WO2006039362A2 - Process for downhole heating - Google Patents
Process for downhole heating Download PDFInfo
- Publication number
- WO2006039362A2 WO2006039362A2 PCT/US2005/034910 US2005034910W WO2006039362A2 WO 2006039362 A2 WO2006039362 A2 WO 2006039362A2 US 2005034910 W US2005034910 W US 2005034910W WO 2006039362 A2 WO2006039362 A2 WO 2006039362A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exothermic
- location
- chemical
- group
- hydration
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims description 46
- 230000008569 process Effects 0.000 title description 8
- 238000006703 hydration reaction Methods 0.000 claims abstract description 51
- 230000036571 hydration Effects 0.000 claims abstract description 48
- 239000000126 substance Substances 0.000 claims abstract description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000010426 asphalt Substances 0.000 claims abstract description 26
- 150000004677 hydrates Chemical class 0.000 claims abstract description 24
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 22
- 238000006243 chemical reaction Methods 0.000 claims abstract description 21
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 17
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 17
- 230000007935 neutral effect Effects 0.000 claims abstract description 12
- 239000003792 electrolyte Substances 0.000 claims abstract description 11
- 229910000000 metal hydroxide Inorganic materials 0.000 claims abstract description 6
- 150000004692 metal hydroxides Chemical class 0.000 claims abstract description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 6
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 35
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 30
- 239000012530 fluid Substances 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 21
- 239000003921 oil Substances 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 18
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 12
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 9
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 claims description 8
- -1 halogen salts Chemical class 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 6
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 5
- 239000000194 fatty acid Substances 0.000 claims description 5
- 229930195729 fatty acid Natural products 0.000 claims description 5
- 150000004665 fatty acids Chemical class 0.000 claims description 5
- 150000002894 organic compounds Chemical class 0.000 claims description 5
- 150000001298 alcohols Chemical class 0.000 claims description 4
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 4
- 239000000292 calcium oxide Substances 0.000 claims description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 4
- 150000002334 glycols Chemical class 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 4
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims 4
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 229910000039 hydrogen halide Inorganic materials 0.000 claims 1
- 239000012433 hydrogen halide Substances 0.000 claims 1
- 238000005553 drilling Methods 0.000 abstract description 23
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 18
- 235000019198 oils Nutrition 0.000 description 16
- 238000005755 formation reaction Methods 0.000 description 15
- 239000000446 fuel Substances 0.000 description 12
- 229920001223 polyethylene glycol Polymers 0.000 description 10
- 239000002202 Polyethylene glycol Substances 0.000 description 9
- 239000003999 initiator Substances 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 6
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 description 6
- 239000001993 wax Substances 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000005538 encapsulation Methods 0.000 description 5
- 229920001451 polypropylene glycol Polymers 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000012267 brine Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000011257 shell material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229920001427 mPEG Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- MHCVCKDNQYMGEX-UHFFFAOYSA-N 1,1'-biphenyl;phenoxybenzene Chemical compound C1=CC=CC=C1C1=CC=CC=C1.C=1C=CC=CC=1OC1=CC=CC=C1 MHCVCKDNQYMGEX-UHFFFAOYSA-N 0.000 description 1
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- 240000005020 Acaciella glauca Species 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000012164 animal wax Substances 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 238000013265 extended release Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229910000043 hydrogen iodide Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000019809 paraffin wax Nutrition 0.000 description 1
- 238000001935 peptisation Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 235000003499 redwood Nutrition 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003832 thermite Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/008—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using chemical heat generating means
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
Definitions
- the present invention relates to methods and compositions for providing controlled downhole heating, such as in a subterranean reservoir during a hydrocarbon recovery operation.
- Drilling fluids used in the drilling of subterranean oil and gas wells along with other drilling fluid applications and drilling procedures are known.
- drilling fluids also known as drilling muds, or simply "muds".
- the drilling fluid is expected to carry cuttings up from beneath the bit, transport them up the annulus, and allow their separation at the surface while at the same time the rotary bit is cooled and cleaned.
- a drilling mud is also intended to reduce friction between the drill string and the sides of the hole while maintaining the stability of uncased sections of the borehole.
- the drilling fluid is formulated to prevent unwanted influxes of formation fluids from permeable rocks penetrated and also often to form a thin, low permeability filter cake which temporarily seals pores, other openings and formations penetrated by the bit.
- the drilling fluid may also be used to collect and interpret information available from drill cuttings, cores and electrical logs.
- the term "drilling fluid” also encompasses "drill-in fluids" and "completion fluids”. Drilling fluids are typically classified according to their base fluid. In water-based muds, solid particles are suspended in water or brine. Oil can be emulsified in the water. Nonetheless, the water is the continuous phase.
- Oil- based muds are the opposite or inverse. Solid particles are suspended in oil, and water or brine is emulsified in the oil and therefore the oil is the continuous phase. Oil-based muds that are water-in-oil emulsions are also called invert emulsions. Brine-based drilling fluids, of course are a water- based mud in which the aqueous component is brine. It is apparent to those selecting or using a drilling fluid for oil and/or gas exploration that an essential component of a selected fluid is that it be properly balanced to achieve the necessary characteristics for the specific end application. Because drilling fluids are called upon to perform a number of tasks simultaneously, this desirable balance is not always easy to achieve.
- bitumen or "tar” beds are encountered. These beds are commonly found during sub-salt drilling in the Gulf of Mexico, but also at other locations. Indeed, the bitumen occurs so frequently in the Gulf of Mexico formations that it has been likened to a "river” of tar. Drilling through thin bitumen beds is generally no more than a minor nuisance, but thick beds can result in stuck pipe, stuck casing, side ⁇ tracks, loss of hole and other problems that can cost the well operators millions of dollars.
- One of the most precarious operations is running casing after drilling through a bitumen bed due to the movement or "flow" of the bitumen into the borehole before casing can be picked up and run to bottom.
- Oil sands are a mixture of grit and bitumen.
- the deposits are generally either minded in massive open pits, or if too deep for surface mining, are injected with steam to coax the viscous bitumen to flow into wells.
- Gas hydrates are solid inclusion compounds resembling ice. Gas hydrates occur when water molecules form a cage-like structure around smaller "guest molecules". The most common guest molecules are methane, ethane, propane, isobutene, n-butane, nitrogen, carbon dioxide and hydrogen sulfide, of which methane occurs most abundantly in naturally-occurring hydrates. In nature, one cubic meter of hydrate may contain up to about 164 m 3 of methane. Gas hydrates occur wherever the conditions within the sediments are in a methane-hydrate stability region and where methane and water are available.
- gas hydrates are stable at low temperatures and/or high pressure. Because of the requirements of pressure and temperature, and because of the requirement of relatively large amounts of organic matter of bacterial methanogenesis, gas hydrates are primarily restricted to two regions: high latitudes and along the continental margins in oceans. In polar regions, the gas hydrates are commonly linked to permafrost occurrence onshore and on the continental shelves. In the oceans, gas hydrates are found in outer continental margins, where the supply of organic material is high enough to generate enough methane, and with water temperatures close to freezing.
- the oceanic gas hydrate reservoir has been estimated to be about 10,000 to 11 ,000 GtC (Gigatons carbon; 1.0 x 10 7 to 1.1 x 10 7 teragrams).
- the permafrost reservoir has been estimated at about 400 GtC (4.0 x 10 5 teragrams), but no estimates have been made of possible Antarctic reservoirs. Given the amount of hydrocarbons bound in gas hydrates, many are exploring the possibility of recovering hydrocarbons from this source.
- compositions and methods could be devised to provide localized heating to soften the bitumen to help facilitate movement of the casing or liner through the bitumen to the bottom. It would also be desirable if compositions and methods could be devised to provide controlled localized heating to melt in-situ gas hydrates in order to produce the large quantities of natural gas they contain. Further, it would be helpful to facilitate controlled localized heating of oil sands to improve recovery of hydrocarbons from that source.
- a method for providing localized heating in a subterranean formation that involves placing at a location in the subterranean formation in any order: an exothermic hydration chemical and an amount of water in contact with the exothermic hydration chemical effective to cause an exothermic reaction thereby heating the location and a suitable medium for transporting the heat source to the desired location.
- a method for providing localized heating in a subterranean formation involves placing at a location in the subterranean formation where bitumen is present in any order: an exothermic hydration chemical and an effective amount of water in contact with the exothermic hydration chemical to cause an exothermic reaction without generating an appreciable amount of gas; and heating the location sufficiently to at least soften the bitumen.
- a method for providing localized heating in a subterranean formation involves placing at a location in the subterranean formation containing gas hydrates an exothermic hydration chemical, and reacting at least a portion of the water in the gas hydrates with the exothermic hydration chemical to cause an exothermic reaction to release at least a portion of hydrocarbons bound in the hydrates.
- an appreciable amount of gas may or may not be released and water may or may not be added to the formation.
- a method has been discovered to generate localized heat remotely downhole using heat of hydration as a heat source. It has been estimated in one non-limiting embodiment, if the bitumen in the "river of tar" beneath the Gulf of Mexico is heated to about 220 to about 230 0 F (about 104 to about 110 0 C), the material would be 10 times less viscous. Most exothermic oxidation/combustion reactions require temperatures that would compromise mud/spot stability, if not tubular integrity, would tend to be difficult to initiate and would be problematic to formulate as a liquid or mud for downhole use. Initiating the reaction at the surface would tend to expend and dissipate most of the heat before placement in the target or the mud for downhole use.
- Hydration of acidic electrolytes such as aluminum chloride, AICI 3
- acids would be expected to be corrosive and at high temperatures could compromise the integrity of the tubular goods, tools and other equipment in many circumstances.
- hydration of aluminum chloride would produce a product environment of about pH 0.8, as contrasted with using NaOH, which would generally yield a product environment of about pH 14.
- Oil field chemistries are generally and preferably alkaline at least in part to avoid or minimize corrosion concerns.
- the process in one non-limiting embodiment uses a binary design where in one non-limiting embodiment the "fuel” is placed first as a slurry or suspension or fluid combined with an "initiator", e.g. water that produces heat precisely at the point or location of interest.
- an initiator e.g. water that produces heat precisely at the point or location of interest.
- the binary components may be placed at the location in any order, in most embodiments it is expected that the "initiator” (e.g. water) would be placed last in sequence
- Heat of hydration is defined as the heat evolved (or absorbed) when a hydrate of a compound is formed.
- the exothermic hydration chemical has a heat of hydration of at least 40 kJ/mol, and alternatively has a heat of hydration of at least 80 kJ/mol.
- the exothermic hydration chemical should be a material that when combined with the initiator generates sufficient heat to soften, melt or flow the bitumen, but without generating an appreciable amount of gas.
- Many exothermic reactions give large amounts of heat, but produce relatively large amounts of gas - a thermite reaction, for example. However, such an exothermic reaction downhole could cause a blowout of the well and is extremely undesirable.
- an appreciable amount of gas is defined as an amount that would interfere with normal hydrocarbon recovery operations and does not include incidental or non-problematic amounts. It should be understood that avoiding the generation of an appreciable amount of gas does not mean that water vapor may not be evolved. It is acceptable in all embodiments herein for water vapor to be evolved or generated in the process of remote heating a location or formation.
- tar or bitumen such as oil sands or subterranean bitumen layers
- these environments are generally non-aqueous, that is, they do not contain appreciable amounts of water.
- the water is delivered as part of the method to be a co-reactant with the exothermic hydration chemical.
- the exothermic hydration chemical is used to generate heat in a subterranean gas hydrate formation (e.g. in a permafrost region on land or sub-ocean)
- the generation of appreciable amounts of gas is acceptable - and in fact is desirable since it is expected to be the primary way in which hydrocarbons (e.g. methane) is released.
- this embodiment uses a unitary design; it is contemplated that in most cases only the exothermic hydration chemical would be delivered or pumped to the gas hydrate formation or region since the hydrates themselves would provide the source of most of the water. Alternatively, additional water may be added as necessary or desired.
- a goal of recovering hydrocarbons from gas hydrates is to either deliver heat (increase temperature) or reduce pressure, or both.
- the temperature of the gas hydrates need only be raised 2 or 3 0 C for the gas hydrate to decompose and the guest molecules released.
- reactants either the "fuel” or “initiator” that would be too exotic or expensive to use in the quantities necessary for heating a location in a subterranean reservoir.
- water Since water is a highly accessible and cheap material, it is one non-limiting choice for initiator that may be used. Additionally, water has a very high specific heat and thus will retain the heat well for a period of time for the purpose of softening and/or melting the bitumen or heating in situ gas hydrate formations.
- Factors to be considered in selecting the binary reactants include, but are not necessarily limited to the expected amount of heat output (for instance measured in kJ/mol), the cost, the acidity of the resulting products, the solubility of the "fuel” or exothermic hydration chemical, HS&E profile
- a suitable "fuel" or exothermic hydration chemical to react with water in a hydration reaction includes, but is not necessarily limited to, a relatively neutral electrolyte, a metal oxide, a metal hydroxide, and an organic compound.
- relatively neutral electrolytes include, but are not necessarily limited to, halogen salts such as calcium chloride, magnesium chloride, lithium chloride, and lithium bromide and mixtures thereof and the like.
- relatively neutral electrolytes include sulfate salts such as magnesium sulfate, calcium sulfate, and the like.
- Relatively neutral refers to an electrolyte that is not strictly neutral, but which is sufficiently neutral for the purposes of the process described herein.
- An example of a non-neutral electrolyte that could be considered is aluminum chloride, which could be useful under certain specialized situations.
- metal oxides include, but are not necessarily limited to, calcium oxide, strontium oxide, barium oxide, and mixtures thereof and the like.
- metal hydroxides include, but are not necessarily limited to, sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), cesium hydroxide (CsOH) and mixtures thereof and the like.
- suitable organic compounds include, but are not necessarily limited to, peroxides, epoxides and monomers whose polymerization would generate heat such as acrylates, methacrylates and mixtures thereof and the like.
- Other reactants that can be used to generate localized heating but might be limited in their uses due to appreciable amounts of gas produced are acid compounds such as hydrogen bromide, hydrogen chloride, hydrogen iodide, and percholoric acid. Reactions other than exothermic hydration reactions could be used to provide localized heating in certain situations. These reactions are typically not desirable for the bitumen-heating embodiment of the invention due to the by-products produced.
- Slurry placement of the "fuel” or exothermic hydration chemical is anticipated where the "fuel” would settle out in the zone of interest to concentrate the fuel as much as possible in the desired location.
- a stable slurry may be desirable or preferred in a method of delivery and/or placement at the desired location.
- stable is meant that the slurry does not separate or settle upon standing for periods of time. In the case of the stable slurry, it would be pumped downhole to a location or against a structure and pack off like a packed bed. The more densely packed the bed, the more heat generated, and the more effective the process.
- the slurry must consist of an organic base fluid and preferably one that has a low specific heat.
- the fluid should also a high thermal conductivity in order to transfer the generated heat effectively.
- fluid mediums include, but are not necessarily limited to, alcohols, glycols, alcohol/glycol blends, specifically designed heat transfer fluids, such as Dowtherm ® fluids (available from Dow Chemical Company) and Therminol ® fluids (available from Solutia Inc.), esters either natural such as vegetable oils and/or animal oils or synthetic esters such as 2-ethylhexyl esters of fatty acids and hydrocarbon oils either distillates or synthetic.
- placement could involve encapsulating the fuel or exothermic hydration chemical, such as with a wax; a polymer wax or other polymer or material that melts or disintegrates or dissociates at the location.
- suitable polymeric materials include, but are not necessarily limited to, hydrocarbon waxes such as paraffin waxes and microcrystalline waxes, vegetable or animal waxes, solid relatively weak acids such as tallow or hydrogenated tallow fatty acid, polybutylene, polymethacrylates, polyethylene glycol (PEG), methoxylated PEG, polyethylene oxide (PEO), polyethylene waxes, polypropylene glycol (PPG), and the like.
- suitable encapsulating material includes ionomeric waxes, including, but not necessarily limited to, PEG (e.g.
- alkoxy terminated PEG e.g. methoxylated PEG or mPEG
- PEO polypropylene oxide
- PPO polypropylene oxide
- the encapsulation may be extended to PEG/PPG, PEG/PEO, and mPEG/PEG blends of different molecular weights. Polymerization of these polymer shells is well known in the art. Other extended release forms include, but are not necessarily limited to, peptization with binder compounds, absorbed or some other method of layering on a small particle or porous substrate, and/or a combination thereof. Specifically, the fuel or exothermic hydration chemical may be encapsulated to permit slow or timed release thereof.
- the coating material may slowly dissolve or be removed by any conventional mechanism, or the coating could have very small holes or perforations therein for the exothermic hydration chemicals within to diffuse through slowly.
- polymer encapsulation coatings such as used in fertilizer technology available from Scotts Company, specifically POLY-S ® product coating technology, or polymer encapsulation coating technology from Fritz Industries could possibly be adapted to the methods herein.
- the sources could also be absorbed onto zeolites, such as Zeolite A, Zeolite 13X, Zeolite DB-2 (available from PQ Corporation, Valley Forge, Pennsylvania) or Zeolites Na-SKS5, Na-SKS6, Na-SKS7, Na-SKS9, Na-SKSI O, and Na-SKSI 3, (available from Hoechst Aktiengesellschaft, now an affiliate of Aventis S. A.), and other porous solid substrates such as MICROSPONGETM (available from Advanced Polymer Systems, Redwood, California) and cationic exchange materials such as bentonite clay or microscopic particles such as carbon nanotubes or buckminster fullerenes.
- zeolites such as Zeolite A, Zeolite 13X, Zeolite DB-2 (available from PQ Corporation, Valley Forge, Pennsylvania) or Zeolites Na-SKS5, Na-SKS6, Na-SKS7, Na-SKS9, Na-SKSI O, and Na-SKSI 3, (available from Hoech
- the component sources may be both absorbed into and onto porous substrates and then encapsulated or coated, as described above. Melting would occur at the location temperature, and disintegration or dissociation may occur due to a change in temperature, pressure, chemical environment, a combination of these or other forces.
- An encapsulated exothermic hydration chemical could be suspended in an aqueous carrier at the surface and pumped downhole for placement, such as in the previously mentioned slurries.
- the wax or other coating would be chosen to melt at the temperature of the target zone or just before exposing the fuel and/or chemical to the water in the carrier at that time.
- encapsulation includes, but is not necessarily limited to, microencapsulation.
- one non-limiting example of the invention would be drilling out the bitumen inside of a stuck liner, spotting a caustic soda/"oil" or hydrocarbon slurry inside the liner opposite or adjacent to the bitumen zone, allowing the caustic soda beads/powder to settle, and slowly pumping an aqueous fluid to hydrate the caustic soda to generate localized heating.
- the invention will be further illustrated with respect to the following
- Example 1 Use of 40 wt% NaOH in oil does not generate heat, but when contacted with a water-based mud would give 186,000 Btu/bbl (1.2 MJ/litre).
- Example 2 Use of 40 wt% NaOH in oil does not generate heat, but when contacted with a water-based mud would give 186,000 Btu/bbl (1.2 MJ/litre).
- compositions and methods described herein may be used to help recover hydrocarbons from oil sands.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Working-Up Tar And Pitch (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
Claims
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61412904P | 2004-09-29 | 2004-09-29 | |
US60/614,129 | 2004-09-29 | ||
US11/237,074 | 2005-09-28 | ||
US11/237,074 US20060081374A1 (en) | 2004-09-29 | 2005-09-28 | Process for downhole heating |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006039362A2 true WO2006039362A2 (en) | 2006-04-13 |
WO2006039362A3 WO2006039362A3 (en) | 2006-07-20 |
Family
ID=36143033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/034910 WO2006039362A2 (en) | 2004-09-29 | 2005-09-29 | Process for downhole heating |
Country Status (2)
Country | Link |
---|---|
US (1) | US20060081374A1 (en) |
WO (1) | WO2006039362A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008032067A1 (en) * | 2006-09-14 | 2008-03-20 | Halliburton Energy Services, Inc. | Methods and compositions for thermally treating a conduit used for hydrocarbon production or transmission to help remove paraffin wax buildup |
WO2008107798A3 (en) * | 2007-03-05 | 2010-05-20 | Louis Wardlaw | Heating device for passage through subterranean asphalt and method of use |
CN101952356B (en) * | 2008-02-01 | 2012-12-05 | 万喜路桥公司 | Use of an exothermic mixture for manufacturing a bituminous concrete |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7886825B2 (en) * | 2006-09-18 | 2011-02-15 | Schlumberger Technology Corporation | Formation fluid sampling tools and methods utilizing chemical heating |
US20080228543A1 (en) * | 2007-03-16 | 2008-09-18 | Peter Campbell Doe | Methods and apparatus to compute reach and frequency values for flighted schedules |
US7708073B2 (en) * | 2008-03-05 | 2010-05-04 | Baker Hughes Incorporated | Heat generator for screen deployment |
US8691731B2 (en) * | 2009-11-18 | 2014-04-08 | Baker Hughes Incorporated | Heat generation process for treating oilfield deposits |
US9217101B2 (en) | 2011-04-07 | 2015-12-22 | Los Alamos National Security, Llc | Low-melting elemental metal or fusible alloy encapsulated polymerization initiator for delayed initiation |
US9441471B2 (en) * | 2012-02-28 | 2016-09-13 | Baker Hughes Incorporated | In situ heat generation |
US9605937B2 (en) | 2013-08-26 | 2017-03-28 | Dynaenergetics Gmbh & Co. Kg | Perforating gun and detonator assembly |
US10060237B2 (en) * | 2013-11-22 | 2018-08-28 | Baker Hughes, A Ge Company, Llc | Methods of extracting hydrocarbons from a subterranean formation, and methods of treating a hydrocarbon material within a subterranean formation |
US10422206B2 (en) | 2015-02-03 | 2019-09-24 | Halliburton Energy Services, Inc. | Method of acidizing of subterranean formations in well operations |
CA2943134C (en) | 2015-09-23 | 2022-03-08 | Conocophilips Company | Thermal conditioning of fishbones |
US11008832B2 (en) | 2016-05-10 | 2021-05-18 | Board Of Regents, The University Of Texas System | Methods for increasing wellbore strength |
US11125063B2 (en) * | 2017-07-19 | 2021-09-21 | Conocophillips Company | Accelerated interval communication using openholes |
US10954771B2 (en) * | 2017-11-20 | 2021-03-23 | Schlumberger Technology Corporation | Systems and methods of initiating energetic reactions for reservoir stimulation |
WO2021116338A1 (en) | 2019-12-10 | 2021-06-17 | DynaEnergetics Europe GmbH | Oriented perforating system |
US11808093B2 (en) | 2018-07-17 | 2023-11-07 | DynaEnergetics Europe GmbH | Oriented perforating system |
US12241326B2 (en) | 2019-05-14 | 2025-03-04 | DynaEnergetics Europe GmbH | Single use setting tool for actuating a tool in a wellbore |
US11578549B2 (en) | 2019-05-14 | 2023-02-14 | DynaEnergetics Europe GmbH | Single use setting tool for actuating a tool in a wellbore |
US11255147B2 (en) | 2019-05-14 | 2022-02-22 | DynaEnergetics Europe GmbH | Single use setting tool for actuating a tool in a wellbore |
US10927627B2 (en) | 2019-05-14 | 2021-02-23 | DynaEnergetics Europe GmbH | Single use setting tool for actuating a tool in a wellbore |
US11204224B2 (en) | 2019-05-29 | 2021-12-21 | DynaEnergetics Europe GmbH | Reverse burn power charge for a wellbore tool |
US11851996B2 (en) * | 2020-12-18 | 2023-12-26 | Jack McIntyre | Oil production system and method |
NO20230794A1 (en) | 2020-12-21 | 2023-07-17 | DynaEnergetics Europe GmbH | Encapsulated shaped charge |
US12312922B2 (en) | 2021-01-08 | 2025-05-27 | DynaEnergetics Europe GmbH | Perforating gun assembly and components |
US12000267B2 (en) | 2021-09-24 | 2024-06-04 | DynaEnergetics Europe GmbH | Communication and location system for an autonomous frack system |
WO2023200984A1 (en) | 2022-04-15 | 2023-10-19 | Dbk Industries, Llc | Fixed-volume setting tool |
US11753889B1 (en) | 2022-07-13 | 2023-09-12 | DynaEnergetics Europe GmbH | Gas driven wireline release tool |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1608869A (en) * | 1922-08-12 | 1926-11-30 | Monroe Watson C | Method of cleaning oil wells |
US2218306A (en) * | 1938-06-03 | 1940-10-15 | Austerman Karl | Method of treating oil wells |
US2672201A (en) * | 1950-08-19 | 1954-03-16 | Pure Oil Co | Increasing production of oil wells |
US2748867A (en) * | 1953-08-05 | 1956-06-05 | Petrolite Corp | Process for reactivation of flowing wells |
US3103973A (en) * | 1960-05-18 | 1963-09-17 | Dow Chemical Co | Chemical heating of a well or cavity and formation adjacent thereto |
US3279541A (en) * | 1965-08-20 | 1966-10-18 | Halliburton Co | Method for removing paraffinic and asphaltic residues from wells |
US4331202A (en) * | 1980-06-20 | 1982-05-25 | Kalina Alexander Ifaevich | Method for recovery of hydrocarbon material from hydrocarbon material-bearing formations |
US4919209A (en) * | 1989-01-17 | 1990-04-24 | Dowell Schlumberger Incorporated | Method for treating subterranean formations |
US5127955A (en) * | 1990-10-17 | 1992-07-07 | Halliburton Company | Chloride-free set accelerated cement compositions and methods |
US5713416A (en) * | 1996-10-02 | 1998-02-03 | Halliburton Energy Services, Inc. | Methods of decomposing gas hydrates |
US6722434B2 (en) * | 2002-05-31 | 2004-04-20 | Halliburton Energy Services, Inc. | Methods of generating gas in well treating fluids |
-
2005
- 2005-09-28 US US11/237,074 patent/US20060081374A1/en not_active Abandoned
- 2005-09-29 WO PCT/US2005/034910 patent/WO2006039362A2/en active Application Filing
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008032067A1 (en) * | 2006-09-14 | 2008-03-20 | Halliburton Energy Services, Inc. | Methods and compositions for thermally treating a conduit used for hydrocarbon production or transmission to help remove paraffin wax buildup |
RU2383716C1 (en) * | 2006-09-14 | 2010-03-10 | Хэллибертон Энерджи Сервисиз, Инк. | Methods and compositions for heat treatment of pipeline used for extraction or transporting hydrocarbon, also methods and compositions for facilitating removal of solid paraffines deposits |
EP2436872A3 (en) * | 2006-09-14 | 2016-11-30 | Halliburton Energy Services, Inc. | Methods and compositions for thermally treating a conduit used for hydrocarbon production or transmission to help remove paraffing wax buildup |
EP2436871A3 (en) * | 2006-09-14 | 2016-12-28 | Halliburton Energy Services, Inc. | Methods and compositions for thermally treating a conduit used for a hydrocarbon production or transmission to help remove paraffin wax buildup |
NO341200B1 (en) * | 2006-09-14 | 2017-09-11 | Halliburton Energy Services Inc | Method for raising the temperature in a section of a pipe |
WO2008107798A3 (en) * | 2007-03-05 | 2010-05-20 | Louis Wardlaw | Heating device for passage through subterranean asphalt and method of use |
CN101952356B (en) * | 2008-02-01 | 2012-12-05 | 万喜路桥公司 | Use of an exothermic mixture for manufacturing a bituminous concrete |
Also Published As
Publication number | Publication date |
---|---|
WO2006039362A3 (en) | 2006-07-20 |
US20060081374A1 (en) | 2006-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060081374A1 (en) | Process for downhole heating | |
US7624743B2 (en) | Methods and compositions for thermally treating a conduit used for hydrocarbon production or transmission to help remove paraffin wax buildup | |
CA2462087C (en) | Method for the recovery of hydrocarbons from hydrates | |
US20020055439A1 (en) | Scale removal | |
US9791108B2 (en) | Use of metal silicides in hydrocarbon production and transportation | |
US11499408B1 (en) | On-site conversion of a flammable wellbore gas to an oleaginous liquid | |
CA2929556C (en) | Methods and systems for removing geothermal scale | |
EA003312B1 (en) | Compositions and fluids for matrix acidizing and method for treating a damaged formation | |
CN108301816A (en) | The method and apparatus that chemical agent influences gas hydrate dissociation characteristic evaluation | |
Graham et al. | The challenges for scale control in deepwater production systems: chemical inhibition and placement | |
US12146098B1 (en) | Catalyst and activator for exothermic reaction | |
Yusuf et al. | Natural gas hydrates: A review of various inhibitors and respective mechanisms | |
AU2019446568B2 (en) | Low density hydrate inhibitive fluids | |
Makwashi et al. | Gas Hydrate Formation: Impact on Oil and Gas Production and Prevention Strategies | |
US11473000B2 (en) | Insulating fluids containing porous media | |
Daniel et al. | New Visco-Elastic Surfactant Formulations Extend Simultaneous Gravel-Packing and Cake-Cleanup Technique to Higher-Pressure and Higher-Temperature Horizontal Open-Hole Completions: Laboratory Development and a Field Case History From the North Sea. | |
WO2015174986A1 (en) | Weighted well fluids | |
AU2014396808B2 (en) | Subterranean treatment with compositions including hexaaquaaluminum trihalide | |
Krumrine et al. | Alkali Metal Silicides: A New Material for Heavy-Oil Production Processes | |
Ghajari et al. | Hydrate-related drilling hazards and their remedies | |
Evangelista et al. | Removal of a hydrate plug from a subsea Xmas-Tree located in ultradeepwaters with the aid of a heat-releasing treating Fluid | |
CN116836691A (en) | Water-based drilling fluid system for hydrate formation and preparation method and application thereof | |
Kupeyeva | Determination of Hydrate Formation Conditions of Drilling Fluids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |