WO2006118130A1 - 光学ガラス - Google Patents
光学ガラス Download PDFInfo
- Publication number
- WO2006118130A1 WO2006118130A1 PCT/JP2006/308699 JP2006308699W WO2006118130A1 WO 2006118130 A1 WO2006118130 A1 WO 2006118130A1 JP 2006308699 W JP2006308699 W JP 2006308699W WO 2006118130 A1 WO2006118130 A1 WO 2006118130A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- twenty
- glass
- optical glass
- refractive index
- Prior art date
Links
- 239000005304 optical glass Substances 0.000 title claims abstract description 38
- 230000009477 glass transition Effects 0.000 claims description 11
- 239000004615 ingredient Substances 0.000 claims description 3
- 238000004031 devitrification Methods 0.000 abstract description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 abstract 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 abstract 2
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- FIXNOXLJNSSSLJ-UHFFFAOYSA-N ytterbium(III) oxide Inorganic materials O=[Yb]O[Yb]=O FIXNOXLJNSSSLJ-UHFFFAOYSA-N 0.000 abstract 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 abstract 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 abstract 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 abstract 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 abstract 1
- 239000002184 metal Substances 0.000 abstract 1
- NOTVAPJNGZMVSD-UHFFFAOYSA-N potassium monoxide Inorganic materials [K]O[K] NOTVAPJNGZMVSD-UHFFFAOYSA-N 0.000 abstract 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 37
- 238000000465 moulding Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- GJJSDZSDOYNJSW-UHFFFAOYSA-N lanthanum(3+);borate Chemical compound [La+3].[O-]B([O-])[O-] GJJSDZSDOYNJSW-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000006082 mold release agent Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005385 borate glass Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 239000000156 glass melt Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
Definitions
- the present invention relates to an optical glass. More specifically, the refractive index (n) is 1.70 to: L 82, Abbe
- aspherical lenses have come to be used in many cases while the small and light weight of optical devices has been remarkably advanced. This is because aspherical lenses can easily correct light aberrations, reduce the number of lenses, and make the device compact.
- Aspherical lenses are manufactured by heating and softening a glass preform and precision molding press molding it into a desired shape.
- the mold surface in contact with the preform may be denatured by reacting with the preform and become adherent during molding.
- the sliding surfaces of the partial molds cannot be treated with the mold release agent, and the sliding surface is not yet open. It remains in the process. For this reason, adhesion occurs between the press-molded glass in the mold and the sliding surface in contact with the glass, and this extremely reduces productivity and makes mass production impossible. It will be a function.
- Optical glasses used for aspherical lenses are required to have various optical constants, but in particular, those having a high refractive index and a high Abbe number (low dispersion) are strongly required.
- lanthanum borate is a typical glass having such an optical constant.
- lanthanum borate glasses with a low glass transition point (Tg) and yield point (At) have a problem of poor devitrification, that is, they tend to lose transparency.
- Tg glass transition point
- At yield point
- these glasses have a problem that even if the devitrification property can be improved, there is a problem that the surface of the mold is easily modified to be adhesive, and the moldability is inferior.
- Patent Document 1 Japanese Patent Laid-Open No. 60-221338
- Patent Document 2 Japanese Unexamined Patent Application Publication No. 2004-161506
- Patent Document 3 Japanese Patent Laid-Open No. 2002-173334
- the present invention improves various disadvantages found in the above-mentioned optical glass, and has a desirable optical constant of 1.70 to: a refractive index (n) of L 82 and 40
- the present inventors have obtained the above-described desirable optical constant, excellent anti-devitrification property, and gold by setting the composition within a specific range.
- the inventors have found that an optical glass can be obtained that exhibits excellent moldability by preventing the adhesion of the mold surface and has a low bending yield point (At), and has completed the present invention.
- the present invention provides the following.
- the refractive index (n) is 1.70-1.82 and the Abbe number (V) is 0 to 55.
- Optical glass which is a feature.
- optical glass of 1 above further comprising
- the refractive index ( ⁇ ) is 1.70-1.82 and the Abbe number (V) is 0 to 55.
- Optical glass which is a feature.
- the refractive index (n) is the refractive index d at 587.56 nm given by helium.
- V (n-l) / (n-n), and this d d d F C
- n is the refractive index at 486.13 nm given by hydrogen and n is given by 656.2
- Refractive index at 7nm A large Abbe number means that the wavelength dependence of the refractive index is low ( That is, dispersion is low), and chromatic aberration is suppressed.
- the yield point (At) is the maximum point at which the expansion curve turns upward and downward due to the softness of the glass when the thermal expansion is measured with a thermomechanical analyzer (TMA). When the temperature.
- SiO is a glass network structure forming component
- the SiO content is preferably 1% by weight or more, more preferably 2% by weight or more.
- the SiO content is preferably 8% by weight or less, and preferably 6% by weight or less.
- B 2 O is also a glass network structure-forming component, and has high resistance to devitrification in the optical glass of the present invention.
- the content of B 2 O should be 40% by weight or less.
- the total content of SiO and BO should be 20% by weight or more. 22%
- the total content of SiO and B 2 O is included.
- the content is preferably 42% by weight or less, more preferably 40% by weight or less.
- Li 0, Na 2 O and ⁇ ⁇ are not essential components, but their content is 0% by weight.
- these components can be added to a total of, for example, 0.5% by weight or more.
- the content of these components it is preferable to keep the content of these components (the total of two or more of them) within 4% by weight. More preferably, it is as follows.
- ⁇ is an essential component that lowers the glass transition point and yield point, and at the same time contributes to the stability of the glass.
- the content of ⁇ is preferably 10% by weight or more, more preferably 11% by weight or more.
- the content of ZnO is preferably 30% by weight or less, more preferably 28% by weight or less.
- La O is a component that contributes to an improvement in both the refractive index and the Abbe number. Refractive index and Abbe
- the content of La O is 20% by weight or more.
- the content is 22% by weight or more.
- excessive inclusion increases the tendency to devitrification.
- Y O like La O, is a component that contributes to an improvement in both the refractive index number and the Abbe number.
- the content of 2 o 3 should be 6.5% by weight or more.
- excessive content increases the tendency of glass to devitrify.
- the content of Y 2 O is 12% by weight.
- the content is preferably 11% by weight or less, and more preferably 10% by weight or less.
- Gd O is not an essential component, but its content may be 0% by weight.
- the Gd O content is preferably 10% by weight or less.
- YbO like LaO, is a component that contributes to improving both the refractive index number and the Abbe number.
- the YbO content should be less than 3% by weight.
- the total amount thereof is preferably 25% by weight or more, more preferably 27% by weight or more, and more preferably 30% by weight or more. Is more preferred Yes. On the other hand, in order not to reduce the stability of the resulting glass, their total amount is
- It is preferably 50% by weight or less, more preferably 48% by weight or less, and still more preferably 46% by weight or less.
- ZrO is not an essential component and its content may be 0% by weight!
- the content is more preferably, for example, 1% by weight or more, more preferably 2% by weight or more.
- the content is more preferably, for example, 1% by weight or more, more preferably 2% by weight or more.
- the content is preferably 8% by weight or less, more preferably 6% by weight or less, and even more preferably 5% by weight or less.
- Ta O is not an essential component, but its content may be 0% by weight.
- the content is more preferably 1% by weight or more, and more preferably 2% by weight.
- the d 2 5 content of Ta O should be 8% by weight or less, and 7.5% by weight or less. More preferable.
- GeO is not an essential component, and its content may be 0% by weight.
- the glass network structure-forming component has the effect of maintaining the stability that can be produced in glass, and is more advantageous than SiO and B 2 O in achieving a high refractive index. Therefore
- the GeO content is more preferably 0.5% by weight or more, for example, 1% by weight or more.
- the GeO content is
- MgO, CaO, SrO and BaO are not essential, but are all components contributing to the stability of the glass. Each content is preferably 0 to 10% by weight. In addition, when two or more of these components are contained, the total content thereof is preferably 0 to 10% by weight.
- WO is not an essential component but its content may be 0% by weight.
- this component may oxidize the mold surface by changing to w 6+ force w 5+.
- Preferred 3% by weight or less is more preferred 2 More preferably, it is not more than% by weight.
- the content of NbO, which is not an essential component, may be 0% by weight.
- Nb O is a part or all of the WO.
- the NbO content In order to prevent the glass from devitrifying, the NbO content must be 8% by weight or less.
- it is 6% by weight or less, and more preferably 4% by weight or less.
- Usual optical glass materials such as acid salts can be used.
- the raw materials for production are mixed at a ratio that achieves the oxide composition in the above-mentioned predetermined range, the mixture is melted at 1100 to 1250 ° C, homogenized through the steps of clarification (degassing) and stirring,
- the optical glass of the present invention which is colorless, has a high refractive index, has a high Abbe number, is transparent, is homogeneous, and has excellent workability, can be obtained by lowering the temperature to 950 to 1050 ° C. and pouring into a mold. it can.
- Example 1 is the same composition as the glass described in Example 36 of Patent Document 1
- Comparative Example 2 is the same composition as the glass described in Example 7 of Patent Document 2
- Comparative Example 3 is a patent document. 3. It has the same composition as the glass described in Example 3.
- the refractive index (n) and the Abbe number (V) are measured using a refractometer (KPR-200d d
- the glass transition point (Tg) and yield point (At) are measured by heating and heating a rod-shaped sample with a length of 15 to 20 mm and a diameter of 3 to 4 mm at a constant rate of 5 ° C / min. was obtained from the thermal expansion curve obtained by measuring.
- the glass transition point (Tg) is in a relatively low temperature range of 510 570 ° C and At is 550 610 ° C. Easy to shape.
- the glass of the examples is suitable for both the formation of a spherical preform by dripping and the precision mold press because it is excellent in devitrification.
- 1. 70 ⁇ optical glass having a refractive index (n) of L 82 and an dd of 40 to 55 having an Abbe number (V), a sufficient optical constant, is stably mass-produced. can do.
