+

WO2006104260A1 - Nucleic acid microarray, process for production of the same, and substrate for nucleic acid microarray - Google Patents

Nucleic acid microarray, process for production of the same, and substrate for nucleic acid microarray Download PDF

Info

Publication number
WO2006104260A1
WO2006104260A1 PCT/JP2006/307284 JP2006307284W WO2006104260A1 WO 2006104260 A1 WO2006104260 A1 WO 2006104260A1 JP 2006307284 W JP2006307284 W JP 2006307284W WO 2006104260 A1 WO2006104260 A1 WO 2006104260A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
substrate
microarray
acid microarray
filler
Prior art date
Application number
PCT/JP2006/307284
Other languages
French (fr)
Japanese (ja)
Inventor
Noritsugu Umehara
Yoichi Akagami
Masaru Kato
Jun Imai
Hiroshi Yoshida
Nobutaka Kusaba
Original Assignee
National University Corporation Nagoya University
Akita Prefecture
Incorporated National University Iwate University
Nipro Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Nagoya University, Akita Prefecture, Incorporated National University Iwate University, Nipro Corporation filed Critical National University Corporation Nagoya University
Priority to JP2007510586A priority Critical patent/JP5238250B2/en
Publication of WO2006104260A1 publication Critical patent/WO2006104260A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00608DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides

Definitions

  • Nucleic acid microarray method for producing the same, and substrate for nucleic acid microarray
  • the present invention relates to a nucleic acid microarray, a method for producing the same, and a substrate for nucleic acid microarrays. More specifically, the present invention relates to a plastic nucleic acid microarray, a method for producing the same, and a base material used therefor.
  • a DNA chip based on the former method is produced by combining photolithography and light irradiation chemical synthesis to synthesize oligonucleotides of about 20 to 25 mer on a glass substrate at a high density (US Patent No. 1). 5 4 4 5 9 3 4 Specification, U.S. Pat.No. 5 7 4
  • a DNA chip by the latter method is typically produced by spotting a pre-prepared DNA fragment on a slide glass at a high density (US Pat. No. 5,880,071).
  • the above-mentioned DNA chip is expensive to manufacture with a glass substrate chip and is expensive.
  • resin-made chips are advantageous in terms of cost, the fixation of DNA to the base material is inferior to that of glass substrates, and the strength of the fixation and the improvement of analysis power have not been resolved.
  • An object of the present invention is to provide a nucleic acid microarray, a base material for a nucleic acid microarray, and the like that can sufficiently fix a nucleic acid without introducing a specific reactive group into a substrate or a nucleic acid and performing a covalent bond. is there.
  • the inventors of the present invention have found that fixing the base material and the DNA is strengthened by applying a specific treatment to the plastic base material, and have completed the present invention.
  • the present invention is as follows.
  • a nucleic acid microarray in which a nucleic acid is immobilized on a plastic substrate, and at least a surface portion of the substrate is provided with an oxide-based filter, a hydroxide-based filter, a carbonate-based filter, and a sulfate.
  • a nucleic acid microarray comprising an inorganic filler selected from the group consisting of a series filler.
  • a nucleic acid microarray in which a nucleic acid is immobilized on a plasma-treated or ion beam-treated plastic substrate, and an oxide-based filter, a hydroxide-based filter, and a carbonate on at least the surface of the substrate.
  • a nucleic acid microarray comprising an inorganic filler selected from the group consisting of a series filler and a sulfate series filler.
  • nucleic acid microarray according to (4) wherein the inorganic filler is titanium dioxide.
  • the plastic is polypropylene, polymethyl methacrylate, polycarbonate, or polyethylene terephthalate.
  • a method for producing a nucleic acid microarray comprising:
  • a base material for nucleic acid microarrays made of plastic comprising an oxide-based filler, a hydroxide-based filter, a carbonate-based filter, and a sulfate-based filter on at least a surface portion of the substrate.
  • a substrate comprising an inorganic filler selected from the group consisting of:
  • nucleic acid microarray according to any one of (1) to (7) or the above (8) to (1 2) a step of contacting a nucleic acid microarray obtained by the production method according to any one of the above and a sample containing the nucleic acid to be analyzed;
  • a method for detecting a nucleic acid having a specific base sequence is a method for detecting a nucleic acid having a specific base sequence.
  • Figure 1 compares the fixability of DNA for polypropylene substrates with and without titanium dioxide.
  • Figure 2 shows a comparison of DNA fixability between a substrate made of polyethylene terephthalate containing titanium dioxide and a substrate not containing it.
  • Figure 3 shows the color development of a DNA microarray using a polycarbonate substrate containing titanium dioxide.
  • the nucleic acid microarray of the present invention is a nucleic acid microarray in which a nucleic acid is immobilized on a plastic substrate, and an oxide-based filler, a hydroxide-based filter, and a carbonate-based filter on at least a surface portion of the substrate. And an inorganic filler selected from the group consisting of sulfate-based fillers.
  • the nucleic acid microarray refers to a nucleic acid (also referred to as a probe) mounted on the surface of a plastic substrate.
  • the resin used for the plastic substrate of the nucleic acid microarray of the present invention include polyolefin resins such as polyethylene, polypropylene, polypentene, polymethylpentene, and saturated cyclic polyolefin; acryl resins such as polymethyl methacrylate; polycarbonate; polyacetal ; Ethylene ⁇ Vinyl alcohol copolymer resin; Polystyrene, AS (acrylonitrile 'styrene) tree Polystyrene resins such as oil, ABS (acrylonitrile butadiene styrene) resin; vinyl chloride resins such as polyvinyl chloride and polyvinylidene chloride; cellulose acetate; polyphenylene ether resin; polyphenylene nord resin; Resin; Polyetheretherketone resin; Thermosetting resin such as phenol resin, urea resin, melamine resin, unsaturated polyester resin, polyimide, epoxy resin, moon; Polyester terephthalate such as polyethylene terephthal
  • polypropylene, polymethylmethacrylate, polycarbonate and polyethylene terephthalate are preferred because they are inexpensive and easily available.
  • biodegradable resins or resin materials that have established recycling methods (eg, polyethylene, polypropylene, polystyrene, polyethylene terephthalate, etc.), but this is not a limitation. Absent.
  • the inorganic filler is a plastic auxiliary material that is generally added to a resin as an extender, and depending on the type, the viscosity increases, the molding compression ratio decreases, the opacity increases, and the light resistance. Effects such as improvement of mechanical properties, improvement of mechanical characteristics, and improvement of appearance may be added. From the viewpoint of easy visual detection of light emission detection in the nucleic acid microarray, those that improve opacity and those that improve the appearance are preferred, but are not limited thereto.
  • the inorganic filler examples include spherical particles, fibers, and flakes, and spherical particles are preferable from the viewpoint of dispersibility of the inorganic filler in the resin.
  • the average particle diameter of the spherical particles is preferably from 0.2 to 5.0 O / zm, more preferably from 0.5 to 2.0 m, from the viewpoint of dispersibility of the inorganic filler in the resin.
  • the average particle size of the inorganic filler is a value measured by a light scattering particle size distribution measuring device.
  • the inorganic filler in the present invention is selected from the group consisting of oxide fillers, hydroxide fillers, carbonate fillers, and sulfate fillers.
  • oxide fillers include titanium dioxide, silica, diatomaceous earth, alumina, iron oxide, zinc oxide, magnesium oxide, etc .; hydroxide fillers such as aluminum hydroxide, magnesium hydroxide, etc .; carbonates
  • examples of the filler include calcium carbonate, magnesium carbonate, and dolomite
  • examples of the sulfate-based filler include barium sulfate, calcium sulfate, and ammonium sulfate.
  • the inorganic filler may be used singly or in combination of two or more.
  • the inorganic filler described above can impart a positive charge, which is considered to be advantageous for immobilization of nucleic acids, to the substrate surface. Furthermore, an oxide-based filler is preferable, and titanium dioxide, which is excellent as a pigment, is more preferable.
  • the blending amount of the inorganic filler is appropriately set according to the type of the resin and the inorganic filler in which the inorganic filler is blended, but from the viewpoint of maintaining the shape of the base material satisfactorily with respect to 100 parts by weight of the resin.
  • the inorganic filler is 20 parts by weight or less, preferably 10 parts by weight or less.
  • the hydrophobicity in the present invention refers to a property having a contact angle 0 with water described later of about 65 ° or more. Furthermore, if the hydrophobic plastic is subjected to a surface treatment described later, the wettability with respect to an aqueous solution in which nucleic acid fragments are dissolved or dispersed in an aqueous medium is improved, so that the nucleic acid can be sufficiently fixed. Become.
  • the inorganic filler should just be contained in the surface part of the said base material at least. Therefore, the inorganic filler may be contained in the entire base material, or may be unevenly distributed on the surface portion, the unevenly distributed portion may be the entire surface portion, and the surface portion on which the nucleic acid is immobilized. It may be a partial region.
  • a base material containing an inorganic filler is formed on the whole base material formed by molding a plastic containing an inorganic filler; a plastic molded plate not containing an inorganic filler contains an inorganic filler.
  • examples include, but are not limited to, a multi-layer substrate in which plastic molded plates are laminated. When laminating plastic molded plates containing inorganic filler, it is recommended to fix nucleic acids. You may laminate
  • the substrate can be produced according to a known method.
  • resin and inorganic fillers and other additives as necessary are mixed and kneaded with a mixer, Henschel, extruder, kneader or roll, etc., and molded by extrusion molding, injection molding, compression molding or calendar molding, etc. can do.
  • a mixer Henschel, extruder, kneader or roll, etc.
  • molded by extrusion molding, injection molding, compression molding or calendar molding, etc. can do.
  • the base material can be produced by cutting into an appropriate size if necessary.
  • the plastic substrate is a polypropylene substrate
  • about 10 parts by weight of titanium dioxide fine particles are mixed with 100 parts by weight of a polypropylene resin, and are formed into a substrate by coextrusion. A method, but not limited to this.
  • the size of the substrate can be appropriately determined according to the purpose of use of the microarray, but from the viewpoint of ease of handling at the bedside, it is about 1 to 100 mm 2 , preferably about 1 0: L 0 0 O mm 2
  • the plastic substrate is preferably subjected to a surface treatment if necessary.
  • a surface treatment By this surface treatment, an appropriate surface roughness of the substrate surface can be obtained, wettability to an aqueous solution in which nucleic acid fragments are dissolved or dispersed in an aqueous medium is improved, and nucleic acid can be sufficiently fixed. Become.
  • Examples of the surface treatment method include ion beam treatment or plasma treatment, preferably ion beam treatment using an inert gas as an ionization gas or plasma treatment in an inert gas atmosphere.
  • the ion beam treatment refers to ion implantation and film formation by the energy generated by ionizing inert gas, irradiating the surface of the plastic substrate with high-speed acceleration by applying voltage, and colliding with it.
  • a surface treatment method that imparts the effect of improving etching and wettability.
  • the nucleus after the ion beam processing is used.
  • nitrogen gas and argon gas are preferred.
  • nitrogen can be more firmly fixed by improving the wettability of the surface of the plastic substrate and ion charging of the surface. Gas is more preferred.
  • the method of ion beam processing is not particularly limited.
  • a device equipped with an ECR ion gun that uses cyclotron resonance (ECR) of electrons in a magnetic field under reduced pressure can be irradiated with an acceleration energy of about 300 to 700 V at a dose of about 1.0 X 10 ° 2 ozZcm 2 .
  • ECR cyclotron resonance
  • Examples of the apparatus used include, but are not limited to, a small ECR ion shower apparatus (EIS-200 ER) manufactured by Erio Nitas.
  • the number of such treatments is not particularly limited as long as desired wettability and surface roughness are obtained, but from the viewpoint of suppressing wettability deterioration, 0.25 to 2.0 X 10 20 io nZc per time.
  • the dose of m 2 is preferably irradiated at least 5 times or more, preferably 10 times or more, but is not limited thereto.
  • the plasma treatment is performed by irradiating a solid surface with plasma generated by the ionizing action of the inert gas by discharging in an inert gas atmosphere, etching the surface, improving wettability, and introducing functional groups.
  • the discharge include corona discharge (high-pressure and low-temperature plasma), arc discharge (high-pressure and high-temperature plasma), and glow discharge (low-pressure and low-temperature plasma). Of these, corona discharge is preferred from the viewpoint of surface treatment reactivity. However, it is not limited to this.
  • the inert gas in the plasma treatment include nitrogen gas, argon gas, oxygen gas, helium gas, neon gas, and xenon gas.
  • nitrogen gas and argon Gas is preferred.
  • DNA or RNA having a phosphate skeleton which is a polyanion
  • an amine group and / or an amino group are generated on the surface of the plastic substrate, thereby improving the wettability of the surface and ions on the surface.
  • yo Nitrogen gas is more preferable because it can be fixed more firmly.
  • the plasma treatment method is not particularly limited.
  • the base material is placed in a sealed container, and a nitrogen gas atmosphere (about 10 to about 50 to about 50 to 50 ° C.) is used. Under 20 Pa), discharge at an output of about 100-50 OW and process for about 100-1 000 seconds.
  • the apparatus used include, but are not limited to, a small high-performance plasma surface treatment apparatus (PDC 200 series) manufactured by Yamato Scientific.
  • the number of such treatments is not particularly limited as long as desired wettability and surface roughness are obtained, but is usually about 1 to 10 times.
  • the wettability of the surface of the plastic substrate is increased.
  • the wettability can be determined by measuring the contact angle ⁇ between the plastic substrate and water.
  • the contact angle 0 of water after the treatment is 60 ° or less, preferably 40 ° or less, particularly preferably 20 ° or less, from the viewpoint of nucleic acid fixation strength.
  • the water contact angle ⁇ on the surface of the base material before treatment is, for example, about 80 ° for polymethyl metatalylate and about 76 ° for polycarbonate.
  • the contact angle 0 is a value measured with an optical microscope after 0.25 ⁇ L of distilled water was dropped.
  • the surface roughness R a (JISB 060 1-1 9 94) of the plastic substrate is preferably from 0.06 to 0.5 zm from the viewpoint of making nucleic acid fixation stronger, and from 0.08 to 0. 45 ⁇ m is preferred.
  • the surface roughness Ra is a value measured with a laser microscope.
  • a nucleic acid microarray can be produced by immobilizing nucleic acids on the substrate obtained as described above.
  • the nucleic acid (also referred to as a probe) in the present invention refers to DNA, RNA, PNA or a derivative thereof.
  • the nucleic acid (probe) may be naturally derived, artificially synthesized, single stranded or double stranded.
  • the DNA may be natural or synthetic DNA, cDNA reverse-transcribed from mRNA, etc. It is not particularly limited.
  • the RNA is not particularly limited, such as mRNA, cRNA or rRNA.
  • PNA refers to a molecule having a nucleobase in the peptide backbone.
  • the derivative means a product obtained by appropriately modifying the DNA, RNA, or PNA within the scope of the object of the present invention.
  • DNA RNA
  • PNA single-stranded DNA is preferable in terms of production cost, the point that various enzymes can be used, and a wide range of applications, but is not limited thereto.
  • Examples of the scope of application include prediction of drug sensitivity of individual patients, determination of pathogenic bacteria or resistance, and determination of individual constitution, and generally refers to applications in a field called tailor-made medicine. However, it is not limited to this.
  • the nucleic acid microarray of the present invention is generally called a DNA chip when the nucleic acid (probe) is a single-stranded DNA.
  • the type of nucleic acid (probe) mounted on the nucleic acid microarray of the present invention can be appropriately set according to the purpose of use. For example, when it is used to predict individual drug susceptibility, a single nucleotide polymorphism (SNP) is generally detected, so the number of polymorphisms at each polymorphic site to be detected is detected. Is the sum of More specifically, when predicting the susceptibility of the osteoporosis therapeutic agent disclosed in Japanese Patent Application Laid-Open No.
  • a nucleic acid having an arbitrary base sequence may be mounted as a control.
  • the length of the nucleic acid (probe) in the present invention is at least 50 bases as long as it can be easily immobilized on a plastic substrate by UV irradiation and can hybridize with the nucleic acid to be measured. That's fine.
  • it is 50 to 500 bases, preferably about 200 to 40 bases.
  • nucleic acid to be immobilized in the case of a nucleic acid derived from nature, a nucleic acid prepared by isolation and purification by a known method and cleaving to a predetermined length with an enzyme or the like can be used if necessary.
  • a synthetic nucleic acid those prepared by a known synthesis method can be used depending on the type of nucleic acid.
  • DNA those prepared by reverse transcription reaction or polymerase chain reaction can be suitably used.
  • the length of the base sequence necessary for detection is generally about 10 to 30 bases.
  • the above-mentioned length of 50 bases or more can be achieved by adding a sequence that does not affect the detection to the end of the nucleic acid sequence prepared as described above.
  • an oligomer selected from the group consisting of poly dT, poly d A, poly d C and poly d G can be added.
  • poly d T oligomer can be added. It is preferable to add it.
  • the poly dT oligomer can be added by terminal transferase or the like, but is not limited thereto.
  • the nucleic acid is immobilized by preparing a solution of the nucleic acid, spotting the solution on the surface of the plastic substrate, preferably the surface of the plastic substrate after the ion beam treatment or plasma treatment, and irradiating with UV. .
  • an aqueous solvent such as a phosphate buffer is generally used.
  • the spotting method is not particularly limited, and examples thereof include a method using a dispenser (such as SMP-3 manufactured by Musashi Engineering Co., Ltd.).
  • a plastic substrate containing an inorganic filler at least on the surface portion preferably after the substrate is subjected to ion beam treatment or plasma treatment.
  • Oxide filler, hydroxide filler, carbonate filler and sulfate The inorganic filler selected from the fillers imparts a positive charge to the substrate surface, which is considered to favor the immobilization of nucleic acids, more preferably
  • the surface shape suitable for nucleic acid fixation can be produced.
  • the nucleic acid can be easily fixed.
  • UV irradiation UV having a wavelength of about 250 to 350 nm is usually used, and irradiation is performed for about 1 to 10 minutes with about 5000 to 8 000 ⁇ wZcm 2 , but is not limited thereto.
  • washing or prokking treatment may be performed from the viewpoint of reducing nonspecific adsorption.
  • the nucleic acid microarray of the present invention thus obtained can be suitably used for the following detection method of the present invention.
  • the nucleic acid microarray of the present invention can be used in a method for detecting a nucleic acid having a specific base sequence.
  • the detection method includes a step of bringing the microarray into contact with a sample containing a nucleic acid to be analyzed, and a step of detecting a nucleic acid hybrid formed by the contact step.
  • the nucleic acid (target) to be analyzed a DNA fragment sample or RNA fragment sample whose sequence or function is unknown can be used.
  • the target nucleic acid can be isolated from a living cell or tissue sample for the purpose of examining gene expression.
  • the target nucleic acid is mRNA, it is preferably converted to cDNA by reverse transcription.
  • the target nucleic acid is preferably amplified by a reaction system containing a labeled primer or labeled dNTP, but is not limited thereto.
  • the method for amplifying the target nucleic acid is not particularly limited, such as PCR method, LAMP method, and Invader method, and can be amplified using reagents and equipment suitable for each method.
  • Non-RI methods include fluorescent labeling and enzyme labeling. Any fluorescent label can be used as long as it can bind to the base part of the nucleic acid, such as cyan dyes (eg, Cy 3 and Cy 5 in the Cy Dye TM series), rhodamine 6 G reagent. , N-acetoxy_N 2 —acetylyl nofnoleolene (AAF), AA IF (AAF's iodine derivative), and the like are not limited thereto.
  • cyan dyes eg, Cy 3 and Cy 5 in the Cy Dye TM series
  • rhodamine 6 G reagent e.g, N-acetoxy_N 2 —acetylyl nofnoleolene (AAF), AA IF (AAF's iodine derivative), and the like are not limited thereto.
  • enzyme labels include, but are not limited to, alkaline phosphatase, peroxy, and nandase.
  • the hybridization can be carried out by spotting a target nucleic acid, preferably an aqueous solution in which a labeled target nucleic acid is dissolved or dispersed, onto the nucleic acid microarray of the present invention.
  • the amount of spotting is preferably in the range of 1 to 100 ⁇ L from the viewpoint of facilitating detection visually or with an apparatus, but is not limited thereto.
  • Hybridization may be performed under conditions that allow the target nucleic acid and the nucleic acid immobilized on the array to form a hybrid. Usually, it is preferably carried out in a temperature range of about 25 to 70 ° C. and in a range of about 10 minutes to 24 hours, but is not limited thereto.
  • wash with washing solution to remove unreacted target nucleic acid. Examples of the washing solution include those containing a surfactant in a buffer solution.
  • a step of detecting the nucleic acid hybrid formed by the contacting step The detection method can be appropriately set according to the label.
  • RI labeling it can be detected by autoradiography.
  • fluorescent labels light with an excitation wavelength suitable for each fluorescent label is irradiated and the fluorescence intensity is measured. Can be detected.
  • enzyme labeling measurement can be performed by adding a substrate for each enzyme.
  • alkaline phosphatase for example, p-nitroblue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolinolephosphate p-toluidine salt (BC IP) are added as substrates.
  • NBT p-nitroblue tetrazolium
  • BC IP 5-bromo-4-chloro-3-indolinolephosphate p-toluidine salt
  • the detection method based on the combination of the Al force phosphatase label and the substrate NB TZB C IP can be suitably used for clinical diagnosis because the measurement result can be visually observed.
  • the nucleic acid microarray of the present invention can be used for various applications such as gene expression monitoring, dienotyping, and genetic polymorphism screening. In clinical practice, it is expected to be applied to clinical diagnosis and tailor-made medicine.
  • a PP substrate containing an inorganic filler was prepared by a co-extrusion machine using 500 g of polypropylene (PP) as a resin and 50 g of titanium dioxide particles having an average particle diameter of about 500 ⁇ as an inorganic filler.
  • PP polypropylene
  • EI S-200 ER manufactured by Erio Nitas
  • EI S-200 ER manufactured by Erio Nitas
  • DNA probe As the DNA probe, the DNA probe shown in SEQ ID NOS: 1 and 2 (provided by Sigmajienosis Japan) was used.
  • the DNA probe of SEQ ID NO: 1 is an estrogen receptor allele (X ba I polymorphism) that is cleaved by the restriction enzyme X ba I in the intron region between the first and second etasons. (X-type) can be detected.
  • the DNA probe of SEQ ID NO: 2 can detect a sequence (X type) that is not cleaved by the restriction enzyme X ba I among the estrogen receptor alleles (X ba I polymorphism).
  • Polythymine was added to these DNA probes using terminal transferase (manufactured by New England Bio 1ab) at the 3 and terminal ends. Specifically, 41 1 for terminal transferase (SO unit Z zl), 10 xl for deoxythymidine triphosphate (10 pmol Z / l), DNA probes of SEQ ID NOS: 1 and 2 (5 O mM) ) 4 ⁇ 1, 5 ⁇ 1 of NEB uffer 4 attached to the product, and 50 ⁇ 1 of purified water containing 5 ⁇ 1 of the force codylate buffer supplied with the product. By adding 20 XSSC buffer 50 / i 1 attached to the product, a polythymine-added nucleic acid probe (average length of about 400 bp) 2 pmol / ⁇ 1 was obtained.
  • terminal transferase manufactured by New England Bio 1ab
  • X-type detection probe (SEQ ID NO: 1): tctggagttg ggatga
  • x-type detection probe (SEQ ID NO: 2): gtggtctaga gttggg
  • Nucleic acid microarrays were produced by immobilizing 2 nm UV light for 2 minutes.
  • Example 1 a DNA microarray was produced in the same manner as in Example 1 except that no inorganic filler was contained.
  • Experimental example 1 Inspection using DNA microarray 1
  • the nucleotide sequence containing the XbaI polymorphism was amplified by the PCR method using Taq DNA polymerase (Roche Diagnostats). In the amplification reaction, the denaturation process was 94 ° C for 30 seconds, the annealing process was 55 ° C for 20 seconds, the chain extension process was 72 ° C for 20 seconds, and 30 cycles for one cycle.
  • Reno primer (Care [
  • Example 1 To 20 ⁇ L of the amplified DNA solution, add a solution (20 ⁇ L) of sodium hydroxide (5 ⁇ ) and ethylenediamine tetraacetic acid (0.05 ⁇ ), stir well, and let stand for 5 minutes. It was denatured into a main chain. Solution containing denatured DNA, solution containing sodium dodecyl sulfate (0.01 w_v%), sodium chloride (1.8 w / v%) and sodium citrate (1. OwZv%) (l mL) In addition, one microarray of Example 1 or Comparative Example 1 was infiltrated and shaken at a reaction temperature of 45 ° C. for 30 minutes for hybridization.
  • sodium hydroxide 5 ⁇
  • ethylenediamine tetraacetic acid 0.05 ⁇
  • alkaline phosphatase-labeled streptavidin add alkaline phosphatase-labeled streptavidin, and then add p-nitroblue tetrazolium (NBT) and 5-promo-4-chloro-3-indolyl phosphate ⁇ -toluidine salt (BCIP).
  • NBT p-nitroblue tetrazolium
  • BCIP 5-promo-4-chloro-3-indolyl phosphate ⁇ -toluidine salt
  • Figure 1 shows the result of color development.
  • the DNA microarray prepared from the PP substrate containing titanium dioxide of Example 1 can be easily judged visually, whereas Comparative Example 1 DNA microarrays made from PP substrates that did not contain any titanium dioxide produced almost no color. This indicates that inclusion of an inorganic filler in the plastic substrate can efficiently fix the nucleic acid to the plastic substrate.
  • Example 2
  • a DNA microarray was produced in the same manner as in Example 1 except that a polyethylene terephthalate (PET) substrate was used instead of the polypropylene substrate in Example 1.
  • PET polyethylene terephthalate
  • Example 2 a DNA microarray was produced in the same manner as in Example 2 except that no inorganic filler was contained.
  • Figure 2 shows the results of color development.
  • the DNA microarray prepared from the PET substrate containing the inorganic filler of Example 2 can be easily judged visually, while the comparative example
  • the DNA microarray made from the PET substrate that does not contain 2 inorganic fillers hardly developed color.
  • a DNA microarray was produced in the same manner as in Example 1 except that a polycarbonate (PC) substrate was used instead of the PP substrate in Example 1.
  • Figure 3 shows the color development.
  • Samples for surface roughness measurement and X-ray photoelectron spectroscopy (XP S) were prepared. Specifically, in Example 3, the substrate itself was used without immobilizing the nucleic acid.
  • the surface roughness Ra was measured using a laser microscope (manufactured by Keyence Corporation). Specifically, the average surface roughness in the observation field was measured using the analysis software attached to the product. As a result, it was about 0.0 before the ion beam irradiation, but about
  • Samples for X-ray photoelectron spectroscopy were prepared. Specifically, a nucleic acid microarray substrate was produced in the same manner as in Example 4 except that in Example 4, the number of ion beam irradiations was set to 2. In this example, since the purpose is to prepare a sample for X-ray photoelectron spectroscopy (XPS), no nucleic acid is immobilized. The ion irradiation interval was set to 30 seconds.
  • Example 5 a nucleic acid microarray substrate was produced in the same manner as in Example 5 except that the number of ion beam irradiations was three.
  • Example 5 a nucleic acid microarray substrate was produced in the same manner as in Example 5 except that the number of ion beam irradiations was changed to 4.
  • Example 4 a nucleic acid microarray substrate was produced in the same manner as in Example 4 except that the substrate did not contain an inorganic filler.
  • Example 4 Surface analysis of a DNA microarray substrate
  • the elemental composition ratios on the polycarbonate substrate surfaces of Examples 4 to 7 and Comparative Example 4 were measured using an X-ray photoelectron spectrometer (XPS, ULVAC-FAI). Specifically, A 1 ⁇ ⁇ ⁇ ; line was used as the X-ray source, and measurement was performed using a charged neutralization gun at approximately 25 ° C and under reduced pressure (approximately 10 to 15 Pa or less) (analysis area: Diameter 8 0 0 / m). The results are shown in Table 1. Since titanium was confirmed in the region 5 nm deep from the surface, it was confirmed that titanium dioxide was contained in at least the surface portion of the polycarbonate substrate. In addition, by increasing the number of ion beam irradiation, It was confirmed that the composition ratio of titanium increased. This is considered to be the reason why the nucleic acid is more immobilized by increasing the number of ion beam irradiations.
  • XPS X-ray photoelectron spectrometer
  • a nucleic acid microarray and a substrate for nucleic acid microarray can be provided at low cost. Further, the base material can fix the nucleic acid so as to be strong and suitable for hybridization. According to the method for producing a nucleic acid microarray of the present invention, the nucleic acid microarray can be produced inexpensively and efficiently. According to the detection method using the nucleic acid microarray of the present invention, DNA expression analysis and genotyping can be performed at low cost and with high sensitivity, compared with the conventional method. In addition, according to the detection method of the present invention, by introducing a specific label into the nucleic acid hybrid, nucleic acid can be detected and determined with a so-called bedside without using a large-scale detection apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Disclosed are a nucleic acid microarray which can immobilize a nucleic acid thereon satisfactorily without the need of the immobilization through a covalent bond provided by introducing a specific reactive group to a substrate or the nucleic acid; a substrate for the nucleic acid microarray; and others. A nucleic acid microarray comprising a plastic substrate and a nucleic acid immobilized on the substrate, at least the surface of the substrate containing an inorganic filler selected from the group consisting of an oxide filler, a hydroxide filler, a carbonate filler and a sulfate filler; a nucleic acid microarray comprising a plastic substrate which has been treated with plasma or an ion beam and a nucleic acid immobilized on the substrate, the at least the surface of the substrate containing an inorganic filler selected from the group consisting of an oxide filler, a hydroxide filler, a carbonate filler and a sulfate filler; a process for producing the nucleic acid microarray; a substrate for the nucleic acid microarray; and a method for detecting a nucleic acid using the nucleic acid microarray.

