WO2006110132A1 - Methods and compositions for mycoplasma pneumoniae exotoxins - Google Patents
Methods and compositions for mycoplasma pneumoniae exotoxins Download PDFInfo
- Publication number
- WO2006110132A1 WO2006110132A1 PCT/US2005/011897 US2005011897W WO2006110132A1 WO 2006110132 A1 WO2006110132 A1 WO 2006110132A1 US 2005011897 W US2005011897 W US 2005011897W WO 2006110132 A1 WO2006110132 A1 WO 2006110132A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- toxin
- cell
- subject
- cards
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 133
- 241000202934 Mycoplasma pneumoniae Species 0.000 title abstract description 84
- 239000000203 mixture Substances 0.000 title abstract description 35
- 239000002095 exotoxin Substances 0.000 title 1
- 231100000776 exotoxin Toxicity 0.000 title 1
- 239000012634 fragment Substances 0.000 claims abstract description 205
- 239000003053 toxin Substances 0.000 claims abstract description 148
- 231100000765 toxin Toxicity 0.000 claims abstract description 148
- 108020001507 fusion proteins Proteins 0.000 claims abstract description 59
- 102000037865 fusion proteins Human genes 0.000 claims abstract description 59
- 210000004027 cell Anatomy 0.000 claims description 172
- 108700012359 toxins Proteins 0.000 claims description 146
- 239000000427 antigen Substances 0.000 claims description 63
- 102000036639 antigens Human genes 0.000 claims description 63
- 108091007433 antigens Proteins 0.000 claims description 62
- 206010028980 Neoplasm Diseases 0.000 claims description 29
- 201000011510 cancer Diseases 0.000 claims description 20
- 239000003446 ligand Substances 0.000 claims description 19
- 208000005392 Spasm Diseases 0.000 claims description 12
- 208000007101 Muscle Cramp Diseases 0.000 claims description 11
- 210000003205 muscle Anatomy 0.000 claims description 9
- 210000004881 tumor cell Anatomy 0.000 claims description 6
- 102000005962 receptors Human genes 0.000 claims description 5
- 108020003175 receptors Proteins 0.000 claims description 5
- 230000008685 targeting Effects 0.000 claims description 5
- 210000000663 muscle cell Anatomy 0.000 claims description 3
- 230000002147 killing effect Effects 0.000 claims description 2
- 150000007523 nucleic acids Chemical class 0.000 abstract description 167
- 108020004707 nucleic acids Proteins 0.000 abstract description 157
- 102000039446 nucleic acids Human genes 0.000 abstract description 157
- 230000001225 therapeutic effect Effects 0.000 abstract description 8
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 abstract description 4
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 abstract description 3
- 208000037765 diseases and disorders Diseases 0.000 abstract 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 232
- 102000004196 processed proteins & peptides Human genes 0.000 description 216
- 229920001184 polypeptide Polymers 0.000 description 195
- 108090000623 proteins and genes Proteins 0.000 description 88
- 125000003275 alpha amino acid group Chemical group 0.000 description 70
- 239000013615 primer Substances 0.000 description 68
- 102000004169 proteins and genes Human genes 0.000 description 67
- 235000018102 proteins Nutrition 0.000 description 65
- 239000013598 vector Substances 0.000 description 51
- 239000000126 substance Substances 0.000 description 49
- 125000003729 nucleotide group Chemical group 0.000 description 48
- 239000002773 nucleotide Substances 0.000 description 47
- 239000000523 sample Substances 0.000 description 39
- 208000015181 infectious disease Diseases 0.000 description 37
- 230000000694 effects Effects 0.000 description 35
- 235000001014 amino acid Nutrition 0.000 description 32
- 150000001413 amino acids Chemical class 0.000 description 30
- 210000002966 serum Anatomy 0.000 description 26
- 239000002671 adjuvant Substances 0.000 description 25
- 230000027455 binding Effects 0.000 description 25
- 102000007615 Pulmonary Surfactant-Associated Protein A Human genes 0.000 description 24
- 108010007100 Pulmonary Surfactant-Associated Protein A Proteins 0.000 description 24
- 238000001514 detection method Methods 0.000 description 24
- 241000282414 Homo sapiens Species 0.000 description 22
- 241001465754 Metazoa Species 0.000 description 22
- 239000012528 membrane Substances 0.000 description 22
- 238000003556 assay Methods 0.000 description 21
- 230000028993 immune response Effects 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 19
- 238000009396 hybridization Methods 0.000 description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 17
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 15
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 15
- 230000005945 translocation Effects 0.000 description 15
- 230000004071 biological effect Effects 0.000 description 14
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 14
- 239000002953 phosphate buffered saline Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 102000014914 Carrier Proteins Human genes 0.000 description 13
- 108020004414 DNA Proteins 0.000 description 13
- 241000588724 Escherichia coli Species 0.000 description 13
- 201000010099 disease Diseases 0.000 description 13
- 238000001727 in vivo Methods 0.000 description 13
- 238000003752 polymerase chain reaction Methods 0.000 description 13
- -1 IgM Proteins 0.000 description 12
- 241000204031 Mycoplasma Species 0.000 description 12
- 239000000872 buffer Substances 0.000 description 12
- 230000000295 complement effect Effects 0.000 description 12
- 238000003119 immunoblot Methods 0.000 description 12
- 108091026890 Coding region Proteins 0.000 description 11
- 208000001572 Mycoplasma Pneumonia Diseases 0.000 description 11
- 230000003321 amplification Effects 0.000 description 11
- 239000013604 expression vector Substances 0.000 description 11
- 210000004408 hybridoma Anatomy 0.000 description 11
- 238000003199 nucleic acid amplification method Methods 0.000 description 11
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 10
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 9
- 108091028043 Nucleic acid sequence Proteins 0.000 description 9
- 239000007983 Tris buffer Substances 0.000 description 9
- 239000012472 biological sample Substances 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- 239000003937 drug carrier Substances 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 9
- 230000005730 ADP ribosylation Effects 0.000 description 8
- 108010078791 Carrier Proteins Proteins 0.000 description 8
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 8
- 108091034117 Oligonucleotide Proteins 0.000 description 8
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 8
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 8
- 238000007792 addition Methods 0.000 description 8
- 230000000890 antigenic effect Effects 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 108060003951 Immunoglobulin Proteins 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 7
- 239000000020 Nitrocellulose Substances 0.000 description 7
- 238000003776 cleavage reaction Methods 0.000 description 7
- 102000018358 immunoglobulin Human genes 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 239000002502 liposome Substances 0.000 description 7
- 210000004962 mammalian cell Anatomy 0.000 description 7
- 229920001220 nitrocellulos Polymers 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 230000007017 scission Effects 0.000 description 7
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 7
- 238000010561 standard procedure Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 208000024891 symptom Diseases 0.000 description 7
- 230000014616 translation Effects 0.000 description 7
- 230000003612 virological effect Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 241000699802 Cricetulus griseus Species 0.000 description 6
- 102000004127 Cytokines Human genes 0.000 description 6
- 108090000695 Cytokines Proteins 0.000 description 6
- 238000002965 ELISA Methods 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 6
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 6
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 6
- 229920002684 Sepharose Polymers 0.000 description 6
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 6
- 108020005038 Terminator Codon Proteins 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 210000000612 antigen-presenting cell Anatomy 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 230000002255 enzymatic effect Effects 0.000 description 6
- 230000002163 immunogen Effects 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229920002401 polyacrylamide Polymers 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 241000283707 Capra Species 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 5
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 5
- 206010035226 Plasma cell myeloma Diseases 0.000 description 5
- 108091008874 T cell receptors Proteins 0.000 description 5
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 5
- 108091008324 binding proteins Proteins 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 5
- 230000009918 complex formation Effects 0.000 description 5
- 230000002939 deleterious effect Effects 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 230000003053 immunization Effects 0.000 description 5
- 238000003018 immunoassay Methods 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 210000004072 lung Anatomy 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 201000000050 myeloid neoplasm Diseases 0.000 description 5
- JPXMTWWFLBLUCD-UHFFFAOYSA-N nitro blue tetrazolium(2+) Chemical compound COC1=CC(C=2C=C(OC)C(=CC=2)[N+]=2N(N=C(N=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)[N+]([O-])=O)=CC=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=C([N+]([O-])=O)C=C1 JPXMTWWFLBLUCD-UHFFFAOYSA-N 0.000 description 5
- 210000001672 ovary Anatomy 0.000 description 5
- 230000007170 pathology Effects 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 238000010837 poor prognosis Methods 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 238000003127 radioimmunoassay Methods 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 108030001720 Bontoxilysin Proteins 0.000 description 4
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 4
- 108010012236 Chemokines Proteins 0.000 description 4
- 102000019034 Chemokines Human genes 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- 206010035664 Pneumonia Diseases 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229940053031 botulinum toxin Drugs 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000000120 cytopathologic effect Effects 0.000 description 4
- 210000004443 dendritic cell Anatomy 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000002757 inflammatory effect Effects 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000002987 primer (paints) Substances 0.000 description 4
- 230000001177 retroviral effect Effects 0.000 description 4
- 235000020183 skimmed milk Nutrition 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 125000003396 thiol group Chemical group [H]S* 0.000 description 4
- 241000701161 unidentified adenovirus Species 0.000 description 4
- 229920000936 Agarose Polymers 0.000 description 3
- 102100026189 Beta-galactosidase Human genes 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 102000004889 Interleukin-6 Human genes 0.000 description 3
- 108090001005 Interleukin-6 Proteins 0.000 description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 3
- 108010008707 Mucin-1 Proteins 0.000 description 3
- 102000007298 Mucin-1 Human genes 0.000 description 3
- 102000019315 Nicotinic acetylcholine receptors Human genes 0.000 description 3
- 108050006807 Nicotinic acetylcholine receptors Proteins 0.000 description 3
- 238000000636 Northern blotting Methods 0.000 description 3
- 102000043276 Oncogene Human genes 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 3
- 241000282520 Papio Species 0.000 description 3
- 206010036790 Productive cough Diseases 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 3
- 206010044314 Tracheobronchitis Diseases 0.000 description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 3
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- NWMHDZMRVUOQGL-CZEIJOLGSA-N almurtide Chemical compound OC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)CO[C@@H]([C@H](O)[C@H](O)CO)[C@@H](NC(C)=O)C=O NWMHDZMRVUOQGL-CZEIJOLGSA-N 0.000 description 3
- 238000000376 autoradiography Methods 0.000 description 3
- 210000003719 b-lymphocyte Anatomy 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 108010005774 beta-Galactosidase Proteins 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 239000011545 carbonate/bicarbonate buffer Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 239000013592 cell lysate Substances 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- 230000003013 cytotoxicity Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000028709 inflammatory response Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 229940100601 interleukin-6 Drugs 0.000 description 3
- 239000007927 intramuscular injection Substances 0.000 description 3
- 238000010255 intramuscular injection Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 3
- 229960004452 methionine Drugs 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 230000009871 nonspecific binding Effects 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 208000008443 pancreatic carcinoma Diseases 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 210000003296 saliva Anatomy 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000002741 site-directed mutagenesis Methods 0.000 description 3
- 210000004989 spleen cell Anatomy 0.000 description 3
- 210000003802 sputum Anatomy 0.000 description 3
- 208000024794 sputum Diseases 0.000 description 3
- 229960005486 vaccine Drugs 0.000 description 3
- 230000002477 vacuolizing effect Effects 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- 230000001018 virulence Effects 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- JWDFQMWEFLOOED-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(pyridin-2-yldisulfanyl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSC1=CC=CC=N1 JWDFQMWEFLOOED-UHFFFAOYSA-N 0.000 description 2
- QRXMUCSWCMTJGU-UHFFFAOYSA-L (5-bromo-4-chloro-1h-indol-3-yl) phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP([O-])(=O)[O-])=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-L 0.000 description 2
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 108091093088 Amplicon Proteins 0.000 description 2
- 201000003076 Angiosarcoma Diseases 0.000 description 2
- 208000003950 B-cell lymphoma Diseases 0.000 description 2
- 241000304886 Bacilli Species 0.000 description 2
- 241000193738 Bacillus anthracis Species 0.000 description 2
- 231100000699 Bacterial toxin Toxicity 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 2
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 2
- 108010073254 Colicins Proteins 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 2
- 241000699800 Cricetinae Species 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- 108010053187 Diphtheria Toxin Proteins 0.000 description 2
- 102000016607 Diphtheria Toxin Human genes 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 2
- 101000906736 Escherichia phage Mu DNA circularization protein N Proteins 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 108091006027 G proteins Proteins 0.000 description 2
- 108091072337 GAGE family Proteins 0.000 description 2
- 102000040452 GAGE family Human genes 0.000 description 2
- 102000030782 GTP binding Human genes 0.000 description 2
- 108091000058 GTP-Binding Proteins 0.000 description 2
- 102100029974 GTPase HRas Human genes 0.000 description 2
- 101710091881 GTPase HRas Proteins 0.000 description 2
- 102000006395 Globulins Human genes 0.000 description 2
- 108010044091 Globulins Proteins 0.000 description 2
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 208000001258 Hemangiosarcoma Diseases 0.000 description 2
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 208000008839 Kidney Neoplasms Diseases 0.000 description 2
- FFEARJCKVFRZRR-UHFFFAOYSA-N L-Methionine Natural products CSCCC(N)C(O)=O FFEARJCKVFRZRR-UHFFFAOYSA-N 0.000 description 2
- 239000004201 L-cysteine Substances 0.000 description 2
- 235000013878 L-cysteine Nutrition 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 229930195722 L-methionine Natural products 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- 101000839464 Leishmania braziliensis Heat shock 70 kDa protein Proteins 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- 239000006137 Luria-Bertani broth Substances 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 102000000440 Melanoma-associated antigen Human genes 0.000 description 2
- 108050008953 Melanoma-associated antigen Proteins 0.000 description 2
- 101100346932 Mus musculus Muc1 gene Proteins 0.000 description 2
- 241000432072 Mycoplasma pneumoniae M129 Species 0.000 description 2
- 201000008235 Mycoplasma pneumoniae pneumonia Diseases 0.000 description 2
- 108700015872 N-acetyl-nor-muramyl-L-alanyl-D-isoglutamine Proteins 0.000 description 2
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 2
- 102100021852 Neuronal cell adhesion molecule Human genes 0.000 description 2
- 101710130688 Neuronal cell adhesion molecule Proteins 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 102000036673 PRAME Human genes 0.000 description 2
- 108060006580 PRAME Proteins 0.000 description 2
- 102000057297 Pepsin A Human genes 0.000 description 2
- 108090000284 Pepsin A Proteins 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 102100036735 Prostate stem cell antigen Human genes 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 108700020978 Proto-Oncogene Proteins 0.000 description 2
- 102000052575 Proto-Oncogene Human genes 0.000 description 2
- 101000762949 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Exotoxin A Proteins 0.000 description 2
- 101001039269 Rattus norvegicus Glycine N-methyltransferase Proteins 0.000 description 2
- 206010038389 Renal cancer Diseases 0.000 description 2
- 206010057190 Respiratory tract infections Diseases 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 101000764570 Streptomyces phage phiC31 Probable tape measure protein Proteins 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 108010055044 Tetanus Toxin Proteins 0.000 description 2
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 2
- 208000024770 Thyroid neoplasm Diseases 0.000 description 2
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 2
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 2
- 108010042352 Urokinase Plasminogen Activator Receptors Proteins 0.000 description 2
- 102000004504 Urokinase Plasminogen Activator Receptors Human genes 0.000 description 2
- 208000002495 Uterine Neoplasms Diseases 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 125000003172 aldehyde group Chemical group 0.000 description 2
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 description 2
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 2
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 2
- 229940037003 alum Drugs 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- 238000000211 autoradiogram Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000000688 bacterial toxin Substances 0.000 description 2
- 239000013060 biological fluid Substances 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 239000002981 blocking agent Substances 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000013553 cell monolayer Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 239000013611 chromosomal DNA Substances 0.000 description 2
- 238000012875 competitive assay Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000001212 derivatisation Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 208000010118 dystonia Diseases 0.000 description 2
- 230000012202 endocytosis Effects 0.000 description 2
- 238000005189 flocculation Methods 0.000 description 2
- 230000016615 flocculation Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 238000001476 gene delivery Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 229920000140 heteropolymer Polymers 0.000 description 2
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 2
- 230000028996 humoral immune response Effects 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 230000003308 immunostimulating effect Effects 0.000 description 2
- 239000002596 immunotoxin Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000035987 intoxication Effects 0.000 description 2
- 231100000566 intoxication Toxicity 0.000 description 2
- 239000007928 intraperitoneal injection Substances 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 201000010982 kidney cancer Diseases 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 2
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 210000005087 mononuclear cell Anatomy 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 238000001668 nucleic acid synthesis Methods 0.000 description 2
- 201000002528 pancreatic cancer Diseases 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229940111202 pepsin Drugs 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 108700042226 ras Genes Proteins 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000004202 respiratory function Effects 0.000 description 2
- 239000012723 sample buffer Substances 0.000 description 2
- 238000007423 screening assay Methods 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 230000000405 serological effect Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229940031439 squalene Drugs 0.000 description 2
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 2
- 108010088201 squamous cell carcinoma-related antigen Proteins 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 101150047061 tag-72 gene Proteins 0.000 description 2
- 229940118376 tetanus toxin Drugs 0.000 description 2
- 201000002510 thyroid cancer Diseases 0.000 description 2
- 230000007888 toxin activity Effects 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 206010046766 uterine cancer Diseases 0.000 description 2
- GKSPIZSKQWTXQG-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-[1-(pyridin-2-yldisulfanyl)ethyl]benzoate Chemical compound C=1C=C(C(=O)ON2C(CCC2=O)=O)C=CC=1C(C)SSC1=CC=CC=N1 GKSPIZSKQWTXQG-UHFFFAOYSA-N 0.000 description 1
- OPCHFPHZPIURNA-MFERNQICSA-N (2s)-2,5-bis(3-aminopropylamino)-n-[2-(dioctadecylamino)acetyl]pentanamide Chemical compound CCCCCCCCCCCCCCCCCCN(CC(=O)NC(=O)[C@H](CCCNCCCN)NCCCN)CCCCCCCCCCCCCCCCCC OPCHFPHZPIURNA-MFERNQICSA-N 0.000 description 1
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- YHQZWWDVLJPRIF-JLHRHDQISA-N (4R)-4-[[(2S,3R)-2-[acetyl-[(3R,4R,5S,6R)-3-amino-4-[(1R)-1-carboxyethoxy]-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]amino]-3-hydroxybutanoyl]amino]-5-amino-5-oxopentanoic acid Chemical compound C(C)(=O)N([C@@H]([C@H](O)C)C(=O)N[C@H](CCC(=O)O)C(N)=O)C1[C@H](N)[C@@H](O[C@@H](C(=O)O)C)[C@H](O)[C@H](O1)CO YHQZWWDVLJPRIF-JLHRHDQISA-N 0.000 description 1
- QAPSNMNOIOSXSQ-YNEHKIRRSA-N 1-[(2r,4s,5r)-4-[tert-butyl(dimethyl)silyl]oxy-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O[Si](C)(C)C(C)(C)C)C1 QAPSNMNOIOSXSQ-YNEHKIRRSA-N 0.000 description 1
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- ASNTZYQMIUCEBV-UHFFFAOYSA-N 2,5-dioxo-1-[6-[3-(pyridin-2-yldisulfanyl)propanoylamino]hexanoyloxy]pyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)CCCCCNC(=O)CCSSC1=CC=CC=N1 ASNTZYQMIUCEBV-UHFFFAOYSA-N 0.000 description 1
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 1
- FFEARJCKVFRZRR-FOEKBKJKSA-N 3654-96-4 Chemical compound C[35S]CC[C@H](N)C(O)=O FFEARJCKVFRZRR-FOEKBKJKSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-L 4-nitrophenyl phosphate(2-) Chemical compound [O-][N+](=O)C1=CC=C(OP([O-])([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-L 0.000 description 1
- 208000019198 Abducens Nerve disease Diseases 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- 241001556567 Acanthamoeba polyphaga mimivirus Species 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 102100021305 Acyl-CoA:lysophosphatidylglycerol acyltransferase 1 Human genes 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 206010061424 Anal cancer Diseases 0.000 description 1
- 208000007860 Anus Neoplasms Diseases 0.000 description 1
- 206010003757 Atypical pneumonia Diseases 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 102000019260 B-Cell Antigen Receptors Human genes 0.000 description 1
- 108010012919 B-Cell Antigen Receptors Proteins 0.000 description 1
- 208000004736 B-Cell Leukemia Diseases 0.000 description 1
- 108091067183 BAGE family Proteins 0.000 description 1
- 102000039506 BAGE family Human genes 0.000 description 1
- 238000009020 BCA Protein Assay Kit Methods 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 102000015735 Beta-catenin Human genes 0.000 description 1
- 108060000903 Beta-catenin Proteins 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 101000800130 Bos taurus Thyroglobulin Proteins 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 206010006448 Bronchiolitis Diseases 0.000 description 1
- 201000004813 Bronchopneumonia Diseases 0.000 description 1
- 102000004652 CD56 Antigen Human genes 0.000 description 1
- 108010003639 CD56 Antigen Proteins 0.000 description 1
- 101100005789 Caenorhabditis elegans cdk-4 gene Proteins 0.000 description 1
- 101100328886 Caenorhabditis elegans col-2 gene Proteins 0.000 description 1
- 101100521097 Caenorhabditis elegans pri-1 gene Proteins 0.000 description 1
- 101100353170 Caenorhabditis elegans pri-2 gene Proteins 0.000 description 1
- 102100026548 Caspase-8 Human genes 0.000 description 1
- 108090000538 Caspase-8 Proteins 0.000 description 1
- 108010039939 Cell Wall Skeleton Proteins 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 102000001327 Chemokine CCL5 Human genes 0.000 description 1
- 108010055166 Chemokine CCL5 Proteins 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 206010011416 Croup infectious Diseases 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 238000007399 DNA isolation Methods 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 208000014094 Dystonic disease Diseases 0.000 description 1
- 108010069091 Dystrophin Proteins 0.000 description 1
- 102000001039 Dystrophin Human genes 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 241000305071 Enterobacterales Species 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241000672609 Escherichia coli BL21 Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 206010063006 Facial spasm Diseases 0.000 description 1
- 201000001342 Fallopian tube cancer Diseases 0.000 description 1
- 208000013452 Fallopian tube neoplasm Diseases 0.000 description 1
- 102100039713 G antigen 6 Human genes 0.000 description 1
- 101710092269 G antigen 6 Proteins 0.000 description 1
- 101710113436 GTPase KRas Proteins 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 108700004714 Gelonium multiflorum GEL Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 102000005720 Glutathione transferase Human genes 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 208000004095 Hemifacial Spasm Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101001042227 Homo sapiens Acyl-CoA:lysophosphatidylglycerol acyltransferase 1 Proteins 0.000 description 1
- 101000710072 Homo sapiens Cilia- and flagella-associated protein 97 Proteins 0.000 description 1
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 1
- 101001005716 Homo sapiens Melanoma-associated antigen 11 Proteins 0.000 description 1
- 101000623904 Homo sapiens Mucin-17 Proteins 0.000 description 1
- 101001136592 Homo sapiens Prostate stem cell antigen Proteins 0.000 description 1
- 101000767631 Human papillomavirus type 16 Protein E7 Proteins 0.000 description 1
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 1
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 1
- 108010043496 Immunoglobulin Idiotypes Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 208000005016 Intestinal Neoplasms Diseases 0.000 description 1
- 101150045458 KEX2 gene Proteins 0.000 description 1
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 1
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 206010023825 Laryngeal cancer Diseases 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 208000004852 Lung Injury Diseases 0.000 description 1
- NPBGTPKLVJEOBE-IUCAKERBSA-N Lys-Arg Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(O)=O)CCCNC(N)=N NPBGTPKLVJEOBE-IUCAKERBSA-N 0.000 description 1
- 108010010995 MART-1 Antigen Proteins 0.000 description 1
- 102000016200 MART-1 Antigen Human genes 0.000 description 1
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 1
- 208000032271 Malignant tumor of penis Diseases 0.000 description 1
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 1
- 102100025083 Melanoma-associated antigen 11 Human genes 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 1
- 241001430197 Mollicutes Species 0.000 description 1
- 102100023125 Mucin-17 Human genes 0.000 description 1
- 102100034263 Mucin-2 Human genes 0.000 description 1
- 108010008705 Mucin-2 Proteins 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- 102000015728 Mucins Human genes 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 206010028470 Mycoplasma infections Diseases 0.000 description 1
- 108700020354 N-acetylmuramyl-threonyl-isoglutamine Proteins 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 102000008297 Nuclear Matrix-Associated Proteins Human genes 0.000 description 1
- 108010035916 Nuclear Matrix-Associated Proteins Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 206010031096 Oropharyngeal cancer Diseases 0.000 description 1
- 206010057444 Oropharyngeal neoplasm Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 208000000821 Parathyroid Neoplasms Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 208000002471 Penile Neoplasms Diseases 0.000 description 1
- 206010034299 Penile cancer Diseases 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 201000007100 Pharyngitis Diseases 0.000 description 1
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 1
- 206010035724 Pneumonia mycoplasmal Diseases 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 101710120463 Prostate stem cell antigen Proteins 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 102100035703 Prostatic acid phosphatase Human genes 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 108020005067 RNA Splice Sites Proteins 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 108091079747 SCP family Proteins 0.000 description 1
- 239000012722 SDS sample buffer Substances 0.000 description 1
- 108091077753 SSX family Proteins 0.000 description 1
- 102000042330 SSX family Human genes 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 108010084592 Saporins Proteins 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 101710173694 Short transient receptor potential channel 2 Proteins 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 1
- 206010067672 Spasmodic dysphonia Diseases 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 208000004350 Strabismus Diseases 0.000 description 1
- 108700027479 Syntex adjuvant formulation Proteins 0.000 description 1
- 206010042971 T-cell lymphoma Diseases 0.000 description 1
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 102000009843 Thyroglobulin Human genes 0.000 description 1
- 208000033781 Thyroid carcinoma Diseases 0.000 description 1
- 206010044074 Torticollis Diseases 0.000 description 1
- RDFCSSHDJSZMTQ-ZDUSSCGKSA-N Tos-Lys-CH2Cl Chemical compound CC1=CC=C(S(=O)(=O)N[C@@H](CCCCN)C(=O)CCl)C=C1 RDFCSSHDJSZMTQ-ZDUSSCGKSA-N 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 206010069363 Traumatic lung injury Diseases 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 206010046431 Urethral cancer Diseases 0.000 description 1
- 206010046458 Urethral neoplasms Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 208000004354 Vulvar Neoplasms Diseases 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 201000005188 adrenal gland cancer Diseases 0.000 description 1
- 208000024447 adrenal gland neoplasm Diseases 0.000 description 1
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000007801 affinity label Substances 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 238000007818 agglutination assay Methods 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 201000011165 anus cancer Diseases 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 206010005159 blepharospasm Diseases 0.000 description 1
- 230000000744 blepharospasm Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 206010006514 bruxism Diseases 0.000 description 1
- 108010049223 bryodin Proteins 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000003560 cancer drug Substances 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 210000004520 cell wall skeleton Anatomy 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 208000015114 central nervous system disease Diseases 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 201000002866 cervical dystonia Diseases 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 230000008045 co-localization Effects 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 201000010549 croup Diseases 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 101150012763 endA gene Proteins 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 102000015694 estrogen receptors Human genes 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 201000003911 head and neck carcinoma Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 101150023479 hsdS gene Proteins 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N hydrazine group Chemical group NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 230000000951 immunodiffusion Effects 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 201000002313 intestinal cancer Diseases 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 206010023841 laryngeal neoplasm Diseases 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000005980 lung dysfunction Effects 0.000 description 1
- 231100000515 lung injury Toxicity 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 208000026045 malignant tumor of parathyroid gland Diseases 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 101150110704 melC2 gene Proteins 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 208000021039 metastatic melanoma Diseases 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- JMUHBNWAORSSBD-WKYWBUFDSA-N mifamurtide Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCC)COP(O)(=O)OCCNC(=O)[C@H](C)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)OC(O)[C@@H]1NC(C)=O JMUHBNWAORSSBD-WKYWBUFDSA-N 0.000 description 1
- 229960005225 mifamurtide Drugs 0.000 description 1
- 108700007621 mifamurtide Proteins 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000021243 milk fat Nutrition 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 108010022050 mistletoe lectin I Proteins 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- YFCUZWYIPBUQBD-ZOWNYOTGSA-N n-[(3s)-7-amino-1-chloro-2-oxoheptan-3-yl]-4-methylbenzenesulfonamide;hydron;chloride Chemical compound Cl.CC1=CC=C(S(=O)(=O)N[C@@H](CCCCN)C(=O)CCl)C=C1 YFCUZWYIPBUQBD-ZOWNYOTGSA-N 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 210000000715 neuromuscular junction Anatomy 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 101150093139 ompT gene Proteins 0.000 description 1
- 201000002851 oromandibular dystonia Diseases 0.000 description 1
- 201000006958 oropharynx cancer Diseases 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000001314 paroxysmal effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 108010091212 pepstatin Proteins 0.000 description 1
- FAXGPCHRFPCXOO-LXTPJMTPSA-N pepstatin A Chemical compound OC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)CC(C)C FAXGPCHRFPCXOO-LXTPJMTPSA-N 0.000 description 1
- 208000008494 pericarditis Diseases 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 201000002511 pituitary cancer Diseases 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 108700028325 pokeweed antiviral Proteins 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 108010043671 prostatic acid phosphatase Proteins 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 238000000734 protein sequencing Methods 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 108010030416 proteoliposomes Proteins 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 210000003456 pulmonary alveoli Anatomy 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 208000020029 respiratory tract infectious disease Diseases 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 206010041232 sneezing Diseases 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 201000002849 spasmodic dystonia Diseases 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940002004 the magic bullet Drugs 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- CNHYKKNIIGEXAY-UHFFFAOYSA-N thiolan-2-imine Chemical group N=C1CCCS1 CNHYKKNIIGEXAY-UHFFFAOYSA-N 0.000 description 1
- 208000008732 thymoma Diseases 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 208000013077 thyroid gland carcinoma Diseases 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 210000005062 tracheal ring Anatomy 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
- 231100000402 unacceptable toxicity Toxicity 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 229940125575 vaccine candidate Drugs 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 206010046885 vaginal cancer Diseases 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6801—Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
- A61K47/6803—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
- A61K47/6811—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
- A61K47/6817—Toxins
- A61K47/6829—Bacterial toxins, e.g. diphteria toxins or Pseudomonas exotoxin A
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6851—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/30—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Mycoplasmatales, e.g. Pleuropneumonia-like organisms [PPLO]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6031—Proteins
- A61K2039/6037—Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
Definitions
- the present invention relates to Mycoplasma pneumoniae toxins, antibodies thereto, and their use in diagnostic and therapeutic methods.
- Mycoplasma pneumoniae is one of the most well recognized pathogens of the human respiratory tract. The importance of Mycoplasma pneumoniae as a cause of human respiratory disease has been well documented by epidemiological studies in various settings and in many countries. M. pneumoniae is the etiologic agent of primary atypical pneumonia and is also responsible for many respiratory tract infections, such as tracheobronchitis, bronchiolitis, pharyngitis and croup, especially in older children and young adults and in elderly populations. It accounts for 20-30% of all pneumonias and also is linked to asthma and chronic obstructive pulmonary disease. Furthermore, M.
- pneumoniae can disseminate to other organ sites and cause gastrointestinal, hematologic, neurologic, dermatologic, musculoskeletal and cardiovascular pathologies. This secondary involvement by M. pneumoniae leads to a spectrum of complicated extrapulmonary sequelae, including arthritis, pericarditis and central nervous system disorders, which attests to the significance of M. pneumoniae in human disease. Although antibiotic therapy appears to be relatively effective in controlling mycoplasma pneumonia, the bacteria continue to persist. At present, no known virulence determinants of M. pneumoniae have been functionally identified and linked to the wide range of pathologies associated with M. pneumoniae mediated diseases. Furthermore, there are no specific and standardized diagnostic tests available for reliable and rapid detection of M. pneumoniae infection, or effective vaccines to control M pneumoniae infection.
- the present invention overcomes previous shortcomings in the art by providing a Mycoplasma pneumoniae polypeptide and biologically active fragments thereof, known as community acquired respiratory distress syndrome (CARDS) toxin, as well as nucleic acids encoding this polypeptide and its fragments and antibodies specific thereto.
- CARDS community acquired respiratory distress syndrome
- These compositions are used, for example, in methods of diagnosing, treating and preventing infection by M. pneumoniae.
- RJLl (clinical strain) amino acid sequence: (SEQ ID N0:4)
- Reference nucleotide sequence M129/B9 (contains tga's that need to be changed to tgg before expression in E. coli) (SEQ ID NO:7) ttttttaattt gtaaaatttc attttttaaa aatgccaaat cctgttagat ttgttttaccg tgttgatttg agaagccctg aagaaattttttgaacatggc ttttcaactt taggtgatgt gagaaatttc tttgaacaca ttctctccac taattttggt agaagctatt tttccac ttcagaaaca cccacagcagcag ctattcgctttggtagc tggtttacggg aatatgtacc agagcacccc aga
- RJLl nucleotide sequence with each tga changed to tgg for expression in E. coli (SEQ ID NO: 11) atgccaaatc ctgttagatt tgtttaccgt gttgatttga gaagccctga agaaattttt 60 gaacatggct tttcaacttt aggtgatgtg agaaatttct ttgaacacat tctctccact 120 aattttggta gaagctatttt tattccact tcagaaacac ccacagcagc tattcgcttc 180 tttggtagct ggttacggga atatgtacca gagcacccca gaagggctta cttatatgaa 240 attcgtgccg accaacactt tacaatgccc
- Figure 2 shows ADP-ribosylation of G proteins in HEp-2 cells following incubation with CARDS protein.
- Lane 1 HEp-2 cells in medium alone followed by preparation of cell free extract and addition of CARDS protein.
- Lane 2 HEp-2 cells pretreated with CARDS protein, followed by preparation of cell free extract and addition of CARDS protein.
- the marked reduction in ADP-ribosylation of specific proteins in the CARDS protein-pretreated cells is indicated by arrows.
- ADP- ribosylation of other Hep-2 cell proteins is diminished (lane 2).
- Figure 3 shows an ELISA and an immunoblot employing rDl as antigen that demonstrates production of anti-CARDS antibodies in sequential serum samples of two patients infected with Mycoplasma pneumoniae.
- Figures 4A-B Vacuolating effect of CARDS toxin on monolayers of CHO cells and HeLa cells.
- the present invention provides Mycoplasma pneumoniae toxin (CARDS toxin) from subjects infected with Mycoplasma pneumoniae.
- the present invention provides a polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:2 (Sl isolate), a polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO: 3 (JL isolate), a polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:4 (RJLl isolate), a polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:5(L2 isolate), a polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO: 1 (reference sequence), and/or a polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO
- nucleotide sequences that encode the polypeptides and fragments of this invention.
- the present invention provides an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotide sequence of SEQ ID NO:8 (Sl isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotide sequence of SEQ ID NO: 10 (JL isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotide sequence of SEQ ID NO: 11 (RJL 1 isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotides sequence of SEQ ID NO:9 (L2 isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotides sequence of SEQ ID NO:7 (reference sequence), and/or an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the
- nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence that encodes an amino acid sequence comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of the amino acid sequence of SEQ ID NO:2 (Sl isolate), a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence that encodes an amino acid sequence comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of the amino acid sequence of SEQ ID NO:3 (JL isolate), a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence that encodes an amino acid sequence comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of the amino acid sequence of SEQ ID NO:4 (RJLl isolate), a nucleic acid comprising, consisting essentially
- probes and primers for the detection and/or amplification of the nucleic acids of this invention including TTTTTACATATGCCAAATCCTGTT (SEQ ID NO: 12; Primer 1), CGTTAAAGGATCCTCGCTAAAAGCGATC (SEQ ID NO: 13; Primer 2), CTAGCCAAGCACTACGGACATTAGC (SEQ ID NO: 14; (Primer 3), CGTAGTGCTTGGCTAGTAGATGCTGTT (SEQ ID NO: 15; (Primer 4), CCTGGTGTTGGCAACCATGGTTG (SEQ ID NO: 16; (Primer 5), GATCAACCATGGTTGCCAACACC (SEQ ID NO: 17; (Primer 6), AAGGTGGACTCCAATCAGGGCACG (SEQ ID NO: 18; (Primer 7), CGTGCCCTGATTGGAGTCCACCTT (SEQ ID NO: 19; (Primer 8), GCGGTGTCATTTTCCACTTTTGG (SEQ ID NO:20; (Primer 1), CGTT
- methods of diagnosing infection by M. pneunomoniae in a subject comprising contacting a biological sample from the subject with a polypeptide or antibody of this invention under conditions whereby an antigen/antibody complex can form; and detecting formation of an antigen/antibody complex, thereby diagnosing infection by M. pneumoniae in the subject.
- Methods are also provided herein for diagnosing infection by M. pneumoniae in a subject comprising contacting a biological sample from the subject with a nucleic acid of this invention under conditions whereby hybridization of nucleic acid molecules can occur; and detecting hybridization, thereby diagnosing infection by M. pneumoniae in the subject.
- the present invention provides a method of detecting the presence of the CARDS toxin of this invention in a sample (e.g., a biological sample from a subject or a food or water sample or other sample that could contain CARDS toxin) and/or a subject and/or diagnosing infection by M. pneumoniae in a subject, comprising contacting the sample with surfactant protein A (SP-A) under conditions whereby a toxin/SP-A complex can form; and detecting formation of the toxin/SP-A complex, thereby detecting the presence of CARDS toxin in a sample and/or diagnosing infection by M. pneumoniae in a subject.
- a sample e.g., a biological sample from a subject or a food or water sample or other sample that could contain CARDS toxin
- SP-A surfactant protein A
- the present invention provides methods of eliciting an immune response in a subject, comprising administering to the subject an effective amount of a polypeptide and/or biologically active fragment of a polypeptide of this invention and/or by administering to a subject an effective amount of a nucleic acid comprising a nucleotide sequence encoding a polypeptide and/or biologically active fragment of a polypeptide of this invention.
- the present invention additionally provides methods of providing passive immunity to a subject, comprising administering to the subject an effective amount of an antibody of this invention.
- the present invention provides methods of treating and/or preventing infection by M. pneumoniae in a subject, comprising administering to the subject an effective amount of a polypeptide of this invention and/or an effective amount of a biologically active fragment of a polypeptide of this invention and/or an effective amount of a nucleic acid comprising a nucleotide sequence encoding a polypeptide of this invention and/or an effective amount of a nucleic acid comprising a nucleotide sequence encoding a biologically active fragment of a polypeptide of this invention. Also provided are methods of treating and/or preventing infection by M. pneumoniae in a subject, comprising administering to the subject an effective amount of an antibody of this invention.
