger than that of the mechanical fixing element 26. In this case the male fixing element is a bolt 26 comprising a head 25 and a threaded end which is sized to engage the embedded capped nut 27. As seen in Fig.3, the laminated glazing assembly 30 (Fig. 2) is constructed from a plurality of laminate multiple glazing units. Each glazing unit has an uninterrupted outer surface which can be secured to a concealed supporting framework to provide an uninterrupted planar appearance of the outside of the assembly. Preferably, the multiple glazing unit is a laminated glass double glazing unit 20 as described in Fig. 2. This glazing unit 20 is integrated with the mechanical connection with bolt 26. The facade assembly procedure for attachment of each glazing unit 20 typically involves units having rectangular or square shapes with the mechanical securing element embedded in each corner. In this case the threaded end of bolt 26 is passed through hold 15 in support structure 14 through bushing 28 and through fixing hold 24 to connect with embedded capped nut 27.
After engaging the capped nut 27 the bolt head 25 is torqued to exert force on bushing 28 which distributes the pressure to the inner surface 28 which distributes the pressure to the inner surface 23b thus securing the glazing unit 20 to the support structure 14. Various arrangements of compressible elastomeric gaskets, washers, and seals in addition or in place of the bushing shown may be used to avoid glass-to-metal contact and prevent damage to the glazing sheets. Such arrangement and choice of compressible and/or flexible material is clearly known in the glazing art.
The critical feature of the invention resides in that at least one of the mechanical securing elements is embedded in an ionomer or polymer layer or interlayer. The mechanical securing assembly useful in this invention results from the interaction of male-female components either of which may be embedded in the ionomer layer without any consequence.
The terms "external" and "internal" as used herein refer to the position of these elements relative to the facade.
Fig. 3 illustrates a laminated glass double glazing assembly 30 comprising a planar array of laminated glass double glazing units 20 as shown in Fig. 2 each of which are mechanically secured at their respective comers to conceal support members 14 behind the array which are part of a structural framework to which the glazing assembly
30 is secured. The outer glass glazing surface 21a of the double glazing units 20 are positioned edge-to-edge so as to appear to be continuous. However, a small gap between adjacent edgers can remain and this can be sealed with a silicone sealant as indicated at
31 if required.
Fig. 4 shows another embodiment of this invention in which a female mechanical securing element 50 as shown in Fig. 4A is embedded in the polymer layer 42. The construction of the securing element 50 involves a metal flange 49 attached to an internally threaded stud 48. Additionally the flange has a plurality of spaced apart circular holes 51. These holes provide additional surface areas for adhesion to the ionomer polymer layer 42. The laminated double glazing unit 40 comprises external glass glazing element 41 and internal glass glazing element 43 bonded together with the polymer interlayer 42 having embedded therein the female securing element 50. A bolt 45 having a threaded end provides the necessary male securing element. The bolt head 44 is torqued to tighten the glazing unit for attachment to a support structure 14. In this construction the weight of the glazing unit is borne by the polymer layer 42. Preferably, the flange and stud are welded together and employ stainless steel as the material of construction.
The glazing material preferred for either external or internal elements may be any with known commercial plate float or sheet glass compositions. The glass may be tempered or non-tempered or chemically strengthened. Synthetic polymers to which the ionomer polymer resin provides good adhesion which includes polycarbonate resins, fused acrylic/polycarbonate resins, polyurethane, etc. The invention contemplates the use of one or more inner or outer layer of various polymer combinations preferably the inner layer is an ionomer layer and has embedded therein the mechanical securing element. The glazing material may range from transparent to opaque, may be tinted or deeply colored. The glazing material may include coatings which provide specific properties or special effects such as reflecting and non-reflecting properties, ultraviolet radiation absorbing, etc.
The thickness of the glazing may vary from about 8 mm to 19 mm for the external unit and between about 5 to 15 mm for the internal unit. The thickness of the ionomer polymer layer or interlayer will range from 3 to 60 mm. The good adhesion and the high tensile strength of the ionomer polymer allows for multiple glazing units in excess of three or more glazing elements. Further the thickness of each element may vary which allows for a wide latitude in glazing design.
Thermoplastic interlayer usable in the invention must be capable of strongly bonding to a rigid panel such as glass to form an impact-dissipating layer in a laminated safety glass assembly. Exemplary thermoplastics include poly(ethyl-vinyl acetate), poly(ethylene-vinyl acetate-vinyl alcohol), poly(ethylene-methyl, methacrylate-acrylic acid), polyurethane, plasticized polyvinyl chloride, polycarbonate, etc. Polyvinyl butyral (PVB) and more particularly partial PVB containing about 10 to 30 weight % hydroxyl groups expressed as polyvinyl alcohol is preferred. Such partial PVB further comprises about 0 to 2.5 weight % acetate expressed as polyvinyl acetate with the balance being butyral, expressed as polyvinyl butyral. The non-critical thickness of the thermoplastic sheet can vary and is typically about 0.25 to 1.5, preferably about 0.35 to 0.75 mm. PVB sheet is commercially available from Monosanto Company as Saflex ® sheet and E.I. Dupont de Nemours and Co. as Butacite ® polyvinyl butyral resin sheeting.