Description

明細書  Specification
核酸マイクロアレイ、 その製造方法および核酸マイクロアレイ用基材 技術分野  Nucleic acid microarray, method for producing the same, and substrate for nucleic acid microarray
本発明は、 核酸マイクロアレイ、 その製造方法および核酸マイクロアレイ用基 材に関する。 詳しくは、 プラスチック製の核酸マイクロアレイ、 その製造方法お よびそれに使用される基材などに関する。  The present invention relates to a nucleic acid microarray, a method for producing the same, and a substrate for nucleic acid microarrays. More specifically, the present invention relates to a plastic nucleic acid microarray, a method for producing the same, and a base material used therefor.
背景技術 Background art
ゲノム解析プロジ ク トの進展により、 種々の生物ゲノムの全塩基配列が解読 され、 これらの塩基配列情報をもとにして、 遺伝子の発現パターンや遺伝子産物 の機能を全ゲノムレベルで調べるための新たなプロジェク トが進められている。 D N Aチップは、 これらの機能解析プロジェクトを飛躍的に進展させるための手 段として開発され、 ヒ ト、 マウスおよび酵母等の全遺伝子のジエノタイピングや 遺伝子の発現解析に D N Aチップ技術が用いられている。  With the progress of genome analysis projects, all base sequences of genomes of various organisms have been deciphered, and based on these base sequence information, new expression for examining gene expression patterns and gene product functions at the genome level. Projects are underway. The DNA chip was developed as a means to dramatically advance these functional analysis projects, and DNA chip technology is used for dienotyping of all genes such as humans, mice, and yeast, and gene expression analysis. Yes.
現在用いられている D N Aチップ (あるいは D N Aマイクロアレイ) を作製す る方法は、大別して Affymetrix社方式とスタンフォード方式とがある。前者の方 法による D N Aチップは、 フォ トリソグラフィ一と光照射化学合成を組み合わせ てガラス基板上で 2 0〜2 5マー程度のオリゴヌクレオチドを高密度に合成する ことにより作製される (米国特許第 5 4 4 5 9 3 4号明細書、 米国特許第 5 7 4 Currently used methods for producing a DNA chip (or DNA microarray) are roughly classified into the Affymetrix method and the Stanford method. A DNA chip based on the former method is produced by combining photolithography and light irradiation chemical synthesis to synthesize oligonucleotides of about 20 to 25 mer on a glass substrate at a high density (US Patent No. 1). 5 4 4 5 9 3 4 Specification, U.S. Pat.No. 5 7 4
4 3 0 5号明細書および米国特許第 5 7 0 0 6 3 7号明細書を参照)。後者の方法 による D N Aチップは、 典型的には、 あらかじめ調製された D N A断片をスライ ドガラス上に高密度にスポットすることにより作製される (米国特許第 5 8 0 7No. 4,300,5 and U.S. Pat. No. 5,700,037). A DNA chip by the latter method is typically produced by spotting a pre-prepared DNA fragment on a slide glass at a high density (US Pat. No. 5,880,071).
5 2 2号明細書および国際公開公報 9 8 1 8 9 6 1号パンフレツトを参照)。 一方、 ガラス基板の代わりに、 種々のプラスチック樹脂を用いたバイオチップ も検討されている (特開 2 0 0 5— 1 0 0 0 4号公報を参照) 未処理の樹脂 は D N Aとの結合性が低く、 樹脂の基板の表面を修飾する方法がなされる。 例え ば、 特開 2 0 0 5— 1 0 0 0 4号公報には、 基板の表面修飾方法として、 アルデ ヒ ド基を導入する方法が開示されており、 アルデヒド基との反応性を高めるため には DN Aにアミノ基を導入する必要があることが記載されている。 5 2 2 and International Publication No. 9 8 1 8 9 6 1 (see pamphlet). On the other hand, biochips using various plastic resins instead of glass substrates are also being studied (see Japanese Patent Application Laid-Open No. 2 0 0 5-1 0 0 0 4) Untreated resin has DNA binding properties The method of modifying the surface of the resin substrate is low. For example, Japanese Patent Application Laid-Open No. 2 005 5-10 0 0 0 4 discloses a method for introducing an aldehyde group as a method for modifying the surface of a substrate, in order to increase the reactivity with an aldehyde group. Describes that it is necessary to introduce an amino group into DNA.
発明の開示 Disclosure of the invention
しかしながら、 上記の DN Aチップは、 ガラス基板のチップでは作製が大掛か りでコス トが高い。 樹脂製のチップはコス トの面で有利であるが、 DNAの基材 への固定がガラス基板のチップよりも劣り、 固定の強固さと解析力の向上が未解 決であった。  However, the above-mentioned DNA chip is expensive to manufacture with a glass substrate chip and is expensive. Although resin-made chips are advantageous in terms of cost, the fixation of DNA to the base material is inferior to that of glass substrates, and the strength of the fixation and the improvement of analysis power have not been resolved.
本発明の目的は、 基板や核酸に特定の反応基を導入して共有結合による固定を 施さなくても充分に核酸を固定することができる核酸マイクロアレイおよび核酸 マイクロアレイ用基材などを提供することにある。  An object of the present invention is to provide a nucleic acid microarray, a base material for a nucleic acid microarray, and the like that can sufficiently fix a nucleic acid without introducing a specific reactive group into a substrate or a nucleic acid and performing a covalent bond. is there.
本発明者らは、 プラスチック基材に特定の処理を施すことにより、 基材と DN Aとの固定が強固になることを見出し、 本発明を完成するに至った。  The inventors of the present invention have found that fixing the base material and the DNA is strengthened by applying a specific treatment to the plastic base material, and have completed the present invention.
すなわち、 本発明は以下の通りである。  That is, the present invention is as follows.
(1) プラスチック基材に核酸を固定化した核酸マイクロアレイであって、 当 該基材の少なく とも表面部分に、 酸化物系フイラ一、 水酸化物系フイラ一、 炭酸 塩系フイラ一および硫酸塩系フイラ一からなる群より選ばれた無機フィラーを含 有する核酸マイクロアレイ。  (1) A nucleic acid microarray in which a nucleic acid is immobilized on a plastic substrate, and at least a surface portion of the substrate is provided with an oxide-based filter, a hydroxide-based filter, a carbonate-based filter, and a sulfate. A nucleic acid microarray comprising an inorganic filler selected from the group consisting of a series filler.
(2) 前記無機フィラーが二酸化チタンである前記 (1) 記載の核酸マイクロ アレイ。  (2) The nucleic acid microarray according to (1), wherein the inorganic filler is titanium dioxide.
(3) 前記プラスチックがポリプロピレン、 ポリメチルメタタリレート、 ポリ カーボネートまたはポリエチレンテレフタレートである前記 (1) または (2) に記載の核酸マイクロアレイ。  (3) The nucleic acid microarray according to (1) or (2), wherein the plastic is polypropylene, polymethylmetatalylate, polycarbonate, or polyethylene terephthalate.
(4) プラズマ処理またはイオンビーム処理されたプラスチック基材に核酸を 固定化した核酸マイクロアレイであって、 当該基材の少なくとも表面部分に、 酸 化物系フイラ一、 水酸化物系フイラ一、 炭酸塩系フイラ一および硫酸塩系フイラ 一からなる群より選ばれた無機フィラーを含有する核酸マイクロアレイ。  (4) A nucleic acid microarray in which a nucleic acid is immobilized on a plasma-treated or ion beam-treated plastic substrate, and an oxide-based filter, a hydroxide-based filter, and a carbonate on at least the surface of the substrate. A nucleic acid microarray comprising an inorganic filler selected from the group consisting of a series filler and a sulfate series filler.
(5) 前記無機フィラーが二酸化チタンである前記 (4) 記載の核酸マイクロ アレイ。 (6) 前記プラスチックがポリプロピレン、 ポリメチルメタクリレート、 ポリ カーボネートまたはポリエチレンテレフタレートである前記 (4) または (5) に記載の核酸マイクロアレイ。 (5) The nucleic acid microarray according to (4), wherein the inorganic filler is titanium dioxide. (6) The nucleic acid microarray according to (4) or (5), wherein the plastic is polypropylene, polymethyl methacrylate, polycarbonate, or polyethylene terephthalate.
( 7 ) 前記基材の表面粗さ R a (J I S B 060 1— 1 994) が 0. 0 6〜0. 5 μπιである前記 (4)〜(6) いずれかに記載の核酸マイクロアレイ。 (7) The nucleic acid microarray according to any one of (4) to (6), wherein the substrate has a surface roughness Ra (JISB 060 1- 1 994) of 0.06 to 0.5 μπι.
(8) 少なく とも表面部分に無機フィラーを含有するプラスチック基材を、 プ ラズマ処理またはイオンビーム処理する工程、 および (8) Plasma treatment or ion beam treatment of a plastic substrate containing an inorganic filler at least on the surface, and
前記処理後のプラスチック基材の表面に核酸を固定する工程 A step of immobilizing nucleic acid on the surface of the plastic substrate after the treatment
を含む核酸マイクロアレイの製造方法。 A method for producing a nucleic acid microarray comprising:
(9) 前記プラズマ処理工程が不活性ガス雰囲気下で行われるものであり、 前 記イオンビーム処理工程がイオン化ガスとして不活性ガスを用いて行われるもの である前記 (8) 記載の製造方法。  (9) The manufacturing method according to (8), wherein the plasma treatment step is performed in an inert gas atmosphere, and the ion beam treatment step is performed using an inert gas as an ionized gas.
(1 0) 前記不活性ガスが窒素ガスである前記 (9) 記載の製造方法。  (1 0) The production method according to (9), wherein the inert gas is nitrogen gas.
(1 1) 前記核酸が 50塩基以上の長さを有するものである前記 (8) 〜 (1 0) いずれかに記載の製造方法。  (11) The production method according to any one of (8) to (10), wherein the nucleic acid has a length of 50 bases or more.
(1 2) 前記核酸を固定する工程が、 UV照射により行われる前記 (8)〜(1 1) いずれかに記載の製造方法。  (1 2) The method according to any one of (8) to (11), wherein the step of fixing the nucleic acid is performed by UV irradiation.
(1 3) プラスチックを材料としてなる核酸マイクロアレイ用基材であって、 当該基材の少なくとも表面部分に酸化物系フイラ一、 水酸化物系フイラ一、 炭酸 塩系フイラ一および硫酸塩系フイラ一からなる群より選ばれた無機フィ.ラーを含 有する基材。  (1 3) A base material for nucleic acid microarrays made of plastic, comprising an oxide-based filler, a hydroxide-based filter, a carbonate-based filter, and a sulfate-based filter on at least a surface portion of the substrate. A substrate comprising an inorganic filler selected from the group consisting of:
(14) 前記無機フィラーが二酸化チタンである前記 (1 3) 記載の基材。 (14) The substrate according to (1 3), wherein the inorganic filler is titanium dioxide.
(1 5) 前記基材表面がさらにプラズマ処理またはイオンビーム処理されてな る前記 (1 3) または (14) に記載の基材。 (15) The substrate according to (13) or (14), wherein the surface of the substrate is further subjected to plasma treatment or ion beam treatment.
(1 6) 前記基材の表面粗さ R a (J I S B 060 1— 1 9 94) が 0. 06〜0. 5 /zmである前記 ( 1 5) 記載の基材。  (16) The substrate according to (15), wherein the substrate has a surface roughness R a (J I S B 060 1 — 1 9 94) of from 0.06 to 0.5 / zm.
(1 7) 前記 (1) 〜 (7) いずれかに記載の核酸マイクロアレイまたは前記 (8) 〜 (1 2) いずれかに記載の製造方法により得られる核酸マイクロアレイ と分析対象の核酸を含む試料とを接触させる工程、 および (1 7) The nucleic acid microarray according to any one of (1) to (7) or the above (8) to (1 2) a step of contacting a nucleic acid microarray obtained by the production method according to any one of the above and a sample containing the nucleic acid to be analyzed; and
前記接触工程により形成された核酸ハイプリッドを検出する工程 Detecting the nucleic acid hybrid formed by the contacting step
を含む、 特定の塩基配列を有する核酸の検出方法。 A method for detecting a nucleic acid having a specific base sequence.
(1 8) 前記核酸ハイプリッドが標識されている前記 (1 7) に記載の検出方 法。  (18) The detection method according to the above (17), wherein the nucleic acid hybrid is labeled.
(1 9) 前記標識がアルカリホスファターゼである前記 (1 8) に記載の検出 方法。  (19) The detection method according to the above (18), wherein the label is alkaline phosphatase.
図面の簡単な説明 Brief Description of Drawings
図 1は、 二酸化チタンを配合したポリプロピレン製基板と配合しない基板につ いて、 DN Aの定着性を比較した図である。  Figure 1 compares the fixability of DNA for polypropylene substrates with and without titanium dioxide.
図 2は、.二酸化チタンを配合したポリエチレンテレフタレート製基板と配合し ない基板について、 DNAの定着性を比較した図である。  Figure 2 shows a comparison of DNA fixability between a substrate made of polyethylene terephthalate containing titanium dioxide and a substrate not containing it.
図 3は、 二酸化チタンを配合したポリカーボネート製基板を用いた DN Aマイ クロアレイを発色させた図である。  Figure 3 shows the color development of a DNA microarray using a polycarbonate substrate containing titanium dioxide.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の核酸マイクロアレイは、 プラスチック基材に核酸を固定化した核酸マ イクロアレイであって、 当該基材の少なくとも表面部分に、 酸化物系フイラ一、 水酸化物系フイラ一、 炭酸塩系フイラ一および硫酸塩系フイラ一からなる群より 選ばれた無機フイラ一を含有することを特徴とする。  The nucleic acid microarray of the present invention is a nucleic acid microarray in which a nucleic acid is immobilized on a plastic substrate, and an oxide-based filler, a hydroxide-based filter, and a carbonate-based filter on at least a surface portion of the substrate. And an inorganic filler selected from the group consisting of sulfate-based fillers.
本発明において、核酸マイクロアレイとは、プラスチック基材の表面に核酸(プ ロープともいう) が搭載されているものをいう。  In the present invention, the nucleic acid microarray refers to a nucleic acid (also referred to as a probe) mounted on the surface of a plastic substrate.