- the present invention provides methods of identifying substances having the ability to inhibit or enhance various activities of the polypeptides and/or biologically active fragments of this invention, including but not limited to, binding activity, translocating activity, immunogenic activity, ADP- ribosylating activity, cytopathology inducing activity and/or toxin activity. These methods are carried out by contacting the polypeptides and/or biologically active fragments of this invention and/or the nucleic acids of this invention, with the substance to be tested for inhibitory or enhancing activity, under conditions whereby the inhibition or enhancement of activity can be detected, as described herein.
- a can mean one or more than one.
- a cell can mean a single cell or a multiplicity of cells.
- the present invention is based on the discovery of polypeptides of Mycoplasma pneumoniae having the respective amino acid sequence described herein and encoded by the nucleic acids described herein and the identification of activities of these polypeptides and various fragments or "domains" of these polypeptides. Characterization of these polypeptides and fragments indicates that the newly identified protein is a toxin of Mycoplasma pneumoniae and it is referred to herein as community acquired respiratory distress syndrome (CARDS) toxin.
- CARDS toxin is a cell- associated toxin.
- the present invention provides an isolated polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:2 (Sl isolate), an isolated polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:3 (JL isolate), an isolated polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:4 (RJLl isolate), an isolated polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:5 (L2 isolate), an isolated polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:1 (reference sequence), and/or an isolated polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:6 (composite sequence), either individually or in any combination.
- Sl isolate an isolated polypeptide comprising, consisting essentially of, and/
- the present invention further provides biologically active fragments of the polypeptides of this invention, as well as antibodies that specifically bind the polypeptides and/or fragments of the polypeptides of this invention.
- nucleotide sequences that encode the polypeptides and fragments of this invention.
- the present invention provides an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotide sequence of SEQ ID NO: 8 (Sl isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotide sequence of SEQ ID NO: 10 (JL isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotide sequence of SEQ ID NO: 11 (RJLl isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotides sequence of SEQ ID NO:9 (L2 isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotides sequence of SEQ ID NO:7 (reference sequence), and/or an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the
- nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence that encodes an amino acid sequence comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of the amino acid sequence of SEQ ID NO:2 (Sl isolate), a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence that encodes an amino acid sequence comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of the amino acid sequence of SEQ ID NO:3 (JL isolate), a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence that encodes an amino acid sequence comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of the amino acid sequence of SEQ ID NO:4 (RJLl isolate), a nucleic acid comprising, consisting essentially
- probes and primers for the detection of the nucleic acids of this invention including TTTTTAC ATATGCC AAATCCTGTT (SEQ ID NO: 12; Primer 1), CGTTAAAGGATCCTCGCTAAAAGCGATC (SEQ ID NO: 13; Primer 2), CTAGCCAAGCACTACGGACATTAGC (SEQ ID NO: 14; (Primer 3), CGTAGTGCTTGGCTAGTAGATGCTGTT (SEQ ID NO: 15; (Primer 4), CCTGGTGTTGGCAACCATGGTTG (SEQ ID NO: 16; (Primer 5), GATCAACCATGGTTGCCAACACC (SEQ ID NO: 17; (Primer 6), AAGGTGGACTCCAATCAGGGCACG (SEQ ID NO: 18; (Primer 7), CGTGCCCTGATTGGAGTCCACCTT (SEQ ID NO: 19; (Primer 8), GCGGTGTCATTTTCCACTTTTGG (SEQ ID NO:20; (Primer 9), CCAA
- isolated as used herein means the nucleic acid or polypeptide of this invention is sufficiently free of contaminants or cell components with which nucleic acids or polypeptides normally occur. “Isolated” does not mean that the preparation is technically pure (homogeneous), but it is sufficiently pure to provide the nucleic acid or polypeptide in a form in which it can be used therapeutically.
- Epitope or “antigenic epitope” or “antigenic peptide” as used herein means a specific amino acid sequence of limited length which, when present in the proper conformation, provides a reactive site for an antibody or T cell receptor.
- the identification of epitopes on antigens can be carried out by immunology protocols that are well known in the art.
- polypeptide or "protein” is used to describe a chain of amino acids that correspond to those encoded by a nucleic acid.
- a polypeptide of this invention can be a peptide, which usually describes a chain of amino acids of from two to about 30 amino acids.
- polypeptide as used herein also describes a chain of amino acids having more than 30 amino acids and can be a fragment or domain of a protein or a full length protein.
- polypeptide can refer to a linear chain of amino acids or it can refer to a chain of amino acids that has been processed and folded into a functional protein.
- polypeptides of the present invention are obtained by isolation and purification of the polypeptides from cells where they are produced naturally, by enzymatic (e.g., proteolytic) cleavage, and/or recombinantly by expression of nucleic acid encoding the polypeptides or fragments of this invention.
- the polypeptides and/or fragments of this invention can also be obtained by chemical synthesis or other known protocols for producing polypeptides and fragments.
- nucleic acids of this invention can be either single or double stranded (i.e., including the complementary nucleic acid).
- a nucleic acid of this invention can be the complement of a nucleic acid described herein.
- a "biologically active fragment" includes a polypeptide of this invention that comprises a sufficient number of amino acids to have one or more of the biological activities of the polypeptides of this invention.
- Such biological activities can include, but are not limited to, in any combination, binding activity, translocating activity, immunogenic activity, ADP-ribosylating activity, and/or cytopathology inducing activity, as well as any other activity now known or later identified for the polypeptides and/or fragments of this invention.
- a fragment of a polypeptide of this invention can be produced by methods well known and routine in the art. Fragments of this invention can be produced, for example, by enzymatic or other cleavage of naturally occurring peptides or polypeptides or by synthetic protocols that are well known.
- Such fragments can be tested for one or more of the biological activities of this invention according to the methods described herein, which are routine methods for testing activities of polypeptides, and/or according to any art-known and routine methods for identifying such activities.
- Such production and testing to identify biologically active fragments of the polypeptides described herein would be well within the scope of one of ordinary skill in the art and would be routine.
- Fragments of the polypeptides of this invention are preferably at least about ten amino acids in length and retain one or more of the biological activities and/or the immunological activities of the CARDS toxin.
- Examples of the fragments of this invention include, but are not intended to be limited to, the following fragments identified by the amino acid number as shown in the Sequence Listing for each of the isolates of SEQ ID NO:2 (SI isolate), SEQ ID NO:3 (JL isolate), SEQ ID NO:4 (RJLl isolate), SEQ ID NO:5 ( L2 isolate), SEQ ID NO:6 (composite sequence) and SEQ ID NO:1 (reference sequence): Amino acids 1-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60- 70, 70-80, 80-90, 90-100, 110-120, 120-130, 130-140, 140-150, 150-160, 160-170, 170-180, 180-190, 190-200, 200-210, 210-220, 220-230,
- fragment of this invention can be any amino acid sequence containing any combination of contiguous amino acids that are numbered in the Sequence Listing as amino acids 1 through 591 even if that combination is not specifically recited as an example herein. It is also understood that these fragments can be combined in any order or amount. For example, fragment 1-10 can be combined with fragment 10-20 to produce a fragment of amino acids 1-20. Also fragments can be present in multiple numbers and in any combination in a fragment of this invention. Thus, for example, fragment 1-150 can be combined with a second fragment 1-150 and/or combined with fragment 400-500 to produce a fragment of this invention.
- Other exemplary fragments of this invention include the domains of the CARDS toxin described herein [e.g., domain 1 (N terminal 249 amino acids), domain 2 (256 amino acids) and domain 3 (247 amino acids at carboxy terminus)].
- the term "homology" as used herein refers to a degree of similarity between two or more sequences. There may be partial homology or complete homology (i.e., identity).
- a partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially homologous.”
- the inhibition of hybridization of the completely complementary sequence to the target sequence can be examined using a hybridization assay (Southern or Northern blot, solution hybridization and the like) under conditions of low stringency.
- a substantially homologous sequence or hybridization probe will compete for and inhibit the binding of a completely homologous sequence to the target sequence under conditions of low stringency, as this term is known in the art.
- low stringency conditions are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (i.e., selective) interaction.
- the absence of non-specific binding can be tested by the use of a second target sequence that lacks even a partial degree of complementarity (e.g., less than about 30% identity). In the absence of non-specific binding, the probe will not hybridize to the second non-complementary target sequence.
- hybridization refers to any process by which a first strand of nucleic acid binds with a second strand of nucleic acid through base pairing.
- Nucleic acids encoding the polypeptides and/or fragments of this invention can be detected by DNA-DNA or DNA-RNA hybridization or amplification using probes, primers and/or fragments of polynucleotides encoding the polypeptides and/or fragments of this invention and/or designed to detect and/or amplify the nucleic acids of this invention.
- hybridization complex refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary G and C bases and between complementary A and T bases; these hydrogen bonds may be further stabilized by base stacking interactions.
- the two complementary nucleic acid sequences hydrogen bond in an antiparallel configuration.
- a hybridization complex may be formed in solution (e.g., C o t or Rot analysis) or between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells and/or nucleic acids have been fixed).
- nucleotide sequence refers to a heteropolymer of nucleotides or the sequence of these nucleotides.
- nucleic acid refers to a heteropolymer of nucleotides.
- oligonucleotide refers to a heteropolymer of nucleotides.
- polynucleotide refers to a heteropolymer of nucleotides.
- nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.
- Nucleic acids of this invention can comprise a nucleotide sequence that can be identical in sequence to the sequence which is naturally occurring or, due to the well-characterized degeneracy of the nucleic acid code, can include alternative codons which encode the same amino acid as that which is found in the naturally occurring sequence.
- nucleic acids of this invention can comprise nucleotide sequences that can include codons which represent conservative substitutions of amino acids as are well known in the art, such that the biological activity of the resulting polypeptide and/or fragment is retained.
- probe or “primer” includes naturally occurring or recombinant or chemically synthesized single- and/or double-stranded nucleic acids. They can be labeled for detection by nick translation, Klenow fill-in reaction, PCR or other methods well known in the art. Probes and primers of the present invention, their preparation and/or labeling are described in Sambrook et al. 1989. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY and Ausubel et al. 1989. Current Protocols in Molecular Biology, John Wiley & Sons, New York N. Y., both of which are incorporated herein by reference in their entirety for these teachings.
- stringent refers to hybridization conditions that are commonly understood in the art to define the conditions of the hybridization procedure. Stringency conditions can be low, high or medium, as those terms are commonly know in the art and well recognized by one of ordinary skill.
- stringent conditions can include, for example, highly stringent (i.e., high stringency) conditions (e.g., hybridization to filter-bound DNA in 0.5 M NaHPO 4 , 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65 0 C, and washing in O.lxSSC/0.1% SDS at 68 0 C), and/or moderately stringent (i.e., medium stringency) conditions (e.g., washing in 0.2xSSC/0.1% SDS at 42 0 C).
- highly stringent i.e., high stringency
- SDS sodium dodecyl sulfate
- moderately stringent i.e., medium stringency
- Amplification includes the production of multiple copies of a nucleic acid molecule and is generally carried out using polymerase chain reaction (PCR) and/or other amplification technologies as are well known in the art (Dieffenbach and Dveksler. 1995. PCR Primer, a Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y.).
- PCR polymerase chain reaction
- antibody includes intact immunoglobin molecules as well as fragments thereof, such as Fab, F(ab')2, and Fc, which are capable of binding the epitopic determinant of an antigen (i.e., antigenic determinant).
- Antibodies that bind the polypeptides of this invention are prepared using intact polypeptides or fragments containing small peptides of interest as the immunizing antigen.
- the polypeptide or fragment used to immunize an animal can be derived from enzymatic cleavage, recombinant expression, isolation from biological materials, synthesis, etc., and can be conjugated to a carrier protein, if desired.
- Commonly used carriers that are chemically coupled to peptides and proteins for the production of antibody include, but are not limited to, bovine serum albumin, thyroglobulin and keyhole limpet hemocyanin.
- the coupled peptide or protein is then used to immunize the animal (e.g., a mouse, rat, or rabbit).
- the polypeptide or peptide antigens can also be administered with an adjuvant, as described herein and as otherwise known in the art.
- the term "antibody” or “antibodies” as used herein refers to all types of immunoglobulins, including IgG, IgM, IgA, IgD, and IgE.
- the antibody can be monoclonal or polyclonal and can be of any species of origin, including, for example, mouse, rat, rabbit, horse, goat, sheep or human, or can be a chimeric or humanized antibody. See, e.g., Walker et al., Molec. Immunol. 26:403-11 (1989).
- the antibodies can be recombinant monoclonal antibodies produced according to the methods disclosed in U.S. Patent No. 4,474,893 or U.S. Patent No. 4,816,567.
- the antibodies can also be chemically constructed according to the method disclosed in U.S. Patent No. 4,676,980.
- the antibody can further be a single chain antibody or bispecific antibody.
- Antibody fragments included within the scope of the present invention include, for example, Fab, F(ab')2, and Fc fragments, and the corresponding fragments obtained from antibodies other than IgG.
- Such fragments can be produced by known techniques.
- F(ab')2 fragments can be produced by pepsin digestion of the antibody molecule, and Fab fragments can be generated by reducing the disulfide bridges of the F(ab')2 fragments.
- Fab expression libraries can be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse et al., (1989) Science 254:1275-1281).
- Monoclonal antibodies can be produced in a hybridoma cell line according to the technique of Kohler and Milstein, (1975) Nature 265:495-97.
- a solution containing the appropriate antigen can be injected into a mouse and, after a sufficient time, the mouse sacrificed and spleen cells obtained.
- the spleen cells are then immortalized by fusing them with myeloma cells or with lymphoma cells, typically in the presence of polyethylene glycol, to produce hybridoma cells.
- the hybridoma cells are then grown in a suitable medium and the supernatant screened for monoclonal antibodies having the desired specificity.
- Monoclonal Fab fragments can be produced in bacterial cell such as E. coli by recombinant techniques known to those skilled in the art. See, e.g., W. Huse, (1989) Science 246:1275-81.
- Antibodies can also be obtained by phage display techniques known in the art or by immunizing a heterologous host with a cell containing an epitope of interest.
- the term "sample” as used herein is used in its broadest sense.
- a biological sample suspected of containing a polypeptide, fragment, antibody and/or nucleic acid of this invention can be any biological fluid, an extract from a cell, an extracellular matrix isolated from a cell, a cell (in solution or bound to a solid support), a tissue, a tissue print, and the like.
- Effective amount refers to an amount of a compound or composition of this invention that is sufficient to produce a desired effect, which can be a therapeutic effect.
- the effective amount will vary with the age, general condition of the subject, the severity of the condition being treated, the particular agent administered, the duration of the treatment, the nature of any concurrent treatment, the pharmaceutically acceptable carrier used, and like factors within the knowledge and expertise of those skilled in the art.
- an "effective amount” in any individual case can be determined by one of ordinary skill in the art by reference to the pertinent texts and literature and/or by using routine experimentation. (See, for example, Remington, The Science And Practice of Pharmacy (20th ed. 2000)).
- a “pharmaceutically acceptable” component such as a salt, carrier, excipient or diluent of a composition according to the present invention is a component that (i) is compatible with the other ingredients of the composition in that it can be combined with the compositions of the present invention without rendering the composition unsuitable for its intended purpose, and (ii) is suitable for use with subjects as provided herein without undue adverse side effects (such as toxicity, irritation, and allergic response). Side effects are "undue” when their risk outweighs the benefit provided by the composition.
- Non-limiting examples of pharmaceutically acceptable components include, without limitation, any of the standard pharmaceutical carriers such as phosphate buffered saline solutions, water, emulsions such as oil/water emulsion, microemulsions and various types of wetting agents.
- standard pharmaceutical carriers such as phosphate buffered saline solutions, water, emulsions such as oil/water emulsion, microemulsions and various types of wetting agents.
- Treating refers to any type of action that imparts a modulating effect, which, for example, can be a beneficial effect, to a subject afflicted with a disorder, disease or illness, including improvement in the condition of the subject ⁇ e.g., in one or more symptoms), delay in the progression of the condition, prevention or delay of the onset of the disorder, and/or change in clinical parameters, disease or illness, etc., as would be well known in the art.
- a subject of this invention includes any animal susceptible to infection by Mycoplasma pneumoniae. Such a subject can be a mammal and in particular embodiments, is a human. As used herein, a "subject" or “subject in need thereof is a subject known to be, or suspected of being, infected with Mycoplasma pneumoniae. A subject of this invention can also include a subject not previously known or suspected to be infected by Mycoplasma pneumoniae or in need of treatment for Mycoplasma pneumoniae infection. For example, a subject of this invention can be administered the compositions of this invention even if it is not known or suspected that the subject is infected with Mycoplasma pneumoniae (e.g., prophylactically). A subject of this invention is also a subject known or believed to be at risk of infection by Mycoplasma pneumoniae.
- the fragments and/or polypeptides of this invention can be fused with a "carrier" protein or peptide to produce a fusion protein.
- the carrier protein or peptide can be fused to a polypeptide and/or fragment of this invention to increase the stability thereof (e.g., decrease the turnover rate) in the cell and/or subject.
- exemplary carrier proteins include, but are not limited to, glutathione-S-transferase or maltose-binding protein.
- the carrier protein or peptide can alternatively be a reporter protein.
- the fusion protein can comprise a polypeptide and/or fragment of this invention and a reporter protein or peptide ⁇ e.g., Green Fluorescent Protein, ⁇ -glucoronidase, ⁇ -galactosidase, luciferase, and the like) for easy detection of transformed cells and transgene expression.
- the fusion protein attached to the polypeptides and/or fragments and a carrier protein or peptide can be targeted to a subcellular compartment of interest, i.e., to affect the co-localization of the polypeptide and/or fragment.
- Any suitable carrier protein as is well known in the art can be used to produce a fusion protein of this invention.
- the polypeptides and/or fragments of the present invention can 1) be used in assays to determine the biological activity of other proteins or peptides; 2) be included in a panel of multiple proteins for high-throughput screening; 3) be used to raise antibodies or to elicit an immune response; 4) be used as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its binding partner or receptor) in biological fluids; and 5) be used as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state). Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.
- EIA enzyme immunoassays
- agglutination assays immunoblots (Western blot; dot/slot blot, etc.)
- radioimmunoassays RIA
- immunodiffusion assays chemiluminescence assays
- antibody library screens expression arrays
- enzyme-linked immunosorbent assays ELISA
- radioimmunoassays RIA
- immunoprecipitation Western blotting, competitive binding assays, immunofluorescence, immunohistochemical staining precipitation/flocculation assays and fluorescence-activated cell sorting (FACS).
- nucleic acid sequences are well known in the art.
- labeling and conjugation techniques are known in the art that are used in various nucleic acid detection and amplification assays.
- Methods for producing labeled hybridization probes and/or PCR or other ligation primers for detecting and/or amplifying nucleic acid sequences can include, for example, oligolabeling, nick translation and end-labeling, as well as other well known methods.
- nucleic acid sequences encoding the polypeptides of this invention, and/or any functional fragment thereof can be cloned into a plasmid or vector for detection and amplification.
- reporter molecules or labels include, for example, radionuclides, enzymes, fluorescence agents, chemiluminescence agents and chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles and the like as are well known in the art.
- the present invention further includes isolated polypeptides, peptides, proteins, fragments, domains and/or nucleic acid molecules that are substantially equivalent to those described for this invention.
- substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an undesirable adverse functional dissimilarity between reference and subject sequences.
- this invention can include substantially equivalent sequences that have an adverse functional dissimilarity.
- sequences having equivalent biological activity and equivalent expression characteristics are considered substantially equivalent.
- the invention further provides homologs, as well as methods of obtaining homologs, of the polypeptides and/or fragments of this invention from other strains of Mycoplasma and/or other organisms.
- an amino acid sequence or protein is defined as a homolog of a polypeptide or fragment of the present invention if it shares significant homology to one of the polypeptides and/or fragments of the present invention.
- Significant homology means at least 75%, 80%, 85%, 90%, 95%, 98% and/or 100% homology with another amino acid sequence.
- nucleic acids disclosed herein as a probe or as primers, and techniques such as PCR amplification and colony/plaque hybridization, one skilled in the art can identify homologs of the polypeptides and/or fragments of this invention in Mycoplasma and/or other organisms.
- the present invention also provides an antibody that specifically binds the polypeptides and/or biologically active fragments of this invention, as well as a method of making an antibody specific for a polypeptide and/or fragment of this invention comprising: a) immunizing an animal with a polypeptide and/or fragment of this invention under conditions whereby the animal produces antibodies that specifically bind the polypeptide and/or fragment of this invention; and b) removing biological materials comprising the antibodies from the animal. Also provided herein is an antibody produced by the methods set forth herein.
- Antibodies of this invention can be generated using methods that are well known in the art.
- Such antibodies and immunoglobulin molecules of this invention can include, but are not limited to, polyclonal antibodies, monoclonal antibodies, chimeric antibodies, humanized antibodies, single chain antibodies (e.g., scFv), Fab fragments, and fragments produced by a Fab expression library.
- any animal known to produce antibodies can be immunized with a polypeptide, fragment and/or antigenic epitope of this invention.
- Methods for immunization of animals to produce antibodies are well known in the art.
- such methods can include subcutaneous or interperitoneal injection of the polypeptide, fragment and/or antigenic epitope of this invention.
- the polypeptide, fragment or antigenic epitope that is used as an immunogen can be modified or administered in an adjuvant in order to increase antigenicity.
- Methods of increasing the antigenicity of a protein or peptide include, but are not limited to, coupling the antigen with a heterologous protein (such as globulin or ⁇ -galactosidase) or through the inclusion of an adjuvant during immunization.
- a heterologous protein such as globulin or ⁇ -galactosidase
- various hosts including goats, rabbits, rats, mice, humans, and others, can be immunized by injection with the polypeptides and/or fragments of this invention, with or without a carrier protein.
- various adjuvants may be used to increase the immunological response.
- adjuvants include, but are not limited to, Freund's complete and incomplete adjuvants, mineral gels such as aluminum hydroxide, and surface-active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol.
- BCG Bacilli Calmette- Guerin
- Corynebacterium parvum are especially preferable.
- Polypeptides, peptides and/or fragments of this invention used as antigens to produce the antibodies of this invention can have an amino acid sequence consisting of at least five amino acids and in certain embodiments, at least ten amino acids.
- the antigen is identical to a portion of the amino acid sequence of the natural protein, and it can contain the entire amino acid sequence of a small, naturally-occurring molecule. Short stretches of the polypeptides and/or fragments of this invention can be fused with all or a fragment of another protein that acts as a carrier protein (e.g., keyhole limpet hemocyanin) and antibodies can be produced against the chimeric polypeptide or peptide.
- a carrier protein e.g., keyhole limpet hemocyanin
- Monoclonal antibodies to the polypeptides and/or fragments of this invention are prepared using any technique, which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (Kohler et al. 1975. Nature 256:495-497; Kozbor et al. 1985. J Immunol. Methods 81 :31- 42; Cote et al. 1983. Proc. Natl. Acad. Sci. 80:2026-2030; Cole etal. 1984. Mo/. CellBiol. 62:109-120).
- spleen cells from the immunized animal are removed, fused with myeloma cells, and cultured in selective medium to become monoclonal antibody-producing hybridoma cells, according to techniques routine in the art. Any one of a number of methods well known in the art can be used to identify the hybridoma cell, which produces an antibody with the desired characteristics. These include screening the hybridomas by ELISA assay, Western blot analysis, or radioimmunoassay. Hybridomas secreting the desired antibodies are cloned and the class and subclass are identified using standard procedures known in the art.
- antibody-containing serum is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using any of the well known procedures as described herein.
- the present invention further provides antibodies of this invention in detectably labeled form.
- Antibodies can be detectably labeled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescence labels (such as FITC or rhodamine, etc.), paramagnetic atoms, gold beads, etc.
- affinity labels such as biotin, avidin, etc.
- enzymatic labels such as horseradish peroxidase, alkaline phosphatase, etc.
- fluorescence labels such as FITC or rhodamine, etc.
- paramagnetic atoms gold beads, etc.
- the present invention further provides the above- described antibodies immobilized on a solid support (e.g., beads, plates, slides or wells formed from materials such as latex or polystyrene).
- a solid support e.g., beads, plates, slides or wells formed from materials such as latex or polystyrene.
- solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir et al., Handbook of Experimental Immunology 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986)).
- Antibodies can likewise be conjugated to detectable groups such as radiolabels (e.g., 35 S, 125 1, 131 I), enzyme labels (e.g., horseradish peroxidase, alkaline phosphatase), and fluorescence labels (e.g., fluorescein) in accordance with known techniques. Determination of the formation of an antibody/antigen complex in the methods of this invention can be by detection of, for example, precipitation, agglutination, flocculation, radioactivity, color development or change, fluorescence, luminescence, etc., as is well know in the art.
- radiolabels e.g., 35 S, 125 1, 131 I
- enzyme labels e.g., horseradish peroxidase, alkaline phosphatase
- fluorescence labels e.g., fluorescein
- Antibody fragments that specifically bind the polypeptides and/or fragments of this invention can also be generated.
- fragments include, but are not limited to, the F(ab') 2 fragments that can be produced by pepsin digestion of the antibody molecule and the Fab fragments that can be generated by reducing the disulfide bridges of the F(ab ') 2 fragments.
- Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse et al. 1989. Science 254:1275-1281).
- immunoassays can be used for screening to identify antibodies having the desired specificity for the proteins and peptides of this invention.
- Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificity are well known in the art.
- Such immunoassays typically involve the measurement of complex formation between an antigen and its specific antibody (e.g., antigen/antibody complex formation).
- a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non- interfering epitopes on the proteins or peptides of this invention can be used, as well as a competitive binding assay.
- kits for detection of the polypeptides and/or fragments of this invention in a sample can comprise one or more antibodies of this invention, along with suitable buffers, wash solutions and/or other reagents for the detection of antibody/antigen complex formation.
- a kit of this invention can comprise a polypeptide, an antigenic peptide of the polypeptide of this invention, a fragment of this invention and/or an antigenic peptide of a fragment of this invention, along with suitable buffers, wash solutions and/or other reagents for the detection of antibody/antigen complex formation.
- the present invention further provides a kit for the detection of nucleic acid encoding the polypeptides and/or fragments of this invention.
- the kit can comprise one or more nucleic acids of this invention, along with suitable buffers, wash solutions and/or other reagents for the detection of hybridization complex formation.
- kits of this invention can comprise one or more containers and/or receptacles to hold the reagents (e.g., antibodies, antigens, nucleic acids) of the kit, along with appropriate buffers and/or wash solutions and directions for using the kit, as would be well known in the art.
- reagents e.g., antibodies, antigens, nucleic acids
- kits can further comprise adjuvants and/or other immunostimulatory or immunomodulating agents, as are well known in the art.
- the nucleic acids encoding the polypeptides and/or fragments of this invention can be part of a recombinant nucleic acid construct comprising any combination of restriction sites and/or functional elements as are well known in the art which facilitate molecular cloning and other recombinant DNA manipulations.
- the present invention further provides a recombinant nucleic acid construct comprising a nucleic acid encoding a polypeptide and/or biologically active fragment of this invention.
- the present invention further provides a vector comprising a nucleic acid encoding a polypeptide and/or fragment of this invention.
- the vector can be an expression vector which contains all of the genetic components required for expression of the nucleic acid in cells into which the vector has been introduced, as are well known in the art.
- the expression vector can be a commercial expression vector or it can be constructed in the laboratory according to standard molecular biology protocols.
- the expression vector can comprise viral nucleic acid including, but not limited to, vaccinia virus, adenovirus, retrovirus and/or adeno-associated virus nucleic acid.
- the nucleic acid or vector of this invention can also be in a liposome or a delivery vehicle, which can be taken up by a cell via receptor-mediated or other type of endocytosis.
- the nucleic acid of this invention can be in a cell, which can be a cell expressing the nucleic acid whereby a polypeptide and/or biologically active fragment of this invention is produced in the cell.
- the vector of this invention can be in a cell, which can be a cell expressing the nucleic acid of the vector whereby a polypeptide and/or biologically active fragment of this invention is produced in the cell.
- the nucleic acids and/or vectors of this invention can be present in a host animal (e.g., a transgenic animal), which expresses the nucleic acids of this invention and produces the polypeptides and/or fragments of this invention.
- the nucleic acid encoding the polypeptide and/or fragment of this invention can be any nucleic acid that functionally encodes the polypeptides and/or fragments of this invention.
- the nucleic acid of this invention can include, for example, expression control sequences, such as an origin of replication, a promoter, an enhancer and necessary information processing sites, such as ribosome binding sites, RNA splice sites, polyadenylation sites and transcriptional terminator sequences.
- Preferred expression control sequences are promoters derived from metallothionine genes, actin genes, immunoglobulin genes, CMV, SV40, adenovirus, bovine papilloma virus, etc.
- a nucleic acid encoding a selected polypeptide and/or fragment can readily be determined based upon the genetic code for the amino acid sequence of the selected polypeptide and/or fragment and many nucleic acids will encode any selected polypeptide and/or fragment. Modifications in the nucleic acid sequence encoding the polypeptide and/or fragment are also contemplated.
- nucleic acid of this invention can be generated by means standard in the art, such as by recombinant nucleic acid techniques and by synthetic nucleic acid synthesis or in vitro enzymatic synthesis.
- the present invention provides a Dl domain of CARDS Toxin comprising, consisting essentially of and/or consisting of the amino acid sequence of SEQ ID NO:69 and/or SEQ ID NO:75, a D2 domain of CARDS Toxin comprising, consisting essentially of, or consisting of the amino acid sequence of SEQ ID NO: 70,and/or a D3 domain of CARDS Toxin comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:71, in any combination.
- an isolated nucleic acid encoding the amino acid sequence of the domains Dl, D2 and D3 of this invention can comprise, consist of and/or consist essentially of the nucleotide sequence of SEQ ID NO:74.
- domain peptides can be used as antigens for the production of antibodies, which can be polyclonal and/or monoclonal, according to well known protocols.
- the domain peptides and antibodies can be used in the methods described herein for the detection of M. pneumoniae antibodies and proteins and/or for diagnosis of M. pneumoniae infection, as well as in therapeutic methods to treat M. pneumoniae infection and related diseases as described herein.
- the present invention further provides a method of producing a polypeptide and/or biologically active fragment according to the methods set forth in the Examples provided herein, and as are well known in the art for polypeptide synthesis.
- a nucleic acid encoding the polypeptides and/or fragments of this invention can be synthesized according to standard nucleic acid synthesis protocols and the nucleic acid can be expressed according to methods well known for expression of nucleic acid.
- the resulting polypeptide and/or fragment can then be removed from the expression system by standard isolation and purification procedures and tested for any of the various biological activities described herein according to methods as taught herein as well as methods routine in the art.
- the present invention also provides a method for producing the polypeptides and/or biologically active fragments of this invention comprising producing the cells of this invention which contain the nucleic acids or vectors of this invention as exogenous nucleic acid; culturing the cells under conditions whereby the exogenous nucleic acid in the cell can be expressed and the encoded polypeptide and/or fragment can be produced; and isolating the polypeptide and/or fragment from the cell.
- the polypeptides and/or fragments of this invention can be produced in quantity in vitro in either prokaryotic or eukaryotic expression systems as are well known in the art.
- E. coli ⁇ Escherichia col ⁇ E. coli ⁇ Escherichia col ⁇ expression vectors known to one of ordinary skill in the art useful for the expression of nucleic acid that encodes polypeptides.
- Other microbial hosts suitable for use include bacilli, such as Bacillus subtilis, and other enterobacteria, such as Salmonella, Serratia, as well as various Pseudomonas species.
- These prokaryotic hosts can support expression vectors that will typically contain expression control sequences compatible with the host cell (e.g., an origin of replication).
- any number of a variety of well-known promoters can be present, such as the lactose promoter system, a tryptophan (Trp) promoter system, a beta-lactamase promoter system, or a promoter system from phage lambda.
- the promoters will typically control expression, optionally with an operator sequence and have ribosome binding site sequences for example, for initiating and completing transcription and translation.
- an amino terminal methionine can be provided by insertion of a Met codon 5' and in-frame with the polypeptide.
- the carboxy-terminal extension of the polypeptide can be removed using standard oligonucleotide mutagenesis procedures.
- the nucleic acid sequences can be expressed in hosts after the sequences have been positioned to ensure the functioning of an expression control sequence.
- These expression vectors are typically replicable in the host organisms either as episomes or as an integral part of the host chromosomal DNA.
- expression vectors can contain selection markers, e.g., tetracycline resistance or hygromycin resistance, to permit detection and/or selection of those cells transformed with the desired nucleic acid sequences.
- selection markers e.g., tetracycline resistance or hygromycin resistance
- yeast expression system can be used for eukaryotic system expression. There are several advantages to yeast expression systems. First, evidence exists that polypeptides produced in a yeast expression system exhibit correct disulfide pairing. Second, post-translational glycosylation is efficiently carried out by yeast expression systems.
- the Saccharomyces cerevisiae pre-pro-alpha-factor leader region (encoded by the MFa-I gene) is routinely used to direct protein secretion from yeast.
- the leader region of pre-pro-alpha-factor contains a signal peptide and a pro- segment, which includes a recognition sequence for a yeast protease encoded by the KEX2 gene. This enzyme cleaves the precursor protein on the carboxyl side of a Lys- Arg dipeptide cleavage-signal sequence.
- the polypeptide coding sequence can be fused in- frame to the pre-pro-alpha-factor leader region.
- This construct is then put under the control of a strong transcription promoter, such as the alcohol dehydrogenase I promoter or a glycolytic promoter.
- the coding sequence is followed by a translation termination codon, which is followed by transcription termination signals.
- the coding sequence of interest can be fused to a second polypeptide coding sequence, such as Sj26 or ⁇ -galactosidase, used to facilitate purification of the resulting fusion polypeptide by affinity chromatography.
- the insertion of protease cleavage sites to separate the components of the fusion polypeptide is applicable to constructs used for expression in yeast. Efficient post-translational glycosylation and expression of recombinant polypeptides can also be achieved in Baculovirus systems in insect cells, as are well known in the art.
- the peptides, polypeptides and/or fragments of this invention can be expressed in mammalian cells.
- Mammalian cells permit the expression of peptides and polypeptides in an environment that favors important post-translational modifications such as folding and cysteine pairing, addition of complex carbohydrate structures and secretion of active protein.
- Vectors useful for the expression of peptides and polypeptides in mammalian cells are characterized by insertion of the coding sequence between a strong (e.g., viral) promoter and a polyadenylation signal.
- the vectors can contain genes conferring either, e.g., gentamicin or methotrexate resistance, for use as selectable markers.
- the coding sequence can be introduced into a Chinese hamster ovary (CHO) cell line using a methotrexate resistance-encoding vector. Presence of the vector RNA in transformed cells can be confirmed by Northern blot analysis and production of a cDNA or opposite strand RNA corresponding to the polypeptide or fragment coding sequence can be confirmed by Southern and Northern blot analysis, respectively.
- suitable host cell lines capable of producing exogenous polypeptides have been developed in the art and include the CHO cell lines, HeLa cells, myeloma cell lines, Jurkat cells and the like. Expression vectors for these cells can include expression control sequences, as described above.
- nucleic acids and/or vectors of this invention can be transferred into the host cell by well-known methods, which vary depending on the type of cell host. For example, calcium chloride transfection is commonly used for prokaryotic cells, whereas calcium phosphate treatment or electroporation can be used for other cell hosts.
- polypeptides, fragments, nucleic acids, vectors and cells of this invention can be present in a pharmaceutically acceptable carrier.
- pharmaceutically acceptable is meant a material that is not biologically or otherwise undesirable, i.e., the material may be administered to an individual along with the selected polypeptide, fragment, nucleic acid, vector or cell without causing substantial deleterious biological effects or interacting in a deleterious manner with any of the other components of the composition in which it is contained.
- compositions of this invention can comprise a pharmaceutically acceptable carrier and a suitable adjuvant.
- suitable adjuvant describes an adjuvant capable of being combined with the polypeptide and/or fragment and/or nucleic acid of this invention to further enhance an immune response without deleterious effect on the subject or the cell of the subject.
- a suitable adjuvant can be, but is not limited to, MONTANIDE ISA51 (Seppic, Inc., Fairfield, NJ), SYNTEX adjuvant formulation 1 (SAF-I), composed of 5 percent (wt/vol) squalene (DASF, Parsippany, N.J.), 2.5 percent Pluronic, L121 polymer (Aldrich Chemical, Milwaukee), and 0.2 percent polysorbate (Tween 80, Sigma) in phosphate-buffered saline.
- SAF-I SYNTEX adjuvant formulation 1
- Suitable adjuvants include QS-21, Freund's adjuvant (complete and incomplete), alum, aluminum phosphate, aluminum hydroxide, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-nor-muramyl-L- alanyl-D-isoglutamine (CGP 11637, referred to as nor-MDP), N-acetylmuramyl-L- alanyl-D-isoglutaminyl-L-alanine-2-(r-2'-dipalmitoyl-sn-glycero-3- hydroxyphosphoryloxy)-ethylamine (CGP 19835 A, referred to as MTP-PE) and RIBI, which contains three components extracted from bacteria, monophosphoryl lipid A, trealose dimycolate and cell wall skeleton (MPL+TDM+CWS) in 2% squalen
- compositions of the present invention can also include other medicinal agents, pharmaceutical agents, carriers, diluents, immunostimulatory cytokines, etc. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art. It is contemplated that the above-described compositions of this invention can be administered to a subject or to a cell of a subject to impart a therapeutic benefit.
- the present invention further provides a method of producing an immune response in a subject, comprising administering to the subject or to a cell of the subject an effective amount of a polypeptide and/or biologically active fragment of this invention and/or a nucleic acid comprising a nucleotide sequence encoding a polypeptide and/or biologically active fragment of this invention.
- the cell of the subject can be in vivo or ex vivo and can be, but is not limited to a CD 8+ T lymphocyte (e.g., a cytotoxic T lymphocyte) or an MHC I-expressing antigen presenting cell, such as a dendritic cell, a macrophage and/or a monocyte.
- Detection of an immune response in the subject or in the cells of the subject can be carried out according to methods standard in the art for detecting a humoral and/or cellular immune response.
- the present invention provides a method of eliciting an immune response in a subject, comprising administering to the subject an effective amount of a polypeptide and/of fragment of this invention. Also provided herein is a method of eliciting an immune response in a subject, comprising administering to the subject an effective amount of a nucleic acid and/or vector of this invention.
- the present invention provides a method of providing passive immunity to a subject, comprising administering to the subject an effective amount of an antibody of this invention to the subject.
- compositions of this invention can also be employed as a therapeutic and/or prophylactic formulation and administered to a subject in need thereof.
- the present invention provides a method of treating or preventing infection or intoxication by Mycoplasma pneumoniae in a subject, comprising administering to the subject an effective amount of a polypeptide and/or fragment of this invention, a nucleic acid and/or vector of this invention, and/or an antibody of this invention.
- the present invention provides a method of treating or preventing infection or intoxication caused by Mycoplasma pneumoniae in a subject comprising contacting an immune cell of the subject with any of the polypeptides, fragments, nucleic acids, vectors and/or antibodies of this invention.
