+

WO2006114849A1 - Miniature bearing and method for manufacturing the same - Google Patents

Miniature bearing and method for manufacturing the same Download PDF

Info

Publication number
WO2006114849A1
WO2006114849A1 PCT/JP2005/007048 JP2005007048W WO2006114849A1 WO 2006114849 A1 WO2006114849 A1 WO 2006114849A1 JP 2005007048 W JP2005007048 W JP 2005007048W WO 2006114849 A1 WO2006114849 A1 WO 2006114849A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
molding
less
molded body
powder
Prior art date
Application number
PCT/JP2005/007048
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshimitsu Kankawa
Hiroshi Setowaki
Hiroshi Satomi
Motoi Fukuda
Original Assignee
Mold Research Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mold Research Co., Ltd filed Critical Mold Research Co., Ltd
Priority to PCT/JP2005/007048 priority Critical patent/WO2006114849A1/en
Publication of WO2006114849A1 publication Critical patent/WO2006114849A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • F16C2220/48Shaping by deformation without removing material by extrusion, e.g. of metallic profiles

Definitions

  • the present invention relates to a microporous bearing and a method for manufacturing the same.
  • the present invention has been made in consideration of the problems in the prior art as described above, and has a high dimensional accuracy, especially a micro bearing having a small dimensional accuracy, and does not generate cracks. It is an object of the present invention to provide a porous bearing having a desired porosity and a method by which such a bearing can be manufactured without sizing.
  • the present invention relates to a method for producing a micro bearing having an outer diameter of 2 mm or less and an inner diameter of 1 mm or less, which is a metal powder having an average particle diameter of 1 to 150 ⁇ m or a ceramic having an average particle diameter of 0.1 to 10 ⁇ m.
  • An organic binder of 30 to 70 vol% (vol% with respect to the total amount of the molding composition) is added to metal powder having an average particle size of 1 to 150 m or ceramic powder having an average particle size of 0.1 to 10 / zm.
  • a primary molded body is produced using the molding composition, and then the primary molded body is inserted into a heated press mold and pressed to obtain a conventional molded body (press molding, extrusion molding and injection molding). It is possible to obtain a secondary molded body having a higher dimensional accuracy than a molded body obtained by only the process.
  • thermosetting resin having an average particle size of 10 to 150 ⁇ m is added to obtain desired pores.
  • the rate can be further increased.
  • a metal or ceramic micro bearing having a weight of 0.1 lg or less, an outer diameter of 2 mm or less, an inner diameter of 1 mm or less, and an inner dimensional accuracy of ⁇ 0. Furthermore, it is a micro or small bearing made of metal or ceramics with a weight of 0.1 lg or less, an outer diameter of 1.5 mm or less, an inner diameter of 0.7 mm or less, and an inner diameter dimensional accuracy of ⁇ 0.005 mm or less. Therefore, it is possible to manufacture with high dimensional accuracy.
  • an ultra-small porous bearing having an outer diameter of 2 mm or less and an inner diameter of 1 mm or less can be manufactured with very high dimensional accuracy.
  • FIG. 1 is a process diagram showing a production method according to the present invention.
  • FIG. 2A is a diagram showing an embodiment of a micro bearing according to the present invention
  • FIG. 2B is a micro bearing according to the present invention, which is an embodiment of a bearing having a flange.
  • FIG. 1 shows a process for producing a microporous bearing according to the present invention, and a molded body cross-sectional model in each process.
  • an organic binder and, if necessary, a thermosetting resin powder to increase the porosity are added to the metal powder or ceramic powder that is the raw material powder, and the mixture is heated and kneaded using a heating kneader. As a result, a molding composition in which each material is uniformly dispersed is obtained.
  • the metal powder two or more kinds of powders having an average particle diameter of 1 to 150 ⁇ m and different average particle diameters may be mixed.
  • the average particle size is 0.1 ⁇ : LO / z m.
  • V Two or more powders with different average particle sizes may be mixed.
  • the powder used is not particularly limited.
  • metal powder copper, silver, gold, iron, nickel
  • One or more of chromium, conoretole, tungsten, anoremi, titanium, manganese, or an alloy containing one or more of these metals can be used.
  • the ceramic powder a powder having one or more kinds of carbides, nitrides and oxides containing aluminum, titanium, tungsten, silicon, zircon, calcium and magnesium as elements can be used.
  • the powder has a small average particle diameter
  • the powder per unit volume in the molding composition The percentage of the end increases. Therefore, the filling rate of the powder into the thin wall portion can be increased, and the strength of the thin wall portion after sintering can be increased.
  • the average particle size is too small, the strength of the bearing increases, but the sintered density increases, making it difficult to ensure the desired porosity.
  • the average particle size of the powder is too small, it becomes difficult to put the molding composition into the molding machine during molding, and the molding composition does not smoothly enter the molding machine. Stability during molding decreases.
  • the average particle size of the powder is too large, the filling rate of the powder in the thin-walled portion will be low, which may reduce the strength of the bearing after sintering.
  • the average particle size of the metal powder used in the present invention is preferably 1 to 150 m, more preferably 10 to 50 m.
  • the average particle size of the ceramic powder used in the present invention is preferably 0.1 to 10 ⁇ m, more preferably 0.5 ⁇ m to 5 ⁇ m.
  • the content of the metal or ceramic powder to be used is preferably 30 to 70 vol%, more preferably 30 to 70 vol% of the entire molding composition. If the content is less than the lower limit, the dimensional accuracy after degreasing and sintering may be reduced.
  • Examples of the organic binder include: polyolefins such as polyethylene, polypropylene, and ethylene acetate copolymer; acrylic resins such as polymethyl methacrylate and polybutyl methacrylate; and styrene resins such as polystyrene. And various types of waxes, paraffins, higher fatty acids (eg, stearic acid), higher alcohols, higher fatty acid esters, higher fatty acid amides, etc. Species or a mixture of two or more can be used.
  • the content of the organic binder is preferably 30 to 70 vol% of the entire molding composition, more preferably 35 to 60 vol%. If the content is less than the lower limit value, the molding pressure may not be sufficiently transmitted, and the filling of the thin portion may be insufficient. On the other hand, if the content exceeds the upper limit value, the dimensional accuracy may decrease or the shape may be deformed after degreasing and sintering.
  • thermosetting resin powder having an average particle size of 10 to 150 ⁇ m may be added in addition to the powder and the organic binder to produce a molding composition.
  • the content of thermosetting resin is preferably 1-30 vol% of the entire molding composition. More preferably, it is 1 to 15 vol%.
  • thermosetting resin examples include epoxy resin, urethane resin, melamine resin, and phenol resin. From the viewpoint of thermal decomposability, epoxy resin and urethane resin are preferable.
  • thermosetting resins behave as powders in the same manner as metal powders and ceramic powders that are used without being melted when the materials are kneaded. Since these thermosetting resin decomposes and disappears with the decomposition of the organic binder during the degreasing process, pores corresponding to the volume of the added thermosetting resin occur after the degreasing process. Since the pores are retained even after sintering, the porosity increases as the amount added increases. If the amount of thermosetting resin added exceeds the upper limit, the amount of pores will increase and the strength after sintering will decrease. Also, the improvement in porosity expected when the amount added is below the lower limit is not observed.
  • the kneading conditions of the molding composition vary depending on various conditions such as the composition and particle size of the powder used, the composition of the organic binder, the composition and shape of the thermosetting resin to be added, and the blending amount thereof.
  • the kneading temperature can be about 100 to 250 ° C.
  • the kneading time can be about 30 to 120 minutes.
  • the molding composition requires different shapes depending on the molding method.
  • the obtained molding composition is pulverized to have an average particle size of about 50 to about LOO m.
  • a pulverizer such as a pin disk or a hammer mill is suitable for the pulverizer used at this time.
  • pellets small lumps
  • the particle size of the pellet can be set to about 1 to 15 mm, for example.
  • a primary molded body having a desired shape and size is produced by press molding, extrusion molding or injection molding.
  • the dimensions and shape of the mold are determined in anticipation of the dimensional shrinkage after sintering.
  • the molding method can be selected according to the desired product shape. In particular, injection molding is desirable when forming a molded body having a complicated shape.
  • a molding composition pulverized to an average particle size of 50 to LOO ⁇ m is put into a mold and compression molding is performed. At this time, depending on the shape of the product to be produced, a primary compact is produced by applying a molding pressure of about 1 to 50 tons.
  • a molding composition is injection-molded by an injection molding machine to obtain a desired shape and size.
  • a primary molded body is produced.
  • a molded body having a complicated and fine shape can be easily manufactured by selecting a molding die.
  • the molding conditions for injection molding vary depending on various conditions such as the composition and particle size of the powder used, the composition of the organic binder, the composition of the thermosetting resin to be added, and the amount of these blended, but the molding temperature is preferably 100 to 100. About 200 ° C, and the injection pressure is preferably about 300 to 1000 kgfZcm 2 .
  • extrusion molding is performed using a mold having a desired shape by an extruder.
  • the molding composition temperature is determined by the cross-sectional shape of the product, preferably 50-200 ° C.
  • the pressure is 50 ⁇ 500kgf Zcm 2.
  • the primary molded body obtained by the above press molding, injection molding, and extrusion molding is inserted into a heated press mold in order to increase the dimensional accuracy, and pressed to produce a secondary molded body.
  • the dimensional accuracy of the molded body can be increased.
  • conventional molded bodies molded bodies obtained only by the press molding, extrusion molding and injection molding processes
  • the dimensional accuracy is high. Can be obtained.
  • the pressing conditions for obtaining the secondary compact can be changed depending on the shape of the compact.
  • the mold temperature during pressing is preferably 50 to 150 ° C.
  • the heating temperature is 180 ° C or higher, the cooling time after pressing becomes longer and the productivity decreases.
  • the heating temperature is 50 ° C or less, it is difficult to ensure the dimensions of the secondary molded body defined by the press mold.
  • molding pressure for obtaining a secondary molded article around 100 ⁇ 1500KgfZcm 2 is desirable. If it is higher than 200 OkgfZcm 2 , the internal stress increases, which may cause problems such as cracking and deformation after molding or after degreasing and sintering. In addition, if the molding pressure is lower than lOkgfZcm 2 , the secondary compact may deviate from the dimensions specified in this pressing process.
  • the secondary molded body after pressing is cooled and taken out in a mold.
  • the temperature during removal is preferably 10 to 80 ° C.
  • the cooling shrinkage becomes large, and cracks may occur at the time of taking out.
  • the temperature at the time of taking out becomes higher than a predetermined temperature, the molded body is insufficiently cooled, so that the secondary molded body may be deformed and dimensional accuracy may be lowered.
  • the secondary molded body obtained by the above-described method is excellent in dimensional accuracy, and is in a state where the organic binder and the thermosetting resin added as needed are uniformly dispersed in the powder.
  • the maximum degreasing temperature is preferably 400 ° C or higher. When the maximum degreasing temperature is 300 ° C or less, the organic binder and thermosetting resin are not sufficiently decomposed and remain as carbides, which may cause defects such as cracks in the sintered product.
  • the degreasing atmosphere is determined according to the compositional components of the powder used.
  • the optimum degreasing temperature is 400 ° C to 800 ° C. If there is residual carbon resulting from the organic binder and the added thermosetting resin after degreasing, the maximum temperature in hydrogen is 800 ° C. Reduction treatment is performed to remove residual carbon.
  • the obtained degreased body is sintered by adjusting the sintering temperature according to the powder used so that the porosity becomes 10 to 50 vol%.
  • the sintering conditions vary depending on the powder material used. 1000-1400 ° C for stainless steel materials, 900-1200 ° C for titanium materials, 700-00 for copper materials: L100 ° C, 1000-1000 for iron materials 1400 ° C is desirable. For these metals, nitrogen, argon, vacuum, or hydrogen is used as the sintering atmosphere as required.
  • the sintering conditions differ depending on the powder used in ceramics: 1300-1700 for alumina and 1000-1500 for zirconia. . Sintered with. By the above sintering step, powder diffusion and grain growth proceed, and the sintering density increases.
