+

WO2006118144A1 - 固体電解コンデンサ及びその製造方法 - Google Patents

固体電解コンデンサ及びその製造方法 Download PDF

Info

Publication number
WO2006118144A1
WO2006118144A1 PCT/JP2006/308733 JP2006308733W WO2006118144A1 WO 2006118144 A1 WO2006118144 A1 WO 2006118144A1 JP 2006308733 W JP2006308733 W JP 2006308733W WO 2006118144 A1 WO2006118144 A1 WO 2006118144A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrolytic capacitor
capacitor
solid electrolytic
capacitor element
Prior art date
Application number
PCT/JP2006/308733
Other languages
English (en)
French (fr)
Inventor
Masahiro Kuroyanagi
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to JP2007514768A priority Critical patent/JPWO2006118144A1/ja
Publication of WO2006118144A1 publication Critical patent/WO2006118144A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/06Mounting in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a solid electrolytic capacitor and a method for manufacturing the same. More specifically, in a solid electrolytic capacitor in which a valve metal substrate having a dielectric film is laminated, the solid electrolytic capacitor having good moisture resistance, low leakage current and reduced equivalent series resistance, and its manufacture Regarding the method.
  • FIG. 1 is a perspective view of a conventional chip-shaped multilayer solid electrolytic capacitor in which two capacitor elements are laminated.
  • Capacitor elements 11 and 12 inside the exterior resin 16 are arranged with their directions aligned, and the cathode part 11a of the capacitor element 11 is joined to the cathode lead part 13 with a conductive adhesive, and the cathode of the capacitor element 12
  • the part 12a is joined to the cathode part 11a of the capacitor element 11 by a conductive adhesive, and the anode parts l lb and 12b of the capacitor elements 11 and 12 are joined by resistance welding at the joint part 15 to the anode lead part 14. It is sealed with a separately prepared exterior resin 16 such as an epoxy resin.
  • a metal having a valve action used for a capacitor element of a solid electrolytic capacitor a metal such as aluminum tantalum which can be easily provided with a dielectric film is used. Metals that can be easily provided with a dielectric film on these surfaces may have a property of absorbing moisture in the air.
  • the solid electrolyte layer provided on the dielectric film is a spongy layer having fine pores, which also absorbs moisture in the air. That is, the capacitor element is made of a material that easily absorbs moisture. In the case of a 220 capacitor with a withstand voltage of 2 V, the moisture content in the capacitor element reaches several hundred ng. Moisture contained in this capacitor element has an adverse effect on the electrical characteristics of the solid electrolytic capacitor and also causes deterioration of long-term reliability such as moisture resistance.
  • Patent Document 1 JP-A-2001-126964 discloses that the space inside the pores of the capacitor element is filled with a hydrophobic solvent, or the surface of the space is covered with a hydrophobic solvent.
  • Patent Document 2 proposes to coat the surface of the space with a water repellent film. In this case, the solid electrolyte layer existing outside the hydrophobic solvent or the water repellent film, It cannot prevent moisture absorption of the carbon layer and silver layer, and has no effect on moisture absorption of the anode part of the capacitor element.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-126964
  • Patent Document 2 Japanese Patent Laid-Open No. 2001_126965
  • the present invention simply uses a water-repellent material, particularly silicone oil, in a capacitor element without greatly changing the conventional method for producing a solid electrolytic capacitor. Adding a small amount to dry not only reduces the moisture contained in the capacitor element, but also remarkably slows the reabsorption of moisture to produce a solid electrolytic capacitor with excellent electrical characteristics and long-term reliability. And succeeded.
  • a water-repellent material particularly silicone oil
  • An anodized film is provided on the surface of a plate-like metal having a valve action, a portion provided with an insulating resin band (masking) is provided so as to bisect this metal, and one of the bisected metals is used as an anode part.
  • a solid electrolyte layer is provided on the remaining surface, and a conductor layer is further provided on the solid electrolyte layer to form a capacitor element. Further, a plurality of connection portions of the conductor layer and the anode part correspond to each other.
  • a solid electrolytic capacitor including a dielectric film layer, a solid electrolyte layer, and a conductor layer, characterized in that a solid electrolytic capacitor having a water-repellent film on all or part of the capacitor element surface including the surface of the conductor layer Capacitor.
  • a solid electrolytic capacitor characterized in that the capacitor has a water-repellent coating on all or part of the surface of the capacitor element including the surface of the conductor layer. 3.
  • a part of the valve metal having a dielectric film layer on the surface is used as an anode part, a solid electrolyte layer is formed on the remaining dielectric film layer, and a conductor layer is formed on a part of the solid electrolyte layer.
  • a solid electrolytic capacitor in which anode parts and cathode parts of a plurality of capacitor elements are respectively stacked and connected to a lead frame and sealed with an exterior resin, the capacitor element surface including a conductor layer surface
  • a solid electrolytic capacitor characterized by having a water-repellent film on all or part of the capacitor.
  • the solid electrolytic capacitor as described in 8 above which is alkylaryl silicone alkyl phenyl silicone.
  • a solid electrolytic capacitor comprising a step of providing a dielectric film layer, a solid electrolyte layer and a conductor layer on an anode substrate, and then covering all or part of the capacitor element surface including the conductor layer surface with a water repellent film Manufacturing method. 14. A part of the valve metal having a dielectric coating layer on the surface is used as an anode portion, a solid electrolyte layer is formed on the remaining dielectric coating layer, and a conductive layer is provided thereon.
  • a method for producing a solid electrolytic capacitor comprising a step of covering all or part of a capacitor element surface including a surface with a water-repellent film.
  • a portion of the valve metal having a dielectric coating layer on the surface is used as the anode portion, a solid electrolyte layer is formed on the remaining dielectric coating layer, and a conductor layer is formed on a part of the solid electrolyte layer to form a cathode portion. Laminate the anode and cathode of multiple capacitor elements and connect them to the lead frame.
  • valve action metal used as the anode substrate of the solid electrolytic capacitor in the present invention for example, aluminum, tantalum, titanium, niobium, zirconium and alloys based on these can be used.
  • the shape of the anode substrate include a flat foil, a plate, and a rod.
  • aluminum conversion foil is widely used because it is economical.
  • This aluminum conversion foil is 40 to 200 zm thick, and a rectangular element having a flat and horizontal unit of about 1 to 30 mm in length and width is used.
