+

WO2006035018A2 - Systeme de transmission de courant continu et procede de commande associe - Google Patents

Systeme de transmission de courant continu et procede de commande associe Download PDF

Info

Publication number
WO2006035018A2
WO2006035018A2 PCT/EP2005/054823 EP2005054823W WO2006035018A2 WO 2006035018 A2 WO2006035018 A2 WO 2006035018A2 EP 2005054823 W EP2005054823 W EP 2005054823W WO 2006035018 A2 WO2006035018 A2 WO 2006035018A2
Authority
WO
WIPO (PCT)
Prior art keywords
direct current
control
power
converter
direct
Prior art date
Application number
PCT/EP2005/054823
Other languages
English (en)
Other versions
WO2006035018A3 (fr
Inventor
Carl D. Barker
Robert S. Whitehouse
Original Assignee
Areva T & D Uk Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva T & D Uk Ltd filed Critical Areva T & D Uk Ltd
Priority to EP05794708A priority Critical patent/EP1800391A2/fr
Publication of WO2006035018A2 publication Critical patent/WO2006035018A2/fr
Publication of WO2006035018A3 publication Critical patent/WO2006035018A3/fr
Priority to NO20072200A priority patent/NO20072200L/no

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/36Arrangements for transfer of electric power between AC networks via a high-tension DC link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/66Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal
    • H02M7/68Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters
    • H02M7/72Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/757Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/7575Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only for high voltage direct transmission link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • a direct current power transmission system and associated control method A direct current power transmission system and associated control method
  • the present invention relates to a direct current power transmission system which interconnects two alternating current electrical busbars, and to an associated control method.
  • the value of the power transmitted by the direct current circuit is the resultant of the multiplication of the scalar quantities of direct voltage and direct current.
  • the direct voltage is maintained constant for power transmission in one direction whilst the power is varied by adjusting the direct current.
  • the direct current can, in some systems, be reduced to less than ten percent of the rated current. In such circumstances, it may be necessary to impose a minimum direct current limit in order to avoid the direct current becoming discontinuous. This minimum direct current will, in such circumstances, lead to a minimum direct power limit.
  • this basic concept has been modified such that, particularly when starting from a high power transmission level, an initial reduction in the power transmission demand is accounted for by a step reduction in direct voltage (in order to reduce the thermal and electrical stress placed on the cable insulation), whilst the direct current is maintained constant. Following the step reduction, the direct voltage is then ramped back up to the rated voltage whilst the direct current is ramped down, such that, following the initial step, the direct power is maintained constant.
  • the magnitude of the step in direct voltage is often approximately 20%.
  • a control method for a direct current power transmission system including the step of altering direct current and direct voltage simultaneously in response to fluctuations in power demand.
  • the method may further include the step of altering the direct current and direct voltage such that the net reactive power absorbed at each converter (where the system includes a number thereof) remains approximately constant.
  • the variation in the magnitude of direct current is kept relatively small, only reducing by approximately one half, over the entire power range of the converter.
  • Zero power transfer is achieved by forcing the average DC voltage to zero, leaving the direct current at a higher value. Thus the risk of discontinuous current is avoided.
  • the invention is concerned with the selection of the appropriate value of direct voltage and direct current to achieve a particular value of power transfer whilst minimising the electrical stress on main circuit equipment in the event of continuously changing, and even reversing, energy transmission.
  • the invention involves the selection of steady-state values of direct current and direct voltage in order to meet a certain level of power transmission whilst maintaining the reactive power absorbed by the converters to an approximately constant value between rated power transmission and zero power transmission. This results in a reduced variation in the direct current, approximately a change of the order of two to one, and hence minimises the thermal cycling on electrical plant.
  • the method of selecting the appropriate values of direct voltage and direct current are based on calculating the reactive power absorption of the converter at rated power.
  • the direct voltage and direct current for a transmission system are conventionally based on an economic analysis of the capital cost of the transmission media versus the cost of losses.
  • the control method of the invention uses the same basis to establish the rated conditions.