Preferred interlayers are ionomers such as disclosed in U.S. Patent No. 5,763,062 and 4,663,228 which are herein incorporated by reference. Most preferable are the ionomers which have been at least partially neutralized with an alkali metal cation and a polyamine.
The mechanical securing assembly can be of a typical mechanical fastening means, besides the nut and bolt assembly mentioned above, various retention clamps, clips and means for snap together engagement are usable for this purpose. The glazing assembly is not only easy to install by virtue of the simple construction of the fixing means but the integrity of the external units is maintained so that continuous uninterrupted planar appearance of the outside assembly is provided. Suitable metals useful as materials for the mechanical securing assembly include aluminum and steel but preferably corrosion resistant materials such as stainless steel and high impact plastics including fiberglass and thermoset phenolic-aldhyde polyation and a polyamine.
Fixing inserts of compressible and/or flexible materials are used at metal-glazing material contact areas to prevent stress cracking as well as to improve impact resistance, compression for thermal expansion and to secure water-tightness. Fixing inserts of elastomeric material in form of bushings, gaskets, sleeves, spacers and washers are used in bolt-fixing insert, nut-fixing assembly systems. The specific securing assembly of the mechanical connection will vary depending on the size and design of the individual glazing units and the final facade design.
Example 1
A windshield is prepared by inserting a 3-4 mm interlayer of an ionomer (NOVIFLEX ® sold by AGP Plastics, Inc. of Trumbauersville, PA) between two sheets of glass of 10 mm thickness in which aligned holes are prebored partially in the ionomer and completely through the inside layer of the glass. A stainless steel stud having a tapered head with a standard 82 degree taper was inserted into the ionomer. The barrel of the stud is 20-25 mm in diameter and the head is tapped with a 9 mm coarse thread. A metal or plastic bushing is used to hold the inner glass layer in place. The assembly is placed in a so called "polymer" bag of the type disclosed in U.S. Patent No. 3,311,517 to Keslar et al. The bag comprises an outer ply of polyethylene terephthalate and an inner ply of polyethylene bonded thereto. The bag is inserted into a second bag evacuated and sealed. The unit is placed in an autoclave at 225°F for three minutes under 150-200 psi pressure in a vacuum. The vacuum causes the ionomer to flow and seal the opening and set the bolt.
If required, a large washer or metal strip with plastic cushioning may be used to tighten the assembly and to provide further security in the event that the outer glass is broken. Depending upon the size and weight of the laminate several fastening means can be used.
The form of the invention shown and described herein represents illustrative preferred embodiments and variations thereof. It is understood that various changes may be made without departing from the gist of the invention as defined in the claims.
Example 2
The preparation of a simple glass unit similar to that described in Fig. 2 was conducted as follows:
A cross-link partially neutralized ethylene-acrylic acid ionomer resin was added to the resin port of a small extruder having an extruding barrel temperature which was maintained at 165-2050C. A film (50-60 mils) was extruded and cut into 12 squares of about 25.4 mm, stacked to about 13 mm thickness between two sheets of tempered glass one of which had a hole of 12 mm drilled in the center of the sheet. A 9 mm stainless steel capped nut was placed in the hole. The glazing unit was placed in a vacuum bag comprising an outer ply of polyethylene terephthalate and an inner ply of polyethylene bonded thereto. The bag was inserted into a second bag of the same material, evacuated and sealed. The sealed bag assembly was placed in an autoclave at 125°C for three minutes under 150-200 psi in a vacuum. The autoclave was reduced in pressure and cooled to room temperature. The bag assembly was removed from the autoclave and plastic wrappings were removed from the glass unit. This procedure embedded and fixed bonded the capped nut. A 9 mm stainless steel bolt was connected and screwed into the fixed capped nut.
The glazing unit was then tested with tension applied at the head of the bolt. This indicated a strong adhesive bond of the ionomer polymer with the capped nut and a high tensile strength of the inherent in the ionomer layer.
It is intended that the primary use of the units constructed in accordance with the invention will be in the commercial glazing industry, particularly when flash glazing is required. In addition to this architectural glazing which can provide a desirable external appearance due to the uninterrupted planar array of an outside assembly, the glazing units can provide the same effect for a decorative interior wall or ceiling. The glazing units of this invention can be used for automobiles and other vehicles. Multiple glazing units of this invention can be used in security glazing for banks, prisons, armored trucks, inter alia.
It will be understood that the above-described embodiments of the invention are only for the purpose of illustration. Additional embodiments, modifications and improvements can be readily anticipated by those skilled in the art based on a reading and study of the present disclosure. Such additional embodiments, modifications and improvements may be fairly construed to be within the spirit, scope and purview of the invention as defined in the claims.

