WO2006115039A1 - 両面研磨装置用キャリア及びこれを用いた両面研磨装置並びに両面研磨方法 - Google Patents
両面研磨装置用キャリア及びこれを用いた両面研磨装置並びに両面研磨方法 Download PDFInfo
- Publication number
- WO2006115039A1 WO2006115039A1 PCT/JP2006/307629 JP2006307629W WO2006115039A1 WO 2006115039 A1 WO2006115039 A1 WO 2006115039A1 JP 2006307629 W JP2006307629 W JP 2006307629W WO 2006115039 A1 WO2006115039 A1 WO 2006115039A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carrier
- double
- side polishing
- polishing apparatus
- polishing
- Prior art date
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 129
- 238000000034 method Methods 0.000 title claims description 16
- 239000004065 semiconductor Substances 0.000 claims abstract description 48
- 229920005989 resin Polymers 0.000 claims abstract description 31
- 239000011347 resin Substances 0.000 claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 10
- 239000004744 fabric Substances 0.000 claims abstract description 7
- 230000003746 surface roughness Effects 0.000 claims description 18
- 239000003822 epoxy resin Substances 0.000 claims description 11
- 239000011521 glass Substances 0.000 claims description 11
- 229920000647 polyepoxide Polymers 0.000 claims description 11
- 238000004544 sputter deposition Methods 0.000 claims description 6
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 229920002530 polyetherether ketone Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- -1 polypropylene Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 239000002184 metal Substances 0.000 abstract description 20
- 238000011109 contamination Methods 0.000 abstract description 8
- 235000012431 wafers Nutrition 0.000 description 65
- 230000000052 comparative effect Effects 0.000 description 18
- 239000012050 conventional carrier Substances 0.000 description 15
- 239000011159 matrix material Substances 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B41/00—Component parts such as frames, beds, carriages, headstocks
- B24B41/06—Work supports, e.g. adjustable steadies
- B24B41/067—Work supports, e.g. adjustable steadies radially supporting workpieces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/07—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
- B24B37/08—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
Definitions
- the present invention relates to a carrier for a double-side polishing apparatus that holds a semiconductor wafer when polishing the semiconductor wafer in a double-side polishing apparatus.
- the semiconductor wafer is held by a carrier. That is, this carrier is formed to be thinner than the semiconductor wafer, and can be held at a predetermined position between the upper surface plate and the lower surface plate of the double-side polishing apparatus, and has a wafer holding hole.
- the semiconductor wafer is inserted and held in the wafer holding hole, and the upper and lower surfaces of the semiconductor wafer are sandwiched between the upper and lower surfaces of the semiconductor wafer by a polishing tool provided on the inner surface of the upper surface plate and the lower surface plate, and the abrasive is supplied to the polishing surface.
- a polishing tool provided on the inner surface of the upper surface plate and the lower surface plate
- the metal plate and the metal plate that is simply deposited on the surface of the metal plate are easily peeled off during polishing, exposing the metal plate, resulting in metal impurity contamination. This can cause fatal defects for semiconductor wafers, resulting in poor product yield.
- a resin made of resin is also used to cope with this metal impurity contamination, but there is a problem if it is short-lived and easily destroyed.
- the present invention has been made in view of such a problem, and when performing double-side polishing of a semiconductor wafer, there is no metal contamination of the wafer, and durability is good, and double-side polishing is performed efficiently.
- Another object of the present invention is to provide a carrier for a double-side polishing apparatus that can produce a high-quality wafer having high flatness, a double-side polishing apparatus and a double-side polishing method using the same.
- the present invention provides a double-side polishing apparatus, which is disposed between upper and lower surface plates to which a polishing cloth is attached, and is sandwiched between the upper and lower surface plates during polishing.
- a carrier for a double-side polishing apparatus in which a holding hole for holding a semiconductor wafer is formed, wherein the base material of the carrier is a resin, and the surface of the carrier base is a DLC (Diamond Like Carbon) Provided is a carrier for a double-side polishing apparatus characterized by being coated with a film.
- a carrier for a double-side polishing apparatus in which the base material of the carrier is a resin, and the carrier surface is coated with a DLC film, is inexpensive and free from metal contamination. It can be manufactured and has high hardness due to the DLC film on the surface, so durability can be improved and carrier life can be extended. Therefore, the frequency of carrier exchange can be reduced, the semiconductor wafer can be efficiently polished on both sides, and the cost can be reduced.
- the carrier polishing time at start-up when a carrier having a smaller surface roughness than that of a conventional resin carrier is replaced can be shortened, and the operating rate can be further improved.
- the thickness of the carrier is low and the thickness is stable during polishing with high hardness and low surface roughness, a semiconductor wafer with high flatness can be obtained.
- the resin is any of glass epoxy resin, polypropylene, polyimide, and polyetheretherketone resin.
- the DLC film is coated by a sputter deposition method.
- the thickness of the DLC film is preferably 0.3 ⁇ m to 5 ⁇ m.
- the carrier matrix is coated with the DLC film by the sputter deposition method, a film having a uniform thickness can be obtained.
- the thickness of the film is in the range of, for example, 0.3 ⁇ m to 5 ⁇ m, it is possible to perform coating while maintaining high uniformity.
- the surface roughness of the carrier is preferably 0.01 ⁇ m or less in terms of Ra.
- the friction coefficient can be made small. If the coefficient of friction can be reduced, the carrier will be less likely to wear during polishing, so the thickness of the carrier will hardly change, and if this carrier is used for double-side polishing, a wafer with high flatness can be obtained. . In addition, since the carrier polishing time can be shortened, the time required for the carrier startup can be greatly reduced.
- the surface of the carrier base is coated with a DLC film, and wear due to polishing is high because of high hardness. It is possible to extend the carrier life by reducing the occurrence of scratches and breakage of small carriers. Therefore, the operation rate is remarkably improved. Also, since the wear during polishing is small, it is possible to perform double-side polishing on a semiconductor wafer having a high flatness where the thickness of the carrier is difficult to change.
- the carrier is disposed between upper and lower surface plates to which a polishing cloth is attached, and the semiconductor wafer is held in a holding hole formed in the carrier. Then, it is desirable to sandwich both surfaces between the upper and lower surface plates.
- the surface of the carrier base has a high DLC. Since the film is coated, it is possible to extend the carrier life where the carrier is less likely to be worn or damaged. As a result, the carrier replacement frequency can be lowered, so that the cost can be reduced and the semiconductor wafer can be polished on both sides efficiently. In addition, since the carrier thickness changes to be stable at the time of polishing, a semiconductor wafer having high flatness can be finished.