  • the rated operating condition defines the converter absorption based on classical converter equations. By iterative calculation for power transmission levels below rated power, a combination of direct voltage and direct current can be found that for a given power transfer level cause the converter to absorb approximately constant reactive power. An expression can then be developed relating the appropriate direct voltage, found through the iterative calculations, to the power transfer level. This equation normally takes the form of a quadratic equation and is particular to each application. In order to speed up the response to load changes, a first station may be made the direct voltage control point while a second station, at an opposite end of the DC link to the first station, is made the direct current control point, irrespective of power direction.
  • the direct voltage is controlled by:
  • the direct current is controlled by:
  • a direct current power transmission system comprising a first AC system connected by an AC/DC converter to a DC link, the DC link being connected to a second AC system by a DC/AC converter, the converters having respective first and second control systems, the control systems being operable to alter simultaneously direct current and direct voltage in response to fluctuations in power demand.
  • the control systems may be operable to alter direct current and direct voltage such that the net reactive power absorbed at each converter remains approximately constant.
  • the first controller may be operable to control direct voltage and the second controller may be operable to control direct current.
  • FIG. 1 is a schematic diagram of a conventional ITVDC (high voltage direct current) transmission system
  • Figure 2 is a graph showing simplified static characteristics of a control system in a conventional ITVDC system
  • Figure 3 is a graph showing the static characteristics of a control system in a ITVDC system according to the invention.
  • FIG. 1 shows a conventional ITVDC system connecting two AC systems 10, 20.
  • the system consists of two HVDC converters 12, 22, their associated transformers 18, 28 and AC filters 14, 24, which also provide reactive power support.
  • the converters 12, 22 are constructed using valves (not shown), which are themselves constructed from series- or parallel-connected electronic switches. The number of electronic switches used depends upon the DC transmission current and voltage. The most commonly used switch is the thyristor.
  • the converters include bridges of the "graetz" 6-pulse bridge topology, and are in a 12-pulse configuration constructed out of two phase-shifted 6-pulse bridges.
  • connection between the two converters 12, 22 consists of either a transmission line or cable 50, or a combination of the two, and may also include DC reactors and filters.
  • Power can be transferred in either direction between AC systems 10, 20. Whatever the power direction, the direct current direction is dictated by the polarity of the thyristors in the ITVDC valve. Reversing the power flow along the DC link is accomplished by changing the operating firing angle of the converters 12, 22 and reversing the direct voltage.
  • the converter supplying the DC power to the DC system is called the rectifier and the converter taking power from the DC system is called the inverter.
  • Each converter 12, 22 in the ITVDC system has its own control system 16, 26.
  • the individual control modes of each control system 16, 26 are known as its static or station characteristics.
  • the rectifier normally operates on constant DC current control (for example line B 1 -C 1 ) while the inverter typically operates in either constant extinction angle (or V DC ) (line Y-Z).
  • constant DC current control for example line B 1 -C 1
  • V DC constant extinction angle
  • Other control characteristics are included to modify the converter operation during system transients.
  • Reversing the power transfer requires the two control systems to change their respective firing angles and to reverse the direct voltage. Typically this is first done by lowering the transferred current to a minimum value, for example OP 1 , and shutting down (blocking) the converters. The converters are then started up (deblocked) with the appropriate control firing angles to give minimum current with the opposite direct voltage (OP 3 ). This requires the discharging and recharging of the DC cable.
  • a minimum value for example OP 1
  • OP 3 opposite direct voltage
  • Figure 3 shows the static characteristics of a control system in a ITVDC system according to the invention.
  • one of the converters 12, 22, which in this embodiment is converter 22, is always in constant reactive power control. That is, it maintains its reactive power exchange with its respective system at a constant value. It also has other characteristics such as constant DC current and voltage characteristics to form limits under transient conditions.
  • the other converter 12, 22, which in this embodiment is converter 12, is in either constant DC voltage control, constant DC power control or constant frequency control.
  • the converter 12 is in constant DC voltage control.
  • the example is for a constant power control, it could be for a constant frequency control as DC power is proportional to AC system frequency.
  • Other characteristics such as a DC current or reactive power limit are present for transient conditions.
  • converter 12 demands that its characteristic intercepts with that of converter 22 at operating point OP 2 . If the frequency of AC system 10 decreases, then the constant frequency characteristic moves such that the intercept now moves to OP 3 and the power transmission is reduced, but AC system 10 maintains constant AC system frequency.
  • the reduced DC power transfer is achieved by changes in both the direct current and voltage. Further decreases in DC power (if necessary to zero) are achieved simply by moving the intercept to OP 4 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