  • the porosity of the obtained sintered body is preferably 10 to 50 vol%, more preferably 12 to 40 vol%, and particularly preferably 15 to 40 vol%. If the porosity is too low, the oil content decreases and the desired function as a bearing cannot be obtained. Also, if the porosity is too high, the mechanical strength may decrease.
  • the inner diameter of the bearing in the present invention is the narrowest part of the bearing hollow portion.
  • the outer diameter of the bearing refers to the outer diameter of the narrowest part in the outer shape of the bearing. If the bearing has multiple flanges, the outer diameter of the flange refers to the outer diameter of the smallest flange.
  • Example 1 the method for manufacturing the bearing of the present invention will be described with reference to examples.
  • Example 1 the method for manufacturing the bearing of the present invention.
  • the bearing shown in FIG. 2A was produced using the method according to the present invention.
  • Stainless steel powder (SUS316L) was used as the metal powder. A powder with an average particle size of 10 / z m was used.
  • organic binder a mixture in which polystyrene, polybutylmethallate, ethylene acetate butyl copolymer, and raffin wax were mixed at a ratio of 15: 15: 20: 50 was used.
  • the composition of the molding composition was 65 vol% stainless powder + 35 vol% organic binder.
  • the powder and organic binder are kneaded using a heat kneader at 160 ° C for 1 hour, and the resulting kneaded product is pulverized using a hammer mill, and sifted to force a particle size of 50 to LOO ⁇ m. I made a thing.
  • the molding composition obtained by sieving was molded at a pressure of 5000 kgf / cm 2 using a pressure press machine to obtain a primary molded body.
  • the mold used had an outer diameter of 1.2 mm, an inner diameter of 0.6 mm, and a height of 1.867 mm.
  • the primary molded body obtained by the above press molding is inserted into a press mold (mold size: outer diameter 1.3 mm, inner diameter 0.5 mm, height 1.4 mm), and heated and pressure press molded, A secondary molded body was obtained.
  • the molding conditions were a pressure of 800 kgf / cm 2 , a mold temperature of 100 ° C, and when the compact was cooled to 50 ° C, it was removed from the press die.
  • the obtained secondary compact was degreased at a maximum temperature of 500 ° C ⁇ nitrogen atmosphere, and the degreased compact was sintered at a maximum temperature of 1100 ° C ⁇ argon atmosphere.
  • the product (bearing) weight obtained was 0. Olg.
  • the bearing In order to make an oil-impregnated bearing by impregnating the pores of the obtained bearing with bearing oil, the bearing is immersed in lubricating oil, placed in a vacuum furnace, the inside of the furnace is evacuated, and placed in the furnace for 30 minutes. Was confirmed to be impregnated and removed from the furnace.
  • the bearing shown in FIG. 2A was produced using the method according to the present invention.
  • Stainless steel powder (SUS316L) was used as the metal powder.
  • thermosetting resin In order to increase the porosity, urethane resin having an average particle size of 30 m was used as a thermosetting resin.
  • organic binder a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
  • the composition of the molding composition was stainless powder 55 vol% + urethane resin 1 Ovol% + organic binder 35 vol%.
  • Stainless steel powder, organic binder, and urethane resin are kneaded using a heating kneader at 160 ° C for 1 hour, and the resulting kneaded product is pulverized using a nonmmer mill and sieved to give a particle size of 50 to 100 ⁇ m.
  • a molding composition was prepared.
  • the molding composition obtained by sieving was molded at a pressure of 5000 kgf / cm 2 using a pressure press machine to obtain a primary molded body.
  • the mold used had an outer diameter of 1.2 mm, an inner diameter of 0.6 mm, and a height of 1.867 mm.
  • the primary molded body obtained by the above press molding is inserted into a press mold (mold size: outer diameter 1.3 mm, inner diameter 0.5 mm, height 1.4 mm), and heated and pressure press molded, A secondary molded body was obtained.
  • the molding conditions were a pressure of 800 kgf / cm 2 and a mold temperature of 90 ° C. When the compact was cooled to 50 ° C, it was removed from the press die.
  • the obtained secondary compact was degreased at a maximum temperature of 500 ° C. ⁇ nitrogen atmosphere, and the degreased compact was sintered at a maximum temperature of 1250 ° C. under an argon atmosphere.
  • the product (bearing) weight obtained was 0. Olg.
  • the bearing shown in FIG. 2A was produced using the method according to the present invention.
  • Stainless steel powder (SUS316L) was used as the metal powder. A powder with an average particle size of 10 / z m was used.
  • thermosetting resin for increasing the porosity.
  • organic binder a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
  • the composition of the molding composition was stainless powder 55 vol% + urethane resin 1 Ovol% + organic binder 35 vol%.
  • Stainless steel powder, organic binder and urethane resin were kneaded using a heat kneader at 160 ° C. for 1 hour, and the obtained kneaded product was made into pellets having a length of 1 to 5 mm using a granulator.
  • Injection molding was performed using the obtained pellets. Molding was performed at a molding temperature of 180 ° C, a molding pressure of 1000 kgf / cm 2 , an injection speed of 30 mm / min, and a mold temperature of 30 ° C to obtain a primary molded body.
  • the mold used was an outer diameter of 1.2 mm, an inner diameter of 0.6 mm, and a height of 1.867 mm.
  • the primary molded body obtained by the above injection molding is inserted into a press die (die size: outer diameter 1.3 mm, inner diameter 0.5 mm, height 1.4 mm), and heated and pressed under pressure. The next molded body was obtained.
  • the molding conditions were a pressure of 800 kgf / cm 2 and a mold temperature of 80 ° C. When the compact was cooled to 40 ° C, it was removed from the press die.
  • the obtained secondary compact was degreased at a maximum temperature of 500 ° C. ⁇ nitrogen atmosphere, and the degreased compact was sintered at a maximum temperature of 1250 ° C. under an argon atmosphere.
  • the product (bearing) weight obtained was 0. Olg.
  • the bearing shown in FIG. 2A was produced using the method according to the present invention.
  • Alumina powder was used as the ceramic powder.
  • a powder with an average particle size of 1 m was used.
  • the composition of the molding composition used was a mixture of polystyrene, ethylene-vinyl acetate copolymer, polybutyl methacrylate, and ⁇ Raffine wax in a ratio of 15: 15: 20: 50 as the organic filler. % + Organic binder 40 vol%.
  • the alumina powder and the organic binder were kneaded using a heat kneader at 150 ° C. for 1 hour, and the resulting kneaded product was formed into pellets having a length of 1 to 5 mm using a granulator.
  • the obtained pellets were heated to 120 ° C. using an extrusion molding machine to produce a primary molded body.
  • the mold used had an outer diameter of 1.2 mm, an inner diameter of 0.6 mm, and a height of 1.867 mm.
  • the primary molded body obtained by the above extrusion molding is inserted into a press die (die size: outer diameter 1.3 mm, inner diameter 0.5 mm, height 1.4 mm), and heated and pressed under pressure. The next molded body was obtained.
  • the molding conditions were a pressure of 700 kgf / cm 2 and a mold temperature of 65 ° C. When the compact was cooled to 20 ° C, it was removed from the press die.
  • the obtained secondary compact was degreased at a maximum temperature of 400 ° C ⁇ air atmosphere, and the degreased compact was sintered at a maximum temperature of 1500 ° C and air atmosphere.
  • the obtained product (bearing) weight was 0.005 g.
  • a bearing shown in FIG. 2B was produced using the method according to the present invention.
  • Stainless steel powder (SUS316L) was used as the metal powder. A powder with an average particle size of 10 / z m was used.
  • thermosetting resin having an average particle diameter of 30 m was used as a thermosetting resin for increasing the porosity.
  • organic binder a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
  • the composition of the molding composition was stainless powder 55 vol% + urethane resin 1 Ovol% + organic binder 35 vol%.
  • Stainless steel powder, organic binder and urethane resin are kneaded using a heat-kneader at 160 ° C for 1 hour, and the resulting kneaded product is pulverized using a non-mer mill and sieved to give a particle size of 50 to 100 ⁇ m A molding composition was prepared.
  • the molding composition obtained by sieving was molded at a pressure of 5000 kgf / cm 2 using a pressure press machine to obtain a primary molded body.
  • the mold used was an outer diameter of 1.2 mm, an inner diameter of 0.5 mm, and a height of 1.9 mm.
  • the primary compact obtained by the above press molding is inserted into a press die (die size: inner diameter 0.5 mm, outer diameter 1.3 mm, flange outer diameter 2. Omm, height 1.4 mm) and heated. Then, press molding was performed to obtain a secondary molded body.
  • the molding conditions were a pressure of 800 kgf / cm 2 and a mold temperature of 90 ° C. When the compact was cooled to 50 ° C, the press mold force was taken out.
  • the obtained secondary compact was degreased at a maximum temperature of 500 ° C. ⁇ nitrogen atmosphere, and the degreased compact was sintered at a maximum temperature of 1250 ° C. under an argon atmosphere.
  • the product (bearing) weight obtained was O.Ollg.
  • the porosity was calculated by the following formula.
  • Porosity ⁇ 1 (apparent density Z true density) ⁇ X 100
  • the apparent density was obtained by measuring with a helium gas substitution type density measuring device Accupick (manufactured by Shimadzu Corporation) in a state where the bearing surface was coated with wax to keep the pores inside.
  • the true density was determined by measuring with a helium gas substitution type density measuring device Accupick without coating the bearing with wax or the like.
  • Stainless steel powder (SUS316L) was used as the metal powder. Stainless steel powder with an average particle size of 70 / zm was used. As an organic binder, 20 vol% of stearic acid was added. Stainless powder and stearic acid were dry mixed using a V blender.
  • Press molding was performed using the obtained pellet material.
  • the force at which molding was performed at a molding pressure of 10,000 kgf / cm 2
  • the molding material was not filled completely into the mold. For this reason, degreasing and sintering after molding were stopped.
  • Alumina powder was used as the ceramic powder.
  • Alumina powder with an average particle size of 1 ⁇ m was used.
  • a granular powder was prepared by adding 20 vol% stearic acid to the ceramic powder.
  • the granulated granular powder had a particle size of 100 to 150 ⁇ m.
  • the obtained granular powder was used for press molding.
  • the force at which molding was performed at a molding pressure of 10,000 kgf / cm 2
  • the molding material was not filled completely into the mold. For this reason, degreasing and sintering after molding were stopped.
  • the applied amount of the organic binder is generally 20 vol% or less.
  • the size of the mold is small. In comparison with Comparative Examples 1 and 2, it was found that the molding pressure was not sufficiently transmitted by this method and the molding material was not filled in the mold.
  • the bearing shown in FIG. 2A was manufactured under exactly the same conditions as in Example 1 except that there was no “step of producing a primary molded body, inserting it into a heated press die, and applying pressure”.
  • Stainless steel powder (SUS316L) was used as the metal powder. A powder with an average particle size of 10 m was used.
  • organic binder a mixture in which polystyrene, polybutylmethalylate, ethylene acetate butyl copolymer, and raffin wax were mixed at a ratio of 15: 15: 20: 50 was used.
  • the composition of the molding composition was 65 vol% stainless powder + 35 vol% organic binder.
  • the powder and organic binder are kneaded using a heat kneader at 160 ° C for 1 hour, and the resulting kneaded product is pulverized using a hammer mill and sieved to form a composition with a particle size of 50 to L00 ⁇ m. I made a thing.
  • the molding composition obtained by sieving was molded at a pressure of 5000 kgf / cm 2 using a pressure press machine to obtain a molded body.
  • the mold used was an outer diameter of 1.3 mm, an inner diameter of 0.5 mm, and a height of 1.4 mm.
  • the obtained compact was degreased at a maximum temperature of 500 ° C ⁇ nitrogen atmosphere, and the degreased compact was sintered at a maximum temperature of 1100 ° C ⁇ argon atmosphere.
  • the bearing shown in FIG. 2A was manufactured under exactly the same conditions as in Examples 2 to 4 except that there was no “step of producing a primary molded body, inserting it into a heated press die, and applying pressure”.
  • Comparative Example 4 The comparative example corresponding to Example 2 is referred to as Comparative Example 4, and the comparative examples corresponding to Examples 3 and 4 are referred to as Comparative Examples 5 and 6 in the following order.
  • Comparative Example 3 Similar to Comparative Example 3, in Comparative Examples 4 to 6, press molding, extrusion molding or injection using a mold for molding (mold size: outer diameter 1.3 mm, inner diameter 0.5 mm, height 1.4 mm) A molded body was produced in one step by molding, and the resulting molded body was degreased and sintered to produce a bearing. In each of Comparative Examples 3 to 6, create 30 bearings and calculate the porosity and dimensional accuracy. did.
  • Table 1 shows the results of Examples and Comparative Examples.
  • the bearing manufactured using the method of the present invention has a dimensional accuracy that is an order of magnitude higher than that of a bearing manufactured by only one stage without performing hot press molding. It was revealed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