  • the width is preferably 2 to 20 mm and the length is 2 to 20 mm, more preferably the width is 2 to 5 mm and the length is 2 to 6 mm.
  • a solid electrolyte is formed on the dielectric coating layer of the cathode part.
  • the type of the solid electrolyte layer there are no particular restrictions on the type of the solid electrolyte layer, and conventionally known solid electrolytes can be used.
  • the solid electrolyte capacitors made with a solid electrolyte have a large capacity and a small size with a low equivalent series resistance component. Is preferable because it is good.
  • the conductive polymer forming the solid electrolyte used in the solid electrolytic capacitor of the present invention is not limited, but is preferably a conductive polymer having a ⁇ -electron conjugated structure, such as a compound having a thiophene skeleton, a polycyclic Examples thereof include conductive polymers containing as a repeating unit a structure represented by a compound having a sulfide skeleton, a compound having a pyrrole skeleton, a compound having a furan skeleton, or the like.
  • compounds having a thiophene skeleton include, for example, 3-methylthiophene, 3-ethylthiophene, 3_propylthiophene, 3-butylthiophene, 3 _Pentylthiophene, 3_Hexylthiophene, 3_Heptylthiophene, 3-Octylthiophene, 3-Nonylthiophene, 3_Desinorethiophene, 3-Funoleolothiophene, 3_Chlorothiophene, 3-Bromothiophene, 3 —Syanthiophene, 3, 4_dimethylthiophene, 3, 4 _jetylthiophene, 3, 4-butyrenthiophene, 3,4_methylenedioxythiophene, 3, 4 _ethylenedioxythiophene Derivatives can be mentioned. These compounds can be prepared by
  • 1,3-dihydro As a compound having a polycyclic sulfide skeleton, for example, 1,3-dihydro
  • a compound having a dropolycyclic sulfide (also known as 1,3-dihydrobenzo [c] thiophene) skeleton and a compound having 1,3 dihydronaphtho [2,3_c] thiophene skeleton can be used.
  • compounds having a 1,3-dihydroanthra [2,3_c] thiophene skeleton and compounds having a 1,3-dihydronaftaseno [2,3_c] thiophene skeleton can be exemplified, and known methods For example, it can be prepared by the method described in JP-A-8-3156 (US5530139).
  • Some compounds optionally contain nitrogen or N-oxide in the fused ring, such as 1,3-dihydrothieno [3,4-b] quinoxaline, 1,3-dihydroceno [3,4-b] Powers that can include quinoxaline 4-oxide, 1,3-dihydroceno [3,4-b] quinoxaline-1,4,9 dioxide, and the like, but are not limited thereto.
  • 3-octylpyrrole 3-nonylpyrrolone, 3_decenolepyrrolone, 3-funoleorone, 3_black pyrrole, 3_bromopyrrole, 3-cyanopyrrole, 3,4-dimethylpyrrole, Examples thereof include, but are not limited to, 3,4-jetylpyrrole, 3,4-butylenepyrrole, 3,4-methylenedioxypyrrole, and 3,4_ethylenedioxypyrrole. These compounds can be prepared commercially or by known methods.
  • Examples of the compound having a furan skeleton include, for example, 3 methinolefuran, 3-ethylfuran, 3-propylfuran, 3-butylfuran, 3-pentylfuran, 3-hexylfuran, 3_heptylfuran, 3 —Octylfuran, 3-Nonylfuran, 3_decylfuran, 3_Fluorofuran, 3_Black-furan, 3_Bromofuran, 3_Cyanofuran, 3,4-Dimethylfuran, 3,4-Jetinolefuran, 3,4-Butylenefuran, Force S, which includes derivatives such as 3, 4-methylenedioxyfuran, 3,4-ethylenedioxyfuran, etc. There is no. These compounds can be prepared commercially or by known methods.
  • the polymerization method may be electrolytic polymerization, chemical oxidative polymerization, or a combination thereof.
  • a solid electrolyte that is not a conductive polymer is first formed on the dielectric film, and then a conductive polymer is formed by the above-described polymerization method.
  • a compound having a doping ability is used for the conductive polymer, and the dopant can be added to either the monomer solution or the oxidant solution. It can be something like an organic sulfonic acid metal salt.
  • the dopant an aryl sulfonate dopant is preferably used.
  • salts such as benzene sulfonic acid, toluene sulfonic acid, naphthalene sulfonic acid, anthracene sulfonic acid, anthraquinone sulfonic acid and the like can be used.
  • a water repellent film is formed on the capacitor element.
  • a water repellent film is formed on all or part of the capacitor element surface including the conductor layer surface.
  • a part of the valve action metal having a dielectric coating layer on the surface is used as an anode portion, a solid electrolyte layer is formed on the remaining dielectric coating layer, and a conductor layer is formed thereon to form a cathode portion.
  • a water repellent film is formed on all or part of the surface of the capacitor element including the surface of the conductor layer.
  • the water-repellent film may cover all or part of the surface of the capacitor element as long as the surface of the conductor layer is included.
  • the conductor layer has a carbon paste layer and a silver When a part of the carbon paste layer is exposed in the case of including the strike layer, a water-repellent film is provided on all or part of the capacitor element surface including the carbon paste layer.
  • a water-repellent film is formed on the capacitor element laminated on the lead frame.
  • the cathode part of the capacitor element is joined to the cathode lead part of the lead frame using a conductive adhesive, and the conductive adhesive is applied on the cathode part of the capacitor element to form the cathode part of the new capacitor element.
  • the anode part of the capacitor element is connected to the anode lead part of the lead frame.
  • the connection method may be a conventionally known method such as resistance welding, laser welding, ultrasonic welding, force squeeze, or adhesion using a conductive paste.
  • the water-repellent film may be any one having water repellency, such as oils such as mineral oil and chemically synthesized oil, and elastomers such as silicone rubber and fluorine rubber.
  • silicone oil is added.
  • the added silicone oil covers the surfaces of the carbon paste conductor layer 21a and the silver paste conductor layer 21b at the cathode portion of the capacitor element as shown in FIG. 2, and the sponge-like solid electrolyte layer 22 and the air It penetrates the boundary and forms on the surface of the valve metal 23 and penetrates the boundary between the dielectric film 24 and the air, so that the silicone oil film 25 is formed between the outside and the cathode of the capacitor element 25. Is formed.
  • the added silicone oil penetrates the boundary between the conductive adhesive 26 and the air to form a silicone oil film 25. Some of them may reach the cathode lead 27.
  • the added silicone oil also forms a silicone oil film 25 at the boundary between the insulating resin band 28 and the air on the surface of the insulating resin band 28.
  • the attached silicone oil permeates the boundary between the anode 29 and the air, regardless of the connection method used in the anode 29 of the capacitor element.
  • a silicone oil film 25 is formed between the two. Some of them may reach the anode lead 30.
  • the silicone oil film formed in this way functions to remarkably suppress the rate at which the capacitor element absorbs moisture from the air.
  • the capacitor element stacked on the lead frame is dried to remove the moisture contained in the capacitor element and at the same time remove the moisture contained in the silicone oil. .
  • the lead frame protrusions are cut in the vicinity of the capacitor element to form a chip-shaped solid electrolytic capacitor.
  • the part to which silicone oil is added is the anode part and / or the cathode part of the capacitor element.
  • the addition method of silicone oil may be a known method such as spraying, dripping or coating.
  • the amount of applied force is very small, and it is desirable to apply with a dispenser from the viewpoint of good repeatability at the position of addition.
  • Silicone oil can be applied to the capacitor element either before or after the capacitor element laminated on the lead frame is dried, but in consideration of the effect of reducing the moisture contained in the silicone oil itself, silicone oil was added. It is desirable to dry the capacitor element later. Silicone oil can be added to the capacitor element either before or after the capacitor element is laminated on the lead frame.
  • silicone oil is not particularly limited, and includes conventional silicone oils such as straight silicone oil (unmodified silicone oil), modified silicone oil, and fluorosilicone oil.
  • Straight silicone oils include dialkyl silicones (dialkylpolysiloxanes), alkylaryl silicones (alkylaryl polysiloxanes), and alkyl hydrogen silicones (alkyl hydrogen polysiloxanes), where alkyl Examples of the group include lower alkyl groups such as methinole, ethyl and propyl, and examples of the aryl group include phenyl groups substituted with lower alkyl, halogen and the like.
  • Preferred straight silicones include dimethyl silicone (dimethylpolysiloxane), methyl phenyl silicone, and methyl hydrogen silicone.
  • the modified silicone oil can be variously modified, in particular non-reactive modified. However, as long as the performance of the solid electrolytic capacitor is not adversely affected, the modified silicone oil may be used.
  • KF-868 manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • silicone oil having a viscosity greater than lPa 'seconds it takes a long time force S to penetrate into the capacitor element, and the viscosity is smaller than ImPa' seconds. Since the silicone oil contains volatile components and may not be suitable for the present invention, it may be ImPa 'seconds to lPa' seconds (including upper and lower limits; the same shall apply hereinafter unless otherwise specified). It is preferable to do this.
  • silicone oil is permeated into the capacitor element of the intermediate layer by capillary action by adding silicone oil to the outermost capacitor element.
  • the viscosity of is preferably 5 mPa 'seconds to 50 OmPa' seconds, more preferably 20 mPa * seconds to 40 OmPa 'seconds, more preferably lOmPa' seconds to 400 mPa 'seconds.
  • the lead frame material is not particularly limited as long as it is generally used, but is preferably copper-based (for example, Cu-Ni-based, Cu-Ag-based, Cu_Sn-based, Cu-Fe-based, Cu-Ni--). (Ag-based, Cu_Ni_Sn-based, Cu_Co_P-based, Cu_Zn_Mg-based, Cu_Sn_Ni_P-based alloys, etc.) The effects of improving the chamfering workability of the steel can be obtained.
  • aluminum conversion foil 31 (manufactured by Nihon Densetsu Kogyo Co., Ltd., foil type 110 LJB22B, rated film withstand voltage: 4 vf) (hereinafter referred to as conversion foil) is divided into two from the tip.
  • Masking material 32 heat-resistant resin
  • the cathode 33 is divided into the cathode 33 and anode 34, and the cathode 33, which is the tip side section of this chemical conversion foil, is used as the electrolyte with 10% by weight aqueous solution of ammonium adipate, temperature 55 ° C, voltage 4V, current density 5mA.
  • This impregnation step and polymerization step were repeated 12 times in total to form a solid electrolyte layer containing the dopant in the micropores of the chemical conversion foil.
  • the conversion foil on which the solid electrolyte layer containing this dopant was formed was washed in 50 ° C warm water to form a solid electrolyte layer.
  • use a 10% by weight aqueous solution of ammonium adipate as the electrolyte use re-formify under conditions of temperature 55 ° C, voltage 4 V, current density 5 mA / cm 2 , energization time 10 minutes, and rinse with water. Thereafter, drying was performed at 100 ° C for 30 minutes. A carbon paste and a silver paste were sequentially coated thereon to form a conductor layer.
  • FIG. 4 shows a state in which four capacitor elements 41, 42, 43, 44 are laminated on the lead frame.
  • the cathode part 42a of the capacitor element 42 is joined to the front side of the cathode lead part 45 by using silver paste
  • the cathode part 43a of the capacitor element 43 is joined to the back side of the cathode lead part 45 by using silver paste.
  • the cathode part 41a of 41 is joined to the front side of the cathode part 42a of the capacitor element 42 using silver paste
  • the cathode part 44a of the capacitor element 44 is joined to the back side of the cathode part 43a of the capacitor element 43 and silver paste. And joined.
  • the anode capacitors B41b, 42b, 43b, and 44b of the laminated capacitor elements 41, 42, 43, and 44 were joined to the anode lead rod by spot welding.
  • a small amount of silicone oil (dimethyl silicone oil KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) with a viscosity of 50 mPa's is applied to the cathode part 41a of the capacitor element 41 and the cathode part 44a of the capacitor element 44 laminated on the lead frame.
  • Example 1 with the exception that the parts to which silicone oil is added are the cathode part 41a of the capacitor element 41, the cathode part 44a of the capacitor element 44, the anode part 41b of the capacitor element 41, and the anode part 44b of the capacitor element 44.
  • 50 solid electrolytic capacitors with a rated capacity of 220 ⁇ F and a rated voltage of 2 V were obtained.
  • Table 1 shows the results of soldering 50 solid electrolytic capacitors obtained in this way onto a substrate using a 250 ° C reflow oven and measuring the leakage current and equivalent series resistance.
  • Example 1 50 solid electrolytic capacitors having a rated capacity of 220 ⁇ F and a rated voltage of 2 V were obtained in the same manner as in Example 1 except that no silicone oil was added. Table 1 shows the results of measuring the leakage current and equivalent series resistance of the 50 solid electrolytic capacitors obtained in this way by soldering them onto the substrate using a 250 ° C reflow oven.
  • Example 7 The silicone oil to be added is shown in Table 2 (Shin-Etsu Chemical Co., Ltd., KF54, KF-99, KF-868, KF-96), and the other methods are the same as in Example 2 (Example 7 is carried out) In the same way as in Example 1, 50 solid electrolytic capacitors with a rated capacity of 220 ⁇ F and a rated voltage of 2 V were obtained.
  • the capacitor element according to the present invention has excellent moisture resistance and little change in electrical characteristics over time, it can be used in a wide range of fields such as home appliances, computers, in-vehicle parts, and industrial equipment.
  • FIG. 2 is a cross-sectional view illustrating one embodiment of the present invention.
  • FIG. 3 is a plan view showing an example of a capacitor element according to the present invention.
  • FIG. 4 is a perspective view showing an example of stacking capacitor elements in the present invention.
  • Capacitor element 2 cathode b Capacitor element 2 anode part Capacitor element 3a Capacitor element 3 cathode part b Capacitor element 3 anode part Capacitor element 4a Capacitor element 4 cathode part b Capacitor element 4 anode part Cathode lead part