- the cell can be in vivo or ex vivo and can be, for example, a CD8 + T cell which is contacted with the polypeptide and/or fragment of this invention in the presence of a class I MHC molecule, which can be a soluble molecule or it can be present on the surface of a cell which expresses class I MHC molecules.
- the cell can also be an antigen presenting cell or other class I MHC-expressing cell which can be contacted with the nucleic acids and/or vectors of this invention under conditions whereby the nucleic acid or vector is introduced into the cell by standard methods for uptake of nucleic acid and vectors.
- the nucleic acid encoding the polypeptide and/or fragment of this invention is then expressed and the polypeptide and/or fragment product is processed within the antigen presenting cell or other MHC I-expressing cell and presented on the cell surface as an MHC I/antigen complex.
- the antigen presenting cell or other class I MHC-expressing cell is then contacted with an immune cell of the subject which binds the class I MHC /antigen complex and elicits an immune response which treats or prevents Mycoplasma pneumoniae infection in the subject.
- compositions of this invention are administered to a subject or to a cell of a subject
- methods can further comprise the step of administering a suitable adjuvant to the subject or to a cell of the subject.
- the adjuvant can be in the composition of this invention or the adjuvant can be in a separate composition comprising the suitable adjuvant and a pharmaceutically acceptable carrier.
- the adjuvant can be administered prior to, simultaneous with, or after administration of the composition containing any of the polypeptides, fragments, nucleic acids and/or vectors of this invention.
- QS-21 similar to alum, complete Freund's adjuvant, SAF, etc.
- QS-21 can be administered within days/weeks/hours (before or after) of administration of the composition of this invention.
- the effectiveness of an adjuvant can be determined by measuring the immune response directed against the polypeptide and/or fragment of this invention with and without the adjuvant, using standard procedures, as described in the Examples herein and as are well known in the art.
- the subject of this invention can be any subject in need of the immune response of this invention and/or in need of treatment for or prevention from Mycoplasma pneumoniae infection, as well as any subject in whom it is desirable to induce an immune response to Mycoplasma pneumoniae.
- Symptoms of Mycoplasma pneumoniae infection can include tracheobronchitis and pneumonia with extrapulmonary pathologies, such as neurologic, cardiac, gastrointestinal, dermatologic, renal and joint complications.
- a range of serological (elevated IgM and IgG seroconversion) assays and PCR detection can be used for diagnosing M. pneumoniae infection.
- Appropriate treatment can lead to resolution of respiratory symptoms such as decreased fever and cough, complete recovery of respiratory function including normal lung radiogram, and normal levels of tissue enzymes and CSF analysis.
- decreased levels of M. pneumoniae cells, antigens and nucleic acids in blood, sputum, bronchial lavage should accompany effective treatment.
- M. pneumoniae infection can include infected individuals coughing, sneezing and transmitting aerosols containing M. pneumoniae.
- the transmission rate is very high, which is why M. pneumoniae is such a common cause of community acquired pneumonia.
- Highest targets of infection are children, especially 5-9 years old and adults between ages 25-40, although infection can occur among all 'healthy' individuals.
- a subject for whom the methods of this invention would be indicated for preventing M. pneumoniae infection can, in some embodiments, be a child or young adult.
- compositions of this invention can be administered to a cell of a subject or to a subject either in vivo or ex vivo.
- the compositions of this invention can be administered orally, parenterally (e.g., intravenously), by intramuscular injection, by intraperitoneal injection, subcutaneous injection, transdermally, extracorporeally, topically or the like.
- the compositions of this invention can be pulsed onto dendritic cells, which are isolated or grown from a subject's cells, according to methods well known in the art, or onto bulk peripheral blood mononuclear cells (PBMC) or various cell subfractions thereof from a subject.
- PBMC peripheral blood mononuclear cells
- compositions required will vary from subject to subject, depending on the species, age, weight and general condition of the subject, the particular composition used, its mode of administration and the like. Thus, it is not possible to specify an exact amount for every composition of this invention. However, effective amount can be determined by one of ordinary skill in the art using only routine experimentation given the teachings herein. As an example, to a subject diagnosed with M. pneumoniae infection or known to be at risk of being infected with M.
- a polypeptide and/or biologically active fragment of this invention can be administered subcutaneously and can be in an adjuvant, at one to three hour/day/week intervals until an evaluation of the subject's clinical parameters indicate that the subject is not infected by M. pneumoniae and/or the subject demonstrates the desired immunological response.
- a polypeptide and/or fragment of this invention can be pulsed onto dendritic cells at a concentration of between about 10-100 ⁇ M and the dendritic cells can be administered to the subject intravenously at the same time intervals.
- the treatment can be continued or resumed if the subject's clinical parameters indicate that M. pneumoniae infection is present and can be maintained until the infection is no longer detected by these parameters and/or until the desired immunological response is achieved.
- cells or tissues can be removed and maintained outside the subject's body according to standard protocols well known in the art.
- the polypeptides and/or biologically active fragments of this invention can be introduced into the cells via known mechanisms for uptake of polypeptides into cells (e.g., phagocytosis, pulsing onto class I MHC-expressing cells, liposomes, etc.).
- the cells can then be infused (e.g., in a pharmaceutically acceptable carrier) or transplanted back into the subject per standard methods for the cell or tissue type. Standard methods are known for transplantation or infusion of various cells into a subject.
- the nucleic acids and vectors of this invention can also be administered to a cell of the subject either in vivo or ex vivo.
- the cell can be any cell that can take up and express exogenous nucleic acid and produce the polypeptides and/or fragments of this invention.
- the polypeptides and/or fragments of this invention can be produced by a cell that secretes them, whereby the polypeptide and/or fragment is produced and secreted and then taken up and subsequently processed by an antigen presenting cell or other class I MHC-expressing cell and presented to the immune system for induction of an immune response.
- nucleic acids and/or vectors of this invention can be directly introduced into an antigen presenting cell and/or other class I MHC-expressing cell in which the polypeptide and/or fragment is produced and processed directly and presented to the immune system on the cell surface.
- the nucleic acids and vectors of this invention can be administered orally, intranasally, parenterally (e.g., intravenously), by intramuscular injection, by intraperitoneal injection, transdermally, extracorporeally, topically or the like.
- the nucleic acids of the present invention can be in the form of naked DNA or the nucleic acids can be in a vector for delivering the nucleic acids to the cells for expression of the polypeptides and/or fragments of this invention.
- the vector can be a commercially available preparation or can be constructed in the laboratory according to methods well known in the art. Delivery of the nucleic acid or vector to cells can be via a variety of mechanisms.
- delivery can be via a liposome, using commercially available liposome preparations such as LIPOFECTIN, LIPOFECTAMINE (GIBCO- BRL, Inc., Gaithersburg, MD), SUPERFECT (Qiagen, Inc. Hilden, Germany) and TRANSFECTAM (Promega Biotec, Inc., Madison, WI), as well as other liposomes developed according to procedures standard in the art.
- the nucleic acid or vector of this invention can be delivered in vivo by electroporation, the technology for which is available from Genetronics, Inc. (San Diego, CA) as well as by means of a SONOPORATION machine (ImaRx Pharmaceutical Corp., Arlington, AZ).
- vector delivery can be via a viral system, such as a retroviral vector system, which can package a recombinant retroviral genome.
- the recombinant retrovirus can then be used to infect and thereby deliver to the infected cells nucleic acid encoding the polypeptide and/or fragment of this invention.
- the exact method of introducing the exogenous nucleic acid into mammalian cells is, of course, not limited to the use of retroviral vectors.
- adenoviral vectors alphaviral vectors, adeno-associated viral (AAV) vectors, lentiviral vectors, pseudotyped retroviral vectors and vaccinia viral vectors, as well as any other viral vectors now known or developed in the future.
- Physical transduction techniques can also be used, such as liposome delivery and receptor-mediated and other endocytosis mechanisms. This invention can be used in conjunction with any of these or other commonly used gene transfer methods.
- the dosage for administration of adenovirus to humans can range from about 10 7 to 10 9 plaque forming units (pfu) per injection, but can be as high as 10 12 , 10 15 and/or 10 20 pfu per injection.
- a subject will receive a single injection. If additional injections are necessary, they can be repeated at daily/weekly/monthly intervals for an indefinite period and/or until the efficacy of the treatment has been established.
- the efficacy of treatment can be determined by evaluating the symptoms and clinical parameters described herein and/or by detecting a desired immunological response.
- nucleic acid or vector The exact amount of the nucleic acid or vector required will vary from subject to subject, depending on the species, age, weight and general condition of the subject, the particular nucleic acid or vector used, its mode of administration and the like. Thus, it is not possible to specify an exact amount for every nucleic acid or vector. However, an appropriate amount can be determined by one of ordinary skill in the art using only routine experimentation given the teachings herein.
- cells or tissues can be removed and maintained outside the body according to standard protocols well known in the art.
- the nucleic acids and vectors of this invention can be introduced into the cells via any gene transfer mechanism, such as, for example, virus-mediated gene delivery, calcium phosphate mediated gene delivery, electroporation, microinjection or proteoliposomes.
- the transduced cells can then be infused (e.g., in a pharmaceutically acceptable carrier) or transplanted back into the subject per standard methods for the cell or tissue type. Standard methods are known for transplantation or infusion of various cells into a subject.
- Parenteral administration of the peptides, polypeptides, nucleic acids and/or vectors of the present invention, if used, is generally characterized by injection.
- Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution of suspension in liquid prior to injection, or as emulsions.
- parenteral administration includes intradermal, intranasal, subcutaneous, intramuscular, intraperitoneal, intravenous and intratracheal routes, as well as a slow release or sustained release system such that a constant dosage is maintained. See, e.g., U.S. Patent No. 3,610,795, which is incorporated by reference herein in its entirety.
- the efficacy of treating or preventing Mycoplasma pneumoniae infection by the methods of the present invention can be determined by detecting a clinical improvement as indicated by a change in the subject's symptoms and/or clinical parameters, as would be well known to one of skill in the art.
- compositions of the present invention can be used in diagnostic and therapeutic applications.
- the present invention provides a method of detecting the presence of a polypeptide and/or fragment of this invention in a sample, comprising contacting the sample with an antibody of this invention under conditions whereby an antigen/antibody complex can form and detecting formation of an antigen/antibody complex, thereby detecting the presence of a. Mycoplasma pneumoniae polypeptide and/or fragment of this invention in the sample.
- the present invention provides a method of detecting the presence of an antibody of this invention in a sample, comprising contacting the sample with a polypeptide and/or fragment of this invention under conditions whereby an antigen/antibody complex can form and detecting formation of an antigen/antibody complex, thereby detecting the presence of & Mycoplasma pneumoniae antibody of this invention in the sample.
- the present invention provides a method of detecting the presence of the CARDS toxin of this invention in a sample (e.g., a biological sample from a subject or a food or water sample or other sample that could contain CARDS toxin) and/or a subject and/or diagnosing infection by M. pneumoniae in a subject, comprising contacting the sample with surfactant protein A (SP-A) under conditions whereby a toxin/SP-A complex can form; and detecting formation of the toxin/SP-A complex, thereby detecting the presence of CARDS toxin in a sample and/or diagnosing infection by M. pneumoniae in a subject.
- a sample e.g., a biological sample from a subject or a food or water sample or other sample that could contain CARDS toxin
- SP-A surfactant protein A
- a secondary antigen, secondary ligand and/or secondary antibody that is detectably labeled can be employed (e.g., a "sandwich immunoassay").
- the sample of this invention can be any sample in which Mycoplasma pneumoniae toxin can be present.
- the sample can be a body fluid, cells or tissue that can contain Mycoplasma pneumoniae toxin, including but not limited to, blood, serum, plasma, saliva, sputum, bronchoalveolar lavage, urine, semen, joint fluid, cerebrospinal fluid and cells, fluids and/or tissue from all organs to which CARDS toxin can disseminate including lung, liver, heart, brain, kidney, spleen, muscle, etc.
- Mycoplasma pneumoniae toxin including but not limited to, blood, serum, plasma, saliva, sputum, bronchoalveolar lavage, urine, semen, joint fluid, cerebrospinal fluid and cells, fluids and/or tissue from all organs to which CARDS toxin can disseminate including lung, liver, heart, brain, kidney, spleen, muscle, etc.
- the present invention provides a method of diagnosing Mycoplasma pneumoniae infection in a subject comprising contacting a biological sample from the subject with a polypeptide and/or fragment of this invention under conditions whereby an antigen/antibody complex can form; and detecting formation of an antigen/antibody complex, thereby diagnosing Mycoplasma pneumoniae infection in the subject.
- a method of diagnosing Mycoplasma pneumoniae infection in a subject comprising contacting a biological sample from the subject with an antibody of this invention under conditions whereby an antigen/antibody complex can form; and detecting formation of an antigen/antibody complex, thereby diagnosing Mycoplasma pneumoniae infection in the subject.
- the present invention provides a method of diagnosing infection by Mycloplasma pneumoniae in a subject, comprising contacting a biological sample from the subject with the nucleic acid of this invention under conditions whereby hybridization of nucleic acid molecules can occur and detecting a hybridization complex, thereby diagnosing infection by Mycoplasma pneumoniae in the subject.
- the present invention provides a method of identifying a subject infected with Mycoplasma pneumoniae as having a poor prognosis, comprising: a) establishing a correlation between the presence of and/or an amount of a polypeptide, fragment, nucleic acid and/or antibody of this invention in a sample of test subjects infected with Mycoplasma pneumoniae and who have or had a poor prognosis; and b) detecting in a biological sample from the subject the presence of and/or an amount of the polypeptide, fragment, nucleic acid and/or antibody of this invention correlated with a poor prognosis, thereby identifying the subject infected with Mycoplasma pneumoniae as having a poor prognosis.
- a correlation can be made between a level of antibodies to the CARDS toxin and a degree of respiratory and/or pulmonary dysfunction indicative of a poor prognosis.
- the present invention also provides various screening assays that employ the polypeptides, fragments and/or nucleic acids of this invention.
- a method of identifying a substance having the ability to inhibit or enhance the binding activity of a polypeptide and/or biologically active fragment of this invention comprising contacting the substance with the CARDS protein or a biologically active fragment thereof under conditions whereby binding can occur and detecting a decrease or increase in the amount of binding in the presence of the substance as compared to a control amount of binding in the absence of the substance, thereby identifying a substance having the ability to inhibit or enhance the binding activity of the CARDS toxin.
- Inhibition or enhancement of binding activity can be detected by any of a variety of art-recognized methods for evaluating binding activity.
- the substance to be tested and the CARDS polypeptide and/or fragment can be contacted in the presence of target cells or a target substrate (e.g., surfactant protein A; SP-A) known to bind the polypeptide or fragment.
- target substrate e.g., surfactant protein A; SP-A
- the amount of binding of polypeptide or fragment to the cells or the substrate in the presence of the substance and the amount of binding of polypeptide or fragment to the cells or the substrate in the absence of the substance is determined and a decrease or increase in the amount of binding in the presence of the substance identifies the substance as having the ability to inhibit or enhance binding.
- binding of polypeptide and/or fragment to target cells or a target substrate can be measured by attaching a detectable moiety to the polypeptide or fragment (e.g., a fluorescence moiety, histochemically detectable moiety, radioactive moiety, etc.).
- a detectable moiety e.g., a fluorescence moiety, histochemically detectable moiety, radioactive moiety, etc.
- the amount of detectable moiety can be measured in the presence and absence of the substance to be tested and the amounts can be compared to determine inhibition or enhancement.
- Binding activity can also be determined by comparing the amount of cytopathology observed in a monolayer of target cells in the presence and absence of the substance to be tested.
- Target cells that can be used in such a binding assay include, but are not limited to, Chinese hamster ovary (CHO) cells, Hep2 cells, human lung and kidney epithelial and fibroblast cells, and any other mammalian cells that exhibit sensitivity to CARDS toxin now known or later identified.
- CHO Chinese hamster ovary
- Hep2 cells Hep2 cells
- human lung and kidney epithelial and fibroblast cells include, but are not limited to, Chinese hamster ovary (CHO) cells, Hep2 cells, human lung and kidney epithelial and fibroblast cells, and any other mammalian cells that exhibit sensitivity to CARDS toxin now known or later identified.
- the present invention provides a method of identifying a substance having the ability to inhibit or enhance the translocating activity of a polypeptide and/or a biologically active fragment of this invention, comprising contacting the substance with the polypeptide of this invention and/or a biologically active fragment thereof under conditions whereby translocation activity can occur and detecting a decrease or increase in the amount of translocation activity in the presence of the substance as compared to a control amount of translocation activity in the absence of the substance, thereby identifying a substance having the ability to inhibit or enhance the translocating activity of the CARDS toxin.
- Inhibition or enhancement of translocating activity can be detected by any of a variety of art-recognized methods for evaluating translocating activity.
- the substance to be tested and the CARDS polypeptide and/or fragment can be contacted in the presence of target cells known to translocate the CARDS toxin.
- the amount of translocation of polypeptide or fragment into the cells in the presence of the substance and the amount of translocation of polypeptide or fragment into the cells in the absence of the substance is determined and a decrease or increase in the amount of translocation in the presence of the substance identifies the substance as having the ability to inhibit or enhance translocation of the CARDS toxin.
- Translocation of polypeptide and/or fragment into target cells can be measured by attaching a detectable moiety to the polypeptide or fragment (e.g., a fluorescence moiety, histochemically detectable moiety, radioactive moiety, etc.).
- the amount of translocated detectable moiety can be measured in the presence and absence of the substance to be tested and the amounts can be compared to determine inhibition or enhancement of translocation.
- Translocation activity can also be determined by comparing the amount of cytopathology observed in a monolayer of target cells in the presence and absence of the substance to be tested.
- Target cells that can be used in such a translocation assay include, but are not limited to, Chinese hamster ovary (CHO) cells, etc.
- a method of identifying a substance having the ability to enhance or inhibit the immunogenic activity of the CARDS toxin of this invention and/or a biologically active fragment thereof comprising contacting the substance with the CARDS toxin or an immunogenic fragment thereof under conditions whereby a measurable immune response can be elicited and detecting an increase or decrease in the amount of immune response in the presence of the substance, as compared to a control amount of immune response in the absence of the substance, thereby identifying a substance having the ability to enhance or inhibit immunogenic activity of the
- CARDS toxin Assays to detect and measure immune responses are well known in the art and can be employed to detect either humoral or cellular immune responses.
- the present invention provides a method of identifying a substance having the ability to inhibit or enhance the ADP-ribosylating activity of the CARDS toxin of this invention and/or biologically active fragments thereof, comprising contacting the substance with the CARDS toxin or biologically active fragment thereof under conditions whereby ADP ribosylation can occur and detecting a decrease or increase in the amount of ADP ribosylation in the presence of the substance as compared to a control amount of ADP ribosylation in the absence of the substance, thereby identifying a substance having the ability to inhibit or enhance the ADP ribosylating activity of the CARDS toxin.
- a method of identifying a substance having the ability to inhibit or enhance the cytopatholpgy-inducing activity of the CARDS toxin of this invention and/or a biologically active fragment thereof comprising contacting the substance with the CARDS toxin or biologically active fragment thereof under conditions whereby cytopathology (e.g., changes in cell morphology, monolayer characteristics, etc.) of target cells can be induced and detecting a decrease or increase in the amount of cytopathology in the presence of the substance, as compared to a control amount of cytopathology in the absence of the substance, thereby identifying a substance having the ability to inhibit or enhance the cytopathology-inducing activity of the CARDS toxin or biologically active fragment thereof.
- cytopathology e.g., changes in cell morphology, monolayer characteristics, etc.
- Substances identified in the screening assays of this invention to have the ability to inhibit or enhance various of the activities of the polypeptides and/or fragments of this invention can be employed in methods of diagnosing M. pneumoniae infection, as well as in methods of treating and/or preventing M. pneumoniae infection.
- such substances can be present in a pharmaceutically acceptable carrier for administration to a subject and an effective amount of the substance can be administered to a subject to treat and/or prevent infection by Mycoplasma pneumoniae.
- the present invention includes methods of screening Mycoplasma pneumoniae cultures for mutants defective in one or more of the biological activities of the CARDS toxin, for use in a vaccine preparation.
- Such mutants can be identified as having a defect in any of the biological activities of the CARDS toxin according to the protocols described herein and as are known in the art.
- Such mutants can be further tested for being attenuated in the ability to produce a clinical infection in a subject (i.e., for virulence potential) and then further evaluated for use as a vaccine according to known protocols.
- CARDS toxin mutants of Mycoplasma pneumoniae can be generated through such art-known techniques as gene disruption and their virulence potential determined by challenge studies in hamsters and by adherence and cytopathology assessments in hamster tracheal rings in organ culture and in cell culture, as is well known in the art.
- complementation studies can be performed to restore the defective activity of the CARDS toxin, in order to characterize the mutant.
- M. pneumoniae reference strain M129/B9 and clinical isolates Sl, L2, JLl and RJLl were grown to late logarithmic phase in SP-4 medium at 37 0 C for 72 h in 150- cm 2 tissue culture flasks.
- Mycoplasmas were harvested by washing three times with PBS [150 mM NaCl, 10 mM sodium phosphate, pH 7.4] and pelleting at 12,500 g for 15 min at 4 0 C.
- M. pneumoniae chromosomal DNA was isolated using Easy DNA kit according to the manufacturer's protocol (Invitrogen).
- Wild-type Mycoplasma pneumoniae M129/B9 and clinical isolates were grown in SP-4 medium as above.
- Mycoplasma monolayers in logarithmic growth phase were washed two times with 10 ml PBS (pH 7.4) and one time with Dulbecco Modified Eagle Medium (DMEM) without L-cysteine and L-methionine and resuspended in 10 ml Dulbecco Modified Eagle Medium (DMEM) without L-cysteine and L-methionine supplemented with 10 % heat-inactivated fetal bovine serum and 100 ⁇ Ci L- [ 35 S]methionine.
- DMEM Dulbecco Modified Eagle Medium
- Cell pellets were resuspended in 1 ml complete lysis buffer (CLB) prepared shortly before use (150 mM NaCl, 10 mM Tris, 20 ⁇ M EGTA, 0.5 M Triton-X 114, 1 mM CaCl 2 and protease inhibitors 1 ⁇ M pepstatin A, 200 ⁇ M PMSF, 1 mM N- ⁇ -p-tosyl-L-lysine chloromethyl ketone (TLCK), and 10 ⁇ M leupeptin. Cell pellets in CLB were sheared through 25 gauge needles using 3 ml syringes to obtain clear lysis.
- CLB complete lysis buffer
- a 20 x 1.2 cm control glass column was packed with 3 ml uncoupled Sepharose, another identical (experimental) column was packed with 3 ml Sepharose coupled to SP-A.
- Coupling of SP-A to Sepharose CL-4B was performed as follows: A total of 1.5 mg of SP-
- A was coupled to 2g of C ⁇ Br-activated Sepharose CL-4B according to the manufacture's instructions except the coupling buffer was 10 mM sodium bicarbonate, pH 8.3.
- SP-A coupled Sepharose was stored in 5 ml of 5 mM Tris pH 7.5, containing ImM NaN 3 . Columns were equilibrated with 50 ml CLB prior to addition of radiolabeled cell lysates.
- Radiolabeled cell lysates were collected and reapplied to each column 3-4 times. After samples were added, columns were washed with 10 times volume of packed material to remove unbound proteins. M. pneumoniae SP-A-binding proteins were eluted using a
- SDS-polyacrylamide gels containing M. pneumoniae SP-A binding proteins were stained with Coomassie brilliant blue and washed thoroughly in distilled water.
- LB Luria Bertani
- PCR-based "splicing by overlap extension” (SOE) methods are employed to mutagenize UGA in these genes. This method is based on the principle that two overlapping complementary ends may prime on each other and be extended to yield a hybrid product, and a second PCR with two primers annealing at the non-overlapping ends will amplify this hybrid.
- An example of a stepwise strategy for SOE-PCR is as follows. 1. 'a' and 'd' are primers for a gene and 'b' and 'c' are primers to mutagenize the UGA region. 2. Amplification carried out with primers 'a' and 'b' and using genomic DNA as template gives a DNA fragment "AB" of the gene. 3.
- Amplification carried out with primers 'c' and 'd' and using genomic DNA as template will give DNA fragment "CD" of the gene. 4. Amplification with primers 'a' and 'd' and using DNA fragments "AB" + "CD” as templates will give the UGA modified mutant gene fragment.
- the overlapping primers covering the UGA codon in the genes are modified as UGG. a codon that still codes for tryptophan, and the primer sets depend upon the number of UGAs to be mutated in each gene.
- genomic DNA of M. pneumoniae is used as template, and AccuTaq polymerase mix (Sigma) is used to amplify DNA fragments.
- Mycoplasma total proteins or purified recombinant CARDS protein were resolved on 4-12% SDS-polyacrylamide gels (NuPAGE, InVitrogen) (His-tag released, i.e., minus His tag) and transferred electrophoretically to nitrocellulose membranes
- Figure 1 is an immunoblot of sera from three patients, RJ, 1970 and MJ, infected with Mycoplasma pneumoniae.
- Purified M. pneumoniae recombinant CARDS toxin was resolved in 4-12% SDS-PAGE and transferred to nitrocellulose membranes.
- Membranes were blocked for two hours with 5% blotto and treated with patients' sera for two hours at room temperature. Patients' sera were diluted as follows. RJ and MJ: 1 :50, and 1970: 1:100 in 2% blotto. Membranes were washed and treated with alkaline phosphatase-conjugated goat anti-human antibodies diluted 1 :2000 in TBS-T and two hours and color developed.
- M. pneumoniae total cell preparations of different clinical isolated (RJl, Jl, Sl and L2) and laboratory strain (B9) were dissolved in 150 ⁇ l SDS sample buffer, boiled for two minutes and separated by SDS-PAGE using 4-12% NuPAGE SDS-polyacrylamide gels. Proteins were transferred to nitrocellulose membranes (Shleicher & Schull, Dassel, Germany) by electroblotting.
- Membranes were blocked for one hour at room temperature with blocking buffer (20 mM Tris-base, 150 mM NaCl, 3% skim milk powder) and incubated with anti-CARDS Toxin mouse polyclonal antibodies diluted 1 :2000 in antibody buffer (20 mM Tris-base, 150 mM NaCl, 3% skim milk powder) for one hour at 37 0 C. Bound IgG was detected with alkaline phosphatase (AP)-conjugated goat-antimouse IgG diluted 1 :3000.
- blocking buffer 20 mM Tris-base, 150 mM NaCl, 3% skim milk powder
- M. pneumoniae recombinant 68 kDa CARDS (rCARDS) toxin (3 ⁇ g) or the N terminal domain of CARDS toxin, rDl (1 ⁇ g) as described herein was dissolved in 150 ⁇ l LDS sample buffer (NuPAGE), boiled for two minutes and separated by SDS-PAGE using 4-12% NuPAGE SDS-polyacrylamide gels. Proteins were transferred to nitrocellulose membranes (Schleicher & Schull,
- ELISAs were also carried out on the samples collected from patients 1 and 2 described above (i.e., samples 1-1, 1-2, 1-3, 2-1, 2-2, and 2-3). In these assays, washing at each stage was performed at least three times with PBS and sera and antibodies were diluted in 1% BSA in PBS. Each well of Immulon 4 HBX Immunoplates (Dynox) was coated overnight at 4 0 C with 50 ⁇ l of rC ARDS toxin/Dl (1 ⁇ g/well) diluted in carbonate/bicarbonate buffer (32 mM Na 2 CO 3 , 64 mM NaHCO 3 ).
- PNPP p-nitrophenyl phosphate
- Immulon 4 HBX Immunoplates (Dynox) was coated overnight at 4 0 C with 50 ⁇ l of CARDS rDl domain diluted as follows: 1, 2, 3, 4, 5 or 6 ⁇ g/well, in carbonate- bicarbonate buffer. Negative patient serum control was also included. The results show an optical density between 1.0 and 1.2 ⁇ SE for all six concentrations of rDl domain and an optical density of the negative control of 0.2 ⁇ SE or less for all concentrations of rD 1.
- the samples were serially diluted 10 "1 to 10 "9 in PBS. PCR conditions were 95 0 C for five minutes; 94 0 C for one minute; 55 0 C for one minute; 72 0 C for one minute and 72 0 C for 10 minutes, for 30 cycles.
- the amplification primer set was Primer 12a forward: (nts. 1197-1220; 24 bp) 5' gcttgttctggaataccaagagtg 3' (SEQ ID NO:23) and Primer 15a reverse: (nts. 1541-1564; 24 bp) 5' ccattctacccaatcccagctgta 3' (SEQ ID NO:26).
- the product size of the amplicon was 368 base pairs.
- Detection was by ethidium bromide staining or autoradiography with a 32 P- labeled probe.
- the probe used to detect the amplicon by autoradiography was Primer 14a forward: (nts 1371-1429; 59 bp) 5' gctggtattggaggggttattactataccccacaattaagtggttggtcttatcagatg 3' (SEQ ID NO:25). Results of this study demonstrate that M. pneumoniae nucleic acid can be detected in the presence or absence of saliva and that one mycoplasma cell can be identified using this primer/probe set.
- the entire cards sequence was amplified using forward primer 5'- tttttacatatgccaaatcctgtt-3' (primer 1, SEQ IDNO:12) and reverse primer 5'- gatcgcttttagcgaggatcctttaacg -3' (primer 2, SEQ ID NO:64), which producesNdel and BamHl (underlined) sites at 5' and 3' ends ofthe cards ORF, respectively. Both fragments were ligated into the pCR2.1 vector andtransformed into E. coli INVaF' cells for automated sequencing using M13 forward and reverse primers.
- CARDS Oligonucleotide sequences within selected (above) nucleotide sequence.
- Pri 1-16 Modified oligonucleotide sequence* to amplifythe cards sequence. * modified nucleotides are given in bold.
- Complementary oligonucleotide sequence are given underneath the reverse primers (2, 3, 5, 7, 9, 11, 13 and 15)
- MPN372 458 aatgtccgtagtgcttgact 477 (SEQ ID NO:29) Pri-3 : 20 a IaItIgItIcIcIgItIaMgtIgIcItItMggcItl 1 (SEQ ID NO: 30) ttacaggcatcacgaaccga (SEQ ID NO: 31)
- MPN372 469 tgcttgactagtagatgctgtt 490 (SEQ ID NO:32)
- IMIM MMMMMMMI Pri-4 1 tgcttggctagtagatgctgtt 22 (SEQ ID NO:33)
- MPN372 613 atgattgccaacaccagg 630 (SEQ ID NO: 34)
- MPN372 610 accatgattgccaacacc 627 (SEQ ID NO: 37)
- MPN372 722 cctgattgaagtccacctt 740 (SEQ ID NO: 39)
- Pri-7 19 cctgattggagtccacctt 1 (SEQ ID NO:40) ggactaacctcaggtggaa (SEQ ID NO: 41)
- MPN372 717 cgtgccctgattgaagtc 734 (SEQ ID NO: 42)
- Pri-10 1 caaaagtggaaaatgacacc 20 (SEQ ID NO: 48)
- MPN372 1192 aaatggcttgttctgaaatacc 1213 (SEQ ID NO: 49) MMIMMMMM MIMI
- MPN372 1197 gcttgttctgaaataccaagagt 1219 (SEQ ID NO: 51) IMMMIII MMMMIMI
- Pri-12 1 gcttgttctggaataccaagagt 23 (SEQ ID NO: 52)
- MPN372 1368 taggctggtattgaaggggt 1387 (SEQ ID NO: 53) Pri-13: 20 taggctggtattggaggggt 1 (SEQ ID NO: 54) atccgaccataacctcccca (SEQ ID NO: 55)
- MPN372 1374 ggtattgaaggggttattactataccccacaattaagtggttgatcttatcagatg 1429 M I N I M I I I I M I I I
- Pri-15 21 tacagctgggattgggtagaa 1 (SEQ ID NO: 59) atgtcgaccctaacccatctt (SEQ ID NO: 60)
- MPN372 1541 tacagctgggattgagtagaa 1561 (SEQ ID N ⁇ :61)
- Pri-16 l tacagctgggattgggtagaa 21 (SEQ ID NO:62)
- MPN372 1796 gatcgcttttagcgattaagctttaacg 1824 (SEQ ID NO:63)
- Pri-2 28 gatcgcttttagcgaggatcctttaacg 1 (SEQ ID NO: 64) ctagcgaaaatcgctcctaggaaattgc (SEQ ID NO: 13)
- M129/B9 represents the reference strain and Sl, L2, RJLl and JL are clinical isolates from patients in San Antonio and Dallas. All clinical isolates have the same mutation at nucleotide 1112 (T ⁇ G) from the
- RJLl 1112 (T ⁇ G) and 1174 (T ⁇ C) .
- Bolded gs shown were introduced by site directed mutagenesis in order to express CARDS protein in E. coli.
- RJLl had one more additional change (comparing to JL) at aa position 392 Trp ⁇ Arg .
- L2 had one more additional change (comparing to JL) at aa position 245 Asp ⁇ Gly .
- DNA fragments were generated by digesting plasmid pCR-cards with Ndel and BamHl and ligated into pET19b to generate pET-cards.
- the plasmid was transformed into competent E. coli BL21 (DE3) cells grown to a density of 2 X 10 cells/ml at 37 C in standard LB broth containing 100 ⁇ g/ml ampicillin (Sigma- Aldrich). Induction of recombinant protein synthesis was accomplished by addition of 100 ⁇ M of isopropyl thio ⁇ -galactopyranoside (Sigma- Aldrich), and bacteria were incubated for 3 h at 37 C under aeration at 220 rpm.
- mice were immunized subcutaneously with 50-100 ⁇ g of recombinant total
- CARDS protein suspended in complete Freund's adjuvant no peptides or truncated domains.
- Domains expected to be expressed in E. coli using the above primers Overlapping amino acids within domains are indicated by underline.
- the Dl PCR fragment (SEQ ID NO: 74) encoding the cards first 249 amino acids (SEQ ID NO: 69) was cloned into the E. coli His'°-tagged expression vector, pET19b (Novagen), using Ndel and BamHl restriction sites incorporated into the oligonucleotide primers used to amplify this nucleic acid 5' tttttacatatgccaaatcctgttag 3' (SEQ ID NO:72) and 5' ggatcctctacgcaatgcatttgtctag 3' (SEQ ID NO:65).
- a recombinant plasmid was used to transform E. coli strain BL21 ( ⁇ DE3). Transformants were grown to mid-log phase before inducing Dl expression by addition of IPTG to a final concentration of 1 mM. After four hours, cells were harvested by centrifugation at 800Og for 15 minutes at 4 0 C and the pellet was resuspended in 50 mM phosphate buffer ph 8.0, containing 300 mM NaCl, 10 mM imidazole and complete, EDTA-free protease inhibitor (Sigma).
- Fractions containing purified protein were desalted using PlO columns (Amersham Biosciences) with TG buffer (20 mM Tris-Cl, pH 7.4, 5% glycerol) and concentrated using YM- 10 (Amicon) membranes. Protein concentrations were estimated using a BCA protein assay kit (Pierce) and the protein was aliquoted and stored at -8O 0 C.
- CARDS protein 40 ⁇ g/ml CARDS protein for 16 hours at 37 0 C.
- Cells were washed and incubated with fresh medium at 37 0 C for four hours.
- Cell free extracts (CFE) were prepared and assayed for ADP-ribosylation (CFE were incubated with 40 ⁇ g/ml CARDS protein for one hour with 0.1 ⁇ M [ 32 P]NAD in 10OmM Tris pH 7.5, 2OmM DTT).
- the reaction mixture was precipitated with 10% TCA and proteins were resolved in a 4-15% gradient gel by SDS-PAGE and transferred to nitrocellulose membrane for autoradiography. As shown in the autoradiogram in Figure 2, the CARDS toxin exhibits ADP ribosylating activity.
- CPE Cytopathogenic effects
- Baboons Individual animals were instilled with active toxin or non-toxin diluent into the right lower lobe by direct endoscopic placement. Baseline lavages were obtained from the contralateral lobes of each animal and follow-up bilateral lavages were obtained 24 and 48 hours after the initial inoculation to investigate systemic effects. Subsequently, animals were sacrificed and airways evaluated in both groups by histochemistry and by assessment of inflammatory responses in bronchoalveolar lavage (BAL).
- BAL bronchoalveolar lavage
- inflammatory cytokines such as interleukin 6 (IL-6)
- IL-6 interleukin 6
- Chemokines RANTES and IL-8 showed increases of 10 fold and 300 to 500 fold, respectively. No substantial stages in cytokine/chemokine profiles were observed in the negative control animal.
- mice Individual animals were intranasally inoculated with CARDS toxin and monitored for changes in lung histopathology and BAL-associated inflammatory responses. Mice showed very striking peribronchiolar infiltration of lymphocytes, mononuclear cells and neutrophils. As in the case of baboons, marked lung injury was observed in the lungs and other airway tissues. The proliferation marker, MIB-I, was markedly reduced in CARDS toxin-treated mice, indicating a very powerful shut down of cell proliferation in contrast to non-toxin treated control animals. For example, IL-6 and IL- 12 increased within the first six days of intranasal introduction of CARDS toxin by 8 fold and 20 fold, respectively. CARDS toxin can mimic the course of active mycoplasma infection both in terms of cytopathology and cytokine/chemokine responses.
- the present invention provides a chimeric protein or polypeptide comprising, consisting essentially of and/or consisting of a CARDS toxin or biologically active fragment or domain thereof and a ligand for contacting the CARDS toxin or biologically active fragment or domain thereof with a target cell.
- a nucleic acid molecule that encodes a chimeric protein of this invention, as well as a vector and/or cell comprising the nucleic acid molecule.
- a biologically active fragment of the CARDS toxin can be a fragment as described herein that retains one or more biological activities of the CARDS toxin, such as toxin activity.
- a biologically active fragment of this invention can also be a domain of the CARDS toxin, as described herein.
- the chimeric protein can comprise a "toxin domain," which is a protein or functional fragment thereof that has toxic activity (e.g., ADP-ribosylating activity) and/or cytopathology inducing activity) on a cell as described herein.
- the chimeric protein of this invention can comprise a toxin domain of another toxin, which can be, but is not limited to a toxin domain of diphtheria toxin, ricin, Pseudomonas exotoxin, colicin, anthrax toxin, tetanus toxin, botulinum toxin, saporin, abrin, bryodin, pokeweed anti-viral protein, viscumin and gelonin.
- another toxin which can be, but is not limited to a toxin domain of diphtheria toxin, ricin, Pseudomonas exotoxin, colicin, anthrax toxin, tetanus toxin, botulinum toxin, saporin, abrin, bryodin, pokeweed anti-viral protein, viscumin and gelonin.
- a chimeric protein of this invention can comprise more than one (e.g., e, 3, 4, 5, or more) toxin domains or functional fragments thereof, which can be present in any order and/or in any combination in the chimeric protein.