La présente invention concerne un procédé de sélection de tension continue et de courant continu adaptés de façon à établir une liaison de transmission de courant continu de sorte que l'absorption de puissance réactive approximativement constante soit présentée d'un transfert de puissance nulle à un transfert de puissance nominale.
PCT/EP2005/054823 2004-09-27 2005-09-27 Systeme de transmission de courant continu et procede de commande associe WO2006035018A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05794708A EP1800391A2 (fr) 2004-09-27 2005-09-27 Systeme de transmission de courant continu et procede de commande associe
NO20072200A NO20072200L (no) 2004-09-27 2007-04-27 Overforingssystem for likestromseffekt og tilordnet fremgangsmate for styring av systemet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0421440A GB2419043A (en) 2004-09-27 2004-09-27 DC transmission system with variable current and voltage
GB0421440.9 2004-09-27

Publications (2)

Publication Number Publication Date
WO2006035018A2 true WO2006035018A2 (fr) 2006-04-06
WO2006035018A3 WO2006035018A3 (fr) 2006-07-06

Family

ID=33397327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/054823 WO2006035018A2 (fr) 2004-09-27 2005-09-27 Systeme de transmission de courant continu et procede de commande associe

Country Status (4)

Country Link
EP (1) EP1800391A2 (fr)
GB (1) GB2419043A (fr)
NO (1) NO20072200L (fr)
WO (1) WO2006035018A2 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110211A1 (fr) * 2007-03-15 2008-09-18 Abb Technology Ag Procédé et agencement permettant d'inverser le débit de puissance d'un système de transmission de puissance en courant continu
WO2011101027A1 (fr) * 2010-02-17 2011-08-25 Areva T&D Uk Ltd Commande de puissance réactive pour une liaison cc à haute tension
CN102723724A (zh) * 2012-07-04 2012-10-10 辽宁立德电力电子有限公司 一种新型静止型动态无功发生器装置及其方法
CN102891498A (zh) * 2012-11-01 2013-01-23 天津市电力公司 一种用于负荷线路的直流输电系统
CN103138279A (zh) * 2011-11-25 2013-06-05 沈阳工业大学 一种基于状态转换的电网交直流输电系统潮流计算方法
CN103311944A (zh) * 2013-05-16 2013-09-18 国家电网公司 一种采用模块化结构的统一潮流控制器及其启动方法
CN103311947A (zh) * 2013-07-02 2013-09-18 南京南瑞继保电气有限公司 一种基于模块化多电平换流器的三极直流输电系统拓扑结构
CN103441527A (zh) * 2013-08-15 2013-12-11 国家电网公司 一种基于实测数据的风电接入系统模型
CN103457287A (zh) * 2013-05-17 2013-12-18 湖南大学 一种应用于风电场的多端vsc-hvdc并网传输系统控制方法
CN103986180A (zh) * 2014-05-30 2014-08-13 国家电网公司 一种受端电网直流落点的选择方法
CN104104101A (zh) * 2014-06-16 2014-10-15 南方电网科学研究院有限责任公司 一种混合直流输电的快速潮流反转控制方法
CN104348179A (zh) * 2014-11-06 2015-02-11 国网辽宁省电力有限公司鞍山供电公司 一种用于轻型直流输电系统的控制方法
CN104537158A (zh) * 2014-12-12 2015-04-22 上海交通大学 适用于vsc-hvdc系统的建模方法及同步样机
CN104578128A (zh) * 2014-12-23 2015-04-29 南京南瑞继保电气有限公司 一种柔性直流输电系统孤岛转联网的切换方法
CN104638665A (zh) * 2015-03-06 2015-05-20 南京南瑞继保电气有限公司 一种混合直流输电系统潮流反转控制方法及装置
CN104993499A (zh) * 2015-07-28 2015-10-21 南方电网科学研究院有限责任公司 组合背靠背直流输电系统无功输出功率控制方法和系统