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 本発明は、平板型のコンデンサ素子を積層する固体電解コンデンサにおいて、耐湿性が良好で、漏れ電流が少なく、等価直列抵抗を低減させた固体電解コンデンサに関する。  弁作用を有する平板状の金属の表面に陽極酸化皮膜を設け、この金属を二分するように絶縁樹脂帯(マスキング)を施した部分を設け、二分した金属の一方を陽極部とし、残部の表面に固体電解質層を設け、さらにこの固体電解質層上に導電体層を設けてコンデンサ素子とし、さらに前記導電体層および陽極部がそれぞれ対応するように複数個のコンデンサ素子を重ね合わせて積層したものをリードフレームの陰極リード部及び陽極リード部に接続した後、コンデンサ素子にシリコンオイルを少量添加し、乾燥させた後にエポキシ樹脂等の外装樹脂による封口を行うことにより、電気特性及び長期信頼性の極めて優れた固体電解コンデンサを得ることができる。

Description

明 細 書
固体電解コンデンサ及びその製造方法
関連出願との関係
[0001] この出願は、米国法典第 35卷第 111条 (b)項の規定に従レ、、 2005年 5月 4日に提 出した米国仮出願第 60Z677, 353の出願日の利益を同第 119条(e)項(1)により 主張する同第 111条 (a)項の規定に基づく出願である。
技術分野
[0002] 本発明は、固体電解コンデンサ及びその製造方法に関するものである。さらに詳し く言えば、誘電体皮膜を有する弁作用金属基体を積層する固体電解コンデンサにお いて、耐湿性が良好で、漏れ電流が少なぐ等価直列抵抗を低減させた固体電解コ ンデンサ及びその製造方法に関する。
背景技術
[0003] 最近、電子機器の小型化'高周波化が進み、それに使用する電子部品の一種であ る固体電解コンデンサにおいても小型化が要求されている力 S、一般には積層型のチ ップ形状によって小型化の要求に対応している。
[0004] 図 1に示す例は、 2枚のコンデンサ素子を積層した従来のチップ形状の積層型固 体電解コンデンサの斜視図である。外装樹脂 16の内部にあるコンデンサ素子 11、 1 2が方向を揃えて配置されており、コンデンサ素子 11の陰極部 11aは陰極リード部 1 3と導電性接着剤で接合され、コンデンサ素子 12の陰極部 12aはコンデンサ素子 11 の陰極部 11aと導電性接着剤で接合され、コンデンサ素子 11、 12の陽極部 l lb、 1 2bは陽極リード部 14との接合部 15において抵抗溶接により接合された状態を示し ており、別に用意したエポキシ樹脂等の外装樹脂 16によって封口されてレ、る。
[0005] 固体電解コンデンサのコンデンサ素子に用いられる弁作用を有する金属には、ァ ルミ二ゥムゃタンタルなど、表面に誘電体皮膜を設けることが容易なものが使用され る。これら表面に誘電体皮膜を設けることが容易な金属は空気中の水分を吸湿する 性質を有している場合がある。また誘電体皮膜上に設けられる固体電解質層は微細 な孔を有した海綿状の層であり、これも空気中の水分を吸湿する性質を有している。 すなわち、コンデンサ素子は吸湿し易い材料から成り立っており、耐電圧 2Vの 220 コンデンサの場合、コンデンサ素子に含まれる水分は数百 ngに達する。このコン デンサ素子に含まれる水分は固体電解コンデンサの電気特性に悪影響を与え、また 、耐湿特性などの長期信頼性の悪化の原因にもなつている。
[0006] 従来、エポキシ樹脂等の外装樹脂による封口を行う前にコンデンサ素子を加熱す ることでコンデンサ素子に含まれる水分を蒸発させていたが、加熱後は急速に空気 中の水分を吸収してしまうため、コンデンサ素子に含まれる水分量を大きく低減させ ることはできなかった。
[0007] コンデンサ素子を加熱したまま封口を行うことができればコンデンサ素子に含まれる 水分量を低減させることは可能である力 封口を行う装置を改造する必要が生じてし まレ、、またそのような改造は非常に高価である。従って、コンデンサ素子を加熱したま ま封口を行うのは実現が難しレ、。
[0008] エポキシ樹脂等の外装樹脂による封口を行った後、固体電解コンデンサを乾燥す ることでコンデンサ素子に含まれる水分を低減させることは可能であるが、外装樹脂 力 Sコンデンサ素子を覆っているため、乾燥には非常に長い時間を必要であり、現実 的な解決策とはならない。
[0009] 特開 2001— 126964公報(特許文献 1)は、コンデンサ素子の細孔内部の空間を 疎水性溶剤で満たす、あるいは前記空間の表面を疎水性溶剤で被覆することを、特 開 2001 _ 126965公報 (特許文献 2)は前記空間の表面を撥水膜で被覆することを それぞれ提案しているが、この場合、疎水性溶剤または撥水膜よりも外側に存してい る固体電解質層、カーボン層、銀層の吸湿を防ぐことができず、また、コンデンサ素 子の陽極部の吸湿に対しては効果がない。
[0010] すなわち、コンデンサ素子に含まれる水分が固体電解コンデンサの電気特性及び 耐湿特性などの長期信頼性に悪影響を与えていることは既知であつたが、これを解 決する現実的な手段を有してレ、なかった。
[0011] 特許文献 1 :特開 2001— 126964公報
特許文献 2:特開 2001 _ 126965公報
発明の開示 発明が解決しょうとする課題
[0012] 従って、本発明の課題は、上記の問題点を解決し、電気特性及び耐湿特性などの 長期信頼性に優れた固体電解コンデンサ及びその製造方法を提供することにある。 課題を解決するための手段
[0013] 本発明者等は前述した課題を解決するために鋭意研究した結果、本発明は従来 の固体電解コンデンサの製造方法を大きく変更することなぐ単にコンデンサ素子に 撥水性材料、特にシリコーンオイルを少量添加して乾燥させることにより、コンデンサ 素子に含まれる水分を低減させるのみならず、水分の再吸収を著しく鈍化させること により、電気特性及び長期信頼性の極めて優れた固体電解コンデンサを製作するこ とに成功した。
[0014] 弁作用を有する平板状の金属の表面に陽極酸化皮膜を設け、この金属を二分する ように絶縁樹脂帯 (マスキング)を施した部分を設け、二分した金属の一方を陽極部と し、残部の表面に固体電解質層を設け、さらにこの固体電解質層上に導電体層を設 けてコンデンサ素子とし、さらに前記導電体層および陽極部の接続部がそれぞれ対 応するように複数個のコンデンサ素子を重ね合わせて積層したものをリードフレーム の陰極リード部及び陽極リード部に接続した後、コンデンサ素子に撥水性材料、特に シリコーンオイルを少量添加し、乾燥させた後にエポキシ樹脂等の外装樹脂による封 口を行うことにより、電気特性及び長期信頼性の極めて優れた固体電解コンデンサ を得ることができる。
[0015] すなわち、本発明は以下の固体電解コンデンサ及びその製造方法を提供するもの である。
1.誘電体皮膜層、固体電解質層及び導電体層を含む固体電解コンデンサにおい て、導電体層表面を含むコンデンサ素子表面の全てまたは一部に撥水性皮膜を有 することを特徴とする固体電解コンデンサ。
2.表面に誘電体皮膜層を有する弁作用金属の一部を陽極部とし、残部の誘電体皮 膜層上に固体電解質層、その上に導電体層を形成して陰極部とした固体電解コン デンサにおいて、導電体層表面を含むコンデンサ素子表面の全てまたは一部に撥 水性皮膜を有することを特徴とする固体電解コンデンサ。 3.表面に誘電体皮膜層を有する弁作用金属の一部を陽極部とし、残部の誘電体皮 膜層上に固体電解質層、その上の一部に導電体層を形成して陰極部とした複数個 のコンデンサ素子の陽極部と陰極部とがそれぞれ積層されてリードフレームに接続さ れ、外装樹脂で封止成形されている固体電解コンデンサであって、導電体層表面を 含むコンデンサ素子表面の全てまたは一部に撥水性皮膜を有することを特徴とする 固体電解コンデンサ。
4.導電体層がカーボンペースト層と銀ペースト層を含み、少なくともカーボンペース ト層を含むコンデンサ素子表面の全てまたは一部に撥水性皮膜を有する前記 1〜3 のいずれかに記載の固体電解コンデンサ。
5.撥水性皮膜がシリコーンオイルを含む皮膜である前記 1〜4のいずれかに記載の 固体電解コンデンサ。
6. シリコーンオイルの粘度が 5mPa'秒〜 500mPa'秒である前記 5に記載の固体電 角早コンデンサ。
7.シリコーンオイルがストレートシリコーンオイルである前記 5に記載の固体電解コン デンサ。