- the DLC film on the base made of resin Therefore, impurities are not generated in the semiconductor wafer.
- the semiconductor wafer is disposed between the upper and lower surface plates to which the polishing cloth is attached, and holds the semiconductor wafer sandwiched between the upper and lower surface plates during polishing.
- the carrier is less worn during polishing and the thickness is stable, it is possible to produce a semiconductor wafer with high flatness.
- FIG. 1 is a longitudinal sectional view showing an example of a double-side polishing apparatus provided with a carrier for a double-sided apparatus according to the present invention.
- FIG. 2 is an internal structural view of a double-side polishing apparatus in plan view.
- FIG. 3 is a schematic view showing an example of the carrier of the present invention ((A): appearance, (B): partial longitudinal sectional view).
- FIG. 4 (A) is a measurement result of Example 4.
- Conventional carriers for a double-side polishing apparatus include, for example, those made of metal and those coated with a resin coating on the surface of a metal plate.
- metal impurities are contaminated in the semiconductor wafer held during polishing, and the quality of the semiconductor wafer may be lowered.
- the carrier is made of rosin, there is a problem that the carrier is easily damaged and tends to be insufficient in strength. As a result, the frequency of carrier replacement is increased, and carrier replacement is carried out every several hundred batches, and more time is spent on starting up the carrier during the replacement, resulting in lower equipment availability and wafer production efficiency.
- the present inventors have devised a carrier for a double-side polishing apparatus, which is a carrier for a double-side polishing apparatus, in which the base material of the carrier is a resin and the surface of the base is coated with a DLC film.
- Such a carrier for double-side polishing equipment improves the carrier life because the hardness is sufficiently high and the abrasion during polishing is small compared to a conventional resin carrier or a resin coated surface.
- the production efficiency of wafers can be improved at a relatively low cost, and metal contamination can be avoided.
- the carrier polishing time at the start-up when the carrier having a small surface roughness is replaced can be shortened, and the operating rate can be further improved.
- the hardness is high and the surface roughness is small, the thickness of the carrier does not change even during polishing, so that both sides can be polished to a semiconductor wafer with high flatness. The present inventors have found these things and completed the present invention.
- FIG. 1 is a longitudinal sectional view of an example of a double-side polishing apparatus equipped with a carrier for a double-side polishing apparatus of the present invention
- FIG. 2 is an internal structure diagram of the double-side polishing apparatus in plan view
- FIG. 3 is a double-side polishing of the present invention. It is the schematic of the carrier for apparatuses.
- the carrier for a double-side polishing apparatus of the present invention relates to improvement of a carrier for holding a semiconductor wafer in a double-side polishing apparatus that simultaneously polishes both sides of a semiconductor wafer, for example. This will be explained with reference to FIG.
- a double-side polishing apparatus 10 including a carrier 1 for double-side polishing apparatus of the present invention includes a lower surface plate 11 and an upper surface plate 12 that are provided opposite to each other in the vertical direction. W abrasive cloth lla, 12a is affixed to the opposite side.
- a nozzle 15 for supplying a polishing slurry is provided above the upper surface plate 12, and a through hole 16 is provided in the upper surface plate 12.
- upper surface plate A sun gear 13 is provided at the center between 12 and the lower surface plate 11, and an internal gear 14 is provided at the periphery.
- the semiconductor unit W is held in the holding hole 4 of the carrier 1 and sandwiched between the upper surface plate 12 and the lower surface plate 11.
- the carrier 1 for a double-side polishing apparatus of the present invention disposed in the double-side polishing apparatus 10 will be described below with reference to FIG.
- the carrier matrix 17 is made of a resin, and the surface thereof is coated with a DLC film 18 (FIG. 3B).
- the carrier 1 is also provided with a holding hole 4, and a semiconductor wafer holding portion 3 is provided along the inner periphery of the holding hole 4 so as not to damage the edge portion of the wafer W. Yes.
- the carrier 1 is provided with a polishing liquid hole 2 for passing the polishing liquid separately from the holding hole 4, and an outer peripheral tooth 5 is provided on the outer peripheral portion (FIG. 3 (A)).
- the arrangement and number of the holding holes 4 and the polishing liquid holes 2 are not limited to those shown in the figure, and can be arbitrarily set.
- the carrier 1 of the present invention has the matrix 17 made of resin, and examples of the resin include glass epoxy resin, polypropylene, polyimide, polyether ether ketone resin, and the like. Since the carrier matrix 17 is a resin, it can be prepared at a relatively low cost.Because the surface is coated with the DLC film 18, the Vickers hardness, for example, is higher than that of a conventional carrier having a high hardness. 5 ⁇ : Can be LO times. Further, since the damage can be reduced and the wear can be reduced during polishing, the carrier life can be extended. For this reason, the replacement frequency of the carrier is reduced and the cost can be reduced.
- the wear is small during polishing and the thickness of the carrier 1 is not easily changed and stable, it is possible to adjust the processing time when processing the semiconductor wafer W to the finished thickness. It is easy and can polish the semiconductor wafer w with high flatness.
- a method for forming the DLC film 18 is not particularly limited, and for example, the coating can be performed by a sputter deposition method.
- the sputter deposition method in particular, assuming a film thickness of about 0.3 to 5 / ⁇ ⁇ , the thickness is sufficient to increase the hardness of the carrier 1 and the uniformity. It is possible to form by holding. As another method, it may be deposited by the CVD method. With these formation methods, it is possible to obtain a uniform surface with less film unevenness.
- the friction coefficient can be greatly reduced.
- the surface roughness is increased.
- the carrier polishing time can be shortened by at least the time required for improving the surface roughness, and the time required for starting up the carrier can be shortened. Can do.
- the holding portion 3 around the holding hole 4 is made of, for example, aramid resin, and protects the chamfered portion of the semiconductor wafer W from being damaged when holding the semiconductor wafer W. Is provided.
- the polishing liquid hole 2 is a hole through which the polishing slurry supplied at the time of polishing is passed, and the polishing slurry is evenly supplied to the polishing surface on the lower surface side through this hole.
- the outer peripheral teeth 5 mesh with the sun gear 13 and the internal gear 14 as described above, and the carrier 1 rotates and revolves around the sun gear 13 during polishing.
- the carrier for the double-side polishing apparatus of the present invention is not limited to the planetary type, but is employed in the carrier of the swing type double-side polishing apparatus. Even it is effective.