Claims

What Is Claimed Is
1. A glazing unit for mounting in a support structure comprising: at least one external monolithic glazing element layer bonded to at least one polymer element layer having embedded therein at least one member of a mechanical fastening means for fixing said unit to the support structure.
2. The glazing unit of claim 1 wherein said mechanical fastening means consists of a fastening mechanism having an interacting male member and a female member.
3. The glazing unit of claim 2 wherein said male member is embedded in an ionomer polymer layer and protrudes for connection to the support structure.
4. The glazing unit of claim 2 wherein said female member is embedded in an ionomer polymer element layer and is connectable to a male member passing through a support structure.
5. The glazing unit of claim 2 wherein said fastening mechanism consists of an interacting bolt and nut arrangement.
6. The combination of the glazing unit of claim 1 and a support frame.
7. The glazing unit of claim 1 further comprising at least one glazing substrate element layer being bonded to at least one external monolithic glazing element by at least one interlayer of an ionomer polymer to form a laminate and wherein at least one of said interlayers of said ionomer polymer element has embedded therein at least one member of said fastening means.
8. The glazing unit of claim 1 wherein said laminate is a double glazing unit comprising an external monolithic glazing element layer and an internal glazing element layer bonded by an ionomer polymer interlayer having embedded therein at least one mechanical fastening means for fixing said unit to a support structure.
9. The glazing unit of claim 1 wherein at least one of the glazing element layers is a glass or a plastic material.
10. The glazing unit of claim 9 wherein said plastic material is selected from the group consisting of polycarbonate polymers, acrylic polymers, polyurethane polymers, poly)alkyl diglycol carbonate) polymers.
11. The glazing unit of claim 1 wherein the polymer is a cross-linked partially neutralized copolymer of an alpha olefin and alpha beta-ethylenically unsaturated carboxylic acid units.
12. The glazing unit of claim 11 wherein said polymer is cross-linked with a polyamine.
PCT/US2005/016273 2005-05-10 2005-05-10 Laminate suspension system WO2006121440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2005/016273 WO2006121440A1 (en) 2005-05-10 2005-05-10 Laminate suspension system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2005/016273 WO2006121440A1 (en) 2005-05-10 2005-05-10 Laminate suspension system