本発明の核酸マイクロアレイのプラスチック基材に用いられる樹脂は、 具体例 として、 ポリエチレン、 ポリプロピレン、 ポリペンテン、 ポリメチルペンテン、 飽和環状ポリオレフイン等のポリオレフイン系樹脂;ポリメチルメタクリレート 等のァクリル系樹脂;ポリカーボネート ;ポリアセタール;エチレン■ ビニルァ ルコール共重合体樹脂;ポリスチレン、 AS (アク リロニトリル ' スチレン) 樹 脂、 A B S (アクリロニトリル■ブタジエン 'スチレン) 樹脂等のポリスチレン 系樹脂;ポリ塩化ビニル、 ポリ塩化ビニリデン等の塩化ビニル系樹脂;酢酸セル ロース ;ポリフエ二レンエーテル樹脂;ポリフエ二レンスノレフィ ド樹脂;ポリァ ミ ド樹脂;ポリエーテルエーテルケトン樹脂; フエノール樹脂、 尿素樹脂、 メラ ミン樹脂、 不飽和ポリエステル樹脂、 ポリイミ ド、 エポキシ樹脂等の熱硬化性樹 月旨;ポリエチレンテレフタレート、 ポリブチレンテレフタレート等のポリエステ ノレ ;ポリ乳酸、 トウモロコシ等のデンプン由来の樹脂等の生分解性樹脂等があげ られる。 Specific examples of the resin used for the plastic substrate of the nucleic acid microarray of the present invention include polyolefin resins such as polyethylene, polypropylene, polypentene, polymethylpentene, and saturated cyclic polyolefin; acryl resins such as polymethyl methacrylate; polycarbonate; polyacetal ; Ethylene ■ Vinyl alcohol copolymer resin; Polystyrene, AS (acrylonitrile 'styrene) tree Polystyrene resins such as oil, ABS (acrylonitrile butadiene styrene) resin; vinyl chloride resins such as polyvinyl chloride and polyvinylidene chloride; cellulose acetate; polyphenylene ether resin; polyphenylene nord resin; Resin; Polyetheretherketone resin; Thermosetting resin such as phenol resin, urea resin, melamine resin, unsaturated polyester resin, polyimide, epoxy resin, moon; Polyester terephthalate such as polyethylene terephthalate and polybutylene terephthalate; polylactic acid And biodegradable resins such as starch-derived resins such as corn.
上記のうち、 安価であり、 入手が容易であることから、 ポリプロピレン、 ポリ メチルメタクリレート、 ポリカーボネートおよびポリエチレンテレフタレートが 好ましい。 また、 環境面からは、 生分解性樹脂や、 リサイクル方法が確立されて いる樹脂材料 (例、 ポリエチレン、 ポリプロピレン、 ポリスチレン、 ポリエチレ ンテレフタレート等) を用いることが好ましいが、 これに限定されるものではな い。  Of the above, polypropylene, polymethylmethacrylate, polycarbonate and polyethylene terephthalate are preferred because they are inexpensive and easily available. In terms of the environment, it is preferable to use biodegradable resins or resin materials that have established recycling methods (eg, polyethylene, polypropylene, polystyrene, polyethylene terephthalate, etc.), but this is not a limitation. Absent.
本発明において無機フィラーとは、 プラスチックの副資材として、 一般に増量 材として樹脂に配合されるものをいい、 さらに種類によっては、 粘度の上昇、 成 形圧縮率の低下、 不透明性の向上、 耐光性の向上、 力学特性の向上および外観の 向上などの効果を付加するものであってもよい。 核酸マイクロアレイにおける発 光検出を容易に目視できる観点から、 不透明性の向上するものおよび外観を向上 するものが好ましいが、 これに限定されるものではない。  In the present invention, the inorganic filler is a plastic auxiliary material that is generally added to a resin as an extender, and depending on the type, the viscosity increases, the molding compression ratio decreases, the opacity increases, and the light resistance. Effects such as improvement of mechanical properties, improvement of mechanical characteristics, and improvement of appearance may be added. From the viewpoint of easy visual detection of light emission detection in the nucleic acid microarray, those that improve opacity and those that improve the appearance are preferred, but are not limited thereto.
また、 前記無機フイラ一は、 例えば、 球形粒子状、 繊維状およびフレーク状な どが挙げられ、 樹脂における無機フィラー分散性の観点から球形粒子状が好まし い。 球形粒子の平均粒径は、 樹脂における無機フィラー分散性の観点から、 0 . 2 ~ 5 . O /z mが好ましく、 0 . 5〜2 . 0 mがより好ましい。 前記無機フィ ラーの平均粒径は、 光散乱式粒径分布測定装置により測定される値である。 本発明における無機フイラ一は、 酸化物系フイラ一、 水酸化物系フイラ一、 炭 酸塩系フィラーおよび硫酸塩系フィラーからなる群より選ばれるものであり、 例 えば、 酸化物系フイラ一としては二酸化チタン、 シリカ、 珪藻土、 アルミナ、 酸 化鉄、 酸化亜鉛、 酸化マグネシウム等;水酸化物系フイラ一としては水酸化アル ミニゥム、 水酸化マグネシウム等;炭酸塩系フイラ一としては炭酸カルシウム、 炭酸マグネシウム、 ドロマイト等;硫酸塩系フイラ一としては硫酸バリウム、 硫 酸カルシウム、 硫酸アンモニゥム等があげられる。 前記無機フイラ一は、 1種を 単独で用いてもよく、 2種以上を混合して用いてもよい。 Examples of the inorganic filler include spherical particles, fibers, and flakes, and spherical particles are preferable from the viewpoint of dispersibility of the inorganic filler in the resin. The average particle diameter of the spherical particles is preferably from 0.2 to 5.0 O / zm, more preferably from 0.5 to 2.0 m, from the viewpoint of dispersibility of the inorganic filler in the resin. The average particle size of the inorganic filler is a value measured by a light scattering particle size distribution measuring device. The inorganic filler in the present invention is selected from the group consisting of oxide fillers, hydroxide fillers, carbonate fillers, and sulfate fillers. Examples of oxide fillers include titanium dioxide, silica, diatomaceous earth, alumina, iron oxide, zinc oxide, magnesium oxide, etc .; hydroxide fillers such as aluminum hydroxide, magnesium hydroxide, etc .; carbonates Examples of the filler include calcium carbonate, magnesium carbonate, and dolomite; examples of the sulfate-based filler include barium sulfate, calcium sulfate, and ammonium sulfate. The inorganic filler may be used singly or in combination of two or more.
上記した無機フイラ一は、 核酸の固定化に有利に働くと考えられる正電荷を基 材表面に付与することができる。 さらには、 酸化物系フイラ一が好ましく、 顔料 としても優れる二酸化チタンがより好ましい。  The inorganic filler described above can impart a positive charge, which is considered to be advantageous for immobilization of nucleic acids, to the substrate surface. Furthermore, an oxide-based filler is preferable, and titanium dioxide, which is excellent as a pigment, is more preferable.
無機フィラーの配合量は、 無機フィラーが配合される樹脂と無機フィラーの種 類に応じて適宜設定されるが、 基材の形状を良好に保持する観点から、 樹脂 1 0 0重量部に対して無機フィラー 2 0重量部以下、 好ましくは 1 0重量部以下であ る。  The blending amount of the inorganic filler is appropriately set according to the type of the resin and the inorganic filler in which the inorganic filler is blended, but from the viewpoint of maintaining the shape of the base material satisfactorily with respect to 100 parts by weight of the resin. The inorganic filler is 20 parts by weight or less, preferably 10 parts by weight or less.
前記無機フィラーを配合することにより、 疎水性のプラスチック表面の核酸に 対する親和性が高くなる。 本発明における疎水性とは、 後述する水との接触角 0 が約 6 5 ° 以上の性質をいう。 さらに、 かかる疎水性のプラスチックに後述の表 面処理をすれば、 核酸断片を水性媒体に溶解または分散させた水性液に対する濡 れ性が向上して、 核酸を充分に固定することができるようになる。  By blending the inorganic filler, the affinity for the nucleic acid on the surface of the hydrophobic plastic is increased. The hydrophobicity in the present invention refers to a property having a contact angle 0 with water described later of about 65 ° or more. Furthermore, if the hydrophobic plastic is subjected to a surface treatment described later, the wettability with respect to an aqueous solution in which nucleic acid fragments are dissolved or dispersed in an aqueous medium is improved, so that the nucleic acid can be sufficiently fixed. Become.
無機フイラ一は、 少なくとも当該基材の表面部分に含有されていればよい。 し たがって、 無機フイラ一は、 基材全体に含有されていても、 表面部分に偏在して いてもよく、 偏在する箇所が表面部分全体であってもよく、 核酸が固定される表 面部分の一部領域であつてもよい。  The inorganic filler should just be contained in the surface part of the said base material at least. Therefore, the inorganic filler may be contained in the entire base material, or may be unevenly distributed on the surface portion, the unevenly distributed portion may be the entire surface portion, and the surface portion on which the nucleic acid is immobilized. It may be a partial region.
具体的な態様としては、 無機フィラーを含有するプラスチックを成形して形成 された、 基材全体に無機フィラーを含有する基材;無機フィラーを含有しないプ ラスチックの成形板上に、 無機フィラーを含有するプラスチックの成形板を積層 した多層基材等が挙げられるが、 これらに限定されるものではない。 無機フイラ 一を含有するプラスチックの成形板を積層する場合は、 核酸を固定することを予 定している部分にのみ積層してもよい。 As a specific embodiment, a base material containing an inorganic filler is formed on the whole base material formed by molding a plastic containing an inorganic filler; a plastic molded plate not containing an inorganic filler contains an inorganic filler. Examples include, but are not limited to, a multi-layer substrate in which plastic molded plates are laminated. When laminating plastic molded plates containing inorganic filler, it is recommended to fix nucleic acids. You may laminate | stack only on the fixed part.
基材は、 公知の方法に従い製造することができる。 例えば、 樹脂および無機フ イラ一ならびに必要によりその他の添加剤について、 ミキサー、 ヘンシェル、 押 出機、 ニーダーまたはロール等による混合 ·混練を行い、 押出成形、 射出成形、 圧縮成形またはカレンダー成形等によって成形することができる。 中でも製造容 易性およぴコス トの観点から、 樹脂および無機フィラーを共押出しにより製造す ることが好ましいが、 これに限定されるものはない。 さらに前記基材は、 必要な 場合には適切なサイズに裁断して製造することができる。  The substrate can be produced according to a known method. For example, resin and inorganic fillers and other additives as necessary are mixed and kneaded with a mixer, Henschel, extruder, kneader or roll, etc., and molded by extrusion molding, injection molding, compression molding or calendar molding, etc. can do. Among these, from the viewpoint of production easiness and cost, it is preferable to produce the resin and the inorganic filler by coextrusion, but there is no limitation thereto. Furthermore, the base material can be produced by cutting into an appropriate size if necessary.
具体的には、プラスチック基材がポリプロピレン製の基板である場合、例えば、 ポリプロピレン樹脂 1 0 0重量部に対して、 二酸化チタン微粒子を約 1 0重量部 混合し、 共押出しにより基板状に成形する方法が挙げられるが、 これに限定され るものではない。  Specifically, when the plastic substrate is a polypropylene substrate, for example, about 10 parts by weight of titanium dioxide fine particles are mixed with 100 parts by weight of a polypropylene resin, and are formed into a substrate by coextrusion. A method, but not limited to this.
前記基材の大きさは、 マイクロアレイの使用目的に応じて適宜決定することが できるが、 ベッドサイドでの取り扱いの容易性の観点から、 約 l〜 1 0 0 0 0 m m 2、 好ましくは約 1 0〜: L 0 0 O mm 2である。 The size of the substrate can be appropriately determined according to the purpose of use of the microarray, but from the viewpoint of ease of handling at the bedside, it is about 1 to 100 mm 2 , preferably about 1 0: L 0 0 O mm 2
前記プラスチック基材は、 必要により表面処理が行われることが好ましい。 こ の表面処理によって基材表面の適切な表面粗さが得られ、 核酸断片を水性媒体に 溶解または分散させた水性液に対する濡れ性が向上して、 核酸を充分に固定する ことができるようになる。  The plastic substrate is preferably subjected to a surface treatment if necessary. By this surface treatment, an appropriate surface roughness of the substrate surface can be obtained, wettability to an aqueous solution in which nucleic acid fragments are dissolved or dispersed in an aqueous medium is improved, and nucleic acid can be sufficiently fixed. Become.
前記表面処理の方法としては、 イオンビーム処理またはプラズマ処理があげら れ、 好ましくはイオン化ガスとして不活性ガスを用いたイオンビーム処理または 不活性ガス雰囲気下でのプラズマ処理である。  Examples of the surface treatment method include ion beam treatment or plasma treatment, preferably ion beam treatment using an inert gas as an ionization gas or plasma treatment in an inert gas atmosphere.
前記イオンビーム処理とは、 不活性ガスをイオン化し、 電圧をかけて高速加速 して得られるイオンビームをプラスチック基材表面に照射し、 衝突させることに よって発生したエネルギーにより、 イオン注入、 膜形成、 エッチングおよび濡れ 性の向上の効果を付与する表面処理方法をいう。  The ion beam treatment refers to ion implantation and film formation by the energy generated by ionizing inert gas, irradiating the surface of the plastic substrate with high-speed acceleration by applying voltage, and colliding with it. A surface treatment method that imparts the effect of improving etching and wettability.
前記イオンビーム処理における不活性ガスとしては、 イオンビーム処理後の核 酸固定の効率を高める観点から窒素ガスおよびアルゴンガスが好ましい。 リン酸 骨格を有する (ポリア二オンである) DNAまたは RNAを用いる場合は、 前記 プラスチック基材表面の濡れ性の向上および当該表面のイオンチャージによって、 より強固に固定することができる点で、 窒素ガスがより好ましい。 As the inert gas in the ion beam processing, the nucleus after the ion beam processing is used. From the viewpoint of increasing the efficiency of acid fixation, nitrogen gas and argon gas are preferred. When using DNA or RNA having a phosphate skeleton (which is a polyanion), nitrogen can be more firmly fixed by improving the wettability of the surface of the plastic substrate and ion charging of the surface. Gas is more preferred.
イオンビーム処理の方法は、 特に限定されるものではないが、 例えば、 減圧下 で、磁場中の電子のサイクロ卜ロン共鳴 (Electron Cyclotron Reso垂 ce:ECR) を利用した ECRイオン銃を搭載した装置から得られたイオンビームを、 約 30 0〜 700 Vの加速エネノレギ一で、 約 1. 0 X 1 02° i o nZc m2のドーズ量 で照射する方法があげられる。 使用する装置としては、 例えば、 エリオ二タス製 の小型 ECRイオンシャワー装置 (E I S— 200 ER) 等があげられるが、 こ れに限定されるものではない。 かかる処理の回数は、 所望の濡れ性および表面粗 さを得る限りにおいては特に限定されないが、 濡れ性の劣化を抑制できる観点か ら、 1回あたり 0. 25〜2. 0 X 1020 i o nZc m2のドーズ量を、 少なく とも 5回以上、 好ましくは 1 0回以上照射することが好ましいが、 これに限定さ れるものではない。 The method of ion beam processing is not particularly limited. For example, a device equipped with an ECR ion gun that uses cyclotron resonance (ECR) of electrons in a magnetic field under reduced pressure. The ion beam obtained from the above can be irradiated with an acceleration energy of about 300 to 700 V at a dose of about 1.0 X 10 ° 2 ozZcm 2 . Examples of the apparatus used include, but are not limited to, a small ECR ion shower apparatus (EIS-200 ER) manufactured by Erio Nitas. The number of such treatments is not particularly limited as long as desired wettability and surface roughness are obtained, but from the viewpoint of suppressing wettability deterioration, 0.25 to 2.0 X 10 20 io nZc per time. The dose of m 2 is preferably irradiated at least 5 times or more, preferably 10 times or more, but is not limited thereto.
