WO2006035018A2 - Systeme de transmission de courant continu et procede de commande associe - Google Patents
Systeme de transmission de courant continu et procede de commande associe Download PDFInfo
- Publication number
- WO2006035018A2 WO2006035018A2 PCT/EP2005/054823 EP2005054823W WO2006035018A2 WO 2006035018 A2 WO2006035018 A2 WO 2006035018A2 EP 2005054823 W EP2005054823 W EP 2005054823W WO 2006035018 A2 WO2006035018 A2 WO 2006035018A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- direct current
- control
- power
- converter
- direct
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000010521 absorption reaction Methods 0.000 abstract description 4
- 238000010304 firing Methods 0.000 description 8
- 230000003068 static effect Effects 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 5
- 238000007599 discharging Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000005382 thermal cycling Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/36—Arrangements for transfer of electric power between AC networks via a high-tension DC link
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/66—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal
- H02M7/68—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters
- H02M7/72—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/75—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M7/757—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
- H02M7/7575—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only for high voltage direct transmission link
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/60—Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
Definitions
- a direct current power transmission system and associated control method A direct current power transmission system and associated control method
- the present invention relates to a direct current power transmission system which interconnects two alternating current electrical busbars, and to an associated control method.
- the value of the power transmitted by the direct current circuit is the resultant of the multiplication of the scalar quantities of direct voltage and direct current.
- the direct voltage is maintained constant for power transmission in one direction whilst the power is varied by adjusting the direct current.
- the direct current can, in some systems, be reduced to less than ten percent of the rated current. In such circumstances, it may be necessary to impose a minimum direct current limit in order to avoid the direct current becoming discontinuous. This minimum direct current will, in such circumstances, lead to a minimum direct power limit.
- this basic concept has been modified such that, particularly when starting from a high power transmission level, an initial reduction in the power transmission demand is accounted for by a step reduction in direct voltage (in order to reduce the thermal and electrical stress placed on the cable insulation), whilst the direct current is maintained constant. Following the step reduction, the direct voltage is then ramped back up to the rated voltage whilst the direct current is ramped down, such that, following the initial step, the direct power is maintained constant.
- the magnitude of the step in direct voltage is often approximately 20%.
- a control method for a direct current power transmission system including the step of altering direct current and direct voltage simultaneously in response to fluctuations in power demand.
- the method may further include the step of altering the direct current and direct voltage such that the net reactive power absorbed at each converter (where the system includes a number thereof) remains approximately constant.
- the variation in the magnitude of direct current is kept relatively small, only reducing by approximately one half, over the entire power range of the converter.
- Zero power transfer is achieved by forcing the average DC voltage to zero, leaving the direct current at a higher value. Thus the risk of discontinuous current is avoided.
- the invention is concerned with the selection of the appropriate value of direct voltage and direct current to achieve a particular value of power transfer whilst minimising the electrical stress on main circuit equipment in the event of continuously changing, and even reversing, energy transmission.
- the invention involves the selection of steady-state values of direct current and direct voltage in order to meet a certain level of power transmission whilst maintaining the reactive power absorbed by the converters to an approximately constant value between rated power transmission and zero power transmission. This results in a reduced variation in the direct current, approximately a change of the order of two to one, and hence minimises the thermal cycling on electrical plant.
- the method of selecting the appropriate values of direct voltage and direct current are based on calculating the reactive power absorption of the converter at rated power.
- the direct voltage and direct current for a transmission system are conventionally based on an economic analysis of the capital cost of the transmission media versus the cost of losses.
- the control method of the invention uses the same basis to establish the rated conditions.
- the rated operating condition defines the converter absorption based on classical converter equations. By iterative calculation for power transmission levels below rated power, a combination of direct voltage and direct current can be found that for a given power transfer level cause the converter to absorb approximately constant reactive power. An expression can then be developed relating the appropriate direct voltage, found through the iterative calculations, to the power transfer level. This equation normally takes the form of a quadratic equation and is particular to each application. In order to speed up the response to load changes, a first station may be made the direct voltage control point while a second station, at an opposite end of the DC link to the first station, is made the direct current control point, irrespective of power direction.