Publications (1)

Publication Number Publication Date
WO2006121440A1 true WO2006121440A1 (en) 2006-11-16

Family

ID=37396836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/016273 WO2006121440A1 (en) 2005-05-10 2005-05-10 Laminate suspension system

Country Status (1)

Country Link
WO (1) WO2006121440A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019243532A1 (en) * 2018-06-22 2019-12-26 Agc Glass Europe Glazing panel with a hole
WO2021152304A1 (en) 2020-01-27 2021-08-05 Pilkington Group Limited Laminated glazing panel
DE102023127422A1 (en) * 2023-10-09 2025-04-10 Friedhofbau Plus Gmbh Urn cube and closure plate for an urn cube

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302503A (en) * 1978-05-17 1981-11-24 Libbey-Owens-Ford Company Architectural spandrel
US4680206A (en) * 1985-02-19 1987-07-14 Pilkington Brothers P.L.C. Sealed double glazing unit
US4724637A (en) * 1986-05-19 1988-02-16 Enwall, Inc. Two sided vertical butt glaze system for window structures
US6216417B1 (en) * 1997-07-07 2001-04-17 Saint-Gobain Vitrage Glazed element having a high insulating power provided with a plastic profile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302503A (en) * 1978-05-17 1981-11-24 Libbey-Owens-Ford Company Architectural spandrel
US4680206A (en) * 1985-02-19 1987-07-14 Pilkington Brothers P.L.C. Sealed double glazing unit
US4724637A (en) * 1986-05-19 1988-02-16 Enwall, Inc. Two sided vertical butt glaze system for window structures
US6216417B1 (en) * 1997-07-07 2001-04-17 Saint-Gobain Vitrage Glazed element having a high insulating power provided with a plastic profile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019243532A1 (en) * 2018-06-22 2019-12-26 Agc Glass Europe Glazing panel with a hole
WO2021152304A1 (en) 2020-01-27 2021-08-05 Pilkington Group Limited Laminated glazing panel
US12011903B2 (en) 2020-01-27 2024-06-18 Pilkington Group Limited Laminated glazing panel
DE102023127422A1 (en) * 2023-10-09 2025-04-10 Friedhofbau Plus Gmbh Urn cube and closure plate for an urn cube

Similar Documents

Publication Publication Date Title
US20050188634A1 (en) Laminate suspension system
US6737151B1 (en) Glass laminates having improved structural integrity against severe impacts
US5593784A (en) Glazing unit and a method for its manufacture
US9782949B2 (en) Glass laminated articles and layered articles
US4799346A (en) Laminated glazing unit
MXPA05001119A (en) Point attachment systems for laminated glass and a process for preparing same.
US20170362882A1 (en) Insulating window unit
US10221565B2 (en) Highly insulated floor-to-ceiling window
US20010023562A1 (en) Building glass facade of a building, a clamping arrangement for holding glass panels in a glass facade of a building, a brace to hold safety glass panels in a glass facade of a building, and a brace to hold safety glass panels
US20090151255A1 (en) Window film attachment article
US20040221526A1 (en) Glass laminates having improved structural integrity against severe stresses for use in stopless glazing applications
EP1354103B3 (en) Sealed glazing units
US20060005482A1 (en) Point attachment systems for laminated glass and a process for preparing same
US20060198124A1 (en) Hurricane door light, door, and method of assembling the light
US20050266187A1 (en) Blast resistant glass laminates having improved structural integrity against severe impacts
US20080063819A1 (en) Insulated bullet resistant glass
WO2006121440A1 (en) Laminate suspension system
WO2006135365A1 (en) Laminate suspension system
US20050042422A1 (en) Point attachment systems for laminated glass
US20230073394A1 (en) Laminated glazing panel
JP2004270292A (en) Crime prevention sash and crime prevention construction method
EP0186407A2 (en) Laminar glass assemblies
WO2009132513A1 (en) Enhanced protective films system and mounting method thereof
CA2524024A1 (en) Point attachment systems for laminated glass
GB2168288A (en) Laminar glass assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05749571

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载