前記プラズマ処理とは、 不活性ガス雰囲気下で放電することにより、 前記不活 性ガスの電離作用によって生じるプラズマを固体表面に照射し、 この表面をエツ チング、 濡れ性の向上および官能基の導入などの効果を付与する処理をいう。 上 記放電としては、 コロナ放電 (高圧低温プラズマ)、 アーク放電 (高圧高温プラズ マ) およびグロ一放電 (低圧低温プラズマ) などが挙げられ、 中でも表面処理の 反応性の観点から、 コロナ放電が好ましいが、 これに限定されるものではない。 前記プラズマ処理における不活性ガスとしては、 窒素ガス、 アルゴンガス、 酸 素ガス、 ヘリウムガス、 ネオンガスおよびキセノンガス等があげられるが、 プラ ズマ処理後の核酸固定の効率を高める観点から窒素ガスおよびアルゴンガスが好 ましい。 リン酸骨格を有する (ポリァニオンである) DNAまたは RNAを用い る場合は、 前記プラスチック基材の表面にァミン基および/またはアミノ基を発 生させ、 当該表面の濡れ性の向上および当該表面のイオンチャージによって、 よ り強固に固定することができる点で、 窒素ガスがより好ましい。 The plasma treatment is performed by irradiating a solid surface with plasma generated by the ionizing action of the inert gas by discharging in an inert gas atmosphere, etching the surface, improving wettability, and introducing functional groups. The process which provides effects, such as. Examples of the discharge include corona discharge (high-pressure and low-temperature plasma), arc discharge (high-pressure and high-temperature plasma), and glow discharge (low-pressure and low-temperature plasma). Of these, corona discharge is preferred from the viewpoint of surface treatment reactivity. However, it is not limited to this. Examples of the inert gas in the plasma treatment include nitrogen gas, argon gas, oxygen gas, helium gas, neon gas, and xenon gas. From the viewpoint of increasing the efficiency of nucleic acid fixation after plasma treatment, nitrogen gas and argon Gas is preferred. When DNA or RNA having a phosphate skeleton (which is a polyanion) is used, an amine group and / or an amino group are generated on the surface of the plastic substrate, thereby improving the wettability of the surface and ions on the surface. Depending on the charge, yo Nitrogen gas is more preferable because it can be fixed more firmly.
前記プラズマ処理の方法は、 特に限定されるものではないが、 例えば、 コロナ 放電を用いる場合、 前記基材を密閉容器に入れ、 約 25〜50°Cの窒素ガス雰囲 気 (約 1 0〜20 P a) 下で、 出力約 1 00〜50 OWで放電し、 約 100〜 1 000秒処理する方法などがあげられる。 使用する装置としては、 例えば、 ャマ ト科学社製の小型高性能プラズマ表面処理装置 (PDC 200シリーズ) などが 挙げられるが、 これに限定されるものではない。 かかる処理の回数は、 所望の濡 れ性および表面粗さを得る限りにおいては特に限定されないが、 通常 1〜1 0回 程度である。  The plasma treatment method is not particularly limited. For example, when corona discharge is used, the base material is placed in a sealed container, and a nitrogen gas atmosphere (about 10 to about 50 to about 50 to 50 ° C.) is used. Under 20 Pa), discharge at an output of about 100-50 OW and process for about 100-1 000 seconds. Examples of the apparatus used include, but are not limited to, a small high-performance plasma surface treatment apparatus (PDC 200 series) manufactured by Yamato Scientific. The number of such treatments is not particularly limited as long as desired wettability and surface roughness are obtained, but is usually about 1 to 10 times.
前記イオンビーム処理またはプラズマ処理することにより、 プラスチック基材 の表面の濡れ性が上昇する。 前記濡れ性は、 プラスチック基材と水との接触角 Θ を測定することにより決定することができる。 処理後の水の接触角 0は、 核酸の 固定強度の観点から、 60° 以下、好ましくは 40° 以下、特に好ましくは 20° 以下である。 なお、 処理前の基材の表面の水の接触角 Θは、 例えば、 ポリメチル メタタリレートでは、 約 80° 、 ポリカーボネートでは約 76° 程度である。 接 触角 0は、 0. 25 μ Lの蒸留水を滴下し、 光学顕微鏡で測定した値である。 前記イオンビーム処理またはプラズマ処理することにより、 プラスチック基材 の表面粗さを調整することができる。 プラスチック基材の表面粗さ R a (J I S B 060 1 - 1 9 94) は、 核酸の固定をより強固にするという観点から、 0. 06〜0. 5 zmが好ましく、 0. 0 8〜0. 45 μ mがより好ましレヽ。 前 記表面粗さ R aは、 レーザ顕微鏡により測定した値である。  By the ion beam treatment or plasma treatment, the wettability of the surface of the plastic substrate is increased. The wettability can be determined by measuring the contact angle Θ between the plastic substrate and water. The contact angle 0 of water after the treatment is 60 ° or less, preferably 40 ° or less, particularly preferably 20 ° or less, from the viewpoint of nucleic acid fixation strength. The water contact angle Θ on the surface of the base material before treatment is, for example, about 80 ° for polymethyl metatalylate and about 76 ° for polycarbonate. The contact angle 0 is a value measured with an optical microscope after 0.25 μL of distilled water was dropped. By performing the ion beam treatment or plasma treatment, the surface roughness of the plastic substrate can be adjusted. The surface roughness R a (JISB 060 1-1 9 94) of the plastic substrate is preferably from 0.06 to 0.5 zm from the viewpoint of making nucleic acid fixation stronger, and from 0.08 to 0. 45 μm is preferred. The surface roughness Ra is a value measured with a laser microscope.
上記のようにして得られた基材に、 核酸を固定することにより、 核酸マイクロ ァレイを製造することができる。  A nucleic acid microarray can be produced by immobilizing nucleic acids on the substrate obtained as described above.
本発明における核酸 (プローブともいう) とは、 DNA、 RNA、 PNAまた はそれらの誘導体をいう。 前記核酸 (プローブ) は、 天然由来であっても人工的 に合成されたものであっても、 一本鎖であっても二本鎖であってもよい。 また、 前記 DNAは、天然もしくは合成 DNA、mRNAから逆転写された c DNA等、 特に限定されるものではない。 前記 RNAは、 mRNA、 c RNAまたは r RN A等、 特に限定されるものではない。 前記 PNAは、 ペプチド骨格に核酸塩基を もつ分子をいう。 前記誘導体とは、 前記 DNA、 RNA、 PNAを本発明の目的 の範囲内で適宜修飾したものをいう。 The nucleic acid (also referred to as a probe) in the present invention refers to DNA, RNA, PNA or a derivative thereof. The nucleic acid (probe) may be naturally derived, artificially synthesized, single stranded or double stranded. The DNA may be natural or synthetic DNA, cDNA reverse-transcribed from mRNA, etc. It is not particularly limited. The RNA is not particularly limited, such as mRNA, cRNA or rRNA. PNA refers to a molecule having a nucleobase in the peptide backbone. The derivative means a product obtained by appropriately modifying the DNA, RNA, or PNA within the scope of the object of the present invention.
上記 DNA、 RNAおよび PNAの中では、 製造コスト、 種々の酵素が使用で きる点および用途範囲が広い面で、 一本鎖の DN Aが好ましいが、 これに限定さ れるものではない。 前記用途範囲とは、 例えば、 患者個人の薬剤感受性の予測、 病原菌のもしくは耐性の判定ならぴに個人の体質の判定などがあげられ、 一般的 にはテーラーメード医療と呼ばれる分野での用途を指すが、 これに限定されるも のではない。  Among the DNA, RNA, and PNA, single-stranded DNA is preferable in terms of production cost, the point that various enzymes can be used, and a wide range of applications, but is not limited thereto. Examples of the scope of application include prediction of drug sensitivity of individual patients, determination of pathogenic bacteria or resistance, and determination of individual constitution, and generally refers to applications in a field called tailor-made medicine. However, it is not limited to this.
ここで、 本発明の核酸マイクロアレイは、 核酸 (プローブ) がー本鎖の DN A である場合、 一般に DNAチップとも呼ばれる。  Here, the nucleic acid microarray of the present invention is generally called a DNA chip when the nucleic acid (probe) is a single-stranded DNA.
本発明の核酸マイクロアレイに搭載される核酸 (プローブ) の種類は、 用途目 的に応じて適宜設定することができる。 例えば、 患者個人の薬剤感受性の予測に 用いる場合は、 一般に一塩基多型 (SNP : S i n g l e Nu c l e o t i d e P o l ymo r p h i s m) を検出することから、 検出すべき各多型部位に おける多型の数の総和である。 さらに詳しく説明すると、 特開 2000— 3 50 600号公報で開示されている骨粗鬆症治療薬剤の感受性を予測する場合には、 VDR遺伝子のイントロン 8上の B sm I制限酵素断片長多型と、 Ap o E遺伝 子の Hh a I制限酵素断片長多型おょぴ ER遺伝子のイントロン 1上の Xb a I 制限酵素断片長多型を検出する。 前記 VDR遺伝子のイントロン 8上の B s m I 制限酵素断片長多型は 2種類、 前記 Ap o E遺伝子の Hh a I制限酵素断片長多 型は 3種類、 前記 ER遺伝子のイントロン 1上の Xb a I制限酵素断片長多型は 2種類であるため、 その総和は 7となる。 したがって、 核酸マイクロアレイに搭 載される核酸 (プローブ) の種類は、 7種類と設定することができる。 さらに、 対照として任意の塩基配列を有する核酸も搭載してもよい。 以上に具体例を示し て説明したが、 本発明はこれに限定されるものではない。 本発明における核酸 (プローブ) の長さは、 U V照射によりプラスチック基材 への固定が容易である上で、 測定対象の核酸とハイブリダイズすることができる ものであれば、 少なくとも 5 0塩基であればよい。 中でも、 非特異吸着の頻度の 観点から、 5 0〜5 0 0塩基、 好ましくは約 2 0 0〜4 0◦塩基である。 The type of nucleic acid (probe) mounted on the nucleic acid microarray of the present invention can be appropriately set according to the purpose of use. For example, when it is used to predict individual drug susceptibility, a single nucleotide polymorphism (SNP) is generally detected, so the number of polymorphisms at each polymorphic site to be detected is detected. Is the sum of More specifically, when predicting the susceptibility of the osteoporosis therapeutic agent disclosed in Japanese Patent Application Laid-Open No. 2000-3 50 600, the B sm I restriction fragment length polymorphism on intron 8 of the VDR gene, Ap o E gene Hh a I restriction fragment length polymorphism Detects the Xb a I restriction fragment length polymorphism on intron 1 of the ER gene. 2 types of B sm I restriction fragment length polymorphism on intron 8 of the VDR gene, 3 types of Hha I restriction fragment length polymorphism of the Ap o E gene, Xba on intron 1 of the ER gene Since there are two I restriction fragment length polymorphisms, the total is 7. Therefore, the types of nucleic acids (probes) mounted on the nucleic acid microarray can be set to seven types. Furthermore, a nucleic acid having an arbitrary base sequence may be mounted as a control. Although a specific example has been described above, the present invention is not limited to this. The length of the nucleic acid (probe) in the present invention is at least 50 bases as long as it can be easily immobilized on a plastic substrate by UV irradiation and can hybridize with the nucleic acid to be measured. That's fine. Among these, from the viewpoint of nonspecific adsorption frequency, it is 50 to 500 bases, preferably about 200 to 40 bases.
固定化される核酸は、天然由来の核酸の場合、公知の方法により単離、精製し、 必要に応じて酵素等で所定の長さに切断することにより調製したものを用いるこ とができる。 合成核酸の場合、 核酸の種類に応じて公知の合成方法により調製し たものを用いることができる。 D N Aの場合、 逆転写反応やポリメラーゼ連鎖反 応等により調製したものを好適に使用することができる。  As the nucleic acid to be immobilized, in the case of a nucleic acid derived from nature, a nucleic acid prepared by isolation and purification by a known method and cleaving to a predetermined length with an enzyme or the like can be used if necessary. In the case of a synthetic nucleic acid, those prepared by a known synthesis method can be used depending on the type of nucleic acid. In the case of DNA, those prepared by reverse transcription reaction or polymerase chain reaction can be suitably used.
しかしながら、 検出に必要な塩基配列の長さは、 約 1 0〜3 0塩基程度である ことが一般的である。 このような場合、 上記のようにして調製した核酸配列の末 端に、 検出に影響しないような配列を付加することにより、 上記の 5 0塩基以上 の長さを達成することができる。 例えば、 ポリ d T、 ポリ d A、 ポリ d Cおよび ポリ d Gからなる群より選ばれるオリゴマーを付加することがあげられ、 吸着強 度および非特異吸着の頻度の観点から、 ポリ d Tオリゴマーを付加することが好 ましい。 前記ポリ d Tオリゴマーの付加は、 ターミナルトランスフェラーゼなど により付加することが可能であるが、 これに限定されるものではない。  However, the length of the base sequence necessary for detection is generally about 10 to 30 bases. In such a case, the above-mentioned length of 50 bases or more can be achieved by adding a sequence that does not affect the detection to the end of the nucleic acid sequence prepared as described above. For example, an oligomer selected from the group consisting of poly dT, poly d A, poly d C and poly d G can be added. From the viewpoint of adsorption strength and nonspecific adsorption frequency, poly d T oligomer can be added. It is preferable to add it. The poly dT oligomer can be added by terminal transferase or the like, but is not limited thereto.
核酸の固定は、 前記核酸の溶液を調製し、 前記プラスチック基材の表面、 好ま しくは前記ィオンビーム処理またはプラズマ処理後のプラスチック基材の表面に、 当該溶液をスポッティングし、 U V照射することにより行う。 前記溶液は、 リン 酸緩衝液などの水系の溶媒を用いることが一般的である。 また、 スポッティング 方法は特に限定されるものではないが、 例えば、 ディスペンサー (武蔵ェンジ二 ァリング社製の S M P— 3など) を用いて行う方法があげられる。 本発明におい ては、 少なくとも表面部分に無機フィラーを含有するプラスチック基材を用いる ことにより、 好ましくは前記基材をイオンビーム処理またはプラズマ処理した後  The nucleic acid is immobilized by preparing a solution of the nucleic acid, spotting the solution on the surface of the plastic substrate, preferably the surface of the plastic substrate after the ion beam treatment or plasma treatment, and irradiating with UV. . As the solution, an aqueous solvent such as a phosphate buffer is generally used. In addition, the spotting method is not particularly limited, and examples thereof include a method using a dispenser (such as SMP-3 manufactured by Musashi Engineering Co., Ltd.). In the present invention, by using a plastic substrate containing an inorganic filler at least on the surface portion, preferably after the substrate is subjected to ion beam treatment or plasma treatment.
1 ) 酸化物系フイラ一、 水酸化物系フイラ一、 炭酸塩系フイラ一および硫酸塩系 フィラーから選ばれた無機フイラ一により、 核酸の固定化に有利に働くと考えら れる正電荷が基材表面に付与されること、 さらに好ましくは、 1) Oxide filler, hydroxide filler, carbonate filler and sulfate The inorganic filler selected from the fillers imparts a positive charge to the substrate surface, which is considered to favor the immobilization of nucleic acids, more preferably
2) プラスチック基材表面の親水性を上げることで、 前記プラスチック基材の前 記溶液に対する濡れ性が向上すること、  2) By increasing the hydrophilicity of the plastic substrate surface, the wettability of the plastic substrate to the solution is improved,
3) プラスチック基材表面を荒くすることで、 表面積を増加させることにより、 核酸の固定に適した表面形状の作製が達成されること  3) By making the surface of the plastic substrate rough and increasing the surface area, the surface shape suitable for nucleic acid fixation can be produced.
の諸条件により、 前記核酸を容易に固定することができる。 Under these conditions, the nucleic acid can be easily fixed.
前記 UV照射は、 通常約 250〜350 nmの波長の UVを使用し、 約 500 0〜8 000 μ wZc m2で 1〜10分程度照射するが、 これに限定されるもの ではない。 For the UV irradiation, UV having a wavelength of about 250 to 350 nm is usually used, and irradiation is performed for about 1 to 10 minutes with about 5000 to 8 000 μwZcm 2 , but is not limited thereto.
核酸 (プローブ) の固定終了後、 非特異吸着を低下させる観点から、 洗浄また はプロッキング処理を行ってもよい。  After the fixation of the nucleic acid (probe), washing or prokking treatment may be performed from the viewpoint of reducing nonspecific adsorption.
このようにして得られた本発明の核酸マイクロアレイは、 下記本発明の検出方 法に好適に用いられうる。  The nucleic acid microarray of the present invention thus obtained can be suitably used for the following detection method of the present invention.
本発明の核酸マイクロアレイは、 特定の塩基配列を有する核酸の検出方法に用 いることができる。 前記検出方法は、 前記マイクロアレイと分析対象の核酸を含 む試料とを接触させる工程、 および前記接触工程により形成された核酸ハイブリ ッドを検出する工程を含む。 以下、 各工程について説明する。  The nucleic acid microarray of the present invention can be used in a method for detecting a nucleic acid having a specific base sequence. The detection method includes a step of bringing the microarray into contact with a sample containing a nucleic acid to be analyzed, and a step of detecting a nucleic acid hybrid formed by the contact step. Hereinafter, each process will be described.
(1) 接触工程  (1) Contact process
(1 - 1) 分析対象の核酸 (標的) の前処理  (1-1) Pretreatment of nucleic acid (target) to be analyzed
分析対象の核酸 (標的) としては、 その配列や機能が未知である DNA断片試 料または RNA断片試料を用いることができる。 前記標的核酸は、 遺伝子発現を 調べる目的では、 生体の細胞や組織サンプルから単離することができる。 標的核 酸が mRNAの場合、 逆転写反応により c DN Aとすることが好ましい。 前記標 的核酸は、 遺伝子の変異や多型を調べる目的では、 標識プライマーもしくは標識 d NT Pを含む反応系で標的領域の核酸を増幅させることが好ましいが、 これに 限定されるものではない。 標的核酸の増幅方法としては、 P C R法、 L AM P法、 Invader法など特に限 定されるものではなく、 それぞれの方法に適した試薬および装置を用いて増幅す ることができる。 As the nucleic acid (target) to be analyzed, a DNA fragment sample or RNA fragment sample whose sequence or function is unknown can be used. The target nucleic acid can be isolated from a living cell or tissue sample for the purpose of examining gene expression. When the target nucleic acid is mRNA, it is preferably converted to cDNA by reverse transcription. For the purpose of investigating gene mutation and polymorphism, the target nucleic acid is preferably amplified by a reaction system containing a labeled primer or labeled dNTP, but is not limited thereto. The method for amplifying the target nucleic acid is not particularly limited, such as PCR method, LAMP method, and Invader method, and can be amplified using reagents and equipment suitable for each method.
標的核酸の増幅の際に、 核酸の検出を容易ならしめるために、 標識することが 好ましい。 標識方法としては、 R I法と非 R I法とがあるが、 取り扱いの容易さ から非 R I法を用いることが好ましい。 非 R I法としては、 蛍光標識法、 酵素標 識法等があげられる。 蛍光標識としては、 核酸の塩基部分と結合できるものであ れば何れも用いることができ、 シァェン色素 (例えば、 C y D y e™シリーズの C y 3、 C y 5等)、 ローダミン 6 G試薬、 N—ァセトキシ _ N2 —ァセチルァミ ノフノレオレン(A A F )、 AA I F (A A Fのョゥ素誘導体)などがあげられる力 これに限定されるものではない。 酵素標識としては、 アルカリホスファターゼ、 ペルォキ、ンダーゼなどがあげられるが、 これに限定されるものではない。 In order to facilitate detection of the nucleic acid during amplification of the target nucleic acid, labeling is preferred. As labeling methods, there are RI method and non-RI method, but it is preferable to use non-RI method because of easy handling. Non-RI methods include fluorescent labeling and enzyme labeling. Any fluorescent label can be used as long as it can bind to the base part of the nucleic acid, such as cyan dyes (eg, Cy 3 and Cy 5 in the Cy Dye ™ series), rhodamine 6 G reagent. , N-acetoxy_N 2 —acetylyl nofnoleolene (AAF), AA IF (AAF's iodine derivative), and the like are not limited thereto. Examples of enzyme labels include, but are not limited to, alkaline phosphatase, peroxy, and nandase.
( 1 - 2 ) ハイブリダイゼーション  (1-2) Hybridization
ハイプリダイゼーシヨンは、 標的核酸、 好ましくは標識した標的核酸が溶解あ るいは分散した水性液を、 本発明の核酸マイクロアレイ上に点着することによつ て実施することができる。 点着の量は、 目視または装置などで検出を容易にする 観点から、 1〜 1 0 0 μ Lの範囲にあることが好ましいが、 これに限定されるも のではない。 ハイブリダィゼーシヨンは、 標的核酸とアレイに固定化された核酸 とがハイブリッドを形成可能な条件下で行えばよい。 通常、 約 2 5〜7 0 °Cの温 度範囲で、 約 1 0分〜 2 4時間の範囲で実施することが好ましいが、 これに限定 されるものではない。 ハイブリダイゼーション終了後、 洗浄液を用いて洗浄を行 い、 未反応の標的核酸を除去する。 洗浄液としては、 緩衝液に界面活性剤を含有 するものが例示される。  The hybridization can be carried out by spotting a target nucleic acid, preferably an aqueous solution in which a labeled target nucleic acid is dissolved or dispersed, onto the nucleic acid microarray of the present invention. The amount of spotting is preferably in the range of 1 to 100 μL from the viewpoint of facilitating detection visually or with an apparatus, but is not limited thereto. Hybridization may be performed under conditions that allow the target nucleic acid and the nucleic acid immobilized on the array to form a hybrid. Usually, it is preferably carried out in a temperature range of about 25 to 70 ° C. and in a range of about 10 minutes to 24 hours, but is not limited thereto. After completion of hybridization, wash with washing solution to remove unreacted target nucleic acid. Examples of the washing solution include those containing a surfactant in a buffer solution.
( 2 ) 前記接触工程により形成された核酸ハイプリッドを検出する工程 検出方法は、 標識に応じて適宜設定することができる。 R I標識の場合は、 ォ 一トラジオグラフィーにより検出することができる。 蛍光標識の場合は、 それぞ れの蛍光標識に適した励起波長の光を照射し、 その蛍光強度を測定することによ り、 検出することができる。 酵素標識の場合、 各酵素の基質を添加して測定する ことができる。 アルカリホスファターゼを用いた場合、 例えば、 基質として p— ニトロブルーテトラゾリゥム (NBT) および 5—ブロモ一 4一クロロー 3—ィ ンドリノレりん酸 p—トルイジン塩 (BC I P) を添加し、 その発色の程度を目 視または、 C C Dカメラおょぴデンシトメーターにより測定することができる力 これに限定されるものではない。 (2) A step of detecting the nucleic acid hybrid formed by the contacting step The detection method can be appropriately set according to the label. In the case of RI labeling, it can be detected by autoradiography. In the case of fluorescent labels, light with an excitation wavelength suitable for each fluorescent label is irradiated and the fluorescence intensity is measured. Can be detected. In the case of enzyme labeling, measurement can be performed by adding a substrate for each enzyme. When alkaline phosphatase is used, for example, p-nitroblue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolinolephosphate p-toluidine salt (BC IP) are added as substrates. The force that can be measured visually or with a CCD camera optodensitometer is not limited to this.
アル力リホスファターゼ標識と基質 NB TZB C I Pとの組み合わせによる検 出方法は、測定結果が目視観察できることから、臨床診断に好適に用いられうる。 本発明の核酸マイクロアレイは、遺伝子発現モニタリング、ジエノタイビング、 および遺伝子多型のスクリーニング等様々な用途に使用することができる。 臨床 においては、 臨床診断およびテーラーメード医療等への応用が期待される。 実施例  The detection method based on the combination of the Al force phosphatase label and the substrate NB TZB C IP can be suitably used for clinical diagnosis because the measurement result can be visually observed. The nucleic acid microarray of the present invention can be used for various applications such as gene expression monitoring, dienotyping, and genetic polymorphism screening. In clinical practice, it is expected to be applied to clinical diagnosis and tailor-made medicine. Example
以下、 実施例を挙げて本発明を詳細に説明するが、 本発明は、 これら実施例に 限られるものではない。  Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to these examples.
実施例 1 Example 1
基板の調製 Substrate preparation
樹脂としてポリプロピレン (P P) 500 gと、 無機フイラ一として平均粒径 約 500 μπιの二酸化チタン粒子 5 0 gを用いて、 共押出し機によって、 無機フ ィラーを含有する P P基板を作製した。  A PP substrate containing an inorganic filler was prepared by a co-extrusion machine using 500 g of polypropylene (PP) as a resin and 50 g of titanium dioxide particles having an average particle diameter of about 500 μπι as an inorganic filler.
イオンビーム照射 Ion beam irradiation
イオンビーム源として、 小型 ECRイオンシャワー装置 (エリオ二タス製、 E I S- 200 ER) を用いた。 上記 P P基板を基板ホルダに取り付け、 チャンバ 一内を約 5. 0 X 10— 3〜 3. 0 X 1 0— 4P aに排気した後、 窒素を 2. 38 s c c mでチャンバ一内に導入した。 そして、 プラズマ源内で 50Wのマイクロ波 を照射することにより窒素イオンを引き出し、 600 e Vの電圧で加速すること で P P基板表面に照射した。 A small ECR ion shower device (EI S-200 ER, manufactured by Erio Nitas) was used as the ion beam source. Mounting the PP substrate to the substrate holder, after evacuating the chamber foremost about 5. 0 X 10- 3 ~ 3. 0 X 1 0- 4 P a, was introduced into the chamber one nitrogen 2. 38 sccm . Nitrogen ions were extracted by irradiating a 50 W microwave in the plasma source and accelerated at a voltage of 600 eV to irradiate the PP substrate surface.
DNAプローブ DNAプローブとしては、 配列番号 1および 2に示される DNAプローブ (シ グマジエノシスジャパン社提供) を用いた。 配列番号 1の DN Aプローブは、 第 1ェクソンと第 2エタソンの間のイントロン領域内に存在するエストロゲン受容 体対立遺伝子 (X b a I多型) のうち、 制限酵素 X b a Iにより切断される配列 (X型) を検出することができるものである。 一方、 配列番号 2の DNAプロ一 ブは、 エストロゲン受容体対立遺伝子 (X b a I多型) のうち、 制限酵素 X b a Iにより切断されない配列 (X型) を検出することができるものである。 これら の DNAプローブに 3, 末端をターミナルトランスフェラーゼ (N e w E n g l a n d B i o 1 a b社製) を用いて、 ポリチミンの付加を行った。 具体的に は、 ターミナルトランスフェラ一ゼ (S O u n i t Z z l ) を 4 1、 デォキシ チミジン三リン酸 (1 0 p m o l Z / l ) を 1 0 x l、 配列番号 1および 2の D N Aプローブ (5 O mM) を 4 μ 1、 製品添付の N E B u f f e r 4を 5 μ 1、 および製品添付の力コジル酸緩衝液を 5 μ 1含んだ精製水 5 0 μ 1を調製した後、 3 7でで 4時間反応させ、 製品添付の 2 0 X S S C緩衝液 5 0 /i 1を加えるこ とで、 ポリチミン付加された核酸プローブ (平均約 4 0 0 b p長) 2 p m o l / μ 1をそれぞれ得た。 DNA probe As the DNA probe, the DNA probe shown in SEQ ID NOS: 1 and 2 (provided by Sigmajienosis Japan) was used. The DNA probe of SEQ ID NO: 1 is an estrogen receptor allele (X ba I polymorphism) that is cleaved by the restriction enzyme X ba I in the intron region between the first and second etasons. (X-type) can be detected. On the other hand, the DNA probe of SEQ ID NO: 2 can detect a sequence (X type) that is not cleaved by the restriction enzyme X ba I among the estrogen receptor alleles (X ba I polymorphism). Polythymine was added to these DNA probes using terminal transferase (manufactured by New England Bio 1ab) at the 3 and terminal ends. Specifically, 41 1 for terminal transferase (SO unit Z zl), 10 xl for deoxythymidine triphosphate (10 pmol Z / l), DNA probes of SEQ ID NOS: 1 and 2 (5 O mM) ) 4 μ 1, 5 μ 1 of NEB uffer 4 attached to the product, and 50 μ 1 of purified water containing 5 μ 1 of the force codylate buffer supplied with the product. By adding 20 XSSC buffer 50 / i 1 attached to the product, a polythymine-added nucleic acid probe (average length of about 400 bp) 2 pmol / μ 1 was obtained.