A miniature porous bearing having good dimensional accuracy is provided. A method for manufacturing a miniature bearing having an outer diameter of 2 mm or less and an inner diameter of 1 mm or less, which comprises a step of adding an organic binder to a powder of a metal or a ceramic, to prepare a composition for forming, a step of preparing a primary formed product by pressing, extrusion or injection using the above composition for forming, a step of inserting the above primary formed product into a heated press mold, followed by pressing, to thereby prepare a secondary formed product, and a step of degreasing and then sintering the above secondary formed product, to thereby prepare a sintered article.

Description

超小型軸受及びその製造方法  Ultra-compact bearing and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、超小型多孔質軸受及びその製造方法に関する。  The present invention relates to a microporous bearing and a method for manufacturing the same.
背景技術  Background art
[0002] 従来、含油軸受の製造には、粉末を圧縮し焼結する粉末焼結法が用いられて 、る 。現在ある小型の含油軸受は、一般にバインダをコーティングした粉末を金型に充填 しプレスすることにより、圧粉成形体を作製し、焼結温度を調整することによって製造 されている。  [0002] Conventionally, in the manufacture of oil-impregnated bearings, a powder sintering method in which powder is compressed and sintered has been used. Currently, small oil-impregnated bearings are generally manufactured by filling a mold with powder coated with a binder and pressing it to produce a green compact and adjusting the sintering temperature.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、従来の粉末焼結法では、外径 2mm以下、内径 lmm以下の超小型 軸受を製造しょうとした場合、金型に粉末材料を安定して充填することが困難である という問題がある。また、超小型であるため、このような軸受を寸法精度よく製造するこ とは困難であり、サイジングが不可欠である。さらに、製品の肉厚が薄くなつた場合に は製品強度が低くなり、製品にクラックが生じる可能性がある。また、粉末焼結では圧 粉成形時に金型表面での圧力が高まるため、成形体肉厚が lmm以下になった場合 には、成形体表面の粉末が圧力により変形し、所望する気孔径よりも小さくなるという 問題がある。 [0003] However, with the conventional powder sintering method, it is difficult to stably fill the mold with powder material when trying to manufacture ultra-compact bearings with an outer diameter of 2 mm or less and an inner diameter of 1 mm or less. There is a problem that there is. In addition, because of the ultra-small size, it is difficult to manufacture such a bearing with dimensional accuracy, and sizing is indispensable. In addition, when the product thickness is reduced, the product strength is reduced and the product may crack. In powder sintering, the pressure on the mold surface increases during compacting. When the thickness of the compact becomes less than lmm, the powder on the compact surface is deformed by the pressure, and the desired pore size is exceeded. There is a problem that becomes smaller.
[0004] 本発明は、以上のような従来技術における課題を考慮してなされたものであり、寸 法精度の高い超小型軸受、特に、製品の肉厚が薄い場合にもクラックを生じず、所 望する気孔率を有する多孔質軸受を提供すること、及びこのような軸受をサイジング なしで製造できる方法を提供するものである。  [0004] The present invention has been made in consideration of the problems in the prior art as described above, and has a high dimensional accuracy, especially a micro bearing having a small dimensional accuracy, and does not generate cracks. It is an object of the present invention to provide a porous bearing having a desired porosity and a method by which such a bearing can be manufactured without sizing.
課題を解決するための手段  Means for solving the problem
[0005] 本発明は、外径 2mm以下、内径 lmm以下の超小型軸受を製造する方法であって 平均粒径 1〜150 μ mの金属粉末あるいは平均粒径 0. 1〜10 μ mのセラミックス粉 末、及び有機ノインダを含有し、有機バインダの含有量が 30〜70vol%のである成形 用組成物を作製する工程、 [0005] The present invention relates to a method for producing a micro bearing having an outer diameter of 2 mm or less and an inner diameter of 1 mm or less, which is a metal powder having an average particle diameter of 1 to 150 μm or a ceramic having an average particle diameter of 0.1 to 10 μm. powder A process for producing a molding composition containing a powder and an organic noinda, wherein the content of the organic binder is 30 to 70 vol%,
前記成形用組成物を用いてプレス成形、押出成形若しくは射出成形により一次成形 体を作製する工程、  A step of producing a primary molded body by press molding, extrusion molding or injection molding using the molding composition;
前記一次成形体を加熱したプレス金型内に挿入し加圧して二次成形体を作製する 工程、  Inserting the primary molded body into a heated press mold and applying pressure to produce a secondary molded body,
前記二次成形体を脱脂、焼結することにより焼結体を作製する工程、  Degreasing and sintering the secondary molded body to produce a sintered body,
とを含むことを特徴とする、超小型多孔質軸受を製造する方法  A method for producing a microporous bearing characterized in that
である。  It is.
[0006] 平均粒径 1〜 150 mの金属粉末あるいは平均粒径 0. l〜10 /z mのセラミックス粉 末に、 30〜70vol% (成形用組成物全量に対する vol%)の有機バインダを添カ卩した成 形用組成物を用いることにより、軸受の強度及び気孔率を望ましい範囲に保つことが 可能であり、また、成形用組成物を成形機へスムーズに投入することができる。  [0006] An organic binder of 30 to 70 vol% (vol% with respect to the total amount of the molding composition) is added to metal powder having an average particle size of 1 to 150 m or ceramic powder having an average particle size of 0.1 to 10 / zm. By using a deformed molding composition, it is possible to maintain the strength and porosity of the bearing within a desired range, and the molding composition can be smoothly fed into a molding machine.
前記成形用組成物を用いて一次成形体を作製し、その後、この一次成形体をさら に加熱したプレス金型に挿入し加圧することにより、従来の成形体 (プレス成形、押出 成形並びに射出成形工程のみにより得られた成形体)と比較して寸法精度が高い二 次成形体を得ることができる。  A primary molded body is produced using the molding composition, and then the primary molded body is inserted into a heated press mold and pressed to obtain a conventional molded body (press molding, extrusion molding and injection molding). It is possible to obtain a secondary molded body having a higher dimensional accuracy than a molded body obtained by only the process.
前記二次成形体を脱脂、焼結することにより、寸法精度が高ぐ所望する気孔率を 有する超小型の多孔質軸受を製造することができる。さらに、製品の肉厚が lmm以 下の場合であっても、製品強度が高ぐクラックが生じにくい軸受を製造することがで きる。  By degreasing and sintering the secondary compact, it is possible to manufacture an ultra-small porous bearing having a desired porosity with high dimensional accuracy. Furthermore, even when the thickness of the product is less than lmm, it is possible to manufacture a bearing that has high product strength and is less prone to cracking.
[0007] 前記成形用組成物の作製に際し、平均粒径 10〜150 μ mの熱硬化性榭脂を 1〜3 Ovol% (成形用組成物全量に対する vol%)添加することにより、所望する気孔率をさら に上げることができる。  [0007] In producing the molding composition, 1 to 3 Ovol% (vol% with respect to the total amount of the molding composition) of thermosetting resin having an average particle size of 10 to 150 μm is added to obtain desired pores. The rate can be further increased.
[0008] 本発明に係る方法により、従来法では製造が困難な、重量 0. lg以下、外径 2mm 以下、内径 lmm以下、内径寸法精度 ±0. Olmm以下の金属あるいはセラミックス 製の超小型軸受、さらには、重量 0. lg以下、外径 1. 5mm以下、内径 0. 7mm以下 、内径寸法精度 ±0. 005mm以下の金属あるいはセラミックス製の超小型軸受であ つても、寸法精度よく製造することが可能である。 [0008] With the method according to the present invention, a metal or ceramic micro bearing having a weight of 0.1 lg or less, an outer diameter of 2 mm or less, an inner diameter of 1 mm or less, and an inner dimensional accuracy of ± 0. Furthermore, it is a micro or small bearing made of metal or ceramics with a weight of 0.1 lg or less, an outer diameter of 1.5 mm or less, an inner diameter of 0.7 mm or less, and an inner diameter dimensional accuracy of ± 0.005 mm or less. Therefore, it is possible to manufacture with high dimensional accuracy.
[0009] また、気孔率が 15vol%以上の超小型軸受を製造すること、フランジを有する軸受け であって、フランジの外径が 2mm以下である軸受を製造することも可能である。また 、これらの軸受に軸受用油を含浸させ、含油軸受とすることも可能である。  [0009] It is also possible to produce a micro bearing having a porosity of 15 vol% or more, and to produce a bearing having a flange with an outer diameter of the flange of 2 mm or less. It is also possible to make these bearings impregnated with bearing oil to form oil-impregnated bearings.
発明の効果  The invention's effect
[0010] 本発明によれば、外径 2mm以下、内径 lmm以下の超小型多孔質軸受であっても 、非常に高い寸法精度で製造することが可能である。  [0010] According to the present invention, even an ultra-small porous bearing having an outer diameter of 2 mm or less and an inner diameter of 1 mm or less can be manufactured with very high dimensional accuracy.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]図 1は、本発明に係る製造方法を示す工程図である。 FIG. 1 is a process diagram showing a production method according to the present invention.
[図 2]図 2Aは、本発明に係る超小型軸受のー実施例を示す図であり、図 2Bは、本発 明に係る超小型軸受であって、フランジを有する軸受のー実施例を示す図である。 発明を実施するための最良の形態  FIG. 2A is a diagram showing an embodiment of a micro bearing according to the present invention, and FIG. 2B is a micro bearing according to the present invention, which is an embodiment of a bearing having a flange. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明に係る軸受の製造方法につ!、て説明する。本発明に係る超小型多 孔質軸受を作製する工程、及び各工程における成形体断面モデルを図 1に示す。 [0012] Hereinafter, a method for manufacturing a bearing according to the present invention will be described. FIG. 1 shows a process for producing a microporous bearing according to the present invention, and a molded body cross-sectional model in each process.
[0013] まず、原料粉末である金属粉末もしくはセラミックス粉末に、有機バインダと、必要 に応じて気孔率を高めるために熱硬化性榭脂の粉末を添加し、加熱混練機を用い て加熱混練を行 ヽ、各材料が均一に分散して ヽる成形用組成物を得る。 [0013] First, an organic binder and, if necessary, a thermosetting resin powder to increase the porosity are added to the metal powder or ceramic powder that is the raw material powder, and the mixture is heated and kneaded using a heating kneader. As a result, a molding composition in which each material is uniformly dispersed is obtained.