- the direct voltage is controlled by:
- the direct current is controlled by:
- a direct current power transmission system comprising a first AC system connected by an AC/DC converter to a DC link, the DC link being connected to a second AC system by a DC/AC converter, the converters having respective first and second control systems, the control systems being operable to alter simultaneously direct current and direct voltage in response to fluctuations in power demand.
- the control systems may be operable to alter direct current and direct voltage such that the net reactive power absorbed at each converter remains approximately constant.
- the first controller may be operable to control direct voltage and the second controller may be operable to control direct current.
- FIG. 1 is a schematic diagram of a conventional ITVDC (high voltage direct current) transmission system
- Figure 2 is a graph showing simplified static characteristics of a control system in a conventional ITVDC system
- Figure 3 is a graph showing the static characteristics of a control system in a ITVDC system according to the invention.
- FIG. 1 shows a conventional ITVDC system connecting two AC systems 10, 20.
- the system consists of two HVDC converters 12, 22, their associated transformers 18, 28 and AC filters 14, 24, which also provide reactive power support.
- the converters 12, 22 are constructed using valves (not shown), which are themselves constructed from series- or parallel-connected electronic switches. The number of electronic switches used depends upon the DC transmission current and voltage. The most commonly used switch is the thyristor.
- the converters include bridges of the "graetz" 6-pulse bridge topology, and are in a 12-pulse configuration constructed out of two phase-shifted 6-pulse bridges.
- connection between the two converters 12, 22 consists of either a transmission line or cable 50, or a combination of the two, and may also include DC reactors and filters.
- Power can be transferred in either direction between AC systems 10, 20. Whatever the power direction, the direct current direction is dictated by the polarity of the thyristors in the ITVDC valve. Reversing the power flow along the DC link is accomplished by changing the operating firing angle of the converters 12, 22 and reversing the direct voltage.
- the converter supplying the DC power to the DC system is called the rectifier and the converter taking power from the DC system is called the inverter.
- Each converter 12, 22 in the ITVDC system has its own control system 16, 26.
- the individual control modes of each control system 16, 26 are known as its static or station characteristics.
- the rectifier normally operates on constant DC current control (for example line B 1 -C 1 ) while the inverter typically operates in either constant extinction angle (or V DC ) (line Y-Z).
- constant DC current control for example line B 1 -C 1
- V DC constant extinction angle
- Other control characteristics are included to modify the converter operation during system transients.
- Reversing the power transfer requires the two control systems to change their respective firing angles and to reverse the direct voltage. Typically this is first done by lowering the transferred current to a minimum value, for example OP 1 , and shutting down (blocking) the converters. The converters are then started up (deblocked) with the appropriate control firing angles to give minimum current with the opposite direct voltage (OP 3 ). This requires the discharging and recharging of the DC cable.
- a minimum value for example OP 1
- OP 3 opposite direct voltage
- Figure 3 shows the static characteristics of a control system in a ITVDC system according to the invention.
- one of the converters 12, 22, which in this embodiment is converter 22, is always in constant reactive power control. That is, it maintains its reactive power exchange with its respective system at a constant value. It also has other characteristics such as constant DC current and voltage characteristics to form limits under transient conditions.
- the other converter 12, 22, which in this embodiment is converter 12, is in either constant DC voltage control, constant DC power control or constant frequency control.
- the converter 12 is in constant DC voltage control.
- the example is for a constant power control, it could be for a constant frequency control as DC power is proportional to AC system frequency.
- Other characteristics such as a DC current or reactive power limit are present for transient conditions.
- converter 12 demands that its characteristic intercepts with that of converter 22 at operating point OP 2 . If the frequency of AC system 10 decreases, then the constant frequency characteristic moves such that the intercept now moves to OP 3 and the power transmission is reduced, but AC system 10 maintains constant AC system frequency.