- mold molding is easy, it does not cause adhesion to the mold during molding, and has excellent devitrification properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
モールド成形が容易で、金型に付着することがなく、対失透性の改善された光学ガラスが記載されている。当該光学ガラスは、SiO2 を1~8重量%、B2O3を16~40重量%(但し、B2O3及びSiO2を合わせて20~42重量%)、Li2O、Na2O及びK2Oを計0~4重量%、ZnOを10~30重量%、La2O3を20~40重量%、Y2O3 を6.5~12重量%、Gd2O3を0~10重量%、Yb2O3を0.05~3重量%(但しY2O3、La2O3、Yb2O3及びGd2O3を合わせて25~50重量%)、ZrO2を0~8重量%、及びTa2O5を0~8重量%を含んでなり、屈折率が1.70~1.82、アッベ数が40~55であることを特徴とする。
Description
明 細 書
光学ガラス 技術分野
[0001] 本発明は光学ガラスに関し、より詳しくは、屈折率 (n )が 1. 70 〜 : L 82、アッベ
d
数 )カ 0〜55にあり、且つ、モールド成形に適した組成を有し、し力も対失透性 d
の改善された光学ガラスに関する。
背景技術
[0002] 近年、光学機器の小型軽量ィ匕が著しく進展している中で、非球面レンズが多く用い られるようになってきている。これは、非球面レンズは光線収差の補正が容易であり、 レンズの枚数を少なくし、機器をコンパクトにすることができるためである。
[0003] 非球面レンズの製造は、ガラスのプリフォームを加熱軟ィ匕させ、これを所望形状に 精密モールドプレス成形することによってなされて 、る。プリフォームを得る方法は大 きく 2種類に分けられ、一つはガラスのブロックあるいは棒材等カもガラス片を切り出 して球状に加工する方法、もう一つはガラス融液をノズル先端力 滴下して球状のガ ラスプリフォームを得る方法である。
[0004] 精密モールドプレス成形によってガラス成形品を得るためには、プリフォームの加 圧成形を屈伏点 (At)以上の温度で行うことが必要である。このため、プリフォームの 屈伏点 (At)が高いほど、これに接する金型が一層の高温に曝されることとなり、金型 表面が酸ィ匕消耗しやすくなつて、低コストでの大量生産が実現できなくなる。このため 、プリフォームを構成する光学ガラスは、比較的低温で成形できること、従って、ガラ ス転移点 (Tg)及び Z又は屈伏点 (At)が低 、ことが望まれて 、る。
[0005] また、屈伏点 (At)以上の温度では、プリフォームと接触した金型表面が、プリフォ ームとの間で反応を起こして変性し、成形中に付着性となる場合がある。プリフォーム と接する金型表面の大半については、離型剤による事前処理によって付着性の発生 を防止し得るが、部分型同士の摺動面は離型剤処理ができず、摺動面は未処理の まま残される。このため、金型内のプレス成形されたガラスとこれにその周囲で接する 摺動面との間で付着が起こり、これは、生産性を極度に低下させ、大量生産を不可
能にすることとなる。
[0006] 非球面レンズに用いられる光学ガラスとしては、種々の光学恒数を有するものが求 められているが、とりわけ、高屈折率且つ高アッベ数 (低分散)のものが強く求められ ている(特許文献 1、 2及び 3参照)。従来、そのような光学恒数を有するガラスとして はホウ酸ランタン系が代表的なものである。し力しながら、一般に、ホウ酸ランタン系 ガラスでガラス転移点 (Tg)や屈伏点 (At)が低いものは、対失透性が劣る、すなわち 透明性を失い易いという問題があり、滴下法によるプリフォームの製造工程で、しばし ば失透して曇ってしまうという問題があった。また、それらのガラスは、対失透性が改 善できても金型表面を付着性に変性し易くなるという問題もあり、成形性が劣ってい た。
特許文献 1:特開昭 60 - 221338号公報
特許文献 2 :特開 2004— 161506号公報
特許文献 3 :特開 2002— 173334号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、前記の光学ガラスに見られる諸欠点を改善し、望ましい光学恒数として 1. 70〜: L 82の屈折率(n )且つ 40
d 〜55のアッベ数(V
d )を有し、モールド成形が 容易で、成形中に金型に付着することがなぐかつ対失透性の改善された光学ガラス を提供することを目的とする。
課題を解決するための手段
[0008] 本発明者らは、上記目的を達成するため研究を重ねた結果、ある特定範囲の組成 とすることで、上記の望ましい光学恒数を有し、対失透性に優れ、且つ金型表面の付 着性の発生を防止して優れた成形性を発揮し、し力も低 ヽ屈伏点 (At)を与える光学 ガラスが得られることを見出し、本発明を完成させた。
[0009] すなわち本発明は、以下を提供するものである。
(1)光学ガラスであって、次の成分、
SiO ·,· 1〜8重量%、
2
B O ·,· 16〜40重量%
(但し、 B O +SiO · · ·20〜42重量0 /。)、
2 3 2
LiO + NaO+KO —0〜4重量%、
2 2 2
ZnO ','10〜30重量%、
La O —20〜40重量%、
2 3