金属粉末については平均粒径 1〜150 μ mにおいて平均粒径の異なる 2種以上の 粉末を混合しても良い。またセラミックス粉末については平均粒径 0. 1〜: LO /z mにお As for the metal powder, two or more kinds of powders having an average particle diameter of 1 to 150 μm and different average particle diameters may be mixed. For ceramic powder, the average particle size is 0.1 ~: LO / z m.
V、て平均粒径の異なる 2種以上の粉末を混合しても良 、。 V, Two or more powders with different average particle sizes may be mixed.
使用される粉末は特に限定されず、金属粉末については銅、銀、金、鉄、ニッケル The powder used is not particularly limited. For metal powder, copper, silver, gold, iron, nickel
、クロム、コノ レト、タングステン、ァノレミ、チタン、マンガンの少なくとも 1種若しくはこ れら金属を 1種以上含む合金からからなるものを 1種若しくは複数種使用することが できる。 One or more of chromium, conoretole, tungsten, anoremi, titanium, manganese, or an alloy containing one or more of these metals can be used.
また、セラミックス粉末についてはアルミ、チタン、タングステン、シリコン、ジルコン、 カルシウム、マグネシウムを元素として含む炭化物、窒化物、酸化物の 1種若しくは複 数種力 なる粉末を使用することができる。  As the ceramic powder, a powder having one or more kinds of carbides, nitrides and oxides containing aluminum, titanium, tungsten, silicon, zircon, calcium and magnesium as elements can be used.
[0014] 平均粒径の小さ 、粉末を用いた場合、成形用組成物における単位体積当たりの粉 末の割合が大きくなる。そのため、薄肉部への粉末の充填率を高めることができ、焼 結後の薄肉部の強度を高めることができる。一方、平均粒径が小さすぎれば、軸受の 強度は高まるものの、焼結密度が高くなるため所望する気孔率を確保することが困難 になる。さらに、粉末の平均粒径が小さすぎる場合は、成形の際に、成形用組成物を 成形機へ投入することが困難になり、成形用組成物がスムーズに成形機内に入って いかないため、成形時の安定性が低下する。他方、粉末の平均粒径が大きすぎれば 、薄肉部への粉末の充填率が低くなるため、焼結後の軸受の強度が低下する可能 '性がある。 [0014] When the powder has a small average particle diameter, the powder per unit volume in the molding composition The percentage of the end increases. Therefore, the filling rate of the powder into the thin wall portion can be increased, and the strength of the thin wall portion after sintering can be increased. On the other hand, if the average particle size is too small, the strength of the bearing increases, but the sintered density increases, making it difficult to ensure the desired porosity. Furthermore, if the average particle size of the powder is too small, it becomes difficult to put the molding composition into the molding machine during molding, and the molding composition does not smoothly enter the molding machine. Stability during molding decreases. On the other hand, if the average particle size of the powder is too large, the filling rate of the powder in the thin-walled portion will be low, which may reduce the strength of the bearing after sintering.
本発明において使用される金属粉末の平均粒径は 1〜150 mが好ましぐより好 ましくは 10〜50 mである。また、本発明において使用されるセラミックス粉末の平 均粒径は 0. 1〜10 μ mが好ましぐより好ましくは 0. 5 μ m〜5 μ mである。  The average particle size of the metal powder used in the present invention is preferably 1 to 150 m, more preferably 10 to 50 m. The average particle size of the ceramic powder used in the present invention is preferably 0.1 to 10 μm, more preferably 0.5 μm to 5 μm.
[0015] また、使用する金属もしくはセラミックス粉末の含有量は、成形用組成物全体の 30 〜70vol%であるのが好ましぐ 30〜60vol%であるのがより好ましい。含有量が下限値 未満であると、脱脂焼結後の寸法精度が低下する虞がある。  [0015] Further, the content of the metal or ceramic powder to be used is preferably 30 to 70 vol%, more preferably 30 to 70 vol% of the entire molding composition. If the content is less than the lower limit, the dimensional accuracy after degreasing and sintering may be reduced.
[0016] 有機バインダーとしては、例えば、ポリエチレン、ポリプロピレン、エチレン 酢酸ビ -ル共重合体等のポリオレフイン、ポリメチルメタタリレート、ポリブチルメタタリレート等 のアクリル系榭脂、ポリスチレン等のスチレン系榭脂、またはこれらの共重合体等の 各種榭脂や、各種ワックス、パラフィン、高級脂肪酸 (例:ステアリン酸)、高級アルコ ール、高級脂肪酸エステル、高級脂肪酸アミド等が挙げられ、これらのうち 1種または 2種以上を混合して用いることができる。  [0016] Examples of the organic binder include: polyolefins such as polyethylene, polypropylene, and ethylene acetate copolymer; acrylic resins such as polymethyl methacrylate and polybutyl methacrylate; and styrene resins such as polystyrene. And various types of waxes, paraffins, higher fatty acids (eg, stearic acid), higher alcohols, higher fatty acid esters, higher fatty acid amides, etc. Species or a mixture of two or more can be used.
[0017] 有機バインダの含有量は、成形用組成物全体の 30〜70vol%であるのが好ましぐ 35〜60vol%であるのがより好ましい。含有量が下限値未満であると、十分に成形圧 力が伝わらず、薄肉部への充填が不十分になる可能性がある。一方、含有量が上限 値を超えると、脱脂、焼結後に寸法精度が低下したり、形状が変形したりする可能性 がある。  [0017] The content of the organic binder is preferably 30 to 70 vol% of the entire molding composition, more preferably 35 to 60 vol%. If the content is less than the lower limit value, the molding pressure may not be sufficiently transmitted, and the filling of the thin portion may be insufficient. On the other hand, if the content exceeds the upper limit value, the dimensional accuracy may decrease or the shape may be deformed after degreasing and sintering.
[0018] 所望する気孔率をさらに上げる場合には、上記粉末及び有機バインダの他に平均 粒径 10〜150 μ mの熱硬化性榭脂粉末を添加して成形用組成物を作製することが 好ましい。熱硬化性榭脂の含有量は、成形用組成物全体の l〜30vol%であるのが好 ましぐ l〜15vol%であるのがより好ましい。 In order to further increase the desired porosity, a thermosetting resin powder having an average particle size of 10 to 150 μm may be added in addition to the powder and the organic binder to produce a molding composition. preferable. The content of thermosetting resin is preferably 1-30 vol% of the entire molding composition. More preferably, it is 1 to 15 vol%.
使用する熱硬化性榭脂としては、エポキシ榭脂、ウレタン榭脂、メラミン榭脂、フエノ 一ル榭脂等を挙げることができる。熱分解性の観点からエポキシ榭脂、ウレタン榭脂 力 り望ましい。  Examples of the thermosetting resin used include epoxy resin, urethane resin, melamine resin, and phenol resin. From the viewpoint of thermal decomposability, epoxy resin and urethane resin are preferable.
これら熱硬化性榭脂は、材料を混練する際には溶融することなぐ使用する金属粉 末ならびにセラミックス粉末と同様、粉末として挙動する。これら熱硬化性榭脂は脱脂 工程中に有機バインダの分解と共に分解し、消滅するため、脱脂工程後は添加した 熱硬化性榭脂の体積に相当する気孔が生じる。焼結後においても、この気孔は保持 されるため、添加量が増加すると気孔率が高まる。熱硬化性榭脂の添加量が上限値 を上回ると気孔量が大きくなり、焼結後の強度が低下する。また、添加量が下限値を 下回ると期待した気孔率の向上が認められな 、。  These thermosetting resins behave as powders in the same manner as metal powders and ceramic powders that are used without being melted when the materials are kneaded. Since these thermosetting resin decomposes and disappears with the decomposition of the organic binder during the degreasing process, pores corresponding to the volume of the added thermosetting resin occur after the degreasing process. Since the pores are retained even after sintering, the porosity increases as the amount added increases. If the amount of thermosetting resin added exceeds the upper limit, the amount of pores will increase and the strength after sintering will decrease. Also, the improvement in porosity expected when the amount added is below the lower limit is not observed.
[0019] 成形用組成物の混練条件は、用いる粉末の組成や粒径、有機バインダの組成、添 加する熱硬化性榭脂の組成や形状、およびこれらの配合量等の諸条件により異なる 力 例えば、混練温度: 100〜250°C程度、混練時間: 30〜120分程度とすることが できる。成形用組成物は、その成形方法により必要とされる形状が異なる。プレス成 形の場合には得られた成形用組成物を粉砕し、平均粒径を 50〜: LOO m程度にす る。この際に使用される粉砕機にはピンディスク、ハンマーミル等の粉砕機が好適で ある。また、押出成形、射出成形では必要に応じ、ペレット (小塊)化される。ペレット の粒径は、例えば、 l〜15mm程度とすることができる。  [0019] The kneading conditions of the molding composition vary depending on various conditions such as the composition and particle size of the powder used, the composition of the organic binder, the composition and shape of the thermosetting resin to be added, and the blending amount thereof. For example, the kneading temperature can be about 100 to 250 ° C., and the kneading time can be about 30 to 120 minutes. The molding composition requires different shapes depending on the molding method. In the case of press forming, the obtained molding composition is pulverized to have an average particle size of about 50 to about LOO m. A pulverizer such as a pin disk or a hammer mill is suitable for the pulverizer used at this time. In extrusion molding and injection molding, pellets (small lumps) are formed as necessary. The particle size of the pellet can be set to about 1 to 15 mm, for example.
[0020] 次に、前記成形用組成物を用いて、プレス成形、押出成形若しくは射出成形により 、所望する形状、寸法の一次成形体を製造する。一次成形体の作製においては焼 結後の寸法収縮率を見込んで、金型寸法と形状を決定する。成型方法は、所望する 製品の形状に合わせて選択することができる。特に複雑形状の成形体を作製する場 合には射出成形が望ましい。  [0020] Next, using the molding composition, a primary molded body having a desired shape and size is produced by press molding, extrusion molding or injection molding. In the production of the primary compact, the dimensions and shape of the mold are determined in anticipation of the dimensional shrinkage after sintering. The molding method can be selected according to the desired product shape. In particular, injection molding is desirable when forming a molded body having a complicated shape.
[0021] プレス成形では平均粒径 50〜: LOO μ mに粉砕された成形用組成物を金型に入れ て圧縮成形を行う。この際、作製する製品形状にもよるが、 1〜50トン程度の成形圧 力を加えて一次成形体を作製する。  In the press molding, a molding composition pulverized to an average particle size of 50 to LOO μm is put into a mold and compression molding is performed. At this time, depending on the shape of the product to be produced, a primary compact is produced by applying a molding pressure of about 1 to 50 tons.