X型検出用プローブ (配列番号 1 ) : tctggagttg ggatga  X-type detection probe (SEQ ID NO: 1): tctggagttg ggatga
x型検出用プローブ (配列番号 2) : gtggtctaga gttggg x-type detection probe (SEQ ID NO: 2): gtggtctaga gttggg
DNAプローブの固定  Immobilization of DNA probe
次に、 ポリチミン付加された配列番号 1または 2の核酸プローブを、 それぞれ Next, the polythymine-added nucleic acid probe of SEQ ID NO: 1 or 2, respectively,
1 ; 0 p m o 1 / i 1 となるように、製品添付の 1 0 X S S C緩衝液で希釈し、 前記イオンビーム処理された P P基板上にそれぞれ 0. ずつ塗布し、 3 11; 0 p m o 1 / i 1, diluted with 10 X S S C buffer attached to the product, and applied to each of the ion beam treated PP substrates by 0. 3 1
2 n mの紫外線を 2分間照射して固定化することで、 核酸マイクロアレイを製造 した。 Nucleic acid microarrays were produced by immobilizing 2 nm UV light for 2 minutes.
比較例 1 Comparative Example 1
実施例 1において、 無機フィラーを含有しないこと以外は実施例 1と同様にし て、 DNAマイクロアレイを製造した。 実験例 1 : DNAマイクロアレイを用いた検査 1 In Example 1, a DNA microarray was produced in the same manner as in Example 1 except that no inorganic filler was contained. Experimental example 1: Inspection using DNA microarray 1
検体のゲノム DNAの增幅 Increase in genomic DNA of specimens
X X型の検体のゲノム DN Aを、 配列番号 3に示された塩基配列を有するフォ ワードプライマーおよび配列番号 4に示された塩基配列を有し、 かつ 5 ' 末端に ピオチンを結合させたリバースプライマー、 および T a q DNAポリメラーゼ (ロシュ ·ダイァグノステイタス社製) を用いた P CR法により Xb a I多型を 含む塩基配列の増幅を行った。 増幅反応は、 変性過程を 94°C、 30秒、 ァニー ル過程を 5 5°C、 20秒、 鎖伸長過程を 72°C、 20秒の 1サイクルを 30サイ クル行った。  A forward primer having the base sequence shown in SEQ ID NO: 3 and a reverse primer having the base sequence shown in SEQ ID NO: 4 and conjugated with piotin at the 5 'end. The nucleotide sequence containing the XbaI polymorphism was amplified by the PCR method using Taq DNA polymerase (Roche Diagnostats). In the amplification reaction, the denaturation process was 94 ° C for 30 seconds, the annealing process was 55 ° C for 20 seconds, the chain extension process was 72 ° C for 20 seconds, and 30 cycles for one cycle.
フォワードプライマー (配列番号 3) : gttccaaatg tcccagccgt Forward primer (SEQ ID NO: 3): gttccaaatg tcccagccgt
リ ノ ースプライマー (配歹 [|番号 4) : cctgcaccag aatatgttac c Reno primer (Care [| number 4): cctgcaccag aatatgttac c
核酸の検出 Nucleic acid detection
増幅した DNA溶液 20 μ Lに、水酸化ナトリ ウム ( 5Μ)、 エチレンジァミン 四酢酸(0. 05Μ) の溶液 (20 μ L) を加えてよく攪拌し、 5分間放置して、 増幅した DNAを 1本鎖に変性させた。 変性 DNAを含む溶液に、 ドデシル硫酸 ナトリウム (0. 0 1 w_ v%)、 塩化ナトリウム ( 1. 8w/v%) およぴクェ ン酸ナトリウム (1. OwZv%) を含む溶液 (l mL) を加え、 実施例 1また は比較例 1のマイクロアレイ 1枚を浸潤させ、 反応温度 4 5°Cで 30分間振とう してハイブリダィゼーシヨンを行った。 その後、 アルカリホスファターゼ標識ス トレプトアビジンを加え、 さらに p—ニトロブルーテトラゾリゥム (NBT) お よび 5—プロモ一 4一クロロー 3—インドリルりん酸 ρ—トルイジン塩 (B C I P) を加えて、 各プローブと結合した試料に結合したアルカリホスファターゼ による発色反応を行った。 つまり、 核酸の検出が正確な場合は、 配列番号 1の配 列を含む D N Aプローブは発色せず、 配列番号 2の配列を含む DNAプローブは 発色することになる。  To 20 μL of the amplified DNA solution, add a solution (20 μL) of sodium hydroxide (5 Μ) and ethylenediamine tetraacetic acid (0.05 Μ), stir well, and let stand for 5 minutes. It was denatured into a main chain. Solution containing denatured DNA, solution containing sodium dodecyl sulfate (0.01 w_v%), sodium chloride (1.8 w / v%) and sodium citrate (1. OwZv%) (l mL) In addition, one microarray of Example 1 or Comparative Example 1 was infiltrated and shaken at a reaction temperature of 45 ° C. for 30 minutes for hybridization. Then add alkaline phosphatase-labeled streptavidin, and then add p-nitroblue tetrazolium (NBT) and 5-promo-4-chloro-3-indolyl phosphate ρ-toluidine salt (BCIP). A color reaction with alkaline phosphatase bound to the sample bound to the probe was performed. That is, when nucleic acid detection is accurate, the DNA probe containing the sequence of SEQ ID NO: 1 does not develop color, and the DNA probe containing the sequence of SEQ ID NO: 2 develops color.
発色した結果を図 1に示す。 実施例 1の二酸化チタンを含有する P P基板から 作製された DNAマイクロアレイは目視で容易に判定できるのに対し、 比較例 1 の二酸化チタンを含有しない P P基板から作製された DNAマイクロアレイはほ とんど発色しなかった。 このことにより、 プラスチック基板に無機フィラーを含 有させることが核酸を効率的にプラスチック基板に固定できることが示された。 実施例 2 Figure 1 shows the result of color development. The DNA microarray prepared from the PP substrate containing titanium dioxide of Example 1 can be easily judged visually, whereas Comparative Example 1 DNA microarrays made from PP substrates that did not contain any titanium dioxide produced almost no color. This indicates that inclusion of an inorganic filler in the plastic substrate can efficiently fix the nucleic acid to the plastic substrate. Example 2
実施例 1において、 ポリプロピレン基板の代わりにポリエチレンテレフタレー ト (PET) 基板を用いたこと以外は実施例 1と同様にして、 DNAマイクロア レイを製造した。  A DNA microarray was produced in the same manner as in Example 1 except that a polyethylene terephthalate (PET) substrate was used instead of the polypropylene substrate in Example 1.
比較例 2 Comparative Example 2
実施例 2において、 無機フィラーを含有しないこと以外は実施例 2と同様にし て、 DNAマイクロアレイを製造した。  In Example 2, a DNA microarray was produced in the same manner as in Example 2 except that no inorganic filler was contained.
実験例 2 : DN Aマイクロアレイを用いた検査 2 Experimental example 2: Inspection using DN A microarray 2
実施例 1および比較例 1の P P基板から製造された DN Aマイクロアレイの代 わりに、 実施例 2および比較例 2の P E T基板から製造された DNAマイクロア レイを用いたこと以外は実験例 1と同様にして、 核酸の検出を行った。  Similar to Experimental Example 1 except that DNA microarrays manufactured from PET substrates of Example 2 and Comparative Example 2 were used instead of DNA microarrays manufactured from PP substrates of Example 1 and Comparative Example 1. Thus, the nucleic acid was detected.
発色した結果を図 2に示す。 実施例 2の無機フィラーを含有する PET基板か ら作製された DNAマイクロアレイは目視で容易に判定できるのに対し、 比較例 Figure 2 shows the results of color development. The DNA microarray prepared from the PET substrate containing the inorganic filler of Example 2 can be easily judged visually, while the comparative example
2の無機フィラーを含有しない P ET基板から作製された DN Aマイクロアレイ はほとんど発色しなかった。 The DNA microarray made from the PET substrate that does not contain 2 inorganic fillers hardly developed color.
実施例 3 Example 3
実施例 1において、 P P基板の代わりにポリカーボネート (P C) 基板を用い たこと以外は実施例 1と同様にして、 DNAマイクロアレイを製造した。 その発 色の様子を図 3に示す。  A DNA microarray was produced in the same manner as in Example 1 except that a polycarbonate (PC) substrate was used instead of the PP substrate in Example 1. Figure 3 shows the color development.
実施例 4 Example 4
表面粗さ測定および X線光電子分光分析 (XP S) 用の試料を作製した。 具体 的には、 実施例 3において、 核酸を固定せずに基板そのものを用いた。  Samples for surface roughness measurement and X-ray photoelectron spectroscopy (XP S) were prepared. Specifically, in Example 3, the substrate itself was used without immobilizing the nucleic acid.
実験例 3 : DN Aマイクロアレイ用基板の表面粗さの測定 Experimental example 3: Measurement of surface roughness of substrate for DNA microarray
実施例 4で用いたポリカーボネート基板表面のイオンビーム照射前後における 表面粗さ R aを、 レーザ顕微鏡 (キーエンス社製) を用いて測定した。 具体的に は、 観察視野内の表面粗さの平均を製品添付の解析ソフトを用いて測定した。 その結果、 イオンビーム照射前では約 0 . 0 であったが、 照射後では約Before and after ion beam irradiation on the polycarbonate substrate surface used in Example 4 The surface roughness Ra was measured using a laser microscope (manufactured by Keyence Corporation). Specifically, the average surface roughness in the observation field was measured using the analysis software attached to the product. As a result, it was about 0.0 before the ion beam irradiation, but about
0 . 1 5 111となり、 表面粗さ R aが増加したことが確認された。 0.15 111, and it was confirmed that the surface roughness Ra increased.
実施例 5 Example 5
X線光電子分光分析 (X P S ) 用の試料を作製した。 具体的には、 実施例 4に おいて、 イオンビーム照射の回数を 2回としたこと以外は、 実施例 4と同様にし て、 核酸マイクロアレイ用基板を製造した。 なお、 本実施例では X線光電子分光 分析 (X P S ) 用の試料の作製を目的としているため、 核酸の固定は行っていな い。 また、 イオン照射のインターバルは 3 0秒とした。  Samples for X-ray photoelectron spectroscopy (XPS) were prepared. Specifically, a nucleic acid microarray substrate was produced in the same manner as in Example 4 except that in Example 4, the number of ion beam irradiations was set to 2. In this example, since the purpose is to prepare a sample for X-ray photoelectron spectroscopy (XPS), no nucleic acid is immobilized. The ion irradiation interval was set to 30 seconds.
実施例 6 Example 6
実施例 5.において、 イオンビーム照射の回数を 3回としたこと以外は、 実施例 5と同様にして、 核酸マイクロアレイ用基板を製造した。  In Example 5, a nucleic acid microarray substrate was produced in the same manner as in Example 5 except that the number of ion beam irradiations was three.
実施例 7 Example 7
実施例 5において、 イオンビーム照射の回数を 4回としたこと以外は、 実施例 5と同様にして、 核酸マイクロアレイ用基板を製造した。  In Example 5, a nucleic acid microarray substrate was produced in the same manner as in Example 5 except that the number of ion beam irradiations was changed to 4.
比較例 4 Comparative Example 4
実施例 4において、 基板に無機フィラーを含有しないこと以外は、 実施例 4と 同様にして、 核酸マイクロアレイ用基板を製造した。  In Example 4, a nucleic acid microarray substrate was produced in the same manner as in Example 4 except that the substrate did not contain an inorganic filler.
実験例 4 : D N Aマイクロアレイ用基板の表面分析 Example 4: Surface analysis of a DNA microarray substrate
実施例 4〜 7および比較例 4のポリカーボネート基板表面における元素組成比 を、 X線光電子分光分析装置 (X P S、 アルバックフアイ社製) を用いて測定し た。 具体的には、 X線源として A 1 Κ ο;線を用い、 約 2 5 °C、 減圧下 (約 1 0 一5 P a以下)で帯電中和銃を用いながら測定した(分析面積:直径 8 0 0 / m)。 その結果を表 1に示す。 表面から深さ 5 n mの領域にチタンが確認されたこと から、 ポリ力 ボネート基板の少なくとも表面部分に二酸化チタンが含有されて いることが確認された。 また、 イオンビーム照射の回数が増加することにより、 チタンの組成比が増加することが確認された。 このことが、 イオンビーム照射回 数を多くすることにより核酸がより固定化される原因であると考えられる。 The elemental composition ratios on the polycarbonate substrate surfaces of Examples 4 to 7 and Comparative Example 4 were measured using an X-ray photoelectron spectrometer (XPS, ULVAC-FAI). Specifically, A 1 し た ο; line was used as the X-ray source, and measurement was performed using a charged neutralization gun at approximately 25 ° C and under reduced pressure (approximately 10 to 15 Pa or less) (analysis area: Diameter 8 0 0 / m). The results are shown in Table 1. Since titanium was confirmed in the region 5 nm deep from the surface, it was confirmed that titanium dioxide was contained in at least the surface portion of the polycarbonate substrate. In addition, by increasing the number of ion beam irradiation, It was confirmed that the composition ratio of titanium increased. This is considered to be the reason why the nucleic acid is more immobilized by increasing the number of ion beam irradiations.
表 1  table 1
Figure imgf000021_0001
産業上の利用可能性 .
Figure imgf000021_0001
Industrial applicability.
本発明によれば、 核酸マイクロアレイおよび核酸マイクロアレイ用基材を安価 に提供することができる。 また、 前記基材は、 核酸を強固かつハイブリダィズに 適するように固定することができる。 本発明の核酸マイクロアレイの製造方法に ■ よると、 前記核酸マイクロアレイを安価で効率良く製造することができる。 本発 明の核酸マイクロアレイを用いた検出方法によると、 従来に比べて、 D N Aの発 現解析ゃジェノタイビング等の検查を低費用で高感度に行うことができる。また、 本発明の検出方法によると、 特定の標識を核酸ハイプリッドに導入することによ り、 大掛かりな検出装置を使用せずにいわゆるべッドサイ ドで核酸の検出および 判定が可能となる。  According to the present invention, a nucleic acid microarray and a substrate for nucleic acid microarray can be provided at low cost. Further, the base material can fix the nucleic acid so as to be strong and suitable for hybridization. According to the method for producing a nucleic acid microarray of the present invention, the nucleic acid microarray can be produced inexpensively and efficiently. According to the detection method using the nucleic acid microarray of the present invention, DNA expression analysis and genotyping can be performed at low cost and with high sensitivity, compared with the conventional method. In addition, according to the detection method of the present invention, by introducing a specific label into the nucleic acid hybrid, nucleic acid can be detected and determined with a so-called bedside without using a large-scale detection apparatus.
.  .
本出願は、 曰本で出願された特願 2 0 0 5— 1 0 5 3 9 2 (出願日 : 2 0 0 5 年 3月 3 1日) を基礎としており、 その内容は本明細書に全て包含されるもので める。  This application is based on Japanese patent application No. 2 0 0 5 — 1 0 5 3 9 2 (filing date: March 3 1st, 2000), the contents of which are described in this specification. All are included.

Claims

請求の範囲 The scope of the claims
1. プラスチック基材に核酸を固定化した核酸マイクロアレイであって、当該基 材の少なく とも表面部分に、 酸化物系フイラ一、 水酸化物系フイラ一、 炭酸塩系 フィラーおよび硫酸塩系フィラーからなる群より選ばれた無機フィラーを含有す る核酸マイクロアレイ。  1. A nucleic acid microarray in which nucleic acid is immobilized on a plastic substrate, and at least a surface portion of the substrate is made of an oxide-based filler, a hydroxide-based filler, a carbonate-based filler, and a sulfate-based filler. A nucleic acid microarray containing an inorganic filler selected from the group consisting of:
2. 前記無機フィラーが二酸化チタンである請求の範囲 1記載の核酸マイク口 アレイ。  2. The nucleic acid microphone mouth array according to claim 1, wherein the inorganic filler is titanium dioxide.
3. 前記プラスチックがポリプロピレン、 ポリメチルメタクリレート、ポリカー ボネートまたはポリエチレンテレフタレートである請求の範囲 1または 2に記載 の核酸マイクロアレイ。  3. The nucleic acid microarray according to claim 1 or 2, wherein the plastic is polypropylene, polymethyl methacrylate, polycarbonate, or polyethylene terephthalate.
4. プラズマ処理またはイオンビーム処理されたプラスチック基材に核酸を固 定化した核酸マイクロアレイであって、 当該基材の少なく とも表面部分に、 酸化 物系フイラ一、 水酸化物系フイラ一、 炭酸塩系フイラ一および硫酸塩系フイラ一 からなる群より選ばれた無機フィラーを含有する核酸マイクロアレイ。  4. A nucleic acid microarray in which a nucleic acid is immobilized on a plasma-treated or ion-beam-treated plastic substrate, and an oxide-based, hydroxide-based, A nucleic acid microarray containing an inorganic filler selected from the group consisting of a salt-based filler and a sulfate-based filler.
5. 前記無機フィラーが二酸化チタンである請求の範囲 4記載の核酸マイクロ アレイ。 5. The nucleic acid microarray according to claim 4, wherein the inorganic filler is titanium dioxide.
6. 前記プラスチックがポリプロピレン、 ポリメチルメタクリレート、ポリカー ボネートまたはポリエチレンテレフタレートである請求の範囲 4または 5に記載 の核酸マイクロアレイ。  6. The nucleic acid microarray according to claim 4 or 5, wherein the plastic is polypropylene, polymethyl methacrylate, polycarbonate, or polyethylene terephthalate.
7. 前記基材の表面粗さ R a (J I S B 060 1— 1 9 94) が 0. 06〜 0. 5; である請求の範囲 4 ~ 6いずれかに記載の核酸マイクロアレイ。7. The nucleic acid microarray according to any one of claims 4 to 6, wherein the substrate has a surface roughness R a (J I S B 060 1-1 9 94) of 0.06 to 0.5;
8. 少なくとも表面部分に無機フィラーを含有するプラスチック基材を、プラズ マ処理またはイオンビーム処理する工程、 および 8. Plasma treatment or ion beam treatment of a plastic substrate containing an inorganic filler at least on the surface portion; and
前記処理後のプラスチック基材の表面に核酸を固定する工程 A step of immobilizing nucleic acid on the surface of the plastic substrate after the treatment
を含む核酸マイクロアレイの製造方法。 A method for producing a nucleic acid microarray comprising:
9. 前記プラズマ処理工程が不活性ガス雰囲気下で行われるものであり、前記ィ オンビーム処理工程がイオン化ガスとして不活性ガスを用いて行われるものであ る請求の範囲 8記載の製造方法。 9. The plasma processing step is performed in an inert gas atmosphere, and the ion beam processing step is performed using an inert gas as an ionized gas. The manufacturing method according to claim 8.
10. 前記不活性ガスが窒素ガスである請求の範囲 9記載の製造方法。  10. The method according to claim 9, wherein the inert gas is nitrogen gas.
1 1. 前記核酸が 50塩基以上の長さを有するものである請求の範囲 8〜1 0 いずれかに記載の製造方法。  1 1. The production method according to any one of claims 8 to 10, wherein the nucleic acid has a length of 50 bases or more.
1 2. 前記核酸を固定する工程が、 UV照射により行われる請求の範囲 8〜1 1 いずれかに記載の製造方法。  1 2. The production method according to any one of claims 8 to 11, wherein the step of fixing the nucleic acid is performed by UV irradiation.
1 3. プラスチックを材料としてなる核酸マイクロアレイ用基材であって、当該 基材の少なくとも表面部分に酸化物系フイラ一、 水酸化物系フイラ一、 炭酸塩系 フィラーおよび硫酸塩系フイラ一からなる群より選ばれた無機フィラーを含有す る基材。  1 3. Nucleic acid microarray substrate made of plastic, consisting of an oxide-based filler, a hydroxide-based filler, a carbonate-based filler and a sulfate-based filler on at least the surface of the substrate. A substrate containing an inorganic filler selected from the group.
14. 前記無機フィラーが二酸化チタンである請求の範囲 1 3記載の基材。 14. The substrate according to claim 13, wherein the inorganic filler is titanium dioxide.
1 5. 前記基材表面がさらにプラズマ処理またはイオンビーム処理されてなる 請求の範囲 13または 14に記載の基材。 1 5. The substrate according to claim 13 or 14, wherein the substrate surface is further subjected to plasma treatment or ion beam treatment.
1 6. 前記基材の表面粗さ R a (J I S B 06 01— 1 9 94) 力 S 0. 06 〜0. 5 /X mである請求の範囲 1 5記載の基材。  1 6. The substrate according to claim 15, wherein the substrate has a surface roughness R a (JI S B 06 01— 1 9 94) force S 0.06 to 0.5 / X m.
1 7. 請求の範囲 1〜 7いずれかに記載の核酸マイクロアレイまたは請求の範 囲 8〜 1 2いずれかに記載の製造方法により得られる核酸マイクロアレイと分析 対象の核酸を含む試料とを接触させる工程、 および  1 7. A step of contacting the nucleic acid microarray according to any one of claims 1 to 7 or the nucleic acid microarray obtained by the production method according to any one of claims 8 to 12 and a sample containing the nucleic acid to be analyzed. , and
前記接触工程により形成された核酸ハイプリッドを検出する工程 Detecting the nucleic acid hybrid formed by the contacting step
を含む、 特定の塩基配列を有する核酸の検出方法。 A method for detecting a nucleic acid having a specific base sequence.
1 8. 前記核酸ハイプリッドが標識されている請求の範囲 1 7に記載の検出方 法。  1 8. The detection method according to claim 17, wherein the nucleic acid hybrid is labeled.
1 9. 前記標識がアルカリホスファターゼである請求の範囲 1 8に記載の検出 方法。  1 9. The detection method according to claim 18, wherein the label is alkaline phosphatase.
PCT/JP2006/307284 2005-03-31 2006-03-30 Nucleic acid microarray, process for production of the same, and substrate for nucleic acid microarray WO2006104260A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510586A JP5238250B2 (en) 2005-03-31 2006-03-30 Nucleic acid microarray, method for producing the same, and substrate for nucleic acid microarray

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005105392 2005-03-31
JP2005-105392 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006104260A1 true WO2006104260A1 (en) 2006-10-05

Family

ID=37053505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307284 WO2006104260A1 (en) 2005-03-31 2006-03-30 Nucleic acid microarray, process for production of the same, and substrate for nucleic acid microarray

Country Status (2)

Country Link
JP (1) JP5238250B2 (en)
WO (1) WO2006104260A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045567A (en) * 2013-08-28 2015-03-12 コニカミノルタ株式会社 Analysis chip
US9168532B2 (en) 2013-01-24 2015-10-27 Sabic Global Technologies B.V. Microwell plate
US9180456B2 (en) 2013-01-24 2015-11-10 Sabic Global Technologies B.V. Microwell plate
US9186674B2 (en) 2013-01-24 2015-11-17 Sabic Global Technologies B.V. Polycarbonate microfluidic articles
CN109652295A (en) * 2014-01-31 2019-04-19 凸版印刷株式会社 Biomolecule analysis kit and biomolecule analysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7156129B2 (en) 2019-03-27 2022-10-19 株式会社Ihi Positioning system and positioning method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279574A (en) * 2002-03-27 2003-10-02 Sumitomo Bakelite Co Ltd Microchip substrate and microchip
JP2004108859A (en) * 2002-09-17 2004-04-08 Fuji Photo Film Co Ltd Biochemistry analysis unit
JP2005030913A (en) * 2003-07-14 2005-02-03 Sumitomo Bakelite Co Ltd Biochip

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68928853T2 (en) * 1988-05-20 1999-08-05 Cetus Corp., Emeryville, Calif. FASTENING OF SEQUENCE-SPECIFIC SAMPLES
JP3806022B2 (en) * 2001-10-30 2006-08-09 住友ベークライト株式会社 Microchip substrate
JP2004061205A (en) * 2002-07-26 2004-02-26 Sony Corp Detecting surface and sensor chip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279574A (en) * 2002-03-27 2003-10-02 Sumitomo Bakelite Co Ltd Microchip substrate and microchip
JP2004108859A (en) * 2002-09-17 2004-04-08 Fuji Photo Film Co Ltd Biochemistry analysis unit
JP2005030913A (en) * 2003-07-14 2005-02-03 Sumitomo Bakelite Co Ltd Biochip

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9168532B2 (en) 2013-01-24 2015-10-27 Sabic Global Technologies B.V. Microwell plate
US9180456B2 (en) 2013-01-24 2015-11-10 Sabic Global Technologies B.V. Microwell plate
US9186674B2 (en) 2013-01-24 2015-11-17 Sabic Global Technologies B.V. Polycarbonate microfluidic articles
JP2015045567A (en) * 2013-08-28 2015-03-12 コニカミノルタ株式会社 Analysis chip
CN109652295A (en) * 2014-01-31 2019-04-19 凸版印刷株式会社 Biomolecule analysis kit and biomolecule analysis

Also Published As

Publication number Publication date
JPWO2006104260A1 (en) 2008-09-11
JP5238250B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
US20060073501A1 (en) Methods for long-range sequence analysis of nucleic acids
EP2535429A1 (en) Methods and systems for solution based sequence enrichment and analysis of genomic regions
JP2009171969A (en) Method for assaying microarray hybridization
JP5238250B2 (en) Nucleic acid microarray, method for producing the same, and substrate for nucleic acid microarray
CN1390264A (en) Long oligonucleotide arrays
US20020048760A1 (en) Use of mismatch cleavage to detect complementary probes
JP2007502116A (en) Methods and kits for preparing nucleic acid samples
CA2350756A1 (en) Methods and apparatus for flow-through hybridization
JP5429962B2 (en) Nucleic acid detection method and nucleic acid detection kit
JP4772211B2 (en) DNA chip manufacturing method
JP4691383B2 (en) Nucleic acid microarray and manufacturing method thereof
US8765417B2 (en) Method of elongating DNA through immobilizing primer DNA chains on a substrate, a method of amplifying a DNA chain
Arlinghaus et al. Development of PNA microarrays for gene diagnostics with TOF-SIMS
JP2006282871A (en) Method for maintaining hydrophilicity of hydrophobic polymer substrate surface
JP4419715B2 (en) Biochip substrate and biochip
JP5043320B2 (en) Method for detecting methylated DNA and / or unmethylated DNA
JP2007300829A (en) Method for preparing specimen provided to dna microalley and the like
JP4256789B2 (en) Solid support having electrostatic layer and use thereof
JP2004024203A (en) Method for analysis of rna by time-of-flight secondary ion mass spectrometry
Schrenzel et al. Introduction to microarray-based detection methods
JP2003212974A (en) Polymer thin film, its manufacturing method and biotip
Consolandi et al. Development of oligonucleotide arrays to detect mutations and polymorphisms
JP2005055365A (en) Solid support for fixing nucleic acid molecule
US8518642B2 (en) Method of analyzing probe nucleic acid, microarray and kit for the same
JP2007187491A (en) Electrode for electrochemical detection and method of manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007510586

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731232

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载