- the surface of the carrier matrix 17 made of resin is coated with the DLC film 18 having high hardness. 1 wear 'breakage can be suppressed. And this will increase your career life. Also, since the carrier 1 is less worn by polishing, the carrier thickness is less likely to change and is stable.
- the thickness variation of the semiconductor wafer w before polishing processing since the carrier thickness is difficult to change, the optimum processing time can be easily set and a semiconductor wafer w with high flatness can be obtained.
- the carrier 1 for a double-side polishing apparatus of the present invention is disposed between the upper and lower surface plates 11 and 12 to which the polishing cloths 11a and 12a of the double-side polishing apparatus 10 are attached. And holding it between the upper and lower surface plates 11 and 12, both sides of Weno and W can be polished while supplying the polishing slurry.
- the carrier life in which the carrier 1 is difficult to be worn or damaged is extended, and the cost is reduced.
- the production efficiency is improved and the carrier 1 is less likely to wear during polishing and the thickness of the carrier 1 is stable. Therefore, it is possible to finish the wafer W with high flatness.
- the carrier matrix 17 made of resin is coated with the DLC film 18, impurity contamination of the wafer W does not occur! /.
- a carrier made of glass epoxy resin (thickness: 781 m, carrier hole diameter: 300 mm) was prepared as a conventional carrier.
- a DLC film (thickness: 4111) was formed on the surface by sputtering deposition to obtain a carrier for a double-side polishing apparatus of the present invention.
- the surface roughness of this carrier of the present invention was measured (measured at one point with a contact-type roughness meter), it was 0.009111 for Ra (01 ⁇ 1 surface roughness of 1 ⁇ before film formation) : 0. 04 / zm).
- the carrier was polished by disposing the carrier on a double-side polishing apparatus (Example 1).
- Example 1 The carrier polishing in both Example 1 and Comparative Examples 1 and 2 was finished when the burrs were removed and the surface roughness was sufficiently improved.
- the time required for starting up this carrier was 30 minutes (Example 1), 60 minutes (Comparative Example 1), and 180 minutes (Comparative Example 2), respectively.
- the carrier for a double-side polishing apparatus of the present invention it is possible to significantly reduce the time required for carrier startup. This is a sufficiently small value when the surface roughness of the carrier of the present invention is reduced by the coating compared to the conventional carrier made of resin, for example, when Ra is 0.01 m or less. This is because the time required for improving the surface roughness by polishing can be greatly reduced.
- the present invention and the conventional carrier were prepared, and the carrier was polished under certain polishing conditions (upper and lower surface plate 15 rpm, weight 200 g / cm 2 ) until the carrier thickness was out of specification, and the time spent was measured.
- a glass epoxy resin carrier matrix in which a DLC film (4 ⁇ m) is formed carrier thickness: 782 ⁇ m
- a manufactured product carrier thickness: 780 ⁇ m (Comparative Example 3) was prepared.
- Example 2 As a result of Example 2 and Comparative Example 3, the time required for the carrier thickness to become out of specification was approximately 30000 minutes and 500 minutes.
- the carrier life with high durability can be significantly extended as compared with the conventional carrier.
- the wear speed of the carrier was 2.44 ⁇ 10 ” 10 ⁇ m / min in Example 3 and 1.74 ⁇ 10 _2 mZmin in Comparative Example 4, which was a large difference.
- the carrier of the present invention even when double-side polishing is performed while holding the wafer, the change in the carrier thickness is sufficiently suppressed at the time of polishing where the wear speed is significantly slower than that of the conventional carrier. Can do. Therefore, the frequency of carrier replacement can be reduced, and the cost can be significantly reduced. Further, as described above, if the thickness of the carrier becomes stable during polishing, a wafer having high and flatness can be efficiently produced.
- Semiconductor carrier double-side polishing is performed using the carrier of the present invention (glass epoxy resin + DLC film).
- the polishing process was applied to the target finish thickness.
- the shape data of the wafer after polishing was measured, and GBIR SFQR (max S BIR (max) was measured (Example 4).
- GBIR global backside ideal range
- SFQR site front least squares range
- site plane calculated by the least square method in the set site is used as the reference plane.
- (ma X) refers to the largest of the differences at each site.
- SBIR site back ideal range
- Example 4 The results of Example 4 are shown in Fig. 4 (A), and the results of Comparative Example 5 are shown in Fig. 4 (B).
- the carrier of the present invention is coated with a DLC film having a high hardness, the wear is small even when used for polishing power! And then.
- the fluctuation factor of the optimum machining time to the target finish thickness of the wafer is reduced, the wafer can be finished to the target thickness with the set machining time, and the wafer has high flatness. Can produce.
- the present invention is not limited to the above-described embodiment.
- the above embodiment is an exemplification, and any component that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same operational effects can be used. It is included in the technical scope of the present invention.
- the present invention is not limited to this, and the material of the carrier matrix is resin. As long as the surface is coated with a DLC film, it is sufficient.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
両面研磨装置において、研磨布が貼付された上下定盤の間に配設され、研磨の際に前記上下定盤の間に挟まれた半導体ウェーハを保持するための保持孔が形成された両面研磨装置用キャリアであって、前記キャリアの母体の材質が樹脂であり、該キャリア母体の表面をDLC膜でコーティングしたものである両面研磨装置用キャリア。これにより、ウェーハの両面研磨の際に、ウェーハへの金属汚染がなく、耐久性が良くて、効率良く両面研磨して高い平坦度を有する高品質のウェーハを生産することを可能とする両面研磨装置用キャリアが提供される。
Description
明 細 書
両面研磨装置用キャリア及びこれを用いた両面研磨装置並びに両面研 磨方法
技術分野
[0001] 本発明は、両面研磨装置において、半導体ゥ ーハを研磨する際に半導体ゥ ー ハを保持する両面研磨装置用キャリアに関する。 背景技術
[0002] 従来、例えば半導体ゥ ーハの両面をポリツシング等で研磨する際、キャリアによつ て半導体ゥエーハを保持して行っている。すなわち、このキャリアは、半導体ゥエーハ より薄い厚みに形成され、両面研磨装置の上定盤と下定盤の間の所定位置に保持 し得るようにされるとともにゥエーハ保持孔を備えている。そしてこのゥエーハ保持孔 に半導体ゥヱーハを挿入して保持し、上定盤と下定盤の対内面に設けられた研磨布 等の研磨具で半導体ゥヱーハの上下面を挟み込み、研磨面に研磨剤を供給しなが ら研磨するようにしている。
[0003] このようなキャリアとしては金属製のもの、金属板の表裏面に榭脂をコーティングし たもの、または榭脂製のものが一般的に良く知られている。
し力しながら、金属製のもの、そして金属板の表面に単に榭脂層を被着させるだけ のものでは研磨中に榭脂層が剥離しやすく金属板が露出してしまい、金属不純物汚 染という半導体ゥエーハにとって致命的な欠陥が生じることがあり、製品の歩留まりが 悪くなつてしまう。
また、この金属不純物汚染への対応力も榭脂製のものが使用されているが、寿命 が短く容易に破壊されてしまうと ヽぅ問題があった。
[0004] これらの問題を解決すベぐ例えば金属板に小孔をあけて、表裏の榭脂層を結合し たキャリアが開示されているが、上述の問題点の決定的な解決には至っていない (特 開平 9 207064号公報参照)。
発明の開示
[0005] そこで、本発明はこのような問題点に鑑みてなされたもので、半導体ゥヱーハの両 面研磨の際に、ゥエーハへの金属汚染がなく、耐久性が良くて、効率良く両面研磨し て高い平坦度を有する高品質のゥエーハを生産することを可能とする両面研磨装置 用キャリア、及びこれを用いた両面研磨装置並びに両面研磨方法を提供することを 目的とする。
[0006] 上記課題を解決するために、本発明は、両面研磨装置において、研磨布が貼付さ れた上下定盤の間に配設され、研磨の際に前記上下定盤の間に挟まれた半導体ゥ エーハを保持するための保持孔が形成された両面研磨装置用キャリアであって、前 記キャリアの母体の材質が榭脂であり、該キャリア母体の表面を DLC (Diamond Li ke Carbon)膜でコーティングしたものであることを特徴とする両面研磨装置用キヤリ ァを提供する。
[0007] このように、両面研磨装置用キャリアであって、キャリアの母体の材質が榭脂であり、 母体表面を DLC膜でコーティングした両面研磨装置用キャリアであれば、金属汚染 もなぐ安価で作製することができ、また表面の DLC膜のために硬度が高いことから、 耐久性が向上してキャリアライフを延ばすことができる。このため、キャリアの交換頻 度を減らすことができ、効率良く半導体ゥ ーハを両面研磨することが可能であり、コ ストを下げることができる。
また、従来の榭脂製キャリアと比較して表面粗さも小さぐキャリアを交換した時の立 ち上げ時のキャリア研磨時間を短縮することができ、一層稼働率を向上させることが できる。
さらに、硬度が高ぐ表面粗さが小さぐ研磨時においてキャリアの磨耗が少なくて 厚さが安定しているため、高平坦度の半導体ゥエーハを得ることができる。
[0008] このとき、前記樹脂が、ガラスエポキシ榭脂、ポリプロピレン、ポリイミド、ポリエーテ ルエーテルケトン樹脂の 、ずれかであることが望まし 、。
これらの榭脂はキャリアの素材として、また、金属板の表面をコーティングする素材 としてよく用いられている。さらに、安価で用意することができること力もコストの面でも 有効である。
[0009] そして、前記 DLC膜がスパッタ蒸着法によりコーティングされたものであるのが望ま しい。また、 DLC膜の厚さが 0. 3 μ m〜5 μ mであるのが望ましい。
このように、 DLC膜をスパッタ蒸着法によってキャリア母体にコーティングすれば、 均一な厚さの膜とすることができる。特に、該膜の厚さが例えば 0. 3 μ m〜5 μ mの 範囲であるならば、高 、均一性を保持してコーティングすることが可能である。
[0010] また、キャリアの表面粗さが Raで 0. 01 μ m以下であるのが望ましい。
このようにキャリアの表面粗さが Raで特に 0. 01 m以下であれば、摩擦係数を小 さいものとすることができる。摩擦係数を小さくすることができれば、キャリアは研磨時 において磨耗しにくくなり、そのためキャリアの厚さはほとんど変化せず、このキャリア を用いて両面研磨を施せば高平坦度のゥエーハを得ることができる。また、キャリアの 研磨時間を短縮できるのでキャリアの立ち上げに要する時間を大幅に短縮すること が可能となる。
[0011] そして、少なくとも、前記本発明の両面研磨装置用キャリアを具備した両面研磨装 置であれば、キャリア母体の表面を DLC膜でコーティングしており、硬度が高いため に研磨時の磨耗が小さぐキャリアの傷や破損の発生を低減し、キャリアライフを延長 することが可能である。従って、稼働率が著しく向上する。また、研磨時の磨耗が小さ いことからキャリアの厚さが変化しにくぐ高平坦度の半導体ゥ ーハに両面研磨する ことができる。
[0012] また、半導体ゥ ーハを両面研磨する方法であって、研磨布が貼付された上下定 盤の間に前記キャリアを配設し、該キャリアに形成された保持孔に半導体ゥエーハを 保持して、前記上下定盤の間に挟み込んで両面研磨するのが望ましい。
[0013] このように、前記本発明の両面研磨装置用キャリアの保持孔に半導体ゥエーハを保 持して、上下定盤の間に挟み込んで両面研磨すれば、キャリア母体の表面に硬度の 高い DLC膜をコーティングしているため、キャリアが磨耗'破損等しにくぐキャリアラ ィフを延ばすことができる。これによつて、キャリアの交換頻度を低くすることができる ので、コストを低減し、効率良く半導体ゥエーハを両面研磨することが可能である。ま た、研磨時において、キャリアの厚さが変化しに《安定していることから、高い平坦 度を有する半導体ゥエーハに仕上げることができる。し力も、榭脂製の母体に DLC膜
をコーティングしたものであるから、半導体ゥエーハに対して不純物を生じさせることも ない。
[0014] 本発明のように、両面研磨装置において、研磨布が貼付された上下定盤の間に配 設され、研磨の際に前記上下定盤の間に挟まれた半導体ゥ ーハを保持するための 保持孔が形成された両面研磨装置用キャリアであって、前記キャリアの母体の材質 が榭脂であり、該キャリア母体の表面を DLC膜でコーティングした両面研磨装置用キ ャリアであれば、 Feなどの拡散係数の大き 、金属不純物が存在しな!、こと力 金属 汚染を抑え、し力も安価で作製することができ、また表面の DLC膜のために硬度が 高いことから、耐久性が向上してキャリアライフを延ばすことができる。このため、キヤリ ァの交換頻度を減らすことができ、効率良く半導体ゥエーハを両面研磨することが可 能であり、コストを下げることができる。
さらに、研磨時にキャリアの磨耗が少なく厚さが安定しているため、高平坦度の半導 体ゥエーハを生産することができる。
図面の簡単な説明
[0015] [図 1]本発明の両面装置用キャリアを具備した両面研磨装置の一例を示した縦断面 図である。
[図 2]平面視による両面研磨装置の内部構造図である。
[図 3]本発明のキャリアの一例を示した概略図である((A):外観、 (B):部分縦断面 図。)。
[図 4] (A)実施例 4の測定結果である。 (B)比較例 5の測定結果である。
発明を実施するための最良の形態
[0016] 以下では、本発明の実施の形態について説明する力 本発明はこれに限定される ものではない。
従来の両面研磨装置用キャリアには、例えば金属製のものや金属板の表面に榭脂 コーティングを施したものがある。しかし、これらのキャリアを使用した場合、研磨時に ぉ 、てその保持する半導体ゥエーハへの金属不純物汚染が発生し、半導体ゥエー ハの品質を下げてしまうことがあった。
また、キャリアが榭脂製のものである場合、傷がつき易ぐ強度が不足しがちで容易 に破損してしまうという問題があった。そのためキャリアの交換頻度も高くなり、数百バ ツチの加工毎にキャリア交換が行われ、また、交換の際のキャリア立ち上げ等に時間 が費やされて装置稼働率が下がり、ゥエーハの生産効率の面における問題もあった
[0017] そこで本発明者らは、両面研磨装置用キャリアであって、キャリアの母体の材質が 榭脂であり、母体表面を DLC膜でコーティングした両面研磨装置用キャリアを考え出 した。
このような両面研磨装置用キャリアであれば、従来の榭脂製のキャリアや、表面が 榭脂コーティングされたものに比べて硬度が十分に高く研磨時の磨耗も小さいため にキャリアライフを向上させることができ、ゥエーハの生産効率を比較的安価で向上 することができるとともに、金属汚染も回避することができる。また、表面をコーティン グするため、表面粗さも小さぐキャリアを交換した時の立ち上げ時のキャリア研磨時 間を短縮することができ、一層稼働率を向上させることができる。さらに、硬度が高ぐ 表面粗さが小さ 、ためにキャリアの厚さが研磨時にぉ 、ても変化することなぐそのた め高平坦度の半導体ゥ ーハに両面研磨することができる。本発明者らはこれらのこ とを見出し、本発明を完成させた。
[0018] 以下では、本発明の実施の形態について図を用いて説明をする。
ここで、図 1は本発明の両面研磨装置用キャリアを具備した両面研磨装置の一例の 縦断面図、図 2は平面視による両面研磨装置の内部構造図、図 3は本発明の両面研 磨装置用キャリアの概略図である。
本発明の両面研磨装置用キャリアは、例えば半導体ゥ ーハの両面を同時に研磨 する両面研磨装置において、半導体ゥエーハを保持しておくキャリアの改良に関する ものであり、まず両面研磨装置の概要について図 1及び図 2を用いて説明する。
[0019] 本発明の両面研磨装置用キャリア 1を具備した両面研磨装置 10は、上下に相対向 して設けられた下定盤 11と上定盤 12を備えており、各定盤 11、 12の対向面側には 、それぞ; W磨布 lla、 12aが貼付されている。また、上定盤 12の上部には研磨スラ リーを供給するノズル 15、上定盤 12には貫通孔 16が設けられている。そして上定盤
12と下定盤 11の間の中心部にはサンギヤ 13が、周縁部にはインターナルギヤ 14が 設けられている。半導体ゥヱーノ、 Wはキャリア 1の保持孔 4に保持され、上定盤 12と 下定盤 11の間に挟まれて 、る。
[0020] サンギヤ 13及びインターナルギヤ 14の各歯部にはキャリア 1の外周歯が嚙合して おり、上定盤 12及び下定盤 11が不図示の駆動源によって回転されるのに伴い、キヤ リア 1は自転しつつサンギヤ 13の周りを公転する。このとき半導体ゥエーハ Wはキヤリ ァ 1の保持孔 4で保持されており、上下の研磨布 11a及び 12aにより両面を同時に研 磨される。なお、研磨時には、ノズル 15から貫通孔 16を通して研磨スラリーが供給さ れる。
[0021] ここで、上記両面研磨装置 10に配設される本発明の両面研磨装置用キャリア 1に ついて、図 3を用いて以下に説明する。
本発明のキャリア 1は、キャリア母体 17の材質が榭脂であり、その表面は DLC膜 18 でコーティングされている(図 3 (B) )。また、キャリア 1には保持孔 4があけられており、 その保持孔 4の内周に沿ってゥエーハ Wのエッジ部に傷をつけな 、ようにするための 半導体ゥエーハ保持部 3が設けられている。また、キャリア 1には保持孔 4とは別に研 磨液を通すための研磨液孔 2があけられており、外周部には外周歯 5が設けられて いる(図 3 (A) )。保持孔 4や研磨液孔 2の配置や個数は、図に示したものに限らず、 任意に設定できる。
[0022] このように、本発明のキャリア 1は母体 17を榭脂製としており、榭脂の例としては、ガ ラスエポキシ榭脂、ポリプロピレン、ポリイミド、ポリエーテルエーテルケトン樹脂などが 挙げられる。キャリア母体 17が榭脂であるため、比較的安価で準備することができる そして、表面を DLC膜 18でコーティングしていることから、硬度が高ぐ従来のキヤ リアに比べて例えばビッカース硬さを 5〜: LO倍にすることができる。また、研磨時にお いて破損を少なくし、磨耗を小さくすることができるため、キャリアライフを延ばすこと が可能である。このため、キャリアの交換頻度が減り、コストを下げることができる。 さらに上述のように、研磨時に磨耗が小さくキャリア 1の厚さが変化しにくく安定して いるために、半導体ゥ ーハ Wを仕上がり厚さに加工する際に加工時間の調整が容
易であり、狙い通りに研磨して半導体ゥエーハ wを高平坦度にカ卩ェすることができる
[0023] この DLC膜 18の形成方法は特に限定されず、例えば、スパッタ蒸着法によってコ 一ティングすることができる。スパッタ蒸着法であれば、特に、 0. 3〜5 /ζ πι程度の膜 の厚さを想定した場合、キャリア 1の硬度を高くするのに十分な厚さであり、かつ、均 一性を保持して形成することが可能である。また、他の方法として、 CVD法により堆 積させてもよい。これらの形成方法であれば膜ムラも少なぐ均一な表面とすることが 可能である。
[0024] また、例えば、表面粗さが Raで 0. 01 μ m以下であれば、摩擦係数を大幅に低減 することができる。従来のキャリアでは、バリ取りと表面粗さの改善のために交換の際 にキャリア研磨がまず行われる力 本発明のように DLC膜 18でキャリア 1の表面をコ 一ティングすることによって、表面粗さを例えば上記のような小さな値にすることがで きるので、少なくとも表面粗さ改善に要する時間の分だけ、キャリア研磨時間を短縮 することができ、キャリアの立ち上げにかかる時間を短くすることができる。
[0025] そして、保持孔 4の周辺の保持部 3は例えばァラミド榭脂でできており、半導体ゥェ ーハ Wを保持する際に、半導体ゥヱーハ Wの面取り部を傷付けないよう保護するた めに設けられている。
研磨液孔 2は研磨時に供給される研磨スラリーを通すための穴であり、この穴を通 じて下面側の研磨面にも満遍なく研磨スラリーが供給される。
外周歯 5は上述のようにサンギヤ 13、インターナルギヤ 14と嚙合し、研磨時、キヤリ ァ 1はサンギヤ 13の周りを自転及び公転する。
[0026] なお、上記では遊星式の両面研磨装置のキャリアを例として述べてきた力 本発明 の両面研磨装置用キャリアは遊星式に限定されず、揺動式の両面研磨装置のキヤリ ァに採用しても有効である。
[0027] このような本発明の両面研磨装置用キャリア 1を具備した両面研磨装置 10であれ ば、榭脂製のキャリア母体 17の表面を硬度の高い DLC膜 18でコーティングしている ため、キャリア 1の磨耗'破損を抑えることができる。そして、これによつてキャリアライフ が長くなる。
また、研磨によるキャリア 1の磨耗が少ないので、キャリア厚さが変化しにくく安定し ている。このようにゥエーハ厚さの基準となるキャリア 1の厚さの変化が小さいと、例え ば半導体ゥ ーハ wを仕上がり厚さに研磨する方法として、研磨加工前の半導体ゥ エーハ wの厚さばらつきをカ卩ェ時間を増減して調整を行うが、キャリア厚さが変化し にくいので、最適加工時間の設定が容易になり、高平坦度の半導体ゥエーハ wを得 ることがでさる。
[0028] そして、上記本発明の両面研磨装置用キャリア 1を両面研磨装置 10の研磨布 11a 、 12aが貼付された上下定盤 11、 12の間に配設し、保持孔 4で半導体ゥエーハ Wを 保持して上下定盤 11、 12の間に挟み込み、研磨スラリーを供給しつつゥエーノ、 Wを 両面研磨することができる。
このような方法であれば、キャリア母体 17の表面には硬い DLC膜 18をコーティング しているため、キャリア 1が磨耗'破損等しにくぐキャリアライフが延び、コストが低減さ れてゥエーハ Wの生産効率が向上するとともに、研磨時において磨耗しにくくキャリア 1の厚さが安定して 、ることから、高平坦度のゥエーハ Wに仕上げることが可能である 。さらに、榭脂製のキャリア母体 17に DLC膜 18をコーティングしたものであるため、ゥ エーハ Wへの不純物汚染も生じな!/、。
[0029] 以下に本発明および比較例をあげてさらに具体的に説明するが、本発明はこれに 限定されるものではない。
(実施例 1、比較例 1 · 2)
まず、従来のキャリアとして、材質がガラスエポキシ榭脂のキャリア (厚さ: 781 m、 キャリアホール径: 300mm)を用意した。この従来のキャリアに、スパッタ蒸着法によ つて表面に DLC膜 (厚さ :4 111)を形成し、本発明の両面研磨装置用キャリアとした 。この本発明のキャリアの表面粗さを測定 (接触式粗さ計にて 1点測定)したところ、 R aで 0. 009 111でぁった(01^膜形成前にぉける表面粗さ1¾: 0. 04 /z m)。次に、 両面研磨装置に上記のキャリアを配設して、キャリア研磨を行った(実施例 1)。
次に、上述のようなガラスエポキシ榭脂製の従来のキャリアを新たに 2枚用意し、同 様に表面粗さを測定し、キャリア研磨を行った。表面粗さはそれぞれ Raで、 0. 03
m (比較例 1 )、 0. 10 m (比較例 2)であつた。
[0030] 実施例 1、比較例 1 · 2のいずれのキャリアも、バリが取れ、表面粗さが十分に改善さ れたところでキャリア研磨を終了した。このキャリアの立ち上げに要した時間は、それ ぞれ、 30分 (実施例 1)、 60分 (比較例 1)、 180分 (比較例 2)であった。
このように、本発明の両面研磨装置用キャリアであれば、キャリア立ち上げにかかる 時間を大幅に短縮することが可能である。これは、元々従来の例えば榭脂製のキヤリ ァに比べて、本発明のキャリアの表面粗さがコーティングにより小さくなり、特に Raで 0. 01 m以下であれば、十分小さな値であり、キャリアを研磨することによる表面粗 さ改善に要する時間を大幅に削減することができるからである。
[0031] (実施例 2、比較例 3)
次に、本発明と従来のキャリアを用意し、一定の研磨条件 (上下定盤 15rpm、加重 200g/cm2)でキャリアの厚さが規格外となるまで研磨し、力かった時間を計測した。 本発明のキャリアとしてはガラスエポキシ榭脂のキャリア母体に DLC膜 (4 μ m)を形 成したもの(キャリア厚さ: 782 μ m) (実施例 2)を、従来のキャリアとしてガラスェポキ シ榭脂製のもの (キャリア厚さ: 780 μ m) (比較例 3)を用意した。
なお、この耐久実験前にそれぞれのキャリアの硬度を測定したところ、 1500Hv、 1 60Hvで約 10倍ほどの差があった。
[0032] 実施例 2、比較例 3の結果、キャリア厚さが規格外になるまでに要した時間は、およ そ 30000分、 500分であった。
このように、本発明のキャリアは表面を硬い DLC膜で覆っているため、耐久'性が高 ぐキャリアライフを従来のキャリアと比較して格段に延長することができる。
[0033] (実施例 3、比較例 4)
本発明のキャリア (ガラスエポキシ榭脂 + DLC膜)を用意し、両面研磨装置に配設 して、半導体ゥヱーハを保持して研磨剤を供給しながら両面研磨を行って、キャリア の磨耗スピードを算出した。一度に 5枚のゥエーハを 40分間研磨し、全部で 2050枚 のゥエーハ(410バッチ)を両面研磨した(実施例 3)。
また、従来のキャリア (ガラスエポキシ榭脂製)を用意して、同様に一度に 5枚のゥェ ーハを保持して 40分間研磨し、全部で 30枚のゥェーハ(6バッチ)を両面研磨した ( 比較例 4)。
[0034] この結果、キャリアの磨耗スピードは実施例 3では 2. 44 X 10"10 μ m/min,比較 例 4では 1. 74 X 10_2 mZminとなり、桁違いの大きな差が生じた。
このように、本発明のキャリアでは、ゥ ハを保持して両面研磨を行っても、従来 のキャリアに比べて磨耗スピードが格段に遅ぐ研磨時においてキャリア厚さの変化 を十分に抑制することができる。したがって、キャリアの交換頻度を低減することがで き、コストを大幅に下げることが可能になる。また、上述したように、研磨時においてキ ャリアの厚さが安定して 、れば、高 、平坦度を有するゥ ハを効率良く生産するこ とがでさる。
[0035] (実施例 4、比較例 5)
本発明のキャリア (ガラスエポキシ榭脂 + DLC膜)を用いて半導体ゥ ハの両面 研磨を行う。ゥ ハの加工前原料厚さと狙い仕上がり厚さの差をもとに加工時間を 調整して設定をすることにより、狙い仕上がり厚さになるようゥ に研磨加工を施 した。そして、研磨後のゥ ハの形状データを計測して、 GBIR SFQR (max S BIR (max)の測定を行った (実施例 4)
同様に、従来のキャリア (ガラスエポキシ榭脂製)を用いて、加工時間設定をして半 導体ゥ ハを両面研磨して、研磨後のゥ ハの形状を測定した (比較例 5) [0036] なお、 GBIR (global backside ideal range)とはゥ ハ裏面を平面に矯正し た状態で、ゥ ハ面内に 1つの基準面を持ち、この基準面に対する最大、最小の 位置変位の差を示す。
また、 SFQR (site front least squares range)はゥ 裏面を平面に墙正 した状態で、設定されたサイト内でデータを最小二乗法にて算出したサイト内平面を 基準平面とし、各サイト毎のこの平面からの最大、最小の位置変位の差を示す。 (ma X)とは、各サイト毎のその差のうち最大のものを指す。
SBIR (site back ideal range)はゥ 裏面を平面に矯正した状態で、裏面
基準面にて各サイト毎の表面高さの最大値と最小値の差を指す。 (max)は SFQRと 同様、各サイト毎のその差のうち最大のものを指す。
[0037] 実施例 4の結果を図 4 (A)に、比較例 5の結果を図 4 (B)に示す。
図 4から判るように、 GBIR、 SFQR (max)、 SBIR (max)のいずれの値も本発明の キャリアを用いた実施例 4のほうが、従来キャリアの比較例 5よりも小さな値となった。 実施例 4の本発明のキャリアを用いた両面研磨では、高い平坦度を有する高品質 の半導体ゥヱーハに仕上げることができ、一方、比較例 5においては、特にゥヱーハ の周縁部において大きく丸みを帯びてしまい、著しく平坦度に欠けたゥエーハとなつ てしまった。
[0038] 本発明のキャリアは表面を硬度の高い DLC膜でコーティングしていることにより、研 磨力卩ェに使用しても磨耗が小さ!/、ためにキャリア厚さが変化せずに安定して 、る。す なわち、ゥエーハの狙い仕上がり厚さへの最適な加工時間の変動要因が減るために 、設定した加工時間で狙い通りの厚さにゥエーハを仕上げることができ、高平坦度を 有するゥ ーハを生産できる。
一方、従来のキャリアでは研磨時においてキャリアの磨耗が進み、設定した加工時 間と最適な加工時間とにズレが生じ、ゥエーハの平坦度も低いものとなる。
[0039] なお、本発明は、上記形態に限定されるものではな 、。上記実施形態は、例示であ り、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有 し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に 包含される。
[0040] 例えば、上記実施例では、キャリア母体の材質としてガラスエポキシ榭脂を用いた 場合を例に挙げて説明しているが、本発明はこれに限定されず、キャリア母体の材質 が榭脂であり、その表面に DLC膜をコーティングしたものであれば良い。
Claims
[1] 両面研磨装置において、研磨布が貼付された上下定盤の間に配設され、研磨の 際に前記上下定盤の間に挟まれた半導体ゥエーハを保持するための保持孔が形成 された両面研磨装置用キャリアであって、前記キャリアの母体の材質が榭脂であり、 該キャリア母体の表面を DLC膜でコーティングしたものであることを特徴とする両面 研磨装置用キャリア。
[2] 前記榭脂が、ガラスエポキシ榭脂、ポリプロピレン、ポリイミド、ポリエーテルエーテ ルケトン樹脂の 、ずれかであることを特徴とする請求項 1に記載の両面研磨装置用 キャリア。
[3] 前記 DLC膜がスパッタ蒸着法によりコーティングされたものであることを特徴とする 請求項 1または請求項 2に記載の両面研磨装置用キャリア。
[4] 前記 DLC膜の厚さが 0. 3 μ m〜5 μ mであることを特徴とする請求項 1から請求項 3の 、ずれか一項に記載の両面研磨装置用キャリア。
[5] 前記キャリアの表面粗さが Raで 0. 01 m以下であることを特徴とする請求項 1から 請求項 4のいずれか一項に記載の両面研磨装置用キャリア。
[6] 少なくとも、請求項 1から請求項 5のいずれか一項に記載の両面研磨装置用キヤリ ァを具備したものであることを特徴とする両面研磨装置。
[7] 半導体ゥ ーハを両面研磨する方法であって、研磨布が貼付された上下定盤の間 に請求項 1から請求項 5のいずれか一項に記載のキャリアを配設し、該キャリアに形 成された保持孔に半導体ゥエーハを保持して、前記上下定盤の間に挟み込んで両 面研磨することを特徴とする半導体ゥ ーハの両面研磨方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-121902 | 2005-04-20 | ||
JP2005121902A JP2006303136A (ja) | 2005-04-20 | 2005-04-20 | 両面研磨装置用キャリア及びこれを用いた両面研磨装置並びに両面研磨方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006115039A1 true WO2006115039A1 (ja) | 2006-11-02 |
Family
ID=37214664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/307629 WO2006115039A1 (ja) | 2005-04-20 | 2006-04-11 | 両面研磨装置用キャリア及びこれを用いた両面研磨装置並びに両面研磨方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2006303136A (ja) |
WO (1) | WO2006115039A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2065131A1 (en) * | 2007-11-29 | 2009-06-03 | Siltron Inc. | Method of manufacturing wafer carrier |
CN112435954A (zh) * | 2020-11-25 | 2021-03-02 | 西安奕斯伟硅片技术有限公司 | 一种晶圆载体的处理方法和晶圆载体 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007056627B4 (de) * | 2007-03-19 | 2023-12-21 | Lapmaster Wolters Gmbh | Verfahren zum gleichzeitigen Schleifen mehrerer Halbleiterscheiben |
KR100761446B1 (ko) * | 2007-06-04 | 2007-09-27 | 에스엠엘씨디(주) | 웨이퍼 캐리어의 디엘씨코팅장치 및 웨이퍼 캐리어의 디엘씨코팅방법 |
JP5301802B2 (ja) * | 2007-09-25 | 2013-09-25 | Sumco Techxiv株式会社 | 半導体ウェハの製造方法 |
KR100879758B1 (ko) | 2007-11-29 | 2009-01-21 | 주식회사 실트론 | 웨이퍼 캐리어의 제조방법 |
JP4605233B2 (ja) * | 2008-02-27 | 2011-01-05 | 信越半導体株式会社 | 両面研磨装置用キャリア及びこれを用いた両面研磨装置並びに両面研磨方法 |
JP5452984B2 (ja) * | 2009-06-03 | 2014-03-26 | 不二越機械工業株式会社 | ウェーハの両面研磨方法 |
US8900033B2 (en) | 2009-12-01 | 2014-12-02 | Sumco Corporation | Wafer polishing method |
WO2011121913A1 (ja) * | 2010-03-29 | 2011-10-06 | コニカミノルタオプト株式会社 | 情報記録媒体用ガラス基板の製造方法 |
WO2015107674A1 (ja) * | 2014-01-17 | 2015-07-23 | ミライアル株式会社 | 基板収納容器 |
JP6508003B2 (ja) * | 2015-11-06 | 2019-05-08 | 信越半導体株式会社 | テンプレートアセンブリの製造方法及びこのテンプレートアセンブリを用いた研磨方法並びにテンプレートアセンブリ |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1110530A (ja) * | 1997-06-25 | 1999-01-19 | Shin Etsu Handotai Co Ltd | 両面研磨用キャリア |
JPH1119866A (ja) * | 1997-02-28 | 1999-01-26 | Advanced Ceramics Res Inc | 平坦な物体を研磨するための重合体キャリヤ |
JP2005254351A (ja) * | 2004-03-09 | 2005-09-22 | Speedfam Co Ltd | 被研磨物保持用キャリア |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5981057A (ja) * | 1982-11-01 | 1984-05-10 | Hitachi Ltd | 両面研磨装置 |
JPH11138428A (ja) * | 1997-10-31 | 1999-05-25 | Kashiwara Machine Mfg Co Ltd | ウエーハ研磨装置及びキャリア |
JP4473592B2 (ja) * | 2003-02-07 | 2010-06-02 | カヤバ工業株式会社 | Dlcコーティング膜 |
JP2004303280A (ja) * | 2003-03-28 | 2004-10-28 | Hoya Corp | 情報記録媒体用ガラス基板の製造方法 |
-
2005
- 2005-04-20 JP JP2005121902A patent/JP2006303136A/ja active Pending
-
2006
- 2006-04-11 WO PCT/JP2006/307629 patent/WO2006115039A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1119866A (ja) * | 1997-02-28 | 1999-01-26 | Advanced Ceramics Res Inc | 平坦な物体を研磨するための重合体キャリヤ |
JPH1110530A (ja) * | 1997-06-25 | 1999-01-19 | Shin Etsu Handotai Co Ltd | 両面研磨用キャリア |
JP2005254351A (ja) * | 2004-03-09 | 2005-09-22 | Speedfam Co Ltd | 被研磨物保持用キャリア |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2065131A1 (en) * | 2007-11-29 | 2009-06-03 | Siltron Inc. | Method of manufacturing wafer carrier |
CN112435954A (zh) * | 2020-11-25 | 2021-03-02 | 西安奕斯伟硅片技术有限公司 | 一种晶圆载体的处理方法和晶圆载体 |
CN112435954B (zh) * | 2020-11-25 | 2024-01-26 | 西安奕斯伟材料科技股份有限公司 | 一种晶圆载体的处理方法和晶圆载体 |
Also Published As
Publication number | Publication date |
---|---|
JP2006303136A (ja) | 2006-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006115039A1 (ja) | 両面研磨装置用キャリア及びこれを用いた両面研磨装置並びに両面研磨方法 | |
US6042688A (en) | Carrier for double-side polishing | |
KR100842473B1 (ko) | 웨이퍼의 제조방법 및 연마장치 및 웨이퍼 | |
KR101493709B1 (ko) | 양면 연마 장치용 캐리어 및 이를 이용한 양면 연마 장치 및 양면 연마 방법 | |
EP1852900B1 (en) | Carrier for double side polishing machine and double side polishing machine employing it, and double side polishing method | |
JP4113509B2 (ja) | 被研磨物保持用キャリア | |
TWI424484B (zh) | Wafer grinding method and wafer | |
WO2006001340A1 (ja) | 両面研磨用キャリアおよびその製造方法 | |
KR20100099991A (ko) | 양면 연마장치용 캐리어 및 이를 이용한 양면 연마방법 | |
JP2011143477A (ja) | 両面研磨装置用キャリア及びこれを用いた両面研磨装置並びに両面研磨方法 | |
WO2018043054A1 (ja) | ドレッサー | |
KR101328775B1 (ko) | 실리콘 에피택셜 웨이퍼의 제조 방법 | |
JP4698178B2 (ja) | 被研磨物保持用キャリア | |
JP2014147993A (ja) | ドレッシングプレート及びドレッシングプレートの製造方法 | |
JP4781654B2 (ja) | 研磨クロス及びウェーハ研磨装置 | |
KR101322969B1 (ko) | 실리콘 에피택셜 웨이퍼의 제조 방법 | |
JP4241164B2 (ja) | 半導体ウェハ研磨機 | |
JP6593318B2 (ja) | キャリアプレートの厚み調整方法 | |
TWI872474B (zh) | 兩面研磨用載具及使用此之矽晶圓的兩面研磨方法及裝置 | |
JP2001150351A (ja) | ドレッシング用電着砥石 | |
JP2005046924A (ja) | 研磨装置および研磨方法 | |
CN117182662A (zh) | 一种利用SiC晶棒的头尾片制备衬底的方法 | |
JP2008238287A (ja) | 両面研磨装置用キャリア |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06731576 Country of ref document: EP Kind code of ref document: A1 |