射出成形では射出成形機により成形用組成物を射出成形し、所望の形状、寸法の 一次成形体を製造する。この場合、成形金型の選択により、複雑で微細な形状の成 形体をも容易に製造することができる。射出成形の成形条件は、用いる粉末の組成 や粒径、有機ノ インダの組成、添加する熱硬化性榭脂の組成およびこれらの配合量 等の諸条件により異なるが、成形温度は好ましくは 100〜200°C程度、射出圧力は 好ましくは 300〜1000kgfZcm2程度とされる。 In injection molding, a molding composition is injection-molded by an injection molding machine to obtain a desired shape and size. A primary molded body is produced. In this case, a molded body having a complicated and fine shape can be easily manufactured by selecting a molding die. The molding conditions for injection molding vary depending on various conditions such as the composition and particle size of the powder used, the composition of the organic binder, the composition of the thermosetting resin to be added, and the amount of these blended, but the molding temperature is preferably 100 to 100. About 200 ° C, and the injection pressure is preferably about 300 to 1000 kgfZcm 2 .
押出成形では押出成形機により所望する形状の金型を用いて押出成形を行う。成 形用組成物の温度は 50〜200°Cが好ましぐ製品の断面形状で成形時の圧力を決 定する。好まし 、圧力は 50〜500kgf Zcm2である。 In extrusion molding, extrusion molding is performed using a mold having a desired shape by an extruder. The molding composition temperature is determined by the cross-sectional shape of the product, preferably 50-200 ° C. Preferably, the pressure is 50~500kgf Zcm 2.
[0022] 上記プレス成形、射出成形、押出成形により得られた一次成形体を、寸法精度を 高めるために加熱したプレス金型内に挿入し、加圧して、二次成形体を作製する。こ の工程により、成形体の寸法精度を高めることができ、従来の成形体 (プレス成形、 押出成形並びに射出成形工程のみにより得られた成形体)と比較して寸法精度の高 V、成形体を得ることができる。  [0022] The primary molded body obtained by the above press molding, injection molding, and extrusion molding is inserted into a heated press mold in order to increase the dimensional accuracy, and pressed to produce a secondary molded body. By this process, the dimensional accuracy of the molded body can be increased. Compared with conventional molded bodies (molded bodies obtained only by the press molding, extrusion molding and injection molding processes), the dimensional accuracy is high. Can be obtained.
[0023] 二次成形体を得るためのプレス条件は成形体形状により変更できる。好ましいプレ ス時の金型温度は 50〜150°Cである。加熱温度が 180°C以上の場合にはプレス後 の冷却時間が長くなり生産性が下がる。一方加熱する温度が 50°C以下になるとプレ ス金型で定められた二次成形体の寸法を確保することが困難になる。  [0023] The pressing conditions for obtaining the secondary compact can be changed depending on the shape of the compact. The mold temperature during pressing is preferably 50 to 150 ° C. When the heating temperature is 180 ° C or higher, the cooling time after pressing becomes longer and the productivity decreases. On the other hand, when the heating temperature is 50 ° C or less, it is difficult to ensure the dimensions of the secondary molded body defined by the press mold.
[0024] 二次成形体を得るための成形圧力は 100〜1500kgfZcm2程度が望ましい。 200 OkgfZcm2よりも高くなると、内部応力が高まり、成形後若しくは脱脂、焼結後にクラ ック、変形等の問題が生じる可能性がある。また、成形時の圧力が lOkgfZcm2よりも 低くなると二次成形体は本プレス工程で規定した寸法からはずれる可能性がある。 [0024] molding pressure for obtaining a secondary molded article around 100~1500KgfZcm 2 is desirable. If it is higher than 200 OkgfZcm 2 , the internal stress increases, which may cause problems such as cracking and deformation after molding or after degreasing and sintering. In addition, if the molding pressure is lower than lOkgfZcm 2 , the secondary compact may deviate from the dimensions specified in this pressing process.
[0025] プレス後の二次成形体は金型内で冷却し取り出される。取り出し時の温度は 10〜8 0°Cが望ましい。取り出し時の温度が所定温度よりも低くなると、冷却収縮が大きくなり 、取り出し時にクラックが発生する可能性がある。取り出し時の温度が所定温度よりも 高くなると、成形体の冷却が不十分であるため、二次成形体が変形し、寸法精度が 低下する可能性がある。  [0025] The secondary molded body after pressing is cooled and taken out in a mold. The temperature during removal is preferably 10 to 80 ° C. When the temperature at the time of taking out becomes lower than the predetermined temperature, the cooling shrinkage becomes large, and cracks may occur at the time of taking out. When the temperature at the time of taking out becomes higher than a predetermined temperature, the molded body is insufficiently cooled, so that the secondary molded body may be deformed and dimensional accuracy may be lowered.
[0026] 上述した方法で得られた二次成形体は寸法精度に優れ、粉末に対して有機バイン ダ並びに必要に応じて添加した熱硬化性榭脂が均一に分散した状態となる。 [0027] 有機ノインダを脱脂する工程にお!、て、脱脂最高温度は 400°C以上が望ま 、。 脱脂最高温度が 300°C以下の場合には有機バインダ並びに熱硬化性榭脂が十分 分解されず、炭化物として残留し、焼結後の製品にクラック等の欠陥が生じる可能性 がある。 [0026] The secondary molded body obtained by the above-described method is excellent in dimensional accuracy, and is in a state where the organic binder and the thermosetting resin added as needed are uniformly dispersed in the powder. [0027] In the process of degreasing the organic noda !, the maximum degreasing temperature is preferably 400 ° C or higher. When the maximum degreasing temperature is 300 ° C or less, the organic binder and thermosetting resin are not sufficiently decomposed and remain as carbides, which may cause defects such as cracks in the sintered product.
脱脂工程では、使用した粉末の組成成分に合わせてその脱脂雰囲気を決定する。 脱脂温度は 400°C〜800°Cが最適であり、脱脂後に有機バインダ並びに添加した熱 硬化性榭脂から帰因する残留炭素が生じている場合には、水素中で最高温度 800 °Cで還元処理を行い、残留炭素を除去する。  In the degreasing step, the degreasing atmosphere is determined according to the compositional components of the powder used. The optimum degreasing temperature is 400 ° C to 800 ° C. If there is residual carbon resulting from the organic binder and the added thermosetting resin after degreasing, the maximum temperature in hydrogen is 800 ° C. Reduction treatment is performed to remove residual carbon.
[0028] 得られた脱脂体の焼結は、用いた粉末に合わせて焼結温度を調整して、気孔率が 10〜50vol%になるように行う。焼結条件は用いた粉末材料により異なる力 ステンレ ス系材料では 1000〜1400°C、チタン系材料では 900〜1200°C、銅系材料では 7 00〜: L100°C、鉄系材料では 1000〜1400°Cが望ましい。これら金属においては焼 結する雰囲気は必要に応じて窒素、アルゴン、真空、水素が用いられる。  [0028] The obtained degreased body is sintered by adjusting the sintering temperature according to the powder used so that the porosity becomes 10 to 50 vol%. The sintering conditions vary depending on the powder material used. 1000-1400 ° C for stainless steel materials, 900-1200 ° C for titanium materials, 700-00 for copper materials: L100 ° C, 1000-1000 for iron materials 1400 ° C is desirable. For these metals, nitrogen, argon, vacuum, or hydrogen is used as the sintering atmosphere as required.
また、セラミックスにおいても用いた粉末によりその焼結条件は異なり、アルミナであ れば1300〜1700で、ジルコ-ァでぁれば1000〜1500。。で焼結処理される。上 記焼結工程により、粉末の拡散、粒成長が進み、焼結密度が高まる。  Also, the sintering conditions differ depending on the powder used in ceramics: 1300-1700 for alumina and 1000-1500 for zirconia. . Sintered with. By the above sintering step, powder diffusion and grain growth proceed, and the sintering density increases.
[0029] 得られた焼結体の気孔率は 10〜50vol%が望ましぐ 12〜40vol%がより望ましぐ 1 5〜40vol%が特に望ましい。気孔率が低すぎる場合は含油量が減って、所望する軸 受としての機能が得られない。また、気孔率が高すぎる場合には機械的強度が低下 する可能性がある。  [0029] The porosity of the obtained sintered body is preferably 10 to 50 vol%, more preferably 12 to 40 vol%, and particularly preferably 15 to 40 vol%. If the porosity is too low, the oil content decreases and the desired function as a bearing cannot be obtained. Also, if the porosity is too high, the mechanical strength may decrease.
本製法により得られた製品をさらに高温で焼結することにより、寸法精度に優れたよ り緻密な焼結部品を製造することもできる。  By sintering the product obtained by this production method at a higher temperature, it is possible to produce a denser sintered part with excellent dimensional accuracy.
[0030] 本発明にお 、て、軸受が単筒形状(内径及び外径が全ての箇所で一定の筒形状) ではない場合、本発明における軸受の内径とは、軸受中空部の最も狭い箇所におけ る内径を指し、軸受の外径とは、軸受外形において最も細い箇所の外径を指す。ま た、軸受が複数のフランジを有する場合、フランジの外径とは、最少のフランジの外 径を指す。 [0030] In the present invention, when the bearing is not in a single cylinder shape (a cylindrical shape in which the inner diameter and the outer diameter are constant at all positions), the inner diameter of the bearing in the present invention is the narrowest part of the bearing hollow portion. The outer diameter of the bearing refers to the outer diameter of the narrowest part in the outer shape of the bearing. If the bearing has multiple flanges, the outer diameter of the flange refers to the outer diameter of the smallest flange.
[0031] 次に、本発明の軸受の製造方法を実施例により説明する。 実施例 1 Next, the method for manufacturing the bearing of the present invention will be described with reference to examples. Example 1
[0032] 余属製招小型軸 の製诰 [0032] Iron making of small shaft
本発明にかかる方法を用いて、図 2Aに示す軸受を作製した。  The bearing shown in FIG. 2A was produced using the method according to the present invention.
金属粉末として、ステンレス粉末(SUS316L)を使用した。平均粒径 10 /z mの粉末 を用いた。  Stainless steel powder (SUS316L) was used as the metal powder. A powder with an average particle size of 10 / z m was used.
有機バインダとして、ポリスチレン、ポリブチルメタタリレート、エチレン 酢酸ビュル 共重合体、ノ《ラフィンワックスを、 15 : 15 : 20 : 50の割合で混合した混合物を使用し た。  As the organic binder, a mixture in which polystyrene, polybutylmethallate, ethylene acetate butyl copolymer, and raffin wax were mixed at a ratio of 15: 15: 20: 50 was used.
成形用組成物の組成は、ステンレス粉末 65vol% +有機バインダ 35vol%とした。 粉末と有機バインダを 160°C, 1時間加熱混練機を用いて混練し、得られた混練物 をハンマーミルを用いて粉砕し、ふるいを力けて粒度 50〜: LOO μ mの成形用組成物 を作成した。  The composition of the molding composition was 65 vol% stainless powder + 35 vol% organic binder. The powder and organic binder are kneaded using a heat kneader at 160 ° C for 1 hour, and the resulting kneaded product is pulverized using a hammer mill, and sifted to force a particle size of 50 to LOO μm. I made a thing.
ふるいにより得られた成形用組成物を用いて、加圧プレス機を用いて圧力 5000 kgf/cm2で成形を行い、一次成形体を得た。金型は外径 1. 2mm,内径 0. 6mm,高 さ 1. 867mmのものを用いた。 The molding composition obtained by sieving was molded at a pressure of 5000 kgf / cm 2 using a pressure press machine to obtain a primary molded body. The mold used had an outer diameter of 1.2 mm, an inner diameter of 0.6 mm, and a height of 1.867 mm.