YO ·'·6.5〜12重量0 /0、
2 3
GdO —0〜10重量%、
2 3
Yb O ···().05〜3重量%
2 3
(但し、 YO +La O +Yb O +GdO · · ·25〜50重量0 /0)、
2 3 2 3 2 3 2 3
ZrO ','0〜8重量%、及び
2
Ta O '''0〜8重量%、
2 5
を含んでなり、屈折率 (n)が 1.70-1.82、アッベ数(V )カ 0〜55であることを特 d d
徴とするものである、光学ガラス。
(2)次の成分、
MgO ···()〜: L0重量0 /0、
CaO ···()〜 10重量0 /0、
SrO ···()〜 10重量0 /0、
BaO ···()〜 10重量0 /0、
NbO "'0〜8重量%、及び
2 5
WO ·'·0〜3.5重量0ん
3
を更に含んでなることを特徴とする、上記 1の光学ガラス
(3)光学ガラスであって、次の成分、
SiO ·,·1〜6重量%、
2
BO ','16〜40重量%、
2 3
GeO '.'0〜3重量%
2
(ただし、 B O +SiO ··· 22〜42重量0 /0)、
2 3 2
Li O+Na O+K Ο · · ·0.5〜4重量0 /。、
2 2 2
ZnO ','11〜28重量%、
La Ο —20〜38重量%、
YO ·'·6.5〜: L1重量0 /0、
2 3
GdO ','1〜10重量%、
2 3
Yb O ---0.05〜3重量%
2 3
(ただし、 Y O +La Ο +Yb Ο +Gd Ο · · ·25〜48重量0 /0)、
2 3 2 3 2 3 2 3
ZrO '''0〜6重量%、
2
Ta O '''0〜8重量%、
2 5
MgO '.'0〜8重量%、
CaO '.'0〜8重量%、
SrO '.'0〜8重量%、
BaO '.'0〜8重量%、
NbO "'0〜8重量%、及び
2 5
WO ·'·0〜3.5重量0 /0、
3
を含んでなり、屈折率 (η)が 1.70-1.82、アッベ数(V )カ 0〜55であることを特 d d
徴とするものである、光学ガラス。
(4)ガラス転移点 (Tg)が 510〜570°Cであることを特徴とする、上記 1ないし 3の何 れかの光学ガラス。
(5)屈伏点(At)力 50〜610°Cであることを特徴とする、上記 1ないし 4の何れか の光学ガラス。
発明の効果
[0010] 上記各組成になる本発明によれば、 1.70〜: L 82の屈折率(n)且つ 40〜55のァ d
ッべ数( V )
dを有し、モールド成形が容易で、成形中に金型への付着を起こさず、か つ対失透性の改善された光学ガラスを得ることができる。
発明を実施するための最良の形態
[0011] 本発明において、屈折率 (n )とは、ヘリウムの与える 587.56nmにおける屈折率 d
をいう。
また本発明において、アッベ数(V )は、 V =(n -l)/(n -n )で定義され、こ d d d F C
こに、 nは、水素が与える 486.13nmにおける屈折率、 nは、水素が与える 656.2
F C
7nmにおける屈折率をいう。アッベ数が大きいことは、屈折率の波長依存性が低い(
すなわち分散が低 、)ことを示し、色収差の抑制をもたらす。
[0012] また屈伏点(At)とは、熱機械分析装置(TMA:Thermo Mechanical Analysis)で熱 膨張を測定したとき、ガラスの軟ィ匕によって、膨張曲線が上昇力も下降に転じる極大 点をとるときの温度である。
[0013] 本発明の光学ガラスの組成にぉ 、て、 SiOは、ガラス網目構造形成成分であり、ガ
2
ラスに製造可能な安定性を持たせるための必須成分である。顕著な安定化効果を得 るには、 SiO含有量を 1重量%以上とするのが好ましぐ 2重量%以上とするのがより
2
好ましぐ 2. 5重量%以上とするのが更に好ましい。また、光学ガラスとしての高い屈 折率を得るには、 SiOの含有量を 8重量%以下とするのが好ましぐ 6重量%以下と
2
するのがより好ましぐ 5. 5重量%以下とするのが更に好ましい。
[0014] B Oも、ガラス網目構造形成成分であり、本発明の光学ガラスに失透に対する高い
2 3
安定性を持たせるための必須成分である。高い安定性を得るには、 B O
2 3の含有量は
16重量%以上とするのが好ましぐ 18重量%以上とするのがより好ましい。また、光 学ガラスとしての高い屈折率を得るには、 B Oの含有量は 40重量%以下とするのが
2 3
好ましぐ 38重量%以下とするのがより好ましい。
[0015] し力しながら、上記範囲内であっても、失透を防止して透明な光学ガラスを安定して 製造するには、 SiOと B Oの合計含有量を 20重量%以上とするのが好ましぐ 22%
2 2 3
以上とするのがより好ましい。その一方、高屈折率のためには、 SiOと B Oの合計含
2 2 3 有量を 42重量%以下とするのが好ましぐ 40重量%以下とするのがより好ましい。
[0016] Li 0、 Na O及び Κ Οは、必須な成分ではなぐこれらの含有量を 0重量%としても
2 2 2
よいが、ガラス転移点及び屈伏点を顕著に低下させるためには有効な成分であり、 何れも同等の含有量で相互に交換可能である。添加する場合には、これらの成分は 合計で、例えば 0. 5重量%以上とすることができる。一方、ガラスの安定性を低下さ せないためには、これらの成分の含有量(2種以上含有するときはそれらの合計)を 4 重量%以内とするのが好ましぐ 3. 5重量%以下とするのがより好ましい。