WO2016125107A1 (fr) * 2015-02-04 2016-08-11 Bipco-Soft R3 Inc. Réponse portant sur une demande, mise en œuvre dans une infrastructure comprenant une liaison à courant continu
CN105990845A (zh) * 2015-02-15 2016-10-05 国家电网公司 一种风电基地外送系统的直流功率曲线确定方法
CN105990843A (zh) * 2015-02-15 2016-10-05 国家电网公司 一种跟随风电功率波动调节的直流功率调整方法
CN113839407A (zh) * 2021-09-07 2021-12-24 广东电网有限责任公司广州供电局 直流输电系统的潮流反转控制方法及控制装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8599591B2 (en) 2009-06-22 2013-12-03 Alstom Technology Ltd Converter
CN102859861B (zh) 2009-07-31 2016-01-20 阿尔斯通技术有限公司 可配置的混合转换器电路
EP2534742B8 (fr) 2010-02-09 2016-02-24 General Electric Technology GmbH Convertisseur pour transmission continu-continu à haute tension
CA2791082A1 (fr) 2010-03-15 2011-09-22 Alstom Technology Ltd Compensateur statique de puissance reactive dote d'un convertisseur a plusieurs niveaux
CN103081335B (zh) 2010-04-08 2016-01-06 阿尔斯通技术有限公司 混合hvdc转换器
KR101719393B1 (ko) 2010-04-15 2017-03-23 제네럴 일렉트릭 테크놀러지 게엠베하 하이브리드 2-레벨 및 멀티레벨 hvdc 컨버터
WO2011157300A1 (fr) 2010-06-18 2011-12-22 Areva T&D Uk Limited Convertisseur pour transmission de ccht et compensation de puissance réactive
BR112013001600A2 (pt) 2010-07-30 2016-05-17 Alstom Technology Ltd ''conversor eletrônico de potência''
CN102035214B (zh) * 2010-12-15 2013-03-27 山东大学 直流支援弱受端系统恢复过程中最大负荷的确定方法
AU2011370308A1 (en) 2011-06-08 2013-12-19 Alstom Technology Ltd High voltage DC/DC converter with cascaded resonant tanks
US9509218B2 (en) 2011-08-01 2016-11-29 Alstom Technology Ltd. DC to DC converter assembly
US9209693B2 (en) 2011-11-07 2015-12-08 Alstom Technology Ltd Control circuit for DC network to maintain zero net change in energy level
CN103959634B (zh) 2011-11-17 2017-09-01 通用电气技术有限公司 用于hvdc应用的混合ac/dc转换器
CN102522768B (zh) * 2011-11-30 2013-11-06 西安交通大学 一种双馈风力发电机组低电压穿越控制方法
US9954358B2 (en) 2012-03-01 2018-04-24 General Electric Technology Gmbh Control circuit
CN102611096A (zh) * 2012-03-13 2012-07-25 浙江大学 一种具有直流故障自清除能力的双极直流输电系统
CN103956739A (zh) * 2014-04-25 2014-07-30 湖南大学 一种直流输电换流站的电力滤波及无功补偿的实现方法
CN104767217B (zh) * 2014-09-25 2017-01-25 国家电网公司 一种获取基于参数矩阵化的直流输电系统可靠性的方法
CN105633994B (zh) * 2015-12-28 2018-01-23 许继集团有限公司 Fmmc‑lcc型混合直流输电系统启动方法
CN106451432B (zh) * 2016-10-25 2018-12-25 国网江苏省电力公司电力科学研究院 多直流馈入系统故障后的协调恢复控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727466A (en) * 1985-08-30 1988-02-23 Kabushiki Kaisha Toshiba Apparatus for controlling reactive power in a HVDC system
GB2295506A (en) * 1994-11-24 1996-05-29 Gec Alsthom Ltd HVDC converter control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1962042A1 (de) * 1969-12-11 1971-06-16 Bbc Brown Boveri & Cie Verfahren zur Regelung des Leistungsfaktors oder der Spannung in einem Drehstromnetz mittels einer Hochspannungs-Gleichstrom-Kurzkupplung
JPS605781A (ja) * 1983-06-21 1985-01-12 Toshiba Corp 変換器の制御装置
WO2002049399A1 (fr) * 2000-12-14 2002-06-20 Virginia Tech Intellectual Properties, Inc. Ballast electronique auto-oscillant de lampe a decharge muni d'une commande de gradation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727466A (en) * 1985-08-30 1988-02-23 Kabushiki Kaisha Toshiba Apparatus for controlling reactive power in a HVDC system
GB2295506A (en) * 1994-11-24 1996-05-29 Gec Alsthom Ltd HVDC converter control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONGTAO LIU ET AL: "A control strategy for three-level VSC-HVDC system" 2002 IEEE POWER ENGINEERING SOCIETY. SUMMER MEETING. CONFERENCE PROCEEDINGS. CHICAGO, IL, JULY 21 - 25, 2002, IEEE POWER ENGINEERING SOCIETY, NEW YORK, NY : IEEE, US, vol. VOL. 2 OF 3, 21 July 2002 (2002-07-21), pages 480-485, XP010610585 ISBN: 0-7803-7518-1 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110211A1 (fr) * 2007-03-15 2008-09-18 Abb Technology Ag Procédé et agencement permettant d'inverser le débit de puissance d'un système de transmission de puissance en courant continu
US8203856B2 (en) 2007-03-15 2012-06-19 Abb Technology Ag Method and arrangement to reverse the power flow of a direct current power transmission system
WO2011101027A1 (fr) * 2010-02-17 2011-08-25 Areva T&D Uk Ltd Commande de puissance réactive pour une liaison cc à haute tension
CN103138279A (zh) * 2011-11-25 2013-06-05 沈阳工业大学 一种基于状态转换的电网交直流输电系统潮流计算方法
CN102723724A (zh) * 2012-07-04 2012-10-10 辽宁立德电力电子有限公司 一种新型静止型动态无功发生器装置及其方法
CN102891498A (zh) * 2012-11-01 2013-01-23 天津市电力公司 一种用于负荷线路的直流输电系统
CN103311944A (zh) * 2013-05-16 2013-09-18 国家电网公司 一种采用模块化结构的统一潮流控制器及其启动方法
CN103457287A (zh) * 2013-05-17 2013-12-18 湖南大学 一种应用于风电场的多端vsc-hvdc并网传输系统控制方法
CN103311947A (zh) * 2013-07-02 2013-09-18 南京南瑞继保电气有限公司 一种基于模块化多电平换流器的三极直流输电系统拓扑结构
CN103441527A (zh) * 2013-08-15 2013-12-11 国家电网公司 一种基于实测数据的风电接入系统模型
CN103986180A (zh) * 2014-05-30 2014-08-13 国家电网公司 一种受端电网直流落点的选择方法
CN104104101A (zh) * 2014-06-16 2014-10-15 南方电网科学研究院有限责任公司 一种混合直流输电的快速潮流反转控制方法
CN104348179A (zh) * 2014-11-06 2015-02-11 国网辽宁省电力有限公司鞍山供电公司 一种用于轻型直流输电系统的控制方法
CN104537158A (zh) * 2014-12-12 2015-04-22 上海交通大学 适用于vsc-hvdc系统的建模方法及同步样机
CN104537158B (zh) * 2014-12-12 2017-11-14 上海交通大学 适用于vsc‑hvdc系统的建模方法及同步样机
CN104578128A (zh) * 2014-12-23 2015-04-29 南京南瑞继保电气有限公司 一种柔性直流输电系统孤岛转联网的切换方法
WO2016125107A1 (fr) * 2015-02-04 2016-08-11 Bipco-Soft R3 Inc. Réponse portant sur une demande, mise en œuvre dans une infrastructure comprenant une liaison à courant continu
CN105990845A (zh) * 2015-02-15 2016-10-05 国家电网公司 一种风电基地外送系统的直流功率曲线确定方法
CN105990843A (zh) * 2015-02-15 2016-10-05 国家电网公司 一种跟随风电功率波动调节的直流功率调整方法
CN104638665A (zh) * 2015-03-06 2015-05-20 南京南瑞继保电气有限公司 一种混合直流输电系统潮流反转控制方法及装置
CN104993499A (zh) * 2015-07-28 2015-10-21 南方电网科学研究院有限责任公司 组合背靠背直流输电系统无功输出功率控制方法和系统
CN113839407A (zh) * 2021-09-07 2021-12-24 广东电网有限责任公司广州供电局 直流输电系统的潮流反转控制方法及控制装置
CN113839407B (zh) * 2021-09-07 2023-08-04 广东电网有限责任公司广州供电局 直流输电系统的潮流反转控制方法及控制装置