- toxin domains When multiple toxin domains are present, they can be immediately adjacent to one another, separated by one or more targeting moieties (antibody/ligand) and/or translocation domains, and/or separated by linkers.
- the moieties of the chimeric protein of this invention can be present in any order, multiplicity and/or combination relative to one another.
- the chimeric proteins of this invention can also be modified by use in vivo by the addition of a blocking agent at the amino and/or carboxy-terminal end, to facilitate survival of the chimeric protein in vivo.
- blocking agents of this invention include, but are not limited to, additional related and/or unrelated peptide sequences that can be attached to either end of the chimeric protein. Blocking can be carried out either chemically during synthesis of the chimeric protein of by recombinant DNA technology according to protocols well known in the art.
- the ligand moiety of the chimeric protein of this invention can be an antibody that specifically reacts with an antigen on a cell surface, such that the antibody will bind to the surface of a cell possessing the antigen (a target cell), thereby bringing the CARDS toxin moiety of the chimeric protein in contact with the cell.
- the CARDS toxin moiety can be internalized by the target cell and the CARDS toxin or biologically active fragment thereof is active in the target cell, resulting in damage to and/or death of the target cell.
- the ligand moiety of the chimeric protein can be an antibody to a cancer antigen, which can be an antigen that is present only on the surface of a cancer cell and/or it can be a cancer-associated antigen that is present on the surface of a cancer cell in an amount greater than the amount of antigen that would be present on the surface of a non-cancerous (e.g., normal) cell.
- a cancer antigen can be an antigen that is present only on the surface of a cancer cell and/or it can be a cancer-associated antigen that is present on the surface of a cancer cell in an amount greater than the amount of antigen that would be present on the surface of a non-cancerous (e.g., normal) cell.
- a cancer antigen of this invention can include, but is not limited to HER2/neu and BRCAl antigens for breast cancer, MART-1/MelanA, gplOO, tyrosinase, TRP-I, TRP-2, NY-ESO-I, CDK-4, ⁇ -catenin, MUM-I, Caspase-8, KIAA0205, HPVE7, SART-I, PRAME, and pi 5 antigens, members of the MAGE family, the BAGE family (such as BAGE- 1 ), the D AGE/PRAME family (such as DAGE- 1 ), the GAGE family, the RAGE family (such as RAGE-I), the SMAGE family, NAG, TAG-72, CA125, mutated proto-oncogenes such as p21ras, mutated tumor suppressor genes such as p53, tumor associated viral antigens (e.g., HPVl 6 E7), the SSX family, HOM-MEL-55, NY
- MAGE-I MAGE-I
- MAGE-2 MAGE-3
- MAGE-4 MAGE-11
- GAGE- 1 GAGE-6. See, e.g., review by Van den Eynde and van der Bruggen (1997) in Curr. Opin. Immunol. 9: 684-693, Sahin et al. (1997) in Curr. Opin. Immunol. 9: 709-716, and Shawler et al. (1997), the entire contents of which are incorporated by reference herein for their teachings of cancer antigens.
- the cancer antigen can also be, but is not limited to, human epithelial cell mucin (Muc-1; a 20 amino acid core repeat for Muc-1 glycoprotein, present on breast cancer cells and pancreatic cancer cells), MUC-2, MUC-3, MUC-18, the Ha-ras oncogene product, carcino-embrypnic antigen (CEA), the raf oncogene product, CA- 125, GD2, GD3, GM2, TF, sTn, gp75, EBV-LMP 1 & 2, HPV-F4, 6, 7, prostatic serum antigen (PSA), prostate-specific membrane antigen (PSMA),prostate stem cell antigen (PSCA), alpha-fetoprotein (AFP), COl 7-1 A, GA733, gp72, p53, the ras oncogene product, ⁇ -HCG, gp43 , HSP-70 , p 17 mel, HSP-70, gp43 , HMW,
- the cancer antigen of this invention can also be an antibody produced by a B cell tumor (e.g., B cell lymphoma; B cell leukemia; myeloma; hairy cell leukemia), a fragment of such an antibody, which contains an epitope of the idiotype of the antibody, a malignant B cell antigen receptor, a malignant B cell immunoglobulin idiotype, a variable region of an immunoglobulin, a hypervariable region or complementarity determining region (CDR) of a variable region of an immunoglobulin, a malignant T cell receptor (TCR), a variable region of a TCR and/or a hypervariable region of a TCR.
- the cancer antigen of this invention can be a single chain antibody (scFv), comprising linked V H , and V L domains, which retains the conformation and specific binding activity
- the present invention is in no way limited to the cancer antigens listed herein.
- Other cancer antigens be identified, isolated and cloned by methods known in the art such as those disclosed in U.S. Pat. No. 4,514,506, the entire contents of which are incorporated by reference herein.
- the present invention further provides a method for treating cancer, a method for killing a tumor cell and/or a method for reducing the size of a tumor in a subject, comprising administering to the subject and/or contacting cancer cells (e.g., tumor cells) of the subject with a chimeric protein of this invention and/or a nucleic acid encoding a chimeric polypeptide of this invention.
- cancer cells e.g., tumor cells
- the cancer to be treated by administration to a subject of a chimeric polypeptide and/or nucleic acid encoding a chimeric polypeptide of this invention can be, but is not limited to, B cell lymphoma, T cell lymphoma, myeloma, leukemia, hematopoietic neoplasia, thymoma, lymphoma, sarcoma, lung cancer, liver cancer, non-Hodgkins lymphoma, Hodgkins lymphoma, adrenal cancer, anal cancer, colorectal cancer, endometrial cancer, esophygeal cancer, fallopian tube cancer, gallbladder cancer, gastric cancer, glioblastoma, kidney cancer, laryngeal cancer, medulloblastoma, mesothelioma, neuroblastoma, oropharyngeal cancer, osteosarcoma, parathyroid cancer, thyroid cancer, penile cancer, pituitary cancer,
- the ligand of this invention can be a ligand that specifically binds a receptor on a muscle cell, which can include, but is not limited to, an antibody reactive to N-CAM (neuronal cell adhesion molecule) (Sigma Chemical Company, St. Louis, Mo.), an antibody reactive with the muscle-specific antigen, Leu- 19, an antibody reactive with dystrophin (Sigma) and an antibody reactive with a nicotinic acetylcholine receptor (nAchR).
- N-CAM neurovascular cell adhesion molecule
- nAchR nicotinic acetylcholine receptor
- the nAch receptor and antibodies generated thereto are readily available from publicly accessible depositories. (See, e.g., U.S. Pat. No. 5,192,684, ATCC Nos.: HB 8987 (mAb 64), HB 189 (mAb 270), and TIB 175 (mAb 35), all of which are incorporated herein by reference.)
- the present invention also provides methods of treating a muscle spasm, (e.g., a focal muscle spasm; a facial wrinkle), comprising contacting a muscle cell of the muscle in spasm with a chimeric protein of this invention.
- a muscle spasm e.g., a focal muscle spasm; a facial wrinkle
- Such methods can be used, for example, to treat blepharospasm, cervical dystonia, hand dystonia, limb dystonia, hemifacial spasm, bruxism, strabismus, VI nerve palsy, spasmodic dysphonia and/or oromandibular dystonia, as well as any other disease or disorder associated with muscle spasm that is now known or later identified.
- a method of treating a muscle spasm according to this invention can include, for example, administering (e.g., by intramuscular injection) an effective amount of the chimeric polypeptide and/or nucleic acid encoding the chimeric polypeptide of this invention to the muscle of a subject.
- the chimeric polypeptide and/or nucleic acid of this invention can also be administered with an effective amount of botulinum toxin, either alone and/or as part of a chimeric polypeptide and/or encoded by a nucleic acid molecule.
- a "muscle spasm” includes a brief, unsustained contraction and/or a paroxysmal, spontaneous, prolonged contraction of one or more muscles, which are responsive to treatment involving selective destruction of one or more muscles at the site of the muscle spasm.
- the production of any type of antibody and/or antibody fragment can be carried out according to well developed in the art.
- a humanized or “chimeric” antibody is an immunoglobulin molecule comprising a human moiety and a non-human moiety, in any combination.
- variable region of a humanized immunoglobulin molecule can be from a non-human (e.g., murine) source and the constant region can be from a human source.
- the humanized antibody can have the antigen-binding specificity of the non- human source and the effector function of the human source (see, e.g. U.S. Patent No. 5,482,856, the entire contents of which are incorporated by reference herein). Protocols for the production of human antibodies are well known (see, e.g., U.S. Patent No. 5, 001, 065, the entire contents of which are incorporated by reference herein).
- the chimeric protein of this invention can comprise a translocation or internalization domain of a toxin protein, e.g., to facilitate delivery of the toxin moiety into the target cell
- the translocation domain can be from the CARDS toxin described herein and/or the domain can be from any other toxin that has a translocation domain.
- toxins include but are not limited to diphtheria toxin, colicin, delta-endotoxin, anthrax toxin, tetanus toxin, botulinum toxin and Pseudomonas exotoxin.
- the chimeric proteins of this invention are produced by methods well known in the art.
- an antibody or ligand that allows for specific targeting of the CARDS toxin to a specific cell type or population can be selected according to art- known procedures for the specific therapeutic effect desired.
- the antibody or ligand can be joined via a covalent or non-covalent bond to a CARDS toxin and/or biologically active fragment thereof as described herein.
- the moieties can be attached, j oined or connected by any of a number of means well known to those of skill in the art.
- the chimeric protein of the present invention can be recombinantly expressed as a single-chain fusion protein comprising both antibody and toxin according to methods well known in the art.
- the toxin moiety can be joined, linked or conjugated directly, or through a linker (spacer), to the ligand.
- a "linker” as used herein, is a molecule that is used to join two molecules. The linker is capable of forming covalent bonds or high-affinity non-covalent bonds to both molecules. Suitable linkers are well known to those of ordinary skill in the art and include, but are not limited to, straight or branched-chain carbon linkers, heterocyclic carbon linkers and/or peptide linkers. The linkers can be joined to the constituent amino acids through their side groups (e.g., through a disulfide linkage to cysteine).
- the procedure for attaching a toxin to an antibody or other polypeptide targeting molecule can vary according to the chemical structure of the toxin.
- Immunoglobulin molecules contain a variety of functional groups; e.g., sulfhydryl (--S), carboxylic acid (COOH) and free amine (NH 2 ) groups, which are available for reaction with a suitable functional group on a toxin.
- the antibody/ligand and/or toxin can be derivatized to expose or attach additional reactive functional groups.
- the derivatization can involve attachment of any of a number of linker molecules (including commercially available linker molecules, e.g., from Pierce Chemical Company, Rockford 111).
- a bifunctional linker having one functional group reactive with a group on the toxin and another functional group reactive with a group on an antibody/ligand can be used.
- Derivatization can also involve chemical treatment of the toxin or antibody/ligand (e.g., by glycol cleavage of the sugar moiety of a glycoprotein antibody with periodate to generate free aldehyde groups).
- the free aldehyde groups on an antibody can be reacted with free amine or hydrazine groups on a toxin to form the chimeric protein (see, e.g., U.S. Pat. No. 4,671,958. the entire contents of which are incorporated by reference herein).
- Procedures for generation of free sulfhydryl groups on an antibody or antibody fragment are also known (see, e.g., U.S. Pat. No. 4,659,839).
- Many procedures and linker molecules for attachment of various compounds including toxins are known. See, for example, European Patent Application No. 188,256; U.S. Pat. Nos. 4,671,958, 4,659,839, 4,414,148, 4,699,784; 4,680,338; 4,569,789; 4,589,071; and Borlinghaus et al. Cancer Res. 47: 4071-4075 (1987), which are incorporated herein by reference in their entireties.
- the linker molecule is m-Malimidobenzoyl-N-hydroxysuccinimideester (MBS) which can be used to prepare chimeric proteins as described, for example, in Youle and Nevelle. Proc. Natl. Acad. ScL 77(9):5483-5486 (1980).
- MFS m-Malimidobenzoyl-N-hydroxysuccinimideester
- Cleavage of the linkage to release the toxin from the antibody/ligand can be facilitated by enzymatic activity and/or conditions to which the immunoconjugate is subjected either inside the target cell or in the vicinity of the target site.
- cleavable linkers are known in the art (see, e.g., U.S. Pat. Nos. 4,618,492; 4,542,225, and 4,625,014, the entire contents of which are incorporated by reference herein).
- SPDP is a reversible NHS-ester, pyridyl disulfide cross- linker used to conjugate amine-containing molecules to sulfhydryls.
- Another chemical modification reagent is 2-iminothiolane, which reacts with amines and yields a sulfhydryl.
- Water soluble SPDP analogs such as Sulfo-LC-SPDP (Pierce, Rockford, 111.) can also be used.
- Sulfo-LC-SPDP Pieris, Rockford, 111.
- SMPT is a reversible NHS-ester, pyridyl disulfide cross-linker developed to avoid cleavage in vivo prior to reaching the target cell or site.
- the chimeric protein of this invention can also be produced according to standard protocols for recombinant DNA technology.
- the chimeric proteins can be produced in any number of well-defined expression systems and purified according to act-known standards for in vivo administration.
- a nucleic acid encoding the chimeric protein can be administered to a subject and/or to a cell of a subject of this invention and the chimeric protein can be produced in the cell or in the subject.
- the chimeric proteins and nucleic acids encoding them can be administered in vivo or ex vivo.
- the chimeric protein of this invention can be present in a composition, which can be a pharmaceutical composition comprising the chimeric protein and/or nucleic acid molecule encoding a chimeric protein in a pharmaceutically acceptable carrier.
- pharmaceutically acceptable includes a material that is not biologically or otherwise undesirable, i.e., the material can be administered to an individual along with the chimeric polypeptide and/or nucleic acid without causing substantial deleterious biological effects or interacting in a deleterious manner in the subject and/or with any of the other components of the composition in which it is contained.
- the dose of the chimeric protein and/or nucleic acid encoding the chimeric protein will depend upon the properties of the particular chimeric polypeptide employed, e.g., its activity and biological half-life, the concentration of chimeric polypeptide in the formulation, the site and rate of administration, the clinical tolerance and characteristics (e.g., sex, gender, species, age, size, weight, overall condition) of the patient involved, the nature and severity of the disease or disorder to be treated or altered, etc., as are well know considerations in the art.
- chimeric protein and/or nucleic acid encoding the chimeric protein of this invention can be administered to a subject in a variety of ways (e.g., orally, intravenously, subcutaneously, intramuscularly, intratumorally, intraperitoneally, intrarectally, intravaginally, intranasally, intragastrically, intratrachaeally and/or intrapulmonarily.
- ways e.g., orally, intravenously, subcutaneously, intramuscularly, intratumorally, intraperitoneally, intrarectally, intravaginally, intranasally, intragastrically, intratrachaeally and/or intrapulmonarily.
- the chimeric polypeptide of this invention can be administered to a subject by, e.g., injection, into a muscle or into a tumor, in an amount ranging from about 1 ng to about 500 mg.
- An effective amount can be determined by one of skill in the art, using art-known teachings such as those provided in MacDonald and Glover ("Effective tumor targeting: Strategies for delivery of armed antibodies” Current Opinion in Drug Discovery and Development 8 : 177- 183 (2005) and Michl and Gress ("Bacteria and bacterial toxins as therapeutic agents for solid tumors" Current Cancer Drug Targets 4:689-702 (2004).
- the chimeric protein can be administered at the site of the neuromuscular junctions of the muscle to be treated.
- the chimeric proteins of the present invention can be administered alone, in combination, and/or in conjunction with a conjugated and/or an unconjugated form of a different toxin (e.g., botulinum toxin).
- the chimeric protein and/or nucleic acid can be administered once or it can be admim ' stered periodically until either a therapeutic result is achieved or until side effects warrant discontinuation of therapy.
- the dose should be sufficient to treat or ameliorate known symptoms or signs (e.g., release of muscle spasm; decrease in tumor size or reduction in tumor cell count) without producing unacceptable toxicity to the subject.
- An effective amount is an amount that provides either subjective relief of at least one symptom and/or an objectively identifiable improvement as noted by the clinician or other qualified observer.
- the chimeric protein and/or nucleic acid can also be administered via microspheres, liposomes or other microparticulate delivery systems placed in certain tissues, including blood.
- testing of any of the chimeric proteins and nucleic acids encoding chimeric proteins of this invention for cytotoxicity both in vitro and in vivo can be carried out according to protocols well described in the art.
- methods of determining cytotoxicity of a chimeric protein of this invention used to treat muscle spasms are described in U.S. Patent No. 6,780,413, the entire contents of which are incorporated by reference herein.
- Methods of determining the cytotoxicity of a chimeric protein of this invention used to treat cancer and/or to kill tumor cells are described in U.S. Patent No. 6,846,484, the entire contents of which are incorporated by reference herein.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Oncology (AREA)
- Toxicology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Genetics & Genomics (AREA)
- Pulmonology (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
The present invention provides a Mycoplasma pneumoniae community acquired respiratory distress syndrome (CARDS) toxin, biologically active fragments/domains of the CARDS toxin, antibodies to the CARDS toxin, therapeutic fusion proteins comprising the CARDS toxin and/or biologically active fragments/domains of the CARDS toxin and nucleic acids encoding the CARDS toxin and fusion proteins. Also provided are methods of treating and/or preventing diseases and disorders using the compositions provided herein.
Description
METHODS AND COMPOSITIONS FOR MYCOPLASMA PNEUMONIAE TOXINS
STATEMENT OF GOVERNMENT SUPPORT
Research related to this invention was supported, at least in part, by U.S. Government Grant No. AI45737 awarded by the NIAID. The Government has certain rights in this invention.
BACKGROUND OF THE INVENTION FIELD OF THE INVENTION
The present invention relates to Mycoplasma pneumoniae toxins, antibodies thereto, and their use in diagnostic and therapeutic methods.
BACKGROUND ART
Mycoplasma pneumoniae is one of the most well recognized pathogens of the human respiratory tract. The importance of Mycoplasma pneumoniae as a cause of human respiratory disease has been well documented by epidemiological studies in various settings and in many countries. M. pneumoniae is the etiologic agent of primary atypical pneumonia and is also responsible for many respiratory tract infections, such as tracheobronchitis, bronchiolitis, pharyngitis and croup, especially in older children and young adults and in elderly populations. It accounts for 20-30% of all pneumonias and also is linked to asthma and chronic obstructive pulmonary disease. Furthermore, M. pneumoniae can disseminate to other organ sites and cause gastrointestinal, hematologic, neurologic, dermatologic, musculoskeletal and cardiovascular pathologies. This secondary involvement by M. pneumoniae leads to a spectrum of complicated extrapulmonary sequelae, including arthritis, pericarditis and central nervous system disorders, which attests to the significance of M. pneumoniae in human disease. Although antibiotic therapy appears to be relatively effective in controlling mycoplasma pneumonia, the bacteria continue to persist.
At present, no known virulence determinants of M. pneumoniae have been functionally identified and linked to the wide range of pathologies associated with M. pneumoniae mediated diseases. Furthermore, there are no specific and standardized diagnostic tests available for reliable and rapid detection of M. pneumoniae infection, or effective vaccines to control M pneumoniae infection.
The present invention overcomes previous shortcomings in the art by providing a Mycoplasma pneumoniae polypeptide and biologically active fragments thereof, known as community acquired respiratory distress syndrome (CARDS) toxin, as well as nucleic acids encoding this polypeptide and its fragments and antibodies specific thereto. These compositions are used, for example, in methods of diagnosing, treating and preventing infection by M. pneumoniae.
SOME SEQUENCES OF THIS INVENTION:
Reference amino acid sequence M129/B9 (reference strain): (SEQ ID NO:1)
MPNPVRFVYR VDLRSPEEIF EHGFSTLGDV RNFFEHILST NFGRSYFIST SETPTAAIRF FGSWLREYVP EHPRRAYLYE IRADQHFYNA RATGENLLDL MRQRQWFDS GDREMAQMGI RALRTSFAYQ REWFTDGPIA AANVRSAWLV DAVPVEPGHA HHPAGRWET TRINEPEMHN
PHYQELQTQA NDQPWLPTPG IATPVHLSIP QAASVADVSE GTSASLSFAC PDWSPPSSNG ENPLDKCIAE KIDNYNLQSL PQYASSVKEL EDTPVYLRGI KTQKTFMLQA DPQNNNVFLV
EVNPKQKSSF PQTIFFWDVY QRICLKDLTG AQISLSLTAF TTQYAGQLKV HLSVSAVNAV
NQKWKMTPQD IAITQFRVSS ELLGQTENGL FWNTKSGGSQ HDLYVCPLKN PPSDLEELQI
IVDECTTHAQ FVTMRAASTF FVDVQLGWYW RGYYYTPQLS GWSYQMKTPD GQIFYDLKTS
KIFFVQDNQN VFFLHNKLNK QTGYSWDWVE WLKHDMNEDK DENFKWYFSR DDLTIPSVEG LNFRHIRCYA DNQQLKVIIS GSRWGGWYST YDKVESNVED KILVKDGFDR F
Sl (clinical strain) amino acid sequence: (SEQ ID NO:2)
MPNPVRFVYRVDLRSPEEIFEHGFSTLGDVRNFFEHIPSTNFGRSYFISTSETPTAAIRF FGSWLREYVPEHPRRAYLYEIRADQHFYNARATGENLLDLMRQRQWFDSGDREMAQMGI RALRTSFAYQREWFTDGPIAAANVRSAWLVDAVPVEPGHAHHPAGRWETTRINEPEMHN PHYQELQTQANDQPWLPTPGIATPVHLSIPQAASVADVSEGTSASLSFACPDWSPPSSNG ENPLDKCIAEKIDNYNLQSLPQYASSVKELEDTPVYLRGIKTQKTFMLQADPQNNNVFLV EVNPKQKSPFPQTIFFWDVYQRICLKDLTGAQISLSLTAFTTQYAGQLKVHLSVSAVNAV NQKWKMTPQDSAITQFRVSSELLGQTENGLSWNTKSGGSQHDLYVCPLKNPPSDLEELQI IVDECTTHAQFVTMRAASTFFVDVQLGWYWRGYYYTPQLSGWSYQMKTPDGQIFYDLKTS KIFFVQDNQNVFFLHNKLNKQTGYSWDWVEWLKHDMNEDKDENFKWYFSRDDLTIPSVEG LNFRHIRCYADNQQLKVIISGSRWGGWYSTYDKVESNVEDKILVKDGFDRF JL (clinical strain) amino acid sequence: (SEQ ID NO:3)
MPNPVRFVYRVDLRSPEEIFEHGFSTLGDVRNFFEHILSTNFGRSYFISTSETPTAAIRF FGSWLREYVPEHPRRAYLYEIRADQHFYNARATGENLLDLMRQRQWFDSGDREMAQMGI RALRTSFAYQREWFTDGPIAAANVRSAWLVDAVPVEPGHAHHPAGRWETTRINEPEMHN PHYQELQTQANDQPWLPTPGIATPVHLSIPQAASVADVSEGTSASLSFACPDWSPPSSNG ENPLDKCIAEKIDNYNLQSLPQYASSVKELEDTPVYLRGIKTQKTFMLQADPQNNNVFLV
EVNPKQKSSFPQTIFFWDVYQRICLKDLTGAQISLSLTAFTTQYAGQLKVHLSVSAVNAV NQKWKMTPQDSAITQFRVSSELLGQTENGLFWNTKSGGSQHDLYVCPLKNPPSDLEELQI IVDECTTHAQFVTMRAASTFFVDVQLGWYWRGYYYTPQLSGWSYQMKTPDGQIFYDLKTS KIFFVQDNQNVFFLHNKLNKQTGYSWDWVEWLKHDMNEDKDENFKWYFSRDDLTIPSVEG LNFRHIRCYADNQQLKVIISGSRWGGWYSTYDKVESNVEDKILVKDGFDRF
RJLl (clinical strain) amino acid sequence: (SEQ ID N0:4)
MPNPVRFVYRVDLRSPEEIFEHGFSTLGDVRNFFEHILSTNFGRSYFISTSETPTAAIRF FGSWLREYVPEHPRRAYLYEIRADQHFYNARATGENLLDLMRQRQWFDSGDREMAQMGI RALRTSFAYQREWFTDGPIAAANVRSAWLVDAVPVEPGHAHHPAGRWETTRINEPEMHN PHYQELQTQANDQPWLPTPGIATPVHLSIPQAASVADVSEGTSASLSFACPDWSPPSSNG ENPLDKCIAEKIDNYNLQSLPQYASSVKELEDTPVYLRGIKTQKTFMLQADPQNNNVFLV EVNPKQKSSFPQTIFFWDVYQRICLKDLTGAQISLSLTAFTTQYAGQLKVHLSVSAVNAV NQKWKMTPQDSAITQFRVSSELLGQTENGLFRNTKSGGSQHDLYVCPLKNPPSDLEELQI IVDECTTHAQFVTMRAASTFFVDVQLGWYWRGYYYTPQLSGWSYQMKTPDGQIFYDLKTS KIFFVQDNQNVFFLHNKLNKQTGYSWDWVEWLKHDMNEDKDENFKWYFSRDDLTIPSVEG LNFRHIRCYADNQQLKVIISGSRWGGWYSTYDKVESNVEDKILVKDGFDRF L2 (clinical strain) amino acid sequence: (SEQ ID N0:5)
MPNPVRFVYRVDLRSPEEIFEHGFSTLGDVRNFFEHILSTNFGRSYFISTSETPTAAIRF FGSWLREYVPEHPRRAYLYEIRADQHFYNARATGENLLDLMRQRQWFDSGDREMAQMGI RALRTSFAYQREWFTDGPIAAANVRSAWLVDAVPVEPGHAHHPAGRWETTRINEPEMHN PHYQELQTQANDQPWLPTPGIATPVHLSIPQAASVADVSEGTSASLSFACPDWSPPSSNG ENPLGKCIAEKIDNYNLQSLPQYASSVKELEDTPVYLRGIKTQKTFMLQADPQNNNVFLV EVNPKQKSSFPQTIFFWDVYQRICLKDLTGAQISLSLTAFTTQYAGQLKVHLSVSAVNAV NQKWKMTPQDSAITQFRVSSELLGQTENGLFWNTKSGGSQHDLYVCPLKNPPSDLEELQI IVDECTTHAQFVTMRAASTFFVDVQLGWYWRGYYYTPQLSGWSYQMKTPDGQIFYDLKTS KIFFVQDNQNVFFLHNKLNKQTGYSWDWVEWLKHDMNEDKDENFKWYFSRDDLTIPSVEG LNFRHIRCYADNQQLKVIISGSRWGGWYSTYDKVESNVEDKILVKDGFDRF
Composite amino acid sequence: (SEQ ID NO:6) MPNPVRFVYR VDLRSPEEIF EHGFSTLGDV RNFFEHIPST NFGRSYFIST SETPTAAIRF FGSWLREYVP EHPRRAYLYE IRADQHFYNA RATGENLLDL MRQRQWFDS GDREMAQMGI RALRTSFAYQ REWFTDGPIA AANVRSAWLV DAVPVEPGHA HHPAGRWET TRINEPEMHN PHYQELQTQA NDQPWLPTPG IATPVHLSIP QAASVADVSE GTSASLSFAC PDWSPPSSNG ENPLGKCIAE KIDNYNLQSL PQYASSVKEL EDTPVYLRGI KTQKTFMLQA DPQNNNVFLV EVNPKQKPSF PQTIFFWDVY QRICLKDLTG AQISLSLTAF TTQYAGQLKV HLSVSAVNAV
NQKWKMTPQD SAITQFRVSS ELLGQTENGL SRNTKSGGSQ HDLYVCPLKN PPSDLEELQI
IVDECTTHAQ FVTMRAASTF FVDVQLGWYW RGYYYTPQLS GWSYQMKTPD GQIFYDLKTS KIFFVQDNQN VFFLHNKLNK QTGYSWDWVE WLKHDMNEDK DENFKWYFSR DDLTIPSVEG LNFRHIRCYA DNQQLKVIIS GSRWGGWYST YDKVESNVED KILVKDGFDR F
Reference nucleotide sequence M129/B9 (contains tga's that need to be changed to tgg before expression in E. coli) (SEQ ID NO:7) tttttaattt gtaaaatttc attttttaaa aatgccaaat cctgttagat ttgtttaccg tgttgatttg agaagccctg aagaaatttt tgaacatggc ttttcaactt taggtgatgt gagaaatttc tttgaacaca ttctctccac taattttggt agaagctatt ttatttccac ttcagaaaca cccacagcag ctattcgctt ctttggtagc tggttacggg aatatgtacc agagcacccc agaagggctt acttatatga aattcgtgcc gaccaacact tttacaatgc ccgcgccact ggggagaact tgttagattt aatgcgtcaa agacaagtag tatttgactc tggtgatcga gaaatggcac aaatgggaat tagagcttta cgcacttcct ttgcgtatca acgtgaatgg tttaccgatg gtccaattgc agcagctaat gtccgtagtg cttgactagt agatgctgtt cccgttgaac ctggtcatgc tcaccacccg gctggtcgtg ttgtagagac
tactagaatt aatgaaccgg aaatgcacaa ccctcattat caagagctgc aaacccaagc caatgatcaa ccatgattgc caacaccagg aatagctact cctgtacatt tatcaattcc ccaagcagct tccgttgctg atgtttcgga aggtacttcc gcttcgctat cgtttgcgtg ccctgattga agtccacctt ctagtaatgg tgaaaatccg ctagacaaat gcattgcgga aaagattgat aactataacc tacaatcctt accacagtac gctagcagtg taaaggaact ggaagataca ccagtatacc taaggggaat taaaacgcaa aaaaccttta tgttacaagc agatccgcaa aataacaatg tctttttggt cgaagtaaac cccaaacaaa agtccagctt tccccaaacc atcttctttt gggatgttta tcaacgaatt tgtctcaagg atttaactgg tgcacaaatc agtctttcgc ttactgcctt tactactcag tatgctggtc agctcaaagt gcaccttagt gttagcgcgg ttaatgccgt gaaccaaaag tgaaaaatga caccgcaaga cattgcaata actcagtttc gggtctcctc tgaactgtta ggtcaaactg aaaatggctt gttctgaaat accaagagtg gtggttcaca acacgatttg tatgtatgtc ctttgaaaaa tccacctagt gatttggaag aattacaaat aattgttgat gaatgtacta cccatgcgca gtttgttact atgcgtgcag ctagcacctt ctttgttgat gttcagctag gctggtattg aaggggttat tactataccc cacaattaag tggttgatct tatcagatga aaacaccaga tggacagata ttctatgatc taaaaacttc gaaaatcttc tttgtccagg acaaccaaaa cgtgttcttt ctccataata aactcaacaa acaaactggt tacagctggg attgagtaga atggctaaaa catgacatga atgaggacaa agacgaaaac tttaaatggt acttttcgcg tgatgacctt accattcctt ccgttgaagg gcttaacttc cgccacattc gctgttacgc tgacaaccag cagttaaagg tgatcataag cggttcacgt tggggcggtt ggtactccac ttacgataaa gttgaaagta atgtcgaaga taagattttg gtcaaagatg gttttgatcg cttttagcga ttaagcttta acgtcactgt tttgctctaa tgttagaagc aaagatcttg
Sl Nucleotide sequence with each tga changed to tgg for expression in E. coli (SEQ ID NO:8) atgccaaatc ctgttagatt tgtttaccgt gttgatttga gaagccctga agaaattttt 60 gaacatggct tttcaacttt aggtgatgtg agaaatttct ttgaacacat tccctccact 120 aattttggta gaagctattt tatttccact tcagaaacac ccacagcagc tattcgcttc 180 tttggtagct ggttacggga atatgtacca gagcacccca gaagggctta cttatatgaa 240 attcgtgccg accaacactt ttacaatgcc cgcgccactg gggagaactt gttagattta 300 atgcgtcaaa gacaagtagt atttgactct ggtgatcgag aaatggcaca aatgggaatt 360 agagctttac gcacttcctt tgcgtatcaa cgtgaatggt ttaccgatgg tccaattgca 420 gcagctaatg tccgtagtgc ttggctagta gatgctgttc ccgttgaacc tggtcatgct 480 caccacccgg ctggtcgtgt tgtagagact actagaatta atgaaccgga aatgcacaac 540 cctcattatc aagagctgca aacccaagcc aatgatcaac catggttgcc aacaccagga 600 atagctactc ctgtacattt atcaattccc caagcagctt ccgttgctga tgtttcggaa 660 ggtacttccg cttcgctatc gtttgcgtgc cctgattgga gtccaccttc tagtaatggt 720 gaaaatccgc tagacaaatg cattgcggaa aagattgata actataacct acaatcctta 780 ccacagtacg ctagcagtgt aaaggaactg gaagatacac cagtatacct aaggggaatt 840 aaaacgcaaa aaacctttat gttacaagca gatccgcaaa ataacaatgt ctttttggtc 900 gaagtaaacc ccaaacaaaa gcccagcttt ccccaaacca tcttcttttg ggatgtttat 960 caacgaattt gtctcaagga tttaactggt gcacaaatca gtctttcgct tactgccttt 1020 actactcagt atgctggtca gctcaaagtg caccttagtg ttagcgcggt taatgccgtg 1080 aaccaaaagt ggaaaatgac accgcaagac agtgcaataa ctcagtttcg ggtctcctct 1140 gaactgttag gtcaaactga aaatggcttg tcctggaata ccaagagtgg tggttcacaa 1200 cacgatttgt atgtatgtcc tttgaaaaat ccacctagtg atttggaaga attacaaata 1260 attgttgatg aatgtactac ccatgcgcag tttgttacta tgcgtgcagc tagcaccttc 1320 tttgttgatg ttcagctagg ctggtattgg aggggttatt actatacccc acaattaagt 1380 ggttggtctt atcagatgaa aacaccagat ggacagatat tctatgatct aaaaacttcg 1440 aaaatcttct ttgtccagga caaccaaaac gtgttctttc tccataataa actcaacaaa 1500 caaactggtt acagctggga ttgggtagaa tggctaaaac atgacatgaa tgaggacaaa 1560 gacgaaaact ttaaatggta cttttcgcgt gatgacctta ccattccttc cgttgaaggg 1620 cttaacttcc gccacattcg ctgttacgct gacaaccagc agttaaaggt gatcataagc 1680 ggttcacgtt ggggcggttg gtactccact tacgataaag ttgaaagtaa tgtcgaagat 1740 aagattttgg tcaaagatgg ttttgatcgc ttt 1773
L2 nucleotide sequence with each tga changed to tgg for expression in E. coli (SEQ
ID NO:9) atgccaaatc ctgttagatt tgtttaccgt gttgatttga gaagccctga agaaattttt 60 gaacatggct tttcaacttt aggtgatgtg agaaatttct ttgaacacat tctctccact 120 aattttggta gaagctattt tatttccact tcagaaacac ccacagcagc tattcgcttc 180 tttggtagct ggttacggga atatgtacca gagcacccca gaagggctta cttatatgaa 240 attcgtgccg accaacactt ttacaatgcc cgcgccactg gggagaactt gttagattta 300 atgcgtcaaa gacaagtagt atttgactct ggtgatcgag aaatggcaca aatgggaatt 360 agagctttac gcacttcctt tgcgtatcaa cgtgaatggt ttaccgatgg tccaattgca 420 gcagctaatg tccgtagtgc ttggctagta gatgctgttc ccgttgaacc tggtcatgct 480 caccacccgg ctggtcgtgt tgtagagact actagaatta atgaaccgga aatgcacaac 540 cctcattatc aagagctgca aacccaagcc aatgatcaac catggttgcc aacaccagga 600 atagctactc ctgtacattt atcaattccc caagcagctt ccgttgctga tgtttcggaa 660 ggtacttccg cttcgctatc gtttgcgtgc cctgattgga gtccaccttc tagtaatggt 720 gaaaatccgc taggcaaatg cattgcggaa aagattgata actataacct acaatcctta 780 ccacagtacg ctagcagtgt aaaggaactg gaagatacac cagtatacct aaggggaatt 840 aaaacgcaaa aaacctttat gttacaagca gatccgcaaa ataacaatgt ctttttggtc 900 gaagtaaacc ccaaacaaaa gtccagcttt ccccaaacca tcttcttttg ggatgtttat 960 caacgaattt gtctcaagga tttaactggt gcacaaatca gtctttcgct tactgccttt 1020 actactcagt atgctggtca gctcaaagtg caccttagtg ttagcgcggt taatgccgtg 1080 aaccaaaagt ggaaaatgac accgcaagac agtgcaataa ctcagtttcg ggtctcctct 1140 gaactgttag gtcaaactga aaatggcttg ttctggaata ccaagagtgg tggttcacaa 1200 cacgatttgt atgtatgtcc tttgaaaaat ccacctagtg atttggaaga attacaaata 1260 attgttgatg aatgtactac ccatgcgcag tttgttacta tgcgtgcagc tagcaccttc 1320 tttgttgatg ttcagctagg ctggtattgg aggggttatt actatacccc acaattaagt 1380 ggttggtctt atcagatgaa aacaccagat ggacagatat tctatgatct aaaaacttcg 1440 aaaatcttct ttgtccagga caaccaaaac gtgttctttc tccataataa actcaacaaa 1500 caaactggtt acagctggga ttgggtagaa tggctaaaac atgacatgaa tgaggacaaa 1560 gacgaaaact ttaaatggta cttttcgcgt gatgacctta ccattccttc cgttgaaggg 1620 cttaacttcc gccacattcg ctgttacgct gacaaccagc agttaaaggt gatcataagc 1680 ggttcacgtt ggggcggttg gtactccact tacgataaag ttgaaagtaa tgtcgaagat 1740 aagattttgg tcaaagatgg ttttgatcgc ttt 1773
JL nucleotide sequencewith each tga changed to tgg for expression in E. coli (SEQ ID NO:10) atgccaaatc ctgttagatt tgtttaccgt gttgatttga gaagccctga agaaattttt 60 gaacatggct tttcaacttt aggtgatgtg agaaatttct ttgaacacat tctctccact 120 aattttggta gaagctattt tatttccact tcagaaacac ccacagcagc tattcgcttc 180 tttggtagct ggttacggga atatgtacca gagcacccca gaagggctta cttatatgaa 240 attcgtgccg accaacactt ttacaatgcc cgcgccactg gggagaactt gttagattta 300 atgcgtcaaa gacaagtagt atttgactct ggtgatcgag aaatggcaca aatgggaatt 360 agagctttac gcacttcctt tgcgtatcaa cgtgaatggt ttaccgatgg tccaattgca 420 gcagctaatg tccgtagtgc ttggctagta gatgctgttc ccgttgaacc tggtcatgct 480 caccacccgg ctggtcgtgt tgtagagact actagaatta atgaaccgga aatgcacaac 540 cctcattatc aagagctgca aacccaagcc aatgatcaac catggttgcc aacaccagga 600 atagctactc ctgtacattt atcaattccc caagcagctt ccgttgctga tgtttcggaa 660 ggtacttccg cttcgctatc gtttgcgtgc cctgattgga gtccaccttc tagtaatggt 720 gaaaatccgc tagacaaatg cattgcggaa aagattgata actataacct acaatcctta 780 ccacagtacg ctagcagtgt aaaggaactg gaagatacac cagtatacct aaggggaatt 840 aaaacgcaaa aaacctttat gttacaagca gatccgcaaa ataacaatgt ctttttggtc 900 gaagtaaacc ccaaacaaaa gtccagcttt ccccaaacca tcttcttttg ggatgtttat 960 caacgaattt gtctcaagga tttaactggt gcacaaatca gtctttcgct tactgccttt 1020 actactcagt atgctggtca gctcaaagtg caccttagtg ttagcgcggt taatgccgtg 1080 aaccaaaagt ggaaaatgac accgcaagac agtgcaataa ctcagtttcg ggtctcctct 1140 gaactgttag gtcaaactga aaatggcttg ttctggaata ccaagagtgg tggttcacaa 1200 cacgatttgt atgtatgtcc tttgaaaaat ccacctagtg atttggaaga attacaaata 1260 attgttgatg aatgtactac ccatgcgcag tttgttacta tgcgtgcagc tagcaccttc 1320 tttgttgatg ttcagctagg ctggtattgg aggggttatt actatacccc acaattaagt 1380
ggttggtctt atcagatgaa aacaccagat ggacagatat tctatgatct aaaaacttcg 1440 aaaatcttct ttgtccagga caaccaaaac gtgttctttc tccataataa actcaacaaa 1500 caaactggtt acagctggga ttgggtagaa tggctaaaac atgacatgaa tgaggacaaa 1560 gacgaaaact ttaaatggta cttttcgcgt gatgacctta ccattccttc cgttgaaggg 1620 cttaacttcc gccacattcg ctgttacgct gacaaccagc agttaaaggt gatcataagc 1680 ggttcacgtt ggggcggttg gtactccact tacgataaag ttgaaagtaa tgtcgaagat 1740 aagattttgg tcaaagatgg ttttgatcgc ttt 1773
RJLl nucleotide sequence with each tga changed to tgg for expression in E. coli (SEQ ID NO: 11) atgccaaatc ctgttagatt tgtttaccgt gttgatttga gaagccctga agaaattttt 60 gaacatggct tttcaacttt aggtgatgtg agaaatttct ttgaacacat tctctccact 120 aattttggta gaagctattt tatttccact tcagaaacac ccacagcagc tattcgcttc 180 tttggtagct ggttacggga atatgtacca gagcacccca gaagggctta cttatatgaa 240 attcgtgccg accaacactt ttacaatgcc cgcgccactg gggagaactt gttagattta 300 atgcgtcaaa gacaagtagt atttgactct ggtgatcgag aaatggcaca aatgggaatt 360 agagctttac gcacttcctt tgcgtatcaa cgtgaatggt ttaccgatgg tccaattgca 420 gcagctaatg tccgtagtgc ttggctagta gatgctgttc ccgttgaacc tggtcatgct 480 caccacccgg ctggtcgtgt tgtagagact actagaatta atgaaccgga aatgcacaac 540 cctcattatc aagagctgca aacccaagcc aatgatcaac catggttgcc aacaccagga 600 atagctactc ctgtacattt atcaattccc caagcagctt ccgttgctga tgtttcggaa 660 ggtacttccg cttcgctatc gtttgcgtgc cctgattgga gtccaccttc tagtaatggt 720 gaaaatccgc tagacaaatg cattgcggaa aagattgata actataacct acaatcctta 780 ccacagtacg ctagcagtgt aaaggaactg gaagatacac cagtatacct aaggggaatt 840 aaaacgcaaa aaacctttat gttacaagca gatccgcaaa ataacaatgt ctttttggtc 900 gaagtaaacc ccaaacaaaa gtccagcttt ccccaaacca tcttcttttg ggatgtttat 960 caacgaattt gtctcaagga tttaactggt gcacaaatca gtctttcgct tactgccttt 1020 actactcagt atgctggtca gctcaaagtg caccttagtg ttagcgcggt taatgccgtg 1080 aaccaaaagt ggaaaatgac accgcaagac agtgcaataa ctcagtttcg ggtctcctct 1140 gaactgttag gtcaaactga aaatggcttg ttccggaata ccaagagtgg tggttcacaa 1200 cacgatttgt atgtatgtcc tttgaaaaat ccacctagtg atttggaaga attacaaata 1260 attgttgatg aatgtactac ccatgcgcag tttgttacta tgcgtgcagc tagcaccttc 1320 tttgttgatg ttcagctagg ctggtattgg aggggttatt actatacccc acaattaagt 1380 ggttggtctt atcagatgaa aacaccagat ggacagatat tctatgatct aaaaacttcg 1440 aaaatcttct ttgtccagga caaccaaaac gtgttctttc tccataataa actcaacaaa 1500 caaactggtt acagctggga ttgggtagaa tggctaaaac atgacatgaa tgaggacaaa 1560 gacgaaaact ttaaatggta cttttcgcgt gatgacctta ccattccttc cgttgaaggg 1620 cttaacttcc gccacattcg ctgttacgct gacaaccagc agttaaaggt gatcataagc 1680 ggttcacgtt ggggcggttg gtactccact tacgataaag ttgaaagtaa tgtcgaagat 1740 aagattttgg tcaaagatgg ttttgatcgc ttt 1773
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows an immunoblot that demonstrates both production of the
CARDS toxin and anti-CARDS antibodies in three patients during infection with Mycoplasma pneumoniae.