[0017] ΖηΟは、ガラス転移点及び屈伏点を低下させると同時に、ガラスの安定性にも寄与 する必須成分である。十分低い屈伏点を達成するには、 ΖηΟの含有量を 10重量% 以上とするのが好ましぐ 11重量%以上とするのがより好ましい。その一方、ガラスの
安定性と優れた光学恒数を達成するためには、 ZnOの含有量を 30重量%以下とす るのが好ましぐ 28重量%以下とするのがより好ましい。
[0018] La Oは、屈折率とアッベ数の双方の向上に寄与する成分である。屈折率とアッベ
2 3
数の十分な向上を得るためには、 La Oの含有量を 20重量%以上とするのが好まし
2 3
ぐ 22重量%以上とするのがより好ましい。その一方、過剰な含有は失透傾向を増大 させる。これを防止するには、 La Oの含有量を 40重量%以下とするのが好ましぐ 3
2 3
8重量%以下とするのがより好ましい。
[0019] Y Oは、 La O同様に、屈折率数及びアッベ数の双方の向上に寄与する成分であ
2 3 2 3
る。検討の結果、本発明の目的にとってこれらの効果を十分に得るには、 Y
2 o 3の含 有量を 6. 5重量%以上とするのが極めて好ましいことが判明した。但し過剰な含有 はガラスの失透傾向を増大させる。これを防止するには、 Y Oの含有量を 12重量%
2 3
以下とするのが好ましぐ 11重量%以下とするのがより好ましぐ 10重量%以下とす るのが更に好ましい。
[0020] Gd Oは、必須な成分ではなぐその含有量は 0重量%であってもよいが、 La O同
2 3 2 3 様に、屈折率数及びアッベ数の双方の向上に寄与する成分であり、例えば 1. 0重量 %などで含有させるのがより好ま U、。但し過剰な含有はガラスの失透傾向を増大さ せる。これを防止するには、 Gd Oの含有量は 10重量%以下とするのが好ましぐ 7
2 3
重量%以下とするのがより好ましぐ 5重量%以下とするのが更に好ましい。
[0021] Yb Oは、 La O同様に、屈折率数及びアッベ数の双方の向上に寄与する成分で
2 3 2 3
ある。検討の結果、本発明の目的にとってこれらの効果を十分に得るには、 Yb
2 o 3を
0. 05重量%以上含有させるのが極めて好ましいことが判明した。一方、過剰な含有 はガラスの失透傾向を増大させる。これを防止するには、 Yb O含有量は 3重量%以
2 3
下とするのが好ましぐ 2重量%以下とするのがより好ましぐ 1重量%以下とするのが 更に好ましい。
[0022] また、 La O、 Y O、 Gd Oおよび Yb Oの 2種以上を併用することは、屈折率を向
2 3 2 3 2 3 2 3
上させつつ、失透に対するガラスの安定性を増大させるのに有利である。本発明の 目的とする高屈折率を達成するには、それらの合計量を 25重量%以上とするのが好 ましぐ 27重量%以上とするのがより好ましぐ 30重量%以上とするのが更に好まし
い。その一方、得られるガラスの安定性を低下させないためには、それらの合計量は
50重量%以下とするのが好ましぐ 48重量%以下とするのがより好ましぐ 46重量% 以下とするのが更に好ましい。
[0023] ZrOは、必須な成分ではなぐその含有量は 0重量%であってもよ!、が、ガラスの
2
対失透性の向上に寄与すると共に、屈折率を高める作用があるため、その含有量を 例えば 1重量%以上とするのがより好ましぐ 2重量%以上とするのが更に好ましい。 その一方、 ZrOの過剰な含有でガラスの安定性を低下させないためには、 ZrOの
2 2 含有量は 8重量%以下とするのが好ましぐ 6重量%以下とするのがより好ましぐ 5重 量%以下とするのが更に好ましい。
[0024] Ta Oは、必須の成分ではなぐその含有量は 0重量%であってもよいが、屈折率
2 5
を増大させ、且つ、対失透性を向上させる効果があるため、その含有量は例えば 1重 量%以上とするのがより好ましぐ 2重量%とするのが更に好ましい。その一方、過剰 な含有による分散の増大とアッベ数 V の低下を起こさせないためには、 Ta Oの含 d 2 5 有量は 8重量%以下とすればよぐ 7. 5重量%以下とすれば、より好ましい。
[0025] GeOは、必須の成分ではなぐその含有量は 0重量%であってもよいが、 SiO及
2 2 び B O
2 3と同様に、ガラス網目構造形成成分として、ガラスに製造可能な安定性を持 たせる作用があると共に、高屈折率の達成には SiOや B Oよりも有利である。従って
2 2 3
、 GeOの含有量は、例えば 0. 5重量%以上とするのがより好ましぐ 1重量%以上と
2
するのが更に好ましい。但し高価であり、経済効果的観点からは、 GeOの含有量は
2
、 3重量%以下とするのが好ましい。
[0026] MgO、 CaO、 SrO及び BaOは、必須ではないが、何れもガラスの安定性に寄与する 成分である。それぞれの含有量は 0〜10重量%とするのが好ましい。また、これらの 成分を 2種以上含有する場合には、それらの合計含量も 0〜10重量%とするのが好 ましい。
[0027] WOは、必須の成分ではなぐその含有量は 0重量%としてもよいが、本発明のガ
3
ラスの失透に対する安定性に寄与する成分である。但し、この成分は、 w6+力 w5+に 変化することにより金型表面を酸化する可能性があるため、含有させる場合には、含 有量を 3. 5重量%以下とするのが好ましぐ 3重量%以下とするのがより好ましぐ 2
重量%以下とするのが更に好ましい。
[0028] Nb Oは、必須の成分ではなぐ含有量を 0重量%としてもよいが、ガラスの失透に
2 5
対する安定性に寄与する成分である。また Nb Oは、 WOの一部又は全部をこれで
2 5 3
置換して WOの作用を代替させることもできる成分でもある。過剰に含有させると逆
3
にガラスの対失透性を損なうが、これを防止するには Nb Oの含有量を 8重量%以下
2 5
とするのが好ましぐ 6重量%以下とするのがより好ましぐ 4重量%以下とするのが更 に好ましい。
[0029] 本発明の光学ガラスの製造原料としては、例えば、 B Oについては、 H BO 、 B
2 3 3 3 2 o等を用いることができ、他の成分ついても、原料としては各種酸化物、炭酸塩、硝
3
酸塩等の通常の光学ガラス原料を用いることができる。それら製造原料を、上記した 所定範囲の酸化物組成を達成する割合で混合し、混合物を 1100〜1250°Cで溶融 し、清澄 (ガス抜き)、撹拌の各工程を経て均質化させた後、温度を 950〜1050°Cに 下げて金型に流し込み徐冷することにより、無色、高屈折率で高アッベ数、透明、均 質で加工性に優れた、本発明の光学ガラスを得ることができる。
実施例
[0030] 以下、実施例を参照して本発明を更に具体的に説明するが、本発明がそれらの実 施例に限定されることは意図しない。
[0031] 表 1に示した実施例及び比較例の光学ガラスの組成及びそれらにっ 、ての、屈折 率 (n )、アッベ数( V )、屈伏点 (At)及びガラス転移点の測定を行った。ここに比較 d d
例 1は、特許文献 1の実施例 36に記載のガラスと同一組成のもの、比較例 2は、特許 文献 2の実施例 7に記載のガラスと同一組成のもの、比較例 3は、特許文献 3の実施 例 3に記載のガラスと同一組成のものである。
[0032] 屈折率 (n )及びアッベ数 ( V )の測定は、屈折率計 (カル-ユー社製、 KPR- 200 d d
)を用いて行った。
ガラス転移点(Tg)及び屈伏点(At)の測定は、長さ 15〜20mm、直径 3〜4mmの 棒状試料を毎分 5°Cの一定速度で昇温加熱しつつ、試料の伸びと温度を測定して 得られた熱膨張曲線から求めた。
測定結果を表の下段に示す。
[表 1]
表 1に見られる通り、本発明の実施例のガラスはいずれも屈折率 (n )が 1. 70〜: L
d
82、アッベ数( V )力 0 55であり、光学ガラスとして十分な光学恒数を有している
d
。また、成形中に金型表面に付着することがなぐ失透を起こすこともな力つた。従つ て、量産を可能にするのに適した性質を備えている。更には、いずれもガラス転移点 (Tg)が 510 570°C, Atが 550 610°Cという比較的低い温度範囲にあるため、成
形し易い。カロえて、対失透性にも優れていることから、実施例のガラスは、滴下による 球状プリフォームの形成にも、精密モールドプレスにも、共に好適なガラスである。
[0035] これに対して比較例 1〜3についてみると、屈折率 (n )が 1. 70-1. 82及びアッベ d
数( V )力 0〜55の範囲内にある点では実施例と共通であったものの、比較例 1の d
ガラスでは失透が起こることが確認され、比較例 2のガラスは、実施例のガラスに比し て屈伏点 (At)及びガラス転移点 (Tg)が、非常に高ぐ通常の装置では成形が極め て困難であり、また、比較例 3では、結晶化が激しくガラスの形成ができず、従ってま た屈折率とアッベ数の測定も不可能であった。表中に記載された比較例 3の屈折率 及びアッベ数の数値は、特許文献 3に実施例 3のガラスの数値として記載されて 、る ものを転載したものである。これら比較例の結果が示すように、これら比較例は、滴下 による球状プリフォームの形成や、精密モールドプレス成形を効率的に行うには、適 さないものであった。
産業上の利用可能性
[0036] 本発明によれば、 1. 70〜: L 82の屈折率(n )且つ 40〜55のアッベ数(V )という d d 、十分な光学恒数を有する光学ガラスを、安定して量産することができる。また、モー ルド成形が容易で、成形中に金型への付着を起こさず、かつ対失透性に優れるため
、量産に適しており、ガラス転移点 (Tg)や屈伏点 (At)を低く抑えることが可能である ため、量産効率が特に高い光学ガラスを提供することができる。
Claims
請求の範囲
光学ガラスであって、次の成分、
SiO ·,·1〜8重量%、
2
BO ·,·16〜40重量%
2 3
(但し、 B O +SiO · · ·20〜42重量0 /。)、
2 3 2
LiO + NaO+KO —0〜4重量%、
2 2 2
ZnO ','10〜30重量%、
La O —20〜40重量%、
2 3
YO ---6.5〜12重量0 /0、
2 3
GdO —0〜10重量%、
2 3
Yb O ---0.05〜3重量%
2 3
(但し、 YO +La O +Yb O +GdO · · ·25〜50重量0 /0)、
2 3 2 3 2 3 2 3
ZrO ','0〜8重量%、及び
2
Ta O '''0〜8重量%、
2 5
を含んでなり、屈折率 (n)が 1.70-1.82、アッベ数(V )カ 0〜55であることを特 d d
徴とするものである、光学ガラス。
次の成分、
MgO ···()〜: L0重量0 /0、
CaO ···()〜 10重量0 /0、
SrO ···()〜 10重量0 /0、
BaO ···()〜 10重量0 /0、
NbO "'0〜8重量%、及び
2 5
WO ·'·0〜3.5重量0ん
3
を更に含んでなることを特徴とする、請求項 1の光学ガラス
光学ガラスであって、次の成分、
SiO ·,·1〜6重量%、
2
BO ','16〜40重量%、
2 3
GeO '.'0〜3重量%
(ただし、 B O +SiO ··· 22〜42重量0 /o)、
2 3 2
Li O+Na O+K O · · ·0.5〜4重量0 /。、
2 2 2
ZnO ','11〜28重量%、
La O —20〜38重量%、
2 3
YO ·'·6.5〜: LI重量0 /0、
2 3
GdO ','1〜10重量%、
2 3
Yb O ---0.05〜3重量%
2 3
(ただし、 Y Ο +La Ο +Yb Ο +Gd Ο · · ·25〜48重量0 /0)、
2 3 2 3 2 3 2 3
ZrO '''0〜6重量%、
2
Ta O '''0〜8重量%、
2 5
MgO '.'0〜8重量%、
CaO '.'0〜8重量%、
SrO '''0〜8重量%、
BaO '.'0〜8重量%、
NbO "'0〜8重量%、及び
2 5
WO ·'·0〜3.5重量0 /0、
3
を含んでなり、屈折率 (η)が 1.70-1.82、アッベ数(V )カ 0〜55であることを特 d d
徴とするものである、光学ガラス。
ガラス転移点 (Tg)が 510〜570°Cであることを特徴とする、請求項 1ないし 3の何 れかの光学ガラス。
屈伏点(At)が 550〜610°Cであることを特徴とする、請求項 1ないし 4の何れかの 光学ガラス。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005129643A JP4560438B2 (ja) | 2005-04-27 | 2005-04-27 | 光学ガラス |
JP2005-129643 | 2005-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006118130A1 true WO2006118130A1 (ja) | 2006-11-09 |
Family
ID=37307929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/308699 WO2006118130A1 (ja) | 2005-04-27 | 2006-04-26 | 光学ガラス |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4560438B2 (ja) |
WO (1) | WO2006118130A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109650716A (zh) * | 2019-01-22 | 2019-04-19 | 成都光明光电股份有限公司 | 一种无色光学玻璃及其玻璃预制件、元件和仪器 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4997990B2 (ja) * | 2007-01-24 | 2012-08-15 | コニカミノルタアドバンストレイヤー株式会社 | 光学ガラス及び光学素子 |
JP5601557B2 (ja) * | 2007-02-28 | 2014-10-08 | 日本電気硝子株式会社 | 光学ガラス |
JP5610560B2 (ja) * | 2007-06-25 | 2014-10-22 | 日本電気硝子株式会社 | モールドプレス成形用光学ガラス |
JP6096502B2 (ja) * | 2011-12-20 | 2017-03-15 | 株式会社オハラ | 光学ガラス及び光学素子 |
JP6095356B2 (ja) * | 2011-12-28 | 2017-03-15 | 株式会社オハラ | 光学ガラス及び光学素子 |
JP6188553B2 (ja) * | 2013-07-31 | 2017-08-30 | 株式会社オハラ | 光学ガラス、プリフォーム材及び光学素子 |
JP6689057B2 (ja) * | 2014-12-24 | 2020-04-28 | 株式会社オハラ | 光学ガラス、プリフォーム及び光学素子 |
JP6809480B2 (ja) | 2015-11-30 | 2021-01-06 | 株式会社ニコン | 光学ガラス、光学ガラスを用いた光学素子および光学装置 |
JP2017171578A (ja) * | 2017-06-23 | 2017-09-28 | 株式会社オハラ | 光学ガラス及び光学素子 |
JP2021046354A (ja) * | 2020-12-03 | 2021-03-25 | 日本電気硝子株式会社 | ガラス材の製造方法及びガラス材 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0826766A (ja) * | 1994-07-07 | 1996-01-30 | Nikon Corp | 光学ガラス |
JPH0826765A (ja) * | 1994-07-07 | 1996-01-30 | Nikon Corp | 光学ガラス |
JP2002249337A (ja) * | 2001-02-20 | 2002-09-06 | Hoya Corp | 光学ガラス、プレス成形予備体および光学部品 |