上記プレス成形で得られた一次成形体をプレス金型 (金型寸法:外径 1. 3mm,内 径 0. 5mm、高さ 1. 4mm)に挿入し、加熱、加圧プレス成形を行い、二次成形体を 得た。成形条件は圧力 800kgf/cm2、金型温度 100°Cとし、成形体が 50°Cまで冷却 した時点でプレス型から取りだした。 The primary molded body obtained by the above press molding is inserted into a press mold (mold size: outer diameter 1.3 mm, inner diameter 0.5 mm, height 1.4 mm), and heated and pressure press molded, A secondary molded body was obtained. The molding conditions were a pressure of 800 kgf / cm 2 , a mold temperature of 100 ° C, and when the compact was cooled to 50 ° C, it was removed from the press die.
得られた二次成形体を最高温度 500°C ·窒素雰囲気下で脱脂し、脱脂後の成形体 を最高温度 1100°C ·アルゴン雰囲気下で焼結した。  The obtained secondary compact was degreased at a maximum temperature of 500 ° C · nitrogen atmosphere, and the degreased compact was sintered at a maximum temperature of 1100 ° C · argon atmosphere.
得られた製品(軸受)重量は、 0. Olgであった。  The product (bearing) weight obtained was 0. Olg.
得られた軸受の気孔に軸受用油を含浸させて含油軸受を作製するために、軸受を 潤滑油に漬けて真空炉に入れて炉内を真空にし、 30分炉内に置 、て潤滑油が含浸 したことを確認し、炉内から取り出した。  In order to make an oil-impregnated bearing by impregnating the pores of the obtained bearing with bearing oil, the bearing is immersed in lubricating oil, placed in a vacuum furnace, the inside of the furnace is evacuated, and placed in the furnace for 30 minutes. Was confirmed to be impregnated and removed from the furnace.
実施例 2  Example 2
[0033] 余属製招小型軸 の製诰 [0033] Steelmaking of extra-small invited shafts
本発明にかかる方法を用いて、図 2Aに示す軸受を作製した。 金属粉末として、ステンレス粉末(SUS316L)を使用した。平均粒径 10 /z mの粉末 を用いた。 The bearing shown in FIG. 2A was produced using the method according to the present invention. Stainless steel powder (SUS316L) was used as the metal powder. A powder with an average particle size of 10 / zm was used.
また、気孔率を上げるために、熱硬化性榭脂として平均粒径 30 mからなるウレタ ン榭脂を使用した。  In order to increase the porosity, urethane resin having an average particle size of 30 m was used as a thermosetting resin.
有機バインダとして、ポリアセタール、ポリプロピレン、パラフィンワックスを、 25 : 25 : 50の割合で混合した混合物を使用した。  As the organic binder, a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
成形用組成物の組成は、ステンレス粉末 55vol% +ウレタン榭脂 1 Ovol% +有機バイ ンダ 35vol%とした。  The composition of the molding composition was stainless powder 55 vol% + urethane resin 1 Ovol% + organic binder 35 vol%.
ステンレス粉末、有機バインダ、ウレタン榭脂を加熱混練機を用いて 160°C ' l時間 混練し、得られた混練物をノヽンマーミルを用いて粉砕し、ふるいをかけて粒度 50〜1 00 μ mの成形用組成物を作成した。  Stainless steel powder, organic binder, and urethane resin are kneaded using a heating kneader at 160 ° C for 1 hour, and the resulting kneaded product is pulverized using a nonmmer mill and sieved to give a particle size of 50 to 100 μm. A molding composition was prepared.
ふるいにより得られた成形用組成物を用いて、加圧プレス機を用いて圧力 5000 kgf/cm2で成形を行い、一次成形体を得た。金型は外径 1. 2mm,内径 0. 6mm,高 さは 1. 867mmのものを用いた。 The molding composition obtained by sieving was molded at a pressure of 5000 kgf / cm 2 using a pressure press machine to obtain a primary molded body. The mold used had an outer diameter of 1.2 mm, an inner diameter of 0.6 mm, and a height of 1.867 mm.
上記プレス成形で得られた一次成形体をプレス金型 (金型寸法:外径 1. 3mm,内 径 0. 5mm、高さ 1. 4mm)に挿入し、加熱、加圧プレス成形を行い、二次成形体を 得た。成形条件は圧力 800kgf/cm2、金型温度 90°Cとした。成形体が 50°Cまで冷却 した時点でプレス型から取りだした。 The primary molded body obtained by the above press molding is inserted into a press mold (mold size: outer diameter 1.3 mm, inner diameter 0.5 mm, height 1.4 mm), and heated and pressure press molded, A secondary molded body was obtained. The molding conditions were a pressure of 800 kgf / cm 2 and a mold temperature of 90 ° C. When the compact was cooled to 50 ° C, it was removed from the press die.
得られた二次成形体を最高温度 500°C ·窒素雰囲気下で脱脂し、脱脂後の成形体 を最高温度 1250°C 'アルゴン雰囲気下で焼結した。  The obtained secondary compact was degreased at a maximum temperature of 500 ° C. · nitrogen atmosphere, and the degreased compact was sintered at a maximum temperature of 1250 ° C. under an argon atmosphere.
得られた製品(軸受)重量は、 0. Olgであった。  The product (bearing) weight obtained was 0. Olg.
実施例 3 Example 3
余 M /1ヽ の 诰  More M / 1 ヽ
本発明にかかる方法を用いて、図 2Aに示す軸受を作製した。  The bearing shown in FIG. 2A was produced using the method according to the present invention.
金属粉末として、ステンレス粉末(SUS316L)を使用した。平均粒径 10 /z mの粉末 を用いた。  Stainless steel powder (SUS316L) was used as the metal powder. A powder with an average particle size of 10 / z m was used.
また、気孔率を上げるための熱硬化性榭脂として平均粒径 30 m力もなるウレタン 榭脂を使用した。 有機バインダとして、ポリアセタール、ポリプロピレン、パラフィンワックスを、 25 : 25 : 50の割合で混合した混合物を使用した。 In addition, a urethane resin having an average particle size of 30 m force was used as a thermosetting resin for increasing the porosity. As the organic binder, a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
成形用組成物の組成は、ステンレス粉末 55vol% +ウレタン榭脂 1 Ovol% +有機バイ ンダ 35vol%とした。  The composition of the molding composition was stainless powder 55 vol% + urethane resin 1 Ovol% + organic binder 35 vol%.
ステンレス粉末、有機バインダ、ウレタン榭脂を 160°C ' l時間加熱混練機を用いて 混練し、得られた混練物を造粒機を用いて長さ l〜5mmのペレットにした。  Stainless steel powder, organic binder and urethane resin were kneaded using a heat kneader at 160 ° C. for 1 hour, and the obtained kneaded product was made into pellets having a length of 1 to 5 mm using a granulator.
得られたペレットを用いて、射出成形を行った。成形温度 180°C、成形圧力 1000 kgf/cm2,射出速度 30mm/min、金型温度 30°Cで成形を行い、一次成形体を得た。 金型は外径 1. 2mm、内径 0. 6mm、高さ 1. 867mmのものを用いた。 Injection molding was performed using the obtained pellets. Molding was performed at a molding temperature of 180 ° C, a molding pressure of 1000 kgf / cm 2 , an injection speed of 30 mm / min, and a mold temperature of 30 ° C to obtain a primary molded body. The mold used was an outer diameter of 1.2 mm, an inner diameter of 0.6 mm, and a height of 1.867 mm.
上記射出成形で得られた一次成形体をプレス金型 (金型寸法:外径 1. 3mm,内 径 0. 5mm、高さ 1. 4mm)に挿入し、加熱、加圧プレス成形を行い二次成形体を得 た。成形条件は圧力 800kgf/cm2、金型温度 80°Cとした。成形体が 40°Cまで冷却し た時点でプレス型から取りだした。 The primary molded body obtained by the above injection molding is inserted into a press die (die size: outer diameter 1.3 mm, inner diameter 0.5 mm, height 1.4 mm), and heated and pressed under pressure. The next molded body was obtained. The molding conditions were a pressure of 800 kgf / cm 2 and a mold temperature of 80 ° C. When the compact was cooled to 40 ° C, it was removed from the press die.
得られた二次成形体を最高温度 500°C ·窒素雰囲気下で脱脂し、脱脂後の成形体 を最高温度 1250°C 'アルゴン雰囲気下で焼結した。  The obtained secondary compact was degreased at a maximum temperature of 500 ° C. · nitrogen atmosphere, and the degreased compact was sintered at a maximum temperature of 1250 ° C. under an argon atmosphere.
得られた製品(軸受)重量は、 0. Olgであった。  The product (bearing) weight obtained was 0. Olg.
実施例 4 Example 4
セラミックス製超小型軸受の製造  Manufacture of ceramic micro bearings
本発明にかかる方法を用いて、図 2Aに示す軸受を作製した。  The bearing shown in FIG. 2A was produced using the method according to the present invention.
セラミックス粉末として、アルミナ粉末を使用した。平均粒径 1 mの粉末を用いた。 有機ノ インダとして、ポリスチレン、エチレン 酢酸ビニル共重合体、ポリブチルメタ タリレート、ノ《ラフィンワックスを、 15 : 15 : 20 : 50の割合で混合した混合物を使用した 成形用組成物の組成は、アルミナ粉末 60vol% +有機バインダ 40vol%とした。  Alumina powder was used as the ceramic powder. A powder with an average particle size of 1 m was used. The composition of the molding composition used was a mixture of polystyrene, ethylene-vinyl acetate copolymer, polybutyl methacrylate, and 《Raffine wax in a ratio of 15: 15: 20: 50 as the organic filler. % + Organic binder 40 vol%.
アルミナ粉末と有機バインダを 150°C, 1時間加熱混練機を用いて混練し、得られ た混練物を造粒機を用いて長さ l〜5mmのペレットにした。得られたペレットを押出 成形機を用いて 120°Cに加熱して、一次成形体を作製した。金型は外径 1. 2mm, 内径 0. 6mm、高さ 1. 867mmのものを用いた。 上記押出成形で得られた一次成形体をプレス金型 (金型寸法:外径 1. 3mm,内 径 0. 5mm、高さ 1. 4mm)に挿入し、加熱、加圧プレス成形を行い二次成形体を得 た。成形条件は圧力 700kgf/cm2、金型温度 65°Cとした。成形体が 20°Cまで冷却し た時点でプレス型から取りだした。 The alumina powder and the organic binder were kneaded using a heat kneader at 150 ° C. for 1 hour, and the resulting kneaded product was formed into pellets having a length of 1 to 5 mm using a granulator. The obtained pellets were heated to 120 ° C. using an extrusion molding machine to produce a primary molded body. The mold used had an outer diameter of 1.2 mm, an inner diameter of 0.6 mm, and a height of 1.867 mm. The primary molded body obtained by the above extrusion molding is inserted into a press die (die size: outer diameter 1.3 mm, inner diameter 0.5 mm, height 1.4 mm), and heated and pressed under pressure. The next molded body was obtained. The molding conditions were a pressure of 700 kgf / cm 2 and a mold temperature of 65 ° C. When the compact was cooled to 20 ° C, it was removed from the press die.
得られた二次成形体を最高温度 400°C ·空気雰囲気下で脱脂し、脱脂後の成形体 を最高温度 1500°C,空気雰囲気下で焼結した。  The obtained secondary compact was degreased at a maximum temperature of 400 ° C · air atmosphere, and the degreased compact was sintered at a maximum temperature of 1500 ° C and air atmosphere.
得られた製品(軸受)重量は、 0.005gであった。  The obtained product (bearing) weight was 0.005 g.
実施例 5 Example 5
余 M /1ヽ の 诰  More M / 1 ヽ
本発明にかかる方法を用いて、図 2Bに示す軸受を作製した。  A bearing shown in FIG. 2B was produced using the method according to the present invention.