Figure 2 shows ADP-ribosylation of G proteins in HEp-2 cells following incubation with CARDS protein. Lane 1 : HEp-2 cells in medium alone followed by preparation of cell free extract and addition of CARDS protein. Lane 2: HEp-2 cells
pretreated with CARDS protein, followed by preparation of cell free extract and addition of CARDS protein. The marked reduction in ADP-ribosylation of specific proteins in the CARDS protein-pretreated cells is indicated by arrows. Also, ADP- ribosylation of other Hep-2 cell proteins is diminished (lane 2). Figure 3 shows an ELISA and an immunoblot employing rDl as antigen that demonstrates production of anti-CARDS antibodies in sequential serum samples of two patients infected with Mycoplasma pneumoniae.
Figures 4A-B. Vacuolating effect of CARDS toxin on monolayers of CHO cells and HeLa cells. A. CHO cells: 10 μg/ml; panels start top, left to right; control non-intoxicated cells; then CARDS toxin-treated cells at 16 hours, 24 hours, 32 hours and 40 hours after exposure. B. HeLa cells: 10 μg/ml, panels start top, left to right; control non-intoxicated cells; then CARDS toxin-treated cells at 16 hours, 36 hours, 54 hours and 72 hours after exposure.
SUMMARY OF THE INVENTION
The present invention provides Mycoplasma pneumoniae toxin (CARDS toxin) from subjects infected with Mycoplasma pneumoniae. In particular, the present invention provides a polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:2 (Sl isolate), a polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO: 3 (JL isolate), a polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:4 (RJLl isolate), a polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:5(L2 isolate), a polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO: 1 (reference sequence), and/or a polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:6 (composite sequence), either individually or in any combination.
The present invention further provides biologically active fragments of the polypeptides of this invention, as well as antibodies that specifically bind the polypeptides and/or fragments of the polypeptides of this invention.
Further provided are nucleotide sequences that encode the polypeptides and fragments of this invention. In particular, the present invention provides an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotide sequence of SEQ ID NO:8 (Sl isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotide sequence of SEQ ID NO: 10 (JL isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotide sequence of SEQ ID NO: 11 (RJL 1 isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotides sequence of SEQ ID NO:9 (L2 isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotides sequence of SEQ ID NO:7 (reference sequence), and/or an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotide sequence of SEQ ID NO:76 (composite sequence), either individually or in any combination.
Additionally provided is a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence that encodes an amino acid sequence comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of the amino acid sequence of SEQ ID NO:2 (Sl isolate), a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence that encodes an amino acid sequence comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of the amino acid sequence of SEQ ID NO:3 (JL isolate), a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence that encodes an amino acid sequence comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of the amino acid sequence of SEQ ID NO:4 (RJLl isolate), a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence that encodes an amino acid comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically
active fragment of an amino acid sequence of SEQ ID NO: 5 (L2) isolate, a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence that encodes an amino acid comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of an amino acid sequence of SEQ ID NO: 1 (reference sequence) isolate, and/or a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence encoding an amino acid sequence comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of the amino acid sequence of SEQ ID NO: 6 (composite sequence). Further provided herein is a nucleic acid that is the complement of each and any of the nucleic acids of this invention.
Also provided herein are probes and primers for the detection and/or amplification of the nucleic acids of this invention, including TTTTTACATATGCCAAATCCTGTT (SEQ ID NO: 12; Primer 1), CGTTAAAGGATCCTCGCTAAAAGCGATC (SEQ ID NO: 13; Primer 2), CTAGCCAAGCACTACGGACATTAGC (SEQ ID NO: 14; (Primer 3), CGTAGTGCTTGGCTAGTAGATGCTGTT (SEQ ID NO: 15; (Primer 4), CCTGGTGTTGGCAACCATGGTTG (SEQ ID NO: 16; (Primer 5), GATCAACCATGGTTGCCAACACC (SEQ ID NO: 17; (Primer 6), AAGGTGGACTCCAATCAGGGCACG (SEQ ID NO: 18; (Primer 7), CGTGCCCTGATTGGAGTCCACCTT (SEQ ID NO: 19; (Primer 8), GCGGTGTCATTTTCCACTTTTGG (SEQ ID NO:20; (Primer 9), CCAAAAGTGGAAAATGACACCGC (SEQ ID NO:21; (Primer 10), GGTATTCCAGAACAAGCCATTT (SEQ ID NO:22; (Primer 11), GCTTGTTCTGGAATACCAAGAGTG (SEQ ID NO:23; (Primer 12), ATAACCCCTATACCAGCCTAG (SEQ ID NO:24; (Primer 13),
GCTGGTATTGGAGGGGTTATTACTATACCCCACAATTAAGTGGTTGGTCTTA TCAGATG (SEQ ID NO:25; (Primer 14), CCATTCTACCCAATCCCAGCTGTA (SEQ ID NO:26; (Primer 15), and TACAGCTGGGATTGGGTAGAATGG (SEQ ID NO:27; (Primer 16).
Additionally provided in this invention are methods of diagnosing infection by M. pneunomoniae in a subject comprising contacting a biological sample from the subject with a polypeptide or antibody of this invention under conditions whereby an antigen/antibody complex can form; and detecting formation of an antigen/antibody complex, thereby diagnosing infection by M. pneumoniae in the subject.
Methods are also provided herein for diagnosing infection by M. pneumoniae in a subject comprising contacting a biological sample from the subject with a nucleic acid of this invention under conditions whereby hybridization of nucleic acid molecules can occur; and detecting hybridization, thereby diagnosing infection by M. pneumoniae in the subject.
In additional embodiments, the present invention provides a method of detecting the presence of the CARDS toxin of this invention in a sample (e.g., a biological sample from a subject or a food or water sample or other sample that could contain CARDS toxin) and/or a subject and/or diagnosing infection by M. pneumoniae in a subject, comprising contacting the sample with surfactant protein A (SP-A) under conditions whereby a toxin/SP-A complex can form; and detecting formation of the toxin/SP-A complex, thereby detecting the presence of CARDS toxin in a sample and/or diagnosing infection by M. pneumoniae in a subject.
Furthermore, the present invention provides methods of eliciting an immune response in a subject, comprising administering to the subject an effective amount of a polypeptide and/or biologically active fragment of a polypeptide of this invention and/or by administering to a subject an effective amount of a nucleic acid comprising a nucleotide sequence encoding a polypeptide and/or biologically active fragment of a polypeptide of this invention. The present invention additionally provides methods of providing passive immunity to a subject, comprising administering to the subject an effective amount of an antibody of this invention.
In further embodiments, the present invention provides methods of treating and/or preventing infection by M. pneumoniae in a subject, comprising administering to the subject an effective amount of a polypeptide of this invention and/or an effective
amount of a biologically active fragment of a polypeptide of this invention and/or an effective amount of a nucleic acid comprising a nucleotide sequence encoding a polypeptide of this invention and/or an effective amount of a nucleic acid comprising a nucleotide sequence encoding a biologically active fragment of a polypeptide of this invention. Also provided are methods of treating and/or preventing infection by M. pneumoniae in a subject, comprising administering to the subject an effective amount of an antibody of this invention.
In yet further embodiments, the present invention provides methods of identifying substances having the ability to inhibit or enhance various activities of the polypeptides and/or biologically active fragments of this invention, including but not limited to, binding activity, translocating activity, immunogenic activity, ADP- ribosylating activity, cytopathology inducing activity and/or toxin activity. These methods are carried out by contacting the polypeptides and/or biologically active fragments of this invention and/or the nucleic acids of this invention, with the substance to be tested for inhibitory or enhancing activity, under conditions whereby the inhibition or enhancement of activity can be detected, as described herein.
Various other objectives and advantages of the present invention will become apparent from the following detailed description.
DETAILED DESCRIPTION OF THE INVENTION
As used herein, "a," "an" or "the" can mean one or more than one. For example, "a" cell can mean a single cell or a multiplicity of cells.
The term "about," as used herein when referring to a measurable value such as an amount of virus {e.g., titer), dose {e.g., an amount of a non-viral vector), time, temperature, and the like, is meant to encompass variations of ± 20%, ± 10%, ± 5%, ± 1%, ± 0.5%, or even ± 0.1% of the specified amount.
The present invention is based on the discovery of polypeptides of Mycoplasma pneumoniae having the respective amino acid sequence described herein and encoded by the nucleic acids described herein and the identification of activities of these polypeptides and various fragments or "domains" of these polypeptides.
Characterization of these polypeptides and fragments indicates that the newly identified protein is a toxin of Mycoplasma pneumoniae and it is referred to herein as community acquired respiratory distress syndrome (CARDS) toxin. The CARDS toxin is a cell- associated toxin. Thus, the present invention provides an isolated polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:2 (Sl isolate), an isolated polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:3 (JL isolate), an isolated polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:4 (RJLl isolate), an isolated polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:5 (L2 isolate), an isolated polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:1 (reference sequence), and/or an isolated polypeptide comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:6 (composite sequence), either individually or in any combination.
The present invention further provides biologically active fragments of the polypeptides of this invention, as well as antibodies that specifically bind the polypeptides and/or fragments of the polypeptides of this invention.
Further provided are nucleotide sequences that encode the polypeptides and fragments of this invention. In particular, the present invention provides an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotide sequence of SEQ ID NO: 8 (Sl isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotide sequence of SEQ ID NO: 10 (JL isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotide sequence of SEQ ID NO: 11 (RJLl isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotides sequence of SEQ ID NO:9 (L2 isolate), an isolated nucleic acid comprising, consisting essentially of, and/or consisting of the nucleotides sequence of SEQ ID NO:7 (reference sequence), and/or an isolated nucleic acid comprising, consisting essentially of, and/or consisting
of the nucleotide sequence of SEQ ID NO:76 (composite sequence), either individually or in any combination.
Additionally provided is a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence that encodes an amino acid sequence comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of the amino acid sequence of SEQ ID NO:2 (Sl isolate), a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence that encodes an amino acid sequence comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of the amino acid sequence of SEQ ID NO:3 (JL isolate), a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence that encodes an amino acid sequence comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of the amino acid sequence of SEQ ID NO:4 (RJLl isolate), a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotides sequence that encodes an amino acid comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of an amino acid sequence of SEQ ID NO: 5 (L2 isolate), and/or a nucleic acid comprising, consisting essentially of, a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotides sequence that encodes an amino acid comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of an amino acid sequence of SEQ ID NO:1 (reference sequence), and/or a nucleic acid comprising, consisting essentially of, and/or consisting of a nucleotide sequence encoding an amino acid sequence comprising, consisting essentially of, and/or consisting of the amino acid sequence or a biologically active fragment of the amino acid sequence of SEQ ID NO:6 (composite sequence). Further provided herein is a nucleic acid that is the complement of each and any of the nucleic acids of this invention.
Also provided herein are probes and primers for the detection of the nucleic acids of this invention, including TTTTTAC ATATGCC AAATCCTGTT (SEQ ID NO: 12; Primer 1), CGTTAAAGGATCCTCGCTAAAAGCGATC (SEQ ID NO: 13;
Primer 2), CTAGCCAAGCACTACGGACATTAGC (SEQ ID NO: 14; (Primer 3), CGTAGTGCTTGGCTAGTAGATGCTGTT (SEQ ID NO: 15; (Primer 4), CCTGGTGTTGGCAACCATGGTTG (SEQ ID NO: 16; (Primer 5), GATCAACCATGGTTGCCAACACC (SEQ ID NO: 17; (Primer 6), AAGGTGGACTCCAATCAGGGCACG (SEQ ID NO: 18; (Primer 7), CGTGCCCTGATTGGAGTCCACCTT (SEQ ID NO: 19; (Primer 8), GCGGTGTCATTTTCCACTTTTGG (SEQ ID NO:20; (Primer 9), CCAAAAGTGGAAAATGACACCGC (SEQ ID N0:21; (Primer 10), GGTATTCCAGAACAAGCCATTT (SEQ ID NO:22; (Primer 11), GCTTGTTCTGGAATACCAAGAGTG (SEQ ID NO:23; (Primer 12), ATAACCCCTATACCAGCCTAG (SEQ ID NO:24; (Primer 13), GCTGGTATTGGAGGGGTTATTACTATACCCCACAATTAAGTGGTTGGTCTTA TCAGATG (SEQ ID NO:25; (Primer 14), CCATTCTACCCAATCCCAGCTGTA (SEQ ID NO:26; (Primer 15), and TACAGCTGGGATTGGGTAGAATGG (SEQ ID NO:27; (Primer 16), alone and/or in any combination. The present invention further provides as additional embodiments without limitation, other oligonucleotides listed in this application and in the Sequence Listing attached hereto.
"Isolated" as used herein means the nucleic acid or polypeptide of this invention is sufficiently free of contaminants or cell components with which nucleic acids or polypeptides normally occur. "Isolated" does not mean that the preparation is technically pure (homogeneous), but it is sufficiently pure to provide the nucleic acid or polypeptide in a form in which it can be used therapeutically.
"Epitope" or "antigenic epitope" or "antigenic peptide" as used herein means a specific amino acid sequence of limited length which, when present in the proper conformation, provides a reactive site for an antibody or T cell receptor. The identification of epitopes on antigens can be carried out by immunology protocols that are well known in the art.
As used herein, the term "polypeptide" or "protein" is used to describe a chain of amino acids that correspond to those encoded by a nucleic acid. A polypeptide of this invention can be a peptide, which usually describes a chain of amino acids of from
two to about 30 amino acids. The term polypeptide as used herein also describes a chain of amino acids having more than 30 amino acids and can be a fragment or domain of a protein or a full length protein. Furthermore, as used herein, the term polypeptide can refer to a linear chain of amino acids or it can refer to a chain of amino acids that has been processed and folded into a functional protein. It is understood, however, that 30 is an arbitrary number with regard to distinguishing peptides and polypeptides and the terms can be used interchangeably for a chain of amino acids. The polypeptides of the present invention are obtained by isolation and purification of the polypeptides from cells where they are produced naturally, by enzymatic (e.g., proteolytic) cleavage, and/or recombinantly by expression of nucleic acid encoding the polypeptides or fragments of this invention. The polypeptides and/or fragments of this invention can also be obtained by chemical synthesis or other known protocols for producing polypeptides and fragments.
The amino acid sequences disclosed herein are presented in the amino to carboxy direction, from left to right. Nucleotide sequences are presented herein by single strand only, in the 5' to 3' direction, from left to right. However, it is intended that the nucleic acids of this invention can be either single or double stranded (i.e., including the complementary nucleic acid). A nucleic acid of this invention can be the complement of a nucleic acid described herein. A "biologically active fragment" includes a polypeptide of this invention that comprises a sufficient number of amino acids to have one or more of the biological activities of the polypeptides of this invention. Such biological activities can include, but are not limited to, in any combination, binding activity, translocating activity, immunogenic activity, ADP-ribosylating activity, and/or cytopathology inducing activity, as well as any other activity now known or later identified for the polypeptides and/or fragments of this invention. A fragment of a polypeptide of this invention can be produced by methods well known and routine in the art. Fragments of this invention can be produced, for example, by enzymatic or other cleavage of naturally occurring peptides or polypeptides or by synthetic protocols that are well known. Such fragments can be tested for one or more of the biological activities of this invention according to
the methods described herein, which are routine methods for testing activities of polypeptides, and/or according to any art-known and routine methods for identifying such activities. Such production and testing to identify biologically active fragments of the polypeptides described herein would be well within the scope of one of ordinary skill in the art and would be routine.
Fragments of the polypeptides of this invention are preferably at least about ten amino acids in length and retain one or more of the biological activities and/or the immunological activities of the CARDS toxin. Examples of the fragments of this invention include, but are not intended to be limited to, the following fragments identified by the amino acid number as shown in the Sequence Listing for each of the isolates of SEQ ID NO:2 (SI isolate), SEQ ID NO:3 (JL isolate), SEQ ID NO:4 (RJLl isolate), SEQ ID NO:5 ( L2 isolate), SEQ ID NO:6 (composite sequence) and SEQ ID NO:1 (reference sequence): Amino acids 1-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60- 70, 70-80, 80-90, 90-100, 110-120, 120-130, 130-140, 140-150, 150-160, 160-170, 170-180, 180-190, 190-200, 200-210, 210-220, 220-230, 230-240, 240-250, 250-260, 260-270, 270-280, 280-290, 290-300, 300-310, 310-320, 320-330, 330-340, 340-350, 350-360, 360-370, 370-380, 380-390, 390-400, 400-410, 410-420, 420-430, 430-440, 440-450, 450-460, 460-470, 470-480, 480-490, 490-500, 500-510, 510-520, 520-530, 530-540, 540-550, 550-560, 560-570, 570-580, 580-591, 1-25, 1-50, 1-67, 1-75, 1-100, 1-125, 1-135, 1-145, 1-150, 1-160, 1-170, 1-180, 1-190, 1-200, 1-250, 1-300, 1-350, 1- 400, 1-450, 1-500, 68-180, 183-123, 500-591, 450-591, 400-591, 350-591, 300-591, 250-591, 200-591, 150-591, 100-591, 50-591, 50-100, 100-200, 200-300, 300-400, 400-500, 500-591, 550-591.
It is understood that this list is exemplary only and that a fragment of this invention can be any amino acid sequence containing any combination of contiguous amino acids that are numbered in the Sequence Listing as amino acids 1 through 591 even if that combination is not specifically recited as an example herein. It is also understood that these fragments can be combined in any order or amount. For example, fragment 1-10 can be combined with fragment 10-20 to produce a fragment of amino acids 1-20. Also fragments can be present in multiple numbers and in any combination
in a fragment of this invention. Thus, for example, fragment 1-150 can be combined with a second fragment 1-150 and/or combined with fragment 400-500 to produce a fragment of this invention. Other exemplary fragments of this invention include the domains of the CARDS toxin described herein [e.g., domain 1 (N terminal 249 amino acids), domain 2 (256 amino acids) and domain 3 (247 amino acids at carboxy terminus)].
The term "homology" as used herein refers to a degree of similarity between two or more sequences. There may be partial homology or complete homology (i.e., identity). A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially homologous." The inhibition of hybridization of the completely complementary sequence to the target sequence can be examined using a hybridization assay (Southern or Northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or hybridization probe will compete for and inhibit the binding of a completely homologous sequence to the target sequence under conditions of low stringency, as this term is known in the art. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (i.e., selective) interaction. The absence of non-specific binding can be tested by the use of a second target sequence that lacks even a partial degree of complementarity (e.g., less than about 30% identity). In the absence of non-specific binding, the probe will not hybridize to the second non-complementary target sequence.
The term "hybridization" as used herein refers to any process by which a first strand of nucleic acid binds with a second strand of nucleic acid through base pairing. Nucleic acids encoding the polypeptides and/or fragments of this invention can be detected by DNA-DNA or DNA-RNA hybridization or amplification using probes, primers and/or fragments of polynucleotides encoding the polypeptides and/or fragments of this invention and/or designed to detect and/or amplify the nucleic acids of this invention.
The term "hybridization complex" as used herein refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between
complementary G and C bases and between complementary A and T bases; these hydrogen bonds may be further stabilized by base stacking interactions. The two complementary nucleic acid sequences hydrogen bond in an antiparallel configuration. A hybridization complex may be formed in solution (e.g., Cot or Rot analysis) or between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells and/or nucleic acids have been fixed).
The term "nucleotide sequence" refers to a heteropolymer of nucleotides or the sequence of these nucleotides. The terms "nucleic acid," "oligonucleotide" and "polynucleotide" are also used interchangeably herein to refer to a heteropolymer of nucleotides. Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene. Nucleic acids of this invention can comprise a nucleotide sequence that can be identical in sequence to the sequence which is naturally occurring or, due to the well-characterized degeneracy of the nucleic acid code, can include alternative codons which encode the same amino acid as that which is found in the naturally occurring sequence. Furthermore, nucleic acids of this invention can comprise nucleotide sequences that can include codons which represent conservative substitutions of amino acids as are well known in the art, such that the biological activity of the resulting polypeptide and/or fragment is retained.
The term "probe" or "primer" includes naturally occurring or recombinant or chemically synthesized single- and/or double-stranded nucleic acids. They can be labeled for detection by nick translation, Klenow fill-in reaction, PCR or other methods well known in the art. Probes and primers of the present invention, their preparation and/or labeling are described in Sambrook et al. 1989. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY and Ausubel et al. 1989. Current Protocols in
Molecular Biology, John Wiley & Sons, New York N. Y., both of which are incorporated herein by reference in their entirety for these teachings.
The term "stringent" as used here refers to hybridization conditions that are commonly understood in the art to define the conditions of the hybridization procedure. Stringency conditions can be low, high or medium, as those terms are commonly know in the art and well recognized by one of ordinary skill. In various embodiments, stringent conditions can include, for example, highly stringent (i.e., high stringency) conditions (e.g., hybridization to filter-bound DNA in 0.5 M NaHPO4, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 650C, and washing in O.lxSSC/0.1% SDS at 680C), and/or moderately stringent (i.e., medium stringency) conditions (e.g., washing in 0.2xSSC/0.1% SDS at 420C).
"Amplification" as used herein includes the production of multiple copies of a nucleic acid molecule and is generally carried out using polymerase chain reaction (PCR) and/or other amplification technologies as are well known in the art (Dieffenbach and Dveksler. 1995. PCR Primer, a Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y.).
As used herein, the term "antibody" includes intact immunoglobin molecules as well as fragments thereof, such as Fab, F(ab')2, and Fc, which are capable of binding the epitopic determinant of an antigen (i.e., antigenic determinant). Antibodies that bind the polypeptides of this invention are prepared using intact polypeptides or fragments containing small peptides of interest as the immunizing antigen. The polypeptide or fragment used to immunize an animal can be derived from enzymatic cleavage, recombinant expression, isolation from biological materials, synthesis, etc., and can be conjugated to a carrier protein, if desired. Commonly used carriers that are chemically coupled to peptides and proteins for the production of antibody include, but are not limited to, bovine serum albumin, thyroglobulin and keyhole limpet hemocyanin. The coupled peptide or protein is then used to immunize the animal (e.g., a mouse, rat, or rabbit). The polypeptide or peptide antigens can also be administered with an adjuvant, as described herein and as otherwise known in the art. The term "antibody" or "antibodies" as used herein refers to all types of
immunoglobulins, including IgG, IgM, IgA, IgD, and IgE. The antibody can be monoclonal or polyclonal and can be of any species of origin, including, for example, mouse, rat, rabbit, horse, goat, sheep or human, or can be a chimeric or humanized antibody. See, e.g., Walker et al., Molec. Immunol. 26:403-11 (1989). The antibodies can be recombinant monoclonal antibodies produced according to the methods disclosed in U.S. Patent No. 4,474,893 or U.S. Patent No. 4,816,567. The antibodies can also be chemically constructed according to the method disclosed in U.S. Patent No. 4,676,980. The antibody can further be a single chain antibody or bispecific antibody. Antibody fragments included within the scope of the present invention include, for example, Fab, F(ab')2, and Fc fragments, and the corresponding fragments obtained from antibodies other than IgG. Such fragments can be produced by known techniques. For example, F(ab')2 fragments can be produced by pepsin digestion of the antibody molecule, and Fab fragments can be generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries can be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse et al., (1989) Science 254:1275-1281).
Monoclonal antibodies can be produced in a hybridoma cell line according to the technique of Kohler and Milstein, (1975) Nature 265:495-97. For example, a solution containing the appropriate antigen can be injected into a mouse and, after a sufficient time, the mouse sacrificed and spleen cells obtained. The spleen cells are then immortalized by fusing them with myeloma cells or with lymphoma cells, typically in the presence of polyethylene glycol, to produce hybridoma cells. The hybridoma cells are then grown in a suitable medium and the supernatant screened for monoclonal antibodies having the desired specificity. Monoclonal Fab fragments can be produced in bacterial cell such as E. coli by recombinant techniques known to those skilled in the art. See, e.g., W. Huse, (1989) Science 246:1275-81.
Antibodies can also be obtained by phage display techniques known in the art or by immunizing a heterologous host with a cell containing an epitope of interest.
The term "sample" as used herein is used in its broadest sense. A biological sample suspected of containing a polypeptide, fragment, antibody and/or nucleic acid of this invention can be any biological fluid, an extract from a cell, an extracellular matrix isolated from a cell, a cell (in solution or bound to a solid support), a tissue, a tissue print, and the like.
"Effective amount" refers to an amount of a compound or composition of this invention that is sufficient to produce a desired effect, which can be a therapeutic effect. The effective amount will vary with the age, general condition of the subject, the severity of the condition being treated, the particular agent administered, the duration of the treatment, the nature of any concurrent treatment, the pharmaceutically acceptable carrier used, and like factors within the knowledge and expertise of those skilled in the art. As appropriate, an "effective amount" in any individual case can be determined by one of ordinary skill in the art by reference to the pertinent texts and literature and/or by using routine experimentation. (See, for example, Remington, The Science And Practice of Pharmacy (20th ed. 2000)).
A "pharmaceutically acceptable" component such as a salt, carrier, excipient or diluent of a composition according to the present invention is a component that (i) is compatible with the other ingredients of the composition in that it can be combined with the compositions of the present invention without rendering the composition unsuitable for its intended purpose, and (ii) is suitable for use with subjects as provided herein without undue adverse side effects (such as toxicity, irritation, and allergic response). Side effects are "undue" when their risk outweighs the benefit provided by the composition. Non-limiting examples of pharmaceutically acceptable components include, without limitation, any of the standard pharmaceutical carriers such as phosphate buffered saline solutions, water, emulsions such as oil/water emulsion, microemulsions and various types of wetting agents.
"Treat," "treating" or "treatment" refers to any type of action that imparts a modulating effect, which, for example, can be a beneficial effect, to a subject afflicted with a disorder, disease or illness, including improvement in the condition of the
subject {e.g., in one or more symptoms), delay in the progression of the condition, prevention or delay of the onset of the disorder, and/or change in clinical parameters, disease or illness, etc., as would be well known in the art.
A subject of this invention includes any animal susceptible to infection by Mycoplasma pneumoniae. Such a subject can be a mammal and in particular embodiments, is a human. As used herein, a "subject" or "subject in need thereof is a subject known to be, or suspected of being, infected with Mycoplasma pneumoniae. A subject of this invention can also include a subject not previously known or suspected to be infected by Mycoplasma pneumoniae or in need of treatment for Mycoplasma pneumoniae infection. For example, a subject of this invention can be administered the compositions of this invention even if it is not known or suspected that the subject is infected with Mycoplasma pneumoniae (e.g., prophylactically). A subject of this invention is also a subject known or believed to be at risk of infection by Mycoplasma pneumoniae.
In certain embodiments, the fragments and/or polypeptides of this invention can be fused with a "carrier" protein or peptide to produce a fusion protein. For example, the carrier protein or peptide can be fused to a polypeptide and/or fragment of this invention to increase the stability thereof (e.g., decrease the turnover rate) in the cell and/or subject. Exemplary carrier proteins include, but are not limited to, glutathione-S-transferase or maltose-binding protein. The carrier protein or peptide can alternatively be a reporter protein. For example, the fusion protein can comprise a polypeptide and/or fragment of this invention and a reporter protein or peptide {e.g., Green Fluorescent Protein, β-glucoronidase, β-galactosidase, luciferase, and the like) for easy detection of transformed cells and transgene expression. As a further alternative, the fusion protein attached to the polypeptides and/or fragments and a carrier protein or peptide can be targeted to a subcellular compartment of interest, i.e., to affect the co-localization of the polypeptide and/or fragment. Any suitable carrier
protein as is well known in the art can be used to produce a fusion protein of this invention.
The polypeptides and/or fragments of the present invention can 1) be used in assays to determine the biological activity of other proteins or peptides; 2) be included in a panel of multiple proteins for high-throughput screening; 3) be used to raise antibodies or to elicit an immune response; 4) be used as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its binding partner or receptor) in biological fluids; and 5) be used as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state). Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products. Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Sambrook et al., eds. (1989) and Methods in Enzymology: Guide to Molecular Cloning Techniques, Academic Press, Berger and Kinimel eds. (1987).
A variety of protocols for detecting the presence of and/or measuring the amount of polypeptides, fragments and/or peptides in a sample, using either polyclonal or monoclonal antibodies specific for the polypeptide, fragment and/or peptide are known in the art. Examples of such protocols include, but are not limited to, enzyme immunoassays (EIA), agglutination assays, immunoblots (Western blot; dot/slot blot, etc.), radioimmunoassays (RIA), immunodiffusion assays, chemiluminescence assays, antibody library screens, expression arrays, enzyme-linked immunosorbent assays (ELISA), radioimmunoassays (RIA), immunoprecipitation, Western blotting, competitive binding assays, immunofluorescence, immunohistochemical staining precipitation/flocculation assays and fluorescence-activated cell sorting (FACS). These and other assays are described, among other places, in Hampton et al. {Serological
Methods, a Laboratory Manual, APS Press, St Paul, Minn (1990)) and Maddox et al. (J Exp. Med. 158:1211-1216 (1993)).
Furthermore, a number of assays for detection and/or amplification of nucleic acid sequences are well known in the art. Additionally, a wide variety of labeling and conjugation techniques are known in the art that are used in various nucleic acid detection and amplification assays. Methods for producing labeled hybridization probes and/or PCR or other ligation primers for detecting and/or amplifying nucleic acid sequences can include, for example, oligolabeling, nick translation and end-labeling, as well as other well known methods. Alternatively, nucleic acid sequences encoding the polypeptides of this invention, and/or any functional fragment thereof, can be cloned into a plasmid or vector for detection and amplification. Such plasmids and vectors are well known in the art and are commercially available. It is also contemplated that the methods of this invention can be conducted using a variety of commercially-available kits (e.g., Pharmacia & Upjohn; Promega; U.S. Biochemical Corp.). Suitable reporter molecules or labels, which can be used for ease of detection, include, for example, radionuclides, enzymes, fluorescence agents, chemiluminescence agents and chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles and the like as are well known in the art.
The present invention further includes isolated polypeptides, peptides, proteins, fragments, domains and/or nucleic acid molecules that are substantially equivalent to those described for this invention. As used herein, "substantially equivalent" can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an undesirable adverse functional dissimilarity between reference and subject sequences. In some embodiments, this invention can include substantially equivalent sequences that have an adverse functional dissimilarity. For purposes of the present invention, sequences having equivalent biological activity and equivalent expression characteristics are considered substantially equivalent. The invention further provides homologs, as well as methods of obtaining homologs, of the polypeptides and/or fragments of this invention from other strains of
Mycoplasma and/or other organisms. As used herein, an amino acid sequence or protein is defined as a homolog of a polypeptide or fragment of the present invention if it shares significant homology to one of the polypeptides and/or fragments of the present invention. Significant homology means at least 75%, 80%, 85%, 90%, 95%, 98% and/or 100% homology with another amino acid sequence. Specifically, by using the nucleic acids disclosed herein as a probe or as primers, and techniques such as PCR amplification and colony/plaque hybridization, one skilled in the art can identify homologs of the polypeptides and/or fragments of this invention in Mycoplasma and/or other organisms. The present invention also provides an antibody that specifically binds the polypeptides and/or biologically active fragments of this invention, as well as a method of making an antibody specific for a polypeptide and/or fragment of this invention comprising: a) immunizing an animal with a polypeptide and/or fragment of this invention under conditions whereby the animal produces antibodies that specifically bind the polypeptide and/or fragment of this invention; and b) removing biological materials comprising the antibodies from the animal. Also provided herein is an antibody produced by the methods set forth herein.
Antibodies of this invention can be generated using methods that are well known in the art. Such antibodies and immunoglobulin molecules of this invention can include, but are not limited to, polyclonal antibodies, monoclonal antibodies, chimeric antibodies, humanized antibodies, single chain antibodies (e.g., scFv), Fab fragments, and fragments produced by a Fab expression library.
In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing a desired antibody are well known in the art. Any animal known to produce antibodies can be immunized with a polypeptide, fragment and/or antigenic epitope of this invention. Methods for immunization of animals to produce antibodies are well known in the art. For example, such methods can include subcutaneous or interperitoneal injection of the polypeptide, fragment and/or antigenic epitope of this invention.
The polypeptide, fragment or antigenic epitope that is used as an immunogen can be modified or administered in an adjuvant in order to increase antigenicity. Methods of increasing the antigenicity of a protein or peptide are well known in the art and include, but are not limited to, coupling the antigen with a heterologous protein (such as globulin or β-galactosidase) or through the inclusion of an adjuvant during immunization.
For example, for the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others, can be immunized by injection with the polypeptides and/or fragments of this invention, with or without a carrier protein. Additionally, various adjuvants may be used to increase the immunological response. Such adjuvants include, but are not limited to, Freund's complete and incomplete adjuvants, mineral gels such as aluminum hydroxide, and surface-active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette- Guerin) and Corynebacterium parvum are especially preferable.
Polypeptides, peptides and/or fragments of this invention used as antigens to produce the antibodies of this invention can have an amino acid sequence consisting of at least five amino acids and in certain embodiments, at least ten amino acids. In one embodiment, the antigen is identical to a portion of the amino acid sequence of the natural protein, and it can contain the entire amino acid sequence of a small, naturally-occurring molecule. Short stretches of the polypeptides and/or fragments of this invention can be fused with all or a fragment of another protein that acts as a carrier protein (e.g., keyhole limpet hemocyanin) and antibodies can be produced against the chimeric polypeptide or peptide. Monoclonal antibodies to the polypeptides and/or fragments of this invention are prepared using any technique, which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (Kohler et al. 1975. Nature 256:495-497; Kozbor et al. 1985. J Immunol. Methods 81 :31-
42; Cote et al. 1983. Proc. Natl. Acad. Sci. 80:2026-2030; Cole etal. 1984. Mo/. CellBiol. 62:109-120).
For example, to produce monoclonal antibodies, spleen cells from the immunized animal are removed, fused with myeloma cells, and cultured in selective medium to become monoclonal antibody-producing hybridoma cells, according to techniques routine in the art. Any one of a number of methods well known in the art can be used to identify the hybridoma cell, which produces an antibody with the desired characteristics. These include screening the hybridomas by ELISA assay, Western blot analysis, or radioimmunoassay. Hybridomas secreting the desired antibodies are cloned and the class and subclass are identified using standard procedures known in the art.
For polyclonal antibodies, antibody-containing serum is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using any of the well known procedures as described herein.
The present invention further provides antibodies of this invention in detectably labeled form. Antibodies can be detectably labeled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescence labels (such as FITC or rhodamine, etc.), paramagnetic atoms, gold beads, etc. Such labeling procedures are well-known in the art. The labeled antibodies of the present invention can be used for in vitro, in vivo, and in situ assays to identify a polypeptide and/or fragment of this invention in a sample.
In some embodiments, the present invention further provides the above- described antibodies immobilized on a solid support (e.g., beads, plates, slides or wells formed from materials such as latex or polystyrene). Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir et al., Handbook of Experimental Immunology 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986)). Antibodies can likewise be conjugated to detectable groups such as radiolabels (e.g., 35S, 1251, 131I), enzyme labels (e.g.,
horseradish peroxidase, alkaline phosphatase), and fluorescence labels (e.g., fluorescein) in accordance with known techniques. Determination of the formation of an antibody/antigen complex in the methods of this invention can be by detection of, for example, precipitation, agglutination, flocculation, radioactivity, color development or change, fluorescence, luminescence, etc., as is well know in the art.
In addition, techniques developed for the production of chimeric antibodies or humanized antibodies by splicing mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity can be used (Morrison et al. 1984. Proc. Natl. Acad. ScL 81:6851-6855; Neuberger et al. 1984. Nature 312:604-608; Takeda et al. 1985. Nature 314:452-454). Alternatively, techniques described for the production of single chain antibodies can be adapted, using methods known in the art, to produce single chain antibodies specific for the polypeptides and fragments of this invention. Antibodies with related specificity, but of distinct idiotypic composition, can be generated by chain shuffling from random combinatorial immunoglobin libraries (Burton 1991. Proc. Natl. Acad. ScL 88:11120- 3).
Antibody fragments that specifically bind the polypeptides and/or fragments of this invention can also be generated. For example, such fragments include, but are not limited to, the F(ab')2 fragments that can be produced by pepsin digestion of the antibody molecule and the Fab fragments that can be generated by reducing the disulfide bridges of the F(ab ')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse et al. 1989. Science 254:1275-1281).
Various immunoassays can be used for screening to identify antibodies having the desired specificity for the proteins and peptides of this invention. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificity are well known in the art. Such immunoassays typically involve the measurement of complex formation between an antigen and its specific antibody (e.g., antigen/antibody complex formation). For example, a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-
interfering epitopes on the proteins or peptides of this invention can be used, as well as a competitive binding assay.
It is further contemplated that the present invention provides kits for detection of the polypeptides and/or fragments of this invention in a sample. In one embodiment, the kit can comprise one or more antibodies of this invention, along with suitable buffers, wash solutions and/or other reagents for the detection of antibody/antigen complex formation. In an alternative embodiment, a kit of this invention can comprise a polypeptide, an antigenic peptide of the polypeptide of this invention, a fragment of this invention and/or an antigenic peptide of a fragment of this invention, along with suitable buffers, wash solutions and/or other reagents for the detection of antibody/antigen complex formation.
The present invention further provides a kit for the detection of nucleic acid encoding the polypeptides and/or fragments of this invention. For example, in one embodiment, the kit can comprise one or more nucleic acids of this invention, along with suitable buffers, wash solutions and/or other reagents for the detection of hybridization complex formation.
It would be well understood by one of ordinary skill in the art that the kits of this invention can comprise one or more containers and/or receptacles to hold the reagents (e.g., antibodies, antigens, nucleic acids) of the kit, along with appropriate buffers and/or wash solutions and directions for using the kit, as would be well known in the art. Such kits can further comprise adjuvants and/or other immunostimulatory or immunomodulating agents, as are well known in the art.
In further embodiments, the nucleic acids encoding the polypeptides and/or fragments of this invention can be part of a recombinant nucleic acid construct comprising any combination of restriction sites and/or functional elements as are well known in the art which facilitate molecular cloning and other recombinant DNA manipulations. Thus, the present invention further provides a recombinant nucleic acid construct comprising a nucleic acid encoding a polypeptide and/or biologically active fragment of this invention.
The present invention further provides a vector comprising a nucleic acid encoding a polypeptide and/or fragment of this invention. The vector can be an expression vector which contains all of the genetic components required for expression of the nucleic acid in cells into which the vector has been introduced, as are well known in the art. The expression vector can be a commercial expression vector or it can be constructed in the laboratory according to standard molecular biology protocols. The expression vector can comprise viral nucleic acid including, but not limited to, vaccinia virus, adenovirus, retrovirus and/or adeno-associated virus nucleic acid. The nucleic acid or vector of this invention can also be in a liposome or a delivery vehicle, which can be taken up by a cell via receptor-mediated or other type of endocytosis. The nucleic acid of this invention can be in a cell, which can be a cell expressing the nucleic acid whereby a polypeptide and/or biologically active fragment of this invention is produced in the cell. In addition, the vector of this invention can be in a cell, which can be a cell expressing the nucleic acid of the vector whereby a polypeptide and/or biologically active fragment of this invention is produced in the cell. It is also contemplated that the nucleic acids and/or vectors of this invention can be present in a host animal (e.g., a transgenic animal), which expresses the nucleic acids of this invention and produces the polypeptides and/or fragments of this invention.
The nucleic acid encoding the polypeptide and/or fragment of this invention can be any nucleic acid that functionally encodes the polypeptides and/or fragments of this invention. To functionally encode the polypeptides and/or fragments (i.e., allow the nucleic acids to be expressed), the nucleic acid of this invention can include, for example, expression control sequences, such as an origin of replication, a promoter, an enhancer and necessary information processing sites, such as ribosome binding sites, RNA splice sites, polyadenylation sites and transcriptional terminator sequences.
Preferred expression control sequences are promoters derived from metallothionine genes, actin genes, immunoglobulin genes, CMV, SV40, adenovirus, bovine papilloma virus, etc. A nucleic acid encoding a selected polypeptide and/or fragment can readily be determined based upon the genetic code for the amino acid sequence of the selected polypeptide and/or fragment and many nucleic acids will
encode any selected polypeptide and/or fragment. Modifications in the nucleic acid sequence encoding the polypeptide and/or fragment are also contemplated. Modifications that can be useful are modifications to the sequences controlling expression of the polypeptide and/or fragment to make production of the polypeptide and/or fragment inducible or repressible as controlled by the appropriate inducer or repressor. Such methods are standard in the art. The nucleic acid of this invention can be generated by means standard in the art, such as by recombinant nucleic acid techniques and by synthetic nucleic acid synthesis or in vitro enzymatic synthesis. In yet further embodiments, the present invention provides a Dl domain of CARDS Toxin comprising, consisting essentially of and/or consisting of the amino acid sequence of SEQ ID NO:69 and/or SEQ ID NO:75, a D2 domain of CARDS Toxin comprising, consisting essentially of, or consisting of the amino acid sequence of SEQ ID NO: 70,and/or a D3 domain of CARDS Toxin comprising, consisting essentially of, and/or consisting of the amino acid sequence of SEQ ID NO:71, in any combination. Further provided herein is an isolated nucleic acid encoding the amino acid sequence of the domains Dl, D2 and D3 of this invention. As one example, a nucleic acid encoding the domain Dl can comprise, consist of and/or consist essentially of the nucleotide sequence of SEQ ID NO:74.
Additionally provided herein are antibodies that specifically bind domain Dl, D2 and/or D3 of the CARDS Toxin of this invention. The domain peptides can be used as antigens for the production of antibodies, which can be polyclonal and/or monoclonal, according to well known protocols. The domain peptides and antibodies can be used in the methods described herein for the detection of M. pneumoniae antibodies and proteins and/or for diagnosis of M. pneumoniae infection, as well as in therapeutic methods to treat M. pneumoniae infection and related diseases as described herein.
The present invention further provides a method of producing a polypeptide and/or biologically active fragment according to the methods set forth in the Examples provided herein, and as are well known in the art for polypeptide synthesis. In one
embodiment, a nucleic acid encoding the polypeptides and/or fragments of this invention can be synthesized according to standard nucleic acid synthesis protocols and the nucleic acid can be expressed according to methods well known for expression of nucleic acid. The resulting polypeptide and/or fragment can then be removed from the expression system by standard isolation and purification procedures and tested for any of the various biological activities described herein according to methods as taught herein as well as methods routine in the art.
The present invention also provides a method for producing the polypeptides and/or biologically active fragments of this invention comprising producing the cells of this invention which contain the nucleic acids or vectors of this invention as exogenous nucleic acid; culturing the cells under conditions whereby the exogenous nucleic acid in the cell can be expressed and the encoded polypeptide and/or fragment can be produced; and isolating the polypeptide and/or fragment from the cell. Thus, it is contemplated that the polypeptides and/or fragments of this invention can be produced in quantity in vitro in either prokaryotic or eukaryotic expression systems as are well known in the art.
As one example, for expression in a prokaryotic system, there are numerous E. coli {Escherichia colϊ) expression vectors known to one of ordinary skill in the art useful for the expression of nucleic acid that encodes polypeptides. Other microbial hosts suitable for use include bacilli, such as Bacillus subtilis, and other enterobacteria, such as Salmonella, Serratia, as well as various Pseudomonas species. These prokaryotic hosts can support expression vectors that will typically contain expression control sequences compatible with the host cell (e.g., an origin of replication). In addition, any number of a variety of well-known promoters can be present, such as the lactose promoter system, a tryptophan (Trp) promoter system, a beta-lactamase promoter system, or a promoter system from phage lambda. The promoters will typically control expression, optionally with an operator sequence and have ribosome binding site sequences for example, for initiating and completing transcription and translation. If necessary, an amino terminal methionine can be provided by insertion of a Met codon 5' and in-frame with the polypeptide. Also, the carboxy-terminal
extension of the polypeptide can be removed using standard oligonucleotide mutagenesis procedures.
The nucleic acid sequences can be expressed in hosts after the sequences have been positioned to ensure the functioning of an expression control sequence. These expression vectors are typically replicable in the host organisms either as episomes or as an integral part of the host chromosomal DNA. Commonly, expression vectors can contain selection markers, e.g., tetracycline resistance or hygromycin resistance, to permit detection and/or selection of those cells transformed with the desired nucleic acid sequences. As another example, for eukaryotic system expression, a yeast expression system can be used. There are several advantages to yeast expression systems. First, evidence exists that polypeptides produced in a yeast expression system exhibit correct disulfide pairing. Second, post-translational glycosylation is efficiently carried out by yeast expression systems. The Saccharomyces cerevisiae pre-pro-alpha-factor leader region (encoded by the MFa-I gene) is routinely used to direct protein secretion from yeast. The leader region of pre-pro-alpha-factor contains a signal peptide and a pro- segment, which includes a recognition sequence for a yeast protease encoded by the KEX2 gene. This enzyme cleaves the precursor protein on the carboxyl side of a Lys- Arg dipeptide cleavage-signal sequence. The polypeptide coding sequence can be fused in- frame to the pre-pro-alpha-factor leader region. This construct is then put under the control of a strong transcription promoter, such as the alcohol dehydrogenase I promoter or a glycolytic promoter. The coding sequence is followed by a translation termination codon, which is followed by transcription termination signals. Alternatively, the coding sequence of interest can be fused to a second polypeptide coding sequence, such as Sj26 or β-galactosidase, used to facilitate purification of the resulting fusion polypeptide by affinity chromatography. The insertion of protease cleavage sites to separate the components of the fusion polypeptide is applicable to constructs used for expression in yeast.
Efficient post-translational glycosylation and expression of recombinant polypeptides can also be achieved in Baculovirus systems in insect cells, as are well known in the art.
In yet further embodiments, the peptides, polypeptides and/or fragments of this invention can be expressed in mammalian cells. Mammalian cells permit the expression of peptides and polypeptides in an environment that favors important post-translational modifications such as folding and cysteine pairing, addition of complex carbohydrate structures and secretion of active protein. Vectors useful for the expression of peptides and polypeptides in mammalian cells are characterized by insertion of the coding sequence between a strong (e.g., viral) promoter and a polyadenylation signal. The vectors can contain genes conferring either, e.g., gentamicin or methotrexate resistance, for use as selectable markers. For example, the coding sequence can be introduced into a Chinese hamster ovary (CHO) cell line using a methotrexate resistance-encoding vector. Presence of the vector RNA in transformed cells can be confirmed by Northern blot analysis and production of a cDNA or opposite strand RNA corresponding to the polypeptide or fragment coding sequence can be confirmed by Southern and Northern blot analysis, respectively. A number of other suitable host cell lines capable of producing exogenous polypeptides have been developed in the art and include the CHO cell lines, HeLa cells, myeloma cell lines, Jurkat cells and the like. Expression vectors for these cells can include expression control sequences, as described above.
The nucleic acids and/or vectors of this invention can be transferred into the host cell by well-known methods, which vary depending on the type of cell host. For example, calcium chloride transfection is commonly used for prokaryotic cells, whereas calcium phosphate treatment or electroporation can be used for other cell hosts.
The polypeptides, fragments, nucleic acids, vectors and cells of this invention can be present in a pharmaceutically acceptable carrier. By "pharmaceutically acceptable" is meant a material that is not biologically or otherwise undesirable, i.e., the material may be administered to an individual along with the selected polypeptide, fragment, nucleic acid, vector or cell without causing substantial deleterious biological
effects or interacting in a deleterious manner with any of the other components of the composition in which it is contained.
Furthermore, any of the compositions of this invention can comprise a pharmaceutically acceptable carrier and a suitable adjuvant. As used herein, "suitable adjuvant" describes an adjuvant capable of being combined with the polypeptide and/or fragment and/or nucleic acid of this invention to further enhance an immune response without deleterious effect on the subject or the cell of the subject. A suitable adjuvant can be, but is not limited to, MONTANIDE ISA51 (Seppic, Inc., Fairfield, NJ), SYNTEX adjuvant formulation 1 (SAF-I), composed of 5 percent (wt/vol) squalene (DASF, Parsippany, N.J.), 2.5 percent Pluronic, L121 polymer (Aldrich Chemical, Milwaukee), and 0.2 percent polysorbate (Tween 80, Sigma) in phosphate-buffered saline. Other suitable adjuvants are well known in the art and include QS-21, Freund's adjuvant (complete and incomplete), alum, aluminum phosphate, aluminum hydroxide, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-nor-muramyl-L- alanyl-D-isoglutamine (CGP 11637, referred to as nor-MDP), N-acetylmuramyl-L- alanyl-D-isoglutaminyl-L-alanine-2-(r-2'-dipalmitoyl-sn-glycero-3- hydroxyphosphoryloxy)-ethylamine (CGP 19835 A, referred to as MTP-PE) and RIBI, which contains three components extracted from bacteria, monophosphoryl lipid A, trealose dimycolate and cell wall skeleton (MPL+TDM+CWS) in 2% squalene/Tween 80 emulsion.
The compositions of the present invention can also include other medicinal agents, pharmaceutical agents, carriers, diluents, immunostimulatory cytokines, etc. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art. It is contemplated that the above-described compositions of this invention can be administered to a subject or to a cell of a subject to impart a therapeutic benefit. Thus, the present invention further provides a method of producing an immune response in a subject, comprising administering to the subject or to a cell of the subject an effective amount of a polypeptide and/or biologically active fragment of this invention and/or a nucleic acid comprising a nucleotide sequence encoding a
polypeptide and/or biologically active fragment of this invention. The cell of the subject can be in vivo or ex vivo and can be, but is not limited to a CD 8+ T lymphocyte (e.g., a cytotoxic T lymphocyte) or an MHC I-expressing antigen presenting cell, such as a dendritic cell, a macrophage and/or a monocyte. Detection of an immune response in the subject or in the cells of the subject can be carried out according to methods standard in the art for detecting a humoral and/or cellular immune response.
Furthermore, the present invention provides a method of eliciting an immune response in a subject, comprising administering to the subject an effective amount of a polypeptide and/of fragment of this invention. Also provided herein is a method of eliciting an immune response in a subject, comprising administering to the subject an effective amount of a nucleic acid and/or vector of this invention.
In additional embodiments, the present invention provides a method of providing passive immunity to a subject, comprising administering to the subject an effective amount of an antibody of this invention to the subject.
The compositions of this invention can also be employed as a therapeutic and/or prophylactic formulation and administered to a subject in need thereof. Thus, the present invention provides a method of treating or preventing infection or intoxication by Mycoplasma pneumoniae in a subject, comprising administering to the subject an effective amount of a polypeptide and/or fragment of this invention, a nucleic acid and/or vector of this invention, and/or an antibody of this invention.
In addition, the present invention provides a method of treating or preventing infection or intoxication caused by Mycoplasma pneumoniae in a subject comprising contacting an immune cell of the subject with any of the polypeptides, fragments, nucleic acids, vectors and/or antibodies of this invention. The cell can be in vivo or ex vivo and can be, for example, a CD8+ T cell which is contacted with the polypeptide and/or fragment of this invention in the presence of a class I MHC molecule, which can be a soluble molecule or it can be present on the surface of a cell which expresses class I MHC molecules. The cell can also be an antigen presenting cell or other class I
MHC-expressing cell which can be contacted with the nucleic acids and/or vectors of this invention under conditions whereby the nucleic acid or vector is introduced into the cell by standard methods for uptake of nucleic acid and vectors. The nucleic acid encoding the polypeptide and/or fragment of this invention is then expressed and the polypeptide and/or fragment product is processed within the antigen presenting cell or other MHC I-expressing cell and presented on the cell surface as an MHC I/antigen complex. The antigen presenting cell or other class I MHC-expressing cell is then contacted with an immune cell of the subject which binds the class I MHC /antigen complex and elicits an immune response which treats or prevents Mycoplasma pneumoniae infection in the subject.
As set forth above, it is contemplated that in the methods wherein the compositions of this invention are administered to a subject or to a cell of a subject, such methods can further comprise the step of administering a suitable adjuvant to the subject or to a cell of the subject. The adjuvant can be in the composition of this invention or the adjuvant can be in a separate composition comprising the suitable adjuvant and a pharmaceutically acceptable carrier. The adjuvant can be administered prior to, simultaneous with, or after administration of the composition containing any of the polypeptides, fragments, nucleic acids and/or vectors of this invention. For example, QS-21, similar to alum, complete Freund's adjuvant, SAF, etc., can be administered within days/weeks/hours (before or after) of administration of the composition of this invention. The effectiveness of an adjuvant can be determined by measuring the immune response directed against the polypeptide and/or fragment of this invention with and without the adjuvant, using standard procedures, as described in the Examples herein and as are well known in the art. As set forth above, the subject of this invention can be any subject in need of the immune response of this invention and/or in need of treatment for or prevention from Mycoplasma pneumoniae infection, as well as any subject in whom it is desirable to induce an immune response to Mycoplasma pneumoniae. Symptoms of Mycoplasma pneumoniae infection can include tracheobronchitis and pneumonia with extrapulmonary pathologies, such as neurologic, cardiac, gastrointestinal, dermatologic,
renal and joint complications. A range of serological (elevated IgM and IgG seroconversion) assays and PCR detection can be used for diagnosing M. pneumoniae infection. Appropriate treatment can lead to resolution of respiratory symptoms such as decreased fever and cough, complete recovery of respiratory function including normal lung radiogram, and normal levels of tissue enzymes and CSF analysis. Also, decreased levels of M. pneumoniae cells, antigens and nucleic acids in blood, sputum, bronchial lavage should accompany effective treatment.
Common sources of infection can include infected individuals coughing, sneezing and transmitting aerosols containing M. pneumoniae. The transmission rate is very high, which is why M. pneumoniae is such a common cause of community acquired pneumonia. Highest targets of infection are children, especially 5-9 years old and adults between ages 25-40, although infection can occur among all 'healthy' individuals. Thus, a subject for whom the methods of this invention would be indicated for preventing M. pneumoniae infection can, in some embodiments, be a child or young adult.
The compositions of this invention can be administered to a cell of a subject or to a subject either in vivo or ex vivo. For administration to a cell of the subject in vivo, as well as for administration to the subject, the compositions of this invention can be administered orally, parenterally (e.g., intravenously), by intramuscular injection, by intraperitoneal injection, subcutaneous injection, transdermally, extracorporeally, topically or the like. Also, the compositions of this invention can be pulsed onto dendritic cells, which are isolated or grown from a subject's cells, according to methods well known in the art, or onto bulk peripheral blood mononuclear cells (PBMC) or various cell subfractions thereof from a subject. The exact amount of the composition required will vary from subject to subject, depending on the species, age, weight and general condition of the subject, the particular composition used, its mode of administration and the like. Thus, it is not possible to specify an exact amount for every composition of this invention. However, effective amount can be determined by one of ordinary skill in the art using only routine experimentation given the teachings herein.
As an example, to a subject diagnosed with M. pneumoniae infection or known to be at risk of being infected with M. pneumoniae or in whom it is desirable to induce an immune response to Mycoplasma pneumoniae, between about 50-1000 nM and more preferably, between about 100-500 nM of a polypeptide and/or biologically active fragment of this invention can be administered subcutaneously and can be in an adjuvant, at one to three hour/day/week intervals until an evaluation of the subject's clinical parameters indicate that the subject is not infected by M. pneumoniae and/or the subject demonstrates the desired immunological response. Alternatively, a polypeptide and/or fragment of this invention can be pulsed onto dendritic cells at a concentration of between about 10-100μM and the dendritic cells can be administered to the subject intravenously at the same time intervals. The treatment can be continued or resumed if the subject's clinical parameters indicate that M. pneumoniae infection is present and can be maintained until the infection is no longer detected by these parameters and/or until the desired immunological response is achieved. If ex vivo methods are employed, cells or tissues can be removed and maintained outside the subject's body according to standard protocols well known in the art. The polypeptides and/or biologically active fragments of this invention can be introduced into the cells via known mechanisms for uptake of polypeptides into cells (e.g., phagocytosis, pulsing onto class I MHC-expressing cells, liposomes, etc.). The cells can then be infused (e.g., in a pharmaceutically acceptable carrier) or transplanted back into the subject per standard methods for the cell or tissue type. Standard methods are known for transplantation or infusion of various cells into a subject.
The nucleic acids and vectors of this invention can also be administered to a cell of the subject either in vivo or ex vivo. The cell can be any cell that can take up and express exogenous nucleic acid and produce the polypeptides and/or fragments of this invention. In some embodiments, the polypeptides and/or fragments of this invention can be produced by a cell that secretes them, whereby the polypeptide and/or fragment is produced and secreted and then taken up and subsequently processed by an antigen presenting cell or other class I MHC-expressing cell and presented to the immune system for induction of an immune response. In other embodiments, the nucleic acids
and/or vectors of this invention can be directly introduced into an antigen presenting cell and/or other class I MHC-expressing cell in which the polypeptide and/or fragment is produced and processed directly and presented to the immune system on the cell surface. The nucleic acids and vectors of this invention can be administered orally, intranasally, parenterally (e.g., intravenously), by intramuscular injection, by intraperitoneal injection, transdermally, extracorporeally, topically or the like. In the methods described herein which include the administration and uptake of exogenous DNA into the cells of a subject (i.e., gene transduction or transfection), the nucleic acids of the present invention can be in the form of naked DNA or the nucleic acids can be in a vector for delivering the nucleic acids to the cells for expression of the polypeptides and/or fragments of this invention. The vector can be a commercially available preparation or can be constructed in the laboratory according to methods well known in the art. Delivery of the nucleic acid or vector to cells can be via a variety of mechanisms. As one example, delivery can be via a liposome, using commercially available liposome preparations such as LIPOFECTIN, LIPOFECTAMINE (GIBCO- BRL, Inc., Gaithersburg, MD), SUPERFECT (Qiagen, Inc. Hilden, Germany) and TRANSFECTAM (Promega Biotec, Inc., Madison, WI), as well as other liposomes developed according to procedures standard in the art. In addition, the nucleic acid or vector of this invention can be delivered in vivo by electroporation, the technology for which is available from Genetronics, Inc. (San Diego, CA) as well as by means of a SONOPORATION machine (ImaRx Pharmaceutical Corp., Tucson, AZ).
As one example, vector delivery can be via a viral system, such as a retroviral vector system, which can package a recombinant retroviral genome. The recombinant retrovirus can then be used to infect and thereby deliver to the infected cells nucleic acid encoding the polypeptide and/or fragment of this invention. The exact method of introducing the exogenous nucleic acid into mammalian cells is, of course, not limited to the use of retroviral vectors. Other techniques are widely available for this procedure including the use of adenoviral vectors, alphaviral vectors, adeno-associated viral
(AAV) vectors, lentiviral vectors, pseudotyped retroviral vectors and vaccinia viral vectors, as well as any other viral vectors now known or developed in the future. Physical transduction techniques can also be used, such as liposome delivery and receptor-mediated and other endocytosis mechanisms. This invention can be used in conjunction with any of these or other commonly used gene transfer methods.
As another example, if the nucleic acid of this invention is delivered to the cells of a subject in an adenovirus vector, the dosage for administration of adenovirus to humans can range from about 107 to 109 plaque forming units (pfu) per injection, but can be as high as 1012, 1015 and/or 1020 pfu per injection. Ideally, a subject will receive a single injection. If additional injections are necessary, they can be repeated at daily/weekly/monthly intervals for an indefinite period and/or until the efficacy of the treatment has been established. As set forth herein, the efficacy of treatment can be determined by evaluating the symptoms and clinical parameters described herein and/or by detecting a desired immunological response. The exact amount of the nucleic acid or vector required will vary from subject to subject, depending on the species, age, weight and general condition of the subject, the particular nucleic acid or vector used, its mode of administration and the like. Thus, it is not possible to specify an exact amount for every nucleic acid or vector. However, an appropriate amount can be determined by one of ordinary skill in the art using only routine experimentation given the teachings herein.
If ex vivo methods are employed, cells or tissues can be removed and maintained outside the body according to standard protocols well known in the art. The nucleic acids and vectors of this invention can be introduced into the cells via any gene transfer mechanism, such as, for example, virus-mediated gene delivery, calcium phosphate mediated gene delivery, electroporation, microinjection or proteoliposomes. The transduced cells can then be infused (e.g., in a pharmaceutically acceptable carrier) or transplanted back into the subject per standard methods for the cell or tissue type. Standard methods are known for transplantation or infusion of various cells into a subject.
Parenteral administration of the peptides, polypeptides, nucleic acids and/or vectors of the present invention, if used, is generally characterized by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution of suspension in liquid prior to injection, or as emulsions. As used herein, "parenteral administration" includes intradermal, intranasal, subcutaneous, intramuscular, intraperitoneal, intravenous and intratracheal routes, as well as a slow release or sustained release system such that a constant dosage is maintained. See, e.g., U.S. Patent No. 3,610,795, which is incorporated by reference herein in its entirety. The efficacy of treating or preventing Mycoplasma pneumoniae infection by the methods of the present invention can be determined by detecting a clinical improvement as indicated by a change in the subject's symptoms and/or clinical parameters, as would be well known to one of skill in the art.
It is further contemplated that the compositions of the present invention can be used in diagnostic and therapeutic applications. Thus, the present invention provides a method of detecting the presence of a polypeptide and/or fragment of this invention in a sample, comprising contacting the sample with an antibody of this invention under conditions whereby an antigen/antibody complex can form and detecting formation of an antigen/antibody complex, thereby detecting the presence of a. Mycoplasma pneumoniae polypeptide and/or fragment of this invention in the sample.
Additionally, the present invention provides a method of detecting the presence of an antibody of this invention in a sample, comprising contacting the sample with a polypeptide and/or fragment of this invention under conditions whereby an antigen/antibody complex can form and detecting formation of an antigen/antibody complex, thereby detecting the presence of & Mycoplasma pneumoniae antibody of this invention in the sample.
In additional embodiments, the present invention provides a method of detecting the presence of the CARDS toxin of this invention in a sample (e.g., a biological sample from a subject or a food or water sample or other sample that could contain CARDS toxin) and/or a subject and/or diagnosing infection by M. pneumoniae
in a subject, comprising contacting the sample with surfactant protein A (SP-A) under conditions whereby a toxin/SP-A complex can form; and detecting formation of the toxin/SP-A complex, thereby detecting the presence of CARDS toxin in a sample and/or diagnosing infection by M. pneumoniae in a subject. In the detection and diagnosis methods of this invention, it would be well understood by the ordinary artisan that any variety of protocols could be carried to detect formation of an antigen/antibody complex or a toxin/SP-A complex. For example, a secondary antigen, secondary ligand and/or secondary antibody that is detectably labeled can be employed (e.g., a "sandwich immunoassay"). The sample of this invention can be any sample in which Mycoplasma pneumoniae toxin can be present. For example, the sample can be a body fluid, cells or tissue that can contain Mycoplasma pneumoniae toxin, including but not limited to, blood, serum, plasma, saliva, sputum, bronchoalveolar lavage, urine, semen, joint fluid, cerebrospinal fluid and cells, fluids and/or tissue from all organs to which CARDS toxin can disseminate including lung, liver, heart, brain, kidney, spleen, muscle, etc.
Additionally, the present invention provides a method of diagnosing Mycoplasma pneumoniae infection in a subject comprising contacting a biological sample from the subject with a polypeptide and/or fragment of this invention under conditions whereby an antigen/antibody complex can form; and detecting formation of an antigen/antibody complex, thereby diagnosing Mycoplasma pneumoniae infection in the subject.
A method of diagnosing Mycoplasma pneumoniae infection in a subject is further provided, comprising contacting a biological sample from the subject with an antibody of this invention under conditions whereby an antigen/antibody complex can form; and detecting formation of an antigen/antibody complex, thereby diagnosing Mycoplasma pneumoniae infection in the subject. hi further embodiments, the present invention provides a method of diagnosing infection by Mycloplasma pneumoniae in a subject, comprising contacting a biological sample from the subject with the nucleic acid of this invention under conditions whereby hybridization of nucleic acid molecules can occur and detecting a
hybridization complex, thereby diagnosing infection by Mycoplasma pneumoniae in the subject.
In additional embodiments, the present invention provides a method of identifying a subject infected with Mycoplasma pneumoniae as having a poor prognosis, comprising: a) establishing a correlation between the presence of and/or an amount of a polypeptide, fragment, nucleic acid and/or antibody of this invention in a sample of test subjects infected with Mycoplasma pneumoniae and who have or had a poor prognosis; and b) detecting in a biological sample from the subject the presence of and/or an amount of the polypeptide, fragment, nucleic acid and/or antibody of this invention correlated with a poor prognosis, thereby identifying the subject infected with Mycoplasma pneumoniae as having a poor prognosis. For example, a correlation can be made between a level of antibodies to the CARDS toxin and a degree of respiratory and/or pulmonary dysfunction indicative of a poor prognosis.
The present invention also provides various screening assays that employ the polypeptides, fragments and/or nucleic acids of this invention. In particular, provided herein is a method of identifying a substance having the ability to inhibit or enhance the binding activity of a polypeptide and/or biologically active fragment of this invention comprising contacting the substance with the CARDS protein or a biologically active fragment thereof under conditions whereby binding can occur and detecting a decrease or increase in the amount of binding in the presence of the substance as compared to a control amount of binding in the absence of the substance, thereby identifying a substance having the ability to inhibit or enhance the binding activity of the CARDS toxin.
Inhibition or enhancement of binding activity can be detected by any of a variety of art-recognized methods for evaluating binding activity. As one example, the substance to be tested and the CARDS polypeptide and/or fragment can be contacted in the presence of target cells or a target substrate (e.g., surfactant protein A; SP-A) known to bind the polypeptide or fragment. The amount of binding of polypeptide or fragment to the cells or the substrate in the presence of the substance and the amount of
binding of polypeptide or fragment to the cells or the substrate in the absence of the substance is determined and a decrease or increase in the amount of binding in the presence of the substance identifies the substance as having the ability to inhibit or enhance binding. In some embodiments, binding of polypeptide and/or fragment to target cells or a target substrate can be measured by attaching a detectable moiety to the polypeptide or fragment (e.g., a fluorescence moiety, histochemically detectable moiety, radioactive moiety, etc.). The amount of detectable moiety can be measured in the presence and absence of the substance to be tested and the amounts can be compared to determine inhibition or enhancement. Binding activity can also be determined by comparing the amount of cytopathology observed in a monolayer of target cells in the presence and absence of the substance to be tested. Target cells that can be used in such a binding assay include, but are not limited to, Chinese hamster ovary (CHO) cells, Hep2 cells, human lung and kidney epithelial and fibroblast cells, and any other mammalian cells that exhibit sensitivity to CARDS toxin now known or later identified.
In addition, the present invention provides a method of identifying a substance having the ability to inhibit or enhance the translocating activity of a polypeptide and/or a biologically active fragment of this invention, comprising contacting the substance with the polypeptide of this invention and/or a biologically active fragment thereof under conditions whereby translocation activity can occur and detecting a decrease or increase in the amount of translocation activity in the presence of the substance as compared to a control amount of translocation activity in the absence of the substance, thereby identifying a substance having the ability to inhibit or enhance the translocating activity of the CARDS toxin. Inhibition or enhancement of translocating activity can be detected by any of a variety of art-recognized methods for evaluating translocating activity. As one example, the substance to be tested and the CARDS polypeptide and/or fragment can be contacted in the presence of target cells known to translocate the CARDS toxin. The amount of translocation of polypeptide or fragment into the cells in the presence of the substance and the amount of translocation of polypeptide or fragment into the cells in
the absence of the substance is determined and a decrease or increase in the amount of translocation in the presence of the substance identifies the substance as having the ability to inhibit or enhance translocation of the CARDS toxin. Translocation of polypeptide and/or fragment into target cells can be measured by attaching a detectable moiety to the polypeptide or fragment (e.g., a fluorescence moiety, histochemically detectable moiety, radioactive moiety, etc.). The amount of translocated detectable moiety can be measured in the presence and absence of the substance to be tested and the amounts can be compared to determine inhibition or enhancement of translocation. Translocation activity can also be determined by comparing the amount of cytopathology observed in a monolayer of target cells in the presence and absence of the substance to be tested. Target cells that can be used in such a translocation assay include, but are not limited to, Chinese hamster ovary (CHO) cells, etc.
Further provided is a method of identifying a substance having the ability to enhance or inhibit the immunogenic activity of the CARDS toxin of this invention and/or a biologically active fragment thereof, comprising contacting the substance with the CARDS toxin or an immunogenic fragment thereof under conditions whereby a measurable immune response can be elicited and detecting an increase or decrease in the amount of immune response in the presence of the substance, as compared to a control amount of immune response in the absence of the substance, thereby identifying a substance having the ability to enhance or inhibit immunogenic activity of the
CARDS toxin. Assays to detect and measure immune responses are well known in the art and can be employed to detect either humoral or cellular immune responses.
In additional embodiments, the present invention provides a method of identifying a substance having the ability to inhibit or enhance the ADP-ribosylating activity of the CARDS toxin of this invention and/or biologically active fragments thereof, comprising contacting the substance with the CARDS toxin or biologically active fragment thereof under conditions whereby ADP ribosylation can occur and detecting a decrease or increase in the amount of ADP ribosylation in the presence of the substance as compared to a control amount of ADP ribosylation in the absence of the substance, thereby identifying a substance having the ability to inhibit or enhance
the ADP ribosylating activity of the CARDS toxin.
Methods for detecting ADP ribosylating activity are well known in the art and are described, for example, in the Examples section provided herein.
Further provided is a method of identifying a substance having the ability to inhibit or enhance the cytopatholpgy-inducing activity of the CARDS toxin of this invention and/or a biologically active fragment thereof, comprising contacting the substance with the CARDS toxin or biologically active fragment thereof under conditions whereby cytopathology (e.g., changes in cell morphology, monolayer characteristics, etc.) of target cells can be induced and detecting a decrease or increase in the amount of cytopathology in the presence of the substance, as compared to a control amount of cytopathology in the absence of the substance, thereby identifying a substance having the ability to inhibit or enhance the cytopathology-inducing activity of the CARDS toxin or biologically active fragment thereof.
Methods of detecting cytopathology of cells are well known in the art and are described, for example, in the Examples section herein.
Substances identified in the screening assays of this invention to have the ability to inhibit or enhance various of the activities of the polypeptides and/or fragments of this invention can be employed in methods of diagnosing M. pneumoniae infection, as well as in methods of treating and/or preventing M. pneumoniae infection. For example, such substances can be present in a pharmaceutically acceptable carrier for administration to a subject and an effective amount of the substance can be administered to a subject to treat and/or prevent infection by Mycoplasma pneumoniae.
It is also contemplated that the present invention includes methods of screening Mycoplasma pneumoniae cultures for mutants defective in one or more of the biological activities of the CARDS toxin, for use in a vaccine preparation. Such mutants can be identified as having a defect in any of the biological activities of the CARDS toxin according to the protocols described herein and as are known in the art. Such mutants can be further tested for being attenuated in the ability to produce a
clinical infection in a subject (i.e., for virulence potential) and then further evaluated for use as a vaccine according to known protocols.
For example, in one embodiment, CARDS toxin mutants of Mycoplasma pneumoniae (e.g., having a mutation in the CARDS coding sequence or lacking the CARDS coding sequence) can be generated through such art-known techniques as gene disruption and their virulence potential determined by challenge studies in hamsters and by adherence and cytopathology assessments in hamster tracheal rings in organ culture and in cell culture, as is well known in the art. In addition, complementation studies can be performed to restore the defective activity of the CARDS toxin, in order to characterize the mutant.
The present invention is more particularly described in the following examples, which are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art.
EXAMPLES
Mycoplasma strains and DNA isolation conditions.
M. pneumoniae reference strain M129/B9 and clinical isolates Sl, L2, JLl and RJLl were grown to late logarithmic phase in SP-4 medium at 370C for 72 h in 150- cm2 tissue culture flasks. Mycoplasmas were harvested by washing three times with PBS [150 mM NaCl, 10 mM sodium phosphate, pH 7.4] and pelleting at 12,500 g for 15 min at 40C. M. pneumoniae chromosomal DNA was isolated using Easy DNA kit according to the manufacturer's protocol (Invitrogen).
Mycoplasma culture conditions for radiolabeling.
Wild-type Mycoplasma pneumoniae M129/B9 and clinical isolates were grown in SP-4 medium as above. Mycoplasma monolayers in logarithmic growth phase were washed two times with 10 ml PBS (pH 7.4) and one time with Dulbecco Modified
Eagle Medium (DMEM) without L-cysteine and L-methionine and resuspended in 10 ml Dulbecco Modified Eagle Medium (DMEM) without L-cysteine and L-methionine supplemented with 10 % heat-inactivated fetal bovine serum and 100 μCi L- [35S]methionine. After 4 h incubation at 37°C, supernatants were removed and monolayers washed twice with 25 ml PBS. Mycoplasma cells were scraped into a volume of 10 ml sterile PBS, collected by centrifugation at 9,500 x g and washed multiple times in PBS. Cell pellets were resuspended in 1 ml complete lysis buffer (CLB) prepared shortly before use (150 mM NaCl, 10 mM Tris, 20 μM EGTA, 0.5 M Triton-X 114, 1 mM CaCl2 and protease inhibitors 1 μM pepstatin A, 200 μM PMSF, 1 mM N-α-p-tosyl-L-lysine chloromethyl ketone (TLCK), and 10 μM leupeptin. Cell pellets in CLB were sheared through 25 gauge needles using 3 ml syringes to obtain clear lysis. 20 μl aliquots of resuspended cell lysate were transferred to separate microfuge tubes for SDS-PAGE analysis and scintillation counter assessment (Beckman Instruments Inc. Irvine, CA). Radiolabeled lysates were diluted to 6 ml in CLB and passed through control and experimental SP-A columns (see below) in parallel.
Purification of SP-A binding proteins
A 20 x 1.2 cm control glass column was packed with 3 ml uncoupled Sepharose, another identical (experimental) column was packed with 3 ml Sepharose coupled to SP-A.
Coupling of SP-A to Sepharose CL-4B was performed as follows: A total of 1.5 mg of SP-
A was coupled to 2g of CΝBr-activated Sepharose CL-4B according to the manufacture's instructions except the coupling buffer was 10 mM sodium bicarbonate, pH 8.3. SP-A coupled Sepharose was stored in 5 ml of 5 mM Tris pH 7.5, containing ImM NaN3. Columns were equilibrated with 50 ml CLB prior to addition of radiolabeled cell lysates.
Radiolabeled cell lysates were collected and reapplied to each column 3-4 times. After samples were added, columns were washed with 10 times volume of packed material to remove unbound proteins. M. pneumoniae SP-A-binding proteins were eluted using a
NaCl gradient (0.2 to 3 MNaCl) containing 10 mM EDTA. Eluates were collected as 1 ml
fractions, and 20 μl from each fraction was assayed for specific activity with a scintillation counter.
SDS-PAGE and autoradiogram. Fractions eluted from columns were individually dialyzed/desalted against PBS and concentrated by an Amicon concentrator/lyophilizer to 1730th of original volume.
Samples were resolved in 12% SDS-PAGE and stained with Coomassie brilliant blue or transferred to nitrocellulose and exposed to Kodak XRP-40 X-ray film (Kodak,
Rochester, NY) for 4-8 days.
MALDI-TOF protein sequencing.
SDS-polyacrylamide gels containing M. pneumoniae SP-A binding proteins were stained with Coomassie brilliant blue and washed thoroughly in distilled water.
Individual protein bands were excised from acrylamide gels and subjected to MALDI- TOF by the microsequencing facility at Baylor College of Medicine (Houston, TX).
Bacterial strains, plasmids and DNA manipulations.
Escherichia coli INVaF' [¥'endA\rec\hsd&\7supE44gyrA96lacZM\5 (lacZYAargΨ)] (Invitrogen) and E. coli BL21(DE3) {F'ompT hsdS (rB " mB ") gal dcm λ(DE3) pLysS] were grown in Luria Bertani (LB) broth and used to clone and express mycoplasma CARDS toxin genes. For DNA manipulations, the following vectors were used: pCR2.1 (Apr, KmrTA cloning vector [Invitrogen]) and pET19b (Apr, N-terminal His10 tag, expression vector [Novagen]). Plasmid DNA was purified using the QIAprep spin protocol according to the manufacturer (Qiagen).
SOE-PCR
In attempting to determine precise binding motifs of M. pneumoniae SP-A binding proteins, both full size and truncated overexpressed proteins are employed. Initially, the number of truncated proteins will depend upon the number and location of UGA codons. Should the possibility arise that SP-A binding motifs are located in UGA-coded regions of
a protein, this issue will be addressed using full-size proteins, or protease-digested peptide fragments, or synthetic peptides as described herein. UGA usage problems in genes encoding SP-A binding proteins, as well as other mycoplasma proteins, are known. In such proteins, the UGA codons in the corresponding genes are modified by site-directed mutagenesis to express full size proteins. PCR-based "splicing by overlap extension" (SOE) methods are employed to mutagenize UGA in these genes. This method is based on the principle that two overlapping complementary ends may prime on each other and be extended to yield a hybrid product, and a second PCR with two primers annealing at the non-overlapping ends will amplify this hybrid. An example of a stepwise strategy for SOE-PCR is as follows. 1. 'a' and 'd' are primers for a gene and 'b' and 'c' are primers to mutagenize the UGA region. 2. Amplification carried out with primers 'a' and 'b' and using genomic DNA as template gives a DNA fragment "AB" of the gene. 3. Amplification carried out with primers 'c' and 'd' and using genomic DNA as template will give DNA fragment "CD" of the gene. 4. Amplification with primers 'a' and 'd' and using DNA fragments "AB" + "CD" as templates will give the UGA modified mutant gene fragment. The overlapping primers covering the UGA codon in the genes are modified as UGG. a codon that still codes for tryptophan, and the primer sets depend upon the number of UGAs to be mutated in each gene. In all cases, genomic DNA of M. pneumoniae is used as template, and AccuTaq polymerase mix (Sigma) is used to amplify DNA fragments.
Immunoblot assay
Mycoplasma total proteins or purified recombinant CARDS protein were resolved on 4-12% SDS-polyacrylamide gels (NuPAGE, InVitrogen) (His-tag released, i.e., minus His tag) and transferred electrophoretically to nitrocellulose membranes
(Towbin et al., 1979). Membranes were blocked for two hours with 5% (wt/vol) blotto [nonfat dry milk in TBS containing 0.1% Tween-20 (TBST)], followed by three washes with TBST, and incubated with M. pneumoniae infected patient sera (1 :50 to 1 : 100 in 2% blotto) at RT for 2 h. Then, individual membranes were washed three times (15 min per wash) in TBST and incubated for 2 h (ambient temperature) with alkaline
phosphatase-conjugated goat anti-human IgG Abs at a dilution of 1 :2000 in TBST, which were washed 5 additional times with TBST, then color developed with BCIP/NBT tablets (Sigma).
Figure 1 is an immunoblot of sera from three patients, RJ, 1970 and MJ, infected with Mycoplasma pneumoniae. Purified M. pneumoniae recombinant CARDS toxin was resolved in 4-12% SDS-PAGE and transferred to nitrocellulose membranes. Membranes were blocked for two hours with 5% blotto and treated with patients' sera for two hours at room temperature. Patients' sera were diluted as follows. RJ and MJ: 1 :50, and 1970: 1:100 in 2% blotto. Membranes were washed and treated with alkaline phosphatase-conjugated goat anti-human antibodies diluted 1 :2000 in TBS-T and two hours and color developed. Patients RJ and MJ died within about three weeks of infection and patient 1970 was hospitalized with mycoplasmal pneumonia and recovered. A 68 kDa MW recombinant CARDS toxin is indicated by the arrow; higher molecular weight and diffuse bands represent His-tagged subpopulation of recombinant CARDS toxin. Detection of antibodies to the CARDS toxin indicates in situ synthesis of CARDS toxin during infection and its immunogenicity.
Additional studies on patients infected with M pneumoniae.
In further studies, acute and convalescent sera were collected from patients with Mycoplasma pneumoniae-dϊagnosed respiratory infections that ranged from tracheobronchitis to bronchopneumonia. Two or three blood samples were obtained from each patient. The first blood sample was collected during the acute phase of the disease, approximately two weeks following exposure to M. pneumoniae. The second and third "convalescent" serum samples were obtained 14 and 28 days later, respectively. Control baseline serum samples were obtained from pregnant women attending the University of Texas Health Science Center at San Antonio OB-GYN clinic.
All serum samples were assessed by immunoblotting against total M. pneumoniae proteins. Specifically, to detect CARDS toxin protein in patients' sera, M. pneumoniae total cell preparations of different clinical isolated (RJl, Jl, Sl and L2)
and laboratory strain (B9) were dissolved in 150 μl SDS sample buffer, boiled for two minutes and separated by SDS-PAGE using 4-12% NuPAGE SDS-polyacrylamide gels. Proteins were transferred to nitrocellulose membranes (Shleicher & Schull, Dassel, Germany) by electroblotting. Membranes were blocked for one hour at room temperature with blocking buffer (20 mM Tris-base, 150 mM NaCl, 3% skim milk powder) and incubated with anti-CARDS Toxin mouse polyclonal antibodies diluted 1 :2000 in antibody buffer (20 mM Tris-base, 150 mM NaCl, 3% skim milk powder) for one hour at 370C. Bound IgG was detected with alkaline phosphatase (AP)-conjugated goat-antimouse IgG diluted 1 :3000. Membranes were developed for 1-5 minutes with nitroblue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl phosphate p-toluidium (BCIP) solution. Results of the immunoblotting show a colored band of 68 kDa molecular weight on each membrane and thus demonstrate the presence of the CARDS toxin protein in each clinical isolate at concentrations that appear to vary among individuals. Additional immunoblot analyses were carried out to detect antibodies to
CARDS toxin in infected patients' sera wherein M. pneumoniae recombinant 68 kDa CARDS (rCARDS) toxin (3 μg) or the N terminal domain of CARDS toxin, rDl (1 μg) as described herein was dissolved in 150 μl LDS sample buffer (NuPAGE), boiled for two minutes and separated by SDS-PAGE using 4-12% NuPAGE SDS-polyacrylamide gels. Proteins were transferred to nitrocellulose membranes (Schleicher & Schull,
Dassel, Germany) by electroblotting and membranes were blocked for one hour at room temperature with blocking buffer (20 mM Tris-base, 150 mM NaCl, 3% skim milk powder). Membranes were cut into 3 mm strips and incubated with human serum samples diluted 1 :200 in buffer (20 mM Tris-base, 150 mM NaCl, 3% skim milk powder) for one hour at 370C. Serum samples were from M. pneumonia-infected patients designated patients 1 and 2 and the first serum samples were collected during the acute phase of disease (designated 1-1 and 2-1, respectively). The second serum samples (1-2 and 2-2) and third serum samples (1-3 and 2-3) were obtained 14 and 28 days later, respectively. Bound IgG was detected with alkaline phosphatase (AP)-conjugated goat-
antihuman IgG diluted 1:3000. Individual strips were developed for 1-5 minutes with nitroblue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl phosphate p-toluidium (BCIP) solution. Results of the immunoblotting showed a colored band of 68 kDa molecular weight on each membrane containing rCARDs toxin and colored bands of 32 kDa and 28 kDa on each membrane containing the Dl domain, thus demonstrating seroconversion in these patients and detection of antibodies to the CARDS toxin, either as a recombinant protein or as the Dl domain. In the latter assay, the color intensity of each band appears to increase in the samples in a manner consistent with the time course of collection from the patient during the course of the disease (i.e., l-l<l-2<l-3) (Figure 3).
ELISAs were also carried out on the samples collected from patients 1 and 2 described above (i.e., samples 1-1, 1-2, 1-3, 2-1, 2-2, and 2-3). In these assays, washing at each stage was performed at least three times with PBS and sera and antibodies were diluted in 1% BSA in PBS. Each well of Immulon 4 HBX Immunoplates (Dynox) was coated overnight at 40C with 50 μl of rC ARDS toxin/Dl (1 μg/well) diluted in carbonate/bicarbonate buffer (32 mM Na2CO3, 64 mM NaHCO3). Individual plates were washed, 100 μl of 1 mg/ml (wt/vol) BSA in PBS was added to each well, and incubation continued for two hours at room temperature. After washing, 50 μl of diluted human serum samples (1/50 to 1/3200) were added to each well, and plates were incubated for two hours at room temperature. Then, plates were washed, and 50 μl of diluted (1 :1000) alkaline phosphatase (AP)-conjugated goat-antihuman IgG (Zymed) were added to each well. Plates were incubated for 1.5 hours at room temperature, washed and 50 μl of substrate solution [p-nitrophenyl phosphate (PNPP)/0.1M Tris pH 9.6] was added and plates were incubated at room temperature for 30-60 minutes. Absorbance values at 450 run were determined for each well.
The results for patient 1 with serum dilutions of 1/100 and 1/200 and rDl as the antigen showed a decrease in optical density at the greater dilution of serum and a stepwise increase in optical density in the samples collected sequentially during the course of disease (i.e., l-l<l-2<l-3) (Figure 3A). This stepwise increase correlates with the increased color intensity observed with these serum samples in the
immunoblot assay (Figure 3A). Similar results were obtained with sequential serum samples from patient 1 when rCARDS Toxin was used as the antigen.
The results for patient 2 with serum dilutions of 1/100, 1/200, 1/400, 1/800, 1/1600 and 1/3200 and rDl as the antigen showed a decrease in optical density as the dilution of serum increased and a stepwise increase in optical density in the samples collected sequentially during the course of disease (i.e., 2-l<2-2<2-3) (Figure 3B). This stepwise increase correlates with the increased color intensity observed with these serum samples in the immunoblot assay (Figure 3B). Similar results were obtained with sequential serum samples from patient 2 when rCARDS Toxin was used as the antigen.
Additional studies were conducted wherein each well of an Immulon 4 HBX Immunoplate (Dynox) was coated overnight at 40C with 50 μl of rCARDS toxin (1, 2 or 3 μg/well) diluted in carbonate/bicarbonate buffer. After washing, 50 μl of diluted human serum samples (1/200 dilution of convalescent serum 1-3 as described above) was added to each well and plates were incubated for two hours at room temperature prior to detection of bound IgG. Negative patient serum control was also included. The results showed an optical density around 1.8 and 1.9 ± SE for all three concentrations of rCARDS toxin and an optical density of the negative control around 0.6 and 0.7 ± SE for all concentrations of toxin. A further study was carried out as described above, except that each well of
Immulon 4 HBX Immunoplates (Dynox) was coated overnight at 40C with 50 μl of CARDS rDl domain diluted as follows: 1, 2, 3, 4, 5 or 6 μg/well, in carbonate- bicarbonate buffer. Negative patient serum control was also included. The results show an optical density between 1.0 and 1.2 ± SE for all six concentrations of rDl domain and an optical density of the negative control of 0.2 ± SE or less for all concentrations of rD 1.
Overall, these immunoblot and ELISA studies demonstrate that both CARDS toxin and antibodies to CARDS toxin can be detected according to the methods of this invention and that the assays can be performed with as little as 1 μg of toxin either as the recombinant protein or as the Dl domain. These studies also indicate that the Dl
domain may be a better target in an ELISA format, with lower background levels.
Identification of Mycoplasma pneumoniae by PCR in sputum samples using CARDS toxin as a target DNA molecule In this assay, phosphate buffered saline (PBS), with and without saliva, was mixed with a cell suspension (cells grown 2-3 days at 370C in SP-4 medium; total cells ~ 1 X 109) of M. pneumoniae Sl cells in a 1:1 ratio and centrifuged. The pellet was resuspended in 200 μl of water and incubated at 40C for 20 minutes. The sample was then boiled at 1000C for 15 minutes. 37-40 μl of this sample was used for PCR in a total reaction volume of 50 μl. The samples were serially diluted 10"1 to 10"9 in PBS. PCR conditions were 950C for five minutes; 940C for one minute; 550C for one minute; 720C for one minute and 720C for 10 minutes, for 30 cycles. The amplification primer set was Primer 12a forward: (nts. 1197-1220; 24 bp) 5' gcttgttctggaataccaagagtg 3' (SEQ ID NO:23) and Primer 15a reverse: (nts. 1541-1564; 24 bp) 5' ccattctacccaatcccagctgta 3' (SEQ ID NO:26). The product size of the amplicon was 368 base pairs. Detection was by ethidium bromide staining or autoradiography with a 32P- labeled probe. The probe used to detect the amplicon by autoradiography was Primer 14a forward: (nts 1371-1429; 59 bp) 5' gctggtattggaggggttattactataccccacaattaagtggttggtcttatcagatg 3' (SEQ ID NO:25). Results of this study demonstrate that M. pneumoniae nucleic acid can be detected in the presence or absence of saliva and that one mycoplasma cell can be identified using this primer/probe set.
Cloning and sequencing of CARDS Based on the published genome sequence of M. pneumoniae M129/B9
(Himmelreich et ah, 1996, SEQ ID NO:7), the complete open reading frame of cards was analyzed. Translation of nucleotide sequences to amino acids revealed the existence of eight TGA codons within the coding region of cards. Start and stop codons and the eight intervening TGA codons are indicated in bolded text.
tttttaattt gtaaaatttc attttttaaa aatgccaaat cctgttagat ttgtttaccg
tgttgatttg agaagccctg aagaaatttt tgaacatggc ttttcaactt taggtgatgt gagaaatttc tttgaacaca ttctctccac taattttggt agaagctatt ttatttccac ttcagaaaca cccacagcag ctattcgctt ctttggtagc tggttacggg aatatgcacc agagcacccc agaagggctt acttatatga aattcgtgcc gaccaacact tttacaatgc ccgcgccact ggggagaact tgttagattt aatgcgtcaa agacaagtag tatttgactc tggtgatcga gaaatggcac aaatgggaat tagagcttta cgcacttcct ttgcgtatca acgtgaatgg tttaccgatg gtccaattgc agcagctaat gtccgtagtg cttgactagt agatgctgtt cccgttgaac ctggtcatgc tcaccacccg gctggtcgtg ttgtagagac tactagaatt aatgaaccgg aaatgcacaa ccctcattat caagagctgc aaacccaagc caatgatcaa ccatgattgc caacaccagg aatagctact cctgtacatt tatcaattcc ccaagcagct tccgttgctg atgtttcgga aggtacttcc gcttcgctat cgtttgcgtg ccctgattga agtccacctt ctagtaatgg tgaaaatccg ctagacaaat gcattgcgga aaagattgat aactataacc tacaatcctt accacagtac gctagcagtg taaaggaact ggaagataca ccagtatacc taaggggaat taaaacgcaa aaaaccttta tgttacaagc agatccgcaa aataacaatg tctttttggt cgaagtaaac cccaaacaaa agtccagctt tccccaaacc atcttctttt gggatgttta tcaacgaatt tgtctcaagg atttaactgg tgcacaaatc agtctttcgc ttactgcctt tactactcag tatgctggtc agctcaaagt gcaccttagt gttagcgcgg ttaatgccgt gaaccaaaag tgaaaaatga caccgcaaga cattgcaata actcagtttc gggtctcctc tgaactgtta ggtcaaactg aaaatggctt gttctgaaat accaagagtg gtggttcaca acacgatttg tatgtatgtc ctttgaaaaa tccacctagt gatttggaag aattacaaat aattgttgat gaatgtacta cccatgcgca gtttgttact atgcgtgcag ctagcacctt ctttgttgat gttcagctag gctggtattg aaggggttat tactataccc cacaattaag tggttgatct tatcagatga aaacaccaga tggacagata ttctatgatc taaaaacttc gaaaatcttc tttgtccagg acaaccaaaa cgtgttcttt ctccataata aactcaacaa acaaactggt tacagctggg attgagtaga atggctaaaa catgacatga atgaggacaa agacgaaaac tttaaatggt acttttcgcg tgatgacctt accattcctt ccgttgaagg gcttaacttc cgccacattc gctgttacgc tgacaaccag cagttaaagg tgatcataag cggttcacgt tggggcggtt ggtactccac ttacgataaa gttgaaagta atgtcgaaga taagattttg gtcaaagatg gttttgatcg cttttagcga ttaagcttta acgtcactgt tttgctctaa tgttagaagc aaagatcttg
The entire cards sequence was amplified using forward primer 5'- tttttacatatgccaaatcctgtt-3' (primer 1, SEQ IDNO:12) and reverse primer 5'- gatcgcttttagcgaggatcctttaacg -3' (primer 2, SEQ ID NO:64), which producesNdel and BamHl (underlined) sites at 5' and 3' ends ofthe cards ORF, respectively. Both fragments were ligated into the pCR2.1 vector andtransformed into E. coli INVaF' cells for automated sequencing using M13 forward and reverse primers.
Site-directed mutagenesis ofthe cards gene to permit expression oftotal recombinant CARDS protein was necessary, which requiredthe correction ofTGAs to TGGs in order to encode tryptophan inE. coli. Therefore, specific primers were designed as indicated below. Primers below are also used to generate specific CARDS domains for generating specific antibodyprobes.
CARDS: Oligonucleotide sequences within selected (above) nucleotide sequence. Pri 1-16: Modified oligonucleotide sequence* to amplifythe cards sequence.
* modified nucleotides are given in bold. Complementary oligonucleotide sequence are given underneath the reverse primers (2, 3, 5, 7, 9, 11, 13 and 15)
MPN372: 23 tttttaaaaatgccaaatcctgtt 46 (SEQ ID NO: 28) IMIII I
Pri-1 : 1 tttttacatatgccaaatcctgtt 24 (SEQ ID NO: 12)
MPN372: 458 aatgtccgtagtgcttgact 477 (SEQ ID NO:29) Pri-3 : 20 a IaItIgItIcIcIgItIaMgtIgIcItItMggcItl 1 (SEQ ID NO: 30) ttacaggcatcacgaaccga (SEQ ID NO: 31)
MPN372: 469 tgcttgactagtagatgctgtt 490 (SEQ ID NO:32)
IMIM MMMMMMMI Pri-4 : 1 tgcttggctagtagatgctgtt 22 (SEQ ID NO:33)
MPN372: 613 atgattgccaacaccagg 630 (SEQ ID NO: 34)
Pri-5 : 18 a ItIgIgtMtgMccMaaMcaMccMagMg 1 (SEQ ID NO: 35) • taccaacggttgtggtcc (SEQ ID NO: 36)
MPN372: 610 accatgattgccaacacc 627 (SEQ ID NO: 37)
Pri-6 : 1 accatggttgccaacacc 18 (SEQ ID NO:38)
MPN372: 722 cctgattgaagtccacctt 740 (SEQ ID NO: 39)
MMIIII MMIIMII
Pri-7 : 19 cctgattggagtccacctt 1 (SEQ ID NO:40) ggactaacctcaggtggaa (SEQ ID NO: 41)
MPN372: 717 cgtgccctgattgaagtc 734 (SEQ ID NO: 42)
Pri-8 : 1 cgtgccctgattggagtc 18 (SEQ ID NO:43) MPN372: 1117 aaagtgaaaaatgacaccgc 1136 (SEQ ID NO:44)
Pri-9 : 20 aaagtggaaaatgacaccgc 1 (SEQ ID NO: 45) tttcaccttttactgtggcg (SEQ ID NO: 46) MPN372: 1115 caaaagtgaaaaatgacacc 1134 (SEQ ID NO:47)
Pri-10: 1 caaaagtggaaaatgacacc 20 (SEQ ID NO: 48)
MPN372: 1192 aaatggcttgttctgaaatacc 1213 (SEQ ID NO: 49) MMIMMMMM MIMI
Pri-ll: 22 aaatggcttgttctggaatacc 1 (SEQ ID NO: 50) tttaccgaacaagaccttatgg (SEQ ID NO: 22)
MPN372: 1197 gcttgttctgaaataccaagagt 1219 (SEQ ID NO: 51) IMMMIII MMMMIMI
Pri-12: 1 gcttgttctggaataccaagagt 23 (SEQ ID NO: 52)
MPN372: 1368 taggctggtattgaaggggt 1387 (SEQ ID NO: 53) Pri-13: 20 taggctggtattggaggggt 1 (SEQ ID NO: 54) atccgaccataacctcccca (SEQ ID NO: 55)
MPN372: 1374 ggtattgaaggggttattactataccccacaattaagtggttgatcttatcagatg 1429
M I N I M I I I I M I I I
Pri-14: l ggtattggaggggttattactataccccacaattaagtggttggtcttatcagatg 56 (SEQ ID NOS: 56 and 57) MPN372: 1541 tacagctgggattgagtagaa 1561 (SEQ ID NO:58)
Pri-15: 21 tacagctgggattgggtagaa 1 (SEQ ID NO: 59) atgtcgaccctaacccatctt (SEQ ID NO: 60) MPN372: 1541 tacagctgggattgagtagaa 1561 (SEQ ID Nθ:61) Pri-16: l tacagctgggattgggtagaa 21 (SEQ ID NO:62) MPN372: 1796 gatcgcttttagcgattaagctttaacg 1824 (SEQ ID NO:63)
Pri-2 : 28 gatcgcttttagcgaggatcctttaacg 1 (SEQ ID NO: 64) ctagcgaaaatcgctcctaggaaattgc (SEQ ID NO: 13)
Sequence ofM.pneumoniae CARDS. The cards gene of M. pneumoniae reference strain M 129/ B9 and clinical isolates (Sl, L2, JL and RJLl) were cloned in a PCRJI vector individually and sequenced.
M129/B9 represents the reference strain and Sl, L2, RJLl and JL are clinical isolates from patients in San Antonio and Dallas. All clinical isolates have the same mutation at nucleotide 1112(T→G) from the
ATG start codon, which differs from the published reference strain. However, in clinical isolate Sl three additional nucleotide changes occur at nucleotide base positions 113(T→C), 922(T→C) and 1172(T→C).
The following nucleotide changes were detected in the other clinical isolates: L2: 734(A→G) and 1112(T→G).
JL: 1112^0I
RJLl : 1112(T→G) and 1174(T→C).
Coding sequence of Sl {Mycoplasma pneumoniae clinical isolate)
Bolded gs shown were introduced by site directed mutagenesis in order to express CARDS protein in E. coli.
Sl Nucleotide sequence (SEQ ID NO: 8) atgccaaatc ctgttagatt tgtttaccgt gttgatttga gaagccctga agaaattttt 60 gaacatggct tttcaacttt aggtgatgtg agaaatttct ttgaacacat tccctccact 120
aattttggta gaagctattt tatttccact tcagaaacac ccacagcagc tattcgcttc 180 tttggtagct ggttacggga atatgtacca gagcacccca gaagggctta cttatatgaa 240 attcgtgccg accaacactt ttacaatgcc cgcgccactg gggagaactt gttagattta 300 atgcgtcaaa gacaagtagt atttgactct ggtgatcgag aaatggcaca aatgggaatt 360 agagctttac gcacttcctt tgcgtatcaa cgtgaatggt ttaccgatgg tccaattgca 420 gcagctaatg tccgtagtgc ttggctagta gatgctgttc ccgttgaacc tggtcatgct 480 caccacccgg ctggtcgtgt tgtagagact actagaatta atgaaccgga aatgcacaac 540 cctcattatc aagagctgca aacccaagcc aatgatcaac catggttgcc aacaccagga 600 atagctactc ctgtacattt atcaattccc caagcagctt ccgttgctga tgtttcggaa 660 ggtacttccg cttcgctatc gtttgcgtgc cctgattgga gtccaccttc tagtaatggt 720 gaaaatccgc tagacaaatg cattgcggaa aagattgata actataacct acaatcctta 780 ccacagtacg ctagcagtgt aaaggaactg gaagatacac cagtatacct aaggggaatt 840 aaaacgcaaa aaacctttat gttacaagca gatccgcaaa ataacaatgt ctttttggtc 900 gaagtaaacc ccaaacaaaa gcccagcttt ccccaaacca tcttcttttg ggatgtttat 960 caacgaattt gtctcaagga tttaactggt gcacaaatca gtctttcgct tactgccttt 1020 actactcagt atgctggtca gctcaaagtg caccttagtg ttagcgcggt taatgccgtg 1080 aaccaaaagt ggaaaatgac accgcaagac agtgcaataa ctcagtttcg ggtctcctct 1140 gaactgttag gtcaaactga aaatggcttg tcctggaata ccaagagtgg tggttcacaa 1200 cacgatttgt atgtatgtcc tttgaaaaat ccacctagtg atttggaaga attacaaata 1260 attgttgatg aatgtactac ccatgcgcag tttgttacta tgcgtgcagc tagcaccttc 1320 tttgttgatg ttcagctagg ctggtattgg aggggttatt actatacccc acaattaagt 1380 ggttggtctt atcagatgaa aacaccagat ggacagatat tctatgatct aaaaacttcg 1440 aaaatcttct ttgtccagga caaccaaaac gtgttctttc tccataataa actcaacaaa 1500 caaactggtt acagctggga ttgggtagaa tggctaaaac atgacatgaa tgaggacaaa 1560 gacgaaaact ttaaatggta cttttcgcgt gatgacctta ccattccttc cgttgaaggg 1620 cttaacttcc gccacattcg ctgttacgct gacaaccagc agttaaaggt gatcataagc 1680 ggttcacgtt ggggcggttg gtactccact tacgataaag ttgaaagtaa tgtcgaagat 1740 aagattttgg tcaaagatgg ttttgatcgc ttt 1773
Below are the amino acid sequences ofindividual clinical isolates.
JL (SEQ ID NO: 3)
MPNPVRFVYR VDLRSPEEIF EHGFSTLGDV RNFFEHILST NFGRSYFIST SETPTAAIRF
FGSWLREYVP EHPRRAYLYE IRADQHFYNA RATGENLLDL MRQRQWFDS GDREMAQMGI
RALRTSFAYQ REWFTDGPIA AANVRSAWLV DAVPVEPGHA HHPAGRWET TRINEPEMHN PHYQELQTQA NDQPWLPTPG IATPVHLSIP QAASVADVSE GTSASLSFAC PDWSPPSSNG
ENPLDKCIAE KIDNYNLQSL PQYASSVKEL EDTPVYLRGI KTQKTFMLQA DPQNNNVFLV
EVNPKQKSSF PQTIFFWDVY QRICLKDLTG AQISLSLTAF TTQYAGQLKV HLSVSAVNAV
NQKWKMTPQD SAITQFRVSS ELLGQTENGL FWNTKSGGSQ HDLYVCPLKN PPSDLEELQI
IVDECTTHAQ FVTMRAASTF FVDVQLGWYW RGYYYTPQLS GWSYQMKTPD GQIFYDLKTS KIFFVQDNQN VFFLHNKLNK QTGYSWDWVE WLKHDMNEDK DENFKWYFSR DDLTIPSVEG LNFRHIRCYA DNQQLKVIIS GSRWGGWYST YDKVESNVED KILVKDGFDR F*
RJLl (SEQ ID NO:4)-
MPNPVRFVYR VDLRSPEEIF EHGFSTLGDV RNFFEHILST NFGRSYFIST SETPTAAIRF FGSWLREYVP EHPRRAYLYE IRADQHFYNA RATGENLLDL MRQRQWFDS GDREMAQMGI RALRTSFAYQ REWFTDGPIA AANVRSAWLV DAVPVEPGHA HHPAGRWET TRINEPEMHN PHYQELQTQA NDQPWLPTPG IATPVHLSIP QAASVADVSE GTSASLSFAC PDWSPPSSNG ENPLDKCIAE KIDNYNLQSL PQYASSVKEL EDTPVYLRGI KTQKTFMLQA DPQNNNVFLV EVNPKQKSSF PQTIFFWDVY QRICLKDLTG AQISLSLTAF TTQYAGQLKV HLSVSAVNAV NQKWKMTPQD SAITQFRVSS ELLGQTENGL FRNTKSGGSQ HDLYVCPLKN PPSDLEELQI IVDECTTHAQ FVTMRAASTF FVDVQLGWYW RGYYYTPQLS GWSYQMKTPD GQIFYDLKTS KIFFVQDNQN VFFLHNKLNK QTGYSWDWVE WLKHDMNEDK DENFKWYFSR DDLTIPSVEG LNFRHIRCYA DNQQLKVIIS GSRWGGWYST YDKVESNVED KILVKDGFDR F* L2 (SEQ ID NO: 5)
MPNPVRFVYR VDLRSPEEIF EHGFSTLGDV RNFFEHILST NFGRSYFIST SETPTAAIRF FGSWLREYVP EHPRRAYLYE IRADQHFYNA RATGENLLDL MRQRQWFDS GDREMAQMGI RALRTSFAYQ REWFTDGPIA AANVRSAWLV DAVPVEPGHA HHPAGRWET TRINEPEMHN
PHYQELQTQA NDQPWLPTPG IATPVHLSIP QAASVADVSE GTSASLSPAC PDWSPPSSNG ENPLGKCIAE KIDNYNLQSL PQYASSVKEL EDTPVYLRGI KTQKTFMLQA DPQNNNVFLV
EVNPKQKSSF PQTIFFWDVY QRICLKDLTG AQISLSLTAF TTQYAGQLKV HLSVSAVNAV NQKWKMTPQD SAITQFRVSS ELLGQTENGL FWNTKSGGSQ HDLYVCPLKN PPSDLEELQI IVDECTTHAQ FVTMRAASTF FVDVQLGWYW RGYYYTPQLS GWSYQMKTPD GQIFYDLKTS KIFFVQDNQN VFFLHNKLNK QTGYSWDWVE WLKHDMNEDK DENFKWYFSR DDLTIPSVEG LNFRHIRCYA DNQQLKVIIS GSRWGGWYST YDKVESNVED KILVKDGFDR F*
Sl (SEQ ID NO: 2) MPNPVRFVYR VDLRSPEEIF EHGFSTLGDV RNFFEHIPST NFGRSYFIST SETPTAAIRF FGSWLREYVP EHPRRAYLYE IRADQHFYNA RATGENLLDL MRQRQWFDS GDREMAQMGI RALRTSFAYQ REWFTDGPIA AANVRSAWLV DAVPVEPGHA HHPAGRWET TRINEPEMHN PHYQELQTQA NDQPWLPTPG IATPVHLSIP QAASVADVSΞ GTSASLSFAC PDWSPPSSNG ENPLDKCIAE KIDNYNLQSL PQYASSVKEL EDTPVYLRGI KTQKTFMLQA DPQNNNVFLV EVNPKQKPSF PQTIFFWDVY QRICLKDLTG AQISLSLTAF TTQYAGQLKV HLSVSAVNAV
•NQKWKMTPQD SAITQFRVSS ELLGQTENGL SWNTKSGGSQ HDLYVCPLKN PPSDLEELQI
IVDECTTHAQ FVTMRAASTF FVDVQLGWYW RGYYYTPQLS GWSYQMKTPD GQIFYDLKTS
KIFFVQDNQN VFFLHNKLNK QTGYSWDWVE WLKHDMNEDK DENFKWYFSR DDLTIPSVEG
LNFRHIRCYA DNQQLKVIIS GSRWGGWYST YDKVESNVED KILVKDGFDR F*
These sequence data are summarized below.
1. Translation of the nucleotide sequence of the clinical isolates showed changes in amino acid positions at 38, 245, 308, 371, 391 and 392.
2. All the clinical isolates have changes at amino acid position 371Ile→Ser. 3. JL had only one change at aa position 371Ile→Ser.
4. RJLl had one more additional change (comparing to JL) at aa position 392Trp→Arg.
5. L2 had one more additional change (comparing to JL) at aa position 245Asp→Gly.
6. Sl had three additional changes (comparing to JL) at aa positions 38Leu→Pr0> 308Ser→Pro and 391Phe→Ser.
Expression and purification of recombinant CARDS protein.
DNA fragments were generated by digesting plasmid pCR-cards with Ndel and BamHl and ligated into pET19b to generate pET-cards. The plasmid was transformed into competent E. coli BL21 (DE3) cells grown to a density of 2 X 10 cells/ml at 37 C in standard LB broth containing 100 μg/ml ampicillin (Sigma- Aldrich). Induction of recombinant protein synthesis was accomplished by addition of 100 μM of isopropyl thio β-galactopyranoside (Sigma- Aldrich), and bacteria were incubated for 3 h at 37 C under aeration at 220 rpm. Cells from 1 ml samples were pelleted, resuspended in 250 μl of sample buffer (4% SDS, 125 mM Tris [pH 6.8], 10% 2-ME, 10% glycerol, 0.2%
bromophenol blue), and heated to 95°C for 5 min. 10 μl aliquots of test samples were analyzed on 12% SDS/polyacrylamide gels. Recombinant colonies were screened for resistance to ampicillin and expression of a protein product of the correct size, and one recombinant clone from each construct was selected for further study. Verification of specific clones was achieved by restriction digestion and limited DNA sequencing. Fusion proteins were purified from recombinant E. coli under native condition by nickel affinity chromatography using the manufacturer's protocol (Qiagen).
Preparation of antisera against recombinant mycoplasma proteins. Mice were immunized subcutaneously with 50-100 μg of recombinant total
CARDS protein suspended in complete Freund's adjuvant (no peptides or truncated domains). Individual mice were boosted three times with the same amount of recombinant antigen in incomplete Freund's adjuvant at 14-day intervals. Serum samples were collected and used for immunological characterization. Monoclonal antibodies were produced using recombinant CARDS toxin and hybridoma supernatants were screened for immunoreactivity with CARDS protein and truncated peptides.
Full length recombinant CARDS Toxin (rTOX) and the amino terminal Dl domain of recombinant CARDS Toxin (rDl) were separated on 4-12% preparative gels, transferred to nitrocellulose and reacted with various concentrations (1 :2, 1 :10 and 1 :50 or 1 : 100) of primary mouse antibodies against rTOX or rDl (Monoclonal antibodies 11D1-2H10, isotype IgGgI and monoclonal antibody 19C4-2G10-1Ε1-2B9, isotype IgG3). Membranes were washed and reacted with alkaline phosphatase- conjugated goat anti-mouse IgG. Blots were washed again, followed by color development with NBT-BCIP reagent. Both antibodies bound a protein of approximately 70 kDa MW in membranes containing rTOX and both antibodies bound peptides of 28 kDa MW and 32 kDa MW in membranes containing rDl.
Primers designed to express specific domains of CARDS Introduced restriction sites are indicated by underline. Changes in nucleotide
sequences are given in bold.
tttttacatatqccaaatcctgtt Primer 1 (SEQ ID NO: 12) tttttacatatgccaaatcctgttag Primer Ia (SEQ ID NO: 72) ggatcctctacgcaatgcatttgtctag 372D1R (SEQ ID NO: 65) catatgccaacaccaggaatagctactc 372D2F (SEQ ID NO: 66) ggatccactaccagcctagctgaac ... 372D2R (SEQ ID NO:67) catatgggtcagctcaaagtgcaccttag 372D3F (SEQ ID NO: 68) gatcgcttttagcgaggatcctttaacg Primer 2 (SEQ ID NO: 64)
Amplified region ofCARDS toxin nucleic acid encoding Dl 1 (SEQ ID NO:74) atgccaaatc ctgttagatt tgtttaccgt gttgatttga gaagccctga agaaattttt 60 gaacatggct tttcaacttt aggtgatgtg agaaatttct ttgaacacat tctctccact 120 aattttggta gaagctattt tatttccact tcagaaacac ccacagcagc tattcgcttc 180 tttggtagct ggttacggga atatgtacca gagcacccca gaagggctta cttatatgaa 240 attcgtgccg accaacactt ttacaatgcc cgcgccactg gggagaactt gttagattta 300 atgcgtcaaa gacaagtagt atttgactct ggtgatcgag aaatggcaca aatgggaatt 360 agagctttac gcacttcctt tgcgtatcaa cgtgaatggt ttaccgatgg tccaattgca 420 gcagctaatg tccgtagtgc ttggctagta gatgctgttc ccgttgaacc tggtcatgct 480 caccacccgg ctggtcgtgt tgtagagact actagaatta atgaaccgga aatgcacaac 540 cctcattatc aagagctgca aacccaagcc aatgatcaac catggttgcc aacaccagga 600 atagctactc ctgtacattt atcaattccc caagcagctt ccgttgctga tgtttcggaa 660 ggtacttccg cttcgctatc gtttgcgtgc cctgattgga gtccaccttc tagtaatggt 720 gaaaatccgc tagacaaatg cattgcg 747
Domains expected to be expressed in E. coli using the above primers. Overlapping amino acids within domains are indicated by underline.