Also Published As

Publication number Publication date
GB0421440D0 (en) 2004-10-27
GB2419043A (en) 2006-04-12
WO2006035018A3 (fr) 2006-07-06
NO20072200L (no) 2007-04-27
EP1800391A2 (fr) 2007-06-27

Similar Documents

Publication Publication Date Title
EP1800391A2 (fr) Systeme de transmission de courant continu et procede de commande associe
Lee et al. Circuit-level comparison of STATCOM technologies
EP2548277B1 (fr) Compensateur statique de puissance réactive doté d'un convertisseur à plusieurs niveaux
RU2627227C2 (ru) Способ и система для управления гидроэлектрическими турбинами
CN102549872B (zh) 控制用于支持ac系统的高压dc系统的逆变器装置
PL180944B1 (pl) Sposób i urządzenie przełączające do nastawiania przekładni zwojowej transformatora
KR20040079860A (ko) 전력변환기 및 전력유닛
RU2111632C1 (ru) Регулируемый источник питания
EP0707368B1 (fr) Méthode et appareil pour la commande d'une installation de convertisseur à compensation série
WO2001084689A1 (fr) Systeme de distribution d'energie electrique
Jovcic et al. Tapping on HVDC lines using DC transformers
WO2017190291A1 (fr) Circuit de conversion de courant, système d'alimentation et procédé associé
EP3866320A1 (fr) Système d'alimentation de pile à combustible
WO2013037400A1 (fr) Système m2lc à fonctionnement bi-mode pour transfert d'énergie et compensation de puissance réactive
Chaturvedi et al. Multi-pulse converters as a viable solution for power quality improvement
Kavya et al. Comparison of controllers of hybrid HVDC link in multi-infeed application
Bhattacharya et al. A practical operation strategy for STATCOM under single line to ground faults in the power system
Al-Majali Voltage control of modified series-connected HVDC bridges
Arrillaga et al. Thyristor-controlled in-phase boosting for hvdc convertors
Al-Majali Voltage control of modified series-connected HVDC bridges using GTO thyristor by-pass valves
Amari et al. A Novel Method to Mitigate Commutation Failures in LCC-HVDC System Connected to a Weak AC Network
RU2727148C1 (ru) Устройство для компенсации реактивной мощности в высоковольтных сетях
US20240055865A1 (en) Controller for power electronic device
Tupitsina The effect of a static synchronous series compensator on transient properties of the system
Ekstrom HVDC and SVC

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005794708

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005794708

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载