金属粉末として、ステンレス粉末(SUS316L)を使用した。平均粒径 10 /z mの粉末 を用いた。  Stainless steel powder (SUS316L) was used as the metal powder. A powder with an average particle size of 10 / z m was used.
また、気孔率を上げるための熱硬化性榭脂として、平均粒径 30 mのウレタン榭脂 を用いた。  In addition, urethane resin having an average particle diameter of 30 m was used as a thermosetting resin for increasing the porosity.
有機バインダとして、ポリアセタール、ポリプロピレン、パラフィンワックスを、 25 : 25 : 50の割合で混合した混合物を使用した。  As the organic binder, a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
成形用組成物の組成は、ステンレス粉末 55vol% +ウレタン榭脂 1 Ovol% +有機バイ ンダ 35vol%とした。  The composition of the molding composition was stainless powder 55 vol% + urethane resin 1 Ovol% + organic binder 35 vol%.
ステンレス粉末、有機バインダ、ウレタン榭脂を 160°C ' l時間加熱混練機を用いて 混練し、得られた混練物をノヽンマーミルを用いて粉砕し、ふるいをかけて粒度 50〜1 00 μ mの成形用組成物を作成した。  Stainless steel powder, organic binder and urethane resin are kneaded using a heat-kneader at 160 ° C for 1 hour, and the resulting kneaded product is pulverized using a non-mer mill and sieved to give a particle size of 50 to 100 μm A molding composition was prepared.
ふるいにより得られた成形用組成物を用いて、加圧プレス機を用いて圧力 5000 kgf/cm2で成形を行い、一次成形体を得た。金型は外径 1. 2mm,内径 0. 5mm,高 さ 1. 9mmのものを用いた。 The molding composition obtained by sieving was molded at a pressure of 5000 kgf / cm 2 using a pressure press machine to obtain a primary molded body. The mold used was an outer diameter of 1.2 mm, an inner diameter of 0.5 mm, and a height of 1.9 mm.
上記プレス成形で得られた一次成形体をプレス金型 (金型寸法:内径 0. 5mm,外 径 1. 3mm、フランジ部の外径 2. Omm、高さ 1. 4mm)に挿入し、加熱、加圧プレス 成形を行い二次成形体を得た。成形条件は圧力 800kgf/cm2、金型温度 90°Cとした 。成形体が 50°Cまで冷却した時点でプレス型力も取りだした。 得られた二次成形体を最高温度 500°C ·窒素雰囲気下で脱脂し、脱脂後の成形体 を最高温度 1250°C 'アルゴン雰囲気下で焼結した。 The primary compact obtained by the above press molding is inserted into a press die (die size: inner diameter 0.5 mm, outer diameter 1.3 mm, flange outer diameter 2. Omm, height 1.4 mm) and heated. Then, press molding was performed to obtain a secondary molded body. The molding conditions were a pressure of 800 kgf / cm 2 and a mold temperature of 90 ° C. When the compact was cooled to 50 ° C, the press mold force was taken out. The obtained secondary compact was degreased at a maximum temperature of 500 ° C. · nitrogen atmosphere, and the degreased compact was sintered at a maximum temperature of 1250 ° C. under an argon atmosphere.
得られた製品(軸受)重量は、 O.Ollgであった。  The product (bearing) weight obtained was O.Ollg.
[0037] 各実施例において、軸受は 30個作成し、気孔率と寸法精度を算出した。 [0037] In each example, 30 bearings were prepared, and the porosity and dimensional accuracy were calculated.
なお、気孔率は以下の式により算出した。  The porosity was calculated by the following formula.
気孔率 = { 1 (見かけ密度 Z真密度) } X 100  Porosity = {1 (apparent density Z true density)} X 100
見かけ密度は、軸受表面にワックスをコーティングして内部の気孔を保った状態で 、ヘリウムガス置換型密度測定装置アキュピック (島津製作所製)で測定することによ つて求めた。  The apparent density was obtained by measuring with a helium gas substitution type density measuring device Accupick (manufactured by Shimadzu Corporation) in a state where the bearing surface was coated with wax to keep the pores inside.
真密度は、軸受にワックス等のコーティングをせずに、ヘリウムガス置換型密度測定 装置アキュピックで測定することによって求めた。  The true density was determined by measuring with a helium gas substitution type density measuring device Accupick without coating the bearing with wax or the like.
[0038] 「比較例 1」 [0038] "Comparative Example 1"
金属粉末として、ステンレス粉末(SUS316L)を使用した。平均粒径 70 /z mのステ ンレス粉末を用いた。有機バインダとしてステアリン酸を 20vol%添カ卩した。 Vブレンダ 一を用いてステンレス粉末とステアリン酸を乾式混合した。  Stainless steel powder (SUS316L) was used as the metal powder. Stainless steel powder with an average particle size of 70 / zm was used. As an organic binder, 20 vol% of stearic acid was added. Stainless powder and stearic acid were dry mixed using a V blender.
得られたペレット材料を用いて、プレス成形を行った。成形圧力 10,000kgf/cm2で成 形を行った力 成形材料が型内に完全に充填されな力つた。このため、成形以後の 脱脂、焼結を中止した。 Press molding was performed using the obtained pellet material. The force at which molding was performed at a molding pressure of 10,000 kgf / cm 2 The molding material was not filled completely into the mold. For this reason, degreasing and sintering after molding were stopped.
[0039] 「比較例 2」 [0039] "Comparative Example 2"
セラミックス粉末として、アルミナ粉末を使用した。平均粒径 1 μ mのアルミナ粉末を 用いた。  Alumina powder was used as the ceramic powder. Alumina powder with an average particle size of 1 μm was used.
セラミックス粉末にステアリン酸 20vol%を添加して顆粒状粉末を作成した。造粒した 顆粒状粉末の粒径は 100〜150 μ mとした。  A granular powder was prepared by adding 20 vol% stearic acid to the ceramic powder. The granulated granular powder had a particle size of 100 to 150 μm.
得られた顆粒状粉末を用いて、プレス成形を行った。成形圧力 10,000kgf/cm2で成 形を行った力 成形材料が型内に完全に充填されな力つた。このため、成形以後の 脱脂、焼結を中止した。 The obtained granular powder was used for press molding. The force at which molding was performed at a molding pressure of 10,000 kgf / cm 2 The molding material was not filled completely into the mold. For this reason, degreasing and sintering after molding were stopped.
[0040] 従来の粉末プレス法では、有機バインダの添力卩量は一般に 20vol%以下であるが、 本発明に係る超小型軸受の製造に当たっては、型のサイズが小さいため、従来通り の方法では十分に成形圧力が伝わらず、金型内に成形材料が充填されないことが 比較例 1及び 2から分力つた。 [0040] In the conventional powder press method, the applied amount of the organic binder is generally 20 vol% or less. However, in the manufacture of the micro bearing according to the present invention, the size of the mold is small. In comparison with Comparative Examples 1 and 2, it was found that the molding pressure was not sufficiently transmitted by this method and the molding material was not filled in the mold.
[0041] 「比較例 3」 [0041] "Comparative Example 3"
「一次成形体を作製し、加熱したプレス金型内に挿入し加圧する工程」がない他は、 実施例 1と全く同じ条件で図 2Aの軸受を製造した。  The bearing shown in FIG. 2A was manufactured under exactly the same conditions as in Example 1 except that there was no “step of producing a primary molded body, inserting it into a heated press die, and applying pressure”.
[0042] 金属粉末として、ステンレス粉末(SUS316L)を使用した。平均粒径 10 mの粉末 を用いた。 [0042] Stainless steel powder (SUS316L) was used as the metal powder. A powder with an average particle size of 10 m was used.
有機バインダとして、ポリスチレン、ポリブチルメタタリレート、エチレン 酢酸ビュル 共重合体、ノ《ラフィンワックスを、 15 : 15 : 20 : 50の割合で混合した混合物を使用し た。  As the organic binder, a mixture in which polystyrene, polybutylmethalylate, ethylene acetate butyl copolymer, and raffin wax were mixed at a ratio of 15: 15: 20: 50 was used.
成形用組成物の組成は、ステンレス粉末 65vol% +有機バインダ 35vol%とした。 粉末と有機バインダを 160°C, 1時間加熱混練機を用いて混練し、得られた混練物 をハンマーミルを用いて粉砕し、ふるいを力けて粒度 50〜: L00 μ mの成形用組成物 を作成した。  The composition of the molding composition was 65 vol% stainless powder + 35 vol% organic binder. The powder and organic binder are kneaded using a heat kneader at 160 ° C for 1 hour, and the resulting kneaded product is pulverized using a hammer mill and sieved to form a composition with a particle size of 50 to L00 μm. I made a thing.
ふるいにより得られた成形用組成物を用いて、加圧プレス機を用いて圧力 5000 kgf/cm2で成形を行い、成形体を得た。金型は外径 1. 3mm,内径 0. 5mm,高さ 1. 4mmのものを用いた。 The molding composition obtained by sieving was molded at a pressure of 5000 kgf / cm 2 using a pressure press machine to obtain a molded body. The mold used was an outer diameter of 1.3 mm, an inner diameter of 0.5 mm, and a height of 1.4 mm.
得られた成形体を最高温度 500°C ·窒素雰囲気下で脱脂し、脱脂後の成形体を最 高温度 1100°C ·アルゴン雰囲気下で焼結した。  The obtained compact was degreased at a maximum temperature of 500 ° C · nitrogen atmosphere, and the degreased compact was sintered at a maximum temperature of 1100 ° C · argon atmosphere.
[0043] 「比較例 4〜6」 [0043] "Comparative Examples 4-6"
同様に、「一次成形体を作製し、加熱したプレス金型内に挿入し加圧する工程」が な 、他は、実施例 2〜4と全く同じ条件で図 2Aの軸受を製造した。  Similarly, the bearing shown in FIG. 2A was manufactured under exactly the same conditions as in Examples 2 to 4 except that there was no “step of producing a primary molded body, inserting it into a heated press die, and applying pressure”.
実施例 2に対応する比較例を比較例 4とし、以下順に、実施例 3, 4のそれぞれに対 応する比較例を比較例 5, 6とする。  The comparative example corresponding to Example 2 is referred to as Comparative Example 4, and the comparative examples corresponding to Examples 3 and 4 are referred to as Comparative Examples 5 and 6 in the following order.
比較例 3と同様、比較例 4〜6でも、成形体用金型 (金型寸法:外径 1. 3mm,内径 0. 5mm,高さ 1. 4mm)を用いてプレス成形、押出成形若しくは射出成形することに よって一段階で成形体を作製し、得られた成形体を脱脂、焼結して軸受を製造した。 比較例 3〜6のそれぞれにおいて、軸受を 30個作成し、気孔率と寸法精度を算出 した。 Similar to Comparative Example 3, in Comparative Examples 4 to 6, press molding, extrusion molding or injection using a mold for molding (mold size: outer diameter 1.3 mm, inner diameter 0.5 mm, height 1.4 mm) A molded body was produced in one step by molding, and the resulting molded body was degreased and sintered to produce a bearing. In each of Comparative Examples 3 to 6, create 30 bearings and calculate the porosity and dimensional accuracy. did.
実施例及び比較例の結果を表 1に示す。  Table 1 shows the results of Examples and Comparative Examples.
[表 1] [table 1]
表 1  table 1
Figure imgf000016_0001
上記実施例及び比較例の結果から、本発明の方法を用いて製造した軸受は、加 熱プレス成形を行わず一段階のみで製造した軸受と比較して、寸法精度が一桁高く なることが明らかになった。
Figure imgf000016_0001
From the results of the above examples and comparative examples, the bearing manufactured using the method of the present invention has a dimensional accuracy that is an order of magnitude higher than that of a bearing manufactured by only one stage without performing hot press molding. It was revealed.