JP2004161506A (ja) * | 2002-11-08 | 2004-06-10 | Hoya Corp | 光学ガラス、プレス成形用ガラス成形体および光学素子 |
WO2004087596A1 (ja) * | 2003-03-31 | 2004-10-14 | Nihon Yamamura Glass Co., Ltd. | 光学ガラス |
JP2006137662A (ja) * | 2004-10-12 | 2006-06-01 | Hoya Corp | 光学ガラス、精密プレス成形用プリフォームとその製造方法および光学素子とその製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004231501A (ja) * | 2003-02-03 | 2004-08-19 | Minolta Co Ltd | 光学ガラス及びこれから作製される光学素子 |
-
2005
- 2005-04-27 JP JP2005129643A patent/JP4560438B2/ja not_active Expired - Fee Related
-
2006
- 2006-04-26 WO PCT/JP2006/308699 patent/WO2006118130A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0826766A (ja) * | 1994-07-07 | 1996-01-30 | Nikon Corp | 光学ガラス |
JPH0826765A (ja) * | 1994-07-07 | 1996-01-30 | Nikon Corp | 光学ガラス |
JP2002249337A (ja) * | 2001-02-20 | 2002-09-06 | Hoya Corp | 光学ガラス、プレス成形予備体および光学部品 |
JP2004161506A (ja) * | 2002-11-08 | 2004-06-10 | Hoya Corp | 光学ガラス、プレス成形用ガラス成形体および光学素子 |
WO2004087596A1 (ja) * | 2003-03-31 | 2004-10-14 | Nihon Yamamura Glass Co., Ltd. | 光学ガラス |
JP2006137662A (ja) * | 2004-10-12 | 2006-06-01 | Hoya Corp | 光学ガラス、精密プレス成形用プリフォームとその製造方法および光学素子とその製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109650716A (zh) * | 2019-01-22 | 2019-04-19 | 成都光明光电股份有限公司 | 一种无色光学玻璃及其玻璃预制件、元件和仪器 |
Also Published As
Publication number | Publication date |
---|---|
JP4560438B2 (ja) | 2010-10-13 |
JP2006306648A (ja) | 2006-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006118130A1 (ja) | 光学ガラス | |
US8404604B2 (en) | Optical glass | |
WO2008065937A1 (fr) | Verre optique | |
WO2017152657A1 (zh) | 光学玻璃及光学元件 | |
TW201408616A (zh) | 精密模壓用光學玻璃、玻璃預製件、光學元件及光學儀器 | |
WO2007029434A1 (ja) | 光学ガラス | |
JP5099890B2 (ja) | 光学ガラス | |
JP7171734B2 (ja) | 光学ガラス、ガラスプリフォーム、光学素子及びこれを有する光学機器 | |
WO2007136071A1 (ja) | 光学ガラス | |
TWI853166B (zh) | 光學玻璃及光學元件 | |
US8298974B2 (en) | Optical glass | |
WO2020067048A1 (ja) | 光学ガラス | |
JP3219941B2 (ja) | 光学ガラス | |
JP4563934B2 (ja) | 精密モールドプレス成形用光学ガラス | |
JPWO2010074211A1 (ja) | 光学ガラス | |
JP2025009783A (ja) | 光学ガラスおよび光学素子 | |
JP2012136359A (ja) | 光学ガラス | |
WO2007097344A1 (ja) | 光学ガラス | |
TW202138323A (zh) | 光學玻璃(二) | |
JP2024050451A (ja) | 光学ガラスおよび光学素子 | |
JP2024093236A (ja) | 光学ガラスおよび光学素子 | |
CN117776526A (zh) | 光学玻璃和光学元件 | |
TW202419417A (zh) | 光學玻璃及光學元件 | |
JP2024159541A (ja) | 光学ガラスおよび光学素子 | |
CN119219327A (zh) | 光学玻璃及光学元件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06732355 Country of ref document: EP Kind code of ref document: A1 |