8.シリコーンオイルがジアルキルシリコーン、アルキルァリールシリコーン、またはァ ルキルハイドロジェンシリコーンである前記 7に記載の固体電解コンデンサ。
9.ジアルキルシリコーンがジメチルシリコーンである前記 8に記載の固体電解コンデ ンサ。
10.アルキルァリールシリコーンカ^チルフエニルシリコーンである前記 8に記載の固 体電解コンデンサ。
11.アルキルハイドロジヱンシリコーンがメチルハイドロジヱンシリコーンである前記 8 に記載の固体電解コンデンサ。
12.シリコーンォィルが変性シリコ一ンオイルである前記 5に記載の固体電解コンデ ンサ。
13.陽極基体上に誘電体皮膜層、固体電解質層及び導電体層を設けた後、導電体 層表面を含むコンデンサ素子表面の全てまたは一部を撥水性皮膜で被覆する工程 を含む固体電解コンデンサの製造方法。 14.表面に誘電体皮膜層を有する弁作用金属の一部を陽極部とし、残部の誘電体 皮膜層上に固体電解質層を形成し、その上に導電体層を設けた後、導電体層表面 を含むコンデンサ素子表面の全てまたは一部を撥水性皮膜で被覆する工程を含む 固体電解コンデンサの製造方法。
15.表面に誘電体皮膜層を有する弁作用金属の一部を陽極部とし、残部の誘電体 皮膜層上に固体電解質層、その上の一部に導電体層を形成して陰極部とした複数 個のコンデンサ素子の陽極部と陰極部とをそれぞれ積層し、リードフレームに接続し
、外装樹脂で封止成形する工程を含む積層固体電解コンデンサの製造方法におい て、導電体層形成後封止前のいずれかの時点で、導電体層表面を含むコンデンサ 素子表面の全てまたは一部を撥水性皮膜で被覆する工程を含む固体電解コンデン サの製造方法。
16.撥水性皮膜がシリコーンオイルを含む皮膜である前記 13〜: 15のいずれかに記 載の固体電解コンデンサの製造方法。 発明の効果
[0016] このようにコンデンサ素子に撥水性材料、特にシリコーンオイルを添加することによ り、電気特性の優れた固体電解コンデンサを得ることができる。
発明を実施するための最良の形態
[0017] 以下、本発明について詳細に説明する。
(弁作用金属)
本発明において固体電解コンデンサの陽極基体として用いられる弁作用金属とし ては、例えばアルミニウム、タンタル、チタン、ニオブ、ジルコニウムおよびこれらを基 質とする合金等がいずれも使用できる。そして陽極基体の形状としては、平板状の箔 や板や棒状等が挙げられる。このうちアルミニウム化成箔が経済性に優れているので 実用上多く用いられている。このアルミニウム化成箔は、 40〜200 z m厚、平板形素 子単位として縦横 l〜30mm程度の矩形のものが使用される。好ましくは幅 2〜20m m、長さ 2〜20mm、より好ましくは幅 2〜5mm、長さ 2〜6mmである。
[0018] 陽極基体の表面に設ける誘電体皮膜層は、弁作用金属の表面部分に設けられた 弁作用金属自体の酸化物層であってもよぐあるいは、弁作用金属箔の表面上に設 けられた他の誘電体層であってもよレ、が、特に弁作用金属自体の酸化物からなる層 であることが望ましい。
[0019] 表面に誘電体皮膜層が形成された平板状の陽極基体の端部の一区画を陽極部と し、残部を陰極部とする。陽極部と陰極部の区分には絶縁樹脂帯 (マスキング)を用 いても良い。
[0020] (固体電解質)
次に、陰極部の誘電体皮膜層上に固体電解質を形成させるが、固体電解質層の 種類には特に制限は無ぐ従来公知の固体電解質が使用できるが、とりわけ高導電 率の導電性高分子を固体電解質として作製する固体電解質コンデンサは、従来の 電解液を用いた湿式電解コンデンサや二酸化マンガンを用いた固体電解コンデンサ に比べて、等価直列抵抗成分が低ぐ大容量でかつ小形となり、高周波性能が良好 なために好ましい。
[0021] 本発明の固体電解コンデンサに用いられる固体電解質を形成する導電性重合体 は限定されないが、好ましくは π電子共役系構造を有する導電性重合体、例えばチ ォフェン骨格を有する化合物、多環状スルフイド骨格を有する化合物、ピロール骨格 を有する化合物、フラン骨格を有する化合物等で示される構造を繰り返し単位として 含む導電性重合体が挙げられる。
[0022] 導電性重合体の原料として用いられるモノマーのうち、チォフェン骨格を有する化 合物としては、例えば、 3—メチルチオフェン、 3—ェチルチオフェン、 3 _プロピルチ ォフェン、 3—ブチルチオフェン、 3 _ペンチルチオフェン、 3 _へキシルチオフェン、 3 _へプチルチオフェン、 3—ォクチルチオフェン、 3—ノニルチオフェン、 3 _デシノレ チォフェン、 3—フノレオロチォフェン、 3 _クロロチォフェン、 3—ブロモチォフェン、 3 —シァノチォフェン、 3, 4_ジメチルチオフェン、 3, 4 _ジェチルチオフェン、 3, 4- ブチレンチォフェン、 3, 4_メチレンジォキシチォフェン、 3, 4 _エチレンジォキシチ オフヱン等の誘導体を挙げることができる。これらの化合物は、一般に市販されてい る化合物または公知の方法(例えば、 Synthetic Metals誌, 1986年, 15卷, 169頁)で 準備できる。
[0023] また、例えば、多環状スルフイド骨格を有する化合物としては、例えば、 1 , 3—ジヒ ドロ多環状スルフイド (別名、 1 , 3—ジヒドロべンゾ [c]チオフヱン)骨格を有する化合 物、 1, 3 ジヒドロナフト [2, 3 _ c]チオフヱン骨格を有する化合物が使用できる。さ らには 1, 3—ジヒドロアントラ [2, 3 _ c]チォフェン骨格を有する化合物、 1 , 3—ジヒ ドロナフタセノ [2, 3 _ c]チォフェン骨格を有する化合物を挙げることができ、公知の 方法、例えば特開平 8-3156号公報 (US5530139)記載の方法により準備することがで きる。
[0024] また、例えば、 1, 3—ジヒドロナフト [ 1, 2 _ c]チォフェン骨格を有する化合物、 1,
3 ジヒドロフエナントラ [2, 3— c]チォフェン誘導体、 1 , 3 ジヒドロトリフエ二口 [2, 3 c]チォフェン骨格を有する化合物、 1 , 3—ジヒドロべンゾ [a]アントラセノ [7, 8 - c ]チオフヱン誘導体等も使用できる。
[0025] 縮合環に窒素または N—才キシドを任意に含んでいる化合物もあり、 1 , 3—ジヒドロ チエノ [3, 4— b]キノキサリンや、 1 , 3—ジヒドロチェノ [3, 4— b]キノキサリン 4 ォキシド、 1 , 3—ジヒドロチェノ [3, 4—b]キノキサリン一 4, 9 ジォキシド等を挙げる ことができる力 これらに限定されるものではない。
[0026] また、ピロール骨格を有する化合物としては、例えば、 3—メチルビロール、 3 ェチ ルピローノレ、 3—プロピルピロール、 3—ブチルピロール、 3—ペンチルピロール、 3— へキシルピロール、 3—へプチルピロール、 3—ォクチルピロール、 3—ノニルピロ一 ノレ、 3 _デシノレピロ一ノレ、 3—フノレオ口ピロ一ノレ、 3 _クロ口ピロ一ノレ、 3 _ブロモピロ ール、 3—シァノピロール、 3, 4—ジメチルピロール、 3, 4—ジェチルピロール、 3, 4 —ブチレンピロール、 3, 4—メチレンジォキシピロール、 3, 4 _エチレンジォキシピロ ール等の誘導体を挙げられるが、これらに限られない。これらの化合物は、市販品ま たは公知の方法で準備できる。
[0027] また、フラン骨格を有する化合物としては、例えば、 3 メチノレフラン、 3—ェチルフ ラン、 3—プロピルフラン、 3—ブチルフラン、 3—ペンチルフラン、 3—へキシルフラン 、 3 _へプチルフラン、 3—ォクチルフラン、 3—ノニルフラン、 3 _デシルフラン、 3 _ フルオロフラン、 3 _クロ口フラン、 3 _ブロモフラン、 3 _シァノフラン、 3, 4—ジメチル フラン、 3, 4—ジェチノレフラン、 3, 4—ブチレンフラン、 3, 4—メチレンジォキシフラン 、 3, 4—エチレンジォキシフラン等の誘導体が挙げられる力 S、これらに限られるもので はない。これらの化合物は市販品または公知の方法で準備できる。
[0028] 重合の手法は、電解重合でも、化学酸化重合でも、その組合せでもよレ、。また、誘 電体皮膜上に導電性重合体でない固体電解質をまず形成し、次いで上記の重合方 法で導電性重合体を形成する方法でもよレ、。
[0029] 導電性重合体を形成する例として、 3, 4 _エチレンジォキシチォフェンモノマー及 び酸化剤を好ましくは溶液の形態において、別々に前後してまたは一緒に誘電体皮 膜上に塗布して形成する方法 (特開平 2-15611号公報 (US4910645)ゃ特開平 10-321 45号公報)等が利用できる。
[0030] 一般に導電性重合体には、ドーピング能のある化合物 (ドーパント)が使用されるが、 ドーパントはモノマー溶液と酸化剤溶液のいずれに添加しても良ぐドーパントと酸化 剤が同一の化合物になっている有機スルホン酸金属塩の様なものでもよレ、。ドーパ ントとしては、好ましくはァリールスルホン酸塩系のドーパントが使用される。例えば、 ベンゼンスルホン酸、トルエンスルホン酸、ナフタレンスルホン酸、アントラセンスルホ ン酸、アントラキノンスルホン酸などの塩を用いることができる。
[0031] (撥水性皮膜)
このような導電性重合体を含む固体電解質層上には、例えば、カーボンペーストお よび/または銀ペーストなどの導電ペーストを塗布して導電体層を形成して陰極部( 導電体層形成部)を構成する。陽極部と陰極部との境界部に絶縁樹脂帯 (マスキン グ)により、周状(はち巻き状)に絶縁樹脂層を形成していてもよい。
[0032] 本発明ではコンデンサ素子に撥水性皮膜を形成する。
具体的には、誘電体皮膜層、固体電解質層及び導電体層を含む固体電解コンデ ンサにおいて、導電体層表面を含むコンデンサ素子表面の全てまたは一部に撥水 性皮膜を形成する。好ましくは、表面に誘電体皮膜層を有する弁作用金属の一部を 陽極部とし、残部の誘電体皮膜層上に固体電解質層、その上に導電体層を形成し て陰極部とした固体電解コンデンサにおいて、導電体層表面を含むコンデンサ素子 表面の全てまたは一部に撥水性皮膜を形成する。
[0033] 撥水性皮膜は、導電体層表面を含む限りにおいてコンデンサ素子表面の全てまた は一部を被覆するものであってよい。また、導電体層がカーボンペースト層と銀ぺー スト層を含む場合において、カーボンペースト層の一部が露出しているときは、少なく とも当該カーボンペースト層を含むコンデンサ素子表面の全てまたは一部に撥水性 皮膜を有する。
[0034] また、本発明ではリードフレーム上に積層されたコンデンサ素子に撥水性皮膜を形 成する。
すなわち、コンデンサ素子の陰極部をリードフレームの陰極リード部に導電性接着 剤を用いて接合し、このコンデンサ素子の陰極部の上に導電性接着剤を塗布して新 たなコンデンサ素子の陰極部と接合する。一方、コンデンサ素子の陽極部はリードフ レームの陽極リード部と接続する。接続方法は抵抗溶接、レーザー溶接、超音波溶 接、力シメ、導電性ペーストによる接着など、従来公知の方法によることができる。
[0035] 撥水性皮膜は、鉱物オイルや化学合成オイルなどの油類、シリコーンゴムやフッ素 ゴムなどのエラストマ一類など、撥水性を有しているものであればどのようなものでもよ レ、が、好ましくはシリコーンオイルを添加する。添加したシリコーンオイルは図 2に示 すようにコンデンサ素子の陰極部においてカーボンペーストの導電体層 21aと銀ぺ 一ストの導電体層 21bの表面を覆い、海綿状の固体電解質層 22と空気の境界に浸 透し、弁作用金属 23の表面に形成されてレ、る誘電体皮膜 24と空気の境界にも浸透 することで、外界とコンデンサ素子の陰極部との間にシリコーンオイルの皮膜 25を形 成する。また、添加したシリコーンオイルは導電性接着剤 26と空気の境界に浸透しシ リコーンオイルの皮膜 25を形成する。その一部は陰極リード部 27に達していても良 レ、。また、添加したシリコーンオイルは絶縁樹脂帯 28の表面においても絶縁樹脂帯 2 8と空気の境界にシリコーンオイルの皮膜 25を形成する。また、添カ卩したシリコーンォ ィルはコンデンサ素子の陽極部 29においてどの様な接続方法を行っても、陽極部 2 9と空気の境界に浸透することにより、外界とコンデンサ素子の陽極部 29との間にシ リコーンオイルの皮膜 25を形成する。その一部は陽極リード部 30に達していても良 レ、。この様にして形成されたシリコーンオイルの皮膜は、コンデンサ素子が空気から の水分を吸湿する速度を著しく抑える働きをする。シリコーンオイルを添加した後、リ ードフレーム上に積層されたコンデンサ素子を乾燥させることにより、コンデンサ素子 に含まれる水分を除去すると同時にシリコーンオイルに含まれている水分も除去する 。エポキシ樹脂等の外装樹脂によりトランスファー成形機等で封止成形を行った後、 リードフレームの凸部をコンデンサ素子の近辺で切断してチップ状の固体電解コンデ ンサとする。
[0036] シリコーンオイルを添加する部位はコンデンサ素子の陽極部および/または陰極 部である。シリコーンオイルの添加方法は噴霧、滴下、塗布など、公知の方法で良い 力 添力卩量は微量であり、また添加する位置の繰り返し精度が良いという点からディ スペンサによる塗布が望ましい。コンデンサ素子に対するシリコーンオイルの添力卩はリ ードフレーム上に積層したコンデンサ素子を乾燥させる前でも後でも良いが、シリコ ーンオイル自身に含まれる水分も減少させるという効果を考慮すると、シリコーンオイ ルを添加した後にコンデンサ素子を乾燥させることが望ましい。また、コンデンサ素子 に対するシリコーンオイルの添加はコンデンサ素子をリードフレーム上に積層する前 でも後でも良いが、コンデンサ素子を複数枚積層する際に用いる導電性接着剤の接 着力をシリコーンオイルが減衰させてしまうので、シリコーンオイルの添加はコンデン サ素子をリードフレーム上に積層した後が望ましい。また、予めシリコーンオイルを添 カロした導電ペーストを用いてコンデンサ素子の導電体層を形成しても良いが、弁作 用金属及び固体電解質層と空気の境界層の全てにシリコーンオイルの膜を形成させ るためには、導電体層をコンデンサ素子上に形成した後にシリコーンオイルを添加す るほうが好ましい。また、予めシリコーンオイルを添カ卩した導電性接着剤を用いてコン デンサ素子をリードフレーム上に積層しても良いが、弁作用金属及び固体電解質層 と空気の境界層の全てにシリコーンオイルの膜を形成させるためには、シリコーンォ ィルを含まない導電性接着剤を用いてリードフレーム上にコンデンサ素子を積層した 後にシリコーンオイルをコンデンサ素子に添カ卩するほうが好ましい。
[0037] シリコーンオイルの種類は特に限定されず、ストレートシリコーンオイル (未変性シリ コーンオイル)、変性シリコーンオイル、フルォロシリコーンオイル等、慣用のシリコー ンオイルを含む。
[0038] ストレートシリコーンオイルとしては、ジアルキルシリコーン(ジアルキルポリシロキサ ン)、アルキルァリールシリコーン(アルキルァリールポリシロキサン)、アルキルハイド ロジェンシリコーン(アルキルハイドロジエンポリシロキサン)が含まれ、ここでアルキル 基としては、メチノレ、ェチル、プロピル等の低級アルキル基、ァリール基としてはフエ 二ル基ゃ低級アルキル、ハロゲン等で置換されているァリール基等が挙げられる。好 ましいストレートシリコーンとしては、ジメチルシリコーン(ジメチルポリシロキサン)、メ チルフヱニルシリコーン、メチルハイドロジヱンシリコーンが挙げられる。
[0039] 変性シリコーンオイルとしては、種々の変性、特に非反応性変性が可能であるが、 固体電解コンデンサの性能に悪影響を与えない限りにおレ、てレ、ずれの変性シリコー ンも用レ、ることができる力 ァミノ変性シリコーンが好ましぐ例えば信越化学株式会 社製 KF— 868が採用可能である。
[0040] lPa'秒よりも大きな粘度を有したシリコーンオイルを使用すると、コンデンサ素子の 内部へシリコーンオイルが浸透するために長い時間力 Sかかってしまい、また、 ImPa' 秒よりも小さな粘度を有したシリコーンオイルには揮発分が含まれており、本発明に は適さない場合があるので、 ImPa'秒〜 lPa'秒(ただし、上限及び下限を含む。特 に断らない限り以下同じ。)とするのが好ましい。
[0041] リードフレーム上に複数のコンデンサ素子が積層されている場合、最外層のコンデ ンサ素子に対してシリコーンオイルを添加することで中間層のコンデンサ素子にまで シリコーンオイルを毛細管現象により浸透させるための粘度としては、 5mPa'秒〜 50 OmPa'秒が好ましぐ lOmPa '秒〜 400mPa'秒がさらに好ましぐ 20mPa*秒〜 40 OmPa'秒が特に好ましい。
[0042] (リードフレーム)
リードフレームの材料は一般的に使用されるものであれば特に制限はないが、好ま しくは銅系(例えば Cu— Ni系、 Cu— Ag系、 Cu_Sn系、 Cu— Fe系、 Cu— Ni— Ag 系、 Cu_Ni_Sn系、 Cu_Co_P系、 Cu_Zn_Mg系、 Cu_Sn_Ni_P系合金 等)の材料もしくは表面に銅系の材料のメツキ処理を施した材料で構成すればリード フレームの形状の工夫により抵抗の減少、リードフレームの面取り作業性が良好にな る等の効果が得られる。
実施例
[0043] 以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これら は説明のための単なる例示であって、本発明はこれらに何等制限されるものでない。 [0044] (実施例 1)
図 3に示すとおり、アルミニウム化成箔 31 (日本蓄電器工業株式会社製、箔種 110 LJB22B、定格皮膜耐電圧: 4vf) (以下、化成箔と称する。)を先端から二分するよう に、アルミニウム化成箔 31の両面および両端にマスキング材 32 (耐熱性樹脂)による 幅 lmmのマスキングを周状に形成した。陰極部 33と陽極部 34に分け、この化成箔 の先端側区画部分である陰極部 33を、電解液としてアジピン酸アンモニゥム 10質量 %水溶液を使用し、温度 55°C、電圧 4V、電流密度 5mA/cm2、通電時間 10分の 条件で化成し、水洗した。その後、陰極部を、 3, 4—エチレンジォキシチォフェンの イソプロピルアルコール溶液 lmol/1に浸漬後、 2分間放置し、次いで、酸化剤(過 硫酸アンモニゥム: 1. 5mol/l)とドーパント(ナフタレン一 2—スルホン酸ナトリウム: 0 . 15mol/l)の混合水溶液に浸漬し、 45°C、 5分間放置することにより酸化重合を行 つた。この含浸工程及び重合工程を全体で 12回繰り返し、ドーパントを含む固体電 解質層を化成箔の微細孔内に形成した。このドーパントを含む固体電解質層を形成 した化成箔を 50°C温水中で水洗し固体電解質層を形成した。固体電解質層を形成 させた後、電解液としてアジピン酸アンモニゥム 10質量%水溶液を使用し、温度 55 °C、電圧 4V、電流密度 5mA/cm2、通電時間 10分の条件で再度化成し、水洗の 後、 100°Cで 30分乾燥を行った。その上にカーボンペースト、銀ペーストを順次被覆 させて導電体層を形成した。
[0045] 図 4にコンデンサ素子 41, 42, 43, 44の 4枚を、リードフレーム上に積層した状態 を示す。コンデンサ素子 42の陰極部 42aは陰極リード部 45の表側と銀ペーストを用 いて接合し、コンデンサ素子 43の陰極部 43aは陰極リード部 45の裏側と銀ペースト を用レ、て接合し、コンデンサ素子 41の陰極部 41 aはコンデンサ素子 42の陰極部 42 aの表側と銀ペーストを用いて接合し、さらにコンデンサ素子 44の陰極部 44aはコン デンサ素子 43の陰極部 43aの裏側と銀ペーストを用いて接合した。積層したコンデ ンサ素子 41、 42、 43, 44の各陽極咅 B41b、 42b、 43b、 44bは陽極リード咅 とスポ ット熔接にて接合した。このリードフレーム上に積層されたコンデンサ素子 41の陰極 部 41aとコンデンサ素子 44の陰極部 44aに対して粘度 50mPa '秒のシリコーンオイ ル (信越化学株式会社製、ジメチルシリコーンオイル KF96— 50cs)を少量添加し、 2 00°Cで 3時間乾燥した後に樹脂封止し、さらに 135°Cの環境で 2. 5Vの電圧を 45分 間印加して、コンデンサ素子が 4枚積層された構造を持つ定格容量 220 x F、定格 電圧 2 Vの固体電解コンデンサを 50個得た。こうして得られた 50個の固体電解コン デンサを 250°Cのリフロー炉を用いて基板上にハンダ付けを行レ、、漏れ電流、等価 直列抵抗を測定した結果を表 1として示す。
[0046] (実施例 2)
シリコーンオイルを添カ卩する部位をコンデンサ素子 41の陰極部 41aとコンデンサ素 子 44の陰極部 44a及びコンデンサ素子 41の陽極部 41 bとコンデンサ素子 44の陽極 部 44bにした以外は実施例 1と同様にして定格容量 220 μ F、定格電圧 2Vの固体電 解コンデンサを 50個得た。こうして得られた 50個の固体電解コンデンサを 250°Cのリ フロー炉を用いて基板上にハンダ付けを行い、漏れ電流、等価直列抵抗を測定した 結果を表 1として示す。
[0047] (実施例 3)
シリコーンオイルを粘度 lOOmPa'秒のもの(信越化学株式会社製、ジメチルシリコ ーンオイル KF96— lOOcs)に変更した以外は実施例 1と同様にして定格容量 220 x F、定格電圧 2Vの固体電解コンデンサを 50個得た。こうして得られた 50個の固体 電解コンデンサを 250°Cのリフロー炉を用いて基板上にハンダ付けを行レ、、漏れ電 流、等価直列抵抗を測定した結果を表 1として示す。
[0048] (比較例 1)
シリコーンオイルを添加しない以外は実施例 1と同様にして定格容量 220 μ F、定 格電圧 2 Vの固体電解コンデンサを 50個得た。こうして得られた 50個の固体電解コ ンデンサを 250°Cのリフロー炉を用いて基板上にハンダ付けを行レ、、漏れ電流、等 価直列抵抗を測定した結果を表 1として示す。
なお、各実施例及び比較例は全て固体電解コンデンサ 50個の平均値である。
[0049] [表 1] 等価直列抵抗
(μ A) (mQ) 実施例 1 0. 37 2. 5 実施例 2 0. 33 2. 2 実施例 3 0. 29 3. 0 比較例 1 0. 48 3. 7
(実施例 4〜9、比較例 2)
添加するシリコーンオイルを表 2に示すものとし (信越化学株式会社製、 KF54、 K F— 99、 KF— 868、 KF— 96)、それ以外は実施例 2と全く同様の方法(実施例 7は 実施例 1と同じ方法)で定格容量 220 μ F、定格電圧 2Vの固体電解コンデンサを 50 個得た。
これらのコンデンサについて 60°C、 90%RH中 500時間放置後の漏れ電流を測定し た。その平均値を表 2に示す。
[表 2]
添加シリコーンオイルの品種
( β Α)
メチルフエニルシリコーン
実施例 4 (信越化学 (株)製, KF54) 3. 5
粘度 400mPa.秒
メチノレハイドロジェンシリコーン
実施例 5 (信越化学 (株)製, KF99) 2. 6
粘度 20mPa*秒
ァミノ変性シリコーン
実施例 6 (信越化学 (株)製, KF-868) 4. 0
粘度 90mPa-秒
ジメチノレシリコーン
実施例 7 (信越化学 (株)製, KF96-50cs) 3. 0
粘度 50mPa-秒
ジメチノレシリコーン
実施例 8 (信越化学 (株)製, KF- 96L- 0.65cs) 10. 1
粘度 0.65mPa*秒
ジメチルシリコーン
実施例 9 (信越化学 (株)製, KF-96-3000cs) 8. 5
粘度 3Pa*秒
比較例 2 無添加 20. 2
産業上の利用可能性
[0051] 本発明によるコンデンサ素子は耐湿性に優れ、電気特性の経時変化が少なレ、ため 、例えば、家電製品、コンピュータ、車載部品、産業機器等、幅広い分野において用 レ、ることができる。
図面の簡単な説明
[0052] [図 1]従来の積層型固体電解コンデンサ素子を示す斜視図。
[図 2]本発明の一実施態様を説明する断面図。
[図 3]本発明におけるコンデンサ素子の実施例を示す平面図。
[図 4]本発明においてコンデンサ素子を積層する例を示した斜視図。
符号の説明
[0053] 11 コンデンサ素子 1
11a コンデンサ素子 1の陰極部 l ib コンデンサ素子 2の陽極部
12 コンデンサ素子 2
12a コンデンサ素子 2の陰極部
12b コンデンサ素子 2の陽極部
13 陰極リード部
14 陽極リード部
15 陽極の接合部
16 外装樹脂
21a カーボンペーストの導電体層
21b 銀ペーストの導電体層
22 固体電解質層
23 弁作用金属
24 誘電体皮膜
25 シリコーンオイルの皮膜
26 導電性接着剤
27 陰極リード部
28 絶縁樹脂帯
29 陽極部
30 陽極リード部
31 アルミニウム化成箔
32 マスキング材 (耐熱樹脂)
33 陰極部
34 陽極部
1 コンデンサ素子 1
1a コンデンサ素子 1の陰極部 1b コンデンサ素子 1の陽極部 2 コンデンサ素子 2
2a コンデンサ素子 2の陰極部 b コンデンサ素子 2の陽極部 コンデンサ素子 3a コンデンサ素子 3の陰極部b コンデンサ素子 3の陽極部 コンデンサ素子 4a コンデンサ素子 4の陰極部b コンデンサ素子 4の陽極部 陰極リード部
陽極リード部

Claims

請求の範囲
[1] 誘電体皮膜層、固体電解質層及び導電体層を含む固体電解コンデンサにおいて 、導電体層表面を含むコンデンサ素子表面の全てまたは一部に撥水性皮膜を有す ることを特徴とする固体電解コンデンサ。
[2] 表面に誘電体皮膜層を有する弁作用金属の一部を陽極部とし、残部の誘電体皮 膜層上に固体電解質層、その上に導電体層を形成して陰極部とした固体電解コン デンサにおいて、導電体層表面を含むコンデンサ素子表面の全てまたは一部に撥 水性皮膜を有することを特徴とする固体電解コンデンサ。
[3] 表面に誘電体皮膜層を有する弁作用金属の一部を陽極部とし、残部の誘電体皮 膜層上に固体電解質層、その上の一部に導電体層を形成して陰極部とした複数個 のコンデンサ素子の陽極部と陰極部とがそれぞれ積層されてリードフレームに接続さ れ、外装樹脂で封止成形されている固体電解コンデンサであって、導電体層表面を 含むコンデンサ素子表面の全てまたは一部に撥水性皮膜を有することを特徴とする 固体電解コンデンサ。
[4] 導電体層がカーボンペースト層と銀ペースト層を含み、少なくともカーボンペースト 層を含むコンデンサ素子表面の全てまたは一部に撥水性皮膜を有する請求項 1〜3 のいずれかに記載の固体電解コンデンサ。
[5] 撥水性皮膜がシリコーンオイルを含む皮膜である請求項 1〜4のいずれかに記載の 固体電解コンデンサ。
[6] シリコーンオイルの粘度が 5mPa'秒〜 500mPa'秒である請求項 5に記載の固体 電解コンデンサ。
[7] シリコーンオイルがストレートシリコーンオイルである請求項 5に記載の固体電解コン デンサ。
[8] シリコーンオイルがジアルキルシリコーン、アルキルァリールシリコーン、またはァノレ キルノヽイドロジェンシリコーンである請求項 7に記載の固体電解コンデンサ。
[9] ジアルキルシリコーンがジメチルシリコーンである請求項 8に記載の固体電解コンデ ンサ。
[10] アルキルァリールシリコーン力 Sメチルフエニルシリコーンである請求項 8に記載の固 体電解コンデンサ。
[11] アルキルハイドロジヱンシリコーンカ^チルハイドロジヱンシリコーンである請求項 8 に記載の固体電解コンデンサ。
[12] シリコーンオイルが変性シリコーンオイルである請求項 5に記載の固体電解コンデ ンサ。
[13] 陽極基体上に誘電体皮膜層、固体電解質層及び導電体層を設けた後、導電体層 表面を含むコンデンサ素子表面の全てまたは一部を撥水性皮膜で被覆する工程を 含む固体電解コンデンサの製造方法。
[14] 表面に誘電体皮膜層を有する弁作用金属の一部を陽極部とし、残部の誘電体皮 膜層上に固体電解質層を形成し、その上に導電体層を設けた後、導電体層表面を 含むコンデンサ素子表面の全てまたは一部を撥水性皮膜で被覆する工程を含む固 体電解コンデンサの製造方法。
[15] 表面に誘電体皮膜層を有する弁作用金属の一部を陽極部とし、残部の誘電体皮 膜層上に固体電解質層、その上の一部に導電体層を形成して陰極部とした複数個 のコンデンサ素子の陽極部と陰極部とをそれぞれ積層し、リードフレームに接続し、 外装樹脂で封止成形する工程を含む積層固体電解コンデンサの製造方法において 、導電体層形成後封止前のいずれかの時点で、導電体層表面を含むコンデンサ素 子表面の全てまたは一部を撥水性皮膜で被覆する工程を含む固体電解コンデンサ の製造方法。
[16] 撥水性皮膜がシリコーンオイルを含む皮膜である請求項 13〜: 15のいずれかに記 載の固体電解コンデンサの製造方法。
PCT/JP2006/308733 2005-04-27 2006-04-26 固体電解コンデンサ及びその製造方法 WO2006118144A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007514768A JPWO2006118144A1 (ja) 2005-04-27 2006-04-26 固体電解コンデンサ及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005130111 2005-04-27
JP2005-130111 2005-04-27
US67735305P 2005-05-04 2005-05-04
US60/677,353 2005-05-04

Publications (1)

Publication Number Publication Date
WO2006118144A1 true WO2006118144A1 (ja) 2006-11-09

Family

ID=37307943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308733 WO2006118144A1 (ja) 2005-04-27 2006-04-26 固体電解コンデンサ及びその製造方法

Country Status (1)

Country Link
WO (1) WO2006118144A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472351B2 (en) 2014-01-09 2016-10-18 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor, electronic component module, method for producing solid electrolytic capacitor and method for producing electronic component module
CN107221440A (zh) * 2017-06-15 2017-09-29 苏州圣咏电子科技有限公司 一种固态电容
US10643798B2 (en) 2016-08-08 2020-05-05 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor
CN111446023A (zh) * 2020-03-29 2020-07-24 郴州恒维电子有限公司 一种无硅油导电条及制造工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151228A (ja) * 1987-12-08 1989-06-14 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造法
JPH07235451A (ja) * 1994-02-23 1995-09-05 Marcon Electron Co Ltd アルミニウム非固体電解コンデンサ
JP2001196277A (ja) * 1999-10-29 2001-07-19 Matsushita Electric Ind Co Ltd 固体電解コンデンサ
JP2003124068A (ja) * 2001-10-10 2003-04-25 Showa Denko Kk コンデンサ用陽極箔、該陽極箔の製造方法及び該陽極箔を用いた固体電解コンデンサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151228A (ja) * 1987-12-08 1989-06-14 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造法
JPH07235451A (ja) * 1994-02-23 1995-09-05 Marcon Electron Co Ltd アルミニウム非固体電解コンデンサ
JP2001196277A (ja) * 1999-10-29 2001-07-19 Matsushita Electric Ind Co Ltd 固体電解コンデンサ
JP2003124068A (ja) * 2001-10-10 2003-04-25 Showa Denko Kk コンデンサ用陽極箔、該陽極箔の製造方法及び該陽極箔を用いた固体電解コンデンサ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472351B2 (en) 2014-01-09 2016-10-18 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor, electronic component module, method for producing solid electrolytic capacitor and method for producing electronic component module
US10643798B2 (en) 2016-08-08 2020-05-05 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor
CN107221440A (zh) * 2017-06-15 2017-09-29 苏州圣咏电子科技有限公司 一种固态电容
CN111446023A (zh) * 2020-03-29 2020-07-24 郴州恒维电子有限公司 一种无硅油导电条及制造工艺

Similar Documents

Publication Publication Date Title
JP7182588B2 (ja) コンデンサアノードに使用するための鎖に結合した対イオンを有する導電性ポリマーと、鎖に結合していない対イオンを有する導電性ポリマーの混合物を含む分散液
JP4845699B2 (ja) 固体電解コンデンサ及び固体電解コンデンサの製造方法
US7279015B2 (en) Process for the producing of electrolytic capacitors
CN104051157B (zh) 用于极端条件下的固体电解电容器
KR102486981B1 (ko) 누설 전류가 개선된 고체 전해질 커패시터
JP6819691B2 (ja) 固体電解コンデンサ及び固体電解コンデンサの製造方法
JPH08167540A (ja) チップ状固体電解コンデンサ及びその製造方法
CN101110297A (zh) 具有聚合物外层的电解电容器及其制备方法
JP2017022367A (ja) 多湿雰囲気中で使用するための固体電解キャパシタアセンブリ
JP6110964B2 (ja) 改善されたesr安定性を備えた固体電解コンデンサ
JP2012039123A (ja) 機械的に堅牢な固体電解コンデンサアセンブリ
CN107785169B (zh) 固体电解电容器元件、固体电解电容器、及其制造方法
WO2007055247A1 (ja) 固体電解コンデンサ及びその製造方法
US8004824B2 (en) Solid electrolytic capacitor element and solid electrolytic capacitor using same
WO2006118144A1 (ja) 固体電解コンデンサ及びその製造方法
JP3454715B2 (ja) 固体電解コンデンサの製造方法
JP4900851B2 (ja) 固体電解コンデンサ素子及び固体電解コンデンサ
US11270847B1 (en) Solid electrolytic capacitor with improved leakage current
JP2004079838A (ja) 固体電解コンデンサ
TWI283877B (en) Solid electrolytic capacitor and method for producing the same
US20230178306A1 (en) Solid electrolytic capacitor element and solid electrolytic capacitor
JP2003257788A (ja) 固体電解コンデンサ及びその製造方法
WO2022158350A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
JP2013258273A (ja) コンデンサ用マスキング樹脂組成物、コンデンサ素子、コンデンサおよびコンデンサの製造方法
JPWO2006118144A1 (ja) 固体電解コンデンサ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514768

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745711

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载