Domain 1 (SEQ ID NO:69): Primer 1 and 372D1R
1 MPNPVRFVYR VDLRSPEEIF EHGFSTLGDV RNFFEHILST NFGRSYFIST
51 SETPTAAIRF FGSWLREYVP EHPRRAYLYE IRADQHFYNA RATGENLLDL 101 MRQRQVVFDS GDREMAQMGI RALRTSFAYQ REWFTDGPIA AANVRSAWLV 151 DAVPVEPGHA HHPAGRWET TRINEPEMHN PHYQELQTQA ΉΌOPWLPTPG
201 IATPVHLSIP OAASVADVSE GTSASLSFAC PDWSPPSSNG ENPLDKCIA Theoretical pI/Mw: 5.54 / 28127.37
Domain 1 with His tag (underlined) (SEQ ID NO:75)
MGHHHHHHHHHHSSGHIDDDDKH
1 MPNPVRFVYR VDLRSPEEIF EHGFSTLGDV RNFFEHILST NFGRSYFIST 51 SETPTAAIRF FGSWLREYVP EHPRRAYLYE IRADQHFYNA RATGENLLDL 101 MRQRQVVFDS GDREMAQMGI RALRTSFAYQ REWFTDGPIA AANVRSAWLV 151 DAVPVEPGHA HHPAGRWET TRINEPEMHN PHYQELQTQA NDQPWLPrPG 201 IATPVHLSIP QAASVADVSE GTSASLSFAC PDWSPPSSNG ENPLDKCIA
Theoretical pI/Mw with the tag: 5.95 / 30894.20
Domain 2: (SEQ ID NO:70) 372D2F and 372D2R PWLPTPG
201 IATPVHLSIP OAASVADVSE GTSASLSFAC PDWSPPSSNG ENPLDKCIAE 251 KIDNYNLQSL PQYASSVKEL EDTPVYLRGI KTQKTFMLQA DPQNNNVFLV 301 EVNPKQKSSF PQTIFFWDVY QRICLKDLTG AQISLSLTAF TTQY AGOLKV 351 HLSVSA VNA VNOKWKMTPQD IAITOFRVSS ELLGOTENGL FWNTKSGGSO 401 HDL YVCPLKN PPSDLEELQI IVDECTTHA O FVTMRAASTF FVD VOLGWY Theoretical pI/Mw: 5.05 / 28378.10
Domain 3 (SEQ ID NO:71): 372D3F and Primer 2 AGOLKV 351 HLSVSA VNAV NOKWKMTP OD IAITOFRVSS ELLGOTENGL FWNTKSGGSO 401 HDLYVCPLKNPPSDLEELOIIVDECTTHAOFVTMRAASTFFVDVOLGWYW 451 RGYYYTPQLS GWSYQMKTPD GQIFYDLKTS KIFFVQDNQN VFFLHNKLNK 501 QTGYSWDWVE WLKHDMNEDK DENFKWYFSR DDLTIPSVEG LNFRHIRCYA 551 DNQQLKVIIS GSRWGGWYST YDKVESNVED KILVKDGFDR F Theoretical pI/Mw: 5.69 / 28966.52
Production of recombinant N terminal domain of CARDS Toxin rDl
To produce rDl, the Dl PCR fragment (SEQ ID NO: 74) encoding the cards first 249 amino acids (SEQ ID NO: 69) was cloned into the E. coli His'°-tagged expression vector, pET19b (Novagen), using Ndel and BamHl restriction sites incorporated into the oligonucleotide primers used to amplify this nucleic acid 5' tttttacatatgccaaatcctgttag 3' (SEQ ID NO:72) and 5' ggatcctctacgcaatgcatttgtctag 3' (SEQ ID NO:65). Because the Ndel site in the vector overlaps an ATG start codon, cloning the Dl fragment into this site places the fragment in perfect register with the vector-derived His-tagged ribosome binding site. The amino acid sequence of the expressed protein with the His tag is shown in SEQ ID NO:75.
After cloning the Dl PCR fragment into pET19b and confirming the identify of the cloned fragment by DNA sequencing, a recombinant plasmid was used to transform E. coli strain BL21 (λDE3). Transformants were grown to mid-log phase before inducing Dl expression by addition of IPTG to a final concentration of 1 mM. After four hours, cells were harvested by centrifugation at 800Og for 15 minutes at 40C and the pellet was resuspended in 50 mM phosphate buffer ph 8.0, containing 300 mM NaCl, 10 mM imidazole and complete, EDTA-free protease inhibitor (Sigma). Cells
were disrupted by sonication; cellular debris and membranes were pelleted by centrifugation at 16000 g for 30 minutes and discarded; the supernatant was mixed with Ni-NTA agarose slurry and left on a rocker at room temperature for one hour; and then the slurry was loaded into a column. The Ni-NTA agarose packed column was extensively washed with 10 mM imidazole, 20 mM imidazole, and 50 mM imidazole in the same buffer used for pellet resuspension. Finally, Dl was purified in a single step elution with 250 mM imidazole in the same buffer. Fractions containing purified protein were desalted using PlO columns (Amersham Biosciences) with TG buffer (20 mM Tris-Cl, pH 7.4, 5% glycerol) and concentrated using YM- 10 (Amicon) membranes. Protein concentrations were estimated using a BCA protein assay kit (Pierce) and the protein was aliquoted and stored at -8O0C.
ADP-ribosylation of G proteins following incubation of CARDS protein with HEp-2 cells. Confluent HEp-2 cells were incubated with medium alone or in the presence of
40 μg/ml CARDS protein for 16 hours at 370C. Cells were washed and incubated with fresh medium at 370C for four hours. Cell free extracts (CFE) were prepared and assayed for ADP-ribosylation (CFE were incubated with 40 μg/ml CARDS protein for one hour with 0.1 μM [32P]NAD in 10OmM Tris pH 7.5, 2OmM DTT). The reaction mixture was precipitated with 10% TCA and proteins were resolved in a 4-15% gradient gel by SDS-PAGE and transferred to nitrocellulose membrane for autoradiography. As shown in the autoradiogram in Figure 2, the CARDS toxin exhibits ADP ribosylating activity.
Cytopathology in Chinese Hamster Ovary (CHO) cells
Cells were seeded into 25 cm2 cell culture flasks and incubation was continued until monolayer confluence was achieved. Then, recombinant CARDS protein (20 μg/ml or 40 μg/ml) was added for 24 hours. Monolayers were photographed on an Olympus CK40 microscope at 2OX magnification. In CHO cells, the recombinant toxin causes cytopathology with an associated
"foamy" appearance, rounding of cells and cell detachment from monolayers.
Further studies on effect of CARDS toxin in mammalian cell cultures
Mammalian cell monolayers were grown to 60-75% confluence in a CO2 incubator at 370C. Chinese hamster ovary (CHO) cells exposed to exogenous recombinant CARDS toxin displayed distinct vacuolization and cell rounding with disruption of monolayer integrity (Figure 4A). Cytopathogenic effects (CPE) were slow to develop at low concentrations of CARDS toxin (10-50 ng/ml), requiring approximately 16-28 hours, while higher concentrations of CARDS toxin (10-50 μg/ml) elicited overt CPE in 4-12 hours. Heat inactivation of CARDS toxin preparations (30 minutes at 60° to 1000C) abolished CPE.
To further examine the vacuolating effect of CARDS toxin on CHO cells, human immortalized HeLa cells were also exposed to CARDS toxin. As observed with CHO cell monolayers, intoxicated HeLa cells (Figure 4B) displayed a highly vacuolated phenotype, which was dose and time dependent, and individual cells detached from the surface and exhibited cell pathology similar to that observed in the CARDS toxin- treated animal models described herein.
The characterization of this unusual ADP ribosylating and vacuolating toxin in M. pneumoniae provides insight into the wide-ranging pathogenic capabilities of M. pneumoniae and demonstrates the utility of the CARDS toxin as a diagnostic and prognostic indicator of infection and disease progression as well as a vaccine candidate and therapeutic toxin to control a variety of associated and implicated human pathologies.
Effects of CARDS TX in animals
Baboons: Individual animals were instilled with active toxin or non-toxin diluent into the right lower lobe by direct endoscopic placement. Baseline lavages were obtained from the contralateral lobes of each animal and follow-up bilateral lavages were obtained 24 and 48 hours after the initial inoculation to investigate systemic effects. Subsequently, animals were sacrificed and airways evaluated in both groups by
histochemistry and by assessment of inflammatory responses in bronchoalveolar lavage (BAL).
In the CARDS toxin-treated animal, the trachea and right main and lower bronchi demonstrated a pronounced focal bronchiolar (small airway) ulceration and submucosal inflammation. Also, there was a striking bronchiolar infiltrate of lymphocytes and mononuclear cells and less pronounced presence of neutrophils. It was clear that an inflammatory response could be detected in both lower lobes, indicating a systemic effect of CARDS toxin. Bronchoalveolar lavages also revealed cellular infiltration and marked increases in inflammatory cytokines and chemokines were noted in intoxicated animals. For example, inflammatory cytokines, such as interleukin 6 (IL-6), increased 300 to 600 fold over the two-day period in the CARDS toxin-treated animal, indicating a powerful inflammatory and regulatory effect of CARDS toxin. Chemokines RANTES and IL-8 showed increases of 10 fold and 300 to 500 fold, respectively. No substantial stages in cytokine/chemokine profiles were observed in the negative control animal.
Mice: Individual animals were intranasally inoculated with CARDS toxin and monitored for changes in lung histopathology and BAL-associated inflammatory responses. Mice showed very striking peribronchiolar infiltration of lymphocytes, mononuclear cells and neutrophils. As in the case of baboons, marked lung injury was observed in the lungs and other airway tissues. The proliferation marker, MIB-I, was markedly reduced in CARDS toxin-treated mice, indicating a very powerful shut down of cell proliferation in contrast to non-toxin treated control animals. For example, IL-6 and IL- 12 increased within the first six days of intranasal introduction of CARDS toxin by 8 fold and 20 fold, respectively. CARDS toxin can mimic the course of active mycoplasma infection both in terms of cytopathology and cytokine/chemokine responses.
These studies demonstrate that the CARDS toxin causes specific tissue and cell histopathology and cell death and elicits inflammatory cytokine/chemokine signature profiles in baboons and mice.
Chimeric proteins with CARDS toxin
In additional embodiments, the present invention provides a chimeric protein or polypeptide comprising, consisting essentially of and/or consisting of a CARDS toxin or biologically active fragment or domain thereof and a ligand for contacting the CARDS toxin or biologically active fragment or domain thereof with a target cell. Also provided herein is a nucleic acid molecule that encodes a chimeric protein of this invention, as well as a vector and/or cell comprising the nucleic acid molecule.
As described herein, a biologically active fragment of the CARDS toxin can be a fragment as described herein that retains one or more biological activities of the CARDS toxin, such as toxin activity. A biologically active fragment of this invention can also be a domain of the CARDS toxin, as described herein. The chimeric protein can comprise a "toxin domain," which is a protein or functional fragment thereof that has toxic activity (e.g., ADP-ribosylating activity) and/or cytopathology inducing activity) on a cell as described herein. In some embodiments, in addition to a toxin domain of a CARDS toxin, the chimeric protein of this invention can comprise a toxin domain of another toxin, which can be, but is not limited to a toxin domain of diphtheria toxin, ricin, Pseudomonas exotoxin, colicin, anthrax toxin, tetanus toxin, botulinum toxin, saporin, abrin, bryodin, pokeweed anti-viral protein, viscumin and gelonin. A chimeric protein of this invention can comprise more than one (e.g., e, 3, 4, 5, or more) toxin domains or functional fragments thereof, which can be present in any order and/or in any combination in the chimeric protein. When multiple toxin domains are present, they can be immediately adjacent to one another, separated by one or more targeting moieties (antibody/ligand) and/or translocation domains, and/or separated by linkers. Furthermore, the moieties of the chimeric protein of this invention can be present in any order, multiplicity and/or combination relative to one another.
The chimeric proteins of this invention can also be modified by use in vivo by the addition of a blocking agent at the amino and/or carboxy-terminal end, to facilitate survival of the chimeric protein in vivo. Examples of blocking agents of this invention include, but are not limited to, additional related and/or unrelated peptide sequences
that can be attached to either end of the chimeric protein. Blocking can be carried out either chemically during synthesis of the chimeric protein of by recombinant DNA technology according to protocols well known in the art.
The ligand moiety of the chimeric protein of this invention can be an antibody that specifically reacts with an antigen on a cell surface, such that the antibody will bind to the surface of a cell possessing the antigen (a target cell), thereby bringing the CARDS toxin moiety of the chimeric protein in contact with the cell. The CARDS toxin moiety can be internalized by the target cell and the CARDS toxin or biologically active fragment thereof is active in the target cell, resulting in damage to and/or death of the target cell.
The ligand moiety of the chimeric protein can be an antibody to a cancer antigen, which can be an antigen that is present only on the surface of a cancer cell and/or it can be a cancer-associated antigen that is present on the surface of a cancer cell in an amount greater than the amount of antigen that would be present on the surface of a non-cancerous (e.g., normal) cell.
A cancer antigen of this invention can include, but is not limited to HER2/neu and BRCAl antigens for breast cancer, MART-1/MelanA, gplOO, tyrosinase, TRP-I, TRP-2, NY-ESO-I, CDK-4, β-catenin, MUM-I, Caspase-8, KIAA0205, HPVE7, SART-I, PRAME, and pi 5 antigens, members of the MAGE family, the BAGE family (such as BAGE- 1 ), the D AGE/PRAME family (such as DAGE- 1 ), the GAGE family, the RAGE family (such as RAGE-I), the SMAGE family, NAG, TAG-72, CA125, mutated proto-oncogenes such as p21ras, mutated tumor suppressor genes such as p53, tumor associated viral antigens (e.g., HPVl 6 E7), the SSX family, HOM-MEL-55, NY- COL-2, HOM-HD-397, HOM-RCC- 1.14, HOM-HD-21, HOM-NSCLC-I l, HOM- MEL-2.4, HOM-TES-11, RCC-3.1.3, NY-ESO-I, and the SCP family. Members of the MAGE family include, but are not limited to, MAGE-I, MAGE-2, MAGE-3, MAGE-4 and MAGE-11. Members of the GAGE family include, but are not limited to, GAGE- 1, GAGE-6. See, e.g., review by Van den Eynde and van der Bruggen (1997) in Curr. Opin. Immunol. 9: 684-693, Sahin et al. (1997) in Curr. Opin. Immunol. 9: 709-716,
and Shawler et al. (1997), the entire contents of which are incorporated by reference herein for their teachings of cancer antigens.
The cancer antigen can also be, but is not limited to, human epithelial cell mucin (Muc-1; a 20 amino acid core repeat for Muc-1 glycoprotein, present on breast cancer cells and pancreatic cancer cells), MUC-2, MUC-3, MUC-18, the Ha-ras oncogene product, carcino-embrypnic antigen (CEA), the raf oncogene product, CA- 125, GD2, GD3, GM2, TF, sTn, gp75, EBV-LMP 1 & 2, HPV-F4, 6, 7, prostatic serum antigen (PSA), prostate-specific membrane antigen (PSMA),prostate stem cell antigen (PSCA), alpha-fetoprotein (AFP), COl 7-1 A, GA733, gp72, p53, the ras oncogene product, β-HCG, gp43 , HSP-70 , p 17 mel, HSP-70, gp43 , HMW, HOJ- 1 , melanoma gangliosides, TAG-72, mutated proto-oncogenes such as p21ras, mutated tumor suppressor genes such as p53, estrogen receptor, milk fat globulin, telomerases, nuclear matrix proteins, prostatic acid phosphatase, protein MZ2-E, polymorphic epithelial mucin (PEM), folate-binding-protein LK26, truncated epidermal growth factor receptor (EGFR), Thomsen-Friedenreich (T) antigen, GM-2 and GD-2 gangliosides, polymorphic epithelial mucin, folate-binding protein LK26, human chorionic gonadotropin (HCG), pancreatic oncofetal antigen, cancer antigens 15-3,19-9, 549, 195, squamous cell carcinoma antigen (SCCA), ovarian cancer antigen (OCA), pancreas cancer associated antigen (PaA), mutant K-ras proteins, mutant p53, chimeric protein P210BCR-ABL, urokinase-type plasminogen activator receptor (uPAR), tumor associated viral antigens (e.g., HPV16 E7) and SP-A (see, e.g., Khubchandani and Snyder. "Surfactant Protein A (SP-A): the alveolus and beyond" FASEBJ. 15:59-69 (2001). The cancer antigen of this invention can also be an antibody produced by a B cell tumor (e.g., B cell lymphoma; B cell leukemia; myeloma; hairy cell leukemia), a fragment of such an antibody, which contains an epitope of the idiotype of the antibody, a malignant B cell antigen receptor, a malignant B cell immunoglobulin idiotype, a variable region of an immunoglobulin, a hypervariable region or complementarity determining region (CDR) of a variable region of an immunoglobulin, a malignant T cell receptor (TCR), a variable region of a TCR and/or a hypervariable region of a TCR. In one embodiment, the cancer antigen of this invention can be a single chain antibody
(scFv), comprising linked VH, and VL domains, which retains the conformation and specific binding activity of the native idiotype of the antibody.
The present invention is in no way limited to the cancer antigens listed herein. Other cancer antigens be identified, isolated and cloned by methods known in the art such as those disclosed in U.S. Pat. No. 4,514,506, the entire contents of which are incorporated by reference herein.
The present invention further provides a method for treating cancer, a method for killing a tumor cell and/or a method for reducing the size of a tumor in a subject, comprising administering to the subject and/or contacting cancer cells (e.g., tumor cells) of the subject with a chimeric protein of this invention and/or a nucleic acid encoding a chimeric polypeptide of this invention.
The cancer to be treated by administration to a subject of a chimeric polypeptide and/or nucleic acid encoding a chimeric polypeptide of this invention can be, but is not limited to, B cell lymphoma, T cell lymphoma, myeloma, leukemia, hematopoietic neoplasia, thymoma, lymphoma, sarcoma, lung cancer, liver cancer, non-Hodgkins lymphoma, Hodgkins lymphoma, adrenal cancer, anal cancer, colorectal cancer, endometrial cancer, esophygeal cancer, fallopian tube cancer, gallbladder cancer, gastric cancer, glioblastoma, kidney cancer, laryngeal cancer, medulloblastoma, mesothelioma, neuroblastoma, oropharyngeal cancer, osteosarcoma, parathyroid cancer, thyroid cancer, penile cancer, pituitary cancer, retinoblastoma, rhabdomyosarcoma, urethral cancer, uterine cancer, adenocarcinoma, breast cancer, pancreatic cancer, colon cancer, lung cancer, renal cancer, bladder cancer, liver cancer, prostate cancer, ovarian cancer, primary or metastatic melanoma, squamous cell carcinoma, basal cell carcinoma, brain cancer, angiosarcoma, hemangiosarcoma, head and neck carcinoma, thyroid carcinoma, soft tissue sarcoma, testicular cancer, uterine cancer, cervical cancer, vaginal cancer, vulvar cancer, small intestinal cancer, and any other cancer now known or later identified (see, e.g., Rosenberg (1996) Ann. Rev. Med. 47:481-491, the entire contents of which are incorporated by reference herein).
In other embodiments, the ligand of this invention can be a ligand that specifically binds a receptor on a muscle cell, which can include, but is not limited to,
an antibody reactive to N-CAM (neuronal cell adhesion molecule) (Sigma Chemical Company, St. Louis, Mo.), an antibody reactive with the muscle-specific antigen, Leu- 19, an antibody reactive with dystrophin (Sigma) and an antibody reactive with a nicotinic acetylcholine receptor (nAchR). The nAch receptor and antibodies generated thereto are readily available from publicly accessible depositories. (See, e.g., U.S. Pat. No. 5,192,684, ATCC Nos.: HB 8987 (mAb 64), HB 189 (mAb 270), and TIB 175 (mAb 35), all of which are incorporated herein by reference.)
Thus, the present invention also provides methods of treating a muscle spasm, (e.g., a focal muscle spasm; a facial wrinkle), comprising contacting a muscle cell of the muscle in spasm with a chimeric protein of this invention. Such methods can be used, for example, to treat blepharospasm, cervical dystonia, hand dystonia, limb dystonia, hemifacial spasm, bruxism, strabismus, VI nerve palsy, spasmodic dysphonia and/or oromandibular dystonia, as well as any other disease or disorder associated with muscle spasm that is now known or later identified. A method of treating a muscle spasm according to this invention can include, for example, administering (e.g., by intramuscular injection) an effective amount of the chimeric polypeptide and/or nucleic acid encoding the chimeric polypeptide of this invention to the muscle of a subject. In some embodiments, the chimeric polypeptide and/or nucleic acid of this invention can also be administered with an effective amount of botulinum toxin, either alone and/or as part of a chimeric polypeptide and/or encoded by a nucleic acid molecule.
As used herein, a "muscle spasm" includes a brief, unsustained contraction and/or a paroxysmal, spontaneous, prolonged contraction of one or more muscles, which are responsive to treatment involving selective destruction of one or more muscles at the site of the muscle spasm. The production of any type of antibody and/or antibody fragment, (e.g., monoclonal, polyclonal, humanized, human, single chain, single chain Fv, Fab, F(ab')2, Fc, bispecific, multispecific, etc.) can be carried out according to well developed in the art. A humanized or "chimeric" antibody is an immunoglobulin molecule comprising a human moiety and a non-human moiety, in any combination. For example, the variable region of a humanized immunoglobulin molecule can be from a non-human (e.g.,
murine) source and the constant region can be from a human source. Thus, in this example, the humanized antibody can have the antigen-binding specificity of the non- human source and the effector function of the human source (see, e.g. U.S. Patent No. 5,482,856, the entire contents of which are incorporated by reference herein). Protocols for the production of human antibodies are well known (see, e.g., U.S. Patent No. 5, 001, 065, the entire contents of which are incorporated by reference herein).
In certain embodiments, the chimeric protein of this invention can comprise a translocation or internalization domain of a toxin protein, e.g., to facilitate delivery of the toxin moiety into the target cell The translocation domain can be from the CARDS toxin described herein and/or the domain can be from any other toxin that has a translocation domain. Such toxins include but are not limited to diphtheria toxin, colicin, delta-endotoxin, anthrax toxin, tetanus toxin, botulinum toxin and Pseudomonas exotoxin.
The chimeric proteins of this invention are produced by methods well known in the art. For example, an antibody or ligand that allows for specific targeting of the CARDS toxin to a specific cell type or population can be selected according to art- known procedures for the specific therapeutic effect desired. The antibody or ligand can be joined via a covalent or non-covalent bond to a CARDS toxin and/or biologically active fragment thereof as described herein. The moieties can be attached, j oined or connected by any of a number of means well known to those of skill in the art. In some embodiments, the chimeric protein of the present invention can be recombinantly expressed as a single-chain fusion protein comprising both antibody and toxin according to methods well known in the art. The toxin moiety can be joined, linked or conjugated directly, or through a linker (spacer), to the ligand. A "linker" as used herein, is a molecule that is used to join two molecules. The linker is capable of forming covalent bonds or high-affinity non-covalent bonds to both molecules. Suitable linkers are well known to those of ordinary skill in the art and include, but are not limited to, straight or branched-chain carbon linkers, heterocyclic carbon linkers and/or peptide linkers. The linkers can be joined to the constituent amino acids through their side groups (e.g., through a disulfide linkage to cysteine).
The procedure for attaching a toxin to an antibody or other polypeptide targeting molecule can vary according to the chemical structure of the toxin. Immunoglobulin molecules contain a variety of functional groups; e.g., sulfhydryl (--S), carboxylic acid (COOH) and free amine (NH2) groups, which are available for reaction with a suitable functional group on a toxin. Additionally or alternatively, the antibody/ligand and/or toxin can be derivatized to expose or attach additional reactive functional groups. The derivatization can involve attachment of any of a number of linker molecules (including commercially available linker molecules, e.g., from Pierce Chemical Company, Rockford 111). In some embodiments, a bifunctional linker having one functional group reactive with a group on the toxin and another functional group reactive with a group on an antibody/ligand, can be used. Derivatization can also involve chemical treatment of the toxin or antibody/ligand (e.g., by glycol cleavage of the sugar moiety of a glycoprotein antibody with periodate to generate free aldehyde groups). In some embodiments, the free aldehyde groups on an antibody can be reacted with free amine or hydrazine groups on a toxin to form the chimeric protein (see, e.g., U.S. Pat. No. 4,671,958. the entire contents of which are incorporated by reference herein). Procedures for generation of free sulfhydryl groups on an antibody or antibody fragment, are also known (see, e.g., U.S. Pat. No. 4,659,839). Many procedures and linker molecules for attachment of various compounds including toxins are known. See, for example, European Patent Application No. 188,256; U.S. Pat. Nos. 4,671,958, 4,659,839, 4,414,148, 4,699,784; 4,680,338; 4,569,789; 4,589,071; and Borlinghaus et al. Cancer Res. 47: 4071-4075 (1987), which are incorporated herein by reference in their entireties. Production of various chimeric proteins for use as immunotoxins is also well-known (Thorpe et al. "Monoclonal Antibody-Toxin Conjugates: Aiming the Magic Bullet" Monoclonal Antibodies in Clinical Medicine Academic Press, pp. 168-190 (1982); Waldmann. Science 252:1657 (1991); U.S. Pat. Nos. 4,545,985 and 4,894,443, the entire contents of each of which are incorporated herein by reference. See also, e.g., Birch and Lennox. Monoclonal Antibodies: Principles and Applications Chapter 4, Wiley-Liss, New York, N. Y.
(1995); U.S. Pat. Nos. 5,218,112, 5,090,914). In some embodiments, the linker molecule is m-Malimidobenzoyl-N-hydroxysuccinimideester (MBS) which can be used to prepare chimeric proteins as described, for example, in Youle and Nevelle. Proc. Natl. Acad. ScL 77(9):5483-5486 (1980). In some embodiments, it may be desirable to free the toxin from the antibody when the chimeric protein has reached its target site. Therefore, the present invention further provides a chimeric protein comprising a linkage that is cleavable in the vicinity of or within the target site and that can be used when the toxin is to be released at the target site. Cleavage of the linkage to release the toxin from the antibody/ligand can be facilitated by enzymatic activity and/or conditions to which the immunoconjugate is subjected either inside the target cell or in the vicinity of the target site. Several different cleavable linkers are known in the art (see, e.g., U.S. Pat. Nos. 4,618,492; 4,542,225, and 4,625,014, the entire contents of which are incorporated by reference herein). As one example, SPDP is a reversible NHS-ester, pyridyl disulfide cross- linker used to conjugate amine-containing molecules to sulfhydryls. Another chemical modification reagent is 2-iminothiolane, which reacts with amines and yields a sulfhydryl. Water soluble SPDP analogs, such as Sulfo-LC-SPDP (Pierce, Rockford, 111.) can also be used. As another example, SMPT is a reversible NHS-ester, pyridyl disulfide cross-linker developed to avoid cleavage in vivo prior to reaching the target cell or site.
The chimeric protein of this invention can also be produced according to standard protocols for recombinant DNA technology. The chimeric proteins can be produced in any number of well-defined expression systems and purified according to act-known standards for in vivo administration. Alternatively, a nucleic acid encoding the chimeric protein can be administered to a subject and/or to a cell of a subject of this invention and the chimeric protein can be produced in the cell or in the subject. Thus, the chimeric proteins and nucleic acids encoding them can be administered in vivo or ex vivo.
The chimeric protein of this invention can be present in a composition, which can be a pharmaceutical composition comprising the chimeric protein and/or nucleic
acid molecule encoding a chimeric protein in a pharmaceutically acceptable carrier. As described herein, "pharmaceutically acceptable" includes a material that is not biologically or otherwise undesirable, i.e., the material can be administered to an individual along with the chimeric polypeptide and/or nucleic acid without causing substantial deleterious biological effects or interacting in a deleterious manner in the subject and/or with any of the other components of the composition in which it is contained. Methods for preparing pharmaceutically acceptable compositions are well known in the art and are described in more detail in such publications as Remington's Pharmaceutical Science, 19th ed., Mack Publishing Company, Easton, Pa. (1995). As will be readily apparent to any clinician of ordinary skill in the art, the dose of the chimeric protein and/or nucleic acid encoding the chimeric protein will depend upon the properties of the particular chimeric polypeptide employed, e.g., its activity and biological half-life, the concentration of chimeric polypeptide in the formulation, the site and rate of administration, the clinical tolerance and characteristics (e.g., sex, gender, species, age, size, weight, overall condition) of the patient involved, the nature and severity of the disease or disorder to be treated or altered, etc., as are well know considerations in the art.
It is well understood that the chimeric protein and/or nucleic acid encoding the chimeric protein of this invention can be administered to a subject in a variety of ways (e.g., orally, intravenously, subcutaneously, intramuscularly, intratumorally, intraperitoneally, intrarectally, intravaginally, intranasally, intragastrically, intratrachaeally and/or intrapulmonarily.
In some embodiments, the chimeric polypeptide of this invention can be administered to a subject by, e.g., injection, into a muscle or into a tumor, in an amount ranging from about 1 ng to about 500 mg. An effective amount can be determined by one of skill in the art, using art-known teachings such as those provided in MacDonald and Glover ("Effective tumor targeting: Strategies for delivery of armed antibodies" Current Opinion in Drug Discovery and Development 8 : 177- 183 (2005) and Michl and Gress ("Bacteria and bacterial toxins as therapeutic agents for solid tumors" Current Cancer Drug Targets 4:689-702 (2004). When treating muscle spasms, the chimeric
protein can be administered at the site of the neuromuscular junctions of the muscle to be treated. As noted above, in various embodiments, the chimeric proteins of the present invention can be administered alone, in combination, and/or in conjunction with a conjugated and/or an unconjugated form of a different toxin (e.g., botulinum toxin). The chimeric protein and/or nucleic acid can be administered once or it can be admim'stered periodically until either a therapeutic result is achieved or until side effects warrant discontinuation of therapy. Generally, the dose should be sufficient to treat or ameliorate known symptoms or signs (e.g., release of muscle spasm; decrease in tumor size or reduction in tumor cell count) without producing unacceptable toxicity to the subject. An effective amount is an amount that provides either subjective relief of at least one symptom and/or an objectively identifiable improvement as noted by the clinician or other qualified observer.
The chimeric protein and/or nucleic acid can also be administered via microspheres, liposomes or other microparticulate delivery systems placed in certain tissues, including blood.
Testing of any of the chimeric proteins and nucleic acids encoding chimeric proteins of this invention for cytotoxicity both in vitro and in vivo can be carried out according to protocols well described in the art. For example, methods of determining cytotoxicity of a chimeric protein of this invention used to treat muscle spasms are described in U.S. Patent No. 6,780,413, the entire contents of which are incorporated by reference herein. Methods of determining the cytotoxicity of a chimeric protein of this invention used to treat cancer and/or to kill tumor cells are described in U.S. Patent No. 6,846,484, the entire contents of which are incorporated by reference herein.
Although the present process has been described with reference to specific details of certain embodiments thereof, it is not intended that such details should be regarded as limitations upon the scope of the invention except as and to the extent that they are included in the accompanying claims.
Throughout this application, various patents and non-patent publications are referenced. The disclosures of these patents and publications in their entireties are hereby incorporated by reference into this application in order to more fully describe
the state of the art to which this invention pertains.
Claims
1. A chimeric protein comprising a CARDS toxin or biologically active fragment thereof and a ligand for targeting the CARDS toxin or biologically active fragment thereof to a cell that is to be killed by the CARDS toxin or biologically active fragment thereof.
2. The chimeric protein of claim 1, wherein the ligand is an antibody or ligand that specifically reacts with a cancer antigen.
3. The chimeric protein of claim 1, wherein the ligand is an antibody or ligand that specifically reacts with a receptor on a muscle cell.
4. A method for killing a tumor cell in a subject, comprising contacting the tumor cell in the subject with the chimeric protein of claim 1 or 2.
5. A method for treating a muscle spasm in a subject, comprising contacting a muscle of the muscle spasm with the chimeric protein of claim 1 or 3.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2005/011897 WO2006110132A1 (en) | 2005-04-07 | 2005-04-07 | Methods and compositions for mycoplasma pneumoniae exotoxins |
US11/887,995 US20090104185A1 (en) | 2005-04-07 | 2006-03-31 | Methods and Compositions for Mycoplasma Toxins |
PCT/US2006/012266 WO2006110367A2 (en) | 2005-04-07 | 2006-03-31 | Methods and compositions for mycoplasma toxins |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2005/011897 WO2006110132A1 (en) | 2005-04-07 | 2005-04-07 | Methods and compositions for mycoplasma pneumoniae exotoxins |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006110132A1 true WO2006110132A1 (en) | 2006-10-19 |
Family
ID=37087319
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/011897 WO2006110132A1 (en) | 2005-04-07 | 2005-04-07 | Methods and compositions for mycoplasma pneumoniae exotoxins |
PCT/US2006/012266 WO2006110367A2 (en) | 2005-04-07 | 2006-03-31 | Methods and compositions for mycoplasma toxins |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/012266 WO2006110367A2 (en) | 2005-04-07 | 2006-03-31 | Methods and compositions for mycoplasma toxins |
Country Status (1)
Country | Link |
---|---|
WO (2) | WO2006110132A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030176331A1 (en) * | 2001-02-12 | 2003-09-18 | Rosenblum Michael G. | Modified proteins, designer toxins, and methods of making thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040191260A1 (en) * | 2003-03-26 | 2004-09-30 | Technion Research & Development Foundation Ltd. | Compositions capable of specifically binding particular human antigen presenting molecule/pathogen-derived antigen complexes and uses thereof |
GB0108024D0 (en) * | 2001-03-30 | 2001-05-23 | Chiron Spa | Bacterial toxins |
-
2005
- 2005-04-07 WO PCT/US2005/011897 patent/WO2006110132A1/en active Application Filing
-
2006
- 2006-03-31 WO PCT/US2006/012266 patent/WO2006110367A2/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030176331A1 (en) * | 2001-02-12 | 2003-09-18 | Rosenblum Michael G. | Modified proteins, designer toxins, and methods of making thereof |
Non-Patent Citations (5)
Title |
---|
DANDEKAR ET AL.: "Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reading frames", NUCLEIC ACIDS RESEARCH, vol. 28, no. 17, 2000, pages 3278 - 3288, XP003008959 * |
HOTT ET AL.: "Skeletal muscle-specific immunotoxin for the treatment of focal muscle spasm", NEUROLOGY, vol. 50, no. 2, 1998, pages 485 - 491, XP008077019 * |
KANNAN AND BASEMAN: "ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens", PROC. NAT'L. ACAD. SCI., vol. 103, no. 17, 25 April 2006 (2006-04-25), pages 6724 - 6729, XP003008958 * |
KANNAN ET AL.: "identification and Characterization of Human Surfactant Protein A Binding Protein of Mycoplasma pneumoniae", INFECT. IMMUN., vol. 73, no. 5, May 2005 (2005-05-01), pages 2828 - 2834, XP003008957 * |
PALLEN ET AL.: "An abundance of bacterial ADP-ribosyltransferases-implications for the origin of exotoxins", TRENDS IN MICROBIOLOGY, vol. 9, no. 7, July 2001 (2001-07-01), pages 302 - 307, XP003008960 * |
Also Published As
Publication number | Publication date |
---|---|
WO2006110367A3 (en) | 2006-12-21 |
WO2006110367A2 (en) | 2006-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8088894B2 (en) | Methods and compositions for Mycoplasma pneumoniae exotoxins | |
JP4761623B2 (en) | Novel streptococcal antigen | |
EP1219711B1 (en) | Lawsonia intracellularis vaccine | |
US20080226679A1 (en) | Novel surface exposed proteins from chlamydia pneumoniae | |
WO2012031374A1 (en) | Blood markers for diagnosing epithelium derived cancers and monoclonal antibodies thereof | |
Tikkanen et al. | The galactosyl-(alpha 1-4)-galactose-binding adhesin of Streptococcus suis: occurrence in strains of different hemagglutination activities and induction of opsonic antibodies | |
JP2002531522A (en) | Methods and compositions for immunization with Pseudomonas V antigen | |
US20100119549A1 (en) | Chlamydial antigens as reagents for diagnosis and treatment of chlamydial infection and disease | |
SA98180918A (en) | Nucleic acid and amino acid sequences relating to hellcobacter pylori and vaccine compositions thereof | |
US20090104185A1 (en) | Methods and Compositions for Mycoplasma Toxins | |
WO2018059117A1 (en) | Monoclonal antibody for detecting oncoprotein expression in pathologic tissue section | |
US20100297178A1 (en) | Novel genes and proteins of brachyspira hyodysenteriae and use of same for diagnosis and therapy | |
MX2010010614A (en) | Compositions, methods and kits. | |
US5854395A (en) | Cloned borrelia burgdorferi virulence protein | |
WO2006110132A1 (en) | Methods and compositions for mycoplasma pneumoniae exotoxins | |
AU2004278035B2 (en) | Methods and compositions for Mycoplasma pneumoniae exotoxins | |
US8586046B2 (en) | Methods and compositions for mycoplasma pneumoniae exotoxins | |
JP2004166564A (en) | Monoclonal antibody and method for diagnosing tuberculosis | |
JPH11503764A (en) | Leptospira outer membrane protein | |
US20090041782A1 (en) | Novel serotype streptococcus mutans and utilization of the same | |
JP4102186B2 (en) | Group B Streptococcus BVH-A2 and BVH-A3 antigens | |
AU2535699A (en) | Method for detecting intimin producing microorganisms | |
Korbsrisate et al. | Characterization of a phase 1-d epitope on Salmonella typhi flagellin and its role in the serodiagnosis of typhoid fever | |
JP6141281B2 (en) | Anti-C. Difficile toxin antibodies and related methods | |
EP2173902A1 (en) | Therapeutics and diagnostics for group a streptococci |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05817330 Country of ref document: EP Kind code of ref document: A1 |