Claims

請求の範囲 The scope of the claims
[1] 外径 2mm以下、内径 lmm以下の超小型軸受を製造する方法であって、  [1] A method of manufacturing a micro bearing having an outer diameter of 2 mm or less and an inner diameter of 1 mm or less,
平均粒径 1〜150 mの金属粉末及び有機バインダを含有し、有機バインダの含有 量が 30〜70vol%である成形用組成物を作製する工程、  A step of producing a molding composition containing metal powder having an average particle size of 1 to 150 m and an organic binder, wherein the content of the organic binder is 30 to 70 vol%,
前記成形用組成物を用いてプレス成形、押出成形若しくは射出成形により一次成形 体を作製する工程、  A step of producing a primary molded body by press molding, extrusion molding or injection molding using the molding composition;
前記一次成形体を加熱したプレス金型内に挿入し加圧して二次成形体を作製する 工程、  Inserting the primary molded body into a heated press mold and applying pressure to produce a secondary molded body,
前記二次成形体を脱脂、焼結することにより焼結体を作製する工程、  Degreasing and sintering the secondary molded body to produce a sintered body,
とを含むことを特徴とする、超小型多孔質軸受を製造する方法。  A method for manufacturing an ultra-small porous bearing, comprising:
[2] 外径 2mm以下、内径 lmm以下の超小型軸受を製造する方法であって、 [2] A method of manufacturing a micro bearing having an outer diameter of 2 mm or less and an inner diameter of 1 mm or less,
平均粒径 0. 1〜10 mのセラミックス粉末及び有機バインダを含有し、有機バインダ の含有量が 30〜70vol%である成形用組成物を作製する工程、  A step of producing a molding composition comprising ceramic powder having an average particle size of 0.1 to 10 m and an organic binder, wherein the content of the organic binder is 30 to 70 vol%,
前記成形用組成物を用いてプレス成形、押出成形若しくは射出成形により一次成形 体を作製する工程、  A step of producing a primary molded body by press molding, extrusion molding or injection molding using the molding composition;
前記一次成形体を加熱したプレス金型内に挿入し加圧して二次成形体を作製する 工程、  Inserting the primary molded body into a heated press mold and applying pressure to produce a secondary molded body,
前記二次成形体を脱脂、焼結することにより焼結体を作製する工程、  Degreasing and sintering the secondary molded body to produce a sintered body,
とを含むことを特徴とする、超小型多孔質軸受を製造する方法。  A method for manufacturing an ultra-small porous bearing, comprising:
[3] 前記成形用組成物が、平均粒径 10〜150 μ mの熱硬化性榭脂を l〜30vol%含有 する、請求項 1または 2に記載の方法。 [3] The method according to claim 1 or 2, wherein the molding composition contains 1 to 30 vol% of a thermosetting resin having an average particle size of 10 to 150 µm.
[4] 重量 0. lg以下、外径 2mm以下、内径 lmm以下、内径寸法精度 ±0. 01mm以下 である、金属あるいはセラミックス製の超小型軸受。 [4] An ultra-compact bearing made of metal or ceramics with a weight of 0.1 lg or less, an outer diameter of 2 mm or less, an inner diameter of 1 mm or less, and an inner diameter dimensional accuracy of ± 0.01 mm or less.
[5] 重量 0. lg以下、外径 1. 5mm以下、内径 0. 7mm以下、内径寸法精度 ±0. 005m m以下である、金属あるいはセラミックス製の超小型軸受。 [5] Ultra-compact bearing made of metal or ceramics with a weight of 0.1 lg or less, an outer diameter of 1.5 mm or less, an inner diameter of 0.7 mm or less, and an inner diameter dimensional accuracy of ± 0.005 mm or less.
[6] 気孔率が 15vol%以上である、請求項 4または 5に記載の軸受。 [6] The bearing according to claim 4 or 5, wherein the porosity is 15 vol% or more.
[7] フランジを有する軸受けであって、フランジの外径が 2mm以下である、請求項 4〜6 の!ヽずれか 1項に記載の軸受。 [8] 前記軸受が含油軸受である、請求項 4〜7のいずれか 1項に記載の軸受。 [7] A bearing having a flange, wherein the outer diameter of the flange is 2 mm or less! The bearing according to item 1. [8] The bearing according to any one of claims 4 to 7, wherein the bearing is an oil-impregnated bearing.
PCT/JP2005/007048 2005-04-12 2005-04-12 Miniature bearing and method for manufacturing the same WO2006114849A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/007048 WO2006114849A1 (en) 2005-04-12 2005-04-12 Miniature bearing and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/007048 WO2006114849A1 (en) 2005-04-12 2005-04-12 Miniature bearing and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2006114849A1 true WO2006114849A1 (en) 2006-11-02

Family

ID=37214487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007048 WO2006114849A1 (en) 2005-04-12 2005-04-12 Miniature bearing and method for manufacturing the same

Country Status (1)

Country Link
WO (1) WO2006114849A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1884332A3 (en) * 2006-08-05 2011-01-05 Karlsruher Institut für Technologie Connection and a method for manufacturing the same
JP2016008669A (en) * 2014-06-25 2016-01-18 ポーライト株式会社 Sintered oil impregnation bearing and linear actuator
CN110566585A (en) * 2018-06-06 2019-12-13 斯凯孚公司 Rolling bearing ring by metal injection molding process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3001500U (en) * 1994-02-28 1994-08-30 ポーライト株式会社 Small bearing body
JP2001145909A (en) * 1999-09-10 2001-05-29 Seiko Instruments Inc Method for holding ceramics
JP2004162165A (en) * 2002-06-14 2004-06-10 Snecma Moteurs Dry self-lubricating dense material, mechanical part formed from the material, and method of manufacturing the material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3001500U (en) * 1994-02-28 1994-08-30 ポーライト株式会社 Small bearing body
JP2001145909A (en) * 1999-09-10 2001-05-29 Seiko Instruments Inc Method for holding ceramics
JP2004162165A (en) * 2002-06-14 2004-06-10 Snecma Moteurs Dry self-lubricating dense material, mechanical part formed from the material, and method of manufacturing the material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1884332A3 (en) * 2006-08-05 2011-01-05 Karlsruher Institut für Technologie Connection and a method for manufacturing the same
JP2016008669A (en) * 2014-06-25 2016-01-18 ポーライト株式会社 Sintered oil impregnation bearing and linear actuator
CN110566585A (en) * 2018-06-06 2019-12-13 斯凯孚公司 Rolling bearing ring by metal injection molding process

Similar Documents

Publication Publication Date Title
CN1863630B (en) Method for producing highly porous metal molded bodies close to finished contours
US7232473B2 (en) Composite material containing tungsten and bronze
US5028367A (en) Two-stage fast debinding of injection molding powder compacts
JP2017519101A (en) Method for producing cermet or cemented carbide powder
JPH0686608B2 (en) Method for producing iron sintered body by metal powder injection molding
US5095048A (en) Method of manufacturing a composition for use in injection molding powder metallurgy
JP2002129204A (en) Method for manufacturing porous metal
CN102188933B (en) The manufacture method of prilling powder and prilling powder
JP6756994B1 (en) Manufacturing method of powder for additive manufacturing, manufacturing method of additive manufacturing, and manufacturing method of sintered body of additive manufacturing
JP2004517215A (en) Powder metallurgy for producing high density molded parts.
JPH07164196A (en) Tochi manufacturing method
US20030170137A1 (en) Forming complex-shaped aluminum components
CN113369477A (en) Preparation method of porous material with adjustable porosity
JP2010222155A (en) Silicon carbide sintered compact and method for producing the same
JPH0692603B2 (en) METAL POWDER FOR PRODUCTION OF METAL SINTERED BODY AND METHOD FOR PRODUCING METAL SINTERED BODY PRODUCT USING THE SAME
CN107034375A (en) A kind of method that utilization hydride powder prepares high-compactness titanium article
WO2006114849A1 (en) Miniature bearing and method for manufacturing the same
US20040146424A1 (en) Production of component parts by metal injection moulding (mim)
JP2008214664A (en) Method for producing sintered body and sintered body
CN114367663B (en) A preparation method for fully dense and complex-shaped titanium alloy thin-walled parts
JP2010007141A (en) Sintered oil-retaining bearing, and method for producing the same
JP3761551B2 (en) Sintered titanium filter
JPH11315304A (en) Manufacture of sintered body
JPH0637643B2 (en) Injection molding composition
JP6809373B2 (en) Microcapsules and ceramics manufacturing methods using them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05730194

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5730194

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载