- the reduced DC power transfer is achieved by changes in both the direct current and voltage. Further decreases in DC power (if necessary to zero) are achieved simply by moving the intercept to OP 4 .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Electrical Variables (AREA)
- Direct Current Feeding And Distribution (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05794708A EP1800391A2 (fr) | 2004-09-27 | 2005-09-27 | Systeme de transmission de courant continu et procede de commande associe |
NO20072200A NO20072200L (no) | 2004-09-27 | 2007-04-27 | Overforingssystem for likestromseffekt og tilordnet fremgangsmate for styring av systemet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0421440A GB2419043A (en) | 2004-09-27 | 2004-09-27 | DC transmission system with variable current and voltage |
GB0421440.9 | 2004-09-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006035018A2 true WO2006035018A2 (fr) | 2006-04-06 |
WO2006035018A3 WO2006035018A3 (fr) | 2006-07-06 |
Family
ID=33397327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/054823 WO2006035018A2 (fr) | 2004-09-27 | 2005-09-27 | Systeme de transmission de courant continu et procede de commande associe |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1800391A2 (fr) |
GB (1) | GB2419043A (fr) |
NO (1) | NO20072200L (fr) |
WO (1) | WO2006035018A2 (fr) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008110211A1 (fr) * | 2007-03-15 | 2008-09-18 | Abb Technology Ag | Procédé et agencement permettant d'inverser le débit de puissance d'un système de transmission de puissance en courant continu |
WO2011101027A1 (fr) * | 2010-02-17 | 2011-08-25 | Areva T&D Uk Ltd | Commande de puissance réactive pour une liaison cc à haute tension |
CN102723724A (zh) * | 2012-07-04 | 2012-10-10 | 辽宁立德电力电子有限公司 | 一种新型静止型动态无功发生器装置及其方法 |
CN102891498A (zh) * | 2012-11-01 | 2013-01-23 | 天津市电力公司 | 一种用于负荷线路的直流输电系统 |
CN103138279A (zh) * | 2011-11-25 | 2013-06-05 | 沈阳工业大学 | 一种基于状态转换的电网交直流输电系统潮流计算方法 |
CN103311944A (zh) * | 2013-05-16 | 2013-09-18 | 国家电网公司 | 一种采用模块化结构的统一潮流控制器及其启动方法 |
CN103311947A (zh) * | 2013-07-02 | 2013-09-18 | 南京南瑞继保电气有限公司 | 一种基于模块化多电平换流器的三极直流输电系统拓扑结构 |
CN103441527A (zh) * | 2013-08-15 | 2013-12-11 | 国家电网公司 | 一种基于实测数据的风电接入系统模型 |
CN103457287A (zh) * | 2013-05-17 | 2013-12-18 | 湖南大学 | 一种应用于风电场的多端vsc-hvdc并网传输系统控制方法 |
CN103986180A (zh) * | 2014-05-30 | 2014-08-13 | 国家电网公司 | 一种受端电网直流落点的选择方法 |
CN104104101A (zh) * | 2014-06-16 | 2014-10-15 | 南方电网科学研究院有限责任公司 | 一种混合直流输电的快速潮流反转控制方法 |
CN104348179A (zh) * | 2014-11-06 | 2015-02-11 | 国网辽宁省电力有限公司鞍山供电公司 | 一种用于轻型直流输电系统的控制方法 |
CN104537158A (zh) * | 2014-12-12 | 2015-04-22 | 上海交通大学 | 适用于vsc-hvdc系统的建模方法及同步样机 |
CN104578128A (zh) * | 2014-12-23 | 2015-04-29 | 南京南瑞继保电气有限公司 | 一种柔性直流输电系统孤岛转联网的切换方法 |
CN104638665A (zh) * | 2015-03-06 | 2015-05-20 | 南京南瑞继保电气有限公司 | 一种混合直流输电系统潮流反转控制方法及装置 |
CN104993499A (zh) * | 2015-07-28 | 2015-10-21 | 南方电网科学研究院有限责任公司 | 组合背靠背直流输电系统无功输出功率控制方法和系统 |
WO2016125107A1 (fr) * | 2015-02-04 | 2016-08-11 | Bipco-Soft R3 Inc. | Réponse portant sur une demande, mise en œuvre dans une infrastructure comprenant une liaison à courant continu |
CN105990845A (zh) * | 2015-02-15 | 2016-10-05 | 国家电网公司 | 一种风电基地外送系统的直流功率曲线确定方法 |
CN105990843A (zh) * | 2015-02-15 | 2016-10-05 | 国家电网公司 | 一种跟随风电功率波动调节的直流功率调整方法 |
CN113839407A (zh) * | 2021-09-07 | 2021-12-24 | 广东电网有限责任公司广州供电局 | 直流输电系统的潮流反转控制方法及控制装置 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8599591B2 (en) | 2009-06-22 | 2013-12-03 | Alstom Technology Ltd | Converter |
CN102859861B (zh) | 2009-07-31 | 2016-01-20 | 阿尔斯通技术有限公司 | 可配置的混合转换器电路 |
EP2534742B8 (fr) | 2010-02-09 | 2016-02-24 | General Electric Technology GmbH | Convertisseur pour transmission continu-continu à haute tension |
CA2791082A1 (fr) | 2010-03-15 | 2011-09-22 | Alstom Technology Ltd | Compensateur statique de puissance reactive dote d'un convertisseur a plusieurs niveaux |
CN103081335B (zh) | 2010-04-08 | 2016-01-06 | 阿尔斯通技术有限公司 | 混合hvdc转换器 |
KR101719393B1 (ko) | 2010-04-15 | 2017-03-23 | 제네럴 일렉트릭 테크놀러지 게엠베하 | 하이브리드 2-레벨 및 멀티레벨 hvdc 컨버터 |
WO2011157300A1 (fr) | 2010-06-18 | 2011-12-22 | Areva T&D Uk Limited | Convertisseur pour transmission de ccht et compensation de puissance réactive |
BR112013001600A2 (pt) | 2010-07-30 | 2016-05-17 | Alstom Technology Ltd | ''conversor eletrônico de potência'' |
CN102035214B (zh) * | 2010-12-15 | 2013-03-27 | 山东大学 | 直流支援弱受端系统恢复过程中最大负荷的确定方法 |
AU2011370308A1 (en) | 2011-06-08 | 2013-12-19 | Alstom Technology Ltd | High voltage DC/DC converter with cascaded resonant tanks |
US9509218B2 (en) | 2011-08-01 | 2016-11-29 | Alstom Technology Ltd. | DC to DC converter assembly |
US9209693B2 (en) | 2011-11-07 | 2015-12-08 | Alstom Technology Ltd | Control circuit for DC network to maintain zero net change in energy level |
CN103959634B (zh) | 2011-11-17 | 2017-09-01 | 通用电气技术有限公司 | 用于hvdc应用的混合ac/dc转换器 |
CN102522768B (zh) * | 2011-11-30 | 2013-11-06 | 西安交通大学 | 一种双馈风力发电机组低电压穿越控制方法 |
US9954358B2 (en) | 2012-03-01 | 2018-04-24 | General Electric Technology Gmbh | Control circuit |
CN102611096A (zh) * | 2012-03-13 | 2012-07-25 | 浙江大学 | 一种具有直流故障自清除能力的双极直流输电系统 |
CN103956739A (zh) * | 2014-04-25 | 2014-07-30 | 湖南大学 | 一种直流输电换流站的电力滤波及无功补偿的实现方法 |
CN104767217B (zh) * | 2014-09-25 | 2017-01-25 | 国家电网公司 | 一种获取基于参数矩阵化的直流输电系统可靠性的方法 |
CN105633994B (zh) * | 2015-12-28 | 2018-01-23 | 许继集团有限公司 | Fmmc‑lcc型混合直流输电系统启动方法 |
CN106451432B (zh) * | 2016-10-25 | 2018-12-25 | 国网江苏省电力公司电力科学研究院 | 多直流馈入系统故障后的协调恢复控制方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4727466A (en) * | 1985-08-30 | 1988-02-23 | Kabushiki Kaisha Toshiba | Apparatus for controlling reactive power in a HVDC system |
GB2295506A (en) * | 1994-11-24 | 1996-05-29 | Gec Alsthom Ltd | HVDC converter control |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1962042A1 (de) * | 1969-12-11 | 1971-06-16 | Bbc Brown Boveri & Cie | Verfahren zur Regelung des Leistungsfaktors oder der Spannung in einem Drehstromnetz mittels einer Hochspannungs-Gleichstrom-Kurzkupplung |
JPS605781A (ja) * | 1983-06-21 | 1985-01-12 | Toshiba Corp | 変換器の制御装置 |
WO2002049399A1 (fr) * | 2000-12-14 | 2002-06-20 | Virginia Tech Intellectual Properties, Inc. | Ballast electronique auto-oscillant de lampe a decharge muni d'une commande de gradation |
-
2004
- 2004-09-27 GB GB0421440A patent/GB2419043A/en not_active Withdrawn
-
2005
- 2005-09-27 EP EP05794708A patent/EP1800391A2/fr not_active Withdrawn
- 2005-09-27 WO PCT/EP2005/054823 patent/WO2006035018A2/fr active Application Filing
-
2007
- 2007-04-27 NO NO20072200A patent/NO20072200L/no not_active Application Discontinuation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4727466A (en) * | 1985-08-30 | 1988-02-23 | Kabushiki Kaisha Toshiba | Apparatus for controlling reactive power in a HVDC system |
GB2295506A (en) * | 1994-11-24 | 1996-05-29 | Gec Alsthom Ltd | HVDC converter control |
Non-Patent Citations (1)
Title |
---|
HONGTAO LIU ET AL: "A control strategy for three-level VSC-HVDC system" 2002 IEEE POWER ENGINEERING SOCIETY. SUMMER MEETING. CONFERENCE PROCEEDINGS. CHICAGO, IL, JULY 21 - 25, 2002, IEEE POWER ENGINEERING SOCIETY, NEW YORK, NY : IEEE, US, vol. VOL. 2 OF 3, 21 July 2002 (2002-07-21), pages 480-485, XP010610585 ISBN: 0-7803-7518-1 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008110211A1 (fr) * | 2007-03-15 | 2008-09-18 | Abb Technology Ag | Procédé et agencement permettant d'inverser le débit de puissance d'un système de transmission de puissance en courant continu |
US8203856B2 (en) | 2007-03-15 | 2012-06-19 | Abb Technology Ag | Method and arrangement to reverse the power flow of a direct current power transmission system |
WO2011101027A1 (fr) * | 2010-02-17 | 2011-08-25 | Areva T&D Uk Ltd | Commande de puissance réactive pour une liaison cc à haute tension |
CN103138279A (zh) * | 2011-11-25 | 2013-06-05 | 沈阳工业大学 | 一种基于状态转换的电网交直流输电系统潮流计算方法 |
CN102723724A (zh) * | 2012-07-04 | 2012-10-10 | 辽宁立德电力电子有限公司 | 一种新型静止型动态无功发生器装置及其方法 |
CN102891498A (zh) * | 2012-11-01 | 2013-01-23 | 天津市电力公司 | 一种用于负荷线路的直流输电系统 |
CN103311944A (zh) * | 2013-05-16 | 2013-09-18 | 国家电网公司 | 一种采用模块化结构的统一潮流控制器及其启动方法 |
CN103457287A (zh) * | 2013-05-17 | 2013-12-18 | 湖南大学 | 一种应用于风电场的多端vsc-hvdc并网传输系统控制方法 |
CN103311947A (zh) * | 2013-07-02 | 2013-09-18 | 南京南瑞继保电气有限公司 | 一种基于模块化多电平换流器的三极直流输电系统拓扑结构 |
CN103441527A (zh) * | 2013-08-15 | 2013-12-11 | 国家电网公司 | 一种基于实测数据的风电接入系统模型 |
CN103986180A (zh) * | 2014-05-30 | 2014-08-13 | 国家电网公司 | 一种受端电网直流落点的选择方法 |
CN104104101A (zh) * | 2014-06-16 | 2014-10-15 | 南方电网科学研究院有限责任公司 | 一种混合直流输电的快速潮流反转控制方法 |
CN104348179A (zh) * | 2014-11-06 | 2015-02-11 | 国网辽宁省电力有限公司鞍山供电公司 | 一种用于轻型直流输电系统的控制方法 |
CN104537158A (zh) * | 2014-12-12 | 2015-04-22 | 上海交通大学 | 适用于vsc-hvdc系统的建模方法及同步样机 |
CN104537158B (zh) * | 2014-12-12 | 2017-11-14 | 上海交通大学 | 适用于vsc‑hvdc系统的建模方法及同步样机 |
CN104578128A (zh) * | 2014-12-23 | 2015-04-29 | 南京南瑞继保电气有限公司 | 一种柔性直流输电系统孤岛转联网的切换方法 |
WO2016125107A1 (fr) * | 2015-02-04 | 2016-08-11 | Bipco-Soft R3 Inc. | Réponse portant sur une demande, mise en œuvre dans une infrastructure comprenant une liaison à courant continu |
CN105990845A (zh) * | 2015-02-15 | 2016-10-05 | 国家电网公司 | 一种风电基地外送系统的直流功率曲线确定方法 |
CN105990843A (zh) * | 2015-02-15 | 2016-10-05 | 国家电网公司 | 一种跟随风电功率波动调节的直流功率调整方法 |
CN104638665A (zh) * | 2015-03-06 | 2015-05-20 | 南京南瑞继保电气有限公司 | 一种混合直流输电系统潮流反转控制方法及装置 |
CN104993499A (zh) * | 2015-07-28 | 2015-10-21 | 南方电网科学研究院有限责任公司 | 组合背靠背直流输电系统无功输出功率控制方法和系统 |
CN113839407A (zh) * | 2021-09-07 | 2021-12-24 | 广东电网有限责任公司广州供电局 | 直流输电系统的潮流反转控制方法及控制装置 |
CN113839407B (zh) * | 2021-09-07 | 2023-08-04 | 广东电网有限责任公司广州供电局 | 直流输电系统的潮流反转控制方法及控制装置 |
Also Published As
Publication number | Publication date |
---|---|
GB0421440D0 (en) | 2004-10-27 |
GB2419043A (en) | 2006-04-12 |
WO2006035018A3 (fr) | 2006-07-06 |
NO20072200L (no) | 2007-04-27 |
EP1800391A2 (fr) | 2007-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1800391A2 (fr) | Systeme de transmission de courant continu et procede de commande associe | |
Lee et al. | Circuit-level comparison of STATCOM technologies | |
EP2548277B1 (fr) | Compensateur statique de puissance réactive doté d'un convertisseur à plusieurs niveaux | |
RU2627227C2 (ru) | Способ и система для управления гидроэлектрическими турбинами | |
CN102549872B (zh) | 控制用于支持ac系统的高压dc系统的逆变器装置 | |
PL180944B1 (pl) | Sposób i urządzenie przełączające do nastawiania przekładni zwojowej transformatora | |
KR20040079860A (ko) | 전력변환기 및 전력유닛 | |
RU2111632C1 (ru) | Регулируемый источник питания | |
EP0707368B1 (fr) | Méthode et appareil pour la commande d'une installation de convertisseur à compensation série | |
WO2001084689A1 (fr) | Systeme de distribution d'energie electrique | |
Jovcic et al. | Tapping on HVDC lines using DC transformers | |
WO2017190291A1 (fr) | Circuit de conversion de courant, système d'alimentation et procédé associé | |
EP3866320A1 (fr) | Système d'alimentation de pile à combustible | |
WO2013037400A1 (fr) | Système m2lc à fonctionnement bi-mode pour transfert d'énergie et compensation de puissance réactive | |
Chaturvedi et al. | Multi-pulse converters as a viable solution for power quality improvement | |
Kavya et al. | Comparison of controllers of hybrid HVDC link in multi-infeed application | |
Bhattacharya et al. | A practical operation strategy for STATCOM under single line to ground faults in the power system | |
Al-Majali | Voltage control of modified series-connected HVDC bridges | |
Arrillaga et al. | Thyristor-controlled in-phase boosting for hvdc convertors | |
Al-Majali | Voltage control of modified series-connected HVDC bridges using GTO thyristor by-pass valves | |
Amari et al. | A Novel Method to Mitigate Commutation Failures in LCC-HVDC System Connected to a Weak AC Network | |
RU2727148C1 (ru) | Устройство для компенсации реактивной мощности в высоковольтных сетях | |
US20240055865A1 (en) | Controller for power electronic device | |
Tupitsina | The effect of a static synchronous series compensator on transient properties of the system | |
Ekstrom | HVDC and SVC |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005794708 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2005794708 Country